Science.gov

Sample records for acceptor dye molecules

  1. Efficient organic dye-sensitized solar cells: molecular engineering of donor-acceptor-acceptor cationic dyes.

    PubMed

    Cheng, Ming; Yang, Xichuan; Zhao, Jianghua; Chen, Cheng; Tan, Qin; Zhang, Fuguo; Sun, Licheng

    2013-12-01

    Three metal-free donor-acceptor-acceptor sensitizers with ionized pyridine and a reference dye were synthesized, and a detailed investigation of the relationship between the dye structure and the photophysical and photoelectrochemical properties and the performance of dye-sensitized solar cells (DSSCs) is described. The ionization of pyridine results in a red shift of the absorption spectrum in comparison to that of the reference dye. This is mainly attributable to the ionization of pyridine increasing the electron-withdrawing ability of the total acceptor part. Incorporation of the strong electron-withdrawing units of pyridinium and cyano acrylic acid gives rise to optimized energy levels, resulting in a large response range of wavelengths. When attached to TiO2 film, the conduction band of TiO2 is negatively shifted to a different extent depending on the dye. This is attributed to the electron recombination rate between the TiO2 film and the electrolyte being efficiently suppressed by the introduction of long alkyl chains and thiophene units. DSSCs assembled using these dyes show efficiencies as high as 8.8 %.

  2. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications.

    PubMed

    Stalder, Romain; Xie, Dongping; Islam, Ashraful; Han, Liyuan; Reynolds, John R; Schanze, Kirk S

    2014-06-11

    We report on a sexithienyl and two donor-acceptor-donor oligothiophenes, employing benzothiadiazole and isoindigo as electron-acceptors, each functionalized with a phosphonic acid group for anchoring onto TiO2 substrates as light-harvesting molecules for dye sensitized solar cells (DSSCs). These dyes absorb light to wavelengths as long as 700 nm, as their optical HOMO/LUMO energy gaps are reduced from 2.40 to 1.77 eV with increasing acceptor strength. The oligomers were adsorbed onto mesoporous TiO2 films on fluorine doped tin oxide (FTO)/glass substrates and incorporated into DSSCs, which show AM1.5 power conversion efficiencies (PCEs) ranging between 2.6% and 6.4%. This work demonstrates that the donor-acceptor-donor (D-A-D) molecular structures coupled to phosphonic acid anchoring groups, which have not been used in DSSCs, can lead to high PCEs.

  3. Modulation of quantum dot photoemission based on fluorescence resonance energy transfer to a photochromic dye acceptor

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Clapp, Aaron R.; Trammel, Scott A.; Mattoussi, Hedi M.

    2004-12-01

    We demonstrate the use of a photochromic dye to achieve fluorescence resonance energy transfer (FRET) modulation between a QD donor and the dye acceptor brought in close proximity in a selfassembled QD-protein-dye conjugate. The E. coli maltose binding protein (MBP) appended on its C-terminal with an oligohistidine attachment domain, immobilized onto CdSe-ZnS core-shell QDs was labeled with a sulfo-N-hydroxysuccinimide activated photochromic BIPS molecule (1',3-dihydro-1'-(2-carboxyethyl)-3,3-dimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indoline]). Two different dye-to-MBP-protein ratios of 1:1 and 5:1 were used. The ability of MBP-BIPS to modulate QD photoluminescence was tested by switching BIPS from the colorless spiropyran (SP) to the colored merocyanine (MC) using irradiation with white light (>500 nm) or with UV light (~365 nm), respectively. QDs surrounded by ~20 MBP-BIPS with a dye to protein ratio of 1 showed ~25% loss in their photoemission with consecutive repeated switches, while QDs surrounded by ~20 MBP-BIPS with BIPS to MBP ratio of 5 produced a substantially more pronounced rate of FRET where the QD emission was quenched by ~60%. This result suggests the possibility of using QD-protein conjugates to assemble reversible FRET nanoassemblies where the QD emission can be controlled by changing the properties of the acceptors dyes bound to the protein.

  4. Intramolecular charge transfer in donor-acceptor molecules

    SciTech Connect

    Slama-Schwok, A.; Blanchard-Desce, M.; Lehn, J.M. )

    1990-05-17

    The photophysical properties of donor-acceptor molecules, push-pull polyenes and carotenoids, have been studied by absorption and fluorescence spectroscopy. The compounds bear various acceptor and donor groups, linked together by chains of different length and structure. The position of the absorption and fluorescence maxima and their variation in solvents of increasing polarity are in agreement with long-distance intramolecular charge-transfer processes, the linker acting as a molecular wire. The effects of the linker length and structure and of the nature of acceptor and donor are presented.

  5. Electron Donor-Acceptor Quenching and Photoinduced Electron Transfer for Coumarin Dyes.

    DTIC Science & Technology

    1983-10-31

    Mechanism of cousarin photodegradation . Ithe behavior of eoiuma dyes is water ad In aqueous detergent media,. and the effsects of medism aud, additives on...D-i36 345 ELECTRON DONOR-ACCEPTOR UENCHING AND PHOTOINDUCED i/i Ai ELECTRON TRANSFER FOR COUMARIN DYES (U) BOSTON UNIY MR DEPT OF CHEMISTRY G JONES...TYPE OF REPORT & PEIOD COVERED Electron Donor-acceptor Quenching and Photo- Technical, 1/1/82-10/31/82 induced Electron Transfer for Coumarin Dyes S

  6. Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors

    PubMed Central

    Wu, Tzi-Yi; Tsao, Ming-Hsiu; Chen, Fu-Lin; Su, Shyh-Gang; Chang, Cheng-Wen; Wang, Hong-Paul; Lin, Yuan-Chung; Ou-Yang, Wen-Chung; Sun, I-Wen

    2010-01-01

    New organic dyes comprising carbazole, iminodibenzyl, or phenothiazine moieties, respectively, as the electron donors, and cyanoacetic acid or acrylic acid moieties as the electron acceptors/anchoring groups were synthesized and characterized. The influence of heteroatoms on carbazole, iminodibenzyl and phenothiazine donors, and cyano-substitution on the acid acceptor is evidenced by spectral, electrochemical, photovoltaic experiments, and density functional theory calculations. The phenothiazine dyes show solar-energy-to-electricity conversion efficiency (η) of 3.46–5.53%, whereas carbazole and iminodibenzyl dyes show η of 2.43% and 3.49%, respectively. PMID:20162019

  7. Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Ramavenkateswari, K.; Venkatachalam, P.

    2016-09-01

    This work investigates the proficiency of acceptor-donor-acceptor (A-D-A) organic dye Diisopropyl azodicarboxylate (DIAC) as photosensitizer on the photovoltaic parameters of silver (Ag) doped TiO2 photoanode dye-sensitized solar cells (DSSCs) with quasi-solid state electrolyte/hole transport material (HTM) spiro-MeOTAD. TNSs (TiO2 nanosticks) photoanodes are prepared through sol-gel method and hydrothermal technique. X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and BET measurement were used to characterize the structure and morphology of TiO2 nanostructures. The Diisopropyl azodicarboxylate organic dye with TNPs-Ag@TNSs composite photoanode structure and spiro-MeOTAD HTM exhibited better power conversion efficiency (PCE).

  8. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    PubMed

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  9. Resonance energy transfer in conjugates of semiconductor nanocrystals and organic dye molecules

    NASA Astrophysics Data System (ADS)

    Artemyev, Mikhail

    2012-01-01

    I analyze the efficiency of Förster resonance energy transfer (FRET) in luminescent donor-acceptor complexes based on conjugates of CdSe/ZnS quantum dots and nanorods and the luminescent dyes. Semiconductor nanocrystals serve either as FRET donors or acceptors. Experimentally observed reduced FRET efficiency in complexes of nanorods and dye molecules as compared to quantum dots are found to be attributable to a distance-limited energy transfer rate in case of point-like dye dipoles and extended nanorod dipole.

  10. Spectral Fine Tuning of Cyanine Dyes: Electron Donor-Acceptor Substituted Analogues of Thiazole Orange†

    PubMed Central

    Rastede, Elizabeth E.; Tanha, Matteus; Yaron, David; Watkins, Simon C.; Waggoner, Alan S.; Armitage, Bruce A.

    2015-01-01

    The introduction of electron donor and acceptor groups at strategic locations on a fluorogenic cyanine dye allows fine-tuning of the absorption and emission spectra while preserving the ability of the dye to bind to biomolecular hosts such as double-stranded DNA and a single-chain antibody fragment originally selected for binding to the parent unsubstituted dye, thiazole orange (TO). The observed spectral shifts are consistent with calculated HOMO-LUMO energy gaps and reflect electron density localization on the quinoline half of TO in the LUMO. A dye bearing donating methoxy and withdrawing trifluoromethyl groups on the benzothiazole and quinoline rings, respectively, shifts the absorption spectrum to sufficiently longer wavelengths to allow excitation at green wavelengths as opposed to the parent dye, which is optimally excited in the blue. PMID:26171668

  11. Radiation damage in biomimetic dye molecules for solar cells.

    PubMed

    Cook, Peter L; Johnson, Phillip S; Liu, Xiaosong; Chin, An-Li; Himpsel, F J

    2009-12-07

    A significant obstacle to organic photovoltaics is radiation damage, either directly by photochemical reactions or indirectly via hot electrons. Such effects are investigated for biomimetic dye molecules for solar cells (phthalocyanines) and for a biological analog (the charge transfer protein cytochrome c). Both feature a central transition metal atom (or H(2)) surrounded by nitrogen atoms. Soft x-ray absorption spectroscopy and photoelectron spectroscopy are used to identify three types of radiation-induced changes in the electronic structure of these molecules. (1) The peptide bonds along the backbone of the protein are readily broken, while the nitrogen cage remains rather stable in phthalocyanines. This finding suggests minimizing peptide attachments to biologically inspired molecules for photovoltaic applications. (2) The metal atom in the protein changes its 3d electron configuration under irradiation. (3) The Fermi level E(F) shifts relative to the band gap in phthalocyanine films due to radiation-induced gap states. This effect has little influence on the optical absorption, but it changes the lineup between the energy levels of the absorbing dye and the acceptor/donor electrodes that collect the charge carriers in a solar cell.

  12. Benzo[a]carbazole-Based Donor-π-Acceptor Type Organic Dyes for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Qian, Xing; Zhu, Yi-Zhou; Chang, Wen-Ying; Song, Jian; Pan, Bin; Lu, Lin; Gao, Huan-Huan; Zheng, Jian-Yu

    2015-05-06

    A novel class of metal-free organic dyes based on benzo[a]carbazole have been designed, synthesized, and used in dye-sensitized solar cells for the first time. These types of dyes consisted of a cyanoacrylic acid moiety as the electron acceptor/anchoring group and different electron-rich spacers such as thiophene (JY21), furan (JY22), and oligothiophene (JY23) as the π-linkers. The photophysical, electrochemical, and photovoltaic properties, as well as theoretical calculations of these dyes were investigated. The photovoltaic performances of these dyes were found to be highly relevant to the π-conjugated linkers. In particular, dye JY23 exhibited a broad IPCE response with a photocurrent signal up to about 740 nm covering the most region of the UV-visible light. A DSSC based on JY23 showed the best photovoltaic performance with a Jsc of 14.8 mA cm(-2), a Voc of 744 mV, and a FF of 0.68, achieving a power conversion efficiency of 7.54% under standard AM 1.5 G irradiation.

  13. Modified triphenylamine-dicyanovinyl-based donor-acceptor dyes with enhanced power conversion efficiency of p-type dye-sensitized solar cells.

    PubMed

    Zhu, Linna; Yang, Hongbin; Zhong, Cheng; Li, Chang Ming

    2012-12-01

    To dye for: Two new dyes are synthesized by structural modifications of one of the best dyes for NiO p-type dye-sensitized solar cells, which is based on a triphenylamine-dicyanovinyl donor-acceptor system. An additional thiophene unit near the anchoring group can greatly retard charge recombination while enhancing the absorption coefficient to significantly improve the photoconversion efficiency by 50%.

  14. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  15. The excited states of stilbene and stilbenoid donor-acceptor dye systems. A theoretical study

    NASA Astrophysics Data System (ADS)

    Rettig, Wolfgang; Strehmel, Bernd; Majenz, Wilfried

    1993-07-01

    Semiempirical calculations within the CNDO/S framework are used to characterize the nature of the "phantom-singlet" excited state P * (double-bond twisted geometry) of stilbene and stilbenoid donor-acceptor dye systems including the laser dyes DCM and DASPMI. P * is highly polar (closed shell "hole-pair" nature) for weakly perturbed stilbenes but for larger donor-acceptor strength, the order of ground and excited state is reversed, and P * becomes of small polarity ("dot-dot" nature), fully consistent with the established model of biradicaloid states. For stilbene, a slight geometric symmetry reduction is necessary in order to localize the orbitals on the subunits. Only then are the calculated results consistent with those for methyl-substituted stilbene. The localized orbital description of twisted stilbene shows that P * contains negligible doubly excited character and possesses a very small gap to the ground state contrary to what is stated in the previous literature. The planar systems are also investigated and correlated with Dähne's triad rule of polymethine systems.

  16. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation.

    PubMed

    Oon, Yoong-Sin; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng; Nordin, Noradiba

    2017-03-05

    Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73±3% and 95.1±1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64mW/m(2), corresponding to current density of 120.24mA/m(2). The decolourisation rate and power output of different azo dyes were in the order of NC>AO7>RR120>RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.

  17. Tracking molecular resonance forms of donor–acceptor push–pull molecules by single-molecule conductance experiments

    PubMed Central

    Lissau, Henriette; Frisenda, Riccardo; Olsen, Stine T.; Jevric, Martyn; Parker, Christian R.; Kadziola, Anders; Hansen, Thorsten; van der Zant, Herre S. J.; Brøndsted Nielsen, Mogens; Mikkelsen, Kurt V.

    2015-01-01

    The ability of molecules to change colour on account of changes in solvent polarity is known as solvatochromism and used spectroscopically to characterize charge-transfer transitions in donor–acceptor molecules. Here we report that donor–acceptor-substituted molecular wires also exhibit distinct properties in single-molecule electronics under the influence of a bias voltage, but in absence of solvent. Two oligo(phenyleneethynylene) wires with donor–acceptor substitution on the central ring (cruciform-like) exhibit remarkably broad conductance peaks measured by the mechanically controlled break-junction technique with gold contacts, in contrast to the sharp peak of simpler molecules. From a theoretical analysis, we explain this by different degrees of charge delocalization and hence cross-conjugation at the central ring. Thus, small variations in the local environment promote the quinoid resonance form (off), the linearly conjugated (on) or any form in between. This shows how the conductance of donor–acceptor cruciforms is tuned by small changes in the environment. PMID:26667583

  18. Enhanced anaerobic fermentation with azo dye as electron acceptor: simultaneous acceleration of organics decomposition and azo decolorization.

    PubMed

    Li, Yang; Zhang, Yaobin; Quan, Xie; Zhang, Jingxin; Chen, Shuo; Afzal, Shahzad

    2014-10-01

    Accumulation of hydrogen during anaerobic processes usually results in low decomposition of volatile organic acids (VFAs). On the other hand, hydrogen is a good electron donor for dye reduction, which would help the acetogenic conversion in keeping low hydrogen concentration. The main objective of the study was to accelerate VFA composition through using azo dye as electron acceptor. The results indicated that the azo dye serving as an electron acceptor could avoid H2 accumulation and accelerate anaerobic digestion of VFAs. After adding the azo dye, propionate decreased from 2400.0 to 689.5mg/L and acetate production increased from 180.0 to 519.5mg/L. It meant that the conversion of propionate into acetate was enhanced. Fluorescence in situ hybridization analysis showed that the abundance of propionate-utilizing acetogens with the presence of azo dye was greater than that in a reference without azo dye. The experiments via using glucose as the substrate further demonstrated that the VFA decomposition and the chemical oxygen demand (COD) removal increased by 319.7mg/L and 23.3% respectively after adding the azo dye. Therefore, adding moderate azo dye might be a way to recover anaerobic system from deterioration due to the accumulation of H2 or VFAs.

  19. Origin of simultaneous donor-acceptor emission in single molecules of peryleneimide-terrylenediimide labeled polyphenylene dendrimers.

    PubMed

    Melnikov, Sergey M; Yeow, Edwin K L; Uji-i, Hiroshi; Cotlet, Mircea; Müllen, Klaus; De Schryver, Frans C; Enderlein, Jörg; Hofkens, Johan

    2007-02-01

    Förster type resonance energy transfer (FRET) in donor-acceptor peryleneimide-terrylenediimide dendrimers has been examined at the single molecule level. Very efficient energy transfer between the donor and the acceptor prevent the detection of donor emission before photobleaching of the acceptor. Indeed, in solution, on exciting the donor, only acceptor emission is detected. However, at the single molecule level, an important fraction of the investigated individual molecules (about 10-15%) show simultaneous emission from both donor and acceptor chromophores. The effect becomes apparent mostly after photobleaching of the majority of donors. Single molecule photon flux correlation measurements in combination with computer simulations and a variety of excitation conditions were used to determine the contribution of an exciton blockade to this two-color emission. Two-color defocused wide-field imaging showed that the two-color emission goes hand in hand with an unfavorable orientation between one of the donors and the acceptor chromophore.

  20. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-03-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  1. Role of functionalized acceptors in heteroleptic bipyridyl Cu(I) complexes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqing; Shao, Yang; Li, Ke; Zhao, Zigang; Wei, Shuxian; Guo, Wenyue

    2016-09-01

    The intrinsic optoelectronic properties of heteroleptic bipyridyl Cu(I) complexes bearing functionalized acceptor subunits have been investigated by density functional theory and time-dependent DFT. The Cu(I) complexes exhibit distorted trigonal-pyramidal geometries and typical metal-to-ligand electron transfer characteristics at the long wavelength region. Replacing carboxylic acid with cyanoacrylic acid in acceptor subunits stabilizes the LUMO levels, thus lowering the HOMOLUMO energy gaps and facilitating favorable donor-to-acceptor intramolecular electron transfer and charge separation. Introduction of heteroaromatic groups and cyanoacrylic acid significantly improves the light-harvesting capability of the complexes. Our results highlight the effect of functionalized acceptors on the optoelectronic properties of bipyridyl Cu(I) complexes and provide a fresh perspective on screening of efficient sensitizers for dye-sensitized solar cells.

  2. The Nature of the Donor Motif in Acceptor-Bridge-Donor Dyes as an Influence in the Electron Photo-Injection Mechanism in DSSCs.

    PubMed

    Zarate, Ximena; Schott-Verdugo, Stephan; Rodriguez-Serrano, Angela; Schott, Eduardo

    2016-03-10

    The combination and balance of acceptor(A)-bridge-donor(D) architecture of molecules confer suitable attributes and/or properties to act as efficient light-harvesting and sensitizers in dye sensitized solar cells (DSSCs). An important process in a DSSC performance is the electron photoinjection (PI) mechanism which can take place either via type I (indirect), that consists in injecting from the excited state of the dye to the semiconductor, or type II (direct), where the PI is from the ground state of the dye to the semiconductor upon photoexcitation. Here, we present a computational study about the role of the donor motif in the PI mechanisms displayed from a family of 11 A-bridge-D structured dyes to a (TiO2)15 anatase cluster. To this end, different donor motifs (D1-D11) were evaluated while the A and bridge motifs remained the same. All the computations were carried out within the DFT framework, using the B3LYP, PW91, PBE, M06L and CAM-B3LYP functionals. The 6-31G(d) basis set was employed for nonmetallic atoms and the LANL2DZ pseudopotential for Ti atoms. The solvation effects were incorporated using the polarized continuum model (PCM) for acetonitrile. As benchmark systems, alizarin and naphthalenediol dyes were analyzed, as they are known to undergo Type I and Type II PI pathways in DSSCs, respectively. Donors in the studied family of dyes could influence to drive Type I or II PI since it was found that D2 could show some Type II PI route, showing a new absorption band, although with CAM-B3LYP this shows a very low oscillator strength, while the remaining dyes behave according to Type I photoinjectors. Finally, the photovoltaic parameters that govern the light absorption process were evaluated, as the use of these criteria could be applied to predict the efficiency of the studied dyes in DSSCs devices.

  3. Long-Range π-Conjugation in Phenothiazine-containing Donor-Acceptor Dyes for Application in Dye-Sensitized Solar Cells.

    PubMed

    Antony, Mini P; Moehl, Thomas; Wielopolski, Mateusz; Moser, Jacques-E; Nair, Shantikumar; Yu, Yong-Jae; Kim, Jong-Hyung; Kay, Kwang-Yol; Jung, Young-Sam; Yoon, Kyung Byung; Grätzel, Carole; Zakeeruddin, Shaik M; Grätzel, Michael

    2015-11-01

    Four organic donor-π-bridge-acceptor dyes containing phenothiazine as a spacer and cyanoacrylic acid as an acceptor were synthesized and tested as sensitizers in dye-sensitized solar cells (DSCs). The influence of iodide- and cobalt-based redox electrolytes on the photovoltaic device performance was investigated. In these new dyes, systematic π-conjugation was extended by inserting one or two phenothiazine moieties and investigated within the context of the resulting photoinduced charge-transfer properties. A detailed investigation, including transient absorption spectroscopy and quantum chemical methods, provided important information on the role of extended π-conjugation on the photophysical properties and photovoltaic device performance. Overall, the results showed that the extension of π-conjugation by one phenothiazine unit resulted in the best device performance owing to reduced recombination rates, whereas extension by two phenothiazine units reduced dye adsorption on TiO2 probably owing to the increase in molecular size. The performance of the dyes in DSCs was found to be a complex interaction between dye structure and size.

  4. Primary Photoprocesses in Dyes and Other Complex Molecules.

    DTIC Science & Technology

    1978-10-31

    photobiology are given . -~~~~~ 3.2 Reports and Manuscripts in Preparation TR— l3. A Study of the Photodegradation of the Blue—Green Laser Dye , AC3F , A...the contract a preliminary study of the photodegradation of the laser dye , AC3F [Blue—Green Dye Laser Development , Annual Report F4—75 , NELC F233 b...I AD—A0b2 568 WASHINGTON STATE UNIV PULLMAN DEPT OF CHEMISTRY FFG 713 ‘c — F, PRIMARY PHOTOPROCESSES IN DYES AND OTHER COMPLEX MOLECULES. (U) OCT 78

  5. Threshold-like complexation of conjugated polymers with small molecule acceptors in solution within the neighbor-effect model.

    PubMed

    Sosorev, Andrey Yu; Parashchuk, Olga D; Zapunidi, Sergey A; Kashtanov, Grigoriy S; Golovnin, Ilya V; Kommanaboyina, Srikanth; Perepichka, Igor F; Paraschuk, Dmitry Yu

    2016-02-14

    In some donor-acceptor blends based on conjugated polymers, a pronounced charge-transfer complex (CTC) forms in the electronic ground state. In contrast to small-molecule donor-acceptor blends, the CTC concentration in polymer:acceptor solution can increase with the acceptor content in a threshold-like way. This threshold-like behavior was earlier attributed to the neighbor effect (NE) in the polymer complexation, i.e., next CTCs are preferentially formed near the existing ones; however, the NE origin is unknown. To address the factors affecting the NE, we record the optical absorption data for blends of the most studied conjugated polymers, poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene) (P3HT), with electron acceptors of fluorene series, 1,8-dinitro-9,10-antraquinone (), and 7,7,8,8-tetracyanoquinodimethane () in different solvents, and then analyze the data within the NE model. We have found that the NE depends on the polymer and acceptor molecular skeletons and solvent, while it does not depend on the acceptor electron affinity and polymer concentration. We conclude that the NE operates within a single macromolecule and stems from planarization of the polymer chain involved in the CTC with an acceptor molecule; as a result, the probability of further complexation with the next acceptor molecules at the adjacent repeat units increases. The steric and electronic microscopic mechanisms of NE are discussed.

  6. Electron donor-acceptor quenching and photoinduced electron transfer for coumarin dyes. Technical report, 1 January-31 October 1982

    SciTech Connect

    Jones, G. II; Griffin, S.F.; Choi, C.; Bergmark, W.R.

    1983-10-31

    The fluorescence of 7-aminocoumarins is quenched by a variety of organic electron donors or acceptors in acetonitrile. In general, donors with half-wave oxidation potentials less positive than 1.0 V vs SCE and acceptors with reduction potentials less negative than -1.5 V vs SCE are candidates for diffusion limited quenching of coumarin singlet states. Profiles of quenching rates are consistent with calculated free energies for electron transfer between excited coumarins and donors or acceptors. In flash photolysis experiments electron transfer for several dyes and quenchers (e.g., methyl viologen) is demonstrated. Relatively low yields of net electron transfer are consistently obtained due to inefficient ionic photodissociation via singlet quenching or a low yield of more photoactive coumarin triplets. Electrochemical properties of the coumarins have been investigated by cyclic voltammetry with the indications of reversible oxidation and irreversible reduction as important processes.

  7. Theoretical Study of Donor - Spacer - Acceptor Structure Molecule for Molecular Rectifier

    NASA Astrophysics Data System (ADS)

    Mizuseki, Hiroshi; Kenji, Niimura; Belosludov, Rodion; Farajian, Amir; Kawazoe, Yoshiyuki

    2003-03-01

    Recently, the molecular electronics has attracted strong attention as a ``post-silicone technology'' to establish a future nanoscale electronic devices. To realize this molecular device, unimolecular rectifiering function is one of the most important constituents in nanotechnology [C. Majumder, H. Mizuseki, and Y. Kawazoe, Molecular Scale Rectifier: Theoretical Study, J. Phys. Chem. A, 105 (2001) 9454-9459.]. In the present study, the geometric and electronic structure of alkyl derivative C37H50N4O4 (PNX) molecule, (donor - spacer - acceptor), a leading candidate of molecular rectifying device, has been investigated theoretically using ab initio quantum mechanical calculation. The results suggest that in such donor-acceptor molecular complexes, while the lowest unoccupied orbital concentrates on the acceptor subunit, the highest occupied molecular orbital is localized on the donor subunit. The approximate potential differences for optimized PNX molecule have been estimated at the B3PW91/6-311g++(d,p) level of theory, which achieves quite good agreement with experimentally reported results. This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.

  8. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study.

    PubMed

    Tavangar, Zahra; Zareie, Nazanin

    2016-10-05

    A series of metal free Tetrathienoacene-based (TTA-based) organic dyes are designed and investigated as sensitizers for application in dye sensitized solar cells (DSSCs). Density function theory and time dependent density function theory calculations were performed on these dyes at vacuum and orthodichlorobenzene as the solvent. Effects of changing π-conjugation bridges and different functional groups in acceptor and donor units were investigated. UV-Vis absorption spectra were simulated to show the wavelength shifting and absorption properties. Inserting nitro and acyl chloride functional groups in acceptor and NH2 in donor units leads to the reduction of HOMO-LUMO gap by lowering the lowest unoccupied molecular orbital (LUMO) energy level and raising the highest occupied molecular orbital (HOMO) energy level and the increase in effective parameters in DSSC' efficiency. The results show that changing spacer units from thiophene to furan has a great effect on electronic structure and absorption spectra. Investigation of the electron distributions of frontier orbitals shows the HOMO and LUMO localization in donor and acceptor, respectively. Some key parameters that were studied here include light harvesting efficiency, free energy of electron injection and open circuit photo-voltage.

  9. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study

    NASA Astrophysics Data System (ADS)

    Tavangar, Zahra; Zareie, Nazanin

    2016-10-01

    A series of metal free Tetrathienoacene-based (TTA-based) organic dyes are designed and investigated as sensitizers for application in dye sensitized solar cells (DSSCs). Density function theory and time dependent density function theory calculations were performed on these dyes at vacuum and orthodichlorobenzene as the solvent. Effects of changing π-conjugation bridges and different functional groups in acceptor and donor units were investigated. UV-Vis absorption spectra were simulated to show the wavelength shifting and absorption properties. Inserting nitro and acyl chloride functional groups in acceptor and NH2 in donor units leads to the reduction of HOMO-LUMO gap by lowering the lowest unoccupied molecular orbital (LUMO) energy level and raising the highest occupied molecular orbital (HOMO) energy level and the increase in effective parameters in DSSC' efficiency. The results show that changing spacer units from thiophene to furan has a great effect on electronic structure and absorption spectra. Investigation of the electron distributions of frontier orbitals shows the HOMO and LUMO localization in donor and acceptor, respectively. Some key parameters that were studied here include light harvesting efficiency, free energy of electron injection and open circuit photo-voltage.

  10. Photoinduced electron transfer in rigidly linked dimethoxynapthalene-N-methylpyridinium donor-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Clayton, Andrew H. A.; Ghiggino, Kenneth P.; Wilson, Gerard J.; Keyte, Peter J.; Paddon-Row, Michael N.

    1992-07-01

    Photoinduced electron transfer (ET) is studied in a series of novel molecules containing a dimethoxynaphthalene (DMN) donor and either a pyridine (P) or N-methylpyridinium (P-Me +) acceptor covalently linked via a rigid nonbornalogous bridge ( n sigma bonds in length). ET rates of the order of 10 10 s -1 were measured for the DMN- n-P-Me + series ( n = 4, 6), while no appreciable ET was observed for the DMN- n-P compounds. Electronic and nuclear factors are discussed and the results rationalized in terms of Marcus—Hush and non-adiabatic ET theories.

  11. Solvent-tuned intramolecular charge-recombination rates in a conjugated donor-acceptor molecule

    NASA Technical Reports Server (NTRS)

    Khundkar, Lutfur R.; Stiegman, A. E.; Perry, Joseph W.

    1990-01-01

    The nonradiative charge-recombination rates from the charge-transfer state of a new conjugated donor-acceptor molecule (p-cyano-p-prime-methylthiodiphenylacetylene) can be tuned over almost an order of magnitude by varying the polarity of the solvent. These measurements of intramolecular recombination show a turnover of rates as a function of emission energy, consistent with the 'normal' and 'inverted' behavior of Marcus theory. Steady-state spectra and time-resolved measurements make it possible to quantitatively compare thermal and optical electron-transfer rates as a function of driving force and demonstrate their correspondence.

  12. Tailoring of Energy Levels in D-π-A Organic Dyes via Fluorination of Acceptor Units for Efficient Dye-Sensitized Solar Cells

    PubMed Central

    Lee, Min-Woo; Kim, Jae-Yup; Son, Hae Jung; Kim, Jin Young; Kim, BongSoo; Kim, Honggon; Lee, Doh-Kwon; Kim, Kyungkon; Lee, Duck-Hyung; Ko, Min Jae

    2015-01-01

    A molecular design is presented for tailoring the energy levels in D-π-A organic dyes through fluorination of their acceptor units, which is aimed at achieving efficient dye-sensitized solar cells (DSSCs). This is achieved by exploiting the chemical structure of common D-π-A organic dyes and incorporating one or two fluorine atoms at the ortho-positions of the cyanoacetic acid as additional acceptor units. As the number of incorporated fluorine atoms increases, the LUMO energy level of the organic dye is gradually lowered due to the electron-withdrawing effect of fluorine, which ultimately results in a gradual reduction of the HOMO-LUMO energy gap and an improvement in the spectral response. Systematic investigation of the effects of incorporating fluorine on the photovoltaic properties of DSSCs reveals an upshift in the conduction-band potential of the TiO2 electrode during impedance analysis; however, the incorporation of fluorine also results in an increased electron recombination rate, leading to a decrease in the open-circuit voltage (Voc). Despite this limitation, the conversion efficiency is gradually enhanced as the number of incorporated fluorine atoms is increased, which is attributed to the highly improved spectral response and photocurrent. PMID:25591722

  13. Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content.

    PubMed

    Wang, Kun; Guo, Bing; Xu, Zhuo; Guo, Xia; Zhang, Maojie; Li, Yongfang

    2015-11-11

    A new planar D2-A-D1-A-D2 structured organic molecule with bithienyl benzodithiophene (BDT) as central donor unit D1 and fluorine-substituted benzothiadiazole (BTF) as acceptor unit and alkyl-dithiophene as end group and donor unit D2, BDT-BTF, was designed and synthesized for the application as donor material in organic solar cells (OSCs). BDT-BTF shows a broad absorption in visible region, suitable highest occupied molecular orbital energy level of -5.20 eV, and high hole mobility of 1.07 × 10(-2) cm(2)/(V s), benefitted from its high coplanarity and strong crystallinity. The OSCs based on BDT-BTF as donor (D) and PC71BM as acceptor (A) at a D/A weight ratio of 3:1 without any extra treatment exhibit high photovoltaic performance with Voc of 0.85 V, Jsc of 10.48 mA/cm(2), FF of 0.66, and PCE of 5.88%. The morphological study by transmission electron microscopy reveals that the blend of BDT-BTF and PC71BM (3:1, w/w) possesses an appropriate interpenetrating D/A network for the exciton separation and charge carrier transport, which agrees well with the good device performance. The optimized D/A weight ratio of 3:1 is the lowest acceptor content in the active layer reported so far for the high-performance OSCs, and the organic molecules with the molecular structure like BDT-BTF could be promising high-performance donor materials in solution-processable OSCs.

  14. Scaling laws for charge transfer in multiply bridged donor/acceptor molecules in a dissipative environment.

    PubMed

    Goldsmith, Randall H; Wasielewski, Michael R; Ratner, Mark A

    2007-10-31

    The ability of multiple spatial pathways to sum coherently and facilitate charge transfer is examined theoretically. The role of multiple spatial pathways in mediating charge transfer has been invoked several times in the recent literature while discussing charge transfer in proteins, while multiple spatial pathways are known to contribute to charge transport in metal-molecule-metal junctions. We look at scaling laws for charge transfer in donor-bridge-acceptor (D-B-A) molecules and show that these scaling laws change significantly when environment-induced dephasing is included. In some cases, D-B-A systems are expected to show no enhancement in the rate of charge transfer with the addition of multiple degenerate pathways. The origins of these different scaling laws are investigated by looking at which Liouville space pathways are active in different dephasing regimes.

  15. Optimization of Donor-Acceptor Substitution for Large Optical Non-linearities in Small Organic Molecules

    NASA Astrophysics Data System (ADS)

    Beels, Marten

    The determination of the wavelength dependence of the complex third-order polarizability of organic molecules delivers information on the mechanisms of resonance enhancement and allows for comparison of the two-photon absorption cross sections on their peak to the off-resonant third-order polarizabilities. The experimental technique of degenerate four-wave mixing offers several advantages over other comparable techniques, including sensitivity, background-free signal, automatization, and information on excited state lifetimes. This work uses experimental data, computational chemistry, and analysis of the relevant terms in the sum-over-states quantum mechanics expression to analyze the significant contributions to the third-order polarizability, mechanisms of resonance enhancement, and comparison of the off resonant values, to peak resonant values. This information provides insight to the structure-property relationships for the third-order polarizability, allows for comparison to fundamental limits, and assessment of the potential for molecules to form solid state materials with a large third-order susceptibility. The use of donor-acceptor (D/A) substitution allows for the realization of small molecules with large third-order polarizabilities. However, in contrast to symmetric non-D/A oligomers that have third-order polarizabilities which scale by a power law as the molecule is made larger, D/A substituted molecules only scale up to a certain length, beyond which the molecule is over-extended and the third-order polarizability does not increase further. This work will analyze the scaling of non-D/A and D/A substituted molecules, determine the optimum length for D/A substituted molecules, and explain the physics of the saturation.

  16. X-ray absorption spectroscopy of biomimetic dye molecules for solar cells

    SciTech Connect

    Cook, Peter L.; Liu Xiaosong; Himpsel, F. J.; Yang Wanli

    2009-11-21

    Dye-sensitized solar cells are potentially inexpensive alternatives to traditional semiconductor solar cells. In order to optimize dyes for solar cells we systematically investigate the electronic structure of a variety of porphyrins and phthalocyanines. As a biological model system we use the heme group in cytochrome c which plays a role in biological charge transfer processes. X-ray absorption spectroscopy of the N 1s and C 1s edges reveals the unoccupied molecular orbitals and the orientation of the molecules in thin films. The transition metal 2p edges reflect the oxidation state of the central metal atom, its spin state, and the ligand field of the surrounding N atoms. The latter allows tuning of the energy position of the lowest unoccupied orbital by several tenths of an eV by tailoring the molecules and their deposition. Fe and Mn containing phthalocyanines oxidize easily from +2 to +3 in air and require vacuum deposition for obtaining a reproducible oxidation state. Chlorinated porphyrins, on the other hand, are reduced from +3 to +2 during vacuum deposition at elevated temperatures. These findings stress the importance of controlled thin film deposition for obtaining photovoltaic devices with an optimum match between the energy levels of the dye and those of the donor and acceptor electrodes, together with a molecular orientation for optimal overlap between the {pi} orbitals in the direction of the carrier transport.

  17. Theoretical characterization on photoelectric properties of benzothiadiazole- and fluorene-based small molecule acceptor materials for the organic photovoltaics.

    PubMed

    Sui, Mingyue; Li, Shuangbao; Pan, Qingqing; Sun, Guangyan; Geng, Yun

    2017-01-01

    The upper efficiency of heterojunction organic photovoltaics depends on the increased open-circuit voltage (V oc) and short-circuit current (J sc). So, a higher lowest unoccupied molecular orbital (LUMO) level is necessary for organic acceptor material to possess higher V oc and more photons absorbsorption in the solar spectrum is needed for larger J sc. In this article, we theoretically designed some small molecule acceptors (2∼5) based on fluorene (F), benzothiadiazole, and cyano group (CN) referring to the reported acceptor material 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile (1), the crucial parameters affecting photoelectrical properties of compounds 2∼5 were evaluated by the density functional theory (DFT) and time dependent density functional theory (TDDFT) methods. The results reveal that compared with 1, 3 and 4 could have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, and the decreased electronic organization energy (λ e). From the simulation of transition density matrix, it is very clear that the excitons of molecules 3 and 4 are easier to separate in the material surface. Therefore, 3 and 4 may become potential acceptor candidates for organic photovoltaic cells. In addition, with the increased number of CN, the optoelectronic properties of the molecules show a regular change, mainly improve the LUMO level, energy gap, V oc, and absorption intensity. In summary, reasonably adjusting CN can effectively improve the photovoltaic properties of small molecule acceptors. Graphical Abstract Structure-property relationship of small molecule acceptors could be rationally evaluated in the article. The changes of conjugate length and CN are important strategies to alter the photovoltaic properties of small molecule acceptors. Therefore, taking the K12/1 as a reference, we have theoretically designed a series of small molecule acceptors (2-4). The calculated

  18. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    NASA Astrophysics Data System (ADS)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  19. Synthesis of Naphthalene-Based Push-Pull Molecules with a Heteroaromatic Electron Acceptor.

    PubMed

    Šarlah, David; Juranovič, Amadej; Kožar, Boris; Rejc, Luka; Golobič, Amalija; Petrič, Andrej

    2016-03-02

    Naphthalene derivatives bearing electron-accepting and electron-donating groups at the 2,6-positions belong to the family of D-π-A push-pull dyes. It has been found that these compounds, e.g., 2-(1-(6-((2-(fluoro)ethyl)(methyl)amino)naphthalen-2-yl)ethylidene)malononitrile (FDDNP), show not only interesting optical properties, such as solvatochromism, but they have the potential to label protein aggregates of different compositions formed in the brain of patients suffering from neurodegenerative diseases like Alzheimer's (AD). In continuation of our research we set our goal to find new FDDNP analogs, which would inherit optical and binding properties but hopefully show better specificity for tau protein aggregates, which are characteristic for neurodegeneration caused by repetitive mild trauma. In this work we report on the synthesis of new FDDNP analogs in which the acceptor group has been formally replaced with an aromatic five- or six-membered heterocycle. The heterocyclic moiety was annealed to the central naphthalene ring either by classical ring closure reactions or by modern transition metal-catalyzed coupling reactions. The chemical characterization, NMR spectra, and UV/vis properties of all new compounds are reported.

  20. Deterministically Polarized Fluorescence from Single Dye Molecules Aligned in Liquid Crystal Host

    SciTech Connect

    Lukishova, S.G.; Schmid, A.W.; Knox, R.; Freivald, P.; Boyd, R. W.; Stroud, Jr., C. R.; Marshall, K.L.

    2005-09-30

    We demonstrated for the first time to our konwledge deterministically polarized fluorescence from single dye molecules. Planar aligned nematic liquid crystal hosts provide deterministic alignment of single dye molecules in a preferred direction.

  1. Electroluminescence from completely horizontally oriented dye molecules

    NASA Astrophysics Data System (ADS)

    Komino, Takeshi; Sagara, Yuta; Tanaka, Hiroyuki; Oki, Yuji; Nakamura, Nozomi; Fujimoto, Hiroshi; Adachi, Chihaya

    2016-06-01

    A complete horizontal molecular orientation of a linear-shaped thermally activated delayed fluorescent guest emitter 2,6-bis(4-(10Hphenoxazin-10-yl)phenyl)benzo[1,2-d:5,4-d'] bis(oxazole) (cis-BOX2) was obtained in a glassy host matrix by vapor deposition. The orientational order of cis-BOX2 depended on the combination of deposition temperature and the type of host matrix. Complete horizontal orientation was obtained when a thin film with cis-BOX2 doped in a 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) host matrix was fabricated at 200 K. The ultimate orientation of guest molecules originates from not only the kinetic relaxation but also the kinetic stability of the deposited guest molecules on the film surface during film growth. Utilizing the ultimate orientation, a highly efficient organic light-emitting diode with the external quantum efficiency of 33.4 ± 2.0% was realized. The thermal stability of the horizontal orientation of cis-BOX2 was governed by the glass transition temperature (Tg) of the CBP host matrix; the horizontal orientation was stable unless the film was annealed above Tg.

  2. Characterization of dark quencher chromophores as nonfluorescent acceptors for single-molecule FRET.

    PubMed

    Le Reste, Ludovic; Hohlbein, Johannes; Gryte, Kristofer; Kapanidis, Achillefs N

    2012-06-06

    Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate

  3. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    PubMed

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other

  4. Phenothiazine-Anthraquinone Donor-Acceptor Molecules: Synthesis, Electronic Properties and DFT-TDDFT Computational Study

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Wei; Mao, Wei-Li; Hu, Yun-Xia; Tian, Zi-Qi; Wang, Zhi-Lin; Meng, Qing-Jin

    2009-08-01

    Two donor-acceptor molecules with different π-electron conjugative units, 1-((10-methyl-10H-phenothiazin-3-yl)ethynyl)anthracene-9,10-dione (AqMp) and 1,1'-(10-methyl-10H-phenothiazine-3,7-diyl)bis(ethyne-2,1-diyl)dianthracene-9,10-dione (Aq2Mp), have been synthesized and investigated for their photochemical and electrochemical properties. Density functional theory (DFT) calculations provide insights into their molecular geometry, electronic structures, and properties. These studies satisfactorily explain the electrochemistry of the two compounds and indicate that larger conjugative effect leads to smaller HOMO-LUMO gap (Eg) in Aq2Mp. Both compounds show ICT and π → π* transitions in the UV-visible range in solution, and Aq2Mp has a bathochromic shift and shows higher oscillator strength of the absorption, which has been verified by time-dependent DFT (TDDFT) calculations. The differences between AqMp and Aq2Mp indicate that the structural and conjugative effects have great influence on the electronic properties of the molecules.

  5. 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor.

    PubMed

    Bin, Haijun; Yang, Yankang; Zhang, Zhi-Guo; Ye, Long; Ghasemi, Masoud; Chen, Shanshan; Zhang, Yindong; Zhang, Chunfeng; Sun, Chenkai; Xue, Lingwei; Yang, Changduk; Ade, Harald; Li, Yongfang

    2017-03-29

    In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D-A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility and ordered bimodal crystallite packing in the blend films. Moreover, a larger interaction parameter (χ) was observed in the H11 blends calculated from Hansen solubility parameters and differential scanning calorimetry measurements. These special features combined with the complementary absorption of H11 donor and IDIC acceptor resulted in the best PCE of 9.73% for nonfullerene all small molecule OSCs up to date. Our results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.

  6. A small-molecule dye for NIR-II imaging

    NASA Astrophysics Data System (ADS)

    Antaris, Alexander L.; Chen, Hao; Cheng, Kai; Sun, Yao; Hong, Guosong; Qu, Chunrong; Diao, Shuo; Deng, Zixin; Hu, Xianming; Zhang, Bo; Zhang, Xiaodong; Yaghi, Omar K.; Alamparambil, Zita R.; Hong, Xuechuan; Cheng, Zhen; Dai, Hongjie

    2016-02-01

    Fluorescent imaging of biological systems in the second near-infrared window (NIR-II) can probe tissue at centimetre depths and achieve micrometre-scale resolution at depths of millimetres. Unfortunately, all current NIR-II fluorophores are excreted slowly and are largely retained within the reticuloendothelial system, making clinical translation nearly impossible. Here, we report a rapidly excreted NIR-II fluorophore (~90% excreted through the kidneys within 24 h) based on a synthetic 970-Da organic molecule (CH1055). The fluorophore outperformed indocyanine green (ICG)--a clinically approved NIR-I dye--in resolving mouse lymphatic vasculature and sentinel lymphatic mapping near a tumour. High levels of uptake of PEGylated-CH1055 dye were observed in brain tumours in mice, suggesting that the dye was detected at a depth of ~4 mm. The CH1055 dye also allowed targeted molecular imaging of tumours in vivo when conjugated with anti-EGFR Affibody. Moreover, a superior tumour-to-background signal ratio allowed precise image-guided tumour-removal surgery.

  7. Carbon Single Walled Nanotubes- Electron Acceptor Molecules for Improving the Efficiency of the Photoexcitation of TiO2 for Solar-Driven Technologies

    DTIC Science & Technology

    2012-10-16

    Single walled nanotubes ( SWNTs ) are shown to be electron acceptor molecules. The PL was used to observe the buildup during UV irradiation of surface...surface. Single walled nanotubes ( SWNTs ) are shown to be electron acceptor molecules. The PL was used to observe the buildup during UV irradiation of...the TiO2 bed and through the bed containing SWNT linkers. It was found that while SWNTs are good acceptors, no added conductivity from isolated TiO2

  8. Donor-Acceptor-Donor Modular Small Organic Molecules Based on the Naphthalene Diimide Acceptor Unit for Solution-Processable Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Patil, Hemlata; Gupta, Akhil; Bilic, Ante; Jackson, Sam Leslie; Latham, Kay; Bhosale, Sheshanath V.

    2014-09-01

    Two novel solution-processable small organic molecules, 4,9-bis(4-(diphenylamino)phenyl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8(2 H,7 H)-tetraone ( S6) and 4,9-bis(benzo[ b]thiophen-2-yl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8 (2 H,7 H)-tetraone ( S7), have been successfully designed, synthesized, characterized, and applied in solution-processable photovoltaic devices. S6 and S7 contain a common electron-accepting moiety, naphthalene diimide (NDI), with different electron-donating moieties, triphenylamine ( S6) and benzothiophene ( S7), and are based on a donor-acceptor-donor structure. S7 was isolated as black, rod-shaped crystals. Its triclinic structure was determined by single crystal x-ray diffraction (XRD): space group , Z = 2, a = 9.434(5) Å, b = 14.460(7) Å, c = 15.359(8) Å, α = 67.256(9) degrees, β = 80.356(11) degrees, γ = 76.618(10) degrees, at 150 Kelvin (K), R = 0.073. Ultraviolet-visible absorption spectra revealed that use of triphenylamine donor functionality with the NDI acceptor unit resulted in an enhanced intramolecular charge transfer (ICT) transition and reduction of the optical band gap compared with the benzothiophene analogue. Solution-processable inverted bulk heterojunction devices with the structure indium tin oxide/zinc oxide (30 nm)/active layer/molybdenum trioxide (10 nm)/silver (100 nm) were fabricated with S6 and S7 as donors and (6,6)-phenyl C70-butyric acid methyl ester (PC70BM) as acceptor. Power conversion efficiencies of 0.22% for S6/PC70BM and 0.10% for S7/PC70BM were achieved for the preliminary photovoltaic devices under simulated AM 1.5 illumination (100 mW cm-2). This paper reports donor-acceptor-donor modular small organic molecules, with NDI as central accepting unit, that have been screened for use in solution-processable inverted photovoltaic devices.

  9. Theoretical investigation of self-assembled donor-acceptor phthalocyanine complexes and their application in dye-sensitized solar cells.

    PubMed

    Yu, Lijuan; Lin, Li; Liu, Yuwen; Li, Renjie

    2015-06-01

    A theoretical investigation of self-assembled donor-acceptor dyads (ZnPca, ZnPcb and ZnPcc) formed by axial coordination of zinc phthalocyanines appended with 4-carboxyl pyridine has been conducted with the density functional theory (DFT) method and time-dependent DFT (TD-DFT) calculations. A comparison between the molecular structures, atomic charges, molecular orbitals, UV-vis spectra and infrared (IR) spectra has been studied. Further, as sensitizers for the TiO2-based dye-sensitized solar cells, the photovoltaic performances have been investigated. The ZnPcc-sensitized solar cell exhibits a higher conversion efficiency than the ZnPcb and ZnPca-sensitized ones under AM 1.5G solar irradiation, while the ZnPca-sensitized cell performs the poorest due to the lack of peripheral substituents (n-butyoxyl groups) which can be confirmed by the result of the theoretical research. It shows that the directionality of charge transfer in the self-assembled donor-acceptor dyads is important and benefit for the efficiency of the DSSC.

  10. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    PubMed

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  11. Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells.

    PubMed

    Kan, Bin; Feng, Huanran; Wan, Xiangjian; Liu, Feng; Ke, Xin; Wang, Yanbo; Wang, Yunchuang; Zhang, Hongtao; Li, Chenxi; Hou, Jianhui; Chen, Yongsheng

    2017-03-24

    A new nonfullerene small molecule with acceptor-donor-acceptor (A-D-A) structure, namely, NFBDT, based on a heptacyclic benzodi(cyclopentadithiophene) (FBDT) unit using benzo[1,2-b:4,5-b']dithiophene as the core unit, was designed and synthesized. Its absorption ability, energy levels, thermal stability, as well as photovoltaic performances were fully investigated. NFBDT exhibits a low optical bandgap of 1.56 eV resulting in wide and efficient absorption that covered the range from 600 to 800 nm, and suitable energy levels as an electron acceptor. With the widely used and successful wide bandgap polymer PBDB-T selected as the electron donor material, an optimized PCE of 10.42% was obtained for the PBDB-T:NFBDT-based device with an outstanding short-circuit current density of 17.85 mA cm(-2) under AM 1.5G irradiation (100 mW cm(-2)), which is so far among the highest performance of NF-OSC devices. These results demonstrate that the BDT unit could also be applied for designing NF-acceptors, and the fused-ring benzodi(cyclopentadithiophene) unit is a prospective block for designing new NF-acceptors with excellent performance.

  12. Electronic structure of Fe- vs. Ru-based dye molecules.

    PubMed

    Johnson, Phillip S; Cook, Peter L; Zegkinoglou, Ioannis; García-Lastra, J M; Rubio, Angel; Ruther, Rose E; Hamers, Robert J; Himpsel, F J

    2013-01-28

    In order to explore whether Ru can be replaced by inexpensive Fe in dye molecules for solar cells, the differences in the electronic structure of Fe- and Ru-based dyes are investigated by X-ray absorption spectroscopy and first-principles calculations. Molecules with the metal in a sixfold, octahedral N cage, such as tris(bipyridines) and tris(phenanthrolines), exhibit a systematic downward shift of the N 1s-to-π* transition when Ru is replaced by Fe. This shift is explained by an extra transfer of negative charge from the metal to the N ligands in the case of Fe, which reduces the binding energy of the N 1s core level. The C 1s-to-π* transitions show the opposite trend, with an increase in the transition energy when replacing Ru by Fe. Molecules with the metal in a fourfold, planar N cage (porphyrins) exhibit a more complex behavior due to a subtle competition between the crystal field, axial ligands, and the 2+ vs. 3+ oxidation states.

  13. Electronic structure of Fe- vs. Ru-based dye molecules

    SciTech Connect

    Johnson, Phillip S.; Himpsel, F. J.; Cook, Peter L.; Zegkinoglou, Ioannis; Garcia-Lastra, J. M.; Rubio, Angel; Ruther, Rose E.; Hamers, Robert J.

    2013-01-28

    In order to explore whether Ru can be replaced by inexpensive Fe in dye molecules for solar cells, the differences in the electronic structure of Fe- and Ru-based dyes are investigated by X-ray absorption spectroscopy and first-principles calculations. Molecules with the metal in a sixfold, octahedral N cage, such as tris(bipyridines) and tris(phenanthrolines), exhibit a systematic downward shift of the N 1s-to-{pi}* transition when Ru is replaced by Fe. This shift is explained by an extra transfer of negative charge from the metal to the N ligands in the case of Fe, which reduces the binding energy of the N 1s core level. The C 1s-to-{pi}* transitions show the opposite trend, with an increase in the transition energy when replacing Ru by Fe. Molecules with the metal in a fourfold, planar N cage (porphyrins) exhibit a more complex behavior due to a subtle competition between the crystal field, axial ligands, and the 2+ vs. 3+ oxidation states.

  14. Quantification of Adsorption of Azo Dye Molecules on Graphene Oxide Using Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chaudhary, Raghvendra Pratap; Pawar, Pranav Bhagwan; Vaibhav, Kumar; Saxena, Sumit; Shukla, Shobha

    2017-02-01

    The presence of azo dye molecules in effluents is a source of water pollution and an environmental hazard. Thus, it is very important to separate out such dye molecules. We have investigated the use of graphene oxide (GO) for the purification of dye-contaminated water. The adsorption efficiency of GO in the degradation of azo dye molecules and the interaction mechanism has been estimated using Ultra Violet-Visible absorption spectroscopy. The charge on the dye molecules along with steric hinderance due to their molecular structure is understood to be detrimental in the adsorption and removal of such dyes. Spectroscopic studies suggest that GO can be used as a potential candidate for efficient removal of cationic azo-dye molecules by adsorption.

  15. Quantification of Adsorption of Azo Dye Molecules on Graphene Oxide Using Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chaudhary, Raghvendra Pratap; Pawar, Pranav Bhagwan; Vaibhav, Kumar; Saxena, Sumit; Shukla, Shobha

    2016-11-01

    The presence of azo dye molecules in effluents is a source of water pollution and an environmental hazard. Thus, it is very important to separate out such dye molecules. We have investigated the use of graphene oxide (GO) for the purification of dye-contaminated water. The adsorption efficiency of GO in the degradation of azo dye molecules and the interaction mechanism has been estimated using Ultra Violet-Visible absorption spectroscopy. The charge on the dye molecules along with steric hinderance due to their molecular structure is understood to be detrimental in the adsorption and removal of such dyes. Spectroscopic studies suggest that GO can be used as a potential candidate for efficient removal of cationic azo-dye molecules by adsorption.

  16. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells.

    PubMed

    Li, Sunsun; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Mukherjee, Subhrangsu; Ade, Harald; Hou, Jianhui

    2016-11-01

    Fine energy-level modulations of small-molecule acceptors (SMAs) are realized via subtle chemical modifications on strong electron-withdrawing end-groups. The two new SMAs (IT-M and IT-DM) end-capped by methyl-modified dicycanovinylindan-1-one exhibit upshifted lowest unoccupied molecular orbital (LUMO) levels, and hence higher open-circuit voltages can be observed in the corresponding devices. Finally, a top power conversion efficiency of 12.05% is achieved.

  17. An electronic spectroscopic study of micellisation of surfactants and solvation of homomicelles formed by cationic or anionic surfactants using a solvatochromic electron donor acceptor dye.

    PubMed

    Kedia, Niraja; Sarkar, Amrita; Purkayastha, Pradipta; Bagchi, Sanjib

    2014-10-15

    Solvatochromic absorption and fluorescence bands of a donor-acceptor dye have been utilised for following the micellisation and for probing the polarity of the aqueous homomicellar phase provided separately by cationic (cetyltrimethylammonimum bromide, CTAB and dodecyltrimethylammonimum bromide, DTAB) and anionic (sodium dodecyl sulphate, SDS) surfactant. Results indicate that for a low concentration of surfactant (below cmc) the dye forms a dimer in aqueous solution. In a micellar media, however, the dye exists as monomers. A strong dye-micelle interaction, as indicated by the shift of the solvatochromic intramolecular charge transfer band of the dye, has also been indicated. The absorption and fluorescence parameters of the dye have been utilised for studying the onset of aggregation of the surfactants. An iterative procedure has been developed for the estimation of cmc and the distribution coefficient (KD) of the dye between the aqueous and the micellar phase. All the parameters provide convergent values of cmc. A high value of KD indicates that the dye exists predominantly in the micellar phase. The solvatochromic parameters characterising the dipolarity-polarisability (π(*)) and H-bond donation ability (α) of modes of solvation interaction in different micellar media have been estimated. The dye is found to distribute itself between two regions in a catanionic vesicle formed by surfactants SDS and DTAB, one being relatively polar than other. The distribution coefficients have been found out using the fluorescence data.

  18. Self-Assembly of "Chalcone" Type Push-Pull Dye Molecules into Organic Single Crystalline Microribbons and Rigid Microrods for Vis/NIR Range Photonic Cavity Applications.

    PubMed

    Vattikunta, Radhika; Venkatakrishnarao, Dasari; Mohiddon, Mahamad Ahamad; Chandrasekar, Rajadurai

    2016-11-04

    A novel supramolecular fluorescent donor-acceptor type dye molecule, (2E,4E)-1-(2-hydroxyphenyl)-5-(pyren-1-yl)penta-2,4-dien-1-one (HPPD) self-assembles in a mixture of ethanol/chloroform through intermolecular π-π stacking (distance ca. 3.384 Å) to form J-aggregated single-crystalline microribbons displaying Fabry-Pèrot (F-P) type visible-range optical resonance. The corresponding borondifluoride dye (HPPD-BF), with a reduced HOMO-LUMO gap, self-assembles into crystalline microrods acting as an F-P type resonator in the near-infrared (NIR) range.

  19. Improvement of photovoltaic performance by substituent effect of donor and acceptor structure of TPA-based dye-sensitized solar cells.

    PubMed

    Inostroza, Natalia; Mendizabal, Fernando; Arratia-Pérez, Ramiro; Orellana, Carlos; Linares-Flores, Cristian

    2016-01-01

    We report a computational study of a series of organic dyes built with triphenylamine (TPA) as an electron donor group. We designed a set of six dyes called (TPA-n, where n = 0-5). In order to enhance the electron-injection process, the electron-donor effect of some specific substituent was studied. Thus, we gave insights into the rational design of organic TPA-based chromophores for use in dye-sensitized solar cells (DSSCs). In addition, we report the HOMO, LUMO, the calculated excited state oxidized potential E(dye*)(eV) and the free energy change for electron-injection ΔGinject(eV), and the UV-visible absorption bands for TPA-n dyes by a time-dependent density functional theory (TDDFT) procedure at the B3LYP and CAM-B3LYP levels with solvent effect. The results demonstrate that the introduction of the electron-acceptor groups produces an intramolecular charge transfer showing a shift of the absorption wavelengths of TPA-n under studies. Graphical Abstract Several organic dyes TPA-n with different donors and acceptors are modeled. A strong conjugation acrros the donor and anchoring groips (TPA-n) bas been studied. Candidate TPA-3 shows a promising results.

  20. Elucidating the structure-property relationships of donor-π-acceptor dyes for dye-sensitized solar cells (DSSCs) through rapid library synthesis by a one-pot procedure.

    PubMed

    Fuse, Shinichiro; Sugiyama, Sakae; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Katoh, Ryuzi; Kaiho, Tatsuo; Takahashi, Takashi

    2014-08-18

    The creation of organic dyes with excellent high power conversion efficiency (PCE) is important for the further improvement of dye-sensitized solar cells. We wish to describe the rapid synthesis of a 112-membered donor-π-acceptor dye library by a one-pot procedure, evaluation of PCEs, and elucidation of structure-property relationships. No obvious correlations between ε, and the η were observed, whereas the HOMO and LUMO levels of the dyes were critical for η. The dyes with a more positive E(HOMO), and with an E(LUMO)<-0.80 V, exerted higher PCEs. The proper driving forces were crucial for a high J(sc), and it was the most important parameter for a high η. The above criteria of E(HOMO) and E(LUMO) should be useful for creating high PCE dyes; nevertheless, that was not sufficient for identifying the best combination of donor, π, and acceptor blocks. Combinatorial synthesis and evaluation was important for identifying the best dye.

  1. Cellular encoding of Cy dyes for single-molecule imaging

    PubMed Central

    Leisle, Lilia; Chadda, Rahul; Lueck, John D; Infield, Daniel T; Galpin, Jason D; Krishnamani, Venkatramanan; Robertson, Janice L; Ahern, Christopher A

    2016-01-01

    A general method is described for the site-specific genetic encoding of cyanine dyes as non-canonical amino acids (Cy-ncAAs) into proteins. The approach relies on an improved technique for nonsense suppression with in vitro misacylated orthogonal tRNA. The data show that Cy-ncAAs (based on Cy3 and Cy5) are tolerated by the eukaryotic ribosome in cell-free and whole-cell environments and can be incorporated into soluble and membrane proteins. In the context of the Xenopus laevis oocyte expression system, this technique yields ion channels with encoded Cy-ncAAs that are trafficked to the plasma membrane where they display robust function and distinct fluorescent signals as detected by TIRF microscopy. This is the first demonstration of an encoded cyanine dye as a ncAA in a eukaryotic expression system and opens the door for the analysis of proteins with single-molecule resolution in a cellular environment. DOI: http://dx.doi.org/10.7554/eLife.19088.001 PMID:27938668

  2. Nanoassemblies Based on Semiconductor Quantum Dots and Dye Molecules:. Single Objects Detection and Related Interface Dynamics

    NASA Astrophysics Data System (ADS)

    Zenkevich, E.; von Borczyskowski, C.; Kowerko, D.

    2013-05-01

    Single molecule spectroscopy of QD-dye nanoassemblies is shown that single functionalized dye molecules (perylene-bisimides and meso-pyridyl porphyrins) can be considered as extremely sensitive probes for studying exciton and relaxation processes in semiconductor CdSe/ZnS quantum dots.

  3. Method and apparatus for passive optical dosimeter comprising caged dye molecules

    DOEpatents

    Sandison, David R.

    2001-07-03

    A new class of ultraviolet dosimeters is made possible by exposing caged dye molecules, which generate a dye molecule on exposure to ultraviolet radiation, to an exterior environment. Applications include sunburn monitors, characterizing the UV exposure history of UV-sensitive materials, especially including structural plastics, and use in disposable `one-use` optical equipment, especially medical devices.

  4. Polarized optical waveguide spectroscopy: Effective tool to analyze adsorption process of dye molecules

    NASA Astrophysics Data System (ADS)

    Ohno, Hiroyuki; Taniguchi, Keisuke; Fujita, Kyoko

    2009-05-01

    Real time changes of the molecular orientational state are readily analyzed with polarized optical waveguide (POW) spectroscopy. Assembly or orientation of over 20 different dye molecules in solution have been analyzed during air-drying. The dynamic behavior of dyes including both orientational direction and degree of aggregation has been discussed with the key group structures of dyes. We suggest that certain interaction between dimethylimino residue of dyes and silanol residue of the waveguide surface should be responsible for these orientational changes. Furthermore, greater aggregation of these dyes tended to give rise to perpendicular orientation on the waveguide surface.

  5. Light-induced director-controlled microassembly of dye molecules from a liquid crystal matrix

    NASA Astrophysics Data System (ADS)

    Voloschenko, D.; Lavrentovich, O. D.

    1999-11-01

    We report on a light-induced phenomenon in dye-doped liquid crystals (LCs) with the distinctive features of molecular transport and assembly at micron scales. Under single-beam laser irradiation, the dye molecules phase separate from the LC host and assemble onto the cell substrate. Although the intensity of incident light is uniform within the irradiated area, the density of the adsorbed dye is modulated in accord with the director modulation of the LC. The dye molecules form a surface imprint that portrays orientational distortions of the LC host.

  6. Spin dynamics of photogenerated triradicals in fixed distance electron donor-chromophore-acceptor-TEMPO molecules.

    PubMed

    Mi, Qixi; Chernick, Erin T; McCamant, David W; Weiss, Emily A; Ratner, Mark A; Wasielewski, Michael R

    2006-06-15

    The stable free radical 2,2,6,6-tetramethylpiperidinoxyl (TEMPO, T*) was covalently attached to the electron acceptor in a donor-chromophore-acceptor (D-C-A) system, MeOAn-6ANI-Phn-A-T*, having well-defined distances between each component, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-l,8-dicarboximide, Ph = 2,5-dimethylphenyl (n = 0,1), and A = naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI). Using both time-resolved optical and EPR spectroscopy, we show that T* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Phn-A-*-T*), resulting in modulation of the charge recombination rate within the triradical compared with the corresponding biradical lacking T*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and A-* is not altered by the presence of T*, which interacts most strongly with A-* and accelerates radical pair intersystem crossing. Charge recombination within the triradicals results in the formation of 2,4(MeOAn-6ANI-Phn-3*NI-T*) or 2,4(MeOAn-3*6ANI-Phn-PI-T*) in which T* is strongly spin polarized in emission. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, the rate at which the net spin polarization appears on T* closely follows the photogenerated radical ion pair decay rate. This effect is attributed to antiferromagnetic coupling between T* and the local triplet state 3NI, which is populated following charge recombination. These results are explained using a switch in the spin basis set between the triradical and the three-spin charge recombination product having both T* and 3*NI or 3*6ANI present.

  7. Spin-selective charge transport pathways through p-oligophenylene-linked donor-bridge-acceptor molecules.

    PubMed

    Scott, Amy M; Miura, Tomoaki; Ricks, Annie Butler; Dance, Zachary E X; Giacobbe, Emilie M; Colvin, Michael T; Wasielewski, Michael R

    2009-12-09

    A series of donor-bridge-acceptor (D-B-A) triads have been synthesized in which the donor, 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An), and the acceptor, naphthalene-1,8:4,5-bis(dicarboximide) (NI), are linked by p-oligophenylene (Ph(n)) bridging units (n = 1-5). Photoexcitation of DMJ-An produces DMJ(+*)-An(-*) quantitatively, so that An(-*) acts as a high potential electron donor, which rapidly transfers an electron to NI yielding a long-lived spin-coherent radical ion pair (DMJ(+*)-An-Ph(n)-NI(-*)). The charge transfer properties of 1-5 have been studied using transient absorption spectroscopy, magnetic field effects (MFEs) on radical pair and triplet yields, and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The charge separation (CS) and recombination (CR) reactions exhibit exponential distance dependencies with damping coefficients of beta = 0.35 A(-1) and 0.34 A(-1), respectively. Based on these data, a change in mechanism from superexchange to hopping was not observed for either process in this system. However, the CR reaction is spin-selective and produces the singlet ground state and both (3*)An and (3*)NI. A kinetic analysis of the MFE data shows that superexchange dominates both pathways with beta = 0.48 A(-1) for the singlet CR pathway and beta = 0.35 A(-1) for the triplet CR pathway. MFEs and TREPR experiments were used to measure the spin-spin exchange interaction, 2J, which is directly related to the electronic coupling matrix element for CR, V(CR)(2). The magnitude of 2J also shows an exponential distance dependence with a damping coefficient alpha = 0.36 A(-1), which agrees with the beta values obtained from the distance dependence for triplet CR. These results were analyzed in terms of the bridge molecular orbitals that participate in the charge transport mechanism.

  8. Sensitization of photoprocesses in colloidal Ag2S quantum dots by dye molecules

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Oleg V.; Kondratenko, Tamara S.; Grevtseva, Irina G.; Smirnov, Mikhail S.; Pokutnyi, Sergey I.

    2016-07-01

    The effect of photosensitization of IR luminescence excitation (1205 nm) of colloidal Ag2S quantum dots (QDs) with average size of 2.5±0.6 nm in gelatin at 600 to 660 nm by molecules of 3,3'-di-(γ-sulfopropyl)-4,4',5,5'-dibenzo-9-ethylthiacarbocyanine betaine pyridinium salt (Dye1) and thionine dye (Dye2) was registered. Cis-J-aggregates of Dye1 and cations monomer of Dye2 conjugated with Ag2S QDs take part in this process. The photosensitization of luminescence excitation of colloidal Ag2S QDs was interpreted by resonance nonradiation transfer of electronic excitation energy from cis-J-aggregates of Dye1 and cations of Dye2 to centers of recombination luminescence of Ag2S QDs.

  9. A compact planar low-energy-gap molecule with a donor-acceptor-donor nature based on a bimetal dithiolene complex.

    PubMed

    Hayashi, Mikihiro; Otsubo, Kazuya; Kato, Tatsuhisa; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2015-11-11

    We present the first report of a compact, planar and low-energy-gap molecule based on a π-conjugated bimetal system comprising a tetrathiooxalate (tto) skeleton. The observed low HOMO-LUMO energy gap (1.19 eV) is attributed to its donor-acceptor-donor (D-A-D) nature because the skeleton acts as an electron acceptor as well as a tiny and noninnocent bridging moiety.

  10. Benzodi(pyridothiophene): a novel acceptor unit for application in A1-A-A1 type photovoltaic small molecules.

    PubMed

    Chen, Jianhua; Xiao, Manjun; Duan, Linrui; Wang, Qiong; Tan, Hua; Su, Ning; Liu, Yu; Yang, Renqiang; Zhu, Weiguo

    2016-01-21

    A series of novel A1-A-A1 type small molecules (SMs) of BDPT-2BT, BDPT-2FBT and BDPT-2DPP were designed and synthesized, in which benzodi(pyridothiophene) (BDPT) was used as a novel weak central acceptor (A) unit, and benzothiadiazole (BT), fluorinated benzothiadiazole (FBT) and diketopyrrolopyrrole (DPP) were used as terminal acceptor (A1) units, respectively. The pentacyclic BDPT aromatic unit can form big conjugated and planar SMs with the A1 unit, resulting in enhanced π-π stacking and crystallinity. The effect of the A1 unit on the optical, electrochemical and photovoltaic properties of three SMs was observed. The broader absorption spectrum, lower HOMO energy level, higher photo-response efficiency and better photovoltaic properties were exhibited for BDPT-2DPP. A maximum PCE of 3.97% with a Voc of 0.84 V, a Jsc of 9.0 mA cm(-2) and a FF of 52.37% was obtained in the BDPT-2DPP/PC71BM-based solar cells, which is 1.8 and 1.5 times the values of the BDPT-2BT and BDPT-2FBT-based cells, respectively.

  11. An investigation of hydrogen bonding between HCl and vinylacetylene: A molecule with two different π-acceptor sites

    NASA Astrophysics Data System (ADS)

    Kisiel, Z.; Fowler, P. W.; Legon, A. C.; Devanne, D.; Dixneuf, P.

    1990-11-01

    The ground state rotational spectrum of a hydrogen-bonded dimer formed by vinylacetylene and hydrogen chloride has been detected by the pulsed-nozzle, Fourier-transform microwave technique. Vinylacetylene has been chosen as a prototype acceptor molecule containing two different π-acceptor sites. Rotational constants A0, B0, C0, centrifugal distortion constants ΔJ, ΔJK, δJ, δK, and three components χaa, χbb-χcc, and χab of the Cl nuclear quadrupole coupling tensor have been determined for each of the three isotopomers CH2CHCCHṡṡṡ H35Cl, CH2CHCCHṡṡṡH37Cl, and CH2CHCCHṡṡṡD35Cl. These spectroscopic constants have been interpreted in terms of a dimer in which the HCl subunit forms a hydrogen bond to the C 3/4 C triple bond in a T-shape configuration, but is displaced from the center of the triple bond by d=0.04 Å towards the inner C atom, and makes an angle φ=34° with the vinylacetylene plane. The experimental angular geometry is in excellent agreement with that predicted by the Buckingham-Fowler electrostatic model which gives φ=27°.

  12. Imposed Orientation of Dye Molecules by Liquid Crystals and an Electric Field.

    ERIC Educational Resources Information Center

    Sadlej-Sosnowska, Nina

    1980-01-01

    Describes experiments using dye solutions in liquid crystals in which polar molecules are oriented in an electrical field and devices are constructed to change their color in response to an electric signal. (CS)

  13. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules: A Benchmark of GW Methods

    NASA Astrophysics Data System (ADS)

    Marom, Noa; Knight, Joseph; Wang, Xiaopeng; Gallandi, Lukas; Dolgounitcheva, Olga; Ren, Xinguo; Ortiz, Vincent; Rinke, Patrick; Korzdorfer, Thomas

    The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0) , non-self-consistent G0W0 based on several mean-field starting points, and a ``beyond GW'' second order screened exchange (SOSEX) correction to G0W0. The best performers overall are G0W0 + SOSEX and G0W0 based on an IP-tuned long range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs. delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments.

  14. Donor-acceptor small molecules for organic photovoltaics: single-atom substitution (Se or S).

    PubMed

    He, Xiaoming; Cao, Bing; Hauger, Tate C; Kang, Minkyu; Gusarov, Sergey; Luber, Erik J; Buriak, Jillian M

    2015-04-22

    Two isostructural low-band-gap small molecules that contain a one-atom substitution, S for Se, were designed and synthesized. The molecule 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]thiadiazole] (1) and its selenium analogue 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]selenodiazole] (2) are both based on the electron-rich central unit benzo[1,2-b:4,5-b']dithiophene. The aim of this work was to investigate the effect of one-atom substitution on the optoelectronic properties and photovoltaic performance of devices. Theoretical calculations revealed that this one-atom variation has a small but measurable effect on the energy of frontier molecular orbital (HOMO and LUMO), which, in turn, can affect the absorption profile of the molecules, both neat and when mixed in a bulk heterojunction (BHJ) with PC71BM. The Se-containing variant 2 led to higher efficiencies [highest power conversion efficiency (PCE) of 2.6%] in a standard organic photovoltaic architecture, when combined with PC71BM after a brief thermal annealing, than the S-containing molecule 1 (highest PCE of 1.0%). Studies of the resulting morphologies of BHJs based on 1 and 2 showed that one-atom substitution could engender important differences in the solubilities, which then influenced the crystal orientations of the small molecules within this thin layer. Brief thermal annealing resulted in rotation of the crystalline grains of both molecules to more energetically favorable configurations.

  15. Intramolecular electron transfer within a covalent, fixed-distance donor-acceptor molecule in an ionic liquid.

    PubMed

    Lockard, Jenny V; Wasielewski, Michael R

    2007-10-11

    Intramolecular photoinduced charge separation and recombination within the donor-acceptor molecule 4-(N-pyrrolidino)naphthalene-1,8-imide-pyromellitimide, 5ANI-PI, are studied using ultrafast transient absorption spectroscopy in the room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide [EMIM][Tf2N]. The rate constants of both photoinduced charge separation and charge recombination for 5ANI-PI in [EMIM][Tf2N] are comparable to those observed in pyridine, which has a static dielectric constant similar to that of [EMIM][Tf2N] but a viscosity that is nearly 2 orders of magnitude lower than that of [EMIM][Tf2N]. The electron-transfer dynamics of 5ANI-PI in [EMIM][Tf2N] are compared to those in pyridine as a function of temperature and are discussed in the context of recently reported ionic liquid solvation studies.

  16. (Dibenzoylmethanato)boron difluoride derivatives containing triphenylamine moieties: a new type of electron-donor/π-acceptor system for dye-sensitized solar cells.

    PubMed

    Mizuno, Yosuke; Yisilamu, Yilihamu; Yamaguchi, Tomoya; Tomura, Masaaki; Funaki, Takashi; Sugihara, Hideki; Ono, Katsuhiko

    2014-10-06

    (Dibenzoylmethanato)boron difluoride derivatives containing triphenylamine moieties were synthesized as a new type of electron-donor/π-acceptor system. These new compounds exhibited long-wavelength absorptions in the UV/Vis spectra, and reversible oxidation and reduction waves in cyclic voltammetry experiments. Their amphoteric redox properties are based on their resonance hybrid forms, in which a positive charge is delocalized on the triphenylamine moieties and a negative charge is localized on the boron atoms. Molecular orbital (MO) calculations indicate that their HOMO and LUMO energies vary with the number of phenylene rings connected to the difluoroboron-chelating ring. This is useful for optimizing the HOMO and LUMO levels to an iodine redox (I(-)/I3(-)) potential and a titanium dioxide conduction band, respectively. Dye-sensitized solar cells fabricated by using these compounds as dye sensitizers exhibited solar-to-electric power conversion efficiencies of 2.7-4.4 % under AM 1.5 solar light.

  17. Single-molecule pulling and the folding of donor-acceptor oligorotaxanes: Phenomenology and interpretation

    NASA Astrophysics Data System (ADS)

    Franco, Ignacio; Schatz, George C.; Ratner, Mark A.

    2009-09-01

    The thermodynamic driving force in the folding of a class of oligorotaxanes is elucidated by means of molecular dynamics simulations of equilibrium isometric single-molecule force spectroscopy by atomic force microscopy experiments. The oligorotaxanes consist of cyclobis(paraquat-p-phenylene) rings threaded onto an oligomer of 1,5-dioxynaphthalenes linked by polyethers. The simulations are performed in a high dielectric medium using MM3 as the force field. The resulting force versus extension isotherms show a mechanically unstable region in which the molecule unfolds and, for selected extensions, blinks in the force measurements between a high-force and a low-force regime. From the force versus extension data the molecular potential of mean force is reconstructed using the weighted histogram analysis method and decomposed into energetic and entropic contributions. The simulations indicate that the folding of the oligorotaxanes is energetically favored but entropically penalized, with the energetic contributions overcoming the entropy penalty and effectively driving the folding. In addition, an analogy between the single-molecule folding/unfolding events driven by the atomic force microscope (AFM) tip and the thermodynamic theory of first-order phase transitions is discussed. General conditions (on the molecule and the AFM cantilever) for the emergence of mechanical instabilities and blinks in the force measurements in equilibrium isometric pulling experiments are also presented. In particular, it is shown that the mechanical stability properties observed during the extension are intimately related to the fluctuations in the force measurements.

  18. Increased Efficiency in Small Molecule Organic Solar Cells Through the Use of a 56-π Electron Acceptor - Methano Indene Fullerene

    NASA Astrophysics Data System (ADS)

    Ryan, James W.; Matsuo, Yutaka

    2015-02-01

    Organic solar cells (OSCs) offer the possibility of harnessing the sun's ubiquitous energy in a low-cost, environmentally friendly and renewable manner. OSCs based on small molecule semiconductors (SMOSCs) - have made a substantial improvement in recent years and are now achieving power conversion efficiencies (PCEs) that match those achieved for polymer:fullerene OSCs. To date, all efficient SMOSCs have relied on the same fullerene acceptor, PCBM, in order to achieve high performance. The use of PCBM however, is unfavourable due to its low lying LUMO level, which limits the open-circuit voltage (VOC). Alternative fullerene derivatives with higher lying LUMOs are thus required to improve the VOC. The challenge, however, is to prevent the typical concomitant decrease in the short circuit current density (JSC) when using a higher LUMO fullerene. In this communication, we address the issue by applying methano indene fullerene, MIF, a bis-functionalised C60 fullerene that has a LUMO level 140 mV higher than PCBM, in solution processed SMOSCs with a well known small molecule donor, DPP(TBFu)2. MIF-based devices show an improved VOC of 140 mV over PC61BM and only a small decrease in the JSC, with the PCE increasing to 5.1% (vs. 4.5% for PC61BM).

  19. Probes labelled with energy transfer coupled dyes

    DOEpatents

    Mathies, R.A.; Glazer, A.; Ju, J.

    1997-11-18

    Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids. 7 figs.

  20. Probes labelled with energy transfer coupled dyes

    DOEpatents

    Mathies, Richard A.; Glazer, Alexander; Ju, Jingyue

    1997-01-01

    Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids.

  1. A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2.

    PubMed

    Valero-González, Jessika; Leonhard-Melief, Christina; Lira-Navarrete, Erandi; Jiménez-Osés, Gonzalo; Hernández-Ruiz, Cristina; Pallarés, María Carmen; Yruela, Inmaculada; Vasudevan, Deepika; Lostao, Anabel; Corzana, Francisco; Takeuchi, Hideyuki; Haltiwanger, Robert S; Hurtado-Guerrero, Ramon

    2016-04-01

    Protein O-fucosyltransferase 2 (POFUT2) is an essential enzyme that fucosylates serine and threonine residues of folded thrombospondin type 1 repeats (TSRs). To date, the mechanism by which this enzyme recognizes very dissimilar TSRs has been unclear. By engineering a fusion protein, we report the crystal structure of Caenorhabditis elegans POFUT2 (CePOFUT2) in complex with GDP and human TSR1 that suggests an inverting mechanism for fucose transfer assisted by a catalytic base and shows that nearly half of the TSR1 is embraced by CePOFUT2. A small number of direct interactions and a large network of water molecules maintain the complex. Site-directed mutagenesis demonstrates that POFUT2 fucosylates threonine preferentially over serine and relies on folded TSRs containing the minimal consensus sequence C-X-X-S/T-C. Crystallographic and mutagenesis data, together with atomic-level simulations, uncover a binding mechanism by which POFUT2 promiscuously recognizes the structural fingerprint of poorly homologous TSRs through a dynamic network of water-mediated interactions.

  2. A proactive role of water molecules in acceptor recognition by Protein-O-fucosyltransferase 2

    PubMed Central

    Valero-González, Jessika; Leonhard-Melief, Christina; Lira-Navarrete, Erandi; Jiménez-Osés, Gonzalo; Hernández-Ruiz, Cristina; Pallarés, María Carmen; Yruela, Inmaculada; Vasudevan, Deepika; Lostao, Anabel; Corzana, Francisco; Takeuchi, Hideyuki; Haltiwanger, Robert S.; Hurtado-Guerrero, Ramon

    2016-01-01

    Protein O-fucosyltransferase 2 (POFUT2) is an essential enzyme that fucosylates serine/threonine residues of folded thrombospondin type 1 repeats (TSRs). To date, the mechanism by which this enzyme recognizes very dissimilar TSRs remained unclear. By engineering of a fusion protein, we report the crystal structure of Caenorhabditis elegans POFUT2 (CePOFUT2) in complex with GDP and human TSR1 that suggests an inverting mechanism for fucose transfer assisted by a catalytic base, and shows that nearly half of the TSR1 is embraced by CePOFUT2. A small number of direct interactions and a large network of water molecules maintain the complex. Site-directed mutagenesis demonstrates that POFUT2 fucosylates threonine preferentially over serine and relies on folded TSRs containing the minimal consensus sequence CXX(S/T)C. Crystallographic and mutagenesis data together with atomic-level simulations uncover an unprecedented binding mechanism by which POFUT2 promiscuously recognizes the structural fingerprint of poorly homologous TSRs through a dynamic network of water-mediated interactions. PMID:26854667

  3. Indan-1,3-dione electron-acceptor small molecules for solution-processable solar cells: a structure-property correlation.

    PubMed

    Winzenberg, Kevin N; Kemppinen, Peter; Scholes, Fiona H; Collis, Gavin E; Shu, Ying; Singh, Th Birendra; Bilic, Ante; Forsyth, Craig M; Watkins, Scott E

    2013-07-18

    A structure-device performance correlation in bulk heterojunction solar cells for new indandione-derived small molecule electron acceptors, FEHIDT and F8IDT, is presented. Devices based on the former exhibit higher power conversion efficiency (2.4%) and higher open circuit voltage, a finding consistent with reduced intermolecular interactions.

  4. Reduced dyes enhance single-molecule localization density for live superresolution imaging.

    PubMed

    Carlini, Lina; Benke, Alexander; Reymond, Luc; Lukinavičius, Gražvydas; Manley, Suliana

    2014-03-17

    Cell-permeable rhodamine dyes are reductively quenched by NaBH4 into a non-fluorescent leuco-rhodamine form. Quenching is reversible, and their fluorescence is recovered when the dyes are oxidized. In living cells, oxidation occurs spontaneously, and can result in up to ten-fold higher densities of single molecule localizations, and more photons per localization as compared with unmodified dyes. These two parameters directly impact the achievable resolution, and we see a significant improvement in the quality of live-cell point-localization super-resolution images taken with reduced dyes. These improvements carry over to increase the density of trajectories for single-molecule tracking experiments.

  5. Diffusion of permanent liquid dye molecules in human hair investigated by positron lifetime spectroscopy.

    PubMed

    Chandrashekara, M N; Ranganathaiah, C

    2009-02-15

    The diffusion behavior of a commercial permanent liquid hair dye in human hair has been investigated using positron annihilation lifetime spectroscopy (PALS) and gravimetric sorption method. The positron technique makes it possible to non-invasively characterize the angstrom sized free volume holes in hair, which are supposed to be express pathways for diffusion of small molecules. The o-Ps lifetime parameters tau3 and I3 decrease rapidly during the first 60 min of sorption time. The overall decrease in o-Ps lifetime (tau3) was well over 200 ps and o-Ps intensity (I3) drops by 3.5%. These positron results are explained in terms of dye molecules filling the free volume holes and hair morphology. The dye penetrates the cuticle rapidly, but slowly in cortex. The first hour of dyeing appears to be the most effective period of deposition of dye molecules within hair. These results are well corroborated by the sorption results which suggest that the dye diffusion is essentially a diffusion controlled (i.e. Fickian) process, with no observable relaxation effects. In the latter part of the sorption, where positron parameters remain almost constant, mass increase might be due to surface adhesion. These two stages of sorption are well separated by the positron technique. The sorption curve also yielded an average value of apparent diffusivity of the dye in hair. From this study, we conclude that the free volume theory and positron technique, widely used in polymer research, may expediently be used to understand hair properties, more importantly diffusion of dye molecules.

  6. Microscopic simulations of electronic excitations in donor-acceptor heterojunctions of small-molecule based solar cells

    NASA Astrophysics Data System (ADS)

    Baumeier, Bjoern

    2015-03-01

    Fundamental processes involving electronic excitations govern the functionality of molecular materials in which the dynamics of excitons and charges is determined by an interplay of molecular electronic structure and morphological order. To understand, e.g., charge separation and recombination at donor-acceptor heterojunctions in organic solar cells, knowledge about the microscopic details influencing these dynamics in the bulk and across the interface is required. For a set of prototypical heterojunctions of small-molecule donor materials with C60, we employ a hybrid QM/MM approach linking density-functional and many-body Green's functions theory and analyze the charged and neutral electronic excitations therein. We pay special attention the spatially-resolved electron/hole transport levels, as well as the relative energies of Frenkel and charge-transfer excitations at the interface. Finally, we link the molecular architecture of the donor material, its orientation on the fullerene substrate as well as mesoscale order to the solar cell performance.

  7. Donors contribute more than acceptors to increase the two-photon activity--a case study with cyclopenta[b]naphthalene based molecules.

    PubMed

    Alam, Md Mehboob

    2014-12-21

    In the present work, we address the question -"which among the electron donors and the electron acceptors contribute more to the two-photon (TP) activity of a donor-π-acceptor type of molecule?" For this purpose we have performed ab initio calculations to calculate the TP transition probability (δTP) of a recently synthesized (Benedetti et al., J. Am. Chem. Soc., 2012, 134(30), 12418-12421) cyclopenta[b]naphthalene based chemo-sensor and its derivatives containing different electron donor and acceptor groups. Our study revealed that both under vacuum and in solvent phases, an increase in electron donor strength (-OMe, -NH2, -NMe2) increases the δTP value up to five times, whereas, an increase in the acceptor group strength (-COCH3, -NO2, -CN) increases it by a factor of two only. The highest δTP value is obtained for the molecule having the strongest donor-acceptor pair (-CN, -NMe2) considered in this work. We have also noted that, the removal of the cyclopentane ring from the original system increases the δTP value by ∼20% and the replacement of the naphthyl group by the benzene ring decreases it by ∼70%. All these results are explained by inspecting different TP tensor elements and different transition moment vectors involved in a two-state model approach. A close scrutiny of different parameters in 2SM clearly reveals that upon increasing the strength of either the donor or the acceptor group the parameters change in favour of increasing the overall δTP values but in the case of donors this effect is much larger.

  8. The ratio and topology effects of benzodithiophene donor-benzooxadiazole acceptor fragments on the optoelectronic properties of donor molecules toward solar cell materials.

    PubMed

    Bibi, Shamsa; Zhang, Jingping

    2015-03-28

    A series of conjugated donor molecules (DmAnSq where m = 1-4, n = 1-7 while D = benzodithiophene, A = benzooxadiazole and S denotes ethyne spacers between D and A or D and D fragments) with various ratios of D/A fragments and topologies have been designed and investigated for OPV applications. An increase in the ratio of the acceptor fragment with respect to the donor fragment decreases the LUMO energy level and narrows the Eg for the designed molecule. More vertically (C4 and C8 substituted phenyl ring positions) bonded acceptor fragments than linearly (C2 and C6 substituted thiophene ring positions) bonded fragments result in a significant red shift in the maximum absorption wavelength. While, linearly bonded fragments lead to stronger absorption bands. Molecules with D-A-D topology exhibit more significant optical and electronic characteristics than those with D-D topology. All donor molecules (m = 2-4) of the D-A-D type show lower λh values than those of 1 donor containing (DAn) molecules. D-D type molecules show only lower λe values than DAn molecules because of the presence of a second donor fragment. The charge transfer phenomenon is shape dependent. The branched or anisotropic X, H, π, n, and square shaped molecules display higher charge transfer rates than the corresponding linear isomers due to better dimensionality. On the basis of these results, we suggest that designed donor and corresponding matched acceptor molecules have potential to act as promising candidates in solar cell devices.

  9. Structural systematic features of photoelectric effect in aromatic polymers with polymethine dyes

    SciTech Connect

    Aleksandrova, E. L.

    2007-12-15

    The structural systematic features of quantum-yield variation in charge-carrier photogeneration are investigated for polymer systems with molecules into which polymethine dyes of various structures had been introduced. The correlations between the quantum yields and the second-harmonic-generation efficiency in the media containing such dyes are revealed, and relations of the quantum yields to such dye-molecule structural parameters as the ionization potential of its donor fragment, the electron affinity of its acceptor fragment, and the electron-transfer distance between donor and acceptor fragments of the dye molecule are established.

  10. Two-photon absorption and spectroscopy of the lowest two-photon transition in small donor-acceptor-substituted organic molecules

    NASA Astrophysics Data System (ADS)

    Beels, Marten T.; Biaggio, Ivan; Reekie, Tristan; Chiu, Melanie; Diederich, François

    2015-04-01

    We determine the dispersion of the third-order polarizability of small donor-acceptor substituted organic molecules using wavelength-dependent degenerate four-wave mixing experiments in solutions with varying concentrations. We find that donor-acceptor-substituted molecules that are characterized by extremely efficient off-resonant nonlinearities also have a correspondingly high two-photon absorption cross section. The width and shape of the first two-photon resonance for these noncentrosymmetric molecules follows what is expected from their longest wavelength absorption peak, and the observed two-photon absorption cross sections are record high when compared to the available literature data, the size of the molecule, and the fundamental limit for two-photon absorption to the lowest excited state, which is essentially determined by the number of conjugated electrons and the excited-state energies. The two-photon absorption of the smallest molecule, which only has 16 electrons in its conjugated system, is one order of magnitude larger than for the molecule called AF-50, a reference molecule for two-photon absorption [O.-K. Kim et al., Chem. Mater. 12, 284 (2000), 10.1021/cm990662r].

  11. Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method

    NASA Astrophysics Data System (ADS)

    Acikgoz, Sabriye; Demir, Mustafa M.; Yapasan, Ece; Kiraz, Alper; Unal, Ahmet A.; Inci, M. Naci

    2014-09-01

    The decay dynamics of perylene dye molecules encapsulated in polymer nanofibers produced by electrospinning of polymethyl methacrylate are investigated using a confocal fluorescence lifetime imaging microscopy technique. Time-resolved experiments show that the fluorescence lifetime of perylene dye molecules is enhanced when the dye molecules are encapsulated in a three-dimensional photonic environment. It is hard to produce a sustainable host with exactly the same dimensions all the time during fabrication to accommodate dye molecules for enhancement of spontaneous emission rate. The electrospinning method allows us to have a control over fiber diameter. It is observed that the wavelength of monomer excitation of perylene dye molecules is too short to cause enhancement within nanofiber photonic environment of 330 nm diameters. However, when these nanofibers are doped with more concentrated perylene, in addition to monomer excitation, an excimer excitation is generated. This causes observation of the Purcell effect in the three-dimensional nanocylindrical photonic fiber geometry.

  12. Reinforced self-assembly of donor-acceptor π-conjugated molecules to DNA templates by dipole-dipole interactions together with complementary hydrogen bonding interactions for biomimetics.

    PubMed

    Yang, Wanggui; Chen, Yali; Wong, Man Shing; Lo, Pik Kwan

    2012-10-08

    One of the most important criteria for the successful DNA-templated polymerization to generate fully synthetic biomimetic polymers is to design the complementary structural monomers, which assemble to the templates strongly and precisely before carrying polymerization. In this study, water-soluble, laterally thymine-substituted donor-acceptor π-conjugated molecules were designed and synthesized to self-assemble with complementary oligoadenines templates, dA(20) and dA(40), into stable and tubular assemblies through noncovalent interactions including π-π stacking, dipole-dipole interactions, and the complementary adenine-thymine (A-T) hydrogen-bonding. UV-vis, fluorescence, circular dichroism (CD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to investigate the formation of highly robust nanofibrous structures. Our results have demonstrated for the first time that the dipole-dipole interactions are stronger and useful to reinforce the assembly of donor-acceptor π-conjugated molecules to DNA templates and the formation of the stable and robust supramolecular nanofibrous complexes together with the complementary hydrogen bonding interactions. This provides an initial step toward DNA-templated polymerization to create fully synthetic DNA-mimetic polymers for biotechnological applications. This study also presents an opportunity to precisely position donor-acceptor type molecules in a controlled manner and tailor-make advanced materials for various biotechnological applications.

  13. Holographic method for investigating the diffusion of dye molecules in the polymer host

    NASA Astrophysics Data System (ADS)

    Wang, C. H.; Xia, J. L.

    1990-02-01

    Laser induced holographic grating relaxation studies of thymoquinone dissolved in amorphous poly(α-methyl styrene) have been carried out. The Onsager theory of mutual diffusion for binary and tertiary systems are utilized to analyze the shape of the diffraction intensity curve. Different line shapes that are associated with the relaxation of the diffraction intensity are interpreted in terms of the diffusion processes. Diffusion coefficients are obtained as a function of thymoquinone concentration from 0.3 to 20 wt. % at various temperatures. It is shown that at very low concentrations (less than 0.5%), the self-diffusion coefficients of the dye molecule and its photoproduct are obtained. Above 0.5% concentrations the diffusion coefficient rapidly increases with increasing dye concentration. The temperature dependence of the self-diffusion coefficient follows the Williams-Landel-Ferry equation, whereas the mutual diffusion coefficient at higher dye concentrations follows the Arrhenius equation. The self-diffusion coefficient rapidly decreases as the sample temperature is traversed across the glass transition temperature (Tg). However at finite dye concentrations there is no detectable effect owing to the onset of Tg on the mutual diffusion coefficient. The difference is attributed to the plasticizing effect of the dye molecules.

  14. Controlled energy transfer between isolated donor-acceptor molecules intercalated in thermally self-ensemble two-dimensional hydrogen bonding cages

    NASA Astrophysics Data System (ADS)

    Al Attar, Hameed A.; Monkman, Andrew P.

    2012-12-01

    Thermally assembled hydrogen bonding cages which are neither size nor guest specific have been developed using a poly (vinyl alcohol) (PVA) host. A water-soluble conjugated polymer poly(2,5-bis(3-sulfonatopropoxy)-1,4-phenylene, disodium salt-alt-1,4-phenylene) (PPP-OPSO3) as a donor and tris(2,2-bipyridyl)- ruthenium(II) [Ru(bpy)32+] as an acceptor have been isolated and trapped in such a PVA matrix network. This is a unique system that shows negligible exciton diffusion and the donor and acceptor predominantly interact by a direct single step excitation transfer process (DSSET). Singlet and triplet exciton quenching have been studied. Time-resolved fluorescence lifetime measurement at different acceptor concentrations has enabled us to determine the dimensionality of the energy-transfer process within the PVA scaffold. Our results reveal that the PVA hydrogen bonding network effectively isolates the donor-acceptor molecules in a two-dimensional layer structure (lamella) leading to the condition where a precise control of the energy and charge transfer is possible.

  15. ABAB Phthalocyanines: Scaffolds for Building Unprecedented Donor-π-Acceptor Chromophores.

    PubMed

    Fazio, Ettore; Jaramillo-García, Javier; Medel, María; Urbani, Maxence; Grätzel, Michael; Nazeerudin, Mohammad K; de la Torre, Gema; Torres, Tomas

    2017-02-01

    Unique donor-π-acceptor phthalocyanines have been synthesized through the asymmetric functionalization of an ABAB phthalocyanine, crosswise functionalized with two iodine atoms through Pd-catalyzed cross-coupling reactions with adequate electron-donor and electron-acceptor moieties. These push-pull molecules have been optically and electrochemically characterized, and their ability to perform as chromophores for dye-sensitized solar cells has been tested.

  16. Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes.

    PubMed

    Miller, Helen; Zhou, Zhaokun; Wollman, Adam J M; Leake, Mark C

    2015-10-15

    As proof-of-principle for generating superresolution structural information from DNA we applied a method of localization microscopy utilizing photoblinking comparing intercalating dye YOYO-1 against minor groove binding dye SYTO-13, using a bespoke multicolor single-molecule fluorescence microscope. We used a full-length ∼49 kbp λ DNA construct possessing oligo inserts at either terminus allowing conjugation of digoxigenin and biotin at opposite ends for tethering to a glass coverslip surface and paramagnetic microsphere respectively. We observed stochastic DNA-bound dye photoactivity consistent with dye photoblinking as opposed to binding/unbinding events, evidenced through both discrete simulations and continuum kinetics analysis. We analyzed dye photoblinking images of immobilized DNA molecules using superresolution reconstruction software from two existing packages, rainSTORM and QuickPALM, and compared the results against our own novel home-written software called ADEMS code. ADEMS code generated lateral localization precision values of 30-40 nm and 60-70 nm for YOYO-1 and SYTO-13 respectively at video-rate sampling, similar to rainSTORM, running more slowly than rainSTORM and QuickPALM algorithms but having a complementary capability over both in generating automated centroid distribution and cluster analyses. Our imaging system allows us to observe dynamic topological changes to single molecules of DNA in real-time, such as rapid molecular snapping events. This will facilitate visualization of fluorescently-labeled DNA molecules conjugated to a magnetic bead in future experiments involving newly developed magneto-optical tweezers combined with superresolution microscopy.

  17. Acidity Constant (pKa ) Calculation of Large Solvated Dye Molecules: Evaluation of Two Advanced Molecular Dynamics Methods.

    PubMed

    De Meyer, Thierry; Ensing, Bernd; Rogge, Sven M J; De Clerck, Karen; Meijer, Evert Jan; Van Speybroeck, Veronique

    2016-11-04

    pH-Sensitive dyes are increasingly applied on polymer substrates for the creation of novel sensor materials. Recently, these dye molecules were modified to form a covalent bond with the polymer host. This had a large influence on the pH-sensitive properties, in particular on the acidity constant (pKa ). Obtaining molecular control over the factors that influence the pKa value is mandatory for the future intelligent design of sensor materials. Herein, we show that advanced molecular dynamics (MD) methods have reached the level at which the pKa values of large solvated dye molecules can be predicted with high accuracy. Two MD methods were used in this work: steered or restrained MD and the insertion/deletion scheme. Both were first calibrated on a set of phenol derivatives and afterwards applied to the dye molecule bromothymol blue. Excellent agreement with experimental values was obtained, which opens perspectives for using these methods for designing dye molecules.

  18. Optical orientation of azo dye molecules in a thin solid film upon nonlinear excitation by femtosecond laser pulses

    SciTech Connect

    Yongseok, Jung; Kozenkov, V M; Magnitskiy, Sergey A; Nagorskiy, Nikolay M

    2006-11-30

    The orientation of molecules in an amorphous pure azo dye film upon nonlinear excitation is detected for the first time. The simultaneous increase and decrease in the film transmission by a factor of 2.5 for orthogonal polarisations of probe radiation indicated the appearance of orientation order in the film caused by the reorientation of azo dye molecules. Due to a high photostability of the AD-1 azo dye demonstrated in single-photon experiments and a high efficiency of nonlinear orientation obtained in experiments with femtosecond pulses, this dye can be widely used in three-dimensional nanophotonic devices such as photonic crystals, optical computers, and optical memory. (letters)

  19. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  20. Modeling opto-electronic properties of a dye molecule in proximity of a semiconductor nanoparticle

    NASA Astrophysics Data System (ADS)

    Delgado, Alain; Corni, Stefano; Goldoni, Guido

    2013-07-01

    A general methodology is presented to model the opto-electronic properties of a dye molecule in the presence of a semiconductor nanoparticle (NP), a model system for the architecture of dye-sensitized solar cells. The method is applied to the L0 organic dye solvated with acetonitrile in the neighborhood of a TiO2 NP. The total reaction potential due to the polarization of the solvent and the metal oxide is calculated by extending the polarizable continuum model integral equation formalism. The ground state energy is computed by using density functional theory (DFT) while the vertical electronic excitations are obtained by time-dependent DFT in a state-specific corrected linear response scheme. We calculate the excited state oxidation potential (ESOP) for the protonated and deprotonated forms of the L0 dye at different distances and configurations with respect to the NP surface. The stronger renormalizations of the ESOP values due to the presence of the TiO2 nanostructure are found for the protonated dye, reaching a maximum of about -0.15 eV. The role of protonation effect is discussed in terms of the atomic Löwdin charges of the oxidized and reduced species. On the other hand, we observed a weak effect on the L0 optical excitation gap due to the polarization response of the NP.

  1. Nonfullerene-Acceptor All-Small-Molecule Organic Solar Cells Based on Highly Twisted Perylene Bisimide with an Efficiency of over 6.

    PubMed

    Xin, Rui; Feng, Jiajing; Zeng, Cheng; Jiang, Wei; Zhang, Lei; Meng, Dong; Ren, Zhongjie; Wang, Zhaohui; Yan, Shouke

    2017-01-25

    Two twisted singly linked perylene bisimide (PBI) dimers with chalcogen bridges in the PBI cores, named C4,4-SdiPBI-S and C4,4-SdiPBI-Se, were synthesized as acceptors for nonfullerene all-small-molecule organic solar cells (NF all-SMSCs). A moderate-band-gap small-molecule DR3TBDTT used as the electron donor displayed complementary absorption with C4,4-SdiPBI-S and C4,4-SdiPBI-Se. It was found that solvent-vapor annealing (SVA) played a critical role in the photovoltaic performance in NF all-SMSCs, which improves the crystallinity of the donor and acceptors, promotes the proper phase segregation domain size, and therefore enhances charge transport. The power conversion efficiencies (PCEs) of NF all-SMSC devices based on DR3TBDTT/C4,4-SdiPBI-S and DR3TBDTT/C4,4-SdiPBI-Se increased from 2.52% to 5.81% (JSC = 11.12 mA cm(-2), VOC = 0.91 V, and FF = 57.32%) and from 2.65% to 6.22% (JSC = 11.55 mA cm(-2), VOC = 0.92 V, and FF = 58.72%), respectively, after exposure to chloroform vapor. The best efficiency of 6.22% is one of the highest PCEs for NF all-SMSC-based PBI acceptors so far. The studies illustrate that highly efficient NF all-SMSCs can be achieved by using a PBI acceptor with a suitable SVA process.

  2. Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor-Acceptor Combinations

    DTIC Science & Technology

    2006-01-01

    poly- mers;[103] such systems may be exploitable for bioassays. 2.6. Photochromic Dyes Jovin and co-workers define photochromic compounds as “having...having different absorption (and in some cases, fluorescence) spectra”.[104] The primary attraction of using photochromic dyes as FRET acceptors is the...structed with this concept. Spiropyrans and functionally related molecules are among the more prominent photochromic compounds. These mole- cules

  3. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells.

    PubMed

    Baran, Derya; Ashraf, Raja Shahid; Hanifi, David A; Abdelsamie, Maged; Gasparini, Nicola; Röhr, Jason A; Holliday, Sarah; Wadsworth, Andrew; Lockett, Sarah; Neophytou, Marios; Emmott, Christopher J M; Nelson, Jenny; Brabec, Christoph J; Amassian, Aram; Salleo, Alberto; Kirchartz, Thomas; Durrant, James R; McCulloch, Iain

    2017-03-01

    Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

  4. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

    NASA Astrophysics Data System (ADS)

    Baran, Derya; Ashraf, Raja Shahid; Hanifi, David A.; Abdelsamie, Maged; Gasparini, Nicola; Röhr, Jason A.; Holliday, Sarah; Wadsworth, Andrew; Lockett, Sarah; Neophytou, Marios; Emmott, Christopher J. M.; Nelson, Jenny; Brabec, Christoph J.; Amassian, Aram; Salleo, Alberto; Kirchartz, Thomas; Durrant, James R.; McCulloch, Iain

    2016-11-01

    Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 +/- 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 +/- 0.4% efficiency and a high open-circuit voltage of 1.03 +/- 0.01 V.

  5. Shedding light on the photostability of two intermolecular charge-transfer complexes between highly fluorescent bis-1,8-naphthalimide dyes and some π-acceptors: A spectroscopic study in solution and solid states

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ismail, Lamia A.; Adam, Abdel Majid A.

    2015-01-01

    Given the great importance of the various uses of 1,8-naphthalimides in the trends of biology, medicine and industry, the current study focused on extending the scope of these dyes by introducing some of their charge-transfer (CT) complexes. For this purpose, two highly fluorescent bis-1,8-naphthalimide dyes and their complexes with some π-acceptors have been synthesized and characterized spectroscopically. The π-acceptors include picric acid (PA), chloranilic acid (CLA), tetracyanoquinodimethane (TCNQ) and dichlorodicyanobenzoquinone (DDQ). The molecular structure, spectroscopic and fluorescence properties as well as the binding modes were deduced from IR, UV-vis and 1H NMR spectral studies. The binding ratio of complexation was determined to be 1:1 according to the elemental analyses and photometric titrations. It has been found that the order of acceptance ability for the different acceptors is TCNQ > DDQ > CLA > PA. The photostability of 1,8-naphthalimide dye as a donor and its charge-transfer complex doped in polymethyl methacrylate/PMMA were exposed to UV-Vis radiation and the change in the absorption spectra was achieved at different times during irradiation period.

  6. Rapid Energy Transfer Enabling Control of Emission Polarization in Perylene Bisimide Donor-Acceptor Triads.

    PubMed

    Menelaou, Christopher; ter Schiphorst, Jeroen; Kendhale, Amol M; Parkinson, Patrick; Debije, Michael G; Schenning, Albertus P H J; Herz, Laura M

    2015-04-02

    Materials showing rapid intramolecular energy transfer and polarization switching are of interest for both their fundamental photophysics and potential for use in real-world applications. Here, we report two donor-acceptor-donor triad dyes based on perylene-bisimide subunits, with the long axis of the donors arranged either parallel or perpendicular to that of the central acceptor. We observe rapid energy transfer (<2 ps) and effective polarization control in both dye molecules in solution. A distributed-dipole Förster model predicts the excitation energy transfer rate for the linearly arranged triad but severely underestimates it for the orthogonal case. We show that the rapid energy transfer arises from a combination of through-bond coupling and through-space transfer between donor and acceptor units. As they allow energy cascading to an excited state with controllable polarization, these triad dyes show high potential for use in luminescent solar concentrator devices.

  7. Impact of temperature and non-Gaussian statistics on electron transfer in donor-bridge-acceptor molecules

    DOE PAGES

    Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-03-06

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less

  8. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor–Bridge–Acceptor Molecules

    DOE PAGES

    Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-03-16

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less

  9. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor-Bridge-Acceptor Molecules.

    PubMed

    Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V

    2017-03-06

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.

  10. Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas.

    PubMed

    Wustholz, Kristin L; Brosseau, Christa L; Casadio, Francesca; Van Duyne, Richard P

    2009-09-14

    This perspective presents recent surface-enhanced Raman spectroscopy (SERS) studies of dyes, with applications to the fields of single-molecule spectroscopy and art conservation. First we describe the development and outlook of single-molecule SERS (SMSERS). Rather than providing an exhaustive review of the literature, SMSERS experiments that we consider essential for its future development are emphasized. Shifting from single-molecule to ensemble-averaged experiments, we describe recent efforts toward SERS analysis of colorants in precious artworks. Our intention is to illustrate through these examples that the forward development of SERS is dependent upon both fundamental (e.g., SMSERS) and applied (e.g., on-the-specimen SERS of historical art objects) investigations and that the future of SERS is very bright indeed.

  11. Strength of interactions between immobilized dye molecules and sol-gel matrices.

    PubMed

    Ismail, Fanya; Schoenleber, Monika; Mansour, Rolan; Bastani, Behnam; Fielden, Peter; Goddard, Nicholas J

    2011-02-21

    In this paper we present a new theory to re-examine the immobilization technique of dye doped sol-gel films, define the strength and types of possible bonds between the immobilized molecule and sol-gel glass, and show that the immobilized molecule is not free inside the pores as was previously thought. Immobilizing three different pH sensitive dyes with different size and functional groups inside the same sol-gel films revealed important information about the nature of the interaction between the doped molecule and the sol-gel matrix. The samples were characterized by means of ultraviolet-visible spectrophotometer (UV-VIS), thermal gravimetric analysis (TGA), mercury porosimetry (MP), nuclear magnetic resonance spectroscopy ((29)Si NMR) and field-emission environmental scanning electron microscopy (ESEM-FEG). It was found that the doped molecule itself has a great effect on the strength and types of the bonds. A number of factors were identified, such as number and types of the functional groups, overall charge, size, pK(a) and number of the silanol groups which surround the immobilized molecule. These results were confirmed by the successful immobilization of bromocresol green (BCG) after a completely polymerized sol-gel was made. The sol-gel consisted of 50% tetraethoxysilane (TEOS) and 50% methyltriethoxysilane (MTEOS) (w/w). Moreover, the effect of the immobilized molecule on the structure of the sol-gel was studied by means of a leaky waveguide (LW) mode for doped films made before and after polymerization of the sol-gel.

  12. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

    PubMed

    Imahori, Hiroshi; Umeyama, Tomokazu; Ito, Seigo

    2009-11-17

    Recently, dye-sensitized solar cells have attracted much attention relevant to global environmental issues. Thus far, ruthenium(II) bipyridyl complexes have proven to be the most efficient TiO(2) sensitizers in dye-sensitized solar cells. However, a gradual increment in the highest power conversion efficiency has been recognized in the past decade. More importantly, considering that ruthenium is a rare metal, novel dyes without metal or using inexpensive metal are desirable for highly efficient dye-sensitized solar cells. Large pi-aromatic molecules, such as porphyrins, phthalocyanines, and perylenes, are important classes of potential sensitizers for highly efficient dye-sensitized solar cells, owing to their photostability and high light-harvesting capabilities that can allow applications in thinner, low-cost dye-sensitized solar cells. Porphyrins possess an intense Soret band at 400 nm and moderate Q bands at 600 nm. Nevertheless, the poor light-harvesting properties relative to the ruthenium complexes have limited the cell performance of porphyrin-sensitized TiO(2) cells. Elongation of the pi conjugation and loss of symmetry in porphyrins cause broadening and a red shift of the absorption bands together with an increasing intensity of the Q bands relative to that of the Soret band. On the basis of the strategy, the cell performance of porphyrin-sensitized solar cells has been improved intensively by the enhanced light absorption. Actually, some push-pull-type porphyrins have disclosed a remarkably high power conversion efficiency (6-7%) that was close to that of the ruthenium complexes. Phthalocyanines exhibit strong absorption around 300 and 700 nm and redox features that are similar to porphyrins. Moreover, phthalocyanines are transparent over a large region of the visible spectrum, thereby enabling the possibility of using them as "photovoltaic windows". However, the cell performance was poor, owing to strong aggregation and lack of directionality in the

  13. Energy transfer studies in binary laser dye mixtures in organically modified silicates

    NASA Astrophysics Data System (ADS)

    Al-Maliki, Firas J.

    2014-08-01

    Energy transfer of binary dye mixture (Rhodamine110, as donor, and Oxizine1and/or Nile blue as acceptors) doped in organically modified silicates (ORMOSILs) matrix has been studied. The energy transfer process from donor molecules to acceptor molecules in the final bulk samples has been observed spectrally. Some of energy transfer parameters have been determined as a function of acceptor concentration. Stern-Volmer relation of energy transfer has been proved and the dominant mechanism of the energy transfer of dye mixture doped in such matrices has been determined. The results show that the emission properties of acceptor molecules (Ox1 and Nb) can be enhanced using the dye mixing recipe in sol-gel matrices.

  14. Synthesis, photophysical and electrochemical properties of two novel carbazole-based dye molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Zhu, Weiju; Fang, Min; Yin, Fangfang; Li, Cun

    2015-01-01

    Two carbazole-based dye molecules: 3-(6-benzothiazol-2-yl-9H-hexylcarbazole-3-yl)-2-cyano-acylic acid (D3) and 3-[5-(6-benzothiazol-2-yl-9H-hexylcarbazole-3-yl)-thiophen-2-yl]-2-cyan-acylic acid (D4) were synthesized by an approach from carbazole derivate using Vilsmeier-Haack, Suzuki cross-coupling and Knoevenagel reactions. Their physical and electrochemical properties were investigated. D3 and D4 exhibit different optical properties, such as UV absorption, photoluminescence, fluorescence quantum yield and fluorescence lifetime in different solvents. Compared with D3 without a thiophene unit, the maximum absorption wavelength of D4 red-shift obviously and its fluorescence intensity is also enhanced. A shift of the EHOMO and ELUMO is observed for D3 (EHOMO = 2.06 V, ELUMO = -1.39 V vs. NHE) and D4 (EHOMO = 1.73 V, ELUMO = -1.33 V vs. NHE). D3 and D4 can be used as dyes for dye-sensitized solar cells (DSSCs) with TiO2 nanomaterial because their EHOMO are lower than the conduction band edge of TiO2 [-0.5 V (vs. NHE)] and their ELUMO are higher than the I3-/I- redox potential [0.42 V (vs. NHE)].

  15. Understanding and controlling laser-matter interactions: From solvated dye molecules to polyatomic molecules in gas phase

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha

    The goal of my research is to obtain a better understanding of the various processes that occur during and following laser-matter interactions from both the physical and chemical point of view. In particular I focused my research on understanding two very important aspects of laser-matter interaction; 1) Intense laser-matter interactions for polyatomic molecules in the gas phase in order to determine to what extent processes like excitation, ionization and fragmentation can be controlled by modifying the phase and amplitude of the laser field according to the timescales for electronic, vibrational and rotational energy transfer. 2) Developing pulse shaping based single beam methods aimed at studying solvated molecules in order to elucidate processes like inhomogeneous broadening, solvatochromic shift and to determine the electronic coherence lifetimes of solvated molecules. The effect of the chirped femtosecond pulses on fluorescence and stimulated emission from solvated dye molecules was studied and it was observed that the overall effect depends quadratically on pulse energy, even where excitation probabilities range from 0.02 to 5%, in the so-called "linear excitation regime". The shape of the chirp dependence is found to be independent of the energy of the pulse. It was found that the chirp dependence reveals dynamics related to solvent rearrangement following excitation and also depends on electronic relaxation of the chromophore. Furthermore, the chirped pulses were found to be extremely sensitive to solvent environment and that the complementary phases having the opposite sign provide information about the electronic coherence lifetimes. Similar to chirped pulses, the effects of a phase step on the excitation spectrum and the corresponding changes to the stimulated emission spectrum were also studied and it was found that the coherent feature on the spectrum is sensitive to the dephasing time of the system. Therefore a single phase scanning method can

  16. Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies

    SciTech Connect

    Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita; Carrillo-Carrion, Carolina; Niebling, Tobias; Parak, Wofgang J.; Heimbrodt, Wolfram

    2015-01-14

    Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The higher the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.

  17. Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy

    PubMed Central

    Vogelsang, Jan; Cordes, Thorben; Forthmann, Carsten; Steinhauer, Christian; Tinnefeld, Philip

    2009-01-01

    Fluorescent molecular switches have widespread potential for use as sensors, material applications in electro-optical data storages and displays, and superresolution fluorescence microscopy. We demonstrate that adjustment of fluorophore properties and environmental conditions allows the use of ordinary fluorescent dyes as efficient single-molecule switches that report sensitively on their local redox condition. Adding or removing reductant or oxidant, switches the fluorescence of oxazine dyes between stable fluorescent and nonfluorescent states. At low oxygen concentrations, the off-state that we ascribe to a radical anion is thermally stable with a lifetime in the minutes range. The molecular switches show a remarkable reliability with intriguing fatigue resistance at the single-molecule level: Depending on the switching rate, between 400 and 3,000 switching cycles are observed before irreversible photodestruction occurs. A detailed picture of the underlying photoinduced and redox reactions is elaborated. In the presence of both reductant and oxidant, continuous switching is manifested by “blinking” with independently controllable on- and off-state lifetimes in both deoxygenated and oxygenated environments. This “continuous switching mode” is advantageously used for imaging actin filament and actin filament bundles in fixed cells with subdiffraction-limited resolution. PMID:19433792

  18. Controlling electron transfer dynamics in donor-bridge-acceptor molecules by increasing unpaired spin density on the bridge.

    PubMed

    Chernick, Erin T; Mi, Qixi; Vega, Amy M; Lockard, Jenny V; Ratner, Mark A; Wasielewski, Michael R

    2007-06-21

    A t-butylphenylnitroxide (BPNO*) stable radical is attached to an electron donor-bridge-acceptor (D-B-A) system having well-defined distances between the components: MeOAn-6ANI-Ph(BPNO*)-NI, where MeOAn=p-methoxyaniline, 6ANI=4-(N-piperidinyl)naphthalene-1,8-dicarboximide, Ph=phenyl, and NI=naphthalene-1,8:4,5-bis(dicarboximide). MeOAn-6ANI, BPNO*, and NI are attached to the 1, 3, and 5 positions of the Ph bridge, respectively. Time-resolved optical and EPR spectroscopy show that BPNO* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Ph(BPNO*)-NI-*), resulting in slower charge recombination within the triradical, as compared to the corresponding biradical lacking BPNO*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and NI-* is not altered by the presence of BPNO*. However, the increased spin density on the bridge greatly increases radical pair (RP) intersystem crossing from the photogenerated singlet RP to the triplet RP. Rapid formation of the triplet RP makes it possible to observe a biexponential decay of the total RP population with components of tau=740 ps (0.75) and 104 ns (0.25). Kinetic modeling shows that the faster decay rate is due to rapid establishment of an equilibrium between the triplet RP and the neutral triplet state resulting from charge recombination, whereas the slower rate monitors recombination of the singlet RP to ground state.

  19. Acidity Constant (pK a) Calculation of Large Solvated Dye Molecules: Evaluation of Two Advanced Molecular Dynamics Methods

    PubMed Central

    De Meyer, Thierry; Ensing, Bernd; Rogge, Sven M. J.; De Clerck, Karen

    2016-01-01

    Abstract pH‐Sensitive dyes are increasingly applied on polymer substrates for the creation of novel sensor materials. Recently, these dye molecules were modified to form a covalent bond with the polymer host. This had a large influence on the pH‐sensitive properties, in particular on the acidity constant (pK a). Obtaining molecular control over the factors that influence the pK a value is mandatory for the future intelligent design of sensor materials. Herein, we show that advanced molecular dynamics (MD) methods have reached the level at which the pK a values of large solvated dye molecules can be predicted with high accuracy. Two MD methods were used in this work: steered or restrained MD and the insertion/deletion scheme. Both were first calibrated on a set of phenol derivatives and afterwards applied to the dye molecule bromothymol blue. Excellent agreement with experimental values was obtained, which opens perspectives for using these methods for designing dye molecules. PMID:27570194

  20. Photovoltaic performance of dye-sensitized solar cells based on donor-acceptor pi-conjugated benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes with a carboxyl group at different positions of the chromophore skeleton.

    PubMed

    Ooyama, Yousuke; Shimada, Yoshihito; Kagawa, Yusuke; Imae, Ichiro; Harima, Yutaka

    2007-07-07

    Donor-acceptor pi-conjugated benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes 3a, 3b, 8a, and 8b with a carboxyl group at different positions of the chromophore skeleton have been designed and synthesized. The absorption and fluorescence spectra and cyclic voltammograms of the fluorescent dyes agree very well, showing that the position of the carboxyl group has a negligible influence on the photophysical and electrochemical properties of these dyes. When these dyes are used in dye-sensitized solar cells, however, their photovolatic performances are considerably different. The short-circuit photocurrents and energy conversion efficiencies under a simulated solar light increase in the order: 3a (2.12 mA cm(-2), 1.00%) approximately 3b (2.10 mA cm(-2), 1.06%) > 8b (1.50 mA cm(-2), 0.67%) > 8a (0.84 mA cm(-2), 0.34%). Based on semi-empirical molecular orbital calculations (AM1 and INDO/S) together with spectral analyses and their photovolatic performance, the relationships between the observed photovolatic properties and the chemical structures of the benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes are discussed. It is found that strong interaction between a TiO(2) surface and the electron accepting moiety of the dye leads to a high photovoltaic performance.

  1. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    PubMed Central

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  2. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    PubMed

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  3. Redox potentials of primary electron acceptor quinone molecule (QA)- and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d.

    PubMed

    Allakhverdiev, Suleyman I; Tsuchiya, Tohru; Watabe, Kazuyuki; Kojima, Akane; Los, Dmitry A; Tomo, Tatsuya; Klimov, Vyacheslav V; Mimuro, Mamoru

    2011-05-10

    In a previous study, we measured the redox potential of the primary electron acceptor pheophytin (Phe) a of photosystem (PS) II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina and a chlorophyll a-containing cyanobacterium, Synechocystis. We obtained the midpoint redox potential (E(m)) values of -478 mV for A. marina and -536 mV for Synechocystis. In this study, we measured the redox potentials of the primary electron acceptor quinone molecule (Q(A)), i.e., E(m)(Q(A)/Q(A)(-)), of PS II and the energy difference between [P680·Phe a(-)·Q(A)] and [P680·Phe a·Q(A)(-)], i.e., ΔG(PhQ). The E(m)(Q(A)/Q(A)(-)) of A. marina was determined to be +64 mV without the Mn cluster and was estimated to be -66 to -86 mV with a Mn-depletion shift (130-150 mV), as observed with other organisms. The E(m)(Phe a/Phe a(-)) in Synechocystis was measured to be -525 mV with the Mn cluster, which is consistent with our previous report. The Mn-depleted downshift of the potential was measured to be approximately -77 mV in Synechocystis, and this value was applied to A. marina (-478 mV); the E(m)(Phe a/Phe a(-)) was estimated to be approximately -401 mV. These values gave rise to a ΔG(PhQ) of -325 mV for A. marina and -383 mV for Synechocystis. In the two cyanobacteria, the energetics in PS II were conserved, even though the potentials of Q(A)(-) and Phe a(-) were relatively shifted depending on the special pair, indicating a common strategy for electron transfer in oxygenic photosynthetic organisms.

  4. Single-molecule imaging of electroporated dye-labelled CheY in live Escherichia coli

    PubMed Central

    Di Paolo, Diana; Afanzar, Oshri; Armitage, Judith P.; Berry, Richard M.

    2016-01-01

    For the past two decades, the use of genetically fused fluorescent proteins (FPs) has greatly contributed to the study of chemotactic signalling in Escherichia coli including the activation of the response regulator protein CheY and its interaction with the flagellar motor. However, this approach suffers from a number of limitations, both biological and biophysical: for example, not all fusions are fully functional when fused to a bulky FP, which can have a similar molecular weight to its fused counterpart; they may interfere with the native interactions of the protein and the chromophores of FPs have low brightness and photostability and fast photobleaching rates. A recently developed technique for the electroporation of fluorescently labelled proteins in live bacteria has enabled us to bypass these limitations and study the in vivo behaviour of CheY at the single-molecule level. Here we show that purified CheY proteins labelled with organic dyes can be internalized into E. coli cells in controllable concentrations and imaged with video fluorescence microscopy. The use of this approach is illustrated by showing single CheY molecules diffusing within cells and interacting with the sensory clusters and the flagellar motors in real time. This article is part of the themed issue ‘The new bacteriology’. PMID:27672145

  5. Spectroscopy of donor-pi-acceptor complexes for solar cells

    NASA Astrophysics Data System (ADS)

    Himpsel, F. J.; Zegkinoglou, I.; Johnson, P. S.; Pemmaraju, C. D.; Prendergast, D.; Ragoussi, M.-E.; de la Torre, G.; Pickup, D. F.; Ortega, J. E.

    2014-03-01

    A recent improvement in the design of dye sensitized solar cells has been the combination of light absorbing, electron-donating, and electron-withdrawing groups within the same sensitizer molecule. This dye architecture has contributed to increase the energy conversion efficiency, leading to record efficiency values. Here we investigate a zinc(II)-porphyrin-based complex with triphenylamine donor groups and carboxyl linkers for the attachment to an oxide acceptor. The unoccupied orbitals of these three moieties are probed by element-selective X-ray absorption spectroscopy at the N 1s, C 1s, and Zn 2p edges, complemented by time-dependent density functional theory. The attachment of electron-donating groups to the porphyrin ring significantly delocalizes the highest occupied molecular orbital (HOMO) of the molecule. This leads to a spatial separation between the HOMO and the lowest unoccupied molecular orbital (LUMO), reducing the recombination rate of photoinduced electrons and holes.

  6. Tunable repetitively pulsed flashlamp-pumped dye lasers

    SciTech Connect

    Dzyubenko, M I; Maslov, V V; Pelipenko, V P; Shevchenko, V V

    1998-12-31

    An experimental investigation was made of the spatioangular and spectral-energy characteristics of high-power tunable repetitively pulsed flashlamp-pumped dye lasers. A high directionality of the output radiation was attained in a wide range of the concentrations of the active molecules when aqueous solutions of dyes, in particular an inclusion complex of coumarin-120 and {beta}-cyclodextrin, were used. Such high directionality was obtained for alcohol and water-alcohol solutions only when the concentrations of these molecules were low. Continuous variation of the tuning range of lasers of this class should be possible by the use of suitable mixtures of efficient donor and acceptor dyes. (lasers)

  7. Theoretical characterization of photoinduced electron transfer in rigidly linked donor-acceptor molecules: the fragment charge difference and the generalized Mulliken-Hush schemes

    NASA Astrophysics Data System (ADS)

    Lee, Sheng-Jui; Chen, Hung-Cheng; You, Zhi-Qiang; Liu, Kuan-Lin; Chow, Tahsin J.; Chen, I.-Chia; Hsu, Chao-Ping

    2010-10-01

    We calculate the electron transfer (ET) rates for a series of heptacyclo[6.6.0.02,6.03,13.014,11.05,9.010,14]-tetradecane (HCTD) linked donor-acceptor molecules. The electronic coupling factor was calculated by the fragment charge difference (FCD) [19] and the generalized Mulliken-Hush (GMH) schemes [20]. We found that the FCD is less prone to problems commonly seen in the GMH scheme, especially when the coupling values are small. For a 3-state case where the charge transfer (CT) state is coupled with two different locally excited (LE) states, we tested with the 3-state approach for the GMH scheme [30], and found that it works well with the FCD scheme. A simplified direct diagonalization based on Rust's 3-state scheme was also proposed and tested. This simplified scheme does not require a manual assignment of the states, and it yields coupling values that are largely similar to those from the full Rust's approach. The overall electron transfer (ET) coupling rates were also calculated.

  8. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2-Acetic Acid Interface.

    PubMed

    Hussain, Hadeel; Torrelles, Xavier; Cabailh, Gregory; Rajput, Parasmani; Lindsay, Robert; Bikondoa, Oier; Tillotson, Marcus; Grau-Crespo, Ricardo; Zegenhagen, Jörg; Thornton, Geoff

    2016-04-14

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.

  9. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2–Acetic Acid Interface

    PubMed Central

    2016-01-01

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC. PMID:27110318

  10. Development of Spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene]-Based A-π-D-π-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells.

    PubMed

    Wang, Wengong; Shen, Ping; Dong, Xinning; Weng, Chao; Wang, Guo; Bin, Haijun; Zhang, Jing; Zhang, Zhi-Guo; Li, Yongfang

    2017-02-08

    Three acceptor-π-donor-π-acceptor (A-π-D-π-A) small molecules (STFYT, STFRDN, and STFRCN) with spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene] (STF) as the central donor unit, terthiophene as the π-conjugated bridge, indenedione, 3-ethylrhodanine, or 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit are designed, synthesized, and characterized as electron donor materials in solution-processing organic solar cells (OSCs). The effects of the spiro STF-based central core and different acceptors on the molecular configuration, absorption properties, electronic energy levels, carrier transport properties, the morphology of active layers, and photovoltaic properties are investigated in detail. The three molecules exhibit desirable physicochemical features: wide absorption bands (300-850 nm) and high molar absorption coefficients (4.82 × 10(4) to 7.56 × 10(4) M(-1) cm(-1)) and relatively low HOMO levels (-5.15 to -5.38 eV). Density functional theory calculations reveal that the spiro STF central core benefits to reduce the steric hindrance effect between the central donor block and terthiophene bridge and suppress excessive intermolecular aggregations. The optimized OSCs based on these molecules deliver power conversion efficiencies (PCEs) of 6.68%, 3.30%, and 4.33% for STFYT, STFRDN, and STFRCN, respectively. The higher PCE of STFYT-based OSCs should be ascribed to its better absorption ability, higher and balanced hole and electron mobilities, and superior active layer morphology as compared to the other two compounds. So far, this is the first example of developing the A-π-D-π-A type small molecules with a spiro central donor core for high-performance OSC applications. Meanwhile, these results demonstrate that using spiro central block to construct A-π-D-π-A molecule is an alternative and effective strategy for achieving high-performance small molecule donor materials.

  11. New dual donor-acceptor (2D-π-2A) porphyrin sensitizers for stable and cost-effective dye-sensitized solar cells.

    PubMed

    Ambre, Ram B; Chang, Gao-Fong; Zanwar, Manoj R; Yao, Ching-Fa; Diau, Eric Wei-Guang; Hung, Chen-Hsiung

    2013-09-01

    A series of porphyrin sensitizers that featured two electron-donating groups and dual anchoring groups that were connected through a porphine π-bridging unit have been synthesized and successfully applied in dye-sensitized solar cells (DSSCs). The presence of electron-donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2 . These new dyes were readily synthesized in a minimum number of steps in gram-scale quantities. Optical and electrochemical data confirmed the advantages of these dyes for use as sensitizers in DSSCs. Porphyrins with electron-donating amino moieties provided improved charge separation and better charge-injection efficiencies for the studied dual-push-pull dyes. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR) and X-ray photoelectron spectroscopy of the porphyrin dyes on TiO2 suggest that both p-carboxyphenyl groups are attached onto TiO2, thereby resulting in strong attachment. Among these dyes, cis-Zn2BC2A, with two electron-donating 3,6-ditertbutyl-phenyl-carbazole groups and dual-anchoring p-carboxyphenyl groups, showed the highest efficiency of 4.07 %, with J(SC)=9.81 mA cm(-2), V(OC)=0.63 V, and FF=66 %. Our results also indicated a better photostability of the studied dual-anchored sensitizers compared to their mono-anchored analogues under identical conditions. These results provide insight into the developments of a new generation of high-efficiency and thermally stable porphyrin sensitizers.

  12. Energy transfer from pyridine molecules towards europium cations contained in sub 5-nm Eu2O3 nanoparticles: Can a particle be an efficient multiple donor-acceptor system?

    NASA Astrophysics Data System (ADS)

    Truillet, C.; Lux, F.; Brichart, T.; Lu, G. W.; Gong, Q. H.; Perriat, P.; Martini, M.; Tillement, O.

    2013-09-01

    Sensitized Eu2O3 nanoparticles coated by polysiloxane have been prepared using a polyol method. Further grafting of pyridine molecules on particles surface enhances 400-times the emission of the Eu3+ cations. The sensitizing effect of the pyridine molecules that transfer a part of their excitation towards Eu3+ has been studied by systematic excitation and emission measurements. All of the de-excitation pathway rates involved in the emission processes of these nanoparticles were determined. In particular, the transfer efficiency which was found independent of the number of sensitizers per particle is equal to 0.13 ± 0.01, a value quite satisfying taking into account that the donors and the acceptors are separated by a polysiloxane spacer of 0.4 nm. Furthermore this multiple donor-acceptor system has been modeled in order to deduce the average transfer efficiency as a function of the single donor-acceptor transfer rate. The theoretical modeling is in complete coherence with the experiments performed on a series of samples varying the thickness of the polysiloxane shell, i.e., the spacing distance between the donors and the acceptors. All these results illustrate the interest of using such structures in applications requiring ultrasensitive detection.

  13. Time-resolved EPR studies of charge recombination and triplet-state formation within donor-bridge-acceptor molecules having wire-like oligofluorene bridges.

    PubMed

    Miura, Tomoaki; Carmieli, Raanan; Wasielewski, Michael R

    2010-05-13

    Spin-selective charge recombination of photogenerated radical ion pairs within a series of donor-bridge-acceptor (D-B-A) molecules, where D = phenothiazine (PTZ), B = oligo(2,7-fluorenyl), and A = perylene-3,4:9,10-bis(dicarboximide) (PDI), PTZ-FL(n)-PDI, where n = 1-4 (compounds 1-4), is studied using time-resolved electron paramagnetic resonance (TREPR) spectroscopy in which the microwave source is either continuous-wave or pulsed. Radical ion pair TREPR spectra are observed for 3 and 4 at 90-294 K, while the neutral triplet state of PDI ((3)*PDI) is observed at 90-294 K for 2-4 and at 90 K for 1. (3)*PDI is produced by three mechanisms, as elucidated by its zero-field splitting parameters and spin polarization pattern. The mechanisms are spin-orbit-induced intersystem crossing (SO-ISC) in PDI aggregates, direct spin-orbit charge-transfer intersystem crossing (SOCT) from the singlet radical pair within 1, and radical pair intersystem crossing (RP-ISC) as a result of S-T(0) mixing of the radical ion pair states in 2-4. The temperature dependence of the spin-spin exchange interaction (2J) shows a dramatic decrease at low temperatures, indicating that the electronic coupling between the radical ions decreases due to an increase in the average fluorene-fluorene dihedral angle at low temperatures. The charge recombination rates for 3 and 4 decrease at low temperature, but that for 2 is almost temperature-independent. These results strongly suggest that the dominant mechanism of charge recombination for n >or= 3 is incoherent thermal hopping, which results in wire-like charge transfer.

  14. Solvatochromic fluorescence properties of phenothiazine-based dyes involving thiazolo[4,5-b]quinoxaline and benzo[e]indole as strong acceptors

    NASA Astrophysics Data System (ADS)

    Deshpande, Saurabh S.; Kumbhar, Haribhau S.; Shankarling, Ganapati S.

    2017-03-01

    The present work describes the photophysical properties of two newly synthesized compounds, namely (E)-10-butyl-3-(2-(thiazolo[4,5-b]quinoxalin-2-yl)vinyl)-10H-phenothiazine (PTQ) and (E)-10-butyl-3-(2-(1,1-dimethyl-1H-benzo[e]indol-2-yl)vinyl)-10H-phenothiazine (PBI). A strong intramolecular charge transfer (ICT) is observed in both dyes as indicated from absorption and emission studies on varying the solvent polarity. This can be concluded from the large Stokes shifts among these dyes as PTQ exhibits large Stokes shift with > 270 nm and PBI around 200 nm. The effect of increasing polarity caused drastic increase in the charge transfer process leading to twisted intramolecular charge transfer (TICT) process in both the dyes PTQ and PBI. Time-resolved emission studies and non-radiative decay rate constant indicates that the excited states of both dyes behave differently with respect to solvent polarity. The non-radiative decay constant increases dramatically with the solvent polarity specifying change of ICT emissive states in non-polar solvent while TICT emitting states in highly polar solvent. On the other hand, PBI follows a general trend initially exhibiting higher non-radiative decay constant in non-polar solvent like cyclohexane, lowest in moderate polarity owing to the ICT emissive state but with increase in the polarity, the non-radiative decay constant again increases indicating TICT states.

  15. Bi-anchoring organic sensitizers of type D-(π-A)₂ comprising thiophene-2-acetonitrile as π-spacer and malonic acid as electron acceptor for dye sensitized solar cell applications.

    PubMed

    Reddy, Gachumale Saritha; Ramkumar, Sekar; Asiri, Abdullah M; Anandan, Sambandam

    2015-06-15

    Two new bi-anchoring organic sensitizers of type D-(π-A)2 comprising the identical π-spacer (thiophene-2-acetonitrile) and electron acceptor (malonic acid) but different aryl amine as electron donors (diphenylamine and carbazole) were synthesized, characterized and fabricated metal free dye-sensitized solar cell devices. The intra molecular charge transfer property and electrochemical property of these dyes were investigated by molecular absorption, emission, cyclic voltammetric experiments and in addition, quantum chemical calculation studies were performed to provide sufficient driving force for the electron injection into the conduction band of TiO2 which leads to efficient charge collection. Among the fabricated devices, carbazole based device exhibits high current conversion efficiency (η=4.7%) with a short circuit current density (JSC) 15.3 mA/cm(2), an open circuit photo voltage (VOC) of 0.59 V and a fill factor of 0.44 under AM 1.5 illumination (85 mW/cm(2)) compared to diphenylamine based device.

  16. Orientation and electronic structure of ion exchanged dye molecules on mica: An X-ray absorption study

    SciTech Connect

    Fischer, D.; Caseri, W.R.; Haehner, G.

    1998-02-15

    Dye molecules are frequently used to determine the specific surface area and the ion exchange capacity of high-surface-area materials such as mica. The organic molecules are often considered to be planar and to adsorb in a flat orientation. In the present study the authors have investigated the orientation and electronic structure of crystal violet (CV) and malachite green (MG) on muscovite mica, prepared by immersing the substrates for extended periods into aqueous solutions of the dyes of various concentrations. The K{sup +} ions of the mica surface are replaced by the organic cations via ion exchange. X-ray photoelectron spectroscopy reveals that only one amino group is involved in the interaction of CV and MG with the muscovite surface, i.e., certain resonance structures are abolished upon adsorption. With near edge X-ray absorption fine structure spectroscopy a significant tilt angle with respect to the surface was found for all investigated species. A flat orientation, as has often been proposed before, can effectively be ruled out. Hence, results are in marked contrast to the often quoted orientation and suggest that the specific surface areas determined with dyes may, in general, be overestimated.

  17. Spectroscopic studies of interactions between dyes and model molecules of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Elhaddaoui, A.; Delacourte, A.; Turrell, S.

    1993-06-01

    Raman, FTIR, fluorescence, and UV-visible spectra are used to study interactions between amuloid-labelling dyes and poly-L-lysine and bovine insulin, two proteins which play the role of models of (beta) amyloid of Alzheimers disease. It is found that though the (beta) conformation of the peptide is not essential, it helps to encourage binding which appears to be stable and specific in nature, involving SO3- groups of the dyes and NH2 groups of the proteins.

  18. Coupled plasmon-exciton hybrid excitations in colloidal gold nanorods coated with J-aggregated dye molecules (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Simon, Thomas; Melnikau, Dimitry; Sanchez-Iglesia, Ana; Grzelczak, Marek; Liz-Marzán, Luis M.; Rakovich, Yury P.; Feldmann, Jochen; Urban, Alexander S.

    2016-09-01

    Strong coupling of plasmons and excitons can form hybrid states, the so called "plexcitons". Especially with molecular J-aggregated dye molecules strong interaction becomes observable even under ambient conditions. In our work we investigate the nature of plexcitonic states formed in gold nanorods coated with a cyanine dye by transient absorption spectroscopy. We demonstrate that plexcitons show tunable plasmonic and excitonic non-linear optical behaviour. Our experimental data can be explained on the basis of a simple Lorentz oscillator model. We find that both the quality factor and the coupling strength between plasmons and excitons can be optically manipulated on an ultrashort time scale. T. Simon, D. Melnikau, A. Sánchez-Iglesias, M. Grzelczak, L. Liz-Marzán, Y. Rakovich, J. Feldmann and A. Urban, Exploring the optical non-linearities of plasmon-exciton hybrid resonances in coupled colloidal nanostructures, submitted (2016)

  19. Influence of single dye molecules on temperature and time dependent optical properties of CdSe/ZnS quantum dots: Ensemble and single nanoassembly detection

    NASA Astrophysics Data System (ADS)

    Zenkevich, Eduard I.; Stupak, Alexander P.; Kowerko, Danny; Borczyskowski, Christian von

    2012-10-01

    Optical spectroscopy on ensembles and single CdSe/ZnS semiconductor quantum dots (QDs) demonstrates a competition of trap and near band edge photoluminescence (PL). This competition can be markedly influenced by a few surface attached pyridyl functionalized dye molecules (porphyrins or perylene diimides) forming nanoassemblies with well defined geometries. Temperature variation and related changes in absorption and emission reveal sharp changes of the ligand shell structure in a narrow temperature range for organic (TOPO and amine) surfactants (phase transition). The effects on QD PL at this transition become considerably pronounced upon attachment of only a few dye molecules to QD surface. Moreover, under ambient conditions amine capped QDs are photodegraded in the course of time. This process is enhanced by attached dye molecules both on the ensemble and single particle/dye level. This investigation elaborates the importance of (switchable) surface states for the characterization of the PL of QDs.

  20. Thermally stable molecules with large dipole moments and polarizabilities and applications thereof

    NASA Technical Reports Server (NTRS)

    Marder, Seth R. (Inventor); Peyghambarian, Nasser (Inventor); Kippelen, Bernard (Inventor); Volodin, Boris (Inventor); Hendrickx, Eric (Inventor)

    2002-01-01

    Disclosed are fused ring bridge, ring-locked dyes that form thermally stable photorefractive compositions. The fused ring bridge structures are .pi.-conjugated bonds in benzene-, naphthalene- or anthracene-derived fused ring systems that connect donor and acceptor groups. The donor and acceptor groups contribute to a high molecular dipole moment and linear polarizability anisotropy. The polarization characteristics of the dye molecules are stabilized since the bonds in the fused ring bridge are not susceptible to rotation, reducing the opportunity for photoisomerization. The dyes are compatible with polymeric compositions, including thermoplastics. The dyes are electrically neutral but have charge transport, electronic and orientational properties such that upon illumination of a composition containing the dye, the dye facilitates refractive index modulation and a photorefractive effect that can be utilized advantageously in numerous applications such as in optical quality devices and biological imaging.

  1. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  2. Laser performance of Coumarin 540A dye molecules in polymeric host media with different viscosities: From liquid solution to solid polymer matrix

    SciTech Connect

    Costela, A.; Garcia-Moreno, I.; Barroso, J.; Sastre, R.

    1998-01-01

    Photophysical parameters and lasing properties of Coumarin 540A dye molecules are studied in solutions of increasing viscosity, from liquid solutions in 1,4-dioxane to solid solutions in poly(methyl methacrylate). The fluorescence quantum yield and lasing efficiencies decrease as the viscosity of the solution increases, reflecting the strong influence of the rigidity of the medium on the radiative processes. The photodegradation mechanisms acting on the fluorophores are analyzed by following the dependence of laser induced fluorescence and laser output on the number of pump laser pulses. The fluorescence redistribution after pattern photobleaching technique is used, and Fick{close_quote}s second law is applied to study the diffusion of dye molecules in the highly viscous polymer solutions. The diffusion coefficients of the dye molecules as a function of the increased viscosity of the medium are determined. {copyright} {ital 1998 American Institute of Physics.}

  3. Ag nanoparticles as multifunctional SERS substrate for the adsorption, degradation and detection of dye molecules

    NASA Astrophysics Data System (ADS)

    Ma, Yongmei; Ding, Qianqian; Yang, Liangbao; Zhang, Li; Shen, Yuhua

    2013-01-01

    Ag NPs were obtained by isopropyl alcohol restore silver nitrate with silicotungstic acid as a stabilizer under the condition of UV irradiation. From changing the amount of isopropyl alcohol and silver nitrate, we obtained Ag NPs of which plasmon peak was similar to the excitation wavelength, and the enhancement effect will be greatly improved. Enriching, degrading, and detecting dye molecular can be achieved by the simple SERS substrate, and the photo-degradation process was monitored by SERS successfully for the first time, and the sensitivity was improved compare to traditional detection by UV-vis spectroscopy.

  4. Scintillators based on aromatic dye molecules doped in a sol-gel glass host

    NASA Astrophysics Data System (ADS)

    Nikl, M.; Solovieva, N.; Apperson, K.; Birch, D. J. S.; Voloshinovskii, A.

    2005-03-01

    Ultraviolet and x-ray excited luminescence of fluorescein and rhodamine-6G doped sol-gel glasses were studied at room temperature with the aim of characterizing and understanding the scintillation performance of such materials. Fast energy transfer from the glass host to the dye luminescent centers was found. While the overall radioluminescence efficiency was rather low due to nonradiative losses in the glass host, our results demonstrate the potential of sol-gel technology as a versatile tool in controlling the spectral and time response of such unusual organic-inorganic scintillators.

  5. Encapsulation and Residency of a Hydrophobic Dye within the Water-Filled Interior of a PAMAM Dendrimer Molecule.

    PubMed

    Koley, Somnath; Ghosh, Subhadip

    2017-03-02

    Tightly confined water within a small droplet behaves differently from bulk water. This notion is obtained on the basis of several reports showing unusual behaviors of water droplet residing at the core of a reverse micelle. In this study, we have shown a well-known hydrophobic dye, coumarin 153 (C153), which prefers to reside at the water-rich region inside the dendrimer molecule. Optical density (OD) measurement at the absorption peak of C153 shows that it is almost insoluble in bulk water but highly soluble in aqueous dendrimer solution. The OD of C153 increases several times in the latter case as compared to that in the former. We found the most interesting observation when we compared the data from fluorescence correlation spectroscopy (FCS) with the fluorescence anisotropy decay of C153 in aqueous dendrimer solution. The FCS measurement reveals a much slower translational diffusion time (τD) of C153 attached to a dendrimer molecule as compared to that of free C153 in bulk water in the absence of dendrimer. The slower τD in the former case is commensurate with the size of the dendrimer molecule. This is possible only when C153 is encapsulated by the dendrimer molecule. In contrast to the FCS study, the fluorescence anisotropy decay of C153 in water remains largely invariant after addition of the dendrimer. This can happen if a bulk-water-like environment at the C153 surroundings is preserved within the C153-dendrimer complex. This supports our institutive expectation that C153 resides within the water-rich peripheral cavities of the dendrimer molecule. A more expected binding of C153 to the hydrophobic core of dendrimer may not be possible here because of an inadequate size of the dendrimer core.

  6. Dependence of Purcell effect on fluorescence wavelength in dye molecules on metal-dielectric multilayer hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Tsurumachi, Noriaki; Izawa, Hayato; Tomioka, Ryo; Sakata, Tomohiro; Suzuki, Makoto; Tanaka, Yasuhiro; Shimokawa, Fusao; Nakanishi, Shunsuke

    2016-02-01

    Recently, the enhancement of spontaneous emission, i.e., broadband Purcell effect, has been achieved using hyperbolic metamaterials. Hyperbolic metamaterials, which can be realized using a metal-dielectric multilayer structure, have an extremely large optical anisotropy of permittivity in both the parallel and perpendicular directions to the propagation of light, especially when the signs of permittivities in both directions differ. In this study, we investigated the conditions for realizing the broadband Purcell effect using dye molecules with different fluorescence wavelengths. Our fabricated metal-dielectric multilayer structure exhibited hyperbolic dispersion at wavelengths beyond 500 nm. In the case of coumarin 500 whose fluorescence peak is located at 500 nm, no broadband Purcell effect was observed. However, in the case of pyridine 1 whose fluorescence peak is located at 650 nm, we observed the successfull fluorescence lifetime shortening, i.e., the broadband Purcell effect.

  7. Limitation of high-power optical radiation by organic molecules: I. Substituted pyranes and cyanine dyes

    SciTech Connect

    Kopylova, T N; Svetlichnyi, Valerii A; Mayer, G V; Samsonova, L G; Filinov, D N; Pomogaev, V A; Tel'minov, E N; Lapin, I N; Svetlichnaya, N N; Sinchenko, E I; Reznichenko, A V; Podgaetskii, Vitalii M; Ponomareva, O V

    2003-11-30

    Photophysical processes proceeding in polyatomic organic molecules (pyran derivatives and cyanines) excited by high-power laser radiation at 532 nm are studied. Some properties of their changes depending on the structure, solvent, and excitation conditions are determined. The effect of limitation of high-power exciting radiation by the organic molecules is found. The maximum limitation (K{sub max} = 15.0 at the initial transmission equal to 70%) was observed for the cyanine derivative and is comparable to this effect for fullerenes C{sub 60}, which are widely used as radiation limiters. (interaction of laser radiation with matter. laser plasma)

  8. 2012 ELECTRON DONOR-ACCEPTOR INTERACTIONS GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect

    McCusker, James

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  9. Utilization of photoinduced charge-separated state of donor-acceptor-linked molecules for regulation of cell membrane potential and ion transport.

    PubMed

    Numata, Tomohiro; Murakami, Tatsuya; Kawashima, Fumiaki; Morone, Nobuhiro; Heuser, John E; Takano, Yuta; Ohkubo, Kei; Fukuzumi, Shunichi; Mori, Yasuo; Imahori, Hiroshi

    2012-04-11

    The control of ion transport across cell membranes by light is an attractive strategy that allows targeted, fast control of precisely defined events in the biological membrane. Here we report a novel general strategy for the control of membrane potential and ion transport by using charge-separation molecules and light. Delivery of charge-separation molecules to the plasma membrane of PC12 cells by a membranous nanocarrier and subsequent light irradiation led to depolarization of the membrane potential as well as inhibition of the potassium ion flow across the membrane. Photoregulation of the cell membrane potential and ion transport by using charge-separation molecules is highly promising for control of cell functions.

  10. Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface.

    PubMed

    Yeow, Edwin K L; Melnikov, Sergey M; Bell, Toby D M; De Schryver, Frans C; Hofkens, Johan

    2006-02-09

    The blinking behavior of single Atto565 molecules on a glass surface is studied under air or nitrogen atmospheres using confocal microscopy. The broad distributions for both on- and off-time durations obey power law kinetics that are rationalized using a charge tunneling model. In this case, a charge is transferred from the Atto565 molecule to localized states found on the glass surface. Subsequent charge recombination by back charge tunneling from trap to Atto565 cation (i.e., dark state) restores the fluorescence. The off-time distribution is independent of excitation intensity (I), whereas the on-time distribution exhibits a power law exponent that varies with I. Two pathways have been identified to lead to the formation of the radical dark state. The first involves direct charge tunneling from the excited singlet S1 state to charge traps in the surrounding matrix, and the second requires charge ejection from the triplet T1 state after intersystem crossing from S1. Monte Carlo simulation studies complement the two-pathway model. Photobleaching curves of both single and ensemble molecules do not exhibit monoexponential decays suggesting complex bleaching dynamics arising from triplet and radical states.

  11. Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Förster energy transfer.

    PubMed

    Wang, Huan; Yue, Bailing; Xie, Zengqi; Gao, Bingrong; Xu, Yuanxiang; Liu, Linlin; Sun, Hongbo; Ma, Yuguang

    2013-03-14

    The orientation factor κ(2) ranging from 0 to 4, which depends on the relative orientation of the transition dipoles of the energy donor (D) and the energy acceptor (A) in space, is one of the pivotal factors deciding the efficiency and directionality of resonance energy transfer (RET) in a D-A molecular system. In this work, tetracene (Tc) and pentacene (Pc) are successfully doped in a trans-1,4-distyrylbenzene (DSB) crystalline lattice to form definite D-A mutually perpendicular transition dipole orientations. The cross D-A dipole arrangement results in an extremely small orientation factor, which is about two orders smaller than that in the disordered films. The energy transfer properties from the host (DSB) to the guest (Tc/Pc) were investigated in detail by steady-state as well as time-resolved fluorescence spectroscopy. Our experimental research results show that the small value of κ(2) allows less or partial energy transfer from the host (DSB) to the guest (Tc) in a wide range of guest concentration, with the Förster distance of around 1.5 nm. By controlling the doping concentrations in the Tc and Pc doubly doped DSB crystals, we demonstrate, as an example, for the first time the application of the restricted energy transfer by D-A cross transition dipole arrangement for preparation of a large-size, white-emissive organic crystal with the CIE coordinates of (0.36, 0.37) approaching an ideal white light. In contrast, Tc is also doped in an anthracene crystalline lattice to form head-to-tail D-A transition dipole alignment, which is proved to be highly effective to promote the intermolecular energy transfer. In this doped system, the orientation factor is relatively large and the Förster distance is around 7 nm.

  12. N-acetylation of three aromatic amine hair dye precursor molecules eliminates their genotoxic potential.

    PubMed

    Zeller, Andreas; Pfuhler, Stefan

    2014-01-01

    N-acetylation has been described as a detoxification reaction for aromatic amines; however, there is only limited data available showing that this metabolic conversion step changes their genotoxicity potential. To extend this database, three aromatic amines, all widely used as precursors in oxidative hair dye formulations, were chosen for this study: p-phenylenediamine (PPD), 2,5-diaminotoluene (DAT) and 4-amino-2-hydroxytoluene (AHT). Aiming at a deeper mechanistic understanding of the interplay between activation and detoxification for this chemical class, we compared the genotoxicity profiles of the parent compounds with those of their N-acetylated metabolites. While PPD, DAT and AHT all show genotoxic potential in vitro, their N-acetylated metabolites completely lack genotoxic potential as shown in the Salmonella typhimurium reversion assay, micronucleus test with cultured human lymphocytes (AHT), chromosome aberration assay with V79 cells (DAT) and Comet assay performed with V79 cells. For the bifunctional aromatic amines studied (PPD and DAT), monoacetylation was sufficient to completely abolish their genotoxic potential. Detoxification through N-acetylation was further confirmed by comparing PPD, DAT and AHT in the Comet assay using standard V79 cells (N-acetyltransferase (NAT) deficient) and two NAT-proficient cell lines,V79NAT1*4 and HaCaT (human keratinocytes). Here we observed a clear shift of dose-response curves towards decreased genotoxicity of the parent aromatic amines in the NAT-proficient cells. These findings suggest that genotoxic effects will only be found at concentrations where the N-acetylation (detoxifying) capacity of the cells is overwhelmed, indicating that a 'first-pass' effect in skin could be taken into account for risk assessment of these topically applied aromatic amines. The findings also indicate that the use of liver S-9 preparations, which generally underestimate Phase II reactions, contributes to the generation of irrelevant

  13. How mobile are dye adsorbates and acetonitrile molecules on the surface of TiO2 nanoparticles? A quasi-elastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Vaissier, Valerie; Sakai, Victoria Garcia; Li, Xiaoe; Cabral, João T.; Nelson, Jenny; Barnes, Piers R. F.

    2016-12-01

    Motions of molecules adsorbed to surfaces may control the rate of charge transport within monolayers in systems such as dye sensitized solar cells. We used quasi-elastic neutron scattering (QENS) to evaluate the possible dynamics of two small dye moieties, isonicotinic acid (INA) and bis-isonicotinic acid (BINA), attached to TiO2 nanoparticles via carboxylate groups. The scattering data indicate that moieties are immobile and do not rotate around the anchoring groups on timescales between around 10 ps and a few ns (corresponding to the instrumental range). This gives an upper limit for the rate at which conformational fluctuations can assist charge transport between anchored molecules. Our observations suggest that if the conformation of larger dye molecules varies with time, it does so on longer timescales and/or in parts of the molecule which are not directly connected to the anchoring group. The QENS measurements also indicate that several layers of acetonitrile solvent molecules are immobilized at the interface with the TiO2 on the measurement time scale, in reasonable agreement with recent classical molecular dynamics results.

  14. How mobile are dye adsorbates and acetonitrile molecules on the surface of TiO2 nanoparticles? A quasi-elastic neutron scattering study

    PubMed Central

    Vaissier, Valerie; Sakai, Victoria Garcia; Li, Xiaoe; Cabral, João T.; Nelson, Jenny; Barnes, Piers R. F.

    2016-01-01

    Motions of molecules adsorbed to surfaces may control the rate of charge transport within monolayers in systems such as dye sensitized solar cells. We used quasi-elastic neutron scattering (QENS) to evaluate the possible dynamics of two small dye moieties, isonicotinic acid (INA) and bis-isonicotinic acid (BINA), attached to TiO2 nanoparticles via carboxylate groups. The scattering data indicate that moieties are immobile and do not rotate around the anchoring groups on timescales between around 10 ps and a few ns (corresponding to the instrumental range). This gives an upper limit for the rate at which conformational fluctuations can assist charge transport between anchored molecules. Our observations suggest that if the conformation of larger dye molecules varies with time, it does so on longer timescales and/or in parts of the molecule which are not directly connected to the anchoring group. The QENS measurements also indicate that several layers of acetonitrile solvent molecules are immobilized at the interface with the TiO2 on the measurement time scale, in reasonable agreement with recent classical molecular dynamics results. PMID:27991538

  15. π-Extended rigid triptycene-trisaroylenimidazoles as electron acceptors.

    PubMed

    Menke, Elisabeth H; Lami, Vincent; Vaynzof, Yana; Mastalerz, Michael

    2016-01-18

    Two soluble isomeric acceptor molecules based on a triptycene core, which is connected to three aroylenimidazole units are described. Due to the inherent threefold axis, the molecules are soluble and thus could be fully photophysically characterized in solution and film. Additionally, the preliminary results of these acceptors in organic photovoltaic devices with two different donor materials are reported.

  16. Control of optical properties in cyanine dye thin film fabricated by a layer-by-layer method

    NASA Astrophysics Data System (ADS)

    Kojima, Osamu; Fujii, Ryoji; Kita, Takashi; Shim, YongGu

    2014-02-01

    We report the fabrication of cyanine dye molecule thin films by a layer-by-layer (LBL) method. In the LBL thin film, the photoluminescence properties can be controlled by the separation between the donor and acceptor dye molecule layers. While the distance dependence of the energy-transfer rate changes around 2 nm, which is comparable with the lengths of the molecules, the energy-transfer rate as evaluated from the photoluminescence decay time shows a maximum value of approximately 15 ns-1. The thin films fabricated by the LBL method will be therefore applicable for ultrafast optical switches with higher repetition rate.

  17. Single-molecule imaging at high fluorophore concentrations by local activation of dye

    DOE PAGES

    Geertsema, Hylkje J.; Mangel, Walter F.; Schulte, Aartje C.; ...

    2015-02-17

    Single-molecule fluorescence microscopy is a powerful approach to observe biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual, labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Then, making use ofmore » short-distance energy-transfer mechanisms, the fluorescence from only those proteins bound to their substrate are selectively activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 (IFI16) with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease (pVIc-AVP) on DNA in the presence of a background of hundreds of nM Cy5 fluorophore.« less

  18. Single-molecule imaging at high fluorophore concentrations by local activation of dye

    SciTech Connect

    Geertsema, Hylkje J.; Mangel, Walter F.; Schulte, Aartje C.; Spenkelink, Lisanne M.; McGrath, William J.; Morrone, Seamus R.; Sohn, Jungsan; Robinson, Andrew; van Oijen, Antoine M.

    2015-02-17

    Single-molecule fluorescence microscopy is a powerful approach to observe biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual, labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Then, making use of short-distance energy-transfer mechanisms, the fluorescence from only those proteins bound to their substrate are selectively activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 (IFI16) with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease (pVIc-AVP) on DNA in the presence of a background of hundreds of nM Cy5 fluorophore.

  19. Ternary bulk heterojunction solar cells: addition of soluble NIR dyes for photocurrent generation beyond 800 nm.

    PubMed

    Lim, Bogyu; Bloking, Jason T; Ponec, Andrew; McGehee, Michael D; Sellinger, Alan

    2014-05-14

    The incorporation of a tert-butyl-functionalized silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) dye molecule as a third component in a ternary blend bulk heterojunction (BHJ) organic solar cell containing P3HT (donor) and PC60BM (acceptor) results in increased NIR absorption. This absorption yields an increase of up to 40% in the short-circuit current and up to 19% in the power conversion efficiency (PCE) in photovoltaic devices. Two-dimensional grazing incidence wide-angle X-ray scattering (2-D GIWAXS) experiments show that compared to the unfunctionalized dye the tert-butyl functionalization enables an increase in the volume fraction of the dye molecule that can be incorporated before the device performance decreases. Quantum efficiency and absorption spectra also indicate that, at dye concentrations above about 8 wt %, there is an approximately 30 nm red shift in the main silicon naphthalocyanine absorption peak, allowing further dye addition to contribute to added photocurrent. This peak shift is not observed in blends with unfunctionalized dye molecules, however. This simple approach of using ternary blends may be generally applicable for use in other unoptimized BHJ systems towards increasing PCEs beyond current levels. Furthermore, this may offer a new approach towards OPVs that absorb NIR photons without having to design, synthesize, and purify complicated donor-acceptor polymers.

  20. [1]Benzothieno[3,2-b]benzothiophene-Based Organic Dyes for Dye-Sensitized Solar Cells.

    PubMed

    Capodilupo, Agostina L; Fabiano, Eduardo; De Marco, Luisa; Ciccarella, Giuseppe; Gigli, Giuseppe; Martinelli, Carmela; Cardone, Antonio

    2016-04-15

    Three new metal-free organic dyes with the [1]benzothieno[3,2-b]benzothiophene (BTBT) π-bridge, having the structure donor-π-acceptor (D-π-A) and labeled as 19, 20 and 21, have been designed and synthesized for application in dye-sensitized solar cells (DSSC). Once the design of the π-acceptor block was fixed, containing the BTBT as the π-bridge and the cyanoacrylic group as the electron acceptor and anchoring unit, we selected three donor units with different electron-donor capacity, in order to assemble new chromophores with high molar extinction coefficients (ε), whose absorption features well reflect the good performance of the final DSSC devices. Starting with the 19 dye, which shows a molar extinction coefficient ε of over 14,000 M(-1) cm(-1) and takes into account the absorption maximun at the longer wavelength, the substitution of the BFT donor unit with the BFA yields a great enhancement of absorptivity (molar extinction coefficient ε > 42,000 M(-1) cm(-1)), until reaching the higher value (ε > 69,000 M(-1) cm(-1)) with the BFPhz donor unit. The good general photovoltaic performances obtained with the three dyes highlight the suitable properties of electron-transport of the BTBT as the π-bridge in organic chromophore for DSSC, making this very cheap and easy to synthesize molecule particularly attractive for efficient and low-cost photovoltaic devices.

  1. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.

    PubMed

    Kumar, Challa V; Duff, Michael R

    2008-12-01

    Specific donor and acceptor pairs have been assembled in bovine serum albumin (BSA), at neutral pH and room temperature, and these dye-protein complexes indicated efficient donor to acceptor singlet-singlet energy transfer. For example, pyrene-1-butyric acid served as the donor and Coumarin 540A served as the acceptor. Both the donor and the acceptor bind to BSA with affinity constants in excess of 2x10(5) M(-1), as measured in absorption and circular dichroism (CD) spectral titrations. Simultaneous binding of both the donor and the acceptor chromophores was supported by CD spectra and one chromophore did not displace the other from the protein host, even when limited concentrations of the host were used. For example, a 1:1:1 complex between the donor, acceptor and the host can be readily formed, and spectral data clearly show that the binding sites are mutually exclusive. The ternary complexes (two different ligands bound to the same protein molecule) provided opportunities to examine singlet-singlet energy transfer between the protein-bound chromophores. Donor emission was quenched by the addition of the acceptor, in the presence of limited amounts of BSA, while no energy transfer was observed in the absence of the protein host, under the same conditions. The excitation spectra of the donor-acceptor-host complexes clearly show the sensitization of acceptor emission by the donor. Protein denaturation, as induced by the addition of urea or increasing the temperature to 360 K, inhibited energy transfer, which indicate that protein structure plays an important role. Sensitization also proceeded at low temperature (77 K) and diffusion of the donor or the acceptor is not required for energy transfer. Stern-Volmer quenching plots show that the quenching constant is (3.1+/-0.2)x10(4) M(-1), at low acceptor concentrations (<35 microM). Other albumins such as human and porcine proteins also served as good hosts for the above experiments. For the first time, non

  2. A novel D2-A-D1-A-D2-type donor-acceptor conjugated small molecule based on a benzo[1,2-b:4,5-b‧]dithiophene core for solution processed organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Yu, Junting; Zhu, Weiguo; Tan, Hua; Peng, Qing

    2017-01-01

    A novel D2-A-D1-A-D2-type donor-acceptor conjugated small molecule (DTPA-Q-BDT-Q-DTPA) with a benzo[1,2-b:4,5-b‧]dithiophene (BDT) core and two D2-A arms has been synthesized and employed as electron donor for organic solar cells. Solution-processed organic photovoltaic (OPV) devices were fabricated with a configuration of ITO/PEDOT:PSS/DTPA-Q-BDT-Q-DTPA:[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)/LiF/Al. A power conversion efficiency (PCE) of 1.22% with an open-circuit voltage (VOC) of 0.64 V, a short-circuit current (JSC) of 6.10 mA cm-2, and a fill factor (FF) of 31.0% was achieved. The PCE is 2.9 times higher than that in the other devices using D2-A-type small molecule TPA-Q-TPA as donor.

  3. Impact of the different electron-releasing subunits on the dye-sensitized solar cell performance of new triphenylamine-benzimidazole based molecules

    NASA Astrophysics Data System (ADS)

    Dinçalp, Haluk; Saltan, Gözde Murat; Aykut, Deniz; Zafer, Ceylan

    2015-10-01

    New triphenylamine-benzimidazole type small molecules with different electron-releasing groups were designed and synthesized to investigate their photovoltaic performances in dye sensitized solar cells (DSSCs). Their good visible absorptions covering the 400-535 nm in addition to suitable lowest unoccupied molecular orbital (LUMO) energy levels between -3.03 and -3.11 eV make good candidates them for DSSC devices. Fluorescence quenching studies of the dyes with pristine titania support the good electron injection to conduction band of TiO2. Time resolved measurements of the dyes in solutions indicate the occurence of charge generation during the excited state. One of the used dyes in DSSC devices, TPA5a, carrying a methoxy group in triphenylamine part of the structure, gave much higher power conversion efficiency (PCE) value of 4.31% as compared to the other derivatives. Device fabricated from TPA5a dye gives good external quantum efficiency (EQE) value above 70% at 460 nm. Also, electron impedance spectroscopy (EIS) analysis of the devices gives a good explanation of the understanding of the cell performances.

  4. Incorporation and thermal evolution of rhodamine 6G dye molecules adsorbed in porous columnar optical SiO2 thin films.

    PubMed

    Sánchez-Valencia, Juan R; Blaszczyk-Lezak, Iwona; Espinós, Juan P; Hamad, Said; González-Elipe, Agustín R; Barranco, Angel

    2009-08-18

    Rhodamine 6G (Rh6G) dye molecules have been incorporated into transparent and porous SiO2 thin films prepared by evaporation at glancing angles. The porosity of these films has been assessed by analyzing their water adsorption isotherms measured for the films deposited on a quartz crystal monitor. Composite Rh6G/SiO2 thin films were prepared by immersion of a SiO2 thin film into a solution of the dye at a given pH. It is found that the amount of Rh6G molecules incorporated into the film is directly dependent on the pH of the solution and can be accounted for by a model based on the point of zero charge (PZC) concepts originally developed for colloidal oxides. At low pHs, the dye molecules incorporate in the form of monomers, while dimers or higher aggregates are formed if the pH increases. Depending on the actual preparation and treatment conditions, they also exhibit high relative fluorescence efficiency. The thermal stability of the composite films has been also investigated by characterizing their optical behavior after heating in an Ar atmosphere at increasing temperatures up to 275 degrees C. Heating induces a progressive loss of active dye molecules, a change in their agglomeration state, and an increment in their relative fluorescence efficiency. The obtained Rh6G/SiO2 composite thin films did not disperse the light and therefore can be used for integration into optical and photonic devices.

  5. Electron acceptor-dependent respiratory and physiological stratifications in biofilms.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Sun, Guoping; Wu, Wei-Min; Xu, Meiying

    2015-01-06

    Bacterial respiration is an essential driving force in biogeochemical cycling and bioremediation processes. Electron acceptors respired by bacteria often have solid and soluble forms that typically coexist in the environment. It is important to understand how sessile bacteria attached to solid electron acceptors respond to ambient soluble alternative electron acceptors. Microbial fuel cells (MFCs) provide a useful tool to investigate this interaction. In MFCs with Shewanella decolorationis, azo dye was used as an alternative electron acceptor in the anode chamber. Different respiration patterns were observed for biofilm and planktonic cells, with planktonic cells preferred to respire with azo dye while biofilm cells respired with both the anode and azo dye. The additional azo respiration dissipated the proton accumulation within the anode biofilm. There was a large redox potential gap between the biofilms and anode surface. Changing cathodic conditions caused immediate effects on the anode potential but not on the biofilm potential. Biofilm viability showed an inverse and respiration-dependent profile when respiring with only the anode or azo dye and was enhanced when respiring with both simultaneously. These results provide new insights into the bacterial respiration strategies in environments containing multiple electron acceptors and support an electron-hopping mechanism within Shewanella electrode-respiring biofilms.

  6. Applications of Metal Oxide Materials in Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: Let the Molecules do the Work

    SciTech Connect

    Alibabaei, Leila; Luo, Hanlin; House, Ralph L.; Hoertz, Paul G.; Lopez, Rene; Meyer, Thomas J.

    2013-01-01

    Solar fuels hold great promise as a permanent, environmentally friendly, long-term renewable energy source, that would be readily available across the globe. In this account, an approach to solar fuels is described based on Dye Sensitized Photoelectrosynthesis Cells (DSPEC) that mimic the configuration used in Dye Sensitized Solar Cells (DSSC), but with the goal of producing oxygen and a high energy solar fuel in the separate compartments of a photoelectrochemical cell rather than a photopotential and photocurrent.

  7. Influence of silver nanoparticles on relaxation processes and efficiency of dipole – dipole energy transfer between dye molecules in polymethylmethacrylate films

    SciTech Connect

    Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V; Konstantinova, E I; Slezhkin, V A

    2015-10-31

    The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of the dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)

  8. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed Central

    Barrett, M C; Dawson, A P

    1975-01-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme. PMID:1218095

  9. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  10. Alternansucrase acceptor products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regioselectivity of alternansucrase (EC 2.4.1.140) differs from dextransucrase (EC 2.4.1.5) in ways that can be useful for the synthesis of novel oligosaccharide structures. For example, it has been recently shown that the major oligosaccharides produced when maltose is the acceptor include one...

  11. A simple approach for the synthesis of Ag-coated Ni@TiO{sub 2} nanocomposites as recyclable photocatalysts and SERS substrate to monitor catalytic degradation of dye molecules

    SciTech Connect

    Ding, Qianqian; Zhang, Li; Yang, Liangbao

    2014-05-01

    Graphical abstract: - Highlights: • A simple approach was used to synthesize Ag-coated Ni@TiO{sub 2} nanocomposites. • The nanocomposites can be the convenient and effective SERS substrate. • The nanocomposites can be a self-cleaning SERS substrate. • The nanocomposites can monitor the catalytic degradation of dye molecules. - Abstract: In this work, we demonstrate an extremely simple and speedy approach to synthesis Ag-coated Ni@TiO{sub 2} nanocomposites, which can be a convenient and effective substrate for surface enhanced Raman spectroscopy (SERS) observation. Due to possessing the excellent magnetic properties and stable catalytic properties at room temperature, the nanocomposites can clean themselves by photocatalytic degradation of dye molecules under irradiation with UV light into inorganic small molecules for the self-cleaning SERS detection. Furthermore, the nanocomposites can be used as the SERS substrate for monitoring the catalytic degradation of dye molecules.

  12. Energy relay from an unconventional yellow dye to CdS/CdSe quantum dots for enhanced solar cell performance.

    PubMed

    Narayanan, Remya; Das, Amrita; Deepa, Melepurath; Srivastava, Avanish Kumar

    2013-12-02

    A new design for a quasi-solid-state Forster resonance energy transfer (FRET) enabled solar cell with unattached Lucifer yellow (LY) dye molecules as donors and CdS/CdSe quantum dots (QDs) tethered to titania (TiO2 ) as acceptors is presented. The Forster radius is experimentally determined to be 5.29 nm. Sequential energy transfer from the LY dye to the QDs and electron transfer from the QDs to TiO2 is followed by fluorescence quenching and electron lifetime studies. Cells with a donor-acceptor architecture (TiO2 /CdS/CdSe/ZnS-LY/S(2-)-multi-walled carbon nanotubes) show a maximum incident photon-to-current conversion efficiency of 53 % at 530 nm. This is the highest efficiency among Ru-dye free FRET-enabled quantum dot solar cells (QDSCs), and is much higher than the donor or acceptor-only cells. The FRET-enhanced solar cell performance over the majority of the visible spectrum paves the way to harnessing the untapped potential of the LY dye as an energy relay fluorophore for the entire gamut of dye sensitized, organic, or hybrid solar cells.

  13. Study of Ultrafast Internal Conversion in Molecules and Ultrafast Dephasing in Condensed Matter with Picosecond Dye Lasers.

    NASA Astrophysics Data System (ADS)

    Xie, Yongjin

    A picosecond cascaded transient oscillator (CTO) dye laser system was modified to generate continuous tunable, near transform-limited picosecond pulses. To improve the CTO system, the characteristics of a simple N_2 laser side-pumped dye laser (the first stage of CTO system) was thoroughly examined. It was found that both the pulse shape and the duration were affected strongly by the tuned wavelength, cavity length, pumping intensity, and the feedback signal from both the front and the back reflectors. A single output pulse as short as 40 ps could be generated by optimizing the operating parameters. The final output of the CTO system has a pulse duration less than 10 ps and a bandwidth less than 1 A. The technique of infrared multiphoton ionization was used to obtain state specific internal conversion rates in CrO_2Cl_2. Using narrow-band tunable 10 ps dye laser pulses, different vibrational states in the B_1 manifold were excited and the energy relaxation was monitored by an IR ps laser pulse. The relaxation can be characterized by a fast component, which is due to internal conversion to the ^1A_1 state, and a slow component, which is due to cooling of the vibrationally hot ^1A _1 ground state. The nonradiative energy transfer rate changes by almost three orders of magnitude for an excess vibrational energy change of merely 550 cm ^{-1}. With broadband incoherent picosecond dye laser pulse, the measurement of the dephasing time T _2 in dye solutions and semiconductor-doped glasses by the two pulse correlation method was demonstrated, with T_2<=ss than the correlation time of the excitation pulse tau_ {rm c}. It was found the dephasing time T_2 measured depended on the excitation photon energy relative to the band-edge or the energy difference between the ground state and the first excited electronic state. In the case of band-edge excitation, a quantum beat behavior with a beat frequency about 28 tera-hertz was observed in Rh-560 dye solutions.

  14. The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules

    PubMed Central

    Rückert, Christian; Milse, Johanna; Albersmeier, Andreas; Koch, Daniel J; Pühler, Alfred; Kalinowski, Jörn

    2008-01-01

    Background Regulation of sulphur metabolism in Corynebacterium glutamicum ATCC 13032 has been studied intensively in the last few years, due to its industrial as well as scientific importance. Previously, the gene cg0156 was shown to belong to the regulon of McbR, a global transcriptional repressor of sulphur metabolism in C. glutamicum. This gene encodes a putative ROK-type regulator, a paralogue of the activator of sulphonate utilisation, SsuR. Therefore, it is an interesting candidate for study to further the understanding of the regulation of sulphur metabolism in C. glutamicum. Results Deletion of cg0156, now designated cysR, results in the inability of the mutant to utilise sulphate and aliphatic sulphonates. DNA microarray hybridisations revealed 49 genes with significantly increased and 48 with decreased transcript levels in presence of the native CysR compared to a cysR deletion mutant. Among the genes positively controlled by CysR were the gene cluster involved in sulphate reduction, fpr2 cysIXHDNYZ, and ssuR. Gel retardation experiments demonstrated that binding of CysR to DNA depends in vitro on the presence of either O-acetyl-L-serine or O-acetyl-L-homoserine. Mapping of the transcription start points of five transcription units helped to identify a 10 bp inverted repeat as the possible CysR binding site. Subsequent in vivo tests proved this motif to be necessary for CysR-dependent transcriptional regulation. Conclusion CysR acts as the functional analogue of the unrelated LysR-type regulator CysB from Escherichia coli, controlling sulphide production in response to acceptor availability. In both bacteria, gene duplication events seem to have taken place which resulted in the evolution of dedicated regulators for the control of sulphonate utilisation. The striking convergent evolution of network topology indicates the strong selective pressure to control the metabolism of the essential but often toxic sulphur-containing (bio-)molecules. PMID:18854009

  15. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    SciTech Connect

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  16. Dye-sensitized composite semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Tennakone, K.; Bandaranayake, P. K. M.; Jayaweera, P. V. V.; Konno, A.; Kumara, G. R. R. A.

    2002-04-01

    Understanding of the charge transport and recombination mechanisms of dye-sensitized solar cells based on semiconductor nanostructures is essential for the improvement of their performance. A great deal of information on these systems have been obtained from studies on a single material (mostly TiO 2 and to a lesser extent ZnO and SnO 2). We have conducted extensive measurements on composite dye-sensitized nanosturctures and found that the composite systems possess unusual properties. Dye-sensitized photoelectrochemical cells made from nanocrystalline films of some materials (e.g., SnO 2) yield comparatively small open-circuit voltages and energy and quantum conversion efficiencies, despite excellent dye-semiconductor interaction. However, on deposition of ultra-thin shells of insulators or high band gap semiconductors on the crystallites, a dramatic increase in the above parameters is observed. Outer shells were found to have insignificant or in most cases a negative effect on TiO 2 films. We explain the above findings on the basis of vast differences in the leakage rates of trapped electrons in different materials which is sensitive to the effective electron mass. Electrons injected to the conduction band in dye-sensitization enter into shallow traps from which they get thermally reemitted to the conduction band. The building up of the electron quasi-fermi level and transport depends on this process. The spread of the hydrogenic wave function of a trapped electron increases inverse exponentially with the effective mass so that the electron leakage and their recombination with acceptors ‘outside’ become severe when the crystallite size is comparable to the Bohr radius of the trapped electron. Such recombinations are effectively suppressed by deposition of thin films on the crystallites. Excited dye molecules anchored to the outer shell injects electrons to the conduction band via tunneling.

  17. Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells.

    PubMed

    Baheti, Abhishek; Justin Thomas, K R; Li, Chun-Ting; Lee, Chuan-Pei; Ho, Kuo-Chuan

    2015-02-04

    Two types of fluorene-based organic dyes featuring T-shape/rod-shape molecular configuration with phenothiazine donor and cyanoacrylic acid acceptor have been synthesized and characterized as sensitizers for dye-sensitized solar cells. Phenothiazine is functionalized at either nitrogen (N10) or carbon (C3) to obtain T-shape and rod-like organic dyes, respectively. The effect of structural alternation on the optical, electrochemical, and the photovoltaic properties is investigated. The crystal structure determination of the dye containing phenyl linker revealed cofacial slip-stack columnar packing of the molecules. The trends in the optical properties of the dyes are interpreted using time-dependent density functional theory (TDDFT) computations. The rod-shaped dyes exhibited longer wavelength absorption and low oxidation potentials when compared to the corresponding T-shaped dyes attributable to the favorable electronic overlap between the phenothiazine unit and the rest of the molecule in the former dyes. However, the T-shaped dyes showed better photovoltaic properties due to the lowest unoccupied molecular orbital (LUMO) energy level favorable for electron injection into the conduction band of TiO2 and appropriate orientation of the phenothiazine unit rendering effective surface blocking to suppress the recombination of electrons between the electrolyte I3(-) and TiO2. The electrochemical impedance spectroscopy investigations provide further support for the variations in the electron injection and transfer kinetics due to the structural modifications.

  18. J-aggregates of organic dye molecules complexed with iron oxide nanoparticles for imaging-guided photothermal therapy under 915-nm light.

    PubMed

    Song, Xuejiao; Gong, Hua; Liu, Teng; Cheng, Liang; Wang, Chao; Sun, Xiaoqi; Liang, Chao; Liu, Zhuang

    2014-11-12

    Recently, the development of nano-theranostic agents aiming at imaging guided therapy has received great attention. In this work, a near-infrared (NIR) heptamethine indocyanine dye, IR825, in the presence of cationic polymer, polyallylamine hydrochloride (PAH), forms J-aggregates with red-shifted and significantly enhanced absorbance. After further complexing with ultra-small iron oxide nanoparticles (IONPs) and the followed functionalization with polyethylene glycol (PEG), the obtained IR825@PAH-IONP-PEG composite nanoparticles are highly stable in different physiological media. With a sharp absorbance peak, IR825@PAH-IONP-PEG can serve as an effective photothermal agent under laser irradiation at 915 nm, which appears to be optimal in photothermal therapy application considering its improved tissue penetration compared with 808-nm light and much lower water heating in comparison to 980-nm light. As revealed by magnetic resonance (MR) imaging, those nanoparticles after intravenous injection exhibit high tumor accumulation, which is then harnessed for in vivo photothermal ablation of tumors, achieving excellent therapeutic efficacy in a mouse tumor model. This study demonstrates for the first time that J-aggregates of organic dye molecules are an interesting class of photothermal material, which when combined with other imageable nanoprobes could serve as a theranostic agent for imaging-guided photothermal therapy of cancer.

  19. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Yen, Chih-Ping; Yu, Pin-Feng; Wang, Jyhpyng; Lin, Jiunn-Yuan; Chen, Yen-Mu; Chen, Szu-yuan

    2016-08-01

    The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP), and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE) for application to dye-sensitized solar cell (DSSC) is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  20. Coordination programming of photofunctional molecules.

    PubMed

    Sakamoto, Ryota; Kusaka, Shinpei; Hayashi, Mikihiro; Nishikawa, Michihiro; Nishihara, Hiroshi

    2013-04-05

    Our recent achievements relating to photofunctional molecules are addressed. Section 1 discloses a new concept of photoisomerization. Pyridylpyrimidine-copper complexes undergo a ring inversion that can be modulated by the redox state of the copper center. In combination with an intermolecular photoelectron transfer (PET) initiated by the metal-to-ligand charge transfer (MLCT) transition of the Cu(I) state, we realize photonic regulation of the ring inversion. Section 2 reports on the first examples of heteroleptic bis(dipyrrinato)zinc(II) complexes. Conventional homoleptic bis(dipyrrinato)zinc(II) complexes suffered from low fluorescence quantum yields, whereas the heteroleptic ones feature bright fluorescence even in polar solvents. Section 3 describes our new findings on Pechmann dye, which was first synthesized in 1882. New synthetic procedures for Pechmann dye using dimethyl bis(arylethynyl)fumarate as a starting material gives rise to its new structural isomer. We also demonstrate potentiality of a donor-acceptor-donor type of Pechmann dye in organic electronics.

  1. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  2. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  3. Moments distributions of single dye molecule spectra in a low-temperature polymer: Analysis of system ergodicity

    NASA Astrophysics Data System (ADS)

    Anikushina, T. A.; Naumov, A. V.

    2013-12-01

    This article demonstrates the principal advantages of the technique for analysis of the long-term spectral evolution of single molecules (SM) in the study of the microscopic nature of the dynamic processes in low-temperature polymers. We performed the detailed analysis of the spectral trail of single tetra-tert-butylterrylene (TBT) molecule in an amorphous polyisobutylene matrix, measured over 5 hours at T = 7K. It has been shown that the slow temporal dynamics is in qualitative agreement with the standard model of two-level systems and stochastic sudden-jump model. At the same time the distributions of the first four moments (cumulants) of the spectra of the selected SM measured at different time points were found not consistent with the standard theory prediction. It was considered as evidence that in a given time interval the system is not ergodic

  4. Rhodamine 6G and 800 J-heteroaggregates with enhanced acceptor luminescence (HEAL) adsorbed in transparent SiO2 GLAD thin films.

    PubMed

    Sánchez-Valencia, Juan R; Aparicio, Francisco J; Espinós, Juan P; Gonzalez-Elipe, Agustín R; Barranco, Angel

    2011-04-21

    An enhanced fluorescent emission in the near infrared is observed when the Rhodamine 800 (Rh800) and 6G (Rh6G) dyes are coadsorbed in porous SiO(2) optical thin films prepared by glancing angle deposition (GLAD). This unusual behavior is not observed in solution and it has been ascribed to the formation of a new type of J-heteroaggregates with enhanced acceptor luminescence (HEAL). This article describes in detail and explains the main features of this new phenomenology previously referred in a short communication [J. R. Sánchez-Valencia, J. Toudert, L. González-García, A. R. González-Elipe and A. Barranco, Chem. Commun., 2010, 46, 4372-4374]. It is found that the efficiency and characteristics of the energy transfer process are dependent on the Rh6G/Rh800 concentration ratio which can be easily controlled by varying the pH of the solutions used for the infiltration of the molecules or by thermal treatments. A simple model has been proposed to account for the observed enhanced acceptor luminescence in which the heteroaggregates order themselves according to a "head to tail" configuration due to the geometrical constrains imposed by the SiO(2) porous matrix thin film. The thermal stability of the dye molecules within the films and basic optical (absorption and fluorescence) principles of the HEAL process are also described.

  5. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xia, Chunyu; Wu, Wei-Min; Sun, Guoping; Xu, Meiying

    2014-07-01

    To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors.

  6. Novel D-π-A-π-A coumarin dyes for highly efficient dye-sensitized solar cells: Effect of π-bridge on optical, electrochemical, and photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Feng, Haijing; Li, Ranran; Song, Yicong; Li, Xiaoyan; Liu, Bo

    2017-03-01

    The direct connection of coumarin and auxiliary acceptor in D-A-π-A construction will cause large dihedral angle between these two planes, thus affecting the intramolecular charge transfer process. Herein, with an additional π-bridge between coumarin and auxiliary acceptor, two novel coumarin sensitizers, CS-1 and CS-2, based on D-π-A-π-A construction have been designed and synthesized. With this modification, the planarity of donor-to-auxiliary acceptor part is effectively improved, thus resulting in smoother ICT process and less energy loss. Along with the planarization of molecule, the energy levels of the dyes are also effectively optimized. Moreover, the introduction of additional π-bridge will not affect the photostability of the dye. Accordingly, a record high PCE of 8.03% is obtained by CS-2 sensitized DSSCs, with a JSC of 16.38 mA cm-2, a VOC of 694 mV, and a ff of 0.707, while only around 3.5% decline in PCE is found after 1000 h aging test. Our results demonstrate that good planarity is obviously preferred to optimize the energy level and photovoltaic performance of sensitizer, providing a powerful strategy for the development of highly efficient organic sensitizers in the future.

  7. Influence of ZnO nanoparticles on Coumarin-503 and Coumarin-540 dye mixture for energy transfer distributed feedback dye lasers

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, G. V.; Basheer Ahamed, M.

    2016-07-01

    Using organic dyes Coumarin-503 (C503) and Coumarin-540 (C540) as donor and acceptor dyes, respectively, and Nd-YAG as pumping source (355 nm), an energy transfer-distributed feedback dye laser (ETDFDL) was constructed and its characteristics studied. Theoretical studies such as critical transfer radius (Ro), critical concentration (Co), and half quenching concentration (C1/2) were carried out using the absorption and fluorescence spectra of donor and acceptor dyes. On varying the input pump energy to the nanoparticle-incorporated ETDFDL and keeping the acceptor and donor dye concentrations constant, the lasing output obtained was found to be higher than that without the use of nanoparticles. This enhancement was due to the size, shape, and coupling between nanoparticles with the dye mixture. Tunability in the range of 435-553 nm was obtained for both donor (C503) and acceptor (C540) DFDL as a function of the angle of interfering beams of the pump laser.

  8. Sensitively monitoring photodegradation process of organic dye molecules by surface-enhanced Raman spectroscopy based on Fe3O4@SiO2@TiO2@Ag particle.

    PubMed

    Qin, Suhua; Cai, Wenya; Tang, Xianghu; Yang, Liangbao

    2014-11-07

    Photodegradation of organic dye molecules has attracted extensive attention because of their high toxicity to water resources. Compared with traditional UV-visible spectroscopy, SERS technology can reflect more sensitively the catalytic degradation process occurring on the surface of the catalysts. In this paper, we report the synthesis and structure of Fe3O4@SiO2@TiO2@Ag composite, which integrates SERS active Ag nanostructure with catalytically active titania. The degradation of the typical dye molecule crystal violet (CV), as an example, is investigated in the presence of the as-prepared Fe3O4@SiO2@TiO2@Ag composite structure, which exhibits high catalytic activity and good SERS performance. At the same time, renewable photocatalytic activity was also investigated.

  9. Visible light water splitting using dye-sensitized oxide semiconductors.

    PubMed

    Youngblood, W Justin; Lee, Seung-Hyun Anna; Maeda, Kazuhiko; Mallouk, Thomas E

    2009-12-21

    electron donors (EDTA(2-)) or non-sacrificial donors (I(-)). Through exfoliation of layered metal oxide semiconductors, we construct multilayer electron donor-acceptor thin films or sensitized colloids in which individual nanosheets mediate light-driven electron transfer reactions. When sensitizer molecules are "wired" to IrO(2).nH(2)O nanoparticles, a dye-sensitized TiO(2) electrode becomes the photoanode of a water-splitting photoelectrochemical cell. Although this system is an interesting proof-of-concept, the performance of these cells is still poor (approximately 1% quantum yield) and the dye photodegrades rapidly. We can understand the quantum efficiency and degradation in terms of competing kinetic pathways for water oxidation, back electron transfer, and decomposition of the oxidized dye molecules. Laser flash photolysis experiments allow us to measure these competing rates and, in principle, to improve the performance of the cell by changing the architecture of the electron transfer chain.

  10. New acceptor-donor-acceptor (A-D-A) type copolymers for efficient organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Ayachi, S.; Alimi, K.

    2015-01-01

    Three new conjugated systems alternating acceptor-donor-acceptor (A-D-A) type copolymers have been investigated by means of Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) at the 6-31g (d) level of theory. 4,4‧-Dimethoxy-chalcone, also called the 1,3-bis(4-methoxyphenyl)prop-2-en-1-one (BMP), has been used as a common acceptor moiety. It forced intra-molecular S⋯O interactions through alternating oligo-thiophene derivatives: 4-AlkylThiophenes (4-ATP), 4-AlkylBithiophenes (4-ABTP) and 4-Thienylene Vinylene (4-TEV) as donor moieties. The band gap, HOMO and LUMO electron distributions as well as optical properties were analyzed for each molecule. The fully optimized resulting copolymers showed low band gaps (2.2-2.8 eV) and deep HOMO energy levels ranging from -4.66 to -4.86 eV. A broad absorption [300-900 nm] covering the solar spectrum and absorption maxima ranges from 486 to 604 nm. In addition, organic photovoltaic cells (OPCs) based on alternating copolymers in bulk heterojunction (BHJ) composites with the 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6]-C61 (PCBM), as an acceptor, have been optimized. Thus, the band gap decreased to 1.62 eV, the power conversion efficiencies (PCEs) were about 3-5% and the open circuit voltage Voc of the resulting molecules decreased from 1.50 to 1.27 eV.

  11. Does the position of the electron-donating nitrogen atom in the ring system influence the efficiency of a dye-sensitized solar cell? A computational study.

    PubMed

    Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit

    2016-06-01

    We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency.

  12. Fluorescence quenching and photocatalytic degradation of textile dyeing waste water by silver nanoparticles.

    PubMed

    Kavitha, S R; Umadevi, M; Janani, S R; Balakrishnan, T; Ramanibai, R

    2014-06-05

    Silver nanoparticles (Ag NPs) of different sizes have been prepared by chemical reduction method and characterized using UV-vis spectroscopy and transmission electron microscopy (HRTEM). Fluorescence spectral analysis showed that the quenching of fluorescence of textile dyeing waste water (TDW) has been found to decrease with decrease in the size of the Ag NPs. Experimental results show that the silver nanoparticles can quench the fluorescence emission of adsorbed TDW effectively. The fluorescence interaction between Ag NPs (acceptor) and TDW (donor) confirms the Förster Resonance Energy Transfer (FRET) mechanism. Long range dipole-dipole interaction between the excited donor and ground state acceptor molecules is the dominant mechanism responsible for the energy transfer. Furthermore, photocatalytic degradation of TDW was measured spectrophotometrically by using silver as nanocatalyst under UV light illumination. The kinetic study revealed that synthesized Ag NPs was found to be effective in degrading TDW.

  13. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors.

    PubMed

    Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A

    2015-04-15

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, (1)H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  14. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2015-04-01

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  15. Bichromophoric Dyes for Wavelength Shifting of Dye-Protein Fluoromodules

    PubMed Central

    Pham, Ha H.; Szent-Gyorgyi, Christopher; Brotherton, Wendy L.; Schmidt, Brigitte F.; Zanotti, Kimberly J.; Waggoner, Alan S.

    2015-01-01

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477

  16. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  17. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  18. Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes

    SciTech Connect

    Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik

    2014-10-15

    Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-π-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dye as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye.

  19. An overview of molecular acceptors for organic solar cells

    NASA Astrophysics Data System (ADS)

    Hudhomme, Piétrick

    2013-07-01

    Organic solar cells (OSCs) have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  20. Particle-size Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes.

    PubMed

    Muhr, Verena; Würth, Christian; Kraft, Marco; Buchner, Markus; Resch-Genger, Ute; Baeumner, Antje J; Hirsch, Thomas

    2017-03-22

    Upconversion nanoparticles (UCNPs) are attractive candidates for energy transfer-based analytical applications. In contrast to classical donor-acceptor pairs, these particles contain many emitting lanthanide ions together with numerous acceptor dye molecules at different distances to each other, strongly depending on the particle diameter. UCNPs with precisely controlled sizes between 10 and 43 nm were prepared and functionalized with rose bengal and sulforhodamine B by a ligand exchange procedure. Time-resolved studies of the upconversion luminescence of the UCNP donor revealed a considerable shortening of the donor lifetime as a clear hint for Förster resonance energy transfer (FRET). FRET was most pronounced for 21 nm-sized UCNPs, yielding a FRET efficiency of 60%. At larger surface-to-volume ratios the FRET efficiency decreased by an increasing competition of non-radiative surface deactivation. Such dye-UCNP architectures can also provide an elegant way to shift the UCNP emission color, since the fluorescence intensity of the organic dyes excited by FRET was comparable to that of the upconversion emission of smaller particles.

  1. Membrane-Inspired Acidically Stable Dye-Sensitized Photocathode for Solar Fuel Production.

    PubMed

    Click, Kevin A; Beauchamp, Damian R; Huang, Zhongjie; Chen, Weilin; Wu, Yiying

    2016-02-03

    Tandem dye-sensitized photoelectrochemical cells (DSPECs) for water splitting are a promising method for sustainable energy conversion but so far have been limited by their lack of aqueous stability and photocurrent mismatch between the cathode and anode. In nature, membrane-enabled subcellular compartmentation is a general approach to control local chemical environments in the cell. The hydrophobic tails of the lipid make the bilayer impermeable to ions and hydrophilic molecules. Herein we report the use of an organic donor-acceptor dye that prevents both dye desorption and semiconductor degradation by mimicking the hydrophobic/hydrophilic properties of lipid bilayer membranes. The dual-functional photosensitizer (denoted as BH4) allows for efficient light harvesting while also protecting the semiconductor surface from protons and water via its hydrophobic π linker. The protection afforded by this membrane-mimicking dye gives this system excellent stability in extremely acidic (pH 0) conditions. The acidic stability also allows for the use of cubane molybdenum-sulfide cluster as the hydrogen evolution reaction (HER) catalyst. This system produces a proton-reducing current of 183 ± 36 μA/cm(2) (0 V vs NHE with 300 W Xe lamp) for an unprecedented 16 h with no degradation. These results introduce a method for developing high-current, low-pH DSPECs and are a significant move toward practical dye-sensitized solar fuel production.

  2. Shape, size and composition dependence of efficiency and dynamics of Förster resonance energy transfer in dye-silica nanoconjugates

    NASA Astrophysics Data System (ADS)

    Dhir, Anjali; Datta, Anindya

    2016-06-01

    The role of relative concentrations of energy donors (fluorescein, D), acceptors (rhodamine, A) and silica on Förster resonance energy transfer (FRET) efficiency and dynamics in dye silica conjugates has been studied, as a part of our initial attempts to ascertain the potential of dye-silica nanoconjugates as light harvesting nanoantennae. Two types of dye-silica nanoconjugates, prepared by the co-condensation method, have been examined. The first is based on silica nanoshells (SNS-dye) while the second is based on silica nanoparticles (SNP-dye). Both these nanostructures have a diameter of approximately 25 nm. Efficient energy transfer (91% and 97%, respectively) has been observed in both, for total fluorophore concentration upto 5-6 mmol, irrespective of the D : A ratio. The lower efficiency at dye concentrations greater than these has been rationalized by the competitive self-quenching of D. A risetime of approximately 500 fs is observed in the A emission in SNS-dye, but there is no such feature in SNP-dye. The shape and size dependence of the FRET efficiency and dynamics has been rationalized as follows: the initial step of dye rich core formation in nanoparticles results in high proximity of dye molecules to each other, leading to highly efficient FRET than in nanoshells. In larger SNP-dye nanoconjugates of 65 nm in diameter, the FRET efficiency decreases to 85%, while a risetime in D emission emerges. This provides support to the proposed correlation between efficiency and packing. Hence, it is inferred that total fluorophore concentration, rather than D : A ratios, governs the FRET dynamics and efficiency in these systems.

  3. Donor-acceptor type low band gap polymers: polysquaraines and related systems.

    PubMed

    Ajayaghosh, Ayyappanpillai

    2003-07-01

    In recent years, considerable effort has been directed towards the synthesis of conjugated polymers with low optical band gaps (Eg), since they show intrinsic electrical conductivity. One of the approaches towards the designing of such polymers is the use of strong donor and acceptor monomers at regular arrangements in the repeating units, which has limited success in many cases. An alternate strategy is the use of organic dyes, having inherently low HUMO-LUMO separation, as building blocks. Extension of conjugation in organic dyes is therefore expected to result in oligomers and polymers with near infrared absorption, which is a signature of low band gaps. Squaraine dyes are ideal candidates for this purpose due to their unique optical properties. This review highlights the recent developments in the area of donor-acceptor type low band gap polymers with special emphasis on polysquaraines.

  4. Arylamine organic dyes for dye-sensitized solar cells.

    PubMed

    Liang, Mao; Chen, Jun

    2013-04-21

    Arylamine organic dyes with donor (D), π-bridge (π) and acceptor (A) moieties for dye-sensitized solar cells (DSCs) have received great attention in the last decade because of their high molar absorption coefficient, low cost and structural variety. In the early stages, the efficiency of DSCs with arylamine organic dyes with D-π-A character was far behind that of DSCs with ruthenium(II) complexes partly due to the lack of information about the relationship between the chemical structures and the photovoltaic performance. However, exciting progress has been recently made, and power conversion efficiencies over 10% were obtained for DSCs with arylamine organic dyes. It is thus that the recent research and development in the field of arylamine organic dyes employing an iodide/triiodide redox couple or polypyridyl cobalt redox shuttles as the electrolytes for either DSCs or solid-state DSCs has been summarized. The cell performance of the arylamine organic dyes are compared, providing a comprehensive overview of arylamine organic dyes, demonstrating the advantages/disadvantages of each class, and pointing out the field that needs to reinforce the research direction in the further application of DSCs.

  5. Reactive Fluorescent Dyes For Urethane Coatings

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Cuddihy, Edward F.

    1991-01-01

    Molecules of fluorescent dyes chemically bound in urethane conformal-coating materials to enable nondestructive detection of flaws in coats through inspection under ultraviolet light, according to proposal. Dye-bonding technique prevents outgassing of dyes, making coating materials suitable for use where flaw-free coats must be assured in instrumentation or other applications in which contamination by outgassing must be minimized.

  6. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    SciTech Connect

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows the dye molecules to remain electrochemically addressable.

  7. Prediction of enzyme inhibition and mode of inhibitory action based on calculation of distances between hydrogen bond donor/acceptor groups of the molecule and docking analysis: An application on the discovery of novel effective PTP1B inhibitors.

    PubMed

    Eleftheriou, P; Petrou, A; Geronikaki, A; Liaras, K; Dirnali, S; Anna, M

    2015-01-01

    PTP1B is a protein tyrosine phosphatase involved in insulin receptor desensitization. PTP1B inhibition prolongs the activated state of the receptor, practically enhancing the effect of insulin. Thus PTP1B has become a drug target for the treatment of type II diabetes. PTP1b is an enzyme with multiple binding sites for competitive and allosteric inhibitors. Prediction of inhibitory action using docking analysis has limited success in case of enzymes with multiple binding sites, since the selection of the right crystal structure depends on the kind of inhibitor. In the present study, a two-step strategy for the prediction of PTP1b inhibitory action was applied to 12 compounds. Based on the study of known inhibitors, we isolated the structural characteristics required for binding to each binding site. As a first step, 3D-structures of the molecules were produced and their structural parameters were measured and used for prediction of the binding site of the compound. These results were used for the selection of the appropriate crystal structure for docking analysis of each compound, and the final prediction was based on the estimated binding energies. This strategy effectively predicted the activity of all compounds. A linear correlation was found between estimated binding energy and inhibition measured in vitro (r = -0.894).

  8. Organic dyes based on fluorene and its derivatives

    NASA Astrophysics Data System (ADS)

    Kurdyukova, I. V.; Ishchenko, Aleksandr A.

    2012-03-01

    Data on various types of organic dyes based on fluorene and its derivatives, including polymethine, styryl, triphenylmethane, spiran, merocyanine, porphyrin and polymeric dyes, as well as azo dyes and donor-acceptor polyenes, are described systematically. The key methods for their synthesis are considered. The properties of the dyes are analyzed and summarized. The principles of development of modern functional materials based on these dyes are outlined. The use of these materials in advanced fields of science and technology such as photovoltaics, electroluminescence, nonlinear optics, holography, sensing photodynamic therapy are considered. The bibliography includes 476 references.

  9. Quantum dots as FRET acceptors for highly sensitive multiplexing immunoassays

    NASA Astrophysics Data System (ADS)

    Geissler, Daniel; Hildebrandt, Niko; Charbonnière, Loïc J.; Ziessel, Raymond F.; Löhmannsröben, Hans-Gerd

    2009-02-01

    Homogeneous immunoassays have the benefit that they do not require any time-consuming separation steps. FRET is one of the most sensitive homogeneous methods used for immunoassays. Due to their extremely strong absorption over a broad wavelength range the use of quantum dots as FRET acceptors allows for large Foerster radii, an important advantage for assays in the 5 to 10 nm distance range. Moreover, because of their size-tunable emission, quantum dots of different sizes can be used with a single donor for the detection of different analytes (multiplexing). As the use of organic dyes with short fluorescence decay times as donors is known to be inefficient with quantum dot acceptors, lanthanide complexes with long luminescence decays are very efficient alternatives. In this contribution we present the application of commercially available biocompatible CdSe/ZnS core/shell quantum dots as multiplexing FRET acceptors together with a single terbium complex as donor in a homogeneous immunoassay system. Foerster radii of 10 nm and FRET efficiencies of 75 % are demonstrated. The high sensitivity of the terbium-toquantum dot FRET assay is shown by sub-100-femtomolar detection limits for two different quantum dots (emitting at 605 and 655 nm) within the same biotin-streptavidin assay. Direct comparison to the FRET immunoassay "gold standard" (FRET from Eu-TBP to APC) yields a three orders of magnitude sensitivity improvement, demonstrating the big advantages of quantum dots not only for multiplexing but also for highly sensitive nanoscale analysis.

  10. Dye-sensitized solar cells based on organic dual-channel anchorable dyes with well-defined core bridge structures.

    PubMed

    Seo, Kang Deuk; You, Ban Seok; Choi, In Taek; Ju, Myung Jong; You, Mi; Kang, Hong Seok; Kim, Hwan Kyu

    2013-11-01

    In stereo, where available: A new approach towards dye-sensitized solar cells is based on dianchoring structural motifs with two donors, two acceptors, and a core bridge donor as a spacer. Their high molar absorption coefficients result in favorable light-harvesting efficiencies for DSSCs based on these dyes. A high conversion efficiency of 4.90 % is achieved when using dye DC4, containing a core bridge carbazole unit, with a multifunctional coadsorbent.

  11. Dye Painting!

    ERIC Educational Resources Information Center

    Johnston, Ann

    This resource provides practical instructions for applying color and design directly to fabric. Basic information about the dye painting process is given. The guide addresses the technical aspects of fabric dye and color use and offers suggestions for fabric manipulation and dye application in order to achieve various design effects. This…

  12. Effects of Dye Structure in Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hoskins, Anna R.

    Dye sensitized solar cells (DSSCs) are photovoltaic devices that may compete with standard silicon solar cells due to their ease of construction and lower cost [32]. Ruthenium dye structures, such as N3 (Ru -- (4,4' -- dicarboxylic acid -- 2,2' -- bipyridine)2(NCS)2), have shown promise for collection efficiencies near silicon photovoltaic levels [20, 33]. DSSCs have not achieved the reproducibility and maximum efficiency of silicon solar cells [33, 34]. Altering ligands on the dye molecules may affect the energies of light that are absorbed by the DSSC. Photovoltaic testing, including current versus voltage tests, of DSSCs with both narrow band monochromated light sources and broadband (AM1.5 solar simulator) allows comparison between maximum efficiency, short-circuit current, open circuit voltage, and spectral response (SR) for the dye molecules. By studying how the efficiency and power output change with different dye structures, the nature of how to increase efficiency of the DSSC can be addressed. Conjugation length of the ligands in ruthenium dye molecules can be shown, through square-well and Huckel theory calculations, to have a role in changing the HOMO-LUMO gap of the molecules and the absorption of specific wavelengths of light by the DSSC. The efficiency, max power, short circuit current, open circuit voltage, and SR were all measured for the DSSCs at wavelengths from 350 nm to 690 nm using a monochromated light source. Measurements taken at 20 nm steps reveal trends in the photon acceptance for dye molecules that can be linked to the conjugation length of the ligands in the dye through the SR. The change in the SR centroid and UV-VIS measurements indicate a trend toward increasing optimal wavelength with increasing conjugation length in the dye molecules; however these trends are not as pronounced as theoretical calculations for the dyes. This difference in wavelength shift occurs due to the theoretical calculations accounting for only the ligands

  13. Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors

    SciTech Connect

    Nardes, Alexandre M.; Ferguson, Andrew J.; Wolfer, Pascal; Gui, Kurt; Burn, Paul L.; Meredith, Paul; Kopidakis, Nikos

    2014-03-05

    We present a comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85 % of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. Here, we propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub

  14. Effects of surface modification on dye-sensitized solar cell based on an organic dye with naphtho[2,1-b:3,4-b']dithiophene as the conjugated linker.

    PubMed

    Wang, Xiaoxu; Guo, Lei; Xia, Ping Fang; Zheng, Fan; Wong, Man Shing; Zhu, Zhengtao

    2014-02-12

    We have investigated the effects of surface modification on the dye-sensitized solar cell (DSSC) based on a donor-(π-spacer)-acceptor organic dye. A major challenge for donor-(π-spacer)--acceptor molecules as sensitizers in DSSCs is the fast recombination reactions that occur at both the photoanode (e.g., TiO2) surface and the fluorine-doped tin oxide (FTO) electrode, which presents unfavorable effects on the DSSC performance. The two interfaces of TiO2/electrolyte and FTO/electrolyte are passivated selectively in a DSSC using an organic dye with Naphtho[2,1-b:3,4-b']dithiophene as the conjugated linker and the I(-)/I3(-) electrolyte. The current density-voltage characteristics, the dark current analysis, the open circuit voltage-light intensity dependence, and the transient photovoltage/photocurrent results indicate that the recombination processes are affected strongly by surface passivation under variable light intensity. At high light intensity, the recombination reaction at the TiO2 surface is dominant. In this case, silane passivation of the TiO2 surface can suppress recombination significantly, while the c-TiO2 layer makes little contribution to the reduction of the recombination. At low illumination intensity, the recombination at FTO becomes significant, and the recombination can be reduced by applying a c-TiO2 layer.

  15. Molecule-Based Water-Oxidation Catalysts (WOCs): Cluster-Size-Dependent Dye-Sensitized Polyoxometalates for Visible-Light-Driven O2 Evolution

    PubMed Central

    Gao, Junkuo; Cao, Shaowen; Tay, Qiuling; Liu, Yi; Yu, Lingmin; Ye, Kaiqi; Mun, Peter Choon Sze; Li, Yongxin; Rakesh, Ganguly; Loo, Say Chye Joachim; Chen, Zhong; Zhao, Yang; Xue, Can; Zhang, Qichun

    2013-01-01

    From atomic level to understand the cluster-size-dependant behavior of dye-sensitized photocatalysts is very important and helpful to design new photocatalytic materials. Although the relationship between the photocatalytic behaviors and particles' size/shape has been widely investigated by theoretical scientists, the experimental evidences are much less. In this manuscript, we successfully synthesized three new ruthenium dye-sensitized polyoxometalates (POM-n, n relate to different size clusters) with different-sized POM clusters. Under visible-light illumination, all three complexes show the stable O2 evolution with the efficient order POM-3 > POM-2 > POM-1. This cluster-size-dependent catalytic behavior could be explained by the different numbers of M = Ot (terminal oxygen) bonds in each individual cluster because it is well-known that Mo = Ot groups are the catalytically active sites for photooxidation reaction. The proposed mechanism of water oxidation for the dye-sensitized POMs is radical reaction process. This research could open up new perspectives for developing new POM-based WOCs. PMID:23676701

  16. ABAB Phthalocyanines: Scaffolds for Building Unprecedented Donor–π–Acceptor Chromophores

    PubMed Central

    Fazio, Ettore; Jaramillo‐García, Javier; Medel, María; Urbani, Maxence; Grätzel, Michael

    2016-01-01

    Abstract Unique donor–π–acceptor phthalocyanines have been synthesized through the asymmetric functionalization of an ABAB phthalocyanine, crosswise functionalized with two iodine atoms through Pd‐catalyzed cross‐coupling reactions with adequate electron‐donor and electron‐acceptor moieties. These push–pull molecules have been optically and electrochemically characterized, and their ability to perform as chromophores for dye‐sensitized solar cells has been tested. PMID:28168157

  17. An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Non-Fullerene Solar Cells.

    PubMed

    Zhang, Andong; Li, Cheng; Yang, Fan; Zhang, Jianqi; Wang, Zhaohui; Wei, Zhixiang; Li, Weiwei

    2017-03-01

    A star-shaped electron acceptor based on porphyrin as a core and perylene bisimide as end groups was constructed for application in non-fullerene organic solar cells. The new conjugated molecule exhibits aligned energy levels, good electron mobility, and complementary absorption with a donor polymer. These advantages facilitate a high power conversion efficiency of 7.4 % in non-fullerene solar cells, which represents the highest photovoltaic performance based on porphyrin derivatives as the acceptor.

  18. Near infrared organic semiconducting materials for bulk heterojunction and dye-sensitized solar cells.

    PubMed

    Singh, Surya Prakash; Sharma, G D

    2014-06-01

    Dye sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells have been the subject of intensive academic interest over the past two decades, and significant commercial effort has been directed towards this area with the vison of developing the next generation of low cost solar cells. Materials development has played a vital role in the dramatic improvement of both DSSC and BHJ solar cell performance in the recent years. Organic conjugated polymers and small molecules that absorb solar light in the visible and near infrared (NIR) regions represent a class of emering materials and show a great potential for the use of different optoelectronic devices such as DSSCs and BHJ solar cells. This account describes the emering class of near infrared (NIR) organic polymers and small molecules having donor and acceptors units, and explores their potential applications in the DSSCs and BHJ solar cells.

  19. Fluorescence spectroscopy of single molecules at room temperature and its applications

    SciTech Connect

    Ha, Taekjip

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  20. Effect of the preparation procedure on the morphology of thin TiO₂ films and their device performance in small-molecule bilayer hybrid solar cells.

    PubMed

    Unger, Eva L; Spadavecchia, Francesca; Nonomura, Kazuteru; Palmgren, Pål; Cappelletti, Giuseppe; Hagfeldt, Anders; Johansson, Erik M J; Boschloo, Gerrit

    2012-11-01

    Flat titanium dioxide films, to be used as the acceptor layer in bilayer hybrid solar cell devices, were prepared by spray-pyrolysis and by spin-casting. Both preparation methods resulted in anatase titania films with similar optical and electronic properties but considerably different film morphologies. Spray pyrolysis resulted in dense TiO₂ films grown onto and affected by the surface roughness of the underlying conducting glass substrates. The spin-casting preparation procedure resulted in nanoporous titania films. Hybrid solar cell devices with varying layer thickness of the small-molecule semiconducting dye TDCV-TPA were investigated. Devices built with spray-pyrolyzed titania substrates yielded conversion efficiencies up to 0.47%. Spin-cast titania substrates exhibited short circuits for thin dye layer thickness. For thicker dye layers the performance of these devices was up to 0.6% due to the higher interfacial area for charge separation of these nanoporous TiO₂ substrates.

  1. Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells.

    PubMed

    Dai, Shuixing; Zhao, Fuwen; Zhang, Qianqian; Lau, Tsz-Ki; Li, Tengfei; Liu, Kuan; Ling, Qidan; Wang, Chunru; Lu, Xinhui; You, Wei; Zhan, Xiaowei

    2017-01-25

    We design and synthesize four fused-ring electron acceptors based on 6,6,12,12-tetrakis(4-hexylphenyl)-indacenobis(dithieno[3,2-b;2',3'-d]thiophene) as the electron-rich unit and 1,1-dicyanomethylene-3-indanones with 0-2 fluorine substituents as the electron-deficient units. These four molecules exhibit broad (550-850 nm) and strong absorption with high extinction coefficients of (2.1-2.5) × 10(5) M(-1) cm(-1). Fluorine substitution downshifts the LUMO energy level, red-shifts the absorption spectrum, and enhances electron mobility. The polymer solar cells based on the fluorinated electron acceptors exhibit power conversion efficiencies as high as 11.5%, much higher than that of their nonfluorinated counterpart (7.7%). We investigate the effects of the fluorine atom number and position on electronic properties, charge transport, film morphology, and photovoltaic properties.

  2. An organic donor/acceptor lateral superlattice at the nanoscale.

    PubMed

    Otero, Roberto; Ecija, David; Fernandez, Gustavo; Gallego, José María; Sanchez, Luis; Martín, Nazario; Miranda, Rodolfo

    2007-09-01

    A precise control of the nanometer-scale morphology in systems containing mixtures of donor/acceptor molecules is a key factor to improve the efficiency of organic photovoltaic devices. Here we report on a scanning tunneling microscopy study of the first stages of growth of 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole, as electron donor, and phenyl-C61-butyric acid methyl ester, as electron acceptor, on a Au(111) substrate under ultrahigh vacuum conditions. Due to differences in bonding strength with the substrate and different interactions with the Au(111) herringbone surface reconstruction, mixed thin films spontaneously segregate into a lateral superlattice of interdigitated nanoscale stripes with a characteristic width of about 10-20 nm, a morphology that has been predicted to optimize the efficiency of organic solar cells.

  3. FRET study in oligopeptide-linked donor-acceptor system in PVA matrix

    NASA Astrophysics Data System (ADS)

    Shah, Sunil; Mandecki, Wlodek; Li, Ji; Gryczynski, Zygmunt; Borejdo, Julian; Gryczynski, Ignacy; Fudala, Rafal

    2016-12-01

    An oligopeptide: Lys-Gly-Pro-Arg-Ser-Leu-Ser-Gly-Lys-NH2, cleaved specifically by a matrix metalloproteinase 9 (MMP-9) at the Ser-Leu bond, was labeled on the ɛ-NH2 groups of lysine with donor (5, 6 TAMRA) and acceptor (HiLyte647) dye. The donor control was a peptide labeled with 5, 6 TAMRA only on the C-terminal lysine, and the acceptor control was free HiLyte647. Following three products were studied by dissolving in 10% (w/w) poly(vinyl alcohol) and dried on glass slides forming 200 micron films. Absorption spectra of the films show full additivity of donor and acceptor absorptions. A strong Fluorescence Resonance Energy Transfer (FRET) with an efficiency of about 85% was observed in the fluorescence emission and excitation spectra. The lifetime of the donor was shorter and heterogeneous compared with the donor control.

  4. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.

    PubMed

    Mahajan, Prasad G; Bhopate, Dhanaji P; Kolekar, Govind B; Patil, Shivajirao R

    2016-07-01

    An aqueous suspension of fluorescent nanoparticles (PHNNPs) of naphthol based fluorescent organic compound 1-[(Z)-(2-phenylhydrazinylidene) methyl] naphthalene -2-ol (PHN) were prepared using reprecipitation method shows bathochromically shifted aggregation induced enhanced emission (AIEE) in the spectral region where erythrosine (ETS) food dye absorbs strongly. The average size of 72.6 nm of aqueous suspension of PHNNPs obtained by Dynamic light scattering results shows a narrow particle size distribution. The negative zeta potential of nano probe (-22.6 mV) responsible to adsorb oppositely charged analyte on its surface and further permit to bind nano probe and analyte within the close distance proximity required for efficient fluorescence resonance energy transfer (FRET) to take place from donor (PHNNPs) to acceptor (ETS). Systematic FRET experiments performed by measuring fluorescence quenching of PHNNPs with successive addition of ETS solution exploited the use of the PHNNPs as a novel nano probe for the detection of ETS in aqueous solution with extremely lower limit of detection equal to 3.6 nM (3.1 ng/mL). The estimation of photo kinetic and thermodynamic parameters such as quenching rate constant, enthalpy change (∆H), Gibbs free energy change (∆G) and entropy change (∆S) was obtained by the quenching results obtained at different constant temperatures which were found to fit the well-known Stern-Volmer relation. The mechanism of binding and fluorescence quenching of PHNNPs by ETS food dye is proposed on the basis of results obtained in photophysical studies, thermodynamic parameter, energy transfer efficiency, critical energy transfer distance (R0) and distance of approach between donor-acceptor molecules (r). The proposed FRET method based on fluorescence quenching of PHNNPs was successfully applied to develop an analytical method for estimation of ETS from food stuffs without interference of other complex ingredients. Graphical Abstract A

  5. Structure-performance correlations of organic dyes with an electron-deficient diphenylquinoxaline moiety for dye-sensitized solar cells.

    PubMed

    Li, Sie-Rong; Lee, Chuan-Pei; Yang, Po-Fan; Liao, Chia-Wei; Lee, Mandy M; Su, Wei-Lin; Li, Chun-Ting; Lin, Hao-Wu; Ho, Kuo-Chuan; Sun, Shih-Sheng

    2014-08-04

    The high performances of dye-sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon-to-electron conversion efficiencies extends to the onset at the near-infrared region due to strong internal charge-transfer transition as well as the effect of electron-deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their Ru(II) counterparts. Detailed spectroscopic studies have revealed the dye structure-cell performance correlations, to allow future design of efficient light-harvesting organic dyes.

  6. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.

    PubMed

    Nealson, K H; Moser, D P; Saffarini, D A

    1995-04-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  7. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  8. Single-molecule FRET ruler based on rigid DNA origami blocks.

    PubMed

    Stein, Ingo H; Schüller, Verena; Böhm, Philip; Tinnefeld, Philip; Liedl, Tim

    2011-02-25

    Fluorescence resonance energy transfer (FRET) has become a work-horse for distance measurements on the nanometer scale and between single molecules. Recent model systems for the FRET distance dependence such as polyprolines and dsDNA suffered from limited persistence lengths and sample heterogeneity. We designed a series of rigid DNA origami blocks where each block is labeled with one donor and one acceptor at distances ranging between 2.5 and 14 nm. Since all dyes are attached in one plane to the top surface of the origami block, static effects of linker lengths cancel out in contrast to commonly used dsDNA. We used single-molecule spectroscopy to compare the origami-based ruler to dsDNA and found that the origami blocks directly yield the expected distance dependence of energy transfer since the influence of the linkers on the donor-acceptor distance is significantly reduced. Based on a simple geometric model for the inter-dye distances on the origami block, the Förster radius R(0) could directly be determined from the distance dependence of energy transfer yielding R(0)=5.3±0.3 nm for the Cy3-Cy5 pair.

  9. The Structure-property Relationships of D-π-A BODIPY Dyes for Dye-sensitized Solar Cells.

    PubMed

    Mao, Mao; Song, Qin-Hua

    2016-04-01

    BODIPY dyes have attracted considerable attention as potential photosensitizers in dye-sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D-π-A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure-property relationships of D-π-A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6-modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure-property relationships give valuable information and guidelines for designing new D-π-A BODIPY dyes for DSSCs.

  10. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-24

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state.

  11. Discovery of Black Dye Crystal Structure Polymorphs: Implications for Dye Conformational Variation in Dye-Sensitized Solar Cells.

    PubMed

    Cole, Jacqueline M; Low, Kian Sing; Gong, Yun

    2015-12-23

    We present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world's leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes.

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Limitation of high-power optical radiation by organic molecules: I. Substituted pyranes and cyanine dyes

    NASA Astrophysics Data System (ADS)

    Kopylova, T. N.; Svetlichnyi, Valerii A.; Mayer, G. V.; Reznichenko, A. V.; Podgaetskii, Vitalii M.; Ponomareva, O. V.; Samsonova, L. G.; Filinov, D. N.; Pomogaev, V. A.; Tel'minov, E. N.; Lapin, I. N.; Svetlichnaya, N. N.; Sinchenko, E. I.

    2003-11-01

    Photophysical processes proceeding in polyatomic organic molecules (pyran derivatives and cyanines) excited by high-power laser radiation at 532 nm are studied. Some properties of their changes depending on the structure, solvent, and excitation conditions are determined. The effect of limitation of high-power exciting radiation by the organic molecules is found. The maximum limitation (Kmax = 15.0 at the initial transmission equal to 70%) was observed for the cyanine derivative and is comparable to this effect for fullerenes C60, which are widely used as radiation limiters.

  13. Modular supramolecular approach for co-crystallization of donors and acceptors into ordered networks

    DOEpatents

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alex K.; Tayi, Alok S.; Sue, Andrew C. H.; Narayanan, Ashwin

    2016-09-20

    Organic charge-transfer (CT) co-crystals in a mixed stack system are disclosed, wherein a donor molecule (D) and an acceptor molecule (A) occupy alternating positions (DADADA) along the CT axis. A platform is provided which amplifies the molecular recognition of donors and acceptors and produces co-crystals at ambient conditions, wherein the platform comprises (i) a molecular design of the first constituent (.alpha.-complement), (ii) a molecular design of the second compound (.beta.-complement), and (iii) a solvent system that promotes co-crystallization.

  14. Photodissociation Dye Laser

    DTIC Science & Technology

    1975-04-01

    Chemical Properties of Free Radicals 5 C. Criteria for the Selection of Photodissociation Dye Laser Molecules 6 III. EXPERIMENTAL EFFORT AND...nanoseconds. In radicl systems, however, there is evidence both theoretical and experimental, that the first doublet-doublet electronic tra-jitions are...Properties, of Free Radicals Recombination is only one of many possible reaction paths that can occur in a radical system. Because they are characterized

  15. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  16. Single-Molecule Fluorescence Spectroscopy of Perylene Diimide Dyes in a γ-Cyclodextrin Film: Manifestation of Photoinduced H-Atom Transfer via Higher Triplet (n, π*) Excited States.

    PubMed

    Mitsui, Masaaki; Fukui, Hiroki; Takahashi, Ryoya; Takakura, Yasushi; Mizukami, Toshinari

    2017-03-02

    Supramolecular complexation of γ-cyclodextrin (γ-CD) with N,N'-bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylic diimide (DMP-PDI) or N,N'-bis(2,6-dioctyl)perylene-3,4,9,10-tetracarboxylic diimide (C8-PDI) dye in an aqueous solution and in a γ-CD solid film were investigated via ensemble and single-molecule fluorescence spectroscopy. These two perylene diimide derivatives possess almost the same electronic structure but have different terminal functional groups. This structural difference leads to formation of an inclusion complex of γ-CD with DMP-PDI but not with C8-PDI in aqueous solution. In a γ-CD solid film, the distributions of the wavelengths of emission maximum (λmax(em)) are strikingly different between these two dyes; a much narrower and blue-shifted λmax(em) distribution was observed for C8-PDI relative to DMP-PDI. This difference is attributed to the fact that the C8-PDI molecules are bound at the γ-CD/glass interface as a result of spin-coating of the sample solution, whereas the DMP-PDI molecules form 1:1 and 1:2 inclusion complexes with conformational heterogeneities in the film. In comparison to the case for C8-PDI, more frequent on-off blinking events were observed for DMP-PDI. The blinking statistics of DMP-PDI in the γ-CD film exhibit both single-exponential and nonexponential (i.e., dispersive) kinetics, revealed by robust statistical analysis. Energetic consideration with the aid of theoretical calculations suggests that the underlying photophysics most probably involves hydrogen atom transfer (HAT) between the DMP-PDI guest and γ-CD host via higher excited (n, π*) triplet states. The hypothesis of HAT in the inclusion complex reasonably explains the experimental results; however, a charge transfer hypothesis cannot explain the results. The dispersive kinetics is attributable to the effect of thermal fluctuation in the forward and backward HAT reactions.

  17. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  18. Dye Photodestruction in a Solid-State Dye Laser with a Polymeric Gain Medium

    NASA Astrophysics Data System (ADS)

    Popov, Sergei

    1998-09-01

    The process of dye photodestruction in a solid-state dye laser is studied, and implemented is a polymeric gain medium doped with a strongly concentrated dye. The behavior of the conversion efficiency in the polymeric gain medium pumped with different laser-pulse repetition rates and the process of dye photobleaching are analyzed. The contribution of the heating of the host material into the dye molecules deactivation is discussed. The negative effect of high dye concentration on the dye stability under a high pump repetition rate is reported and analyzed for the first time to my knowledge. A comparison of the present results with recently published data demonstrates the major role of photodestruction, rather than direct thermodestruction, in the dye stability of the solid-state gain medium. The role of additives with low molecular weights in the polymeric matrix, for increasing the stability of the gain material, is discussed.

  19. Dye photodestruction in a solid-state dye laser with a polymeric gain medium.

    PubMed

    Popov, S

    1998-09-20

    The process of dye photodestruction in a solid-state dye laser is studied, and implemented is a polymeric gain medium doped with a strongly concentrated dye. The behavior of the conversion efficiency in the polymeric gain medium pumped with different laser-pulse repetition rates and the process of dye photobleaching are analyzed. The contribution of the heating of the host material into the dye molecules' deactivation is discussed. The negative effect of high dye concentration on the dye stability under a high pump repetition rate is reported and analyzed for the first time to my knowledge. A comparison of the present results with recently published data demonstrates the major role of photodestruction, rather than direct thermodestruction, in the dye stability of the solid-state gain medium. The role of additives with low molecular weights in the polymeric matrix, for increasing the stability of the gain material, is discussed.

  20. Oligomer Molecules for Efficient Organic Photovoltaics.

    PubMed

    Lin, Yuze; Zhan, Xiaowei

    2016-02-16

    Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability

  1. Dye Painting with Fiber Reactive Dyes

    ERIC Educational Resources Information Center

    Benjamin-Murray, Betsy

    1977-01-01

    In her description of how to use dyes directly onto fabrics the author lists materials to be used, directions for mixing dyes, techniques for applying dyes, references for additional reading and sources for dye materials. Preceding the activity with several lessons in design and other textile techniques with the dye process will ensure a…

  2. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields

  3. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells.

    PubMed

    Hoke, Eric T; Hardin, Brian E; McGehee, Michael D

    2010-02-15

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies.

  4. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodríguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential.

  5. Theoretical design and screening of alkyne bridged triphenyl zinc porphyrins as sensitizer candidates for dye-sensitized solar cells.

    PubMed

    Zhang, Xianxi; Chen, Qianqian; Sun, Huafei; Pan, Tingting; Hu, Guiqi; Ma, Ruimin; Dou, Jianmin; Li, Dacheng; Pan, Xu

    2014-01-24

    Alkyne bridged porphyrins have been proved very promising sensitizers for dye-sensitized solar cells (DSSCs) with the highest photo-to-electric conversion efficiencies of 11.9% solely and 12.3% co-sensitized with other sensitizers achieved. Developing better porphyrin sensitizers with wider electronic absorption spectra to further improve the efficiencies of corresponding solar cells is still of great significance for the application of DSSCs. A series of triphenyl zinc porphyrins (ZnTriPP) differing in the nature of a pendant acceptor group and the conjugated bridge between the porphyrin nucleus and the acceptor unit were modeled and their electronic and spectral properties calculated using density functional theory. As compared with each other and the experimental results of the compounds used in DSSCs previously, the molecules with a relatively longer conjugative linker and a strong electron-withdrawing group such as cyanide adjacent to the carboxyl acid group seem to provide wider electronic absorption spectra and higher photo-to-electric conversion efficiencies. The dye candidates ZnTriPPE, ZnTriPPM, ZnTriPPQ, ZnTriPPR and ZnTriPPS designed in the current work were found promising to provide comparable photo-to-electric conversion efficiencies to the record 11.9% of the alkyne bridged porphyrin sensitizer YD2-o-C8 reported previously.

  6. Theoretical design and screening of alkyne bridged triphenyl zinc porphyrins as sensitizer candidates for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xianxi; Chen, Qianqian; Sun, Huafei; Pan, Tingting; Hu, Guiqi; Ma, Ruimin; Dou, Jianmin; Li, Dacheng; Pan, Xu

    2014-01-01

    Alkyne bridged porphyrins have been proved very promising sensitizers for dye-sensitized solar cells (DSSCs) with the highest photo-to-electric conversion efficiencies of 11.9% solely and 12.3% co-sensitized with other sensitizers achieved. Developing better porphyrin sensitizers with wider electronic absorption spectra to further improve the efficiencies of corresponding solar cells is still of great significance for the application of DSSCs. A series of triphenyl zinc porphyrins (ZnTriPP) differing in the nature of a pendant acceptor group and the conjugated bridge between the porphyrin nucleus and the acceptor unit were modeled and their electronic and spectral properties calculated using density functional theory. As compared with each other and the experimental results of the compounds used in DSSCs previously, the molecules with a relatively longer conjugative linker and a strong electron-withdrawing group such as cyanide adjacent to the carboxyl acid group seem to provide wider electronic absorption spectra and higher photo-to-electric conversion efficiencies. The dye candidates ZnTriPPE, ZnTriPPM, ZnTriPPQ, ZnTriPPR and ZnTriPPS designed in the current work were found promising to provide comparable photo-to-electric conversion efficiencies to the record 11.9% of the alkyne bridged porphyrin sensitizer YD2-o-C8 reported previously.

  7. Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two-photon absorption

    NASA Astrophysics Data System (ADS)

    Xu, Guibao; Hu, Dawei; Zhao, Xian; Shao, Zongshu; Liu, Huijun; Tian, Yupeng

    2007-06-01

    We report the fluorescence upconversion properties of a class of improved pyridinium toluene- p-sulfonates having donor- π-acceptor (D- π-A) structure under two-photon excitation at 1064 nm. The experimental results show that both the two-photon excited (TPE) fluorescence lifetime and the two-photon pumped (TPP) energy upconversion efficiency were increased with the enhancement of electron-donating capability of the donor in the molecule. It is also indicated that an overlong alkyl group tends to result in a weakened molecular conjugation, leading to a decreased two-photon absorption (TPA) cross section. By choosing the donor, we can obtain a longest fluorescence lifetime of 837 ps, a highest energy upconversion efficiency of ˜6.1%, and a maximum TPA cross-section of 8.74×10 -48 cm 4 s/photon in these dyes.

  8. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    SciTech Connect

    Roch, Christina; Kuhn, Joachim; Kleesiek, Knut; Goetting, Christian

    2010-01-01

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that K{sub m} and V{sub max} values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  9. Temperature-cycle single-molecule FRET microscopy on polyprolines.

    PubMed

    Yuan, Haifeng; Xia, Ted; Schuler, Benjamin; Orrit, Michel

    2011-02-07

    Accessing the microsecond dynamics of a single fluorescent molecule in real time is difficult because molecular fluorescence rates usually limit the time resolution to milliseconds. We propose to apply single-molecule temperature-cycle microscopy to probe molecular dynamics at microsecond timescales. Here, we follow donor and acceptor signals of single FRET-labeled polyprolines in glycerol to investigate their conformational dynamics. We observe a steady-state FRET efficiency distribution which differs from theoretical distributions for isotropically orientated fluorescent labels. This may indicate that the orientation of fluorescent labels in glycerol is not isotropic and may reflect the influence of the dye linkers. With proper temperature-cycle parameters, we observed large FRET changes in long series of cycles of the same molecule. We attribute the main conformational changes to reorientations of the fluorescent labels with respect to the oligopeptide chain, which take place in less than a few microseconds at the highest temperature of the cycle (250 K). We were able to follow the FRET efficiency of a particular construct for more than 2000 cycles. This trajectory displays switching between two conformations, which give rise to maxima in the FRET efficiency histogram. Our experiments open the possibility to study biomolecular dynamics at a time scale of a few microseconds at the single-molecule level.

  10. Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.

    PubMed

    Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd

    2013-08-16

    α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.

  11. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor-π-acceptor (D-π-A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 - BUCT30 dyes show smaller HOMO-LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices.

  12. Light-induced noncentrosymmetry in acceptor-donor-substituted azobenzene solutions

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Si, Jinhai; Wang, Yougui; Ye, Peixian; Fu, Xingfa; Qiu, Ling; Shen, Yuquan

    1995-10-01

    Light-induced noncentrosymmetry was achieved experimentally in acceptor-donor-substituted azobenzene solutions and observed by phase-matched nondegenerate six-wave mixing. The microscopic origin of the induced noncentrosymmetry was found to be orientational hole burning, which was distinguished directly with net orientation of molecules by experimental observations. The decay time of the induced noncentrosymmetry depended on the rotational orientation time of the sample's molecule, which varied linearly with the viscosity of the solvent.

  13. Electrophilicity and solvatochromic reversal of pyridinium phenolate betaine dyes

    NASA Astrophysics Data System (ADS)

    Rezende, Marcos Caroli; Aracena, Andrés

    2012-07-01

    The solvatochromic reversal of phenolate betaine dyes may be theoretically rationalized and predicted by determining the flow direction of their internal charge-transfer in media of increasing polarity, with the aid of the electrophilicities of the donor and acceptor moieties, or of the corresponding electrophilic Fukui functions. The protocol was applied to ten examples from the literature.

  14. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    PubMed Central

    2015-01-01

    Conspectus The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together

  15. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells.

    PubMed

    Liu, Yuhang; Mu, Cheng; Jiang, Kui; Zhao, Jingbo; Li, Yunke; Zhang, Lu; Li, Zhengke; Lai, Joshua Yuk Lin; Hu, Huawei; Ma, Tingxuan; Hu, Rongrong; Yu, Demei; Huang, Xuhui; Tang, Ben Zhong; Yan, He

    2015-02-01

    A tetraphenylethylene core-based small molecular acceptor with a unique 3D molecular structure is developed. Bulk-heterojunction blend films with a small feature size (≈20 nm) are obtained, which lead to non-fullerene organic solar cells (OSCs) with 5.5% power conversion efficiency. The work provides a new molecular design approach to efficient non-fullerene OSCs based on 3D-structured small-molecule acceptors.

  16. Copper-catalyzed asymmetric conjugate addition of organometallic reagents to extended Michael acceptors.

    PubMed

    Schmid, Thibault E; Drissi-Amraoui, Sammy; Crévisy, Christophe; Baslé, Olivier; Mauduit, Marc

    2015-01-01

    The copper-catalyzed asymmetric conjugate addition (ACA) of nucleophiles onto polyenic Michael acceptors represents an attractive and powerful methodology for the synthesis of relevant chiral molecules, as it enables in a straightforward manner the sequential generation of two or more stereogenic centers. In the last decade, various chiral copper-based catalysts were evaluated in combination with different nucleophiles and Michael acceptors, and have unambiguously demonstrated their usefulness in the control of the regio- and enantioselectivity of the addition. The aim of this review is to report recent breakthroughs achieved in this challenging field.

  17. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-05

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  18. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    NASA Astrophysics Data System (ADS)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  19. Salicylic Acid-Based Organic Dyes Acting as the Photosensitizer for Solar Cells.

    PubMed

    Hong, Sungjun; Park, Jae-Hyeong; Han, Ah-Reum; Ko, Kwan-Woo; Eom, Jin Hee; Namgoong, Sung Keon; Lo, Alvie S V; Gordon, Keith C; Yoon, Sungho; Han, Chi-Hwan

    2016-05-01

    A D-π-A metal-free organic dye, featuring salicylic acid as a novel acceptor/anchoring unit, has been designed, synthesized and applied to dye-sensitized solar cell. The detailed photophysical, electrochemical, photovoltaic and sensitizing properties of the organic dye were investigated, in addition to the computational studies of the dye and dye-(TiO2)6 system. A solar cell device using this new organic dye as a sensitizer produced a solar to electric power conversion efficiency (PCE) of 3.49% (J(sc) = 6.69 mAcm-2, V(oc) = 0.74 V and ff = 0.70) under 100 mWcm(-2) simulated AM 1.5 G solar irradiation, demonstrating that the salicylic acid-based organic dye is a suitable alternative to currently used organometallic dyes.

  20. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  1. Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing

    NASA Astrophysics Data System (ADS)

    Ton-That, C.; Zhu, L.; Lockrey, M. N.; Phillips, M. R.; Cowie, B. C. C.; Tadich, A.; Thomsen, L.; Khachadorian, S.; Schlichting, S.; Jankowski, N.; Hoffmann, A.

    2015-07-01

    X-ray absorption near-edge spectroscopy, photoluminescence, cathodoluminescence, and Raman spectroscopy have been used to investigate the chemical states of nitrogen dopants in ZnO nanowires. It is found that nitrogen exists in multiple states: NO,NZn, and loosely bound N2 molecule. The results establish a direct link between a donor-acceptor pair emission at 3.232 eV and the concentration of loosely bound N2. This work confirms that N2 at Zn site is a potential candidate for producing a shallow acceptor state in N-doped ZnO as theoretically predicted by Lambrecht and Boonchun [Phys. Rev. B 87, 195207 (2013), 10.1103/PhysRevB.87.195207]. Additionally, shallow acceptor states arising from NO complexes have been ruled out in this paper.

  2. π-Spacer effect in dithiafulvenyl-π-phenothiazine dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Gou, Faliang; Zhao, Dongning; Shi, Jian; Gao, Hong; Zhu, Zhenping; Jing, Huanwang

    2016-08-01

    New dithiafulvenyl-π-phenothiazine dyes have been devised and prepared for dye-sensitized solar cells. Various π-spacers have been successfully introduced into the skeleton of dithiafulvenyl and phenothiazine unit to generate novel D-π-D-A dyes (DPP-1 ∼ 4). All dyes have been characterized with NMR, HRMS, UV-vis and fluorescence spectra, and taken into cyclic voltammetry measurements. The devices of new dyes have been determined by photoelectrochemical experiments (IV, IPCE and EIS), in which, solar cell of DPP-4 with biphenyl ring π-spacer enhances obviously its photoelectric conversion efficiency to 7.66% reaching 94% of N719-based standard cell and displays good long-term stability with quasi-solid-state electrolyte. Density functional theory (DFT) calculations of new dyes provide further insight into the molecular geometries and the impacts of the torsion angles on their photovoltaic performance. Large dihedral angles in DPP dyes induce good charge separation for efficient unidirectional flow of electron from donor to acceptor.

  3. Controlling light absorption and photoelectric properties of coumarin-triphenylaminedye by different acceptor functional groups.

    PubMed

    Sun, Chaofan; Bai, Yanpeng; Li, Yuanzuo; Liu, Dejiang; Xu, Beibei; Wang, Qungui

    2016-11-01

    The ground state and excited state properties of three coumarin dyes, ZCJ1, ZCJ2 and ZCJ3, including ground state structures, energy levels, absorption spectra and driving forces of electron injection, were investigated via density functional theory (DFT) and time-dependent density functional theory (TD-DFT). In addition, five new molecules ZCJ3-1, ZCJ3-2, ZCJ3-3, ZCJ3-4 and ZCJ3-5 were designed through the introduction of a -CN group into molecule ZCJ3. The ground state and excited state properties of the five designed molecules were also calculated and compared with that of the original molecule, aiming to investigate the effect of different position of -CN groups on the optical and electrical properties of dye molecules. Moreover, the external electric field was taken into account. The results indicated that all three original molecules have better absorption within the visible-light range, and the molecule with a thiophene-thiophene conjugated bridge enables a red shift of the absorption spectrum. The molecule with a thiophene-benzene ring conjugated bridge enables the increase of driving force of electron injection. The energy levels, spectra and driving force of electron injection for the designed molecules are discussed in terms of studying their potential utility in dye-sensitized solar cells.

  4. Characterization of thermally stable dye-doped polyimide based electrooptic materials

    SciTech Connect

    Meinhardt, M.B.; Cahill, P.A.; Seager, C.H.; Beuhler, A.J.; Wargowski, D.A.

    1993-12-31

    Polymeric electrooptic materials have the potential to replace electronic switches in applications which require minimization of heat dissipation while maintaining high switching speeds. Polyimide matrices incorporating electrooptic dyes are promising materials for such applications due to their low cost and compatibility with existing processing environments. Preparation and characterization of novel dye-doped polyimide films for electrooptics is described. Thermal stabilities of donor-acceptor 2,5-diaryl oxazoles were evaluated by differential scanning calorimetry. Absorptive losses in thin films of Ultradel 9000D{reg_sign} doped with donor-acceptor oxazoles were measured by photothermal deflection spectroscopy. Absorptive losses at high doping levels may be explainable by dye-dye aggregation or dye degradation during the curing process. Lower doping levels, however, show losses of {le} 3.0 dB/cm at 830 nm and {le} 2.4 dB/cm at 1,320 nm.

  5. Characterization of thermally stable dye-doped polyimide based electrooptic materials

    NASA Astrophysics Data System (ADS)

    Meinhardt, M. B.; Cahill, P. A.; Seager, C. H.; Beuhler, A. J.; Wargowski, D. A.

    1993-11-01

    Polymeric electrooptic materials have the potential to replace electronic switches in applications which require minimization of heat dissipation while maintaining high switching speeds. Polyimide matrices incorporating electrooptic dyes are promising materials for such applications due to their low cost and compatibility with existing processing environments. Preparation and characterization of novel dye-doped polyimide films for electrooptics is described. Thermal stabilities of donor-acceptor 2,5-diaryl oxazoles were evaluated by differential scanning calorimetry. Absorptive losses in thin films of Ultradel 9000D(reg sign) doped with donor-acceptor oxazoles were measured by photothermal deflection spectroscopy. Absorptive losses at high doping levels may be explainable by dye-dye aggregation or dye degradation during the curing process. Lower doping levels, however, show losses of less than or = 3.0 dB/cm at 830 nm and less than or = 2.4 dB/cm at 1,320 nm.

  6. The electronic structure engineering of organic dye sensitizers for solar cells: The case of JK derivatives.

    PubMed

    Zhang, Cai-Rong; Ma, Jin-Gang; Zhe, Jian-Wu; Jin, Neng-Zhi; Shen, Yu-Lin; Wu, You-Zhi; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-11-05

    The design and development of novel dye sensitizers are effective method to improve the performance of dye-sensitized solar cells (DSSCs) because dye sensitizers have significant influence on photo-to-current conversion efficiency. In the procedure of dye sensitizer design, it is very important to understand how to tune their electronic structures and related properties through the substitution of electronic donors, acceptors, and conjugated bridges in dye sensitizers. Here, the electronic structures and excited-state properties of organic JK dye sensitizers are calculated by using density functional theory (DFT) and time dependent DFT methods. Based upon the calculated results, we investigated the role of different electronic donors, acceptors, and π-conjugated bridges in the modification of electronic structures, absorption properties, as well as the free energy variations for electron injection and dye regeneration. In terms of the analysis of transition configurations and molecular orbitals, the effective chromophores which are favorable for electron injection in DSSCs are addressed. Meanwhile, considering the absorption spectra and free energy variation, the promising electronic donors, π-conjugated bridges, and acceptors are presented to design dye sensitizers.

  7. Nature of the attractive interaction between proton acceptors and organic ring systems.

    PubMed

    Arras, Emmanuel; Seitsonen, Ari Paavo; Klappenberger, Florian; Barth, Johannes V

    2012-12-14

    Systematic ab initio calculations are combined with a deconvolution of electrostatic contributions to analyze the interplay between potential hydrogen bond acceptors and organic rings with C(sp(2))-H groups (benzene, pyridine and cyclopentadiene). A distinct anisotropic interaction between the ring systems and the electron lone pairs of cyanide, water and other acceptor species is revealed that favors the in-plane orientation of the proton acceptor group. In the attractive regime this interaction carries a pronounced electrostatic signature. By decomposing the electrostatic contribution into parts attributed to different subunits of the ring systems we demonstrate that a major proportion of the interaction energy gain is originating from the non-adjacent moieties, that are not in close contact with. This behavior holds equally for homocyclic, heterocyclic and non-aromatic rings but contrasts that of the ethyne molecule, taken as reference for a weak hydrogen bond donor clearly exhibiting the expected localized character. The ring interaction requires the presence of π-electron clouds and typically results in an interaction energy gain of 40 to 80 meV. Our findings suggest the proton acceptor-ring interaction as a new category of intermolecular non-covalent interactions.

  8. Functionalized dye encapsulated polymer nanoparticles attached with a BSA scaffold as efficient antenna materials for artificial light harvesting.

    PubMed

    Jana, Bikash; Bhattacharyya, Santanu; Patra, Amitava

    2016-09-21

    A potential strategy for a new generation light harvesting system is multi-chromophoric donor-acceptor pairs where light energy is absorbed by an antenna complex and subsequently transfers its energy to the acceptor via energy transfer. Here, we design a system of a functionalized polymer nanoparticle-protein scaffold for efficient light harvesting and white light generation where a dye doped polymer nanoparticle acts as a donor and a dye encapsulated BSA protein acts as an acceptor. Analysis reveals that 91.3% energy transfer occurs from the dye doped polymer nanoparticle to the dye encapsulated BSA protein. The antenna effect of this light harvesting system is found to be 31 at a donor to acceptor ratio of 0.82 : 1 which is unprecedented. The enhanced effective molar extinction coefficient of the acceptor dye is potential for the light harvesting system. Bright white light emission with a quantum yield of 14% under single wavelength excitation is obtained by changing the ratio of donor to acceptor. Analysis reveals that the efficient energy transfer in this polymer-protein assembly may open up new possibilities in designing artificial light harvesting systems for future applications.

  9. Dye laser amplifier

    DOEpatents

    Moses, Edward I.

    1992-01-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye lr amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant.

  10. Dye laser amplifier

    DOEpatents

    Moses, E.I.

    1992-12-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  11. Novel zinc porphyrin sensitizers for dye-sensitized solar cells: Synthesis and spectral, electrochemical, and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Tan, Qinglong; Zhang, Xuejun; Mao, Lijun; Xin, Guanqiong; Zhang, Shuanfen

    2013-03-01

    Two donor-π-spacer-acceptor porphyrin dyes were synthesized for use in dye-sensitized solar cells. The dyes comprised the same donor (porphyrin derivative) consisting of 3,4,5-trimethoxybenzaldehyde and acceptor/anchoring group (carboxyl group) but varying π-spacer consisting of a Schiff base structure. Each of the dyes displayed different adsorption behavior and coverage on the TiO2 surface. The porphyrin dyes PZnsbnd BIAsbnd COOH studied in this work exhibit red-shifted and broadened electronic spectra respect to the reference PZnsbnd COOH as expected. By the introduction of Schiff base unit at the meso positions, the energy level of Eox (excited-state oxidation potentials) is significantly shifted to the positive compared with the reference PZnsbnd COOH, indicating a decreased HOMO-LUMO gap. The highest power conversion efficiency of the two dyes based on DSSCs reached 1.75% under AM 1.5 G irradiation.

  12. Accurate simulation of optical properties in dyes.

    PubMed

    Jacquemin, Denis; Perpète, Eric A; Ciofini, Ilaria; Adamo, Carlo

    2009-02-17

    Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them.

  13. High Performance Magazine Acceptor Threshold Criteria

    DTIC Science & Technology

    1994-08-01

    detonation transition (DDT). To account for unknown mechanisms the term XDT is also used. Development of a design procedure to prevent SD requires...propagation walls are used to prevent sympathetic detonation between munitions stored in adjacent cells. Design of the walls, and their mitigation...effects, requires sympathetic detonation threshold criteria for acceptor munitions. This paper outlines the procedures being used to develop SD threshold

  14. A push-pull organic dye with a quinoidal thiophene linker: Photophysical properties and solvent effects

    NASA Astrophysics Data System (ADS)

    Climent, Clàudia; Carreras, Abel; Alemany, Pere; Casanova, David

    2016-10-01

    In the present work we perform a computational study of the properties of a push-pull organic dye with a quinoidal thiophene unit as the conjugated linker between the electron donor and acceptor groups. We investigate the photophysical properties of the dye related to its potential use as a molecular sensitizer in dye-sensitized solar cells. We rationalize the solvation effects on the absorption band of the dye in protic and aprotic solvents, identifying the interaction of alcohol solvents with the amine in the donor group as the source for the blue shift of the absorption band with respect to aprotic solvents.

  15. A general framework for the solvatochromism of pyridinium phenolate betaine dyes

    NASA Astrophysics Data System (ADS)

    Rezende, Marcos Caroli; Aracena, Andrés

    2013-02-01

    A general framework for the solvatochromic behavior of pyridinium phenolate betaine dyes is presented, based on the variations with the medium of the electrophilic Fukui functions of their electron-pair donor and acceptor moieties. The model explains the ‘anomalous' solvatochromic behavior of large betaines, which change their behavior from negative to inverted, when electron-pair donor and acceptor groups are separated by a conjugated chain of variable size.

  16. Just Dyeing to Find Out.

    ERIC Educational Resources Information Center

    Monhardt, Becky Meyer

    1996-01-01

    Presents a multidisciplinary unit on natural dyes designed to take advantage of the natural curiosity of middle school students. Discusses history of dyes, natural dyes, preparation of dyes, and the dyeing process. (JRH)

  17. Dye-sensitized solar cells with improved performance using cone-calix[4]arene based dyes.

    PubMed

    Tan, Li-Lin; Liu, Jun-Min; Li, Shao-Yong; Xiao, Li-Min; Kuang, Dai-Bin; Su, Cheng-Yong

    2015-01-01

    Three cone-calix[4]arene-based sensitizers (Calix-1-Calix-3) with multiple donor-π-acceptor (D-π-A) moieties are designed, synthesized, and applied in dye-sensitized solar cells (DSSCs). Their photophysical and electrochemical properties are characterized by measuring UV/Vis absorption and emission spectra, cyclic voltammetry, and density functional theory (DFT) calculations. Calix-3 has excellent thermo- and photostability, as illustrated by thermogravimetric analysis (TGA) and dye-aging tests, respectively. Importantly, a DSSC using the Calix-3 dye displays a conversion efficiency of 5.48 % in under standard AM 1.5 Global solar illumination conditions, much better than corresponding DSSCs that use the rod-shaped dye M-3 with a single D-π-A chain (3.56 %). The dyes offer advantages in terms of higher molar extinction coefficients, longer electron lifetimes, better stability, and stronger binding ability to TiO2 film. This is the first example of calixarene-based sensitizers for efficient dye-sensitized solar cells.

  18. Detailed analysis of ultrathin fluorescent red dye interlayer for organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zang, Yue; Yu, Jun-Sheng; Wang, Na-Na; Jiang, Ya-Dong

    2011-01-01

    The influence of an ultrathin 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) fluorescent dye layer at donor/acceptor heterojunction on the performance of small-molecule organic photovoltaic (OPV) cell is studied. The structure of OPV cell is of indium-tin oxide (ITO)/copper phthalocyanine (CuPc)/DCJTB/fullerene (C60)/bathophenanthroline (Bphen)/Ag. The results show that open circuit voltage (VOC) increases to 0.57 V as the film thickness of DCJTB layer increases from 0.2 to 2.0 nm. By using an equivalent circuit model, the enhancement of VOC is found to be attributed to the reduced reverse saturation current density (JS) which is due to the lower highest occupied molecular orbital (HOMO) level in DCJTB than that in CuPc. Also, the short circuit current density (JSC) is affected when the DCJTB layer becomes thicker, resulting from the high series resistance RSA due to the low charge carrier mobility of fluorescent red dye.

  19. Two-Photon Absorption Spectrum of a Single Crystal Cyanine-like Dye.

    PubMed

    Hu, Honghua; Fishman, Dmitry A; Gerasov, Andrey O; Przhonska, Olga V; Webster, Scott; Padilha, Lazaro A; Peceli, Davorin; Shandura, Mykola; Kovtun, Yuriy P; Kachkovski, Alexey D; Nayyar, Iffat H; Masunov, Artëm E; Tongwa, Paul; Timofeeva, Tatiana V; Hagan, David J; Van Stryland, Eric W

    2012-05-03

    The two-photon absorption (2PA) spectrum of an organic single crystal is reported. The crystal is grown by self-nucleation of a subsaturated hot solution of acetonitrile, and is composed of an asymmetrical donor-π-acceptor cyanine-like dye molecule. To our knowledge, this is the first report of the 2PA spectrum of single crystals made from a cyanine-like dye. The linear and nonlinear properties of the single crystalline material are investigated and compared with the molecular properties of a toluene solution of its monomeric form. The maximum polarization-dependent 2PA coefficient of the single crystal is 52 ± 9 cm/GW, which is more than twice as large as that for the inorganic semiconductor CdTe with a similar absorption edge. The optical properties, linear and nonlinear, are strongly dependent upon incident polarization due to anisotropic molecular packing. X-ray diffraction analysis shows π-stacking dimers formation in the crystal, similar to H-aggregates. Quantum chemical calculations demonstrate that this dimerization leads to the splitting of the energy bands and the appearance of new red-shifted 2PA bands when compared to the solution of monomers. This trend is opposite to the blue shift in the linear absorption spectra upon H-aggregation.

  20. Theoretical study of an asymmetric A-π-D-π-D-π-A' tribranched organic sensitizer for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Geon Hyeong; Kim, Young Sik

    2016-08-01

    An asymmetric A-π-D-π-D-π-A' tribranched organic dye (dye1) with cyanoacrylic acid and indolinum carboxyl acid as electron acceptors and triphenylamine as an electron donor was designed and theoretically investigated for dye-sensitized solar cells (DSSCs). Dye1 was compared to reference well-known dyes with single electron acceptors (D5 and JYL-SQ6). Density functional theory and time-dependent density functional theory calculations were used to estimate the photovoltaic properties of the dyes. Due to the different lowest unoccupied molecular orbital levels of each acceptor and the energy antenna of the dual electron donor (D-π-D), the absorption spectra of the branches displayed different shapes. If the overall properties are considered, the asymmetric A-π-D-π-D-π-A' tribranched organic dye exhibited a high conversion efficiency performance for DSSCs. The findings of this work suggest that optimizing the branch of electron donors and acceptors in dye sensitizers based on asymmetric A-π-D-π-D-π-A' tribranched organic dye produces good photovoltaic properties for DSSCs.

  1. DFT Study of the Structure, Reactivity, Natural Bond Orbital and Hyperpolarizability of Thiazole Azo Dyes

    PubMed Central

    Osman, Osman I.

    2017-01-01

    The structure, reactivity, natural bond orbital (NBO), linear and nonlinear optical (NLO) properties of three thiazole azo dyes (A, B and C) were monitored by applying B3LYP, CAM-B3LYP and ωB97XD functionals with 6-311++G** and aug-cc-pvdz basis sets. The geometrical parameters, dipole moments, HOMO-LUMO (highest occupied molecular orbital, lowest unoccupied molecular orbital) energy gaps, absorption wavelengths and total hyperpolarizabilities were investigated in carbon tetrachloride (CCl4) chloroform (CHCl3), dichloromethane (CH2Cl2) and dimethlysulphoxide (DMSO). The donor methoxyphenyl group deviates from planarity with the thiazole azo moiety by ca. 38°; while the acceptor dicyanovinyl, indandione and dicyanovinylindanone groups diverge by ca. 6°. The HOMOs for the three dyes are identical. They spread over the methoxyphenyl donor moiety, the thiazole and benzene rings as π-bonding orbitals. The LUMOs are shaped up by the nature of the acceptor moieties. The LUMOs of the A, B and C dyes extend over the indandione, malononitrile and dicyanovinylindanone acceptor moieties, respectively, as π-antibonding orbitals. The HOMO-LUMO splittings showed that Dye C is much more reactive than dyes A and B. Compared to dyes A and B, Dye C yielded a longer maximum absorption wavelength because of the stabilization of its LUMOs relative to those of the other two. The three dyes show solvatochromism accompanied by significant increases in hyperpolarizability. The enhancement of the total hyperpolarizability of C compared to those of A and B is due to the cumulative action of the long π-conjugation of the indanone ring and the stronger electron-withdrawing ability of the dicyanovinyl moiety that form the dicyanovinylindanone acceptor group. These findings are facilitated by a natural bond orbital (NBO) technique. The very high total hyperpolarizabilities of the three dyes define their potent nonlinear optical (NLO) behaviour. PMID:28157151

  2. Photoionization in micelles: Addition of charged electron acceptors

    NASA Astrophysics Data System (ADS)

    Stenland, Chris; Kevan, Larry

    The relative photoyield of the electron donor N, N, N', N'-tetramethylbenzidine (TMB), solubilized in sodium and lithium dodecyl sulfate micelles with added charged electron acceptors was investigated. It was attempted to control the acceptor distance from a charged micellar interface by differently charged acceptors, cationic dimethyl viologen and anionic ferricyanide. However, back electron transfer from both cationic and anionic acceptors was found to be efficient. Thus simple electrostatic arguments for control of the photoyield do not seem applicable. Salt effects associated with the added ionic acceptors which partially neutralize the ionic micellar interface are suggested to be an important factor.

  3. Benzimidazole-Branched Isomeric Dyes: Effect of Molecular Constitution on Photophysical, Electrochemical, and Photovoltaic Properties.

    PubMed

    Bodedla, Govardhana Babu; Justin Thomas, K R; Fan, Miao-Syuan; Ho, Kuo-Chuan

    2016-01-15

    Three benzimidazole-based isomeric organic dyes possessing two triphenylamine donors and a cyanoacrylic acid acceptor are prepared by stoichiometrically controlled Stille or Suzuki-Miyaura coupling reaction which predominantly occurs on the N-butyl side of benzimidazole due to electronic preferences. Combined with the steric effect of the N-butyl substituent, placement of the acceptor segment at various nuclear positions of benzimidazole such as C2, C4, and C7 led to remarkable variations in intramolecular charge transfer absorption, electron injection efficiency, and charge recombination kinetics. The substitution of acceptor on the C4 led to red-shifted absorption, while that on C7 retarded the charge transfer due to twisting in the structure caused by the butyl group. Because of the cross-conjugation nature and poor electronic interaction between the donor and acceptor, the dye containing triphenylamine units on C4 and C7 and the acceptor unit on C2 showed the low oxidation potential. Thus, this dye possesses favorable HOMO and LUMO energy levels to render efficient sensitizing action in solar cells. Consequently, it results in high power conversion efficiency (5.01%) in the series with high photocurrent density and open circuit voltage. The high photocurrent generation by this dye is reasoned to it exceptional charge collection efficiency as determined from the electron impedance spectroscopy.

  4. Highly efficient one-dimensional ZnO nanowire-based dye-sensitized solar cell using a metal-free, D-π-A-type, carbazole derivative with more than 5% power conversion.

    PubMed

    Barpuzary, Dipankar; Patra, Anindya S; Vaghasiya, Jayraj V; Solanki, Bharat G; Soni, Saurabh S; Qureshi, Mohammad

    2014-08-13

    Hydrothermally grown one-dimensional ZnO nanowire (1D ZnO NW) and a newly synthesized metal-free, D-π-A type, carbazole dye (SK1) sensitizer-based photovoltaic device with a power conversion efficiency (PCE) of more than 5% have been demonstrated by employing the cobalt tris(2,2'-bipyridyl) redox shuttle. A short-circuit current density (Jsc) of ∼12.0 mA/cm(2), an open-circuit voltage (Voc) of ∼719 mV, and a fill factor (FF) of ∼65% have been afforded by the 1D ZnO NW-based dye-sensitized solar cell (DSSC) incorporating [Co(bpy)3](3+/2+) complex as the one-electron redox mediator. In contrast, the identical DSSC with traditional I3(-)/I(-) electrolyte has shown a Jsc ≈ 12.2 mA/cm(2), a Voc ≈ 629 mV, and a FF ≈ 62%, yielding a PCE of ∼4.7%. The persuasive role of the inherent superior electron transport property of 1D ZnO NWs in enhancing the device efficiency is evidenced from the impoverished performance of the DSSCs with photoanodes fabricated using ZnO nanoparticles (NPs). The DSSCs having ZnO NP-based photoanodes have achieved the PCEs of ∼3.6% and ∼3.2% using cobalt- and iodine-based redox electrolytes, respectively. The electronic interactions between the SK1 sensitizer and ZnO (NWs and NPs) to induce the photogenerated charge transfer from SK1 to the conduction band (CB) of ZnO are evidenced from the significant quenching of photoluminescence and exciton lifetime decay of SK1, when it is anchored onto the ZnO architectures. The energetics of the SK1 dye molecule are estimated by combining the spectroscopic and electrochemical techniques. The electronic distributions of SK1 dye molecule in its HOMO and LUMO energy levels are interpreted using density functional theory (DFT)-based calculations. The electron donor-π linker-acceptor (D-π-A) configuration of SK1 dye provides an intramolecular charge transfer within the molecule, prompting the electron migration from the carbazole donor to cyanoacrylic acceptor moiety via the oligo

  5. Charge trapping in mixed organic donor-acceptor semiconductor thin films.

    PubMed

    Nunomura, Shota; Che, Xiaozhou; Forrest, Stephen R

    2014-12-03

    A pump-probe method, whereby trapped charges are optically induced to contribute to the total photocurrent, is applied to quantitatively determine the trap density in small-molecule organic semiconductor thin films and donor-acceptor blends used in organic solar cells. The trapped charge density is correlated to the cell performance, and the dependence of charge trapping on the presence of nanocrystalline domains is discussed.

  6. Inhibition of the water oxidizing complex of photosystem II and the reoxidation of the quinone acceptor QA- by Pb2+.

    PubMed

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert

    2013-01-01

    The action of the environmental toxic Pb(2+) on photosynthetic electron transport was studied in thylakoid membranes isolated from spinach leaves. Fluorescence and thermoluminescence techniques were performed in order to determine the mode of Pb(2+) action in photosystem II (PSII). The invariance of fluorescence characteristics of chlorophyll a (Chl a) and magnesium tetraphenylporphyrin (MgTPP), a molecule structurally analogous to Chl a, in the presence of Pb(2+) confirms that Pb cation does not interact directly with chlorophyll molecules in PSII. The results show that Pb interacts with the water oxidation complex thus perturbing charge recombination between the quinone acceptors of PSII and the S2 state of the Mn4Ca cluster. Electron transfer between the quinone acceptors QA and QB is also greatly retarded in the presence of Pb(2+). This is proposed to be owing to a transmembrane modification of the acceptor side of the photosystem.

  7. Novel water soluble NIR dyes: does charge matter?

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Beckford, Garfield; Daube, Alison

    2012-03-01

    Near-Infrared (NIR) dyes are used as reporters, probes or markers in the biological and medical field. NIR dyes can be useful for investigating and characterizing biomolecular interactions or imaging which is possible because biological mammalian tissue has a low absorption window in the NIR region. Biomolecules such as proteins are known to bind to NIR dyes. Upon binding NIR dyes often exhibit spectral changes that can be used for characterizing the binding event. Serum albumins may be responsible for in vivo transport of NIR dyes. Studying this binding event can be useful when correlated to in vivo behavior of the NIR dye. The studies presented here use spectroscopic methods to investigate how NIR dyes that may be used in imaging, biological or bioanalytical applications bind to proteins, such as serum albumins. Our research group systematically synthesized several NIR dyes that have varying hydrophobicity, chromophore size and charge. During these investigations we developed novel NIR cyanine fluorophores having varying aqueous solubility and a variety of net charges. The binding properties of the carbocyanines change when charged or hydrophobic moieties are systematically varied. One of the properties we put a special emphasis on is what we call residual hydrophobicity of the NIR dye molecule which is defined as the unmasked (by the charged moieties) hydrophobicity of the molecule. Residual hydrophobicity may be responsible for binding the otherwise highly water soluble NIR dye to hydrophobic pockets of biomolecules. High residual hydrophobicity of a highly water soluble dye can be disadvantageous during biological, medical or similar applications.

  8. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    SciTech Connect

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-04-15

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  9. NIR Dyes for Bioimaging Applications

    PubMed Central

    Escobedo, Jorge O.; Rusin, Oleksandr; Lim, Soojin

    2009-01-01

    Summary of recent advances Fluorescent dyes based on small organic molecules that function in the near infra red (NIR) region are of great current interest in chemical biology. They allow for imaging with minimal autofluorescence from biological samples, reduced light scattering and high tissue penetration. Herein, examples of ongoing NIR fluorophore design strategies as well as their properties and anticipated applications relevant to the bioimaging are presented. PMID:19926332

  10. Binomial distribution-based quantitative measurement of multiple-acceptors fluorescence resonance energy transfer by partially photobleaching acceptor

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yu, Huaina; Zhang, Jianwei; Chen, Tongsheng

    2014-06-01

    We report that binomial distribution depending on acceptor photobleaching degree can be used to characterize the proportions of various kinds of FRET (Fluorescence Resonance Energy Transfer) constructs resulted from partial acceptor photobleaching of multiple-acceptors FRET system. On this basis, we set up a rigorous quantitation theory for multiple-acceptors FRET construct named as Mb-PbFRET which is not affected by the imaging conditions and fluorophore properties. We experimentally validate Mb-PbFRET with FRET constructs consisted of one donor and two or three acceptors inside living cells on confocal and wide-field microscopes.

  11. Spectroscopic properties of fluorescein and rhodamine dyes attached to DNA.

    PubMed

    Delgadillo, Roberto F; Parkhurst, Lawrence J

    2010-01-01

    We report the spectroscopic properties of fluorescein, x-rhodamine, tetramethyl-rhodamine, attached to single strand, duplex DNA, and to the digestion products by DNAse I. The properties reported include: molar absorptivity, quantum yield, absorbance and fluorescence spectra, fluorescence lifetime, intrinsic lifetime (tau0), static quenching (S) and the Förster critical distances (R0) between fluorescein and x-rhodamine or tetramethyl-rhodamine (acceptors). These spectroscopic properties depend strongly on the local dye environment. Fluorescein was studied: (1) attached to biotin (BF), (2) BF bound to avidin; and attached to two positions in DNA. X-rhodamine and tetramethyl-rhodamine were studied as free dyes and attached at the 5'-end of DNA. We propose a general method to determine the molar absorptivity and tau0 of a dye attached to DNA based on the reaction of a biotinylated and dye-labeled oligomer with standardized avidin. The molar absorptivity of a second dye attached to a DNA duplex can be obtained by comparing spectra of doubly and singly labeled sequences. S, arising from dye-DNA interactions can then be determined. R0 for free and attached dyes showed differences from 1.1 to 4.2 A. We present evidence for the direct interaction of dyes attached to the termini of various single-stranded DNA sequences.

  12. Environment Sensing Merocyanine Dyes for Live Cell Imaging Applications

    PubMed Central

    MacNevin, Christopher J.; Gremyachinskiy, Dmitriy; Hsu, Chia-Wen; Li, Li; Rougie, Marie; Davis, Tamara T.; Hahn, Klaus M.

    2013-01-01

    Fluorescent biosensors based on environmentally sensitive dyes enable visualization and quantification of endogenous protein activation within living cells. Merocyanine dyes are especially useful for live cell imaging applications as they are extraordinarily bright, have long wavelengths of excitation and emission, and can exhibit readily detectable fluorescence changes in response to environment. We sought to systematically examine the effects of structural features on key photophysical properties, including dye brightness, environmental responsiveness, and photostability, through the synthesis of a library of 25 merocyanine dyes, derived from combinatorial reaction of 5 donor and 5 acceptor heterocycles. Four of these dyes showed optimal properties for specific imaging applications and were subsequently prepared with reactive side chains and enhanced aqueous solubility using a one-pot synthetic method. The new dyes were then applied within a biosensor design for Cdc42 activation, where dye mero60 showed a remarkable 1470% increase in fluorescence intensity on binding activated Cdc42 in vitro. The dye-based biosensors were used to report activation of endogenous Cdc42 in living cells. PMID:23297747

  13. Analysis of nonlinear optical properties in donor–acceptor materials

    SciTech Connect

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  14. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  15. Fluorescence enhancement of dye-doped liquid crystal by dye-induced alignment effect

    NASA Astrophysics Data System (ADS)

    Shim, Taekyu; Kim, Sunghyun; Kim, Doseok; Oh-e, Masahito

    2011-09-01

    We investigated fluorescence from hemicyanine dye molecules in a liquid crystal (4,4'-n-pentylcyanobiphenyl) (5CB) medium at different temperatures. The fluorescence decay lifetime decreased monotonically irrespective of the thermodynamic phases of the host medium as the temperature was increased. This behavior is due to an intramolecular motion of the dye promoted with the decrease in the viscosity of the medium facilitating a nonradiative decay of the excited dye molecules. By contrast, fluorescence intensity from the dyes in the nematic phase was about 3 times stronger than that in the crystalline or isotropic phase. This fluorescence enhancement in the nematic phase was found to be due to an anisotropic alignment of the dye molecules following the anisotropic alignment of the host liquid crystal medium along the pump-beam polarization direction. This light-induced liquid crystal molecular alignment was markedly enhanced by the guest dyes preferentially excited along the pump-beam polarization direction. The orientational order parameter of the dyes in the liquid-crystalline phase deduced from fluorescence anisotropy measurement was similar to the known order parameter of the liquid crystalline 5CB.

  16. Triphenylamine-based organic dyes with julolidine as the secondary electron donor for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Guohua; Kong, Fantai; Li, Jingzhe; Fang, Xiaqin; Li, Yi; Dai, Songyuan; Chen, Qianqian; Zhang, Xianxi

    2013-12-01

    Two novel donor-donor-π-conjugated-acceptor (D-D-π-A) metal-free organic dyes (JTPA1 and JTPA2) with a julolidine moiety as the secondary electron donor for dye-sensitized solar cells (DSSCs) are synthesized. Their absorption spectra, electrochemical and photovoltaic properties are extensively investigated and compared with TPA2 dye. Transient absorption measurements show that both sensitizers are quickly regenerated and the dye cations are efficiently intercepted by the redox mediator. Both dyes show good performance as DSSC photosensitizers. In particular, a DSSC using JTPA2 with rhodanine-3-acetic acid shows better photovoltaic performance with a short-circuit photocurrent density (Jsc) of 9.30 mA cm-2, an open-circuit photovoltage (Voc) of 509 mV and a fill factor (FF) of 0.68, corresponding to an overall conversion efficiency (η) of 3.2% under AM 1.5 irradiation (100 mW cm-2). Under similar test conditions, ruthenium-based N719 dye gives an efficiency of 6.7%. Compared to TPA2, the dye regeneration rate, the short-circuit photocurrent density and the conversion efficiency of JTPA2 are doubled by introducing a julolidine unit. Our findings show that the julolidine unit may be an excellent electron donor system for organic dyes harvesting solar irradiation.

  17. Molecular Design Principles for Near-Infrared Absorbing and Emitting Indolizine Dyes.

    PubMed

    Huckaba, Aron J; Yella, Aswani; McNamara, Louis E; Steen, April E; Murphy, J Scott; Carpenter, Casey A; Puneky, George D; Hammer, Nathan I; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Delcamp, Jared H

    2016-10-17

    Desirable components for dye-sensitzed solar cell (DSC) sensitizers and fluorescent imaging dyes include strong donating building blocks coupled with well-balanced acceptor functionalities for absorption beyond the visible range. We have evaluated the effects of increasing acceptor strengths and incorporation of dye morphology controlling groups on molar absorptivity and absorption breadth with indolizine donor-based dyes. Indolizine-based D-A and D-π-A sensitizers incorporating bis-rhodanine, tricyanofuran (TCF), and cyanoacrylic acid functionalities were analyzed for performance in DSC devices. The TCF derivatives were also evaluated as near-infrared (NIR)-emissive materials with the AH25 emissions extending past 1000 nm.

  18. Red-light-emitting system based on aggregation of donor-acceptor derivatives in polar aqueous media.

    PubMed

    Ishi-i, Tsutomu; Ikeda, Kei; Kichise, Yuki; Ogawa, Michiaki

    2012-06-01

    Glowing together: An efficient red-light-emitting system has been created in polar water media based on the aggregation of donor-acceptor molecules. In the THF/water mixture, the emission was quenched when a small volume of water was used, whereas it was recovered and enhanced upon aggregate formation with a large water volume.

  19. Partial least squares prediction of the first hyperpolarizabilities of donor-acceptor polyenic derivatives

    NASA Astrophysics Data System (ADS)

    Machado, A. E. de A.; da Gama, A. A. de S.; de Barros Neto, B.

    2011-09-01

    A partial least squares regression analysis of a large set of donor-acceptor organic molecules was performed to predict the magnitude of their static first hyperpolarizabilities ( β's). Polyenes, phenylpolyenes and biphenylpolyenes with augmented chain lengths displayed large β values, in agreement with the available experimental data. The regressors used were the HOMO-LUMO energy gap, the ground-state dipole moment, the HOMO energy AM1 values and the number of π-electrons. The regression equation predicts quite well the static β values for the molecules investigated and can be used to model new organic-based materials with enhanced nonlinear responses.

  20. Donor/Acceptor Mixed Self-Assembled Monolayers for Realising a Multi-Redox-State Surface.

    PubMed

    Casado-Montenegro, Javier; Marchante, Elena; Crivillers, Núria; Rovira, Concepció; Mas-Torrent, Marta

    2016-06-17

    Mixed molecular self-assembled monolayers (SAMs) on gold, based on two types of electroactive molecules, that is, electron-donor (ferrocene) and electron-acceptor (anthraquinone) molecules, are prepared as an approach to realise surfaces exhibiting multiple accessible redox states. The SAMs are investigated in different electrolyte media. The nature of these media has a strong impact on the types of redox processes that take place and on the redox potentials. Under optimised conditions, surfaces with three redox states are achieved. Such states are accessible in a relatively narrow potential window in which the SAMs on gold are stable. This communication elucidates the key challenges in fabricating bicomponent SAMs as electrochemical switches.

  1. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    NASA Astrophysics Data System (ADS)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  2. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, A.N.; Mathies, R.A.; Hung, S.C.; Ju, J.

    1998-12-29

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures. 22 figs.

  3. Methods of sequencing and detection using energy transfer labels with cyanine dyes as donor chromophores

    DOEpatents

    Glazer, Alexander N.; Mathies, Richard A.; Hung, Su-Chun; Ju, Jingyue

    2000-01-01

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.

  4. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, Alexander N.; Mathies, Richard A.; Hung, Su-Chun; Ju, Jingyue

    1998-01-01

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.

  5. Investigation of picosecond blue laser emission from chlorophyll molecules

    SciTech Connect

    Liu Yixian; Wang Yagang; Zhu Wei; Li Fuming; Yang Shanyuan; Zhou Peilin

    1988-03-01

    Results on picosecond blue laser emission from a chlorophyll (chl) dye laser with an ultrashort cavity are reported. The laser mechanism involves intermolecular energy transfer from excited coumarin (co) molecules to chlorophyll a and b pigment molecules.

  6. [Relations between the retinoic acid acceptor and teratogenesis of retinoids].

    PubMed

    Li, Zeng-Gang; Sun, Kai-Lai

    2004-09-01

    Retinoic acid can induce teratogenesis of the fetus of many animals including human, and its biological activities are induced by a serious of different retinoic acid accepters and their ligands. The retinoic acid acceptor RAR plays key roles in the teratogenesis, and the ligands of RAR are strong teratogens. The intensity sequence of the relative teratogenesis is ligandalpha, ligandbeta and ligandgamma. The ligands of the retinoic acid acceptor RXR cannot induce teratogenesis, but they can enhance the teratogenesis of the RAR stimulus. The retinoic acid acceptors can also affect the development of the fetus by adjusting the expression of the other genes. The relations between the gene mutation of the retinoic acid acceptor, various retinoic acid acceptors and their ligands and teratogenesis of retinoic acid are summarized in this article. In addition, the regulations of the retinoic acid acceptors to the other genes are also discussed.

  7. Charge Transfer Dynamics at Dye-Sensitized ZnO and TiO2 Interfaces Studied by Ultrafast XUV Photoelectron Spectroscopy

    PubMed Central

    Borgwardt, Mario; Wilke, Martin; Kampen, Thorsten; Mähl, Sven; Xiao, Manda; Spiccia, Leone; Lange, Kathrin M.; Kiyan, Igor Yu.; Aziz, Emad F.

    2016-01-01

    Interfacial charge transfer from photoexcited ruthenium-based N3 dye molecules into ZnO thin films received controversial interpretations. To identify the physical origin for the delayed electron transfer in ZnO compared to TiO2, we probe directly the electronic structure at both dye-semiconductor interfaces by applying ultrafast XUV photoemission spectroscopy. In the range of pump-probe time delays between 0.5 to 1.0 ps, the transient signal of the intermediate states was compared, revealing a distinct difference in their electron binding energies of 0.4 eV. This finding strongly indicates the nature of the charge injection at the ZnO interface associated with the formation of an interfacial electron-cation complex. It further highlights that the energetic alignment between the dye donor and semiconductor acceptor states appears to be of minor importance for the injection kinetics and that the injection efficiency is dominated by the electronic coupling. PMID:27073060

  8. Photovoltaic cells based on ternary P3HT:PCBM:polymethine dye active layer transparent in the visible range of light

    NASA Astrophysics Data System (ADS)

    Bliznyuk, Valery N.; Gasiorowski, Jacek; Ishchenko, Alexander A.; Bulavko, Gennadiy V.; Rahaman, Mahfujur; Hingerl, Kurt; Zahn, Dietrich R. T.; Sariciftci, Niyazi S.

    2016-12-01

    Optical and photovoltaic properties were studied for ternary photovoltaic cells containing a traditional donor-acceptor bulk-heterojunction (BHJ) active layer modified with polymethine dye molecules in a broad range of compositions and wavelengths. An effect of composition induced optical transparency, due to the strong modification of the density of states, was observed for symmetrical compositions with approximately equal amount of components. Based on our spectroscopic ellipsometry and atomic force microscopy (AFM) studies we can suggest that the variation of the refractive index, which is significantly reduced in the visible range for ternary systems, is involved in the physical mechanism of the phenomenon. Despite of an addition of the IR absorbing component (which allows broadening of the absorption band to up to 800 nm) no improvement in the power conversion efficiency (PCE) is observed in comparison to the binary BHJ system (P3HT:PCBM). Nevertheless, we believe that further advance of the efficiency will be possible if the energy levels will be chemically designed to avoid formation of charge traps at the BHJ interface during light excitation. Such fine adjustment of the system should become possible with a proper choice of polymer:dye composition due to a high versatility of the polymethine dyes demonstrated in previous studies.

  9. Molecular engineering of simple phenothiazine-based dyes to modulate dye aggregation, charge recombination, and dye regeneration in highly efficient dye-sensitized solar cells.

    PubMed

    Hua, Yong; Chang, Shuai; He, Jian; Zhang, Caishun; Zhao, Jianzhang; Chen, Tao; Wong, Wai-Yeung; Wong, Wai-Kwok; Zhu, Xunjin

    2014-05-19

    A series of simple phenothiazine-based dyes, namely, TP, EP, TTP, ETP, and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye-sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc = 15.2 mA cm(-2), Voc =0.783 V, fill factor (FF) = 0.679) and 7.87 % (Jsc = 16.1 mA cm(-2), Voc = 0.717 V, FF = 0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I(-)/I3(-) redox couple. By replacing the T group with the E unit, EP-based DSSCs had a slightly lower PCE of 7.98 % with a higher short-circuit photocurrent (Jsc) of 16.7 mA cm(-2). The dye ETP, with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP, with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.

  10. Examining Forster Energy Transfer for Semiconductor Nanocrystaline Quantum Dot Donors and Acceptors

    SciTech Connect

    Curutchet, C.; Franceschetti, A.; Zunger, A.; Scholes, G. D.

    2008-01-01

    Excitation energy transfer involving semiconductor quantum dots (QDs) has received increased attention in recent years because their properties, such as high photostability and size-tunable optical properties, have made QDs attractive as Forster resonant energy transfer (FRET) probes or sensors. An intriguing question in FRET studies involving QDs has been whether the dipole approximation, commonly used to predict the electronic coupling, is sufficiently accurate. Accurate estimates of electronic couplings between two 3.9 nm CdSe QDs and between a QD and a chlorophyll molecule are reported. These calculations are based on transition densities obtained from atomistic semiempirical calculations and time-dependent density functional theory for the QD and the chlorophyll, respectively. In contrast to the case of donor-acceptor molecules, where the dipole approximation breaks down at length scales comparable to the molecular dimensions, we find that the dipole approximation works surprisingly well when donor and/or acceptor is a spherical QD, even at contact donor-acceptor separations. Our conclusions provide support for the use of QDs as FRET probes for accurate distance measurements.

  11. Quantum computing with acceptor spins in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  12. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  13. Remarkable Dependence of the Final Charge Separation Efficiency on the Donor-Acceptor Interaction in Photoinduced Electron Transfer.

    PubMed

    Higashino, Tomohiro; Yamada, Tomoki; Yamamoto, Masanori; Furube, Akihiro; Tkachenko, Nikolai V; Miura, Taku; Kobori, Yasuhiro; Jono, Ryota; Yamashita, Koichi; Imahori, Hiroshi

    2016-01-11

    The unprecedented dependence of final charge separation efficiency as a function of donor-acceptor interaction in covalently-linked molecules with a rectilinear rigid oligo-p-xylene bridge has been observed. Optimization of the donor-acceptor electronic coupling remarkably inhibits the undesirable rapid decay of the singlet charge-separated state to the ground state, yielding the final long-lived, triplet charge-separated state with circa 100% efficiency. This finding is extremely useful for the rational design of artificial photosynthesis and organic photovoltaic cells toward efficient solar energy conversion.

  14. ANALYSIS OF ANIONIC METALLIZED AZO AND FORMAZAN DYES BY CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis-mass spectrometry was applied to the separation of several anionic dyes containing copper(II), chromium(III), or cobalt(III) as part of the dye molecule. The dyes were separated using a 110 cmX50 mu m uncoated fused-silica capillary and a 5 mM ammonium a...

  15. Molecularly imprinted polymers for some reactive dyes.

    PubMed

    Okutucu, Burcu; Akkaya, Alper; Pazarlioglu, Nurdan Kasikara

    2010-01-01

    Depending upon their structure, azo- and anthraquinonic dyes are the two major classes and together represent 90% of all organic colorants. Adsorption of dye molecules onto a sorbent can be an effective, low-cost method of color removal. Most of the techniques used for removal of dyes are of high production cost, and the regeneration also makes them uneconomical. There is much interest in the development of cheaper and effective newer materials for use as adsorbents. Molecular imprinting is a new kind of materials that can be alternative adsorbents. In this study, molecularly imprinted polymers of three textile dyes (Cibacron Orange P-4R, Cibacron Red P-4B, Cibacron Black PSG) were prepared. Methacrylic acid was used as a monomer for red and orange dyes and acrylamide was used for black dye. Methanol:acetonitrile was used as a porogen. The selective recognition ability of the molecularly imprinted polymers was studied by an equilibrium-adsorption batch method. The adsorption data are for Cibacron Black PSG 65% and nonimprinted polymer (NIP) 25%; Cibacron Red P-4B 72% and NIP 18%; and Cibacron Orange P-4R 45% and NIP 10%, respectively. Dye-imprinted polymers were used as a solid-phase extraction material for selective adsorption from wastewater of textile factory.

  16. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    PubMed

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations.

  17. Microwave assisted synthesis of bithiophene based donor-acceptor-donor oligomers and their optoelectronic performances

    NASA Astrophysics Data System (ADS)

    Bathula, Chinna; Buruga, Kezia; Lee, Sang Kyu; Khazi, Imtiyaz Ahmed M.; Kang, Youngjong

    2017-07-01

    In this article we present the synthesis of two novel bithiophene based symmetrical π conjugated oligomers with donor-acceptor-donor (D-A-D) structures by microwave assisted PdCl2(dppf) catalyzed Suzuki coupling reaction. These molecules contain electron rich bithiophene as a donor, dithienothiadiazole[3,4-c]pyridine and phthalic anhydride units as acceptors. The shorter reaction time, excellent yields and easy product isolation are the advantages of this method. The photophysical prerequisites for electronic application such as strong and broad optical absorption, thermal stability, and compatible energy levels were determined for synthesized oligomers. Optical band gap for the oligomers is found to be 1.72-1.90 eV. The results demonstrated the novel oligomers to be promising candidates in organic optoelectronic applications.

  18. Photobleaching effect in azo-dye containing epoxy resin films: the potentiality of carbon nanotubes as azo-dye dispensers

    NASA Astrophysics Data System (ADS)

    Díaz Costanzo, Guadalupe; Goyanes, Silvia; Ledesma, Silvia

    2015-04-01

    Azo-dye molecules may suffer from bleaching under certain illumination conditions. When this photoinduced process occurs, it generates an irreversible effect that is characterized by the loss of absorption of the dye molecule. Moreover, the well-known isomerization of azodye molecules does not occur anymore. In this work it is shown how the addition of a small amount of multi-walled carbon nanotubes (MWCNTs) helps to decrease the bleaching effect in a photosensitive guest-host azo-polymer film. Two different systems were fabricated using an epoxy resin as polymer matrix. An azo-dye, Disperse Orange 3, was used as photosensitive material in both systems and MWCNTs were added into one of them. The optical response of the polymeric systems was studied considering the degree of photoinduced birefringence. Photobleaching of the azo-dye was observed in all cases however, the effect is lower for the composite material containing 0.2 wt % MWCNTs. The weak interaction between MWCNTs and dye molecules is less favorable when the material is heated. The optical behavior of the heated composite material suggests that carbon nanotubes can be potentially used as azo dye dispensers. The results are interpreted in terms of the non-covalent interaction between azo-dye molecules and MWCNTs.

  19. Stimulated Raman scattering of laser dye mixtures dissolved in multiple scattering media

    SciTech Connect

    Yashchuk, V P; Komyshan, A O; Tikhonov, E A; Olkhovyk, L A

    2014-10-31

    Stimulated Raman scattering (SRS) of a mixture of rhodamine 6G and pyrromethene 605 laser dyes in vesicular films is studied. It is shown that a peculiar interaction of dyes occurs under conditions of multiple scattering of light from vesicles. This interaction manifests itself as SRS excitation of one of the dyes by random lasing of the other dye, provided that the random lasing spectrum overlaps the Stokes lines of the first dye. In addition, there is energy transfer between molecules of these dyes if their luminescence and absorption spectra overlap. The results obtained confirm that the mechanism of SRS from laser dyes in multiple scattering media is similar to that in coherent-active Raman spectroscopy. These results extend the possibility of determining the vibrational spectrum of dye molecules from their secondary radiation in these media. (nonlinear optical phenomena)

  20. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1998-01-01

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.

  1. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1998-01-13

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.

  2. An NMR study of merocyanine-type dyes derived from barbituric acid.

    PubMed

    Rezende, Marcos Caroli; Flores, Patricio; Guerrero, Juan; Villarroel, Luis

    2004-06-01

    The 13C NMR of two solvatochromic dyes derived from a barbituric acid acceptor and dimethylaminophenyl donor fragments, compound 1 and the related merocyanine 2, were recorded in various solvents. The observed chemical-shift variations were used to interpret their structural differences and solvatochromic behavior in solution.

  3. Benzidine Dyes Action Plan

    EPA Pesticide Factsheets

    This Action Plan addresses the use of benzidine-based dyes and benzidine congener-based dyes, both metalized and non-metalized, in products that would result in consumer exposure, such as for use to color textiles.

  4. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO3

    NASA Astrophysics Data System (ADS)

    Putilov, L. P.; Tsidilkovski, V. I.

    2017-03-01

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔHox of oxide is determined by the energy εA of acceptor-bound states along with the formation energy EV of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of εA and EV values corresponding to the positive or negative ΔHox are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth εA: it becomes negligible at εA less than a certain value (at which the acceptor levels are still deep). With increasing εA, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO3 as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the εA magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.

  5. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells.

    PubMed

    Hagberg, Daniel P; Marinado, Tannia; Karlsson, Karl Martin; Nonomura, Kazuteru; Qin, Peng; Boschloo, Gerrit; Brinck, Tore; Hagfeldt, Anders; Sun, Licheng

    2007-12-07

    A series of organic chromophores have been synthesized in order to approach optimal energy level composition in the TiO2-dye-iodide/triiodide system in the dye-sensitized solar cells. HOMO and LUMO energy level tuning is achieved by varying the conjugation between the triphenylamine donor and the cyanoacetic acid acceptor. This is supported by spectral and electrochemical experiments and TDDFT calculations. These results show that energetic tuning of the chromophores was successful and fulfilled the thermodynamic criteria for dye-sensitized solar cells, electrical losses depending on the size and orientation of the chromophores were observed.

  6. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  7. Albumin binds self-assembling dyes as specific polymolecular ligands.

    PubMed

    Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz

    2006-12-15

    Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.

  8. Quantum dots as resonance energy transfer acceptors for monitoring biological interactions

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Niko; Charbonnière, Loïc; Ziessel, Raymond F.; Löhmannsröben, Hans-Gerd

    2006-04-01

    Due to their extraordinary photophysical properties CdSe/ZnS core/shell nanocrystals (quantum dots) are excellent luminescence dyes for fluorescence resonance energy transfer (FRET) systems. By using a supramolecular lanthanide complex with central terbium cation as energy donor, we show that commercially available biocompatible biotinilated quantum dots are excellent energy acceptors in a time-resolved FRET fluoroimmunoassay (FRET-FIA) using streptavidin-biotin binding as biological recognition process. The efficient energy transfer is demonstrated by quantum dot emission sensitization and a thousandfold increase of the nanocrystal luminescence decay time. A Foerster Radius of 90 Å and a picomolar detection limit were achieved in quantum dot borate buffer. Regarding biological applications the influence of bovine serum albumin (BSA) and sodium azide (a frequently used preservative) to the luminescence behaviour of our FRET-system is reported.

  9. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    PubMed

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  10. Click Reaction-Mediated Functionalization of Near-Infrared Pyrrolopyrrole Cyanine Dyes for Biological Imaging Applications.

    PubMed

    Zhou, Mingzhou; Zhang, Xuan; Bai, Mingfeng; Shen, Duanwen; Xu, Baogang; Kao, Jeffery; Xia, Ge; Achilefu, Samuel

    2013-05-21

    A clickable pyrrolopyrrole cyanine (PPCy) dye was synthesized by incorporating an alkyne moiety, followed by click reaction with azide-functionalized molecules of different polarities. The clickable dyes are readily amenable to labelling diverse molecules and exhibit an exceptionally high photostability and an impressive fluorescence quantum yield.

  11. Time-Delayed Two-Step Selective Laser Photodamage of Dye-Biomolecule Complexes

    NASA Astrophysics Data System (ADS)

    Andreoni, A.; Cubeddu, R.; de Silvestri, S.; Laporta, P.; Svelto, O.

    1980-08-01

    A scheme is proposed for laser-selective photodamage of biological molecules, based on time-delayed two-step photoionization of a dye molecule bound to the biomolecule. The validity of the scheme is experimentally demonstrated in the case of the dye Proflavine, bound to synthetic polynucleotides.

  12. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.

    PubMed

    Marinado, Tannia; Hagberg, Daniel P; Hedlund, Maria; Edvinsson, Tomas; Johansson, Erik M J; Boschloo, Gerrit; Rensmo, Håkan; Brinck, Tore; Sun, Licheng; Hagfeldt, Anders

    2009-01-07

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.

  13. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.

  14. Laser dye stability

    NASA Astrophysics Data System (ADS)

    Fletcher, N.

    1980-06-01

    Lasing characteristics and bleaching of four Eastman Kodak ir dyes have been examined in dimethyl sulfoxide. These ir dyes are shown to improve in performance in the absence of oxygen. Their photochemical stability was found to be comparable to the quinolone laser dyes when exposed to flashlamp excitation. Photodecomposition of the ir dyes under lasing conditions was found to vary between 1.6 and 6×10-10 moles of dye for each joule (electrical) of input energy; in comparison, the photodecomposition values for the better coumarin dyes was 0.2 to 1.0×10-10 moles/J at a concentration of 1.0×10-4 M in ethanol. It was also found that increasing the concentration of these tricarbocyanine dyes gives a marked improvement in the useful lifetime of these solutions as lasing media in the absence of oxygen.

  15. Functional behavior of bio-electrochemical treatment system with increasing azo dye concentrations: Synergistic interactions of biocatalyst and electrode assembly.

    PubMed

    Sreelatha, S; Velvizhi, G; Naresh Kumar, A; Venkata Mohan, S

    2016-08-01

    Treatment of dye bearing wastewater through biological machinery is particularly challenging due to its recalcitrant and inhibitory nature. In this study, functional behavior and treatment efficiency of bio-electrochemical treatment (BET) system was evaluated with increasing azo dye concentrations (100, 200, 300 and 500mg dye/l). Maximum dye removal was observed at 300mg dye/l (75%) followed by 200mg dye/l (65%), 100mg dye/l (62%) and 500mg dye/l (58%). Concurrent increment in dye load resulted in enhanced azo reductase and dehydrogenase activities respectively (300mg dye/l: 39.6U; 4.96μg/ml). Derivatives of cyclic voltammograms also supported the involvement of various membrane bound redox shuttlers, viz., cytochrome-c, cytochrome-bc1 and flavoproteins during the electron transfer. Bacterial respiration during BET operation utilized various electron acceptors such as electrodes and dye intermediates with simultaneous bioelectricity generation. This study illustrates the synergistic interaction of biocatalyst with electrode assembly for efficient treatment of azo dye wastewater.

  16. New opportunities in multiplexed optical bioanalyses using quantum dots and donor-acceptor interactions.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2010-11-01

    This review highlights recent trends in the development of multiplexed bioanalyses using quantum dot bioconjugates and donor-acceptor interactions. In these methods, multiple optical signals are generated in response to biorecognition through modulation of the photoluminescence of populations of quantum dots with different emission colors. The donor-acceptor interactions that have been used include fluorescence resonance energy transfer, bioluminescence resonance energy transfer, charge transfer quenching, and quenching via proximal gold nanoparticles. Assays for the simultaneous detection of between two and eight target analytes have been developed, where spectral deconvolution is an important tool. Target analytes have included small molecules, nucleic acid sequences, and proteases. The unique optical properties of quantum dots offer several potential advantages in multiplexed detection, and a large degree of versatility, for example, one pot multiplexing at the ensemble level, where only wavelength discrimination is required to differentiate between detection channels. These methods are not being developed to compete with array-based technologies in terms of overall multiplexing capacity, but rather to enable new formats for multiplexed bioanalyses. In particular, quantum dot bioprobes based on donor-acceptor interactions are anticipated to provide future opportunities for multiplexed biosensing within living cells.

  17. Molecular Donor-Bridge-Acceptor Strategies for High-Capacitance Organic Dielectric Materials.

    PubMed

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2015-06-10

    Donor-bridge-acceptor (DBA) systems occupy a rich history in molecular electronics and photonics. A key property of DBA materials is their typically large and tunable (hyper)polarizabilities. While traditionally, classical descriptions such as the Clausius-Mossotti formalism have been used to relate molecular polarizabilities to bulk dielectric response, recent work has shown that these classical equations are inadequate for numerous materials classes. Creating high-dielectric organic materials is critically important for utilizing unconventional semiconductors in electronic circuitry. Employing a plane-wave density functional theory formalism, we investigate the dielectric response of highly polarizable DBA molecule-based thin films. Such films are found to have large dielectric response arising from cooperative effects between donor and acceptor units when mediated by a conjugated bridge. Moreover, the dielectric response can be systematically tuned by altering the building block donor, acceptor, or bridge structures and is found to be nonlinearly dependent on electric field strength. The computed dielectric constants are largely independent of the density functional employed, and qualitative trends are readily evident. Remarkably large computed dielectric constants >15.0 and capacitances >6.0 μF/cm(2) are achieved for squaraine monolayers, significantly higher than in traditional organic dielectrics. Such calculations should provide a guide for designing high-capacitance organic dielectrics that should greatly enhance transistor performance.

  18. Donor–Acceptor Oligorotaxanes Made to Order

    SciTech Connect

    Basu, Subhadeep; Coskun, Ali; Friedman, Douglas C.; Olson, Mark A.; Benitez, Diego; Tkatchouk, Ekaterina; Barin, Gokhan; Yang, Jeffrey; Fahrenbach, Albert C.; Goddard, William A.; Stoddart, J. Fraser

    2011-01-01

    Five donor–acceptor oligorotaxanes made up of dumbbells composed of tetraethylene glycol chains, interspersed with three and five 1,5-dioxynaphthalene units, and terminated by 2,6-diisopropylphenoxy stoppers, have been prepared by the threading of discrete numbers of cyclobis(paraquat-p-phenylene) rings, followed by a kinetically controlled stoppering protocol that relies on click chemistry. The well-known copper(I)-catalyzed alkyne–azide cycloaddition between azide functions placed at the ends of the polyether chains and alkyne-bearing stopper precursors was employed during the final kinetically controlled template-directed synthesis of the five oligorotaxanes, which were characterized subsequently by ¹H NMR spectroscopy at low temperature (233 K) in deuterated acetonitrile. The secondary structures, as well as the conformations, of the five oligorotaxanes were unraveled by spectroscopic comparison with the dumbbell and ring components. By focusing attention on the changes in chemical shifts of some key probe protons, obtained from a wide range of low-temperature spectra, a picture emerges of a high degree of folding within the thread protons of the dumbbells of four of the five oligorotaxanes—the fifth oligorotaxane represents a control compound in effect—brought about by a combination of C[BOND]H···O and π–π stacking interactions between the π-electron-deficient bipyridinium units in the rings and the π-electron-rich 1,5-dioxynaphthalene units and polyether chains in the dumbbells. The secondary structures of a foldamer-like nature have received further support from a solid-state superstructure of a related [3]pseudorotaxane and density functional calculations performed thereon.

  19. Alteration of cartilage glycosaminoglycan protein acceptor by somatomedin and cortisol.

    PubMed

    Kilgore, B S; McNatt, M L; Meador, S; Lee, J A; Hughes, E R; Elders, M J

    1979-02-01

    The effect of somatomedin and cortisol on embryonic chick cartilage in vitro indicates that somatomedin stimulates 35SO4 uptake while cortisol decreases it with no effect on glycosaminoglycan turnover. Xylosyltransferase activity is increased in crude fractions of somatomedin-treated cartilage but decreased in cortisol-treated cartilage. By using a Smith-degraded proteoglycan as an exogenous acceptor, xylosyltransferase activities from both treatments were equivalent, suggesting that the enzyme was not rate limiting. The results of xylosyltransferase assays conducted by mixing enzyme and endogenous acceptor from control, cortisol-treated and somatomedin-treated cartilage, suggest both effects to be at the level of the acceptor protein.

  20. Efficient organic solar cells with helical perylene diimide electron acceptors.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Wang, Wei; Khlyabich, Petr P; Kumar, Bharat; Xu, Qizhi; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles; Steigerwald, Michael L; Loo, Yueh-Lin; Xiao, Shengxiong; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2014-10-29

    We report an efficiency of 6.1% for a solution-processed non-fullerene solar cell using a helical perylene diimide (PDI) dimer as the electron acceptor. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces, indicating that charge carriers are created from photogenerated excitons in both the electron donor and acceptor phases. Light-intensity-dependent current-voltage measurements suggested different recombination rates under short-circuit and open-circuit conditions.

  1. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  2. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2010-01-01

    A multiplexed solid-phase assay for the detection of nucleic acid hybridization was developed on the basis of a single color of immobilized CdSe/ZnS quantum dot (QD) as a donor in fluorescence resonance energy transfer (FRET). This work demonstrated that two channels of detection did not necessitate two different QD donors. Two probe oligonucleotides were coimmobilized on optical fibers modified with QDs, and a sandwich assay was used to associate the acceptor dyes with interfacial hybridization events without target labeling. FRET-sensitized acceptor emission provided an analytical signal that was concentration dependent down to 10 nM. Changes in the ratio of coimmobilized probe oligonucleotides were found to yield linear changes in the relative amounts of acceptor emission. These changes were compared to previous studies that used mixed films of two QD donors for two detection channels. The analysis indicated that probe dilution effects were primarily driven by changes in acceptor number density and that QD dilution effects or changes in mean donor-acceptor distance were secondary. Hybridization kinetics were found to be consistent between different ratios of coimmobilized probes, suggesting that hybridization in this type of system occurred via the accepted model for solid-phase hybridization, where adsorption and then diffusion at the solid interface drove hybridization.

  3. Short-lived electron transfer in donor-bridge-acceptor systems

    NASA Astrophysics Data System (ADS)

    Psiachos, D.

    2016-10-01

    We investigate time-dependent electron transfer (ET) in benchmark donor-bridge-acceptor systems. For the small bridge sizes studied, we obtain results far different from the perturbation theory which underlies scattering-based approaches, notably a lack of destructive interference in the ET for certain arrangements of bridge molecules. We also calculate wavepacket transmission in the non-steady-state regime, finding a featureless spectrum, while for the current we find two types of transmission: sequential and direct, where in the latter, the current transmission increases as a function of the energy of the transferred electron, a regime inaccessible by conventional scattering theory.

  4. Thiadiazole molecules and poly(ethylene glycol)-block-polylactide self-assembled nanoparticles as effective photothermal agents.

    PubMed

    Sun, Tingting; Qi, Ji; Zheng, Min; Xie, Zhigang; Wang, Zhiyuan; Jing, Xiabin

    2015-12-01

    A new photothermal nano-agent was obtained by the coprecipitation of 2,5-Bis(2,5-bis(2-thienyl)-N-dodecyl pyrrole) thieno[3,4-b][1,2,5] thiadiazole (TPT-TT) and a biodegradable amphiphilic block copolymer, methoxypoly(ethylene glycol)2K-block-poly(D,L-lactide)2K (mPEG2K-PDLLA2K). TPT-TT, a donor-acceptor-donor (D-A-D) type small molecule, with bis(2-thienyl)-N-alkylpyrrole (TPT) as the donor and thieno[3,4-b]thiadiazole (TT) as the acceptor was a strong near infrared (NIR) absorber, which could convert the absorbed light energy into heat. The formation of TPT-TT nanoparticles (TPT-NPs), which possessed high stability in water, was confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). TPT-NPs showed high photothermal conversion efficiency (32%) and excellent photostability and heating reproducibility. The photostability of TPT-TT NPs was much better than that of indocyanine green (ICG), a federal drug administration (FDA) approved NIR dye. Besides, TPT-TT NPs exhibited significant photothermal therapeutic effect toward human cervical carcinoma (HeLa) and human liver hepatocellular carcinoma (HepG2) cells, while no appreciable dark cytotoxicity was observed. These results highlight the potential of TPT-TT NPs as an effective photothermal agent for cancer therapy.

  5. Carrier Dynamics in CsPbBr_3 Nanocrystals in Presence of Electron and Hole Acceptors: a Time Resolved Terahertz Spectroscopy Study.

    NASA Astrophysics Data System (ADS)

    Sarkar, Sohini; Banerjee, Sneha; Reddy, Yettapu Gurivi; Ravi, Vikash Kumar; Nag, Angshuman; Mandal, Pankaj

    2016-06-01

    Study of lead halide perovskites is a burgeoning field of research owing to their applications in solar cells and myriads of other light harvesting and emitting devices. In this work we have employed Terahertz time domain spectroscopy (THz-TDS) and time-resolved THz spectroscopy (TRTS) to study dielectric properties and carrier dynamics occurring within CsPbBr_3 perovskite nanocrystals (NCs) in presence of electron and hole acceptor molecules. The THz-TDS spectrum of CsPbBr_3 NCs features a strong and broad band with a peak around 3.4 THz which originates from multiple IR-active optical phonon modes of the nature of Pb-Br stretching and Br-Pb-Br bending vibrations. We observed very efficient electron and/or hole transfer in presence of either an electron or a hole acceptor, or both. Also, in presence of either an electron or hole acceptor the diffusion length reduces to half (4.1 μm) in comparison to parent NCs (9.2 μm). In presence of both, electron and hole acceptor molecules the diffusion length reduces to 0.6 μm. Considerable decrease in mobility values is also observed for the NCs in presence of electron and hole acceptor molecules. Details of the study will be discussed in the talk.

  6. Electronic structures and optical properties of organic dye sensitizer NKX derivatives for solar cells: a theoretical approach.

    PubMed

    Zhang, Cai-Rong; Liu, Li; Liu, Zi-Jiang; Shen, Yu-Lin; Sun, Yi-Tong; Wu, You-Zhi; Chen, Yu-Hong; Yuan, Li-Hua; Wang, Wei; Chen, Hong-Shan

    2012-09-01

    The photon to current conversion efficiency of dye-sensitized solar cells (DSCs) can be significantly affected by dye sensitizers. The design of novel dye sensitizers with good performance in DSCs depend on the dye's information about electronic structures and optical properties. Here, the geometries, electronic structures, as well as the dipole moments and polarizabilities of organic dye sensitizers C343 and 20 kinds of NKX derivatives were calculated using density functional theory (DFT), and the computations of the time dependent DFT with different functionals were performed to explore the electronic absorption properties. Based upon the calculated results and the reported experimental work, we analyzed the role of different conjugate bridges, chromophores, and electron acceptor groups in tuning the geometries, electronic structures, optical properties of dye sensitizers, and the effects on the parameters of DSCs were also investigated.

  7. Nitrogen is a deep acceptor in ZnO

    SciTech Connect

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence band relative to the vacuum level.

  8. Nitrogen is a deep acceptor in ZnO

    DOE PAGES

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  9. Color-sensitive photoconductivity of nanostructured ZnO/fast green dye hybrid films

    NASA Astrophysics Data System (ADS)

    Rani, Mamta; Tripathi, S. K.

    2013-06-01

    Nanostructured ZnO/dye hybrid films prepared by sol gel method have been investigated in conductivity and photoconductivity measurements in view of applications in dye-sensitized solar cells (DSSC). The absorption of ZnO film sensitized by Fast Green dye (FGF) has been studied by UV spectroscopy which indicates that after the dye is adsorbed on the ZnO electrode, its absorption spectra showed red-shift in the peak position compared to the absorbance spectra of dye in ethanol. The films, in which dye molecules are located within the ZnO crystals, are found to show higher sensitivity to illumination with visible light in photoconductivity measurements due to a high proportion of surface dye molecules are being excited by π-electrons acting as sensitizers.

  10. Theory of Triplet Excitation Transfer in the Donor-Oxygen-Acceptor System: Application to Cytochrome b6f

    PubMed Central

    Petrov, Elmar G.; Robert, Bruno; Lin, Sheng Hsien; Valkunas, Leonas

    2015-01-01

    Theoretical consideration is presented of the triplet excitation dynamics in donor-acceptor systems in conditions where the transfer is mediated by an oxygen molecule. It is demonstrated that oxygen may be involved in both real and virtual intramolecular triplet-singlet conversions in the course of the process under consideration. Expressions describing a superexchange donor-acceptor coupling owing to a participation of the bridging twofold degenerate oxygen’s virtual singlet state are derived and the transfer kinetics including the sequential (hopping) and coherent (distant) routes are analyzed. Applicability of this theoretical description to the pigment-protein complex cytochrome b6f, by considering the triplet excitation transfer from the chlorophyll a molecule to distant β-carotene, is discussed. PMID:26488665

  11. A triphenylamine-based colorimetric and fluorescent probe with donor–bridge–acceptor structure for detection of G-quadruplex DNA.

    PubMed

    Wang, Ming-Qi; Zhu, Wen-Xiang; Song, Zhuan-Zhuan; Li, Shuo; Zhang, Yong-Zhao

    2015-12-15

    In this Letter, three triphenylamine-based dyes (TPA-1, TPA-2a and TPA-2b) with donor–bridge–acceptor (D–p–A) structure were designed and synthesized for the purpose of G-quadruplexes recognition. In aqueous conditions, the interactions of the dyes with G-quadruplexes were studied with the aim to establish the influence of the geometry of the dyes on their binding and probing properties. Results indicate that TPA-2b displays significant selective colorimetric and fluorescent changes upon binding of G-quadruplex DNA. More importantly, its distinct color change enables visual detection and differentiation of G-quadruplexes from single and duplex DNA structures. CD titration date reveals that TPA-2b could induce and stabilize the formation of G-quadruplex structure. All these remarkable properties of TPA-2b suggest that it should have promising application in the field of G-quadruplexes research.

  12. Fullerene-bisadduct acceptors for polymer solar cells.

    PubMed

    Li, Yongfang

    2013-10-01

    Polymer solar cells (PSCs) have drawn great attention in recent years for their simple device structure, light weight, and low-cost fabrication in comparison with inorganic semiconductor solar cells. However, the power-conversion efficiency (PCE) of PSCs needs to be increased for their future application. The key issue for improving the PCE of PSCs is the design and synthesis of high-efficiency conjugated polymer donors and fullerene acceptors for the photovoltaic materials. For the acceptor materials, several fullerene-bisadduct acceptors with high LUMO energy levels have demonstrated excellent photovoltaic performance in PSCs with P3HT as a donor. In this Focus Review, recent progress in high-efficiency fullerene-bisadduct acceptors is discussed, including the bisadduct of PCBM, indene-C60 bisadduct (ICBA), indene-C70 bisadduct (IC70BA), DMPCBA, NCBA, and bisTOQC. The LUMO levels and photovoltaic performance of these bisadduct acceptors with P3HT as a donor are summarized and compared. In addition, the applications of an ICBA acceptor in new device structures and with other conjugated polymer donors than P3HT are also introduced and discussed.

  13. Alternating donor-acceptor arrays from hexa-peri-hexabenzocoronene and benzothiadiazole: synthesis, optical properties, and self-assembly.

    PubMed

    Hinkel, Felix; Cho, Don; Pisula, Wojciech; Baumgarten, Martin; Müllen, Klaus

    2015-01-02

    Donor-acceptor (D-A) structures were obtained by alternating arrays of hexa-peri-hexabenzocoronene (HBC) and benzo[c][1,2,5]thiadiazole (BTZ). Optoelectronic investigations revealed a charge transfer due to strong push-pull interactions. 2 D wide-angle X-ray scattering (WAXS) data indicated an arrangement in liquid-crystalline columnar assemblies, in which the π-stacking distances and molecular orientation depend on the number of HBC units in the molecules.

  14. Ternary-Blend Polymer Solar Cells Combining Fullerene and Nonfullerene Acceptors to Synergistically Boost the Photovoltaic Performance.

    PubMed

    Lu, Heng; Zhang, Jicheng; Chen, Jianya; Liu, Qian; Gong, Xue; Feng, Shiyu; Xu, Xinjun; Ma, Wei; Bo, Zhishan

    2016-11-01

    A ternary-blend strategy is presented to surmount the shortcomings of both fullerene derivatives and nonfullerene small molecules as acceptors for the first time. The optimal ternary device shows a high power conversion efficiency (PCE) of 10.4%. Moreover, a significant enhancement in PCE (≈35%) relative to both of the binary reference devices, which has never been achieved before in high-efficiency ternary devices, is demonstrated.

  15. New efficient organic dyes employing indeno[1,2-b]indole as the donor moiety for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Qian, Xing; Yan, Rucai; Xu, Chong; Shao, Li; Li, Hongmei; Hou, Linxi

    2016-11-01

    A new series of organic dyes based on indeno[1,2-b]indole have been synthesized and applied in dye-sensitized solar cells (DSSCs) for the first time. These four dyes QX11-14 are constructed to a D-π-A type structure consisting of an indeno[1,2-b]indole donor and a cyanoacrylic acid acceptor/anchoring group. Different π-bridges (thiophene and furan) and different alkyl groups (ethyl and hexyl) are involved to tune the photoelectric properties. Their optical, electrochemical, and photovoltaic properties, as well as the density functional theory calculations have been systematically investigated, indicating these four dyes are all capable as photosensitizers. The four dyes all show good DSSC performances and a highest power conversion efficiency up to 7.64% with a Jsc of 15.8 mA cm-2 and a Voc of 763 mV has been achieved by the dye QX12 with a furan π-bridge and a pair of ethyl groups, which reaches 95% of the commercial N719 dye (8.07%) under AM 1.5G illumination. This result reveals indeno[1,2-b]indole is a promising electron donor to construct efficient organic dyes for DSSCs.

  16. Cyclopenta[b]naphthalene cyanoacrylate dyes: Synthesis and evaluation as fluorescent molecular rotors

    PubMed Central

    Kocsis, Laura S.; Elbel, Kristyna M.; Hardigree, Billie A.

    2015-01-01

    We describe the design, synthesis and fluorescent profile of a family of environment-sensitive dyes in which a dimethylamino (donor) group is conjugated to a cyanoacrylate (acceptor) unit via a cyclopenta[b]naphthalene ring system. This assembly satisfies the typical D-π-A motif of a fluorescent molecular rotor and exhibits solvatochromic and viscosity-sensitive fluorescence emission. The central naphthalene ring system of these dyes was synthesized via a novel intramolecular dehydrogenative dehydro-Diels-Alder (IDDDA) reaction that permits incorporation of the donor and acceptor groups in variable positions around the aromatic core. A bathochromic shift of excitation and emission peaks was observed with increasing solvent polarity but the dyes exhibited a complex emission pattern with a second red emission band when dissolved in nonpolar solvents. Consistent with other known molecular rotors, the emission intensity increased with increasing viscosity. Interestingly, closer spatial proximity between the donor and the acceptor groups led to decreased viscosity sensitivity combined with an increased quantum yield. This observation indicates that structural hindrance of intramolecular rotation dominates when the donor and acceptor groups are in close proximity. The examined compounds give insight into how excited state intramolecular rotation can be influenced by both the solvent and the chemical structure. PMID:25614187

  17. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    NASA Astrophysics Data System (ADS)

    Liyanage, Arawwawala Don Thilanga

    the structure-property study of imide functionalized D-A polymers. Here we used thiophene-imide (TPD) as the acceptor moiety and prepare several D-A polymers by varying the donor units. When selecting the donor units, more priority goes to the fused ring systems. One main reason to use imide functionality is due to the, open position of the imide nitrogen, which provides an attaching position to alkyl substituent. Through this we can easily manipulate solubility and solid state packing arrangement. Also these imide acceptors have low-lying LUMOs due to their electron deficient nature and this will allow tuning the optical energy gap by careful choice of donor materials with different electron donating ability. The fourth chapter mainly contribute to the synthesis and structure property study of a completely novel electron acceptor moiety consist of a unsaturated pyrrolidinone unit known as Pechmann dye (PD) core. Pechmann dyes are closely related to the Indigo family. This can refer as 3-butenolide dimer connected via an alkene bridge, containing a benzene ring at the 5 and 5' positions of the lactone rings. We have prepared several D-A polymers using this PD system with benzodithiophene (BDT) as the donor unit. Different to common D-A polymers the HOMO and LUMO of the PD acceptor moiety are energetically located within the gap of the BDT, so that the electronic and optical properties (HOMO-LUMO transition) are dictated by the PD properties. The promising electronic properties, band gaps, high absorption coefficients and broad absorption suggest this new D-A polymers as an interesting donor material for organic solar cell (OSC) applications. KEY WORDS: Organic semiconductor materials, Self assembly, (opto)-electronic properties, Donor-Acceptor conjugated polymers, Fluorinated arene, 3,3'-bithiophene donors, Thiophene-imide (TPD), Pechmann dye, benzodithiophene, organic solar cell.

  18. The electronic structure and second-order nonlinear optical properties of donor-acceptor acetylenes - A detailed investigation of structure-property relationships

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Graham, Eva; Khundkar, Lutfur R.; Perry, Joseph W.; Cheng, L.-T.; Perry, Kelly J.

    1991-01-01

    A series of donor-acceptor acetylene compounds was synthesized in which systematic changes in both the conjugation length and the donor-acceptor strength were made. The effect of these structural changes on the spectroscopic and electronic properties of the molecules and, ultimately, on the measured second-order molecular hyperpolarizabilities (beta) was investigated. It was found that increases in the donor-acceptor strength resulted in increases in the magnitude of beta. For this class of molecules, the increase is dominated by the energy of the intramolecular charge-transfer transition, while factors such as the ground to excited-state dipole moment change and the transition-moment integral are much less important. Increasing the conjugation length from one to two acetylene linkers did not result in an increase in the value of beta; however, beta increased sharply in going from two acetylenes to three. This increase is attributed to the superposition of several nearly isoenergetic excited states.

  19. Synthesis of Laser Dyes

    DTIC Science & Technology

    1988-11-09

    block number) This report describes the progress made in attempts to prepare seven laser dyes. These dyes all have a 2-(L-pyridy.)-1,3- oxazole ...structure one dye, The synthesis of one dye, 2-(Ni-met.hyl-4-pyridiniiumi)pherianthroL9,10-dJ-1,3- oxazole tosylate (I) has been com-pleted. Preliminary...1,3- oxazoles . I~ 20 [IISTRI:’UTIGTJi/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 0UNITILA-,SIFIEDI.JNLiITED 0 SAME AS RPT El DTIC

  20. Studies in treatment of disperse dye waste: Membrane-wet oxidation process

    SciTech Connect

    Dhale, A.D.; Mahajani, V.V.

    2000-07-01

    An integrated process, membrane-wet oxidation (MEMWO) has been demonstrated to treat the disperse dye bath waste. The dye bath waste stream containing azo class disperse dye CL 79, was studied to demonstrate the process. A nanofiltration membrane (MPT 30) showed > 99% color and 97% chemical oxygen demand (COD) rejection of dye compound. The concentrate was then treated by wet oxidation (WO) process. WO of dye was studied in the range of 160--225 C and oxygen partial pressure 0.69--1.38 MPa. A homogeneous copper sulfate was found to be a suitable catalyst to effectively destroy the dye as well as the real waste. While non catalytic WO of dye achieved 75% reduction in COD during 120 min with 99% color destruction, the catalytic WO showed about 90% reduction in COD. The performance of WO of actual waste stream was comparable with that of pure dye molecule.

  1. Superior Adsorption and Regenerable Dye Adsorbent Based on Flower-Like Molybdenum Disulfide Nanostructure

    NASA Astrophysics Data System (ADS)

    Han, Sancan; Liu, Kerui; Hu, Linfeng; Teng, Feng; Yu, Pingping; Zhu, Yufang

    2017-03-01

    Herein we report superior dye-adsorption performance for flower-like nanostructure composed of two dimensional (2D) MoS2 nanosheets by a facile hydrothermal method, more prominent adsorption of cationic dye compared with anodic dye indicates the dye adsorption performance strongly depends on surface charge of MoS2 nanosheets. The adsorption mechanism of dye is analyzed, the kinetic data of dye adsorption fit well with the pseudo-second-order model, meanwhile adsorption capability at different equilibrium concentrations follows Langmuir model, indicating the favorability and feasibility of dye adsorption. The regenerable property for MoS2 with full adsorption of dye molecules by using alkaline solution were demonstrated, showing the feasibility of reuse for the MoS2, which is promising in its practical water treatment application.

  2. Superior Adsorption and Regenerable Dye Adsorbent Based on Flower-Like Molybdenum Disulfide Nanostructure

    PubMed Central

    Han, Sancan; Liu, Kerui; Hu, Linfeng; Teng, Feng; Yu, Pingping; Zhu, Yufang

    2017-01-01

    Herein we report superior dye-adsorption performance for flower-like nanostructure composed of two dimensional (2D) MoS2 nanosheets by a facile hydrothermal method, more prominent adsorption of cationic dye compared with anodic dye indicates the dye adsorption performance strongly depends on surface charge of MoS2 nanosheets. The adsorption mechanism of dye is analyzed, the kinetic data of dye adsorption fit well with the pseudo-second-order model, meanwhile adsorption capability at different equilibrium concentrations follows Langmuir model, indicating the favorability and feasibility of dye adsorption. The regenerable property for MoS2 with full adsorption of dye molecules by using alkaline solution were demonstrated, showing the feasibility of reuse for the MoS2, which is promising in its practical water treatment application. PMID:28272411

  3. Fine tuning of fluorene-based dye structures for high-efficiency p-type dye-sensitized solar cells.

    PubMed

    Liu, Zonghao; Li, Wenhui; Topa, Sanjida; Xu, Xiaobao; Zeng, Xianwei; Zhao, Zhixin; Wang, Mingkui; Chen, Wei; Wang, Feng; Cheng, Yi-Bing; He, Hongshan

    2014-07-09

    We report on an experimental study of three organic push-pull dyes (coded as zzx-op1, zzx-op1-2, and zzx-op1-3) featuring one, two, and three fluorene units as spacers between donors and acceptors for p-type dye-sensitized solar cells (p-DSSC). The results show increasing the number of spacer units leads to obvious increases of the absorption intensity between 300 nm and 420 nm, a subtle increase in hole driving force, and almost the same hole injection rate from dyes to NiO nanoparticles. Under optimized conditions, the zzx-op1-2 dye with two fluorene spacer units outperforms other two dyes in p-DSSC. It exhibits an unprecedented photocurrent density of 7.57 mA cm(-2) under full sun illumination (simulated AM 1.5G light illumination, 100 mW cm(-2)) when the I(-)/I3(-) redox couple and commercial NiO nanoparticles were used as an electrolyte and a semiconductor, respectively. The cells exhibited excellent long-term stability. Theoretical calculations, impedance spectroscopy, and transient photovoltage decay measurements reveal that the zzx-op1-2 exhibits lower photocurrent losses, longer hole lifetime, and higher photogenerated hole density than zzx-op1 and zzx-op1-3. A dye packing model was proposed to reveal the impact of dye aggregation on the overall photovoltaic performance. Our results suggest that the structural engineering of organic dyes is important to enhance the photovoltaic performance of p-DSSC.

  4. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

  5. The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors

    PubMed Central

    Vogel, Steven S.; Nguyen, Tuan A.; van der Meer, B. Wieb; Blank, Paul S.

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states. PMID:23152925

  6. Dyes and Redox Couples with Matched Energy Levels: Elimination of the Dye-Regeneration Energy Loss in Dye-Sensitized Solar Cells.

    PubMed

    Jiang, Dianlu; Darabedian, Narek; Ghazarian, Sevak; Hao, Yuanqiang; Zhgamadze, Maxim; Majaryan, Natalie; Shen, Rujuan; Zhou, Feimeng

    2015-11-16

    In dye-sensitized solar cells (DSSCs), a significant dye-regeneration force (ΔG(reg)(0)≥0.5 eV) is usually required for effective dye regeneration, which results in a major energy loss and limits the energy-conversion efficiency of state-of-art DSSCs. We demonstrate that when dye molecules and redox couples that possess similar conjugated ligands are used, efficient dye regeneration occurs with zero or close-to-zero driving force. By using Ru(dcbpy)(bpy)2(2+) as the dye and Ru(bpy)2(MeIm)2(3+//2+) as the redox couple, a short-circuit current (J(sc)) of 4 mA cm(-2) and an open-circuit voltage (V(oc)) of 0.9 V were obtained with a ΔG(reg)(0) of 0.07 eV. The same was observed for the N3 dye and Ru(bpy)2(SCN)2(1+/0) (ΔG(reg)(0)=0.0 eV), which produced an J(sc) of 2.5 mA cm(-2) and V(oc) of 0.6 V. Charge recombination occurs at pinholes, limiting the performance of the cells. This proof-of-concept study demonstrates that high V(oc) values can be attained by significantly curtailing the dye-regeneration force.

  7. A strategy to minimize the energy offset in carrier injection from excited dyes to inorganic semiconductors for efficient dye-sensitized solar energy conversion.

    PubMed

    Fujisawa, Jun-Ichi; Osawa, Ayumi; Hanaya, Minoru

    2016-08-10

    Photoinduced carrier injection from dyes to inorganic semiconductors is a crucial process in various dye-sensitized solar energy conversions such as photovoltaics and photocatalysis. It has been reported that an energy offset larger than 0.2-0.3 eV (threshold value) is required for efficient electron injection from excited dyes to metal-oxide semiconductors such as titanium dioxide (TiO2). Because the energy offset directly causes loss in the potential of injected electrons, it is a crucial issue to minimize the energy offset for efficient solar energy conversions. However, a fundamental understanding of the energy offset, especially the threshold value, has not been obtained yet. In this paper, we report the origin of the threshold value of the energy offset, solving the long-standing questions of why such a large energy offset is necessary for the electron injection and which factors govern the threshold value, and suggest a strategy to minimize the threshold value. The threshold value is determined by the sum of two reorganization energies in one-electron reduction of semiconductors and typically-used donor-acceptor (D-A) dyes. In fact, the estimated values (0.21-0.31 eV) for several D-A dyes are in good agreement with the threshold value, supporting our conclusion. In addition, our results reveal that the threshold value is possible to be reduced by enlarging the π-conjugated system of the acceptor moiety in dyes and enhancing its structural rigidity. Furthermore, we extend the analysis to hole injection from excited dyes to semiconductors. In this case, the threshold value is given by the sum of two reorganization energies in one-electron oxidation of semiconductors and D-A dyes.

  8. Self-Assembly of Optical Molecules with Supramolecular Concepts

    PubMed Central

    Okamoto, Ken; Chithra, Parayalil; Richards, Gary J.; Hill, Jonathan P.; Ariga, Katsuhiko

    2009-01-01

    Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces. PMID:19564931

  9. Donor-acceptor substituted phenylethynyltriphenylenes – excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission

    PubMed Central

    Nandy, Ritesh

    2010-01-01

    Summary Several 2-(phenylethynyl)triphenylene derivatives bearing electron donor and acceptor substituents on the phenyl rings have been synthesized. The absorption and fluorescence emission properties of these molecules have been studied in solvents of different polarity. For a given derivative, solvent polarity had minimal effect on the absorption maxima. However, for a given solvent the absorption maxima red shifted with increasing conjugation of the substituent. The fluorescence emission of these derivatives was very sensitive to solvent polarity. In the presence of strongly electron withdrawing (–CN) and strongly electron donating (–NMe2) substituents large Stokes shifts (up to 130 nm, 7828 cm−1) were observed in DMSO. In the presence of carbonyl substituents (–COMe and –COPh), the largest Stokes shift (140 nm, 8163 cm−1) was observed in ethanol. Linear correlation was observed for the Stokes shifts in a Lippert–Mataga plot. Linear correlation of Stokes shift was also observed with E T(30) scale for protic and aprotic solvents but with different slopes. These results indicate that the fluorescence emission arises from excited state intramolecular charge transfer in these molecules where the triphenylene chromophore acts either as a donor or as an acceptor depending upon the nature of the substituent on the phenyl ring. HOMO–LUMO energy gaps have been estimated from the electrochemical and spectral data for these derivatives. The HOMO and LUMO surfaces were obtained from DFT calculations. PMID:21085512

  10. Preparation of highly selective solid-phase extractants for Cibacron reactive dyes using molecularly imprinted polymers.

    PubMed

    Al-Degs, Yahya S; Abu-Surrah, Adnan S; Ibrahim, Khalid A

    2009-02-01

    Selective polymeric extractants were prepared for preconcentration of Cibacron reactive red dye, a dye that is often applied with Cibacron reactive blue and Cibacron reactive yellow for dyeing of fabrics. The best extractant was fabricated (in chloroform) using methacrylic acid (as monomer), ethylene glycol dimethacrylate (as crosslinker), AIBN (as initiator for polymerization), and red dye as template molecule, with a molar stoichiometric ratio of 8.0:40.0:2.5:0.63, respectively. The structure of the molecularly imprinted polymer (MIP) was robust, and resisted dissolution up to 260 degrees C. Compared with the un-imprinted polymer, the imprinted product has a large specific surface area which improved its adsorption capacity. The effect of imprinting was obvious from the adsorption capacity measured at pH 4 for red dye (the imprinted molecule), which was increased from 24.0 to 79.3 mg g(-1) after imprinting. Equilibrium adsorption studies revealed that the dye-imprinted-polymer enables efficient extraction of red dye even in the presence of blue and yellow dyes which have similar chemical natures to the red dye. The selectivity coefficients S (red dye/dye), were 13.9 and 17.1 relative to the yellow and blue dyes, respectively. The MIP was found to be effective for red dye preconcentration, with a preconcentration factor of 100, from tap water and treated textile wastewater. The factors affecting extraction of red dye by the MIP were studied and optimized. Under the optimized extraction conditions, red dye was selectively quantified in the presence of other competing dyes at a concentration of 20 microg L(-1) from different water systems with satisfactory recoveries (91-95%) and RSD values (approximately 5.0%).

  11. Fluorescence Phenomena in Nerve-Labeling Styryl-Type Dyes

    PubMed Central

    Siclovan, Tiberiu M.; Zhang, Rong; Cotero, Victoria; Bajaj, Anshika; Dylov, Dmitry V.; Yazdanfar, Siavash; Carter, Randall; Tan Hehir, Cristina A.; Natarajan, Arunkumar

    2015-01-01

    Several classes of diversely substituted styryl type dyes have been synthesized with the goal of extending their expected fluorescent properties as much towards red as possible given the constraint that they maintain drug-like properties and retain high affinity binding to their biological target. We report on the synthesis, optical properties of a series of styryl dyes (d1-d14), and the anomalous photophysical behavior of several of these Donor-Acceptor pairs separated by long conjugated π-systems (d7-d10). We further describe an unusual dual emission behavior with two distinct ground state conformers which could be individually excited to locally excited (LE) and twisted intramolecular charge transfer (TICT) excited state in push-pull dye systems (d7, d9 and d10). Additionally, unexpected emission behavior in dye systems d7 and d8 wherein the amino- derivative d7 displayed a dual emission in polar medium while the N,N-dimethyl derivative d8 and other methylated derivatives d12-d14 showed only LE emission but did not show any TICT emission. Based on photophysical and nerve binding studies, we down selected compounds that exhibited the most robust fluorescent staining of nerve tissue sections. These dyes (d7, d9, and d10) were subsequently selected for in-vivo fluorescence imaging studies in rodents using the small animal multispectral imaging instrument and the dual-mode laparoscopic instrument developed in-house. PMID:26693208

  12. Direct comparison of highly efficient solution- and vacuum-processed organic solar cells based on merocyanine dyes.

    PubMed

    Kronenberg, Nils M; Steinmann, Vera; Bürckstümmer, Hannah; Hwang, Jaehyung; Hertel, Dirk; Würthner, Frank; Meerholz, Klaus

    2010-10-01

    Identically configured bulk heterojunction organic solar cells based on merocyanine dye donor and fullerene acceptor compounds (see figure) are manufactured either from solution or by vacuum deposition, to enable a direct comparison. Whereas the former approach is more suitable for screening purposes, the latter approach affords higher short-circuit current density and power conversion efficiency.

  13. Adsorption mechanism for xanthene dyes to cellulose granules.

    PubMed

    Tabara, Aya; Yamane, Chihiro; Seguchi, Masaharu

    2012-01-01

    The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.

  14. Internally labeled Cy3/Cy5 DNA constructs show greatly enhanced photo-stability in single-molecule FRET experiments

    PubMed Central

    Lee, Wonbae; von Hippel, Peter H.; Marcus, Andrew H.

    2014-01-01

    DNA constructs labeled with cyanine fluorescent dyes are important substrates for single-molecule (sm) studies of the functional activity of protein–DNA complexes. We previously studied the local DNA backbone fluctuations of replication fork and primer–template DNA constructs labeled with Cy3/Cy5 donor–acceptor Förster resonance energy transfer (FRET) chromophore pairs and showed that, contrary to dyes linked ‘externally’ to the bases with flexible tethers, direct ‘internal’ (and rigid) insertion of the chromophores into the sugar-phosphate backbones resulted in DNA constructs that could be used to study intrinsic and protein-induced DNA backbone fluctuations by both smFRET and sm Fluorescent Linear Dichroism (smFLD). Here we show that these rigidly inserted Cy3/Cy5 chromophores also exhibit two additional useful properties, showing both high photo-stability and minimal effects on the local thermodynamic stability of the DNA constructs. The increased photo-stability of the internal labels significantly reduces the proportion of false positive smFRET conversion ‘background’ signals, thereby simplifying interpretations of both smFRET and smFLD experiments, while the decreased effects of the internal probes on local thermodynamic stability also make fluctuations sensed by these probes more representative of the unperturbed DNA structure. We suggest that internal probe labeling may be useful in studies of many DNA–protein interaction systems. PMID:24627223

  15. Tuning the physical properties of organic sensitizers by replacing triphenylamine with new donors for dye sensitized solar cells - a theoretical approach

    NASA Astrophysics Data System (ADS)

    Ramkumar, Sekar; Manidurai, Paulraj

    2017-02-01

    New donor molecules with low ionization potential have been theoretically designed by replacing the benzene moieties in triphenylamine (TPA) with thiophene as well as furan. The designed new donors also exhibited planar structure, making an angle of 120° around the nitrogen atom that results in resonance effects through π-bonds of aryl rings. New sensitizers have been theoretically studied using DFT and TD-DFT by adopting these designed donors. UV-Vis absorption spectra, light harvesting ability (LHE) and electron injection ability (ΔGinject) of the designed sensitizers have been calculated by taking L0 as reference. Orbital overlapping between donor and acceptor facilitates intra-molecular charge transfer, thereby increasing the interfacial electron injection from the sensitizer to the semiconductor nanoparticles. Our theoretical results demonstrate that sensitizers DTPA-AA and DFPA-AA have broader absorption and lower ΔGinject respectively compare to L0, this opens a new way for designing sensitizers for dye sensitized solar cells (DSSCs). All the dyes designed were found to be good light harvesters.

  16. Tuning the physical properties of organic sensitizers by replacing triphenylamine with new donors for dye sensitized solar cells - a theoretical approach.

    PubMed

    Ramkumar, Sekar; Manidurai, Paulraj

    2017-02-15

    New donor molecules with low ionization potential have been theoretically designed by replacing the benzene moieties in triphenylamine (TPA) with thiophene as well as furan. The designed new donors also exhibited planar structure, making an angle of 120° around the nitrogen atom that results in resonance effects through π-bonds of aryl rings. New sensitizers have been theoretically studied using DFT and TD-DFT by adopting these designed donors. UV-Vis absorption spectra, light harvesting ability (LHE) and electron injection ability (ΔGinject) of the designed sensitizers have been calculated by taking L0 as reference. Orbital overlapping between donor and acceptor facilitates intra-molecular charge transfer, thereby increasing the interfacial electron injection from the sensitizer to the semiconductor nanoparticles. Our theoretical results demonstrate that sensitizers DTPA-AA and DFPA-AA have broader absorption and lower ΔGinject respectively compare to L0, this opens a new way for designing sensitizers for dye sensitized solar cells (DSSCs). All the dyes designed were found to be good light harvesters.

  17. Microencapsulated Fluorescent Dye Penetrant.

    DTIC Science & Technology

    1979-07-01

    Microencapsulated fluorescent dye pentrant materials were evaluated for feasibility as a technique to detect cracks on metal surfaces when applied as...a free flowing dry powder. Various flourescent dye solutions in addition to a commercial penetrant (Zyglo ZL-30) were microencapsulated and tested on

  18. Hair dye poisoning

    MedlinePlus

    ... temporary dyes are: Arsenic Bismuth Denatured alcohol Lead ( lead poisoning ) Mercury Pyrogallol Silver Hair dyes may contain other ... infection. Continued exposure to lead or mercury can lead to permanent brain and nervous system damage. Alternative ... References Lee DC. Hydrocarbons. In: Marx JA, Hockberger ...

  19. Oxazine laser dyes

    DOEpatents

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  20. D-π-A dye system containing cyano-benzoic acid as anchoring group for dye-sensitized solar cells.

    PubMed

    Katono, Masataka; Bessho, Takeru; Meng, Sheng; Humphry-Baker, Robin; Rothenberger, Guido; Zakeeruddin, Shaik M; Kaxiras, Efthimios; Grätzel, Michael

    2011-12-06

    A D-π-A dye (KM-1) incorporating cyano-benzoic acid as a new acceptor/anchoring group has been synthesized for dye-sensitized solar cells (DSCs) with a high molar extinction coefficient of 66,700 M(-1) cm(-1) at 437 nm. Theoretical calculations show that the hydrogen bond between -CN and surface hydroxyl leads to the most stable configuration on the surface of TiO(2). In addition, the adsorption of the dye on TiO(2) follows a Brunauer-Emmett-Teller (BET) isotherm. Multilayer adsorption of KM-1 on TiO(2) seems to take place particularly at higher dye concentrations. DSC device using KM-1 reached a maximum incident photon-to-current conversion efficiency (IPCE) of 84%, with a solar to electric power conversion efficiency (PCE) of 3.3% at AM1.5 G illumination (100 mW cm(-2)). This new type of anchoring group paves a way to design new dyes that combine good visible light harvesting with strong binding to the metal oxide surface.

  1. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P.

    2016-05-01

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet-visible (UV-vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO2 and their HOMOs are under the reduction potential energy of the electrolytes (I-/I3-) which can facilitate electron transfer from the excited dye to TiO2 and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the "dye 3" can be used as potential sensitizer for DSSC.

  2. Chalcogenopyrylium Dyes with Anchors to Nanoparticle and Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Bedics, Matthew Allen

    Surface enhanced Raman scattering (SERS) has gained widespread attention as a biomedical imaging technique due to its multiplexing capabilities and the low limits of detection (LODs) of SERS-nanoprobes. The library of available reporter molecules, which are used to generate unique SERS spectra, was previously limited to commercially available dyes or a small group of cyanine reporters. Herein, the design and synthesis of a novel group of chalcogenopyrylium SERS reporters is described. These dyes have a high affinity for Au and absorption maxima that range into the NIR region. These reporter molecules enabled the use of the 1280 nm laser, which was previously incompatible with SERS imaging. Also, nanoprobe LODs using these dyes as reporters are lower than any previously documented systems, with a 100 aM LOD using a 785 nm excitation and multiple examples of fM to pM LODs using a 1064 nm or 1280 nm excitation source. Nanoprobes functionalized with these compounds have also been successfully utilized in vivo, and produce more intense SERS spectra as compared to a commonly used cyanine reporter. Dye sensitized solar cells (DSSCs) have produced considerable interest as an alternative to conventionally used Si-based solar cells. Specifically, DSSCs that use metal-free organic dyes as sensitizers are important due to the lower cost and the use of earth abundant materials as starting materials. Herein, a group of chalcogenopyrylium dyes were appended with an anchoring group to TiO2, which enables the use of these dyes as sensitizers. Structural modifications were used to extend absorption maxima into the near-infrared region of the light spectrum and to evaluate the effect that dye aggregation has on device performance. The monomethine dyes successfully produced a photocurrent, with incident photon to current efficiency values as high as 20%. Aggregation was found to benefit these systems due to the spectral broadening of aggregated dyes, and consequent increased range of

  3. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  4. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C.

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  5. TDDFT screening auxiliary withdrawing group and design the novel D-A-π-A organic dyes based on indoline dye for highly efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenqing; Liu, Yun; Liu, Chunmeng; Lin, Chundan; Shao, Changjin

    2016-10-01

    Based on the experimentally synthesized dye JZ145, we designed a series of novel D-A-π-A dyes SPL201-SPL211 with different π-conjugated bridges and a new auxiliary withdrawing group for highly efficient dye-sensitized solar cells (DSSCs) using density functional theory (DFT) and time-dependent DFT(TDDFT). The molecular structures, energy levels, absorption spectra, light-harvesting efficiency (LHE), driving force of injection(ΔGinj) and regeneration(ΔGreg), electron dipole moment (μnormal) and lifetime of the first excited state(τ) were all scrutinized in details. Results reveal that the additional withdrawing group A2 and the π-conjugated group di-η-hexyl-substituted cyclopentadithiophene (CPDT) are more promising functional groups for the organic dyes with D-A-π-A structure. We further designed SPL212 and SPL213 by employing indoline group as donor, the above screened functional groups as π-conjugated bridge and additional withdrawing group, biscarbodithiolic acid and dicyanovinyl sulfonic acid groups as acceptor group. We found that SPL212 exhibits not only a higher molar extinction coefficient with an increment of 30.8%, larger excited state lifetime and an obvious redshift of 201 nm but also a broader absorption spectrum covering the entire visible range even up to near-IR of 1200 nm compared to JZ145. So, SPL212 can be used as a promising candidate for DSSCs. In addition, the results also prove that biscarbodithiolic acid may be more favorable than dicyanovinylsulfonic acid as acceptor group in DSSCs.

  6. Designer Metallic Acceptor-Containing Halogen Bonding: General Strategies.

    PubMed

    Zhang, Xinxing; Bowen, Kit H

    2017-03-13

    Being electrostatic interactions in nature, hydrogen bonding (HB) and halogen bonding (XB) are considered to be two parallel worlds. In principle, all the applications that HB has could also be applied to XB. However, there has been no report on a metallic XB acceptor but metal anions have been observed to be good HB acceptors. This missing mosaic piece of XB is because common metal anions are reactive for XB donors. In view of this, we propose two strategies for designing metallic acceptor-containing XB using ab initio calculations. The first one is to utilize a metal cluster anion with a high electron detachment energy, such as the superatom, Al13- as the XB acceptor. The second strategy is to design a ligand passivated/protected metal core while it still can maintain the negative charge; several exotic clusters, such as PtH5-, PtZnH5- and PtMgH5-, are utilized as examples. Based on these two strategies, we anticipate that more metallic acceptor-containing XB will be discovered.

  7. In-Situ Spectroscopic Analyses of the Dye Uptake on ZnO and TiO2 Photoanodes for Dye-Sensitized Solar Cells.

    PubMed

    Shahzad, Nadia; Pugliese, Diego; Shahzad, Muhammad Imran; Tresso, Elena

    2015-08-01

    UV-Vis spectroscopic measurements have been performed on Dye-Sensitized Solar Cell (DSSC) photoanodes at different dye impregnation times ranging from few minutes to 24 hours. In addition to the traditional absorbance experiments, based on diffuse and specular reflectance of dye impregnated thin films and on the desorption of dye molecules from the photoanodes by means of a basic solution, an alternative in-situ solution depletion measurement, which enables fast and continuous evaluation of dye uptake, has been employed. Two different nanostructured semiconducting oxide films (mesoporous TiO2 and sponge-like ZnO) and two different dyes, the traditional Ruthenizer 535-bisTBA (N719) and a newly introduced metal-free organic dye based on a hemi-squaraine molecule (CT1), have been analyzed. DSSCs have been fabricated with the dye-impregnated photoanodes using a customized microfluidic architecture. The dye adsorption results are discussed and correlated to the obtained DSSC electrical performances such as photovoltaic conversion efficiencies and Incident Photon-to-electron Conversion Efficiency (IPCE) spectra. It is shown that simple UV-Vis measurements can give useful insights on the dye adsorption mechanisms and on the evaluation of the optimal impregnation times.

  8. Adaptation for improving lifetime of dye laser using coumarin dyes

    SciTech Connect

    Fletcher, A.N.

    1984-10-23

    The effective lasing lifetime of laser dyes including coumarin dyes are significantly extended by the use of an inert cover gas for the laser dye solution such as argon in combination with the employment of a glass filter such as Pyrex disposed between the pumping flash lamp and the dye laser cavity capable of absorbing electromagnetic radiation of about 300 nanometers or shorter wavelength.

  9. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  10. Molecular aggregation of naphthalimide dyes in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Bielejewska, Natalia; Bauman, Danuta

    2011-05-01

    Langmuir-Blodgett (LB) films formed of some naphthalimide dyes, namely derivatives of 4-aminonaphthalimide, mixed with arachidic acid have been studied. The electronic absorption and fluorescence spectra were recorded. The results obtained have led to conclusions about formation of self-aggregates of dye molecules. The absorption spectra have indicated that in the ground electronic state, depending on the molecular structure of substituents to the main core of the dye molecule, some fractions of J-type and/or H-type aggregates can be created. The fluorescence spectra have been dominated by the emission from excimer states. The efficiency of fluorescence has been dependent on the dye content and the number of layers in LB films. Comparison of the results of this study with those obtained previously for these same dyes mixed with the thermotropic liquid crystal 4-heptyl-4'-cyanobiphenyl has revealed that the interactions among dye molecules in monolayers formed at interfaces are strongly affected by a compound used as a supporting matrix.

  11. Directional emission from dye-functionalized plasmonic DNA superlattice microcavities.

    PubMed

    Park, Daniel J; Ku, Jessie C; Sun, Lin; Lethiec, Clotilde M; Stern, Nathaniel P; Schatz, George C; Mirkin, Chad A

    2017-01-17

    Three-dimensional plasmonic superlattice microcavities, made from programmable atom equivalents comprising gold nanoparticles functionalized with DNA, are used as a testbed to study directional light emission. DNA-guided nanoparticle colloidal crystallization allows for the formation of micrometer-scale single-crystal body-centered cubic gold nanoparticle superlattices, with dye molecules coupled to the DNA strands that link the particles together, in the form of a rhombic dodecahedron. Encapsulation in silica allows one to create robust architectures with the plasmonically active particles and dye molecules fixed in space. At the micrometer scale, the anisotropic rhombic dodecahedron crystal habit couples with photonic modes to give directional light emission. At the nanoscale, the interaction between the dye dipoles and surface plasmons can be finely tuned by coupling the dye molecules to specific sites of the DNA particle-linker strands, thereby modulating dye-nanoparticle distance (three different positions are studied). The ability to control dye position with subnanometer precision allows one to systematically tune plasmon-excition interaction strength and decay lifetime, the results of which have been supported by electrodynamics calculations that span length scales from nanometers to micrometers. The unique ability to control surface plasmon/exciton interactions within such superlattice microcavities will catalyze studies involving quantum optics, plasmon laser physics, strong coupling, and nonlinear phenomena.

  12. Synthesis, spectroscopic, thermal and electrochemical studies on thiazolyl azo based disperse dyes bearing coumarin

    NASA Astrophysics Data System (ADS)

    Özkütük, Müjgan; İpek, Ezgi; Aydıner, Burcu; Mamaş, Serhat; Seferoğlu, Zeynel

    2016-03-01

    In this study, seven novel thiazolyl azo disperse dyes (6a-g) were synthesized and fully characterized by FT-IR, 1H NMR, 13C NMR, and mass spectral techniques. The electronic absorption spectra of the dyes in solvents of different polarities cover a λmax range of 404-512 nm. The absorption properties of the dyes changed drastically upon acidification. This was due to the protonation of the nitrogen in the thiazole ring, which in turn increased the donor-acceptor interplay of the π system in the dyes, and therefore increased the absorption properties of the prepared dyes. Thermal analysis showed that these dyes are thermal stable up to 269 °C. Additionally, the electrochemical behavior of the dyes (6a-g) were investigated using cyclic voltammetric and chronoamperometric techniques, in the presence of 0.10 M tetrabutylammonium tetrafluoroborate, in dimethylsulfoxide, at a glassy carbon electrode. The number of transferred electrons, and the diffusion coefficient were determined by electrochemical methods. The results showed that, for all the dyes, one oxidation peak and two reduction peaks were observed.

  13. Electron acceptor taxis and blue light effect on bacterial chemotaxis.

    PubMed

    Taylor, B L; Miller, J B; Warrick, H M; Koshland, D E

    1979-11-01

    Salmonella typhimurium and Escherichia coli from anaerobic cultures displayed tactic responses to gradients of nitrate, fumarate, and oxygen when the appropriate electron transport pathway was present. Such responses were named "electron acceptor taxis" because they are elicited by terminal electron acceptors. Mutant strains of S. typhimurium and E. coli were used to establish that functioning electron transport pathways to nitrate and fumarate are required for taxis to these compounds. Aerotaxis in S. typhimurium was blocked by 1.0 mM KCN, which inhibited oxygen uptake. Similarly, a functioning electron transport pathway was shown to be essential for the tumbling response of S. typhimurium and E. coli to intense light (290 to 530 nm). Some inhibitors and uncouplers of respiration were repellents of S. typhimurium. We propose that behavioral responses to light or electron acceptors involve electron transport-mediated perturbations of the proton motive force.

  14. Gut inflammation provides a respiratory electron acceptor for Salmonella

    PubMed Central

    Winter, Sebastian E.; Thiennimitr, Parameth; Winter, Maria G.; Butler, Brian P.; Huseby, Douglas L.; Crawford, Robert W.; Russell, Joseph M.; Bevins, Charles L.; Adams, L. Garry; Tsolis, Renée M.; Roth, John R.; Bäumler, Andreas J.

    2010-01-01

    Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation reacted with endogenous, luminal sulphur compounds (thiosulfate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to utilize tetrathionate as an electron acceptor produced a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus, the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen. PMID:20864996

  15. Molecular engineering of D-D-π-A type organic dyes incorporating indoloquinoxaline and phenothiazine for highly efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Qian, Xing; Wang, Xiaoying; Shao, Li; Li, Hongmei; Yan, Rucai; Hou, Linxi

    2016-09-01

    Four metal-free organic dyes QX05-08 based on indoloquinoxaline and phenothiazine have been successfully designed and synthesized for dye-sensitized solar cells. The D-D-π-A type dyes QX07 and QX08 consist of an indoloquinoxaline donor, a phenothiazine donor, a cyanoacrylic acid acceptor/anchoring group and a thiophene or furan π-bridge. Other simple D-π-A type dyes QX05 and QX06 based on indoloquinoxaline and phenothiazine respectively have also been synthesized for comparison. The D-D-π-A type dyes QX07 and QX08 present good balanced structures and show excellent photoelectric properties. Especially, the dye QX07 with a thiophene unit as the π-bridge exhibits the best photovoltaic performances in solar cells. A high power conversion efficiency up to 8.28% with a Jsc of 15.3 mA cm-2 and a Voc of 757 mV have been achieved by the dye QX07 using an iodine electrolyte under standard conditions.

  16. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R.

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  17. A study of dyes sorption on biobased cryogels

    NASA Astrophysics Data System (ADS)

    Dobritoiu, Rodica; Patachia, Silvia

    2013-11-01

    Three types of biopolymers based materials were synthesized and tested as adsorbents for the dyes from aqueous solutions. Blends based on poly (vinyl alcohol) [PVA] and scleroglucan [Scl], cellulose micro-fibres [cel] and zein, respectively, have been prepared by repeated freezing-thawing cycles. Methylene blue [MB] was selected as a model dye in order to evaluate the capacity of the prepared materials to remove the dyes from aqueous solutions. The effects of the initial dye concentration, contact time and the composition of materials on the kinetic and thermodynamic parameters of sorption were discussed. The pseudo-second-order kinetics was found to better fit the experimental data thus being able to consistently predict the amount of dye adsorbed over the entire sorption period. The sorption equilibrium data obey Freundlich isotherm. Sorption capacity was evaluated both by dye solution and cryogel analysis by using VIS spectrometry and image analysis with CIELAB system. The sorption of monomer or aggregated dye molecules was identified and correlated with the type and morphology of the gel. The highest efficiency in MB removal was obtained for Scl/PVA cryogels in 1:9 weight ratio (9.5279 mg/g MB for an initial concentration by 8 × 10-5 mol/L in MB). These materials are suitable as sorbents for the advanced removal of dyes from waste water.

  18. Direct thermal dyes

    NASA Astrophysics Data System (ADS)

    Ehlinger, Edward

    1990-07-01

    Direct thermal dyes are members of a class of compounds referred to in the imaging industry as color formers or leuco dyes. The oldest members of that class have simple triarylmethane structures, and have been employed for years in various dyeing applications. More complex triarylmethane compounds, such as phthalides and fluorans, are now used in various imaging systems to produce color. Color is derived from all of these compounds via the same mechanism, on a molecular level. That is, an event of activation produces a highly resonating cationic system whose interaction with incident light produces reflected light of a specific color. The activation event in the case of a direct thermal system is the creation of a melt on the paper involving dye and an acidic developer. The three major performance parameters in a thermal system are background color, image density, and image stability. The three major dye physical parameters affecting thermal performance are chemical constituency, purity, and particle size. Those dyes having the best combination of characteristics which can also be manufactured economically dominate the marketplace. Manufacturing high performance dyes for the thermal market involves multi-step, convergent reaction sequences performed on large scale. Intermediates must be manufactured at the right time, and at the right quality to be useful.

  19. Acceptor specificity in the transglycosylation reaction using Endo-M.

    PubMed

    Tomabechi, Yusuke; Odate, Yuki; Izumi, Ryuko; Haneda, Katsuji; Inazu, Toshiyuki

    2010-11-22

    To determine the structural specificity of the glycosyl acceptor of the transglycosylation reaction using endo-β-N-acetylglucosaminidase (ENGase) (EC 3.2.1.96) from Mucor hiemalis (Endo-M), several acceptor derivatives were designed and synthesized. The narrow regions of the 1,3-diol structure from the 4- to 6-hydroxy functions of GlcNAc were found to be essential for the transglycosylation reaction using Endo-M. Furthermore, it was determined that Endo-M strictly recognizes a 1,3-diol structure consisting of primary and secondary hydroxyl groups.

  20. Donor-acceptor chemistry in the main group.

    PubMed

    Rivard, Eric

    2014-06-21

    This Perspective article summarizes recent progress from our laboratory in the isolation of reactive main group species using a general donor-acceptor protocol. A highlight of this program is the use of carbon-based donors in combination with suitable Lewis acidic acceptors to yield stable complexes of parent Group 14 element hydrides (e.g. GeH2 and H2SiGeH2). It is anticipated that this strategy could be extended to include new synthetic targets from throughout the Periodic Table with possible applications in bottom-up materials synthesis and main group element catalysis envisioned.

  1. Long-lived laser dye

    SciTech Connect

    Fletcher, A.N.

    1986-07-29

    A method is described of obtaining in a flashlamp pumped laser system, a long-lived flashpumped laser dye having a low threshold of lasing and a moderate output comprising the steps of: placing a dye solution comprising a laser dye, the N-methyl tosylate salt of 2-(4-pyridyl)-5-(4-methoxphenyl)oxazole, and a solvent into a laser dye cavity; screening the dye solution from ultraviolet light with an optical filter; flushing the dye solution with an inert gas; and optically pumping the dye solution with a flashlamp to produce laser emission.

  2. Study of the conditions affecting dye adsorption on titania films and of their effect on dye photodegradation rates.

    PubMed

    Strataki, Nikoleta; Bekiari, Vlasoula; Lianos, Panagiotis

    2007-07-31

    Nanocrystalline titania films have been deposited on glass slides by the sol-gel technique in the presence of surfactant, which plays the role of template of the nanostructure. Several different dyes, both anionic and cationic, have been adsorbed on these films from aqueous solutions. Some of these dyes were adsorbed at large quantities some at lower quantities. Some of them were adsorbed in monomeric form and others formed aggregates. Aggregates are easily distinguished by absorption spectrophotometry, since absorption of light is observed at a different wavelength than monomer absorption in a dilute solution. In all cases, aggregation demonstrated a hypsochromic shift, indicating repulsive interactions, which are justified in view of the fact that titania surface is charged and that adsorbed molecules are aligned in parallel. The above titania films are hydroxylated. Therefore, cationic dyes were readily adsorbed. Anionic dyes could be adsorbed only from aqueous solutions brought at low pH. Photodegradation rates of adsorbed dyes were generally fast since these films are efficient photocatalysts. Nevertheless, photodegradation of an adsorbed dye was faster when the quantity of the dye was smaller. When the adsorbed dyes formed aggregates, aggregation had adverse effect on photodegradation rates.

  3. A theoretical probe on the non-covalent interactions of sulfadoxine drug with pi-acceptors

    NASA Astrophysics Data System (ADS)

    Sandhiya, L.; Senthilkumar, K.

    2014-09-01

    A detailed analysis of the interaction between an antimalarial drug sulfadoxine and four pi-acceptors, tetrachloro-catechol, picric acid, chloranil, and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is presented in this study. The interaction of the amine, amide, methoxy, Csbnd H groups and π electron density of the drug molecule with the acceptors are studied using DFT method at M06-2X level of theory with 6-31G(d,p) basis set. The interaction energy of the complexes is calculated using M06-2X, M06-HF, B3LYP-D and MP2 methods with 6-31G(d,p) basis set. The role of weak interactions on the formation and stability of the complexes is discussed in detail. The two aromatic platforms of sulfadoxine play a major role in determining the stability of the complexes. The electron density difference maps have been plotted for the most stable drug interacting complexes to understand the changes in electron density delocalization upon the complex formation. The nature of the non-covalent interaction has been addressed from NCI plot. The infrared spectra calculated at M06-2X/6-31G(d,p) level of theory is used to characterize the most stable complexes. The SDOX-pi acceptor complexation leads to characteristic changes in the NMR spectra. The 13C, 1H, 17O and 15N NMR chemical shifts have been calculated using GIAO method at M06-2X/6-311+G(d,p)//M06-2X/6-31G(d,p) level of theory. The results obtained from this study confirm the role of non-covalent interactions on the function of the sulfadoxine drug.

  4. A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit

    SciTech Connect

    T Wang; R Sha; J Birktoft; J Zheng; C Mao; N Seeman

    2011-12-31

    We describe the self-assembly of a DNA crystal that contains two tensegrity triangle molecules per asymmetric unit. We have used X-ray crystallography to determine its crystal structure. In addition, we have demonstrated control over the colors of the crystals by attaching either Cy3 dye (pink) or Cy5 dye (blue-green) to the components of the crystal, yielding crystals of corresponding colors. Attaching the pair of dyes to the pair of molecules yields a purple crystal.

  5. Self-assembly properties of semiconducting donor-acceptor-donor bithienyl derivatives of tetrazine and thiadiazole-effect of the electron accepting central ring.

    PubMed

    Zapala, Joanna; Knor, Marek; Jaroch, Tomasz; Maranda-Niedbala, Agnieszka; Kurach, Ewa; Kotwica, Kamil; Nowakowski, Robert; Djurado, David; Pecaut, Jacques; Zagorska, Malgorzata; Pron, Adam

    2013-11-26

    Scanning tunneling microscopy was used to study the effect of the electron-accepting unit and the alkyl substituent's position on the type and extent of 2D supramolecular organization of penta-ring donor-acceptor-donor (DAD) semiconductors, consisting of either tetrazine or thiadiazole central acceptor ring symmetrically attached to two bithienyl groups. Microscopic observations of monomolecular layers on HOPG of four alkyl derivatives of the studied adsorbates indicate significant differences in their 2D organizations. Ordered monolayers of thiadiazole derivatives are relatively loose and, independent of the position of alkyl substituents, characterized by large intermolecular separation of acceptor units in the adjacent molecules located in the face-to-face configuration. The 2D supramolecular architecture in both derivatives of thiadiazole is very sensitive to the alkyl substituent's position. Significantly different behavior is observed for derivatives of tetrazine (which is a stronger electron acceptor). Stronger intermolecular DA interactions in these adsorbates generate an intermolecular shift in the monolayer, which is a dominant factor determining the 2D structural organization. As a consequence of this molecular arrangement, tetrazine groups (A segments) face thiophene rings (D segments) of the neighboring molecules. Monolayers of tetrazine derivatives are therefore much more densely packed and characterized by similar π-stacking of molecules independently of the position of alkyl substituents. Moreover, a comparative study of 3D supramolecular organization, deduced from the X-ray diffraction patterns, is also presented clearly confirming the polymorphism of the studied adsorbates.

  6. Photoconductivity of organic polymer films doped with porous silicon nanoparticles and ionic polymethine dyes

    SciTech Connect

    Davidenko, N. A. Skrichevsky, V. A.; Ishchenko, A. A.; Karlash, A. Yu.; Mokrinskaya, E. V.

    2009-05-15

    Features of electrical conductivity and photoconductivity of polyvinylbutyral films containing porous silicon nanoparticles and similar films doped with cationic and anionic polymethine dyes are studied. Sensitization of the photoelectric effect by dyes with different ionicities in films is explained by the possible photogeneration of holes and electrons from dye molecules and the intrinsic bipolar conductivity of porous silicon nanoparticles. It is assumed that the electronic conductivity in porous silicon nanoparticles is higher in comparison with p-type conductivity.

  7. Three Redox States of a Diradical Acceptor-Donor-Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization.

    PubMed

    Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume

    2016-06-16

    The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations.

  8. Comparative rates of transfer of N-acetylneuraminic acid to acceptors bearing one or more Gal(beta 1-4)GlcNAc terminus by the Gal(beta 1-4)GlcNAc(NeuAc-Gal) (alpha 2-6)-sialyltransferase from embryonic chicken liver. Utilization of oligosaccharides as acceptors in sialyltransferase assays.

    PubMed Central

    Bendiak, B; Cook, G M

    1983-01-01

    Using a number of branched and unbranched oligosaccharides, glycoproteins and artificial glycoproteins bearing Gal(beta 1-4)GlcNAc-R termini as acceptors (where R represents H, oligosaccharide, oligosaccharide-protein or fatty acid-protein), the comparative rates of transfer of NeuAc by the Gal(beta 1-4)GlcNAc(NeuAc-Gal) (alpha 2-6)-sialyltransferase of embryonic chicken liver were determined. Acceptor substrates were utilized at levels approximating physiological, near the Km value of the best acceptor, desialylated alpha 1 acid glycoprotein. The sialyltransferase has a marked preference for multi-branched acceptors. From the specificity data, it is concluded that the enzyme binds at least two Gal(beta 1-4)GlcNAc termini of an acceptor molecule, and that the relative orientation of the branches is an important factor determining the rate of catalysis by the enzyme. The use of oligosaccharides as acceptors to study sialyltransferase catalyses is emphasized. Results are discussed in the context of the mode of assembly of sialoside termini of known glycoprotein structures in vivo. Images Fig. 2. PMID:6615429

  9. Controlling Protein Conformations to Explore Unprecedented Material Properties by Single-Molecule Surgery

    DTIC Science & Technology

    2012-08-17

    Molecule Protein Conformational Dynamics in Enzymatic Reactions,” Single-Molecule Biophysics Meeting, Aspen , CO, Jan. 4-10, 2009. H. P. Lu, “Single...Donor-Acceptor: Cy3-Cy5) pair labeled HPPK molecule tethered between a glass cover-slip surface and a handle (biotin group plus streptavidin), and a...5, 2008. H. P. Lu, “Probing Single-Molecule Protein Conformational Dynamics in Enzymatic Reactions,” Single-Molecule Biophysics Meeting, Aspen

  10. Electron Acceptor-Electron Donor Interactions. XV and XVI.

    DTIC Science & Technology

    mixtures exhibit simple eutectic phase diagrams and the thermochromic effect is interpreted as a randomized structure in the liquid , whereas the solid is a...two-phase aggregate of isolated acceptor and onor crystals . The charge-transfer spectra of solutions of tungsten and molybdenum hexafluorides and iodine heptafluoride in n-hexane and cyclohexane were obtained.

  11. Poly(trifluoromethyl)azulenes: structures and acceptor properties.

    PubMed

    Clikeman, Tyler T; Bukovsky, Eric V; Kuvychko, Igor V; San, Long K; Deng, Shihu H M; Wang, Xue-Bin; Chen, Yu-Sheng; Strauss, Steven H; Boltalina, Olga V

    2014-06-14

    Six new poly(trifluoromethyl)azulenes prepared in a single high-temperature reaction exhibit strong electron accepting properties in the gas phase and in solution and demonstrate the propensity to form regular π-stacked columns in donor-acceptor crystals when mixed with pyrene as a donor.

  12. Graphene and Donor-Acceptor Molecules/Nanoparticle Composites for Advanced Electronics Technologies

    DTIC Science & Technology

    2013-06-26

    induced by carbon and boron fullerenes (C60, C70, C80 and B80). Spin-polarized first-principles calculations were performed on zigzag boron− nitride ...structures and electronic properties of two-dimensional single-layer graphene in the presence of non-covalent interactions induced by carbon and boron...fullerenes (C60, C70, C80 and B80) and spin-polarized first-principles calculations performed on zigzag boron− nitride nanoribbons (z-BNNRs) with lines

  13. Development of imide- and imidazole-containing electron acceptors for use in donor-acceptor conjugated compounds and polymers

    NASA Astrophysics Data System (ADS)

    Li, Duo

    Conjugated organic compounds and polymers have attracted significant attention due to their potential application in electronic devices as semiconducting materials, such as organic solar cells (OSCs). In order to tune band gaps, donor-acceptor (D-A) structure is widely used, which has been proved to be one of the most effective strategies. This thesis consists of three parts: 1) design, syntheses and characterization of new weak acceptors based on imides and the systematic study of the structure-property relationship; (2) introduction of weak and strong acceptors in one polymer to achieve a broad coverage of light absorption and improve the power conversion efficiency (PCE); (3) modification of benzothiadiazole (BT) acceptor in order to increase the electron withdrawing ability. Imide-based electron acceptors, 4-(5-bromothiophen-2-y1)-2-(2-ethylhexyl)-9- phenyl- 1H-benzo[f]isoindole-1,3(2H)-dione (BIDO-1) and 4,9-bis(5-bromothiophen-2-yl)-2-(2-ethylhexyl)-benzo[f]isoindole-1,3-dione (BIDO-2), were designed and synthesized. In this design, naphthalene is selected as its main core to maintain a planar structure, and thienyl groups are able to facilitate the bromination reaction and lower the band gap. BIDO-1 and BIDO-2 were successfully coupled with different donors by both Suzuki cross-coupling and Stille cross-coupling reactions. Based on the energy levels and band gaps of the BIDO-containing compounds and polymers, BIDO-1 and BIDO-2 are proved to be weak electron acceptors. Pyromellitic diimide (PMDI) was also studied and found to be a stronger electron acceptor than BIDO . In order to obtain broad absorption coverage, both weak acceptor ( BIDO-2) and strong acceptor diketopyrrolopyrrole (DPP) were introduced in the same polymer. The resulting polymers show two absorption bands at 400 and 600 nm and two emission peaks at 500 and 680 nm. The band gaps of the polymers are around 1.6 eV, which is ideal for OSC application. The PCE of 1.17% was achieved. Finally

  14. Acceptor conductivity in bulk zinc oxide (0001) crystals

    NASA Astrophysics Data System (ADS)

    Adekore, Bababunmi Tolu

    ZnO is a promising wide bandgap semiconductor. Its renowned and prominent properties as its bandgap of 3.37eV at 4.2K; its very high excitonic binding energy, 60meV; its high melting temperature, 2248K constitute the basis for the recently renewed and sustained scientific interests in the material. In addition to the foregoing, the availability of bulk substrates of industrially relevant sizes provides important opportunities such as homoepitaxial deposition of the material which is a technological asset in the production of efficient optoelectronic and electronic devices. The nemesis of wide bandgap materials cannot be more exemplified than in ZnO. The notorious limitation of asymmetric doping and the haunting plague of electrically active point defects dim the bright future of the material. In this case, the search for reliable and consistent acceptor conductivity in bulk substrates has been hitherto, unsuccessful. In the dissertation that now follows, our efforts have been concerted in the search for a reliable acceptor. We have carefully investigated the science of point defects in the material, especially those responsible for the high donor conductivity. We also investigated and herein report variety of techniques of introducing acceptors into the material. We employ the most relevant and informative characterization techniques in verifying both the intended conductivity and the response of intrinsic crystals to variation in temperature and strain. And finally we explain deviations, where they exist, from ideal acceptor characteristics. Our work on reliable acceptor has been articulated in four papers. The first establishing capacitance based methods of monitoring electrically active donor defects. The second investigates the nature of anion acceptors on the oxygen sublattice. A study similar to the preceding study was conducted for cation acceptors on the zinc sublattice and reported in the third paper. Finally, an analysis of the response of the crystal to

  15. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  16. FT-IR, UV-vis, 1H and 13C NMR spectra and the equilibrium structure of organic dye molecule disperse red 1 acrylate: a combined experimental and theoretical analysis.

    PubMed

    Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet

    2011-12-01

    This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials.

  17. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián A.; Gillanders, Florencia; Jares-Erijman, Elizabeth A.; Jovin, Thomas M.

    2015-01-01

    Photoswitchable molecules and nanoparticles constitute superior biosensors for a wide range of industrial, research and biomedical applications. Rendered reversible by spontaneous or deterministic means, such probes facilitate many of the techniques in fluorescence microscopy that surpass the optical resolution dictated by diffraction. Here we have devised a family of photoswitchable quantum dots (psQDs) in which the semiconductor core functions as a fluorescence donor in Förster resonance energy transfer (FRET), and multiple photochromic diheteroarylethene groups function as acceptors upon activation by ultraviolet light. The QDs were coated with a polymer bearing photochromic groups attached via linkers of different length. Despite the resulting nominal differences in donor-acceptor separation and anticipated FRET efficiencies, the maximum quenching of all psQD preparations was 38±2%. This result was attributable to the large ultraviolet absorption cross-section of the QDs, leading to preferential cycloreversion of photochromic groups situated closer to the nanoparticle surface and/or with a more favourable orientation.

  18. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors.

    PubMed

    Díaz, Sebastián A; Gillanders, Florencia; Jares-Erijman, Elizabeth A; Jovin, Thomas M

    2015-01-16

    Photoswitchable molecules and nanoparticles constitute superior biosensors for a wide range of industrial, research and biomedical applications. Rendered reversible by spontaneous or deterministic means, such probes facilitate many of the techniques in fluorescence microscopy that surpass the optical resolution dictated by diffraction. Here we have devised a family of photoswitchable quantum dots (psQDs) in which the semiconductor core functions as a fluorescence donor in Förster resonance energy transfer (FRET), and multiple photochromic diheteroarylethene groups function as acceptors upon activation by ultraviolet light. The QDs were coated with a polymer bearing photochromic groups attached via linkers of different length. Despite the resulting nominal differences in donor-acceptor separation and anticipated FRET efficiencies, the maximum quenching of all psQD preparations was 38±2%. This result was attributable to the large ultraviolet absorption cross-section of the QDs, leading to preferential cycloreversion of photochromic groups situated closer to the nanoparticle surface and/or with a more favourable orientation.

  19. 18F-Labeled Silicon-Based Fluoride Acceptors: Potential Opportunities for Novel Positron Emitting Radiopharmaceuticals

    PubMed Central

    Bernard-Gauthier, Vadim; Wängler, Carmen; Wängler, Bjoern; Schirrmacher, Ralf

    2014-01-01

    Background. Over the recent years, radiopharmaceutical chemistry has experienced a wide variety of innovative pushes towards finding both novel and unconventional radiochemical methods to introduce fluorine-18 into radiotracers for positron emission tomography (PET). These “nonclassical” labeling methodologies based on silicon-, boron-, and aluminium-18F chemistry deviate from commonplace bonding of an [18F]fluorine atom (18F) to either an aliphatic or aromatic carbon atom. One method in particular, the silicon-fluoride-acceptor isotopic exchange (SiFA-IE) approach, invalidates a dogma in radiochemistry that has been widely accepted for many years: the inability to obtain radiopharmaceuticals of high specific activity (SA) via simple IE. Methodology. The most advantageous feature of IE labeling in general is that labeling precursor and labeled radiotracer are chemically identical, eliminating the need to separate the radiotracer from its precursor. SiFA-IE chemistry proceeds in dipolar aprotic solvents at room temperature and below, entirely avoiding the formation of radioactive side products during the IE. Scope of Review. A great plethora of different SiFA species have been reported in the literature ranging from small prosthetic groups and other compounds of low molecular weight to labeled peptides and most recently affibody molecules. Conclusions. The literature over the last years (from 2006 to 2014) shows unambiguously that SiFA-IE and other silicon-based fluoride acceptor strategies relying on 18F− leaving group substitutions have the potential to become a valuable addition to radiochemistry. PMID:25157357

  20. Study of excitation transfer in laser dye mixtures by direct measurement of fluorescence lifetime

    NASA Technical Reports Server (NTRS)

    Lin, C.; Dienes, A.

    1973-01-01

    By directly measuring the donor fluorescence lifetime as a function of acceptor concentration in the laser dye mixture Rhodamine 6G-Cresyl violet, we found that the Stern-Volmer relation is obeyed, from which the rate of excitation transfer is determined. The experimental results indicate that the dominant mechanism responsible for the efficient excitation transfer is that of resonance transfer due to long range dipole-dipole interaction.

  1. Efficiency Enhancement of Cocktail Dye of Ixora coccinea and Tradescantia spathacea in DSSC.

    PubMed

    Zolkepli, Zularif; Lim, Andery; Ekanayake, Piyasiri; Tennakoon, Kushan

    2015-01-01

    The use of anthocyanin dyes extracted from epidermal leaves of Tradescantia spathacea (Trant) and petals of Ixora coccinea (IX) was evaluated in the application of dye-sensitized solar cells (DSSCs). Subsequently, cocktail anthocyanin dyes from these dyes were prepared and how they enhanced the cell's overall performance was assessed using five different volume-to-volume ratios. Cocktail dyes absorbed a wider range of light in the visible region, thus increasing the cell efficiencies of the cocktail dyes when compared to the DSSC sensitized by individual dyes. The surface charge (zeta-potential), average size of aggregated anthocyanin molecules (zetasizer), and anthocyanin stability in different storage temperatures were analyzed and recorded. Lower size of aggregated dye molecules as revealed from the cocktail dyes ensured better adsorption onto the TiO2 film. Tradescantia/Ixora pigments mixed in 1 : 4 ratio showed the highest cell efficiency of η = 0.80%, under the irradiance of 100 mW cm(-2), with a short-circuit current density 4.185 mA/cm(2), open-circuit voltage of 0.346 V, and fill factor of 0.499. It was found that the desired storage temperature for these cocktail dyes to be stable over time was -20°C, in which the anthocyanin half-life was about approximately 1727 days.

  2. Efficiency Enhancement of Cocktail Dye of Ixora coccinea and Tradescantia spathacea in DSSC

    PubMed Central

    Zolkepli, Zularif; Lim, Andery; Ekanayake, Piyasiri; Tennakoon, Kushan

    2015-01-01

    The use of anthocyanin dyes extracted from epidermal leaves of Tradescantia spathacea (Trant) and petals of Ixora coccinea (IX) was evaluated in the application of dye-sensitized solar cells (DSSCs). Subsequently, cocktail anthocyanin dyes from these dyes were prepared and how they enhanced the cell's overall performance was assessed using five different volume-to-volume ratios. Cocktail dyes absorbed a wider range of light in the visible region, thus increasing the cell efficiencies of the cocktail dyes when compared to the DSSC sensitized by individual dyes. The surface charge (zeta-potential), average size of aggregated anthocyanin molecules (zetasizer), and anthocyanin stability in different storage temperatures were analyzed and recorded. Lower size of aggregated dye molecules as revealed from the cocktail dyes ensured better adsorption onto the TiO2 film. Tradescantia/Ixora pigments mixed in 1 : 4 ratio showed the highest cell efficiency of η = 0.80%, under the irradiance of 100 mW cm−2, with a short-circuit current density 4.185 mA/cm2, open-circuit voltage of 0.346 V, and fill factor of 0.499. It was found that the desired storage temperature for these cocktail dyes to be stable over time was −20°C, in which the anthocyanin half-life was about approximately 1727 days. PMID:26793239

  3. Supramolecular guest-host systems: combining high dye doping level with low aggregation tendency

    NASA Astrophysics Data System (ADS)

    Priimagi, Arri; Cattaneo, Stefano; Ras, Robin H. A.; Valkama, Sami; Ikkala, Olli; Kauranen, Martti

    2006-08-01

    We demonstrate that the aggregation tendency of dye molecules in a host polymer can be significantly reduced by exploiting non-covalent interactions between the host polymer and guest dye molecules. Such interactions occur spontaneously with no need for chemical synthesis, and could thus be utilized to combine the ease of processing of traditional guest-host systems with the high dye concentrations achievable in covalently linked systems. We studied the aggregation properties of the common azo-dye Disperse Red 1 in polymers with different functional groups. Compared to a nonpolar polymer (polystyrene), dye aggregation tendency is substantially reduced in polar polymer matrices containing hydrogen-bond donating [poly(vinylphenol)] or hydrogen-bond accepting [poly(4-vinylpyridine)] functional sites. Furthermore, by forming a polyelectrolyte-dye complex [Disperse Red 1/poly(styrenesulfonic acid)], a dye monomer can be attached to approximately each polymer unit, resulting in dye concentration of 63 wt. %. Complexation through proton transfer was further studied by using a fluorescent dye 5-phenyl-2-(4-pyridyl)oxazole. Our results indicate that polymer-dye complexes could provide a facile route for new type of optical materials, with potential applications in various fields of optics and photonics.

  4. Solid-state photogalvanic dye-sensitized solar cells.

    PubMed

    Berhe, Seare A; Gobeze, Habtom B; Pokharel, Sundari D; Park, Eunsol; Youngblood, W Justin

    2014-07-09

    Photogalvanic cells are photoelectrochemical systems wherein the semiconductor electrode is not a participant in primary photoinduced charge formation. The discovery of photoelectrochemical systems that successfully exploit secondary (thermal) electron injection at dye-semiconductor interfaces may enable studies of electron transfer at minimal driving force for electron injection into the semiconductor. In this study, we have examined thermal electron transfer from molecular sensitizers to nanostructured semiconductor electrodes composed of titanium dioxide nanorods by means of transient spectroscopy and the assembly and testing of photoelectrochemical cells. Electron-accepting molecular dyes have been studied alongside an arylamine electron donor. Thermal injection is estimated for a naphthacenequinone radical anion as a multiexponential decay process with initial decay lifetimes of 6 and 27 ps. The ambient electric field present during charge separation at a surface-adsorbed dye monolayer causes Stark shifts of the radical ion pair absorbance peaks that confounded kinetic estimation of thermal injection for a fullerene sensitizer. Electron-accepting dyes that operate by thermal injection into titanium dioxide function better in solid-state photoelectrochemical cells than in liquid-junction cells due to the kinetic advantage of solid-state cells with respect to photoinduced acceptor-quenching to form the necessary radical anion sensitizers.

  5. Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa

    2016-10-01

    Multilayer dye aggregation at the dye/TiO2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells.

  6. Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis

    PubMed Central

    Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa

    2016-01-01

    Multilayer dye aggregation at the dye/TiO2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells. PMID:27767196

  7. Enhanced Photovoltaic Performances of Dye-Sensitized Solar Cells by Co-Sensitization of Benzothiadiazole and Squaraine-Based Dyes.

    PubMed

    Islam, Ashraful; Akhtaruzzaman, Md; Chowdhury, Towhid H; Qin, Chuanjiang; Han, Liyuan; Bedja, Idriss M; Stalder, Romain; Schanze, Kirk S; Reynolds, John R

    2016-02-01

    Dye-sensitized solar cells (DSSCs) based on a donor-acceptor-donor oligothienylene dye containing benzothiadiazole (T4BTD-A) were cosensitized with dyes containing cis-configured squaraine rings (HSQ3 and HSQ4). The cosensitized dyes showed incident monochromatic photon-to-current conversion efficiency (IPCE) greater than 70% in the 300-850 nm wavelength region. The individual overall conversion efficiencies of the sensitizers T4BTD-A, HSQ3, and HSQ4 were 6.4%, 4.8%, and 5.8%, respectively. Improved power conversion efficiencies of 7.0% and 7.7% were observed when T4BTD-A was cosensitized with HSQ3 and HSQ4, respectively, thanks to a significant increase in current density (JSC) for the cosensitized DSSCs. Intensity-modulated photovoltage spectroscopy results showed a longer lifetime for cosensitized T4BTD-A+HSQ3 and T4BTD-A+HSQ4 compared to that of HSQ3 and HSQ4, respectively.

  8. Structure of the acceptor stem of Escherichia coli tRNA Ala: role of the G3.U70 base pair in synthetase recognition.

    PubMed Central

    Ramos, A; Varani, G

    1997-01-01

    The fidelity of translation of the genetic code depends on accurate tRNA aminoacylation by cognate aminoacyl-tRNA synthetases. Thus, each tRNA has specificity not only for codon recognition, but also for amino acid identity; this aminoacylation specificity is referred to as tRNA identity. The primary determinant of the acceptor identity of Escherichia coli tRNAAlais a wobble G3.U70 pair within the acceptor stem. Despite extensive biochemical and genetic data, the mechanism by which the G3.U70 pair marks the acceptor end of tRNAAla for aminoacylation with alanine has not been clarified at the molecular level. The solution structure of a microhelix derived from the tRNAAla acceptor end has been determined at high precision using a very extensive set of experimental constraints (approximately 32 per nt) obtained by heteronuclear multidimensional NMR methods. The tRNAAla acceptor end is overall similar to A-form RNA, but important differences are observed. The G3.U70 wobble pair distorts the conformation of the phosphodiester backbone and presents the functional groups of U70 in an unusual spatial location. The discriminator base A73 has extensive stacking overlap with G1 within the G1.C72 base pair at the end of the double helical stem and the -CCA end is significantly less ordered than the rest of the molecule. PMID:9153306

  9. Synthesis of Charge Transfer Dyes for Use as Molecular Sensors in Biological Systems

    NASA Technical Reports Server (NTRS)

    Christie, Joseph J.

    2003-01-01

    This is a continuation of last year's project to synthesize tetraaryl substituted benzodifurans for use as molecular probes in biological systems. The project will involve the synthesis and chemical characterization of dyes and precursor molecules.

  10. Analysis of proteins stained by Alexa dyes.

    PubMed

    Huang, Shijun; Wang, Houyi; Carroll, Christopher A; Hayes, Shirley J; Weintraub, Susan T; Serwer, Philip

    2004-03-01

    Alexa dye staining of proteins is used for the fluorescence microscopy of single particles that are sometimes multimolecular protein complexes. To characterize the staining, post-staining determination must be made of which protein(s) in a complex have been Alexa-stained. The present communication describes the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for performing this determination. The Alexa-stained proteins are observed directly in gels by illumination with an ultraviolet transilluminator. The test multimolecular particle is bacteriophage T7. The protein capsid of T7 is a multimolecular complex that has both external and internal proteins. SDS-PAGE of Alexa-stained bacteriophage T7 produces fluorescent capsid proteins each of which usually comigrates with an unstained protein. However, one Alexa-induced modification of protein migration was observed by SDS-PAGE. Mass spectrometry shows that the protein with modified migration is the major protein of the outer shell of the T7 capsid. The procedures used are generally applicable. The distribution of Alexa staining among T7 capsid proteins depends on the size of the dye molecule used. The larger the dye molecule is, the greater the preference for external proteins.

  11. Radiation induced degradation of dyes--an overview.

    PubMed

    Rauf, M A; Ashraf, S Salman

    2009-07-15

    Synthetic dyes are a major part of our life. Products ranging from clothes to leather accessories to furniture all depend on extensive use of organic dyes. An unfortunate side effect of extensive use of these chemicals is that huge amounts of these potentially carcinogenic compounds enter our water supplies. Various advanced oxidation processes (AOPs) including the use of high-energy radiation have been developed to degrade these compounds. In this review, dye decoloration and degradation as a result of its exposure to high energy radiation such as gamma radiation and pulsed electron beam are discussed in detail. The role of various transient species such as H, OH and e(aq)(-) are taken into account as reported by various researchers. Literature citations in this area show that e(aq)(-) is very effective in decolorization but is less active in the further degradation of the products formed. The degradation of the dyes is initiated exclusively by OH attack on electron-rich sites of the dye molecules. Additionally, various parameters that affect the efficiency of radiation induced degradation of dyes, such as effect of radiation dose, oxygen, pH, hydrogen peroxide, added ions and dye classes are also reviewed and summarized. Lastly, pilot plant application of radiation for wastewater treatment is briefly discussed.

  12. Influence of dye content on the conduction band edge of titania in the steam-treated dye-dispersing titania electrodes.

    PubMed

    Setiawan, Rudi Agus; Nishikiori, Hiromasa; Tanaka, Nobuaki; Fujii, Tsuneo

    2014-01-01

    The titania and dye-dispersing titania electrodes were prepared by a nitric acid-catalyzed sol-gel process. The dye-dispersing titania contains the dye molecules dispersed on the surface of the individual nanosized titania particles. The photo-cyclic voltammetry (Photo-CV) and photoelectric measurements of the dye-dispersing titania electrodes were conducted to clarify the factors changing the conduction band edge of the titania and the open-circuit voltage (Voc ) of the electrodes. The remaining nitrate ions caused a negative shift of conduction band edge of the titania of the dye-dispersing titania. The conduction band edge of the titania was shifted in a negative direction in the electrode containing a greater amount of the dye. These results are due to the adsorption of nitrate ions and the dye-titania complex formation on the titania particle surface. The effect of the dye-titania complex formation on the shift in the titania conduction band edge was greater than that of the adsorption of nitrate ions due to strong interaction between the dye and titania through the carboxylate and quinone-like groups of the dye. The shift in the titania conduction band edge corresponded to the change in the Voc value.

  13. Metal-Free Sensitizers for Dye-Sensitized Solar Cells.

    PubMed

    Chaurasia, Sumit; Lin, Jiann T

    2016-06-01

    This review focuses on our work on metal-free sensitizers for dye-sensitized solar cells (DSSCs). Sensitizers based on D-A'-π-A architecture (D is a donor, A is an acceptor, A' is an electron-deficient entity) exhibit better light harvesting than D-π-A-type sensitizers. However, appropriate molecular design is needed to avoid excessive aggregation of negative charge at the electron-deficient entity upon photoexcitation. Rigidified aromatics, including aromatic segments comprising fused electron-excessive and -deficient units in the spacer, allow effective electronic communication, and good photoinduced charge transfer leads to excellent cell performance. Sensitizers with two anchors/acceptors, D(-π-A)2 , can more efficiently harvest light, inject electrons, and suppress dark current compared with congeners with a single anchor. Appropriate incorporation of heteroaromatic units in the spacer is beneficial to DSSC performance. High-performance, aqueous-based DSSCs can be achieved with a dual redox couple comprising imidazolium iodide and 2,2,6,6-tetramethylpiperidin-N-oxyl, and/or using dyes of improved wettability through the incorporation of a triethylene oxide methyl ether chain.

  14. Respiration and growth of Shewanella decolorationis S12 with an Azo compound as the sole electron acceptor.

    PubMed

    Hong, Yiguo; Xu, Meiying; Guo, Jun; Xu, Zhicheng; Chen, Xingjuan; Sun, Guoping

    2007-01-01

    The ability of Shewanella decolorationis S12 to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory azoreduction was investigated. This microorganism can reduce a variety of azo dyes by use of formate, lactate, pyruvate, or H(2) as the electron donor. Furthermore, strain S12 grew to a maximal density of 3.0 x 10(7) cells per ml after compete reduction of 2.0 mM amaranth in a defined medium. This was accompanied by a stoichiometric consumption of 4.0 mM formate over time when amaranth and formate were supplied as the sole electron acceptor and donor, respectively, suggesting that microbial azoreduction is an electron transport process and that this electron transport can yield energy to support growth. Purified membranous, periplasmic, and cytoplasmic fractions from S12 were analyzed, but only the membranous fraction was capable of reducing azo dyes with formate, lactate, pyruvate, or H(2) as the electron donor. The presence of 5 microM Cu(2+) ions, 200 microM dicumarol, 100 microM stigmatellin, and 100 microM metyrapone inhibited anaerobic azoreduction activity by both whole cells and the purified membrane fraction, showing that dehydrogenases, cytochromes, and menaquinone are essential electron transfer components for azoreduction. These results provide evidence that the microbial anaerobic azoreduction is linked to the electron transport chain and suggest that the dissimilatory azoreduction is a form of microbial anaerobic respiration. These findings not only expand the number of potential electron acceptors known for microbial energy conservation but also elucidate the mechanisms of microbial anaerobic azoreduction.

  15. Mechanisms of electron acceptor utilization: Implications for simulating anaerobic biodegradation

    USGS Publications Warehouse

    Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr, J.M.

    2004-01-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum- contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  16. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies.

    PubMed

    Salimpour Abkenar, Samera; Malek, Reza Mohammad Ali; Mazaheri, Firouzmehr

    2015-11-01

    In this research, the cotton fabrics grafted with two generations of the poly(propylene imine) dendrimers were applied to adsorb textile dyes from aqueous solutions. Direct Red 80 (anionic dye), Disperse Yellow 42 (nonionic dye) and Basic Blue 9 (cationic dye) were selected as model dyes. The effect of various experimental parameters such as initial concentration of dyes, charge of dyes molecule, salt and pH was investigated on the adsorption process. Furthermore, kinetics and equilibrium of the adsorption process on the grafted samples were studied. It was found that maximum adsorption of anionic and disperse dyes took place at around pH 3, while cationic dye could be adsorbed at around pH 11. The Langmuir equation was able to describe the mechanism of dyes adsorption. In addition, the second-order equation was found to be fit with the kinetics data. Interestingly, it seems that the dye adsorption of the grafted fabrics is strongly pH dependent.

  17. Simultaneous micro-electromembrane extractions of anions and cations using multiple free liquid membranes and acceptor solutions.

    PubMed

    Kubáň, Pavel; Boček, Petr

    2016-02-18

    Micro-electromembrane extractions (μ-EMEs) across free liquid membranes (FLMs) were applied to simultaneous extractions of anions and cations. A transparent narrow-bore polymeric tubing was filled with adjacent plugs of μL volumes of aqueous and organic solutions, which formed a stable five-phase μ-EME system. For the simultaneous μ-EMEs of anions and cations, aqueous donor solution was the central phase, which was sandwiched between two organic FLMs and two aqueous acceptor solutions. On application of electric potential, anions and cations in the donor solution migrated across the two FLMs and into the two peripheral acceptor solutions in the direction of anode and cathode, respectively. Visual monitoring of anionic (tartrazine) and cationic (phenosafranine) dye confirmed their simultaneous μ-EMEs and their rapid (in less than 5 min) transfers into anolyte and catholyte, respectively. The concept of simultaneous μ-EMEs was further examined with selected model analytes; KClO4 was used for μ-EMEs of inorganic anions and cations and ibuprofen and procaine for μ-EMEs of acidic and basic drugs. Quantitative analyses of the resulting acceptor solutions were carried out by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D). Good extraction recoveries (91-94%) and repeatability of peak areas (≤6.3%) were achieved for 5 min μ-EMEs of K(+) and ClO4(-). Extraction recoveries and repeatability of peak areas for 5 min μ-EMEs of ibuprofen and procaine were also satisfactory and ranged from 35 to 63% and 7.6 to 11.3%, respectively. Suitability of the presented micro-extraction procedure was further demonstrated on simultaneous μ-EMEs with subsequent CE-C(4)D of ibuprofen and procaine from undiluted human urine samples.

  18. Time-dependent transition density matrix for visualizing charge-transfer excitations in photoexcited organic donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Li, Yonghui; Ullrich, Carsten

    2013-03-01

    The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. This work is supported by NSF Grant DMR-1005651

  19. Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure.

    PubMed

    Araújo, Cynthia K C; Oliveira, Gustavo R; Fernandes, Nedja S; Zanta, Carmem L P S; Castro, Suely Souza Leal; da Silva, Djalma R; Martínez-Huitle, Carlos A

    2014-01-01

    In this work, the efficiency of electrochemical oxidation (EO) was investigated for removing a dye mixture containing Novacron Yellow (NY) and Remazol Red (RR) in aqueous solutions using platinum supported on titanium (Ti/Pt) as anode. Different current densities (20, 40 and 60 mA cm(-2)) and temperatures (25, 40 and 60 °C) were studied during electrochemical treatment. After that, the EO of each of these dyes was separately investigated. The EO of each of these dyes was performed, varying only the current density and keeping the same temperature (25 °C). The elimination of colour was monitored by UV-visible spectroscopy, and the degradation of organic compounds was analysed by means of chemical oxygen demand (COD). Data obtained from the analysis of the dye mixture showed that the EO process was effective in colour removal, in which more than 90% was removed. In the case of COD removal, the application of a current density greater than 40 mA cm(-2) favoured the oxygen evolution reaction, and no complete oxidation was achieved. Regarding the analysis of individual anodic oxidation dyes, it was appreciated that the data for the NY were very close to the results obtained for the oxidation of the dye mixture while the RR dye achieved higher colour removal but lower COD elimination. These results suggest that the oxidation efficiency is dependent on the nature of the organic molecule, and it was confirmed by the intermediates identified.

  20. Solvent-modified ultrafast decay dynamics in conjugated polymer/dye labeled single stranded DNA

    NASA Astrophysics Data System (ADS)

    Kim, Inhong; Kang, Mijeong; Woo, Han Young; Oh, Jin-Woo; Kyhm, Kwangseuk

    2015-07-01

    We have investigated that organic solvent (DMSO, dimethyl sulfoxide) modifies energy transfer efficiency between conjugated polymers (donors) and fluorescein-labeled single stranded DNAs (acceptors). In a mixture of buffer and organic solvent, fluorescence of the acceptors is significantly enhanced compared to that of pure water solution. This result can be attributed to change of the donor-acceptor environment such as decreased hydrophobicity of polymers, screening effect of organic solvent molecules, resulting in an enhanced energy transfer efficiency. Time-resolved fluorescence decay of the donors and the acceptors was modelled by considering the competition between the energy harvesting Foerster resonance energy transfer and the energy-wasting quenching. This enables to quantity that the Foerster distance (R0 = 43.3 Å) and resonance energy transfer efficiency (EFRET = 58.7 %) of pure buffer solution become R0 = 38.6 Å and EFRET = 48.0 % when 80% DMSO/buffer mixture is added.

  1. Development of High Efficiency, Low-Cost Flexible Dye-Sensitized Solar Cells

    DTIC Science & Technology

    2006-08-30

    TiO2 layer (made using screen printing technologies) with an organic dye molecule adsorbed onto its surface that acts as the sensitizer to absorb...sunlight. An electron is transferred from the dye to the TiO2 and then an electrolyte acts to electrochemically regenerate the dye to complete the...absorbing dyes then could be utilized to sensitize a TiO2 electrode and construct a normal cell as is done so far, for to be used in a tandem device. In

  2. Cross-conjugated chromophores: synthesis of iso-polydiacetylenes with Donor/Acceptor substitution

    PubMed

    Ciulei; Tykwinski

    2000-11-16

    The iterative construction of cross-conjugated donor (D), acceptor (A), and donor-acceptor (D-A) substituted iso-polydiacetylene (iso-PDA) oligomers has been achieved utilizing palladium-catalyzed cross-coupling techniques. Structure-property relationships for these compounds have been analyzed for cross-conjugated pi-electronic communication as a result of contributions from donor, acceptor, or donor-acceptor functionalization.

  3. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  4. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  5. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  6. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  7. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  8. Hair cosmetics: dyes.

    PubMed

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions.

  9. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  10. Laser dye technology

    SciTech Connect

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  11. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  12. Engineered oligosaccharyltransferases with greatly relaxed acceptor site specificity

    PubMed Central

    Ollis, Anne A.; Zhang, Sheng; Fisher, Adam C.; DeLisa, Matthew P.

    2015-01-01

    The Campylobacter jejuni protein glycosylation locus (pgl) encodes machinery for asparagine-linked (N-linked) glycosylation and serves as the archetype for bacterial N-glycosylation. This machinery has been functionally transferred into Escherichia coli, thereby enabling convenient mechanistic dissection of the N-glycosylation process in this genetically tractable host. Here, we sought to identify sequence determinants in the oligosaccharyltransferase PglB that restrict its specificity to only those glycan acceptor sites containing a negatively charged residue at the −2 position relative to asparagine. This involved creation of a genetic assay named glycoSNAP (glycosylation of secreted N-linked acceptor proteins) that facilitates high-throughput screening of glycophenotypes in E. coli. Using this assay, we isolated several C. jejuni PglB variants that were capable of glycosylating an array of noncanonical acceptor sequences including one in a eukaryotic N-glycoprotein. Collectively, these results underscore the utility of glycoSNAP for shedding light on poorly understood aspects of N-glycosylation and for engineering designer N-glycosylation biocatalysts. PMID:25129029

  13. Income-generating activities for family planning acceptors.

    PubMed

    1989-07-01

    The Income Generating Activities program for Family Planning Acceptors was introduced in Indonesia in 1979. Capital input by the Indonesian National Family Planning Coordination Board and the UN Fund for Population Activities was used to set up small businesses by family planning acceptors. In 2 years, when the businesses become self-sufficient, the loans are repaid, and the money is used to set up new family planning acceptors in business. The program strengthens family planning acceptance, improves the status of women, and enhances community self-reliance. The increase in household income generated by the program raises the standards of child nutrition, encourages reliance on the survival of children, and decreases the value of large families. Approximately 18,000 Family Planning-Income Generating Activities groups are now functioning all over Indonesia, with financial assistance from the central and local governments, the World Bank, the US Agency for International Development, the UN Population Fund, the Government of the Netherlands, and the Government of Australia through the Association of South East Asian Nations.

  14. Design directed self-assembly of donor-acceptor polymers.

    PubMed

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements.

  15. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    PubMed

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  16. Enhancement of Spectral Response of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Chang, Shuai

    Dye-Sensitized solar cell (DSSC) is a class of third-generation solar devices. A notable feature of DSSC is that it can be manufactured by solution-based approach; this non-vacuum processing renders significant reduction in manufacturing costs. Different from conventional solar cells, in a DSSC, mesoporous semiconductor film with large surface areas is utilized for anchoring dye molecules, serving as light absorbing layer. Dye sensitizers play an important role in determining the final performance in DSSCs. Since the first highly-efficient DSSC was reported in 1991 sensitized by a ruthenium-based dye, numerous researchers have been focused on the development and characterization of various kinds of dyes for the applications in DSSCs. These include mainly metal complexes dyes, organic dyes, porphyrins and phthalocyanines dyes. The first part of my thesis work is to develop and test new dyes for DSSCs and a series of phenothiazine-based organic dyes and new porphyrin dyes are reported during the process. It has been realized that extending the response of dye sensitizers to a wider range of the solar spectrum is a key step in further improving the device efficiency. Typically, there are two ways for expanding the strong spectral response of DSSCs from visible to far red/NIR region. One approach is called co-sensitization. Herein, we demonstrate a new co-sensitization concept where small molecules is used to insert the interstitial site of between the pre-adsorbed large molecules. In this case, the co-adsorbed small ones is found to improve the light response and impede the back recombination, finally leading to the power conversion efficiency over 10% in conventional DSSC devices and a record-equaling efficiency of 9.2% in quasi-solid-state devices. I also implemented graphene sheets in the anode films for better charge transfer efficiency and break the energy conversion limit of co-sensitization in DSSCs. The optimal configuration between porphyrin dyes and

  17. Dye filled security seal

    DOEpatents

    Wilson, Dennis C. W.

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  18. A review of NIR dyes in cancer targeting and imaging.

    PubMed

    Luo, Shenglin; Zhang, Erlong; Su, Yongping; Cheng, Tianmin; Shi, Chunmeng

    2011-10-01

    The development of multifunctional agents for simultaneous tumor targeting and near infrared (NIR) fluorescence imaging is expected to have significant impact on future personalized oncology owing to the very low tissue autofluorescence and high tissue penetration depth in the NIR spectrum window. Cancer NIR molecular imaging relies greatly on the development of stable, highly specific and sensitive molecular probes. Organic dyes have shown promising clinical implications as non-targeting agents for optical imaging in which indocyanine green has long been implemented in clinical use. Recently, significant progress has been made on the development of unique NIR dyes with tumor targeting properties. Current ongoing design strategies have overcome some of the limitations of conventional NIR organic dyes, such as poor hydrophilicity and photostability, low quantum yield, insufficient stability in biological system, low detection sensitivity, etc. This potential is further realized with the use of these NIR dyes or NIR dye-encapsulated nanoparticles by conjugation with tumor specific ligands (such as small molecules, peptides, proteins and antibodies) for tumor targeted imaging. Very recently, natively multifunctional NIR dyes that can preferentially accumulate in tumor cells without the need of chemical conjugation to tumor targeting ligands have been developed and these dyes have shown unique optical and pharmaceutical properties for biomedical imaging with superior signal-to-background contrast index. The main focus of this article is to provide a concise overview of newly developed NIR dyes and their potential applications in cancer targeting and imaging. The development of future multifunctional agents by combining targeting, imaging and even therapeutic routes will also be discussed. We believe these newly developed multifunctional NIR dyes will broaden current concept of tumor targeted imaging and hold promise to make an important contribution to the diagnosis

  19. First principles DFT study of dye-sensitized CdS quantum dots

    SciTech Connect

    Jain, Kalpna; Singh, Kh. S.; Kishor, Shyam; Josefesson, Ida; Odelius, Michael; Ramaniah, Lavanya M.

    2014-04-24

    Dye-sensitized quantum dots (QDs) are considered promising candidates for dye-sensitized solar cells. In order to maximize their efficiency, detailed theoretical studies are important. Here, we report a first principles density functional theory (DFT) investigation of experimentally realized dye - sensitized QD / ligand systems, viz., Cd{sub 16}S{sub 16}, capped with acetate molecules and a coumarin dye. The hybrid B3LYP functional and a 6−311+G(d,p)/LANL2dz basis set are used to study the geometric, energetic and electronic properties of these clusters. There is significant structural rearrangement in all the clusters studied - on the surface for the bare QD, and in the positions of the acetate / dye ligands for the ligated QDs. The density of states (DOS) of the bare QD shows states in the band gap, which disappear on surface passivation with the acetate molecules. Interestingly, in the dye-sensitised QD, the HOMO is found to be localized mainly on the dye molecule, while the LUMO is on the QD, as required for photo-induced electron injection from the dye to the QD.

  20. Novel dye sensitizers of polymeric metal complexes with benzodithiophene derivatives as donor and their photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Liao, Yanlong; Hu, Jiaomei; Xie, Qiufang; Peng, Dahai; Liu, Ye; Zhu, Chunxiao; Zhong, Chaofan

    2016-01-01

    Four novel donor-acceptor (D-A) type conjugated polymeric metal complexes (P1-P4) bearing benzodithiophene or carbazole derivative as donors were synthesized, characterized and applied as dye sensitizers in dye-sensitized solar cells (DSSCs). Salicylaldehyde derivative complexes acted as electron acceptors, Zn(II) or Cd(II) was chosen as the coordinated metal ion, and diaminomaleonitrile was ancillary ligand in these structures. The thermal, photophysical, electrochemical and photovoltaic properties of these polymeric metal complexes were investigated by FT-IR, GPC, TGA, DSC, UV-Vis absorption spectroscopy, elemental analysis, cyclic voltammetry (CV), J-V curves and IPCE plots. These polymer dyes exhibit good thermal stability for their application in DSSCs. The DSSC device based on P2 which contains benzodithiophene derivative as donor and Cd(II) as coordination ion, exhibited the highest power conversion efficiency of 2.43% (Jsc = 4.95 mA/cm2, Voc = 0.71 V, FF = 69.3%) under AM 1.5 G solar irradiation. It indicates a new way to design dye sensitizers for DSSCs.

  1. Fluorescence properties of dyes adsorbed to silver islands, investigated by picosecond techniques

    NASA Astrophysics Data System (ADS)

    Leitner, A.; Lippitsch, M. E.; Draxler, S.; Riegler, M.; Aussenegg, F. R.

    1985-02-01

    The fluorescence properties of dye molecules (rhodamine 6G and erythrosin) adsorbed on pure glass surfaces and on silver islands films are investigated by cw and picosecond time-resolved methods. On pure glass surfaces we observe concentration quenching below a critical intermolecular distance (reduction of the fluorescence power per molecule as well as shortened and non-exponential fluorescence decay). On silver islands films the shortening in fluorescence lifetime is more drastic and is nearly independent of the intermolecular distance. This behavior suggests an electrodynamic interaction between dye monomers and plasmons in the metal particles, modified by a damping influence of dye dimers.

  2. Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors.

    PubMed

    Black, Katherine A; Dos Santos, Patricia C

    2015-06-01

    Cysteine desulfurases utilize a PLP-dependent mechanism to catalyze the first step of sulfur mobilization in the biosynthesis of sulfur-containing cofactors. Sulfur activation and integration into thiocofactors involve complex mechanisms and intricate biosynthetic schemes. Cysteine desulfurases catalyze sulfur-transfer reactions from l-cysteine to sulfur acceptor molecules participating in the biosynthesis of thio-cofactors, including Fe-S clusters, thionucleosides, thiamin, biotin, and molybdenum cofactor. The proposed mechanism of cysteine desulfurases involves the PLP-dependent cleavage of the C-S bond from l-cysteine via the formation of a persulfide enzyme intermediate, which is considered the hallmark step in sulfur mobilization. The subsequent sulfur transfer reaction varies with the class of cysteine desulfurase and sulfur acceptor. IscS serves as a mecca for sulfur incorporation into a network of intertwined pathways for the biosynthesis of thio-cofactors. The involvement of a single enzyme interacting with multiple acceptors, the recruitment of shared-intermediates partaking roles in multiple pathways, and the participation of Fe-S enzymes denote the interconnectivity of pathways involving sulfur trafficking. In Bacillus subtilis, the occurrence of multiple cysteine desulfurases partnering with dedicated sulfur acceptors partially deconvolutes the routes of sulfur trafficking and assigns specific roles for these enzymes. Understanding the roles of promiscuous vs. dedicated cysteine desulfurases and their partnership with shared-intermediates in the biosynthesis of thio-cofactors will help to map sulfur transfer events across interconnected pathways and to provide insight into the hierarchy of sulfur incorporation into biomolecules. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.

  3. NIR fluorescent dyes: versatile vehicles for marker and probe applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Chapman, Gala; Beckford, Garfield; Henary, Maged

    2013-02-01

    The use of the NIR spectral region (650-900 nm) is advantageous due to the inherently lower background interference and the high molar absorptivities of NIR chromophores. Near-Infrared (NIR) dyes are increasingly used in the biological and medical field. The binding characteristics of NIR dyes to biomolecules are possibly controlled by several factors, including hydrophobicity, size and charge just to mention a few parameters. Binding characteristics of symmetric carbocyanines and found that the hydrophobic nature of the NIR dye is only partially responsible for the binding strength. Upon binding to biomolecules significant fluorescence enhancement can be observed for symmetrical carbocyanines. This fluorescence amplification facilitates the detection of the NIR dye and enhances its utility as NIR reporter. This manuscript discusses some probe and marker applications of such NIR fluorescent dyes. One application discussed here is the use of NIR dyes as markers. For labeling applications the fluorescence intensity of the NIR fluorescent label can significantly be increased by enclosing several dye molecules in nanoparticles. To decrease self quenching dyes that have relatively large Stokes' shift needs to be used. This is achieved by substituting meso position halogens with amino moiety. This substitution can also serve as a linker to covalently attach the dye molecule to the nanoparticle backbone. We report here on the preparation of NIR fluorescent silica nanoparticles. Silica nanoparticles that are modified with aminoreactive moieties can be used as bright fluorescent labels in bioanalytical applications. A new bioanalytical technique to detect and monitor the catalytic activity of the sulfur assimilating enzyme using NIR dyes is reported as well. In this spectroscopic bioanalytical assay a family of Fischer based n-butyl sulfonate substituted dyes that exhibit distinct variation in absorbance and fluorescence properties and strong binding to serum albumin as its

  4. [Spectral and fluorescent study of the interaction of squarylium dyes, derivatives of 3H-indolium, with albumins].

    PubMed

    Tatikolov, A S; Panova, I G; Ishchenko, A A; Kudinova, M A

    2010-01-01

    Noncovalent interactions of intraionic squarylium dyes, derivatives of 3H-indolium, as well as the structurally analogous ionic indodicarbocyanine dye with serum albumins (human, bovine, rat) and, for comparison, with ovalbumin has been studied by spectral and fluorescent methods. The hydrophilic squarylium dye with sulfonate groups was found to interact with albumins more efficiently, which is probably due to the double negative charge on the dye molecule at the expense of the sulfonate groups and the ability to form hydrogen bonds with albumin. The hydrophilic indodicarbocyanine dye without the squarylium group in its structure binds to albumins much more weaker than the structurally analogous squarylium dye. The dyes bind to ovalbumin less efficiently than to serum albumins. Along with the binding of monomeric dye molecules, the aggregation of the dyes on albumins is also observed. The hydrophobic squarylium dye without sulfonate groups tends to form aggregates in aqueous solutions, which partially decompose upon the introduction of albumin into the solution. The hydrophilic squarylium dye with sulfonate groups can be recommended for tests as a spectral-fluorescent probe for serum albumins in extracellular media of living organisms.

  5. Novel organic dyes for multicolor localization-based super-resolution microscopy.

    PubMed

    Lehmann, Martin; Lichtner, Gregor; Klenz, Haider; Schmoranzer, Jan

    2016-01-01

    Precise multicolor single molecule localization-based microscopy (SMLM) requires bright probes with compatible photo-chemical and spectral properties to resolve distinct molecular species at the nanoscale. The accuracy of multicolor SMLM is further challenged by color channel crosstalk and chromatic alignment errors. These constrains limit the applicability of known reversibly switchable organic dyes for optimized multicolor SMLM. Here, we tested 28 commercially available dyes for their suitability to super-resolve a known cellular nanostructure. We identified eight novel dyes in different spectral regimes that enable high quality dSTORM imaging. Among those, the spectrally close dyes CF647 and CF680 comprise an optimal dye pair for spectral demixing-based, registration free multicolor dSTORM with low crosstalk. Combining this dye pair with the separately excited CF568 we performed 3-color dSTORM to image the relative nanoscale distribution of components of the endocytic machinery and the cytoskeleton.

  6. Characterization and improvements of presumptive molecular switch molecules

    NASA Astrophysics Data System (ADS)

    Broo, Anders; Hagen, Sigurd

    1992-08-01

    Organic donor—bridge—acceptor (D—B—A) molecules are studied using experimental and theoretical methods. Solvatochromic shifts of the spectra for both series of molecules were interpreted using a Lippert analysis. In the conjugated D—B—A systems the charge separation upon excitation is found to be about 30%-40%. In the non-conjugated molecules the charge separation was only about 7%-14%. Quantum-chemical calculations of spectra and geometry for some not yet synthesized molecules were performed in order to seek to increase the amount of direct charge separation upon excitation.

  7. Small Molecules Target Carcinogenic Proteins

    NASA Astrophysics Data System (ADS)

    Gradinaru, Claudiu

    2009-03-01

    An ingenious cellular mechanism of effecting protein localization is prenylation: the covalent attachment of a hydrophobic prenyl group to a protein that facilitates protein association with cell membranes. Fluorescence microscopy was used to investigate whether the oncogenic Stat3 protein can undergo artificial prenylation via high-affinity prenylated small-molecule binding agents and thus be rendered inactive by localization at the plasma membrane instead of nucleus. The measurements were performed on a home-built instrument capable of recording simultaneously several optical parameters (lifetime, polarization, color, etc) and with single-molecule sensitivity. A pH-invariant fluorescein derivative with double moiety was designed to bridge a prenyl group and a small peptide that binds Stat3 with high affinity. Confocal fluorescence images show effective localization of the ligand to the membrane of liposomes. Stat3 predominantly localizes at the membrane only in the presence of the prenylated ligand. Single-molecule FRET (fluorescence resonance energy transfer) between donor-labeled prenylated agents and acceptor-labeled, surface tethered Stat3 protein is used to determine the dynamic heterogeneity of the protein-ligand interaction and follow individual binding-unbinding events in real time. The data indicates that molecules can effect protein localization, validating a therapeutic design that influences protein activity via induced localization.

  8. Coumarin-bearing triarylamine sensitizers with high molar extinction coefficient for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Changjian; Gao, Jianrong; Cui, Yanhong; Li, Ting; Han, Liang

    2015-01-01

    Coumarin unit is introduced into triarylamine and three organic sensitizers are designed and synthesized with triarylamine bearing coumarin moiety as the electron donor, conjugated system containing thiophene unit as the π-bridge, and cyanoacetic acid moiety as the electron acceptor. The light-harvesting capabilities and photovoltaic performance of these dyes are investigated systematically with the comparison of different π-bridges. High molar extinction coefficients are observed in these triarylamine dyes and the photocurrent and photovoltage are increased with the introduction of another thiophene or benzene. Optimal photovoltaic performance (η = 6.24%, Voc = 690 mV, Jsc = 14.33 mA cm-2, and ff = 0.63) is observed in the DSSC based on dye with thiophene-phenyl unit as the π-conjugated bridge under 100 mW cm-2 simulated AM 1.5 G solar irradiation.

  9. Alzheimer's Dye Test?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it. The work is published in Angewandte Chemie. Today, doctors can only…

  10. Method for producing and regenerating a synthetic CO[sub 2] acceptor

    DOEpatents

    Lancet, M. S.; Curran, G. P.; Gorin, E.

    1982-05-18

    A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

  11. Method for producing and regenerating a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

    1982-01-01

    A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

  12. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  13. Single Molecule Studies on Dynamics in Liquid Crystals

    PubMed Central

    Täuber, Daniela; von Borczyskowski, Christian

    2013-01-01

    Single molecule (SM) methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC). Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC. PMID:24077123

  14. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.

    PubMed

    Lee, Eunwoo; Kim, Chanhoi; Jang, Jyongsik

    2013-07-29

    High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells (DSSCs) have been successfully fabricated through the optimized design of a CdSe/CdS quantum-dot (QD) donor and a dye acceptor. This simple approach enables quantum dots and dyes to simultaneously utilize the wide solar spectrum, thereby resulting in high conversion efficiency over a wide wavelength range. In addition, major parameters that affect the FRET interaction between donor and acceptor have been investigated including the fluorescent emission spectrum of QD, and the content of deposited QDs into the TiO2 matrix. By judicious control of these parameters, the FRET interaction can be readily optimized for high photovoltaic performance. In addition, the as-synthesized water-soluble quantum dots were highly dispersed in a nanoporous TiO2 matrix, thereby resulting in excellent contact between donors and acceptors. Importantly, high-performance FRET-based DSSCs can be prepared without any infrared (IR) dye synthetic procedures. This novel strategy offers great potential for applications of dye-sensitized solar cells.

  15. Evidences for Ti-N anchoring in organic dyes on TiO2 and its influence on photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Meng, Sheng; SEEC Lab Team

    2011-03-01

    New metal-free organic dyes with a novel donor-pi-acceptor design produce efficiencies exceeding 10% for dye-sensitized solar cells (DSSC) applications since 2010. Based on state-of- the-art electronic structure calculations and real time time- dependent density functional theory (TDDFT) simulations, we present consolidated evidences for novel Ti-N anchoring at the interface for such a broad group of new dyes, inferred from energetics, vibrational recognition, and electronic and optical data. This fact is contrary to what people usually believed and assumed in previous experiments and was largely ignored. We further demonstrate that the presence of interface Ti-N bonds largely benefit the electronic level alignment and photoelectron injection dynamics, greatly contributing to the improved efficiencies of DSSC based on cost-effective, environment-friendly organic dyes. We acknowledge supports from NSFC and hundred-talent program of CAS.

  16. Panchromatic Sensitizer for Dye-Sensitized Solar Cells: Unsymmetrical Squaraine Dyes Incorporating Benzodithiophene π-Spacer with Alkyl Chains to Extend Conjugation, Control the Dye Assembly on TiO2, and Retard Charge Recombination.

    PubMed

    Bisht, Rajesh; M K, Munavvar Fairoos; Singh, Ambarish Kumar; Nithyanandhan, Jayaraj

    2017-02-17

    Metal-free near-infrared (NIR) active unsymmetrical squaraine dyes, RSQ1 and RSQ2, with benzodithiophene (BDT) π-spacer and cyanoacrylic acid acceptor were synthesized by utilizing palladium catalyzed direct (hetero)arylation reaction. Methyl and 2-ethylhexyl groups were strategically placed at the BDT unit for RSQ1 and RSQ2, respectively, to investigate the effect of alkylated π-spacer on dye aggregation on the TiO2 surface and recombination reactions at TiO2/dye/electrolyte interface. These dyes have strong absorption (ε > 10(5) M(-1) cm(-1)) in near-infrared (NIR) region and exhibit similar optical and electrochemical properties as they have same conjugated framework. RSQ2 performed better than RSQ1 owing to its higher open-circuit voltage (Voc) and fill factor (ff) in spite of having comparable short-circuit current density (Jsc). The panchromatic incident photon-to-current conversion efficiency (IPCE) response was also observed for both the dyes. RSQ2 showed power conversion efficiency (PCE) of 6.72% with short-circuit current density (Jsc) of 18.53 mA/cm(2), open circuit voltage (Voc) of 0.538 V, and fill factor (ff) of 67.4%, without any coadsorbent. Attenuation of the charge recombination for RSQ2 was revealed by electrochemical impedance analysis (EIS) and open-circuit potential decay transients (OCVD), which attributes to its higher Voc and ff in comparison to RSQ1.

  17. Limitations and design considerations for donor-acceptor systems in luminescent solar concentrators: the effect of coupling-induced red-edge absorption

    NASA Astrophysics Data System (ADS)

    MacQueen, Rowan W.; Tayebjee, Murad J. Y.; Webb, James E. A.; Falber, Alexander; Thordarson, Pall; Schmidt, Timothy W.

    2016-06-01

    Luminescent solar concentrators (LSCs) use luminescence and waveguiding to concentrate photons within thin dielectric slabs for use in photovoltaic, lighting, and photobioreactor applications. Donor-acceptor systems of organic chromophores are widely used in LSCs to broaden the sunlight absorption range and attempt to reduce loss-inducing reabsorption by the emitting chromophore. We use raytrace simulations across a large parameter space to model the performance of LSCs containing two novel donor-acceptor trimers based on the perylene moiety. We find that under certain conditions, trimers outperform single-dye LSCs as expected. However, at higher concentrations, a slight increase in red-edge absorption by the trimers increases reabsorption and has a deleterious effect on LSC performance. This underscores the large effect that even small changes in the red edge can have, and may discourage the use of donor-acceptor schemes with high interchromophore coupling that promotes red-edge absorption. Finally, we show that for a LSC-PV pair, selecting a PV cell that is well-matched with the LSC emission spectrum has a large effect on the flux gain of the system, and that the systems studied here are well-matched to emerging PV technologies.

  18. Effect of substituents and protonation on photolysis of the 2,5-diphenyl-oxazole molecule

    NASA Astrophysics Data System (ADS)

    Bazyl', O. K.; Artyukhov, V. Ya.; Maier, G. V.; Pomogaev, V. A.

    1997-07-01

    Based on quantum chemical calculations, we consider the effect of substitution by groups with different donor-acceptor properties and protonation on the probability of opening of the oxazole ring of the 2,5-diphenyloxazole molecule (PPO). We show the determining role of the hydrogen-containing medium in this photoconversion. We have established that a substituent introduced into the para position of the 5-phenyl radical, depending on its donor-acceptor properties, can either enhance the efficiency of photolysis (donor substituent) or weaken it (acceptor substituent). We have found the photodissociative states and have determined their multiplicity for the considered substituted PPOs.

  19. Photochemistry of coumarin laser dyes

    SciTech Connect

    von Trebra, R.J.

    1984-01-01

    Coumarin laser dyes are widely used in dye lasers for the generation of tunable laser light in the blue-green spectral region. As in the case with most laser dyes, coumarin dyes undergo photochemical reactions that interfere with simulated emission and result in loss of laser power output. This thesis describes the photochemistry of coumarin laser dyes under both anaerobic and aerobic conditions and some attempts to extend the useful lifetime of several dyes in dye lasers. Irradiation of Coumarin 311, 7-dimethylamino-4-methyl-coumarin (15), in oxygen-free ethanol solution results in the inefficient dye destruction. Products formed absorb light at the lasing wavelength of the dye, interfere with stimulated emission, and decrease the power output of the dye laser. Addition of the sulfur free radical chain transfer agents ethanethiol and ethyl disulfide retard the rate of formation of photoproducts absorbing at the lasing wavelengths. Deuterium incorporation, from the irradiation of Coumarin 311 in the presence of ethanethiol-S-d and ethyl disulfide, indicates that photoproducts most likely result from the reactions of free radicals which are generated in a bimolecular reaction between excited Coumarin 311 and ground state Coumarin 311. Ethanethiol and ethyl disulfide are shown to decrease the rate of power loss from a Coumarin 1 (3) dye laser. The naturally occurring amino acid cysteine acts similarly.

  20. Fluorophore and dye-assisted dispersion of carbon nanotubes in aqueous solution.

    PubMed

    Koh, Byumseok; Kim, Gwangseong; Yoon, Hyung Ki; Park, Jong Bae; Kopelman, Raoul; Cheng, Wei

    2012-08-14

    DNA short oligo, surfactant, peptides, and polymer-assisted dispersion of single-walled carbon nanotube (SWCNTs) in aqueous solution have been intensively studied. It has been suggested that van der Waals interaction, π-π stacking, and hydrophobic interaction are major factors that account for the SWCNTs dispersion. Fluorophore and dye molecules such as Rhodamine B and fluorescein have both hydrophilic and hydrophobic moieties. These molecules also contain π-conjugated systems that can potentially interact with SWCNTs to induce its dispersion. Through a systematic study, here we show that SWCNTs can be dispersed in aqueous solution in the presence of various fluorophore or dye molecules. However, the ability of a fluorophore or dye molecule to disperse SWCNTs is not correlated with the stability of the fluorophore/dye-SWCNT complex, suggesting that the on-rate of fluorophore/dye binding to SWCNTs may dominate the efficiency of this process. We also examined the uptake of fluorophore molecules by mammalian cells when these molecules formed complexes with SWCNTs. The results can have potential applications in the delivery of poor cell-penetrating fluorophore molecules.

  1. Optofluidic microcavities: Dye-lasers and biosensors

    PubMed Central

    Chen, Y.; Lei, L.; Zhang, K.; Shi, J.; Wang, L.; Li, H.; Zhang, X. M.; Wang, Y.; Chan, H. L. W.

    2010-01-01

    Optofluidic microcavities are integrated elements of microfluidics that can be explored for a large variety of applications. In this review, we first introduce the physics basis of optical microcavities and microflow control. Then, we describe four types of optofluidic dye lasers developed so far based on both simple and advanced device fabrication technologies. To illustrate the application potential of such devices, we present two types of laser intracavity measurements for chemical solution and single cell analyses. In addition, the possibility of single molecule detection is discussed. All these recent achievements demonstrated the great importance of the topics in biology and several other disciplines. PMID:24753719

  2. Raman and FT-IR studies on dye-assisted dispersion and flocculation of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Silva, S. Ravi P.

    2010-09-01

    Aqueous suspensions of single walled carbon nanotubes (SWCNTs) were prepared with the aid of dye molecules to form thermodynamically stable colloidal systems. By adding sodium chloride electrolyte, SWCNTs flocculated and settled out due to the destabilization of colloidal systems initiated by the increase in ionic strength. The dye molecules were removed by heat treatment at 300 °C for 5 h following washing with water. Raman spectroscopy was used to monitor the whole procedure. The resulting spectra confirm the non-deconstructive dispersion and flocculation of SWCNTs and the complete removal of the dye molecules; Fourier transform infrared spectroscopy also confirms this.

  3. FY 1980 Report on Dye Laser Materials

    DTIC Science & Technology

    1981-02-01

    by block number) Dye Lasers Laser Dyes Tunable Lasers Photodegradation Rhodamine Dyes 20. ABSTRACT (Continue n resld* it necesiry and Identify by block...limited usefulness as a portable military device because of the photodegradation of the dye solution. Although there have been state-of-the-art reviews...on laser dyes , 1𔃼 the photodegradation of laser dyes ,3 and dye lasers, 4- 6 only authors from, or funded by, military organizations have given strict

  4. Reuse of reactive dyes for dyeing of jute fabric.

    PubMed

    Chattopadhyay, S N; Pan, N C; Day, A

    2006-01-01

    The aim of the work was to find out suitable method of dyeing so that costly reactive dye can be reused without draining them. The bleached jute fabric was dyed with four different class of reactive dyes namely, cold brand, hot brand, vinyl sulphone and high exhaustion (HE) brand. It is found that the two-step two-bath method of reactive dyeing, where exhaustion and fixation step is separated, is most ideal for reuse of dye bath. Separate original samples produced K/S value same as that of original sample and the K/S value of separate reuse sample varied from 50% to 80% of the original sample depending on the class of dye. In case of same bath method, colour yield of original reuse samples varies from only 10% to maximum 30% of the original samples depending on the class of dyes. Reuse of reactive dyes following separate bath method is particularly suitable for higher depth of shade (4% and above). This process not only utilises costly reactive dyes to the maximum extent but it also produces low water pollution as the effluent contain minimum amount of dye. So the process is economic and eco-friendly as well.

  5. Molecular engineering of organic dyes with a hole-extending donor tail for efficient all-solid-state dye-sensitized solar cells.

    PubMed

    Lu, Jianfeng; Chang, Yu-Cheng; Cheng, Hsu-Yang; Wu, Hui-Ping; Cheng, Yibing; Wang, Mingkui; Diau, Eric Wei-Guang

    2015-08-10

    We report a new concept for the design of metal-free organic dyes (OD5-OD9) with an extended donor-π-acceptor (D-π-A) molecular framework, in which the donor terminal unit is attached by a hole-extending side chain to retard back electron transfer and charge recombination; the π-bridge component contains varied thiophene-based substituents to enhance the light-harvesting ability of the device. The best dye (OD9) has a D-A-π-A configuration with the hexyloxyphenylthiophene (HPT) side chain as a hole-extension component and a benzothiadiazole (BTD) internal acceptor as a π-extension component. The co-sensitization of OD9 with the new porphyrin dye LW24 enhanced the light-harvesting ability to 800 nm; thus, a power conversion efficiency 5.5 % was achieved. Photoinduced absorption (PIA) and transient absorption spectral (TAS) techniques were applied to account for the observed trend of the open-circuit voltage (VOC ) of the devices. This work provides insights into the molecular design, photovoltaic performance, and kinetics of charge recombination.

  6. The Contrasting Character of Early and Late Transition Metal Fluorides as Hydrogen Bond Acceptors.

    PubMed

    Smith, Dan A; Beweries, Torsten; Blasius, Clemens; Jasim, Naseralla; Nazir, Ruqia; Nazir, Sadia; Robertson, Craig C; Whitwood, Adrian C; Hunter, Christopher A; Brammer, Lee; Perutz, Robin N

    2015-09-16

    The association constants and enthalpies for the binding of hydrogen bond donors to group 10 transition metal complexes featuring a single fluoride ligand (trans-[Ni(F)(2-C5NF4)(PR3)2], R = Et 1a, Cy 1b, trans-[Pd(F)(4-C5NF4)(PCy3)2] 2, trans-[Pt(F){2-C5NF2H(CF3)}(PCy3)2] 3 and of group 4 difluorides (Cp2MF2, M = Ti 4a, Zr 5a, Hf 6a; Cp*2MF2, M = Ti 4b, Zr 5b, Hf 6b) are reported. These measurements allow placement of these fluoride ligands on the scales of organic H-bond acceptor strength. The H-bond acceptor capability β (Hunter scale) for the group 10 metal fluorides is far greater (1a 12.1, 1b 9.7, 2 11.6, 3 11.0) than that for group 4 metal fluorides (4a 5.8, 5a 4.7, 6a 4.7, 4b 6.9, 5b 5.6, 6b 5.4), demonstrating that the group 10 fluorides are comparable to the strongest organic H-bond acceptors, such as Me3NO, whereas group 4 fluorides fall in the same range as N-bases aniline through pyridine. Additionally, the measurement of the binding enthalpy of 4-fluorophenol to 1a in carbon tetrachloride (-23.5 ± 0.3 kJ mol(-1)) interlocks our study with Laurence's scale of H-bond basicity of organic molecules. The much greater polarity of group 10 metal fluorides than that of the group 4 metal fluorides is consistent with the importance of pπ-dπ bonding in the latter. The polarity of the group 10 metal fluorides indicates their potential as building blocks for hydrogen-bonded assemblies. The synthesis of trans-[Ni(F){2-C5NF3(NH2)}(PEt3)2], which exhibits an extended chain structure assembled by hydrogen bonds between the amine and metal-fluoride groups, confirms this hypothesis.

  7. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    PubMed Central

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  8. Conductance of a single flexible molecular wire composed of alternating donor and acceptor units

    PubMed Central

    Nacci, Christophe; Ample, Francisco; Bleger, David; Hecht, Stefan; Joachim, Christian; Grill, Leonhard

    2015-01-01

    Molecular-scale electronics is mainly concerned by understanding charge transport through individual molecules. A key issue here is the charge transport capability through a single—typically linear—molecule, characterized by the current decay with increasing length. To improve the conductance of individual polymers, molecular design often either involves the use of rigid ribbon/ladder-type structures, thereby sacrificing for flexibility of the molecular wire, or a zero band gap, typically associated with chemical instability. Here we show that a conjugated polymer composed of alternating donor and acceptor repeat units, synthesized directly by an on-surface polymerization, exhibits a very high conductance while maintaining both its flexible structure and a finite band gap. Importantly, electronic delocalization along the wire does not seem to be necessary as proven by spatial mapping of the electronic states along individual molecular wires. Our approach should facilitate the realization of flexible ‘soft' molecular-scale circuitry, for example, on bendable substrates. PMID:26145188

  9. DFT and TD-DFT study on geometries, electronic structures and electronic absorption of some metal free dye sensitizers for dye sensitized solar cells.

    PubMed

    Mohr, T; Aroulmoji, V; Ravindran, R Samson; Müller, M; Ranjitha, S; Rajarajan, G; Anbarasan, P M

    2015-01-25

    The geometries, electronic structures, polarizabilities and hyperpolarizabilities of 2-hydroxynaphthalene-1,4-dione (henna1), 3-(5-((1E)-2-(1,4-dihydro-1,4-dioxonaphthalen-3-yloxy) vinyl) thiophen-2-yl)-2-isocyanoacrylic acid (henna2) and anthocyanin dye sensitizers were studied based on density functional theory (DFT) using the hybrid functional B3LYP. The Ultraviolet-Visible (UV-Vis) spectrum was investigated by using a hybrid method which combines the properties and dynamics of many-body in the presence of time-dependent (TD) potentials, i.e. TDSCF-DFT (B3LYP). Features of the electronic absorption spectrum in the visible and near-UV regions were plotted and assigned based on TD-DFT calculations. Due to the absorption, bands of the metal-organic compound are n→π(*) present. The calculated results suggest that the three lowest energy excited states of the investigated dye sensitizers are due to photoinduced electron transfer processes. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer is owing to an electron injection process from excited dye to the semiconductor's conduction band. The role of linking the henna1 dye with a carboxylic acid via a thiophene bridge was analyzed. The results are that using a stronger π-conjugate bridge as well as a strong donator and acceptor group enhances the efficiency.

  10. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations.

    PubMed

    Graen, Timo; Hoefling, Martin; Grubmüller, Helmut

    2014-12-09

    Recent advances in single molecule fluorescence experiments and theory allow a direct comparison and improved interpretation of experiment and simulation. To this end, force fields for a larger number of dyes are required which are compatible with and can be integrated into existing biomolecular force fields. Here, we developed, characterized, and implemented AMBER-DYES, a modular fluorescent label force field, for a set of 22 fluorescent dyes and their linkers from the Alexa, Atto, and Cy families, which are in common use for single molecule spectroscopy experiments. The force field is compatible with the AMBER protein force fields and the GROMACS molecular dynamics simulation program. The high electronic polarizability of the delocalized π-electron orbitals, as found in many fluorescent dyes, poses a particular challenge to point charge based force fields such as AMBER. To quantify the charge fluctuations due to the electronic polarizability, we simulated the 22 dyes in explicit solvent and sampled the charge fluctuations using QM/MM simulations at the B3LYP/6-31G*//TIP3P level of theory. The analysis of the simulations enabled us to derive ensemble fitted RESP charges from the solvated charge distributions of multiple trajectories. We observed broad, single peaked charge distributions for the conjugated ring atoms with well-defined mean values. The charge fitting procedure was validated against published charges of the dyelike amino acid tryptophan, which showed good agreement with existing tryptophan parameters from the AMBER, CHARMM, and OPLS force field families. A principal component analysis of the charge fluctuations revealed that a small number of collective coordinates suffices to describe most of the in-plane dye polarizability. The AMBER-DYES force field allows the rapid preparation of all atom molecular dynamics simulations of fluorescent systems for state of the art multi microsecond trajectories.

  11. Efficiency enhancement of dye-sensitized solar cells (DSSC) by addition of synthetic dye into natural dye (anthocyanin)

    NASA Astrophysics Data System (ADS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2017-02-01

    This article reported combination of anthocyanin and synthetic dyes in dye-sensitized solar cells (DSSC) applications. This study aims was to improve the performance of DSSC by addition of synthetic dye into anthocyanin dye. Anthocyanin dye was extracted from red cabbage and synthetic dye was obtained from N719. We prepared anthocyanin and synthetic dyes at 2 different volume, anthocyanin dye at volume of 10 ml and combination dyes with anthocyanin and synthetic dyes at volume of 8 mL : 2 mL. The DSSCs were designed into sandwich structure on the fluorine-doped tin oxide (FTO) substrates using TiO2 electrode, carbon electrode, anthocyanin and synthetic dyes, and redox electrolyte. The absorption wavelength of anthocyanin dye of red cabbage was 450 nm – 580 nm, the combination of anthocyanin and synthetic dyes can increase the absorbance peak only. The IPCE characteristic with anthocyanin dye of red cabbage and combination dyes resulted quantum efficiency of 0.081% and 0.092% at wavelength maximum about 430 nm. The DSSC by anthocyanin dye of red cabbage achieved a conversion efficiency of 0.024%, while the DSSC by combination dyes achieved a conversion efficiency of 0.054%, combination dyes by addition synthetic dye into anthocyanin dye enhanced the conversion efficiency up to 125%.

  12. Organic Semiconductors based on Dyes and Color Pigments.

    PubMed

    Gsänger, Marcel; Bialas, David; Huang, Lizhen; Stolte, Matthias; Würthner, Frank

    2016-05-01

    Organic dyes and pigments constitute a large class of industrial products. The utilization of these compounds in the field of organic electronics is reviewed with particular emphasis on organic field-effect transistors. It is shown that for most major classes of industrial dyes and pigments, i.e., phthalocyanines, perylene and naphthalene diimides, diketopyrrolopyrroles, indigos and isoindigos, squaraines, and merocyanines, charge-carrier mobilities exceeding 1 cm(2) V(-1) s(-1) have been achieved. The most widely investigated molecules due to their n-channel operation are perylene and naphthalene diimides, for which even values close to 10 cm(2) V(-1) s(-1) have been demonstrated. The fact that all of these π-conjugated colorants contain polar substituents leading to strongly quadrupolar or even dipolar molecules suggests that indeed a much larger structural space shows promise for the design of organic semiconductor molecules than was considered in this field traditionally. In particular, because many of these dye and pigment chromophores demonstrate excellent thermal and (photo-)chemical stability in their original applications in dyeing and printing, and are accessible by straightforward synthetic protocols, they bear a particularly high potential for commercial applications in the area of organic electronics.

  13. Photoinduced ordering and anchoring properties of azo-dye films.

    PubMed

    Kiselev, Alexei D; Chigrinov, Vladimir; Huang, Dan Ding

    2005-12-01

    We study both theoretically and experimentally the anchoring properties of photoaligning azo-dye films in contact with a nematic liquid crystal depending on the photoinduced ordering of azo-dye molecules. In the mean field approximation, we found that the bare surface anchoring energy depends linearly on the azo-dye order parameter and the azimuthal anchoring strength decays to zero in the limit of vanishing photoinduced ordering. From the absorption dichroism spectra measured in azo-dye films that are prepared from an azo-dye derivative with polymerizable terminal groups we obtain the dependence of the dichroic ratio on the irradiation dose. We also measure the polar and azimuthal anchoring strengths in nematic liquid crystal (NLC) cells aligned by the azo-dye films and derive the anchoring strengths as functions of the dichroic ratio, which is proportional to the photoinduced order parameter. Although linear fitting of the experimental data for both anchoring strengths gives reasonable results, it, predicts vanishing of the azimuthal anchoring strength at some nonzero value of the azo-dye order parameter, in contradiction with theory. By using a simple phenomenological model we show that this discrepancy can be attributed to the difference between the surface and bulk order parameters in the films. The measured polar anchoring energy is found to be an order of magnitude higher than the azimuthal strength. Our theory suggests that the quadrupole term of the spherical harmonics expansion for the azo-dye-NLC intermolecular potential might be of importance for the understanding of this difference.

  14. Azaquinolone dye lasers

    DOEpatents

    Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.

    1978-01-01

    A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.1, R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue to near ultraviolet region.

  15. Azacoumarin dye lasers

    DOEpatents

    Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.

    1978-01-01

    A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue-green to near ultraviolet region.

  16. Fiberized fluorescent dye microtubes

    NASA Astrophysics Data System (ADS)

    Vladev, Veselin; Eftimov, Tinko

    2013-03-01

    In the present work we study the effect of the length of fluorescent dye-filled micro-capillaries on the fluorescence spectra. Two types of micro-capillaries have been studied: a 100 μm inner diameter fused silica capillary with a transparent coating and one of the holes of a fiber optic glass ferrule with 125 μm inner diameter. The tubes were filled with solutions of Rhodamine 6G dissolved in ethanol and then in glycerin. Experimental data show that the maximum fluorescence and the largest spectral widths are observed for a sample length of about 0.25 mm for the used concentration. This results show that miniature tunable fiberized dye lasers can be developed using available standard micro-and fibre-optic components.

  17. Chirality of Sulforhodamine Dye Molecules Incorporated in DNA Thin Films

    DTIC Science & Technology

    2008-11-13

    of the aqueous solution, but is soluble in simple organic solvents. Thin film formation by spin coating is markedly easier with organic solvents...filter. Solutions of 2.5, 5, 10, 15, 20, and 25 wt % SRh to DNA/CTMA were prepared. Thin films produced by spin coating were typically 1.5 m thick...The spin - coating process started by com- pletely flooding the substrate, followed by spreading the so- lution for 8 s at 300 rpm, a spin of 1 min at

  18. Mesomeric and twisted intramolecular-charge-transfer states as a key to polarity-dependent fluorescence of donor acceptor-substituted aryl pyrenes

    NASA Astrophysics Data System (ADS)

    Dekhtyar, M.; Rettig, W.; Weigel, W.

    2008-03-01

    Computational study by the AM1 method has been performed for pyrene-based donor-acceptor-substituted systems, with the aim to elucidate the origin of their polarity-dependent fluorescence governed by mesomeric and twisted internal-charge-transfer (MICT and TICT, resp.) states. Using theoretical methods, principal relationships have been established between the constitution of arylpyrene derivatives (donor-acceptor strength of substituents, the substitution pattern, sterical hindrance, inclusion of additional aryl spacers between the donor and acceptor moieties, etc.) and environmental effects (solvent polarity and external electric field strength), and the properties of the MICT and TICT states (energy, localization, dipole moment, allowedness). These relationships have been compared to the experimental fluorescence properties. The substituent-induced donor-acceptor difference has been varied in a continuous way in both directions by employing point charges in the molecular surrounding ("sparkles"). A remarkable feature of the phenylpyrene molecule has thus been revealed: it can exist in two MICT and two TICT states, the CT states in each pair being oppositely polarized and much the same in energy. It is shown, moreover, that the quantum-chemically calculated trends in MICT and TICT energies in the families of related compounds can be qualitatively judged from simple MO considerations including the analysis of frontier MO energies and shapes for the isolated molecular subunits. The approach employed is, therefore, applicable as a first-step tool in the design of compounds with the desired features of polarity-sensitive fluorescence.

  19. Donor-acceptor complexation and dehydrogenation chemistry of aminoboranes.

    PubMed

    Malcolm, Adam C; Sabourin, Kyle J; McDonald, Robert; Ferguson, Michael J; Rivard, Eric

    2012-12-03

    A series of formal donor-acceptor adducts of aminoborane (H(2)BNH(2)) and its N-substituted analogues (H(2)BNRR') were prepared: LB-H(2)BNRR'(2)-BH(3) (LB = DMAP, IPr, IPrCH(2) and PCy(3); R and R' = H, Me or tBu; IPr = [(HCNDipp)(2)C:] and Dipp = 2,6-iPr(2)C(6)H(3)). To potentially access complexes of molecular boron nitride, LB-BN-LA (LA = Lewis acid), preliminary dehydrogenation chemistry involving the parent aminoborane adducts LB-H(2)BNH(2)-BH(3) was investigated using [Rh(COD)Cl](2), CuBr, and NiBr(2) as dehydrogenation catalysts. In place of isolating the intended dehydrogenated BN donor-acceptor complexes, the formation of borazine was noted as a major product. Attempts to prepare the fluoroarylborane-capped aminoborane complexes, LB-H(2)BNH(2)-B(C(6)F(5))(3), are also described.

  20. Conductivity of a Weyl semimetal with donor and acceptor impurities

    NASA Astrophysics Data System (ADS)

    Rodionov, Ya. I.; Syzranov, S. V.

    2015-05-01

    We study transport in a Weyl semimetal with donor and acceptor impurities. At sufficiently high temperatures transport is dominated by electron-electron interactions, while the low-temperature resistivity comes from the scattering of quasiparticles on screened impurities. Using the diagrammatic technique, we calculate the conductivity σ (T ,ω ,nA,nD) in the impurities-dominated regime as a function of temperature T , frequency ω , and the concentrations nA and nD of acceptors and donors and discuss the crossover behavior between the regimes of low and high temperatures and impurity concentrations. In a sufficiently compensated material [| nA-nD|≪ (nA+nD) ] with a small effective fine structure constant α ,σ (ω ,T ) ∝T2/(T-2-i ω .const) in a wide interval of temperatures. For very low temperatures, or in the case of an uncompensated material, the transport is effectively metallic. We discuss experimental conditions necessary for realizing each regime.