Science.gov

Sample records for acceptor energy level

  1. Density and energy level of a deep-level Mg acceptor in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Matsuura, Hideharu; Morine, Tatsuya; Nagamachi, Shinji

    2015-01-01

    Reliably determining the densities and energy levels of deep-level dominant acceptors in heavily doped wide-band-gap semiconductors has been a topic of recent discussion. In these discussions, the focus is on both Hall scattering factors for holes and distribution functions for acceptors. Mg acceptor levels in 4H-SiC seem to be deep, and so here the electrical properties of Mg-implanted 4H-SiC layers are studied by measuring Hall effects. The obtained Hall scattering factors are not reliable because they drop to less than 0.5 at high measurement temperatures. Moreover, the Fermi-Dirac distribution function is unsuitable for examining Mg acceptors because the obtained acceptor density is much higher than the concentration of implanted Mg atoms. However, by using a distribution function that includes the influence of the excited states of a deep-level acceptor, the density and energy level of Mg acceptors can be reliably determined.

  2. A new classification of the amino acid side chains based on doublet acceptor energy levels.

    PubMed Central

    Sneddon, S F; Morgan, R S; Brooks, C L

    1988-01-01

    We describe a new classification of the amino acid side chains based on the potential energy level at which each will accept an extra (doublet) electron. The doublet acceptor energy level, and the doublet acceptor orbital were calculated using semiempirical INDO/2-UHF molecular orbital theory. The results of these calculations show that the side chains fall into four groups. We have termed these groups repulsive, insulating, semiconducting, and attractive in accordance with where each lies on the relative energy scale. We use this classification to examine the role of residues between the donor and acceptor in modulating the rate and mechanism of electron transfer in proteins. With the calculated acceptor levels, we construct a potential barrier for those residues between the donor and acceptor. It is the area beneath this barrier that determines the decay of electronic coupling between donor and acceptor, and thus the transfer rate. We have used this schematic approach to characterize the four electron transfer pathways in myoglobin recently studied by Mayo et al. (Mayo, S.L., W.R. Ellis, R.J. Crutchley, and H.B. Gray. 1986. Science [Wash. DC]. 233:948-952). PMID:3342271

  3. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  4. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells.

    PubMed

    Li, Sunsun; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Mukherjee, Subhrangsu; Ade, Harald; Hou, Jianhui

    2016-11-01

    Fine energy-level modulations of small-molecule acceptors (SMAs) are realized via subtle chemical modifications on strong electron-withdrawing end-groups. The two new SMAs (IT-M and IT-DM) end-capped by methyl-modified dicycanovinylindan-1-one exhibit upshifted lowest unoccupied molecular orbital (LUMO) levels, and hence higher open-circuit voltages can be observed in the corresponding devices. Finally, a top power conversion efficiency of 12.05% is achieved.

  5. Tailoring of Energy Levels in D-π-A Organic Dyes via Fluorination of Acceptor Units for Efficient Dye-Sensitized Solar Cells

    PubMed Central

    Lee, Min-Woo; Kim, Jae-Yup; Son, Hae Jung; Kim, Jin Young; Kim, BongSoo; Kim, Honggon; Lee, Doh-Kwon; Kim, Kyungkon; Lee, Duck-Hyung; Ko, Min Jae

    2015-01-01

    A molecular design is presented for tailoring the energy levels in D-π-A organic dyes through fluorination of their acceptor units, which is aimed at achieving efficient dye-sensitized solar cells (DSSCs). This is achieved by exploiting the chemical structure of common D-π-A organic dyes and incorporating one or two fluorine atoms at the ortho-positions of the cyanoacetic acid as additional acceptor units. As the number of incorporated fluorine atoms increases, the LUMO energy level of the organic dye is gradually lowered due to the electron-withdrawing effect of fluorine, which ultimately results in a gradual reduction of the HOMO-LUMO energy gap and an improvement in the spectral response. Systematic investigation of the effects of incorporating fluorine on the photovoltaic properties of DSSCs reveals an upshift in the conduction-band potential of the TiO2 electrode during impedance analysis; however, the incorporation of fluorine also results in an increased electron recombination rate, leading to a decrease in the open-circuit voltage (Voc). Despite this limitation, the conversion efficiency is gradually enhanced as the number of incorporated fluorine atoms is increased, which is attributed to the highly improved spectral response and photocurrent. PMID:25591722

  6. Energy level alignment in polymer organic solar cells at donor-acceptor planar junction formed by electrospray vacuum deposition

    SciTech Connect

    Kim, Ji-Hoon; Hong, Jong-Am; Kwon, Dae-Gyeon; Seo, Jaewon; Park, Yongsup

    2014-04-21

    Using ultraviolet photoelectron spectroscopy (UPS), we have measured the energy level offset at the planar interface between poly(3-hexylthiophene) (P3HT) and C{sub 61}-butyric acid methylester (PCBM). Gradual deposition of PCBM onto spin-coated P3HT in high vacuum was made possible by using electrospray vacuum deposition (EVD). The UPS measurement of EVD-prepared planar interface resulted in the energy level offset of 0.91 eV between P3HT HOMO and PCBM LUMO, which is considered as the upper limit of V{sub oc} of the organic photovoltaic cells.

  7. Two acceptor levels and hopping conduction in Mn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Kajikawa, Yasutomo

    2017-01-01

    By analysing the experimental data of the temperature-dependent Hall-effect measurements, an additional acceptor level has been confirmed to exist in Mn-doped p-GaAs besides the isolated substitutional Mn acceptor level. It is found that, in most of the investigated samples, the room-temperature hole concentration is governed by the additional acceptor level rather than the isolated substitutional Mn acceptor level. The concentration of the additional acceptor level is found to increase almost in proportion to the square of the concentration of the isolated substitutional Mn acceptors, suggesting that the additional acceptor level is related to Mn dimers. This suggests that the ferromagnetism observed in more heavily Mn-doped GaAs may be attributed to Mn clusters. For some of the samples in which the characteristic of nearest-neighbour hopping conduction in the substitutional Mn acceptor impurity band is evident, the hopping activation energy is deduced and is proved to increase in proportion to the cube root of the concentration of the substitutional Mn acceptors.

  8. The activation energy for Mg acceptor in the Ga-rich InGaN alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Wei, Tong; Chen, Li-Ying; Wang, Sha-Sha; Wang, Jun

    2017-02-01

    The activation energy for Mg acceptor in InxGa1-xN alloys is investigated. It is found that there are three factors to influence the activation energy for Mg acceptor. One is the stronger dependence of the VBM of InxGa1-xN depending on In content than that of the Mg acceptor energy level. The other is the concentration of Mg acceptors. Another is the extending of the valence band-tail states into the band gap. In addition, a model based on modifying the effective mass model is developed. It is found that the model can describe the activation energy for Mg acceptor in the Ga-rich InxGa1-xN alloys well after considering the influence of the valence band-tail states.

  9. Binomial distribution-based quantitative measurement of multiple-acceptors fluorescence resonance energy transfer by partially photobleaching acceptor

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yu, Huaina; Zhang, Jianwei; Chen, Tongsheng

    2014-06-01

    We report that binomial distribution depending on acceptor photobleaching degree can be used to characterize the proportions of various kinds of FRET (Fluorescence Resonance Energy Transfer) constructs resulted from partial acceptor photobleaching of multiple-acceptors FRET system. On this basis, we set up a rigorous quantitation theory for multiple-acceptors FRET construct named as Mb-PbFRET which is not affected by the imaging conditions and fluorophore properties. We experimentally validate Mb-PbFRET with FRET constructs consisted of one donor and two or three acceptors inside living cells on confocal and wide-field microscopes.

  10. Frequency modulated femtosecond stimulated Raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer.

    PubMed

    Grumstrup, Erik M; Chen, Zhuo; Vary, Ryan P; Moran, Andrew M; Schanze, Kirk S; Papanikolas, John M

    2013-07-11

    A Raman-pump frequency modulation scheme and an automated signal-processing algorithm are developed for improved collection of time-resolved femtosecond stimulated Raman spectra. Together, these two advancements remove the broad background signals endemic to FSRS measurements and retrieve signals with high sensitivity. We apply this frequency-modulated femtosecond stimulated Raman spectroscopy (FM-FSRS) to the characterization of ultrafast energy transport in a copolymer comprised of polystyrene linked oligo(phenylene-ethynylene) donor and thiophene-benzothiadiazole acceptor chromophores. After photoexcitation of the donor, ultrafast energy transfer is monitored by the decay of donor vibrational modes and simultaneous growth of acceptor modes. The FM-FSRS method shows clear advantages in signal-to-noise levels, mitigation of artifact features, and ease of data processing over the conventional FSRS technique.

  11. Ultrafast Non-Förster Intramolecular Donor-Acceptor Excitation Energy Transfer.

    PubMed

    Athanasopoulos, Stavros; Alfonso Hernandez, Laura; Beljonne, David; Fernandez-Alberti, Sebastian; Tretiak, Sergei

    2017-04-06

    Ultrafast intramolecular electronic energy transfer in a conjugated donor-acceptor system is simulated using nonadiabatic excited-state molecular dynamics. After initial site-selective photoexcitation of the donor, transition density localization is monitored throughout the S2 → S1 internal conversion process, revealing an efficient unidirectional donor → acceptor energy-transfer process. Detailed analysis of the excited-state trajectories uncovers several salient features of the energy-transfer dynamics. While a weak temperature dependence is observed during the entire electronic energy relaxation, an ultrafast initially temperature-independent process allows the molecular system to approach the S2-S1 potential energy crossing seam within the first ten femtoseconds. Efficient energy transfer occurs in the absence of spectral overlap between the donor and acceptor units and is assisted by a transient delocalization phenomenon of the excited-state wave function acquiring Frenkel-exciton character at the moment of quantum transition.

  12. Rapid Energy Transfer Enabling Control of Emission Polarization in Perylene Bisimide Donor-Acceptor Triads.

    PubMed

    Menelaou, Christopher; ter Schiphorst, Jeroen; Kendhale, Amol M; Parkinson, Patrick; Debije, Michael G; Schenning, Albertus P H J; Herz, Laura M

    2015-04-02

    Materials showing rapid intramolecular energy transfer and polarization switching are of interest for both their fundamental photophysics and potential for use in real-world applications. Here, we report two donor-acceptor-donor triad dyes based on perylene-bisimide subunits, with the long axis of the donors arranged either parallel or perpendicular to that of the central acceptor. We observe rapid energy transfer (<2 ps) and effective polarization control in both dye molecules in solution. A distributed-dipole Förster model predicts the excitation energy transfer rate for the linearly arranged triad but severely underestimates it for the orthogonal case. We show that the rapid energy transfer arises from a combination of through-bond coupling and through-space transfer between donor and acceptor units. As they allow energy cascading to an excited state with controllable polarization, these triad dyes show high potential for use in luminescent solar concentrator devices.

  13. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors.

    PubMed

    Chou, Kenny F; Dennis, Allison M

    2015-06-05

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  14. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    PubMed Central

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  15. Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis.

    PubMed

    Baraquet, Claudine; Théraulaz, Laurence; Iobbi-Nivol, Chantal; Méjean, Vincent; Jourlin-Castelli, Cécile

    2009-07-01

    Shewanella oneidensis uses a wide range of terminal electron acceptors for respiration. In this study, we show that the chemotactic response of S. oneidensis to anaerobic electron acceptors requires functional electron transport systems. Deletion of the genes encoding dimethyl sulphoxide and trimethylamine N-oxide reductases, or inactivation of these molybdoenzymes as well as nitrate reductase by addition of tungstate, abolished electron acceptor taxis. Moreover, addition of nigericin prevented taxis towards trimethylamine N-oxide, dimethyl sulphoxide, nitrite, nitrate and fumarate, showing that this process depends on the DeltapH component of the proton motive force. These data, together with those concerning response to metals (Bencharit and Ward, 2005), support the idea that, in S. oneidensis, taxis towards electron acceptors is governed by an energy taxis mechanism. Surprisingly, energy taxis in S. oneidensis is not mediated by the PAS-containing chemoreceptors but rather by a chemoreceptor (SO2240) containing a Cache domain. Four other chemoreceptors also play a minor role in this process. These results indicate that energy taxis can be mediated by new types of chemoreceptors.

  16. Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Hong; Li, Wen-Lian; Chen, Zhi; Li, Shi-Bin; Wang, Xiao-Hui; Wei, Xiong-Bang

    2015-02-01

    We choose 8-hydroxyquinoline derivative-metal complexes (Beq, Mgq, and Znq) as the acceptors (A) and 4,4',4”-tri-(2-methylphenyl phenylamino) triphenylaine (m-MTDATA) as the donor (D) respectively to study the existing energy transfer process in the organic ultraviolet (UV) photodetector (PD), which has an important influence on the sensitivity of PDs. The energy transfer process from D to A without exciplex formation is discussed, differing from the working mechanism of previous PDs with Gaq [Zisheng Su, Wenlian Li, Bei Chu, Tianle Li, Jianzhuo Zhu, Guang Zhang, Fei Yan, Xiao Li, Yiren Chen and Chun-Sing Lee 2008 Appl. Phys. Lett. 93 103309)] and REq [J. B. Wang, W. L. Li, B. Chu, L. L. Chen, G. Zhang, Z. S. Su, Y. R. Chen, D. F. Yang, J. Z. Zhu, S. H. Wu, F. Yan, H. H. Liu, C. S. Lee 2010 Org. Electron. 11 1301] used as an A material. Under 365-nm UV irradiation with an intensity of 1.2 mW/cm2, the m-MTDATA:Beq blend device with a weight ratio of 1:1 shows a response of 192 mA/W with a detectivity of 6.5× 1011 Jones, which exceeds those of PDs based on Mgq (146 mA/W) and Znq (182 mA/W) due to better energy level alignment between m-MTDATA/Beq and lower radiative decay. More photophysics processes of the PDs involved are discussed in detail. Project supported by the National Natural Science Foundation of China (Grant Nos. 61371046, 61405026, 61474016, and 61421002) and China Postdoctoral Science Foundation (Grant No. 2014M552330).

  17. Examining Forster Energy Transfer for Semiconductor Nanocrystaline Quantum Dot Donors and Acceptors

    SciTech Connect

    Curutchet, C.; Franceschetti, A.; Zunger, A.; Scholes, G. D.

    2008-01-01

    Excitation energy transfer involving semiconductor quantum dots (QDs) has received increased attention in recent years because their properties, such as high photostability and size-tunable optical properties, have made QDs attractive as Forster resonant energy transfer (FRET) probes or sensors. An intriguing question in FRET studies involving QDs has been whether the dipole approximation, commonly used to predict the electronic coupling, is sufficiently accurate. Accurate estimates of electronic couplings between two 3.9 nm CdSe QDs and between a QD and a chlorophyll molecule are reported. These calculations are based on transition densities obtained from atomistic semiempirical calculations and time-dependent density functional theory for the QD and the chlorophyll, respectively. In contrast to the case of donor-acceptor molecules, where the dipole approximation breaks down at length scales comparable to the molecular dimensions, we find that the dipole approximation works surprisingly well when donor and/or acceptor is a spherical QD, even at contact donor-acceptor separations. Our conclusions provide support for the use of QDs as FRET probes for accurate distance measurements.

  18. Effect of geometry on the screened acceptor binding energy in a quantum wire

    SciTech Connect

    Shanthi, R. Vijaya Nithiananthi, P.

    2014-04-24

    The effect of various Geometries G(x, y) of the GaAs/Al{sub x}Ga{sub 1−x}As Quantum wire like G{sub 1}: (L, L) {sub 2}: (L, L/2) {sub 3}: (L/2, L/4) on the binding energy of an on-center acceptor impurity has been investigated through effective mass approximation using variational technique. The observations were made including the effect of spatial dependent dielectric screening for different concentration of Al, at T=300K. The influence of spatial dielectric screening on different geometries of the wire has been compared and hence the behavior of the acceptor impurity in GaAs/Al{sub x}Ga{sub 1−x}As Quantum wire has been discussed.

  19. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.

    PubMed

    Kumar, Challa V; Duff, Michael R

    2008-12-01

    Specific donor and acceptor pairs have been assembled in bovine serum albumin (BSA), at neutral pH and room temperature, and these dye-protein complexes indicated efficient donor to acceptor singlet-singlet energy transfer. For example, pyrene-1-butyric acid served as the donor and Coumarin 540A served as the acceptor. Both the donor and the acceptor bind to BSA with affinity constants in excess of 2x10(5) M(-1), as measured in absorption and circular dichroism (CD) spectral titrations. Simultaneous binding of both the donor and the acceptor chromophores was supported by CD spectra and one chromophore did not displace the other from the protein host, even when limited concentrations of the host were used. For example, a 1:1:1 complex between the donor, acceptor and the host can be readily formed, and spectral data clearly show that the binding sites are mutually exclusive. The ternary complexes (two different ligands bound to the same protein molecule) provided opportunities to examine singlet-singlet energy transfer between the protein-bound chromophores. Donor emission was quenched by the addition of the acceptor, in the presence of limited amounts of BSA, while no energy transfer was observed in the absence of the protein host, under the same conditions. The excitation spectra of the donor-acceptor-host complexes clearly show the sensitization of acceptor emission by the donor. Protein denaturation, as induced by the addition of urea or increasing the temperature to 360 K, inhibited energy transfer, which indicate that protein structure plays an important role. Sensitization also proceeded at low temperature (77 K) and diffusion of the donor or the acceptor is not required for energy transfer. Stern-Volmer quenching plots show that the quenching constant is (3.1+/-0.2)x10(4) M(-1), at low acceptor concentrations (<35 microM). Other albumins such as human and porcine proteins also served as good hosts for the above experiments. For the first time, non

  20. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    SciTech Connect

    Li, Mingxing; Wang, Hongfeng; He, Lei; Zang, Huidong; Xu, Hengxing; Hu, Bin

    2014-07-14

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field < 10 mT) and spin-exchange (at high field > 10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  1. Sensing metabolites using donor-acceptor nanodistributions in fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Rolinski, O. J.; Birch, D. J. S.; McCartney, L. J.; Pickup, J. C.

    2001-04-01

    Before fluorescence sensing techniques can be applied to media as delicate and complicated as human tissue, an adequate interpretation of the measured observables is required, i.e., an inverse problem needs to be solved. Recently we have solved the inverse problem relating to the kinetics of fluorescence resonance energy transfer (FRET), which clears the way for the determination of the donor-acceptor distribution function in FRET assays. In this letter this approach to monitoring metabolic processes is highlighted and the application to glucose sensing demonstrated.

  2. Quantum dots as resonance energy transfer acceptors for monitoring biological interactions

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Niko; Charbonnière, Loïc; Ziessel, Raymond F.; Löhmannsröben, Hans-Gerd

    2006-04-01

    Due to their extraordinary photophysical properties CdSe/ZnS core/shell nanocrystals (quantum dots) are excellent luminescence dyes for fluorescence resonance energy transfer (FRET) systems. By using a supramolecular lanthanide complex with central terbium cation as energy donor, we show that commercially available biocompatible biotinilated quantum dots are excellent energy acceptors in a time-resolved FRET fluoroimmunoassay (FRET-FIA) using streptavidin-biotin binding as biological recognition process. The efficient energy transfer is demonstrated by quantum dot emission sensitization and a thousandfold increase of the nanocrystal luminescence decay time. A Foerster Radius of 90 Å and a picomolar detection limit were achieved in quantum dot borate buffer. Regarding biological applications the influence of bovine serum albumin (BSA) and sodium azide (a frequently used preservative) to the luminescence behaviour of our FRET-system is reported.

  3. Hole-transfer induced energy transfer in perylene diimide dyads with a donor-spacer-acceptor motif.

    PubMed

    Kölle, Patrick; Pugliesi, Igor; Langhals, Heinz; Wilcken, Roland; Esterbauer, Andreas J; de Vivie-Riedle, Regina; Riedle, Eberhard

    2015-10-14

    We investigate the photoinduced dynamics of perylene diimide dyads based on a donor-spacer-acceptor motif with polyyne spacers of varying length by pump-probe spectroscopy, time resolved fluorescence, chemical variation and quantum chemistry. While the dyads with pyridine based polyyne spacers undergo energy transfer with near-unity quantum efficiency, in the dyads with phenyl based polyyne spacers the energy transfer efficiency drops below 50%. This suggests the presence of a competing electron transfer process from the spacer to the energy donor as the excitation sink. Transient absorption spectra, however, reveal that the spacer actually mediates the energy transfer dynamics. The ground state bleach features of the polyyne spacers appear due to the electron transfer decay with the same time constant present in the rise of the ground state bleach and stimulated emission of the perylene energy acceptor. Although the electron transfer process initially quenches the fluorescence of the donor it does not inhibit energy transfer to the perylene energy acceptor. The transient signatures reveal that electron and energy transfer processes are sequential and indicate that the donor-spacer electron transfer state itself is responsible for the energy transfer. Through the introduction of a Dexter blocker unit into the spacer we can clearly exclude any through bond Dexter-type energy transfer. Ab initio calculations on the donor-spacer and the donor-spacer-acceptor systems reveal the existence of a bright charge transfer state that is close in energy to the locally excited state of the acceptor. Multipole-multipole interactions between the bright charge transfer state and the acceptor state enable the energy transfer. We term this mechanism coupled hole-transfer FRET. These dyads represent a first example that shows how electron transfer can be connected to energy transfer for use in novel photovoltaic and optoelectronic devices.

  4. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián A.; Gillanders, Florencia; Jares-Erijman, Elizabeth A.; Jovin, Thomas M.

    2015-01-01

    Photoswitchable molecules and nanoparticles constitute superior biosensors for a wide range of industrial, research and biomedical applications. Rendered reversible by spontaneous or deterministic means, such probes facilitate many of the techniques in fluorescence microscopy that surpass the optical resolution dictated by diffraction. Here we have devised a family of photoswitchable quantum dots (psQDs) in which the semiconductor core functions as a fluorescence donor in Förster resonance energy transfer (FRET), and multiple photochromic diheteroarylethene groups function as acceptors upon activation by ultraviolet light. The QDs were coated with a polymer bearing photochromic groups attached via linkers of different length. Despite the resulting nominal differences in donor-acceptor separation and anticipated FRET efficiencies, the maximum quenching of all psQD preparations was 38±2%. This result was attributable to the large ultraviolet absorption cross-section of the QDs, leading to preferential cycloreversion of photochromic groups situated closer to the nanoparticle surface and/or with a more favourable orientation.

  5. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors.

    PubMed

    Díaz, Sebastián A; Gillanders, Florencia; Jares-Erijman, Elizabeth A; Jovin, Thomas M

    2015-01-16

    Photoswitchable molecules and nanoparticles constitute superior biosensors for a wide range of industrial, research and biomedical applications. Rendered reversible by spontaneous or deterministic means, such probes facilitate many of the techniques in fluorescence microscopy that surpass the optical resolution dictated by diffraction. Here we have devised a family of photoswitchable quantum dots (psQDs) in which the semiconductor core functions as a fluorescence donor in Förster resonance energy transfer (FRET), and multiple photochromic diheteroarylethene groups function as acceptors upon activation by ultraviolet light. The QDs were coated with a polymer bearing photochromic groups attached via linkers of different length. Despite the resulting nominal differences in donor-acceptor separation and anticipated FRET efficiencies, the maximum quenching of all psQD preparations was 38±2%. This result was attributable to the large ultraviolet absorption cross-section of the QDs, leading to preferential cycloreversion of photochromic groups situated closer to the nanoparticle surface and/or with a more favourable orientation.

  6. Modulation of quantum dot photoemission based on fluorescence resonance energy transfer to a photochromic dye acceptor

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Clapp, Aaron R.; Trammel, Scott A.; Mattoussi, Hedi M.

    2004-12-01

    We demonstrate the use of a photochromic dye to achieve fluorescence resonance energy transfer (FRET) modulation between a QD donor and the dye acceptor brought in close proximity in a selfassembled QD-protein-dye conjugate. The E. coli maltose binding protein (MBP) appended on its C-terminal with an oligohistidine attachment domain, immobilized onto CdSe-ZnS core-shell QDs was labeled with a sulfo-N-hydroxysuccinimide activated photochromic BIPS molecule (1',3-dihydro-1'-(2-carboxyethyl)-3,3-dimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indoline]). Two different dye-to-MBP-protein ratios of 1:1 and 5:1 were used. The ability of MBP-BIPS to modulate QD photoluminescence was tested by switching BIPS from the colorless spiropyran (SP) to the colored merocyanine (MC) using irradiation with white light (>500 nm) or with UV light (~365 nm), respectively. QDs surrounded by ~20 MBP-BIPS with a dye to protein ratio of 1 showed ~25% loss in their photoemission with consecutive repeated switches, while QDs surrounded by ~20 MBP-BIPS with BIPS to MBP ratio of 5 produced a substantially more pronounced rate of FRET where the QD emission was quenched by ~60%. This result suggests the possibility of using QD-protein conjugates to assemble reversible FRET nanoassemblies where the QD emission can be controlled by changing the properties of the acceptors dyes bound to the protein.

  7. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor–Acceptor Assembly

    PubMed Central

    Field, Lauren D.; Walper, Scott A.; Susumu, Kimihiro; Oh, Eunkeu; Medintz, Igor L.; Delehanty, James B.

    2015-01-01

    Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET)-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD) donor -mCherry acceptor platform that is engineered to self-assemble in situ wherein the protein acceptor is expressed via transient transfection and the QD donor is microinjected into the cell. QD-protein assembly is driven by metal-affinity interactions where a terminal polyhistidine tag on the protein binds to the QD surface. Using this system, we show the ability to modulate the efficiency of the donor–acceptor energy transfer process by controllably altering either the ligand coating on the QD surface or the precise location where the QD-protein assembly process occurs. Intracellularly, a short, zwitterionic ligand mediates more efficient FRET relative to longer ligand species that are based on the solubilizing polymer, poly(ethylene glycol). We further show that a greater FRET efficiency is achieved when the QD-protein assembly occurs free in the cytosol compared to when the mCherry acceptor is expressed tethered to the inner leaflet of the plasma membrane. In the latter case, the lower FRET efficiency is likely attributable to a lower expression level of the mCherry acceptor at the membrane combined with steric hindrance. Our work points to some of the design considerations that one must be mindful of when developing FRET-based sensing schemes for use in intracellular sensing. PMID:26690153

  8. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly.

    PubMed

    Field, Lauren D; Walper, Scott A; Susumu, Kimihiro; Oh, Eunkeu; Medintz, Igor L; Delehanty, James B

    2015-12-04

    Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET)-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD) donor -mCherry acceptor platform that is engineered to self-assemble in situ wherein the protein acceptor is expressed via transient transfection and the QD donor is microinjected into the cell. QD-protein assembly is driven by metal-affinity interactions where a terminal polyhistidine tag on the protein binds to the QD surface. Using this system, we show the ability to modulate the efficiency of the donor-acceptor energy transfer process by controllably altering either the ligand coating on the QD surface or the precise location where the QD-protein assembly process occurs. Intracellularly, a short, zwitterionic ligand mediates more efficient FRET relative to longer ligand species that are based on the solubilizing polymer, poly(ethylene glycol). We further show that a greater FRET efficiency is achieved when the QD-protein assembly occurs free in the cytosol compared to when the mCherry acceptor is expressed tethered to the inner leaflet of the plasma membrane. In the latter case, the lower FRET efficiency is likely attributable to a lower expression level of the mCherry acceptor at the membrane combined with steric hindrance. Our work points to some of the design considerations that one must be mindful of when developing FRET-based sensing schemes for use in intracellular sensing.

  9. Identification of a Deep Acceptor Level in ZnO Due to Silver Doping

    NASA Astrophysics Data System (ADS)

    Chai, J.; Mendelsberg, R. J.; Reeves, R. J.; Kennedy, J.; von Wenckstern, H.; Schmidt, M.; Grundmann, M.; Doyle, K.; Myers, T. H.; Durbin, S. M.

    2010-05-01

    There remains considerable interest in the behavior of acceptors in ZnO, the ultimate goal being the realization of device grade p-type material. Silver is a candidate acceptor, and, in this study, in situ doping of silver was performed during plasma-assisted molecular beam epitaxy. Silver concentrations, as determined by ion beam analysis, ranged between 1018 cm-3and 1020 cm-3, with as much as 94% incorporated substitutionally on Zn lattice sites. Variable magnetic field Hall effect measurements detected no evidence of holes, and 4 K photoluminescence was dominated by donor bound excitons. Transient capacitance measurements, however, suggested that incorporated silver had led to the formation of an acceptor, located approximately 320 meV above the valence band edge, indicating that compensation remains a significant issue in determining the conductivity of ZnO.

  10. Donor and acceptor levels in ZnO homoepitaxial thin films grown by molecular beam epitaxy and doped with plasma-activated nitrogen

    SciTech Connect

    Muret, Pierre; Tainoff, Dimitri; Morhain, Christian; Chauveau, Jean-Michel

    2012-09-17

    Deep level transient spectroscopy of both majority and minority carrier traps is performed in a n-type, nitrogen doped homoepitaxial ZnO layer grown on a m-plane by molecular beam epitaxy. Deep levels, most of them being not detected in undoped ZnO, lie close to the band edges with ionization energies in the range 0.12-0.60 eV. The two hole traps with largest capture cross sections are likely acceptors, 0.19 and 0.48 eV from the valence band edge, able to be ionized below room temperature. These results are compared with theoretical predictions and other experimental data.

  11. Nonradiative inter- and intramolecular energy transfer from the aromatic donor anisole to a synthesized photoswitchable acceptor system

    NASA Astrophysics Data System (ADS)

    Bardhan, Munmun; Bhattacharya, Sudeshna; Misra, Tapas; Mukhopadhyay, Rupa; De, Asish; Chowdhury, Joydeep; Ganguly, Tapan

    2010-02-01

    We report steady state and time resolved fluorescence measurements on acetonitrile ( ACN) solutions of the model compounds, energy donor anisole ( A) and a photoswitchable acceptor N,N'-1,2-phenylene di-p-tosylamide ( B) and the multichromophore ( M) where A and B are connected by a spacer containing both rigid triple (acetylenic) and flexible methylene bonds. Both steady state and time correlated single photon counting measurements demonstrate that though intermolecular energy transfer, of Forster type, between the donor and acceptor moieties occurs with rate 10 8 s -1 but when these two reacting components are linked by a spacer (multichromophore, M) the observed transfer rate (˜10 11 s -1) enhances. This seemingly indicates that the imposition of the spacer by inserting a triple bond may facilitate in the propagation of electronic excitation energy through bond. The time resolved fluorescence measurements along with the theoretical predictions using Configuration interaction singles (CIS) method by using 6-31G (d,p) basis set, implemented in the Gaussian package indicate the formations of the two excited conformers of B. The experimental findings made from the steady state and time resolved fluorescence measurements demonstrate that, though two different isomeric species of the acceptor B are formed in the excited singlet states, the prevailing singlet-singlet nonradiative energy transfer route was found from the donor A to the relatively longer-lived isomeric species of B.

  12. Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor-Acceptor Combinations

    DTIC Science & Technology

    2006-01-01

    poly- mers;[103] such systems may be exploitable for bioassays. 2.6. Photochromic Dyes Jovin and co-workers define photochromic compounds as “having...having different absorption (and in some cases, fluorescence) spectra”.[104] The primary attraction of using photochromic dyes as FRET acceptors is the...structed with this concept. Spiropyrans and functionally related molecules are among the more prominent photochromic compounds. These mole- cules

  13. Construction of a bicontinuous donor-acceptor hybrid material at the molecular level by inserting inorganic nanowires into porous MOFs.

    PubMed

    Liu, Jian-Jun; Guan, Ying-Fang; Li, Ling; Chen, Yong; Dai, Wen-Xin; Huang, Chang-Cang; Lin, Mei-Jin

    2017-04-06

    Herein, we report an unprecedented hybrid structure of electron-rich iodoplumbate nanowires precisely inserted into the periodic pores of electron-deficient pyridinium metal-organic frameworks (MOFs). To the best of our knowledge, this is the first example of semiconductive MOFs in situ loaded with inorganic semiconductive nanowires via a simple self-assembly method. Due to the dissimilar semiconductivities between the host and guest components, this hybrid also represents the first bicontinuous donor-acceptor hybrid at the molecular level based on host-guest interactions.

  14. A compact planar low-energy-gap molecule with a donor-acceptor-donor nature based on a bimetal dithiolene complex.

    PubMed

    Hayashi, Mikihiro; Otsubo, Kazuya; Kato, Tatsuhisa; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2015-11-11

    We present the first report of a compact, planar and low-energy-gap molecule based on a π-conjugated bimetal system comprising a tetrathiooxalate (tto) skeleton. The observed low HOMO-LUMO energy gap (1.19 eV) is attributed to its donor-acceptor-donor (D-A-D) nature because the skeleton acts as an electron acceptor as well as a tiny and noninnocent bridging moiety.

  15. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.

    PubMed

    Murakoshi, Hideji; Shibata, Akihiro C E; Nakahata, Yoshihisa; Nabekura, Junichi

    2015-10-15

    Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor.

  16. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO3

    NASA Astrophysics Data System (ADS)

    Putilov, L. P.; Tsidilkovski, V. I.

    2017-03-01

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔHox of oxide is determined by the energy εA of acceptor-bound states along with the formation energy EV of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of εA and EV values corresponding to the positive or negative ΔHox are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth εA: it becomes negligible at εA less than a certain value (at which the acceptor levels are still deep). With increasing εA, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO3 as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the εA magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.

  17. Roles of Energy/Charge Cascades and Intermixed Layers at Donor/Acceptor Interfaces in Organic Solar Cells

    PubMed Central

    Nakano, Kyohei; Suzuki, Kaori; Chen, Yujiao; Tajima, Keisuke

    2016-01-01

    The secret to the success of mixed bulk heterojunctions (BHJs) in yielding highly efficient organic solar cells (OSCs) could reside in the molecular structures at their donor/acceptor (D/A) interfaces. In this study, we aimed to determine the effects of energy and charge cascade structures at the interfaces by using well-defined planar heterojunctions (PHJs) as a model system. The results showed that (1) the charge cascade structure enhanced VOC because it shuts down the recombination pathway through charge transfer (CT) state with a low energy, (2) the charge cascade layer having a wider energy gap than the bulk material decreased JSC because the diffusion of the excitons from the bulk to D/A interface was blocked; the energy of the cascade layers must be appropriately arranged for both the charges and the excitons, and (3) molecular intermixing in the cascade layer opened the recombination path through the low-energy CT state and decreased VOC. Based on these findings, we propose improved structures for D/A interfaces in BHJs. PMID:27404948

  18. Roles of Energy/Charge Cascades and Intermixed Layers at Donor/Acceptor Interfaces in Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Nakano, Kyohei; Suzuki, Kaori; Chen, Yujiao; Tajima, Keisuke

    2016-07-01

    The secret to the success of mixed bulk heterojunctions (BHJs) in yielding highly efficient organic solar cells (OSCs) could reside in the molecular structures at their donor/acceptor (D/A) interfaces. In this study, we aimed to determine the effects of energy and charge cascade structures at the interfaces by using well-defined planar heterojunctions (PHJs) as a model system. The results showed that (1) the charge cascade structure enhanced VOC because it shuts down the recombination pathway through charge transfer (CT) state with a low energy, (2) the charge cascade layer having a wider energy gap than the bulk material decreased JSC because the diffusion of the excitons from the bulk to D/A interface was blocked; the energy of the cascade layers must be appropriately arranged for both the charges and the excitons, and (3) molecular intermixing in the cascade layer opened the recombination path through the low-energy CT state and decreased VOC. Based on these findings, we propose improved structures for D/A interfaces in BHJs.

  19. Rotaxanes and Photovoltaic Materials Based on Pi-Conjugated Donors and Acceptors: Toward Energy Transduction on the Nanoscale

    NASA Astrophysics Data System (ADS)

    Bruns, Carson J.

    The flow of energy between its various forms is central to our understanding of virtually all natural phenomena, from the origins and fate of the universe to the mechanisms that underpin Life. Therefore, a deeper fundamental understanding of how to manage energy processes at the molecular scale will open new doors in science and technology. This dissertation describes organic molecules and materials that are capable of transducing various forms of energy on the nanoscale, namely, a class of mechanically interlocked molecules known as rotaxanes for electrochemical-to-mechanical energy transduction (Part I), and a class of thin films known as organic photovoltaics (OPVs) for solar-to-electric energy transduction (Part II). These materials are all based on conjugated molecules with a capacity to donate or accept pi-electrons. A contemporary challenge in molecular nanotechnology is the development of artificial molecular machines (AMMs) that mimic the ability of motor proteins (e.g. myosin, kinesin) to perform mechanical work by leveraging a combination of energy sources and rich structural chemistry. Part I describes the synthesis, characterization, molecular dynamics, and switching properties of a series of `daisy chain' and oligorotaxane AMM prototypes. All compounds are templated by charge transfer and hydrogen bonding interactions between pi-associated 1,5-dioxynaphthlene donors appended with polyether groups and pi-acceptors of either neutral (naphthalenediimide) or charged (4,4´-bipyridinium) varieties, and are synthesized using efficient one-pot copper(I)-catalyzed azide-alkyne cycloaddition `click chemistry' protocols. The interlocked architectures of these rotaxanes enable them to express sophisticated secondary structures (i.e. foldamers) and mechanical motions in solution, which have been elucidated using dynamic 1H NMR spectroscopy. Furthermore, molecular dynamics simulations, cyclic voltammetry, and spectroelectrochemistry experiments have demonstrated

  20. Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Förster energy transfer.

    PubMed

    Wang, Huan; Yue, Bailing; Xie, Zengqi; Gao, Bingrong; Xu, Yuanxiang; Liu, Linlin; Sun, Hongbo; Ma, Yuguang

    2013-03-14

    The orientation factor κ(2) ranging from 0 to 4, which depends on the relative orientation of the transition dipoles of the energy donor (D) and the energy acceptor (A) in space, is one of the pivotal factors deciding the efficiency and directionality of resonance energy transfer (RET) in a D-A molecular system. In this work, tetracene (Tc) and pentacene (Pc) are successfully doped in a trans-1,4-distyrylbenzene (DSB) crystalline lattice to form definite D-A mutually perpendicular transition dipole orientations. The cross D-A dipole arrangement results in an extremely small orientation factor, which is about two orders smaller than that in the disordered films. The energy transfer properties from the host (DSB) to the guest (Tc/Pc) were investigated in detail by steady-state as well as time-resolved fluorescence spectroscopy. Our experimental research results show that the small value of κ(2) allows less or partial energy transfer from the host (DSB) to the guest (Tc) in a wide range of guest concentration, with the Förster distance of around 1.5 nm. By controlling the doping concentrations in the Tc and Pc doubly doped DSB crystals, we demonstrate, as an example, for the first time the application of the restricted energy transfer by D-A cross transition dipole arrangement for preparation of a large-size, white-emissive organic crystal with the CIE coordinates of (0.36, 0.37) approaching an ideal white light. In contrast, Tc is also doped in an anthracene crystalline lattice to form head-to-tail D-A transition dipole alignment, which is proved to be highly effective to promote the intermolecular energy transfer. In this doped system, the orientation factor is relatively large and the Förster distance is around 7 nm.

  1. Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion

    NASA Astrophysics Data System (ADS)

    Fredin, Lisa A.; Persson, Petter

    2016-09-01

    The rapidly growing interest in photocatalytic systems for direct solar fuel production such as hydrogen generation from water splitting is grounded in the unique opportunity to achieve charge separation in molecular systems provided by electron transfer processes. In general, both photoinduced and catalytic processes involve complicated dynamics that depend on both structural and electronic effects. Here the excited state landscape of metal centered light harvester-catalyst pairs is explored using density functional theory calculations. In weakly bound systems, the interplay between structural and electronic factors involved can be constructed from the various mononuclear relaxed excited states. For this study, supramolecular states of electron transfer and excitation energy transfer character have been constructed from constituent full optimizations of multiple charge/spin states for a set of three Ru-based light harvesters and nine transition metal catalysts (based on Ru, Rh, Re, Pd, and Co) in terms of energy, structure, and electronic properties. The complete set of combined charge-spin states for each donor-acceptor system provides information about the competition of excited state energy transfer states with the catalytically active electron transfer states, enabling the identification of the most promising candidates for photocatalytic applications from this perspective.

  2. Holes bound as small polarons to acceptor defects in oxide materials: why are their thermal ionization energies so high?

    NASA Astrophysics Data System (ADS)

    Schirmer, O. F.

    2011-08-01

    Holes bound to acceptor defects in oxide materials usually need comparatively high energies, of the order of 0.5-1.0 eV, to be ionized thermally to the valence band maximum. It is discussed that this has to be attributed to the stabilization of such holes by mainly short range interactions with the surrounding lattice, leading to the formation of small O - polarons. This is tantamount to the localization of the hole at only one of several equivalent oxygen ions next to the defect. The hole stabilizing energies can be determined experimentally from the related intense optical absorption bands. This paper exploits previous phenomenological studies of bound-hole small polarons in order to account for the large hole stabilization energies on this basis. A compilation demonstrates that bound-hole small polarons occur rather often in oxides and also in some related materials. The identification of such systems is based on EPR and optical studies and also on recent advanced electronic structure calculations.

  3. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2010-01-01

    A multiplexed solid-phase assay for the detection of nucleic acid hybridization was developed on the basis of a single color of immobilized CdSe/ZnS quantum dot (QD) as a donor in fluorescence resonance energy transfer (FRET). This work demonstrated that two channels of detection did not necessitate two different QD donors. Two probe oligonucleotides were coimmobilized on optical fibers modified with QDs, and a sandwich assay was used to associate the acceptor dyes with interfacial hybridization events without target labeling. FRET-sensitized acceptor emission provided an analytical signal that was concentration dependent down to 10 nM. Changes in the ratio of coimmobilized probe oligonucleotides were found to yield linear changes in the relative amounts of acceptor emission. These changes were compared to previous studies that used mixed films of two QD donors for two detection channels. The analysis indicated that probe dilution effects were primarily driven by changes in acceptor number density and that QD dilution effects or changes in mean donor-acceptor distance were secondary. Hybridization kinetics were found to be consistent between different ratios of coimmobilized probes, suggesting that hybridization in this type of system occurred via the accepted model for solid-phase hybridization, where adsorption and then diffusion at the solid interface drove hybridization.

  4. Energy level control: toward an efficient hot electron transport.

    PubMed

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-08-07

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the 'excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells.

  5. Energy level control: toward an efficient hot electron transport

    PubMed Central

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-01-01

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the ‘excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells. PMID:25099864

  6. Effect of compartmentalization of donor and acceptor on the ultrafast resonance energy transfer from DAPI to silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Prajapati, Roopali; Chatterjee, Surajit; Kannaujiya, Krishna K.; Mukherjee, Tushar Kanti

    2016-06-01

    The mechanism and dynamics of excitation energy transfer (EET) from photo-excited 4',6-diamidino-2-phenylindole (DAPI) to silver nanoclusters (Ag NCs) and its subsequent modulation in the presence of cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) and Calf Thymus DNA (CT-DNA) have been demonstrated using steady-state fluorescence and femtosecond fluorescence upconversion techniques. The synthesized Ag NCs were characterized using FTIR, mass spectrometry, XPS, HRTEM, DLS, UV-Vis and PL spectroscopy. Mass spectrometric analysis reveals the formation of ultrasmall Ag4 NCs with a small amount of Ag5 NCs. UV-Vis and PL spectra reveal distinct molecular-like optoelectronic behaviour of these ultrasmall Ag NCs. The dihydrolipoic acid-capped Ag NCs strongly quench the fluorescence of DAPI with concomitant increase in its photoluminescence (PL) intensity at 675 nm. This steady-state fluorescence quenching proceeds with a significant shortening of the fluorescence lifetime of DAPI in the presence of Ag NCs, signifying the nonradiative Förster resonance energy transfer (FRET) from DAPI to Ag NCs. Various energy transfer parameters have been estimated from FRET theory. The present FRET pair shows a characteristic Förster distance of 2.45 nm and can be utilized as a reporter of short-range distances in various FRET based applications. Moreover, this nonradiative FRET is completely suppressed in the presence of both 0.2 wt% PDADMAC and CT-DNA. Our results reveal selective compartmentalization of Ag NCs and DAPI in the presence of 0.2 wt% PDADMAC and CT-DNA, respectively. This selective compartmentalization of donor and acceptor and the subsequent modification of the FRET process may find application in various sensing, photovoltaic, and light harvesting applications.The mechanism and dynamics of excitation energy transfer (EET) from photo-excited 4',6-diamidino-2-phenylindole (DAPI) to silver nanoclusters (Ag NCs) and its subsequent modulation in the presence

  7. Effect of compartmentalization of donor and acceptor on the ultrafast resonance energy transfer from DAPI to silver nanoclusters.

    PubMed

    Prajapati, Roopali; Chatterjee, Surajit; Kannaujiya, Krishna K; Mukherjee, Tushar Kanti

    2016-07-14

    The mechanism and dynamics of excitation energy transfer (EET) from photo-excited 4',6-diamidino-2-phenylindole (DAPI) to silver nanoclusters (Ag NCs) and its subsequent modulation in the presence of cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) and Calf Thymus DNA (CT-DNA) have been demonstrated using steady-state fluorescence and femtosecond fluorescence upconversion techniques. The synthesized Ag NCs were characterized using FTIR, mass spectrometry, XPS, HRTEM, DLS, UV-Vis and PL spectroscopy. Mass spectrometric analysis reveals the formation of ultrasmall Ag4 NCs with a small amount of Ag5 NCs. UV-Vis and PL spectra reveal distinct molecular-like optoelectronic behaviour of these ultrasmall Ag NCs. The dihydrolipoic acid-capped Ag NCs strongly quench the fluorescence of DAPI with concomitant increase in its photoluminescence (PL) intensity at 675 nm. This steady-state fluorescence quenching proceeds with a significant shortening of the fluorescence lifetime of DAPI in the presence of Ag NCs, signifying the nonradiative Förster resonance energy transfer (FRET) from DAPI to Ag NCs. Various energy transfer parameters have been estimated from FRET theory. The present FRET pair shows a characteristic Förster distance of 2.45 nm and can be utilized as a reporter of short-range distances in various FRET based applications. Moreover, this nonradiative FRET is completely suppressed in the presence of both 0.2 wt% PDADMAC and CT-DNA. Our results reveal selective compartmentalization of Ag NCs and DAPI in the presence of 0.2 wt% PDADMAC and CT-DNA, respectively. This selective compartmentalization of donor and acceptor and the subsequent modification of the FRET process may find application in various sensing, photovoltaic, and light harvesting applications.

  8. Controlled energy transfer between isolated donor-acceptor molecules intercalated in thermally self-ensemble two-dimensional hydrogen bonding cages

    NASA Astrophysics Data System (ADS)

    Al Attar, Hameed A.; Monkman, Andrew P.

    2012-12-01

    Thermally assembled hydrogen bonding cages which are neither size nor guest specific have been developed using a poly (vinyl alcohol) (PVA) host. A water-soluble conjugated polymer poly(2,5-bis(3-sulfonatopropoxy)-1,4-phenylene, disodium salt-alt-1,4-phenylene) (PPP-OPSO3) as a donor and tris(2,2-bipyridyl)- ruthenium(II) [Ru(bpy)32+] as an acceptor have been isolated and trapped in such a PVA matrix network. This is a unique system that shows negligible exciton diffusion and the donor and acceptor predominantly interact by a direct single step excitation transfer process (DSSET). Singlet and triplet exciton quenching have been studied. Time-resolved fluorescence lifetime measurement at different acceptor concentrations has enabled us to determine the dimensionality of the energy-transfer process within the PVA scaffold. Our results reveal that the PVA hydrogen bonding network effectively isolates the donor-acceptor molecules in a two-dimensional layer structure (lamella) leading to the condition where a precise control of the energy and charge transfer is possible.

  9. Probing charge and energy transfer process at the donor-acceptor interface of semiconductor nanostructures with simultaneous photocurrent-optical microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Yongqian; Acharya, Krishna; Galande, Charudatta; Ajayan, Pulickel; Mohite, Aditya; Dattelbaum, Andrew; Hollingsworth, Jennifer; Htoon, Han; Los Alamos Natioal Lab Team; Rice Univerisity Collaboration

    2013-03-01

    Understanding and control of charge and energy transfer (CT & ET) processes happening at the donor-acceptor interface of colloidal semiconductor nanostructures play a critical role in defining the performance of many exploratory photo-voltaic devices. Ultrafast dynamics of CT and ET processes in semiconductor nanostrucutres can be investigated effectively by time and energy resolved PL spectroscopy. However a full understanding on impact of these process on device performance demand direct correlation of these dynamical measurements with photocurrent measurements that probe the separation and transport of charges. To this end we develop simultaneous optical and electrical characterization approaches capable of performing scanning photocurrent microscopy and various single nanostructure optical spectroscopies (e.g. photoluminescence (PL), Raman, time resolved PL) simultaneously. We will present application of this technique on various donor/acceptor interfaces including graphene oxide/CdSe nanowire and TiO2 nanocrystals/CdSe nanowire interfaces.

  10. Nitrogen is a deep acceptor in ZnO

    SciTech Connect

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence band relative to the vacuum level.

  11. Nitrogen is a deep acceptor in ZnO

    DOE PAGES

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  12. Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors

    PubMed Central

    Hildebrandt, Niko; Charbonnière, Loïc J.; Löhmannsröben, Hans-Gerd

    2007-01-01

    CdSe/ZnS core/shell quantum dots (QDs) are used as efficient Förster Resonance Energy Transfer (FRET) acceptors in a time-resolved immunoassays with Tb complexes as donors providing a long-lived luminescence decay. A detailed decay time analysis of the FRET process is presented. QD FRET sensitization is evidenced by a more than 1000-fold increase of the QD luminescence decay time reaching ca. 0.5 milliseconds, the same value to which the Tb donor decay time is quenched due to FRET to the QD acceptors. The FRET system has an extremely large Förster radius of approx. 100 Å and more than 70% FRET efficiency with a mean donor-acceptor distance of ca. 84 Å, confirming the applied biotin-streptavidin binding system. Time-resolved measurement allows for suppression of short-lived emission due to background fluorescence and directly excited QDs. By this means a detection limit of 18 attomol QDs within the immunoassay is accomplished, an improvement of more than two orders of magnitude compared to commercial systems. PMID:18273412

  13. Fullerene-bisadduct acceptors for polymer solar cells.

    PubMed

    Li, Yongfang

    2013-10-01

    Polymer solar cells (PSCs) have drawn great attention in recent years for their simple device structure, light weight, and low-cost fabrication in comparison with inorganic semiconductor solar cells. However, the power-conversion efficiency (PCE) of PSCs needs to be increased for their future application. The key issue for improving the PCE of PSCs is the design and synthesis of high-efficiency conjugated polymer donors and fullerene acceptors for the photovoltaic materials. For the acceptor materials, several fullerene-bisadduct acceptors with high LUMO energy levels have demonstrated excellent photovoltaic performance in PSCs with P3HT as a donor. In this Focus Review, recent progress in high-efficiency fullerene-bisadduct acceptors is discussed, including the bisadduct of PCBM, indene-C60 bisadduct (ICBA), indene-C70 bisadduct (IC70BA), DMPCBA, NCBA, and bisTOQC. The LUMO levels and photovoltaic performance of these bisadduct acceptors with P3HT as a donor are summarized and compared. In addition, the applications of an ICBA acceptor in new device structures and with other conjugated polymer donors than P3HT are also introduced and discussed.

  14. Origin of simultaneous donor-acceptor emission in single molecules of peryleneimide-terrylenediimide labeled polyphenylene dendrimers.

    PubMed

    Melnikov, Sergey M; Yeow, Edwin K L; Uji-i, Hiroshi; Cotlet, Mircea; Müllen, Klaus; De Schryver, Frans C; Enderlein, Jörg; Hofkens, Johan

    2007-02-01

    Förster type resonance energy transfer (FRET) in donor-acceptor peryleneimide-terrylenediimide dendrimers has been examined at the single molecule level. Very efficient energy transfer between the donor and the acceptor prevent the detection of donor emission before photobleaching of the acceptor. Indeed, in solution, on exciting the donor, only acceptor emission is detected. However, at the single molecule level, an important fraction of the investigated individual molecules (about 10-15%) show simultaneous emission from both donor and acceptor chromophores. The effect becomes apparent mostly after photobleaching of the majority of donors. Single molecule photon flux correlation measurements in combination with computer simulations and a variety of excitation conditions were used to determine the contribution of an exciton blockade to this two-color emission. Two-color defocused wide-field imaging showed that the two-color emission goes hand in hand with an unfavorable orientation between one of the donors and the acceptor chromophore.

  15. Determination of the ionization energy of vanadium levels in zinc selenide

    SciTech Connect

    Makhniy, V. P.; Kinzerskaya, O. V.

    2012-02-15

    By comparing the experimental spectra of optical absorption and photoconductivity with those calculated using the Lucovsky formulas, it is established that the V impurity in ZnSe forms acceptor levels with the ionization energy 0.62 eV.

  16. A study of the double-acceptor level of the silicon divacancy in a proton irradiated n-channel CCD

    NASA Astrophysics Data System (ADS)

    Wood, D.; Hall, D.; Gow, J. P. D.; Holland, A.

    2016-08-01

    Radiation damage effects are problematic for space-based detectors. Highly energetic particles, predominantly from the sun can damage a detector and reduce its operational lifetime. For an image sensor such as a Charge-Coupled Device (CCD) impinging particles can potentially displace silicon atoms from the CCD lattice, creating defects which can trap signal charge and degrade an image through smearing. This paper presents a study of one energy level of the silicon divacancy defect using the technique of single trap-pumping on a proton irradiated n-channel CCD. The technique allows for the study of individual defects at a sub-pixel level, providing highly accurate data on defect parameters. Of particular importance when concerned with CCD performance is the emission time-constant of a defect level, which is the time-scale for which it can trap a signal charge. The trap-pumping technique is a direct probe of individual defect emission time-constants in a CCD, allowing for them to be studied with greater precision than possible with other defect analysis techniques such as deep-level transient spectroscopy on representative materials.

  17. The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments.

    PubMed

    Dolfing, Jan; Novak, Igor

    2015-02-01

    The sequence of redox reactions in the natural environment generally follows the electron affinity of the electron acceptors present and can be rationalized by the redox potentials of the appropriate half-reactions. Answering the question how halogenated aromatics fit into this sequence requires information on their Gibbs free energy of formation values. In 1992 Gibbs free energy data for various classes of halogenated aromatic compounds were systematically explored for the first time based on Benson's group contribution method. Since then more accurate quantum chemical calculation methods have become available. Here we use these methods to estimate enthalpy and Gibbs free energy of formation values of all chlorinated and brominated phenols. These data and similar state-of-the-art datasets for halogenated benzenes and benzoates were then used to calculate two-electron redox potentials of halogenated aromatics for standard conditions and for pH 7. The results underline the need to take speciation into consideration when evaluating redox potentials at pH 7 and highlight the fact that halogenated aromatics are excellent electron acceptors in aqueous environments.

  18. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications.

    PubMed

    Cardona, Claudia M; Li, Wei; Kaifer, Angel E; Stockdale, David; Bazan, Guillermo C

    2011-05-24

    Narrow bandgap conjugated polymers in combination with fullerene acceptors are under intense investigation in the field of organic photovoltaics (OPVs). The open circuit voltage, and thereby the power conversion efficiency, of the devices is related to the offset of the frontier orbital energy levels of the donor and acceptor components, which are widely determined by cyclic voltammetry. Inconsistencies have appeared in the use of the ferrocenium/ferrocene (Fc + /Fc) redox couple, as well as the values used for the absolute potentials of standard electrodes, which can complicate the comparison of materials properties and determination of structure/property relationships.

  19. Dichotomous Role of Exciting the Donor or the Acceptor on Charge Generation in Organic Solar Cells.

    PubMed

    Hendriks, Koen H; Wijpkema, Alexandra S G; van Franeker, Jacobus J; Wienk, Martijn M; Janssen, René A J

    2016-08-10

    In organic solar cells, photoexcitation of the donor or acceptor phase can result in different efficiencies for charge generation. We investigate this difference for four different 2-pyridyl diketopyrrolopyrrole (DPP) polymer-fullerene solar cells. By comparing the external quantum efficiency spectra of the polymer solar cells fabricated with either [60]PCBM or [70]PCBM fullerene derivatives as acceptor, the efficiency of charge generation via donor excitation and acceptor excitation can both be quantified. Surprisingly, we find that to make charge transfer efficient, the offset in energy between the HOMO levels of donor and acceptor that govern charge transfer after excitation of the acceptor must be larger by ∼0.3 eV than the offset between the corresponding two LUMO levels when the donor is excited. As a consequence, the driving force required for efficient charge generation is significantly higher for excitation of the acceptor than for excitation of the donor. By comparing charge generation for a total of 16 different DPP polymers, we confirm that the minimal driving force, expressed as the photon energy loss, differs by about 0.3 eV for exciting the donor and exciting the acceptor. Marcus theory may explain the dichotomous role of exciting the donor or the acceptor on charge generation in these solar cells.

  20. A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors.

    PubMed

    Doughan, Samer; Uddayasankar, Uvaraj; Krull, Ulrich J

    2015-06-09

    Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min.

  1. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  2. First principle prediction of shallow defect level binding energies and deep level nonradiative recombination rates

    NASA Astrophysics Data System (ADS)

    Wang, Linwang

    2014-03-01

    Accurate calculation of defect level energies in semiconductors and their carrier capturing rate is an important issue in ab initio prediction of semiconductor properties. In this talk, I will present our result work in ab initio shallow level calculation and deep level caused nonradiative recombination rate calculation. In the shallow acceptor level calculation, a large system up to 64,000 atoms needs to be used to properly describe the weakly bounded hole wave functions. The single particle Hamiltonian of that system is patched from bulk potential and central potential. Furthermore, GW calculation is used to correct the one site potential of the impurity atom. The resulting binding energy agrees excellently with the experiments within 10 meV. To calculate the nonradiative decay rate, the electron-phonon coupling constants in the defect system are calculated all at once using a new variational algorithm. Multiphonon process formalism is used to calculate the nonradiative decay rate. It is found that the transition is induced by the electron and the optical phonon coupling, but the energy conservation is mostly satisfied by the acoustic phonons. The new algorithm allows fast calculation of such nonradiative decay rate for any defect levels, as well as other multiphonon processes in nanostructures. This work was supported by the Director, Office of Science (SC), Basic Energy Science (BES)/Materials Science and Engineering Division (MSED) of the U.S. Department of Energy (DOE) under the contract No. DE-AC02-05CH11231.

  3. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  4. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  5. An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Non-Fullerene Solar Cells.

    PubMed

    Zhang, Andong; Li, Cheng; Yang, Fan; Zhang, Jianqi; Wang, Zhaohui; Wei, Zhixiang; Li, Weiwei

    2017-03-01

    A star-shaped electron acceptor based on porphyrin as a core and perylene bisimide as end groups was constructed for application in non-fullerene organic solar cells. The new conjugated molecule exhibits aligned energy levels, good electron mobility, and complementary absorption with a donor polymer. These advantages facilitate a high power conversion efficiency of 7.4 % in non-fullerene solar cells, which represents the highest photovoltaic performance based on porphyrin derivatives as the acceptor.

  6. Dominant effects of first monolayer energetics at donor/acceptor interfaces on organic photovoltaics.

    PubMed

    Izawa, Seiichiro; Nakano, Kyohei; Suzuki, Kaori; Hashimoto, Kazuhito; Tajima, Keisuke

    2015-05-20

    Energy levels of the first monolayer are manipulated at donor/acceptor interfaces in planar heterojunction organic photovoltaics by using molecular self-organization. A "cascade" energy landscape allows thermal-activation-free charge generation by photoirradiation, destabilizes the energy of the interfacial charge-transfer state, and suppresses bimolecular charge recombination, resulting in a higher open-circuit voltage and fill factor.

  7. Donor-acceptor star-shaped conjugated macroelectrolytes: synthesis, light-harvesting properties, and self-assembly-induced Förster resonance energy transfer.

    PubMed

    Zhao, Li; Liu, Cheng-Fang; Xu, Wei-Dong; Jiang, Yi; Lai, Wen-Yong; Huang, Wei

    2015-06-04

    A novel series of donor-acceptor star-shaped conjugated macroelectrolytes (CMEs), denoted as 4FTs, including anionic carboxylic acid sodium groups (4FNaT), neutral diethanolamine groups (4FNOHT), and cationic ammonium groups (4FNBrT), were designed, synthesized, and explored as an excellent platform to investigate the impact of various polar pendent groups on self-assembly behaviors. The resulting CMEs with donor-acceptor star-shaped architectures exhibited distinct light-harvesting properties. The interactions between 4FTs and TrNBr, a star-shaped monodisperse CME grafted with cationic quaternary ammonium side chains, were investigated in H2O and CH3OH using steady-state, time-resolved fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Highly favored energy transfer has been proven by the excellent spectral overlap between TrNBr fluorescence and 4FTs absorptions which can be tuned by adjusting the pendent polar groups and solvents. It is suggested that self-assembled structures are formed between TrNBr and 4FNaT, while there is no obvious change for TrNBr/4FNOHT and TrNBr/4FNBrT in both H2O and CH3OH at low concentrations (<10(-6) M). This result is confirmed by the change of the TrNBr and 4FTs fluorescence properties and the time-resolved fluorescence data. The overall results manifest that at low concentrations the self-assembly between TrNBr and 4FTs is dominated by the electrostatic interactions. This study suggests that the functionalization of pendent polar groups of star-shaped CMEs has proven to be effective to modulate the self-assembly behaviors in dilute solutions and thus provide a strategy to further manage the optoelectronic properties.

  8. Polarization Energies at Organic-Organic Interfaces: Impact on the Charge Separation Barrier at Donor-Acceptor Interfaces in Organic Solar Cells.

    PubMed

    Ryno, Sean M; Fu, Yao-Tsung; Risko, Chad; Brédas, Jean-Luc

    2016-06-22

    We probe the energetic landscape at a model pentacene/fullerene (C60) interface to investigate the interactions between positive and negative charges, which are critical to the processes of charge separation and recombination in organic solar cells. Using a polarizable force field, we find that polarization energy, i.e., the stabilization a charge feels due to its environment, is larger at the interface than in the bulk for both a positive and a negative charge. The combination of the charge being more stabilized at the interface and the Coulomb attraction between the charges results in a barrier to charge separation at the pentacene/C60 interface that can be in excess of 0.7 eV for static configurations of the donor and acceptor locations. However, the impact of molecular motions, i.e., the dynamics, at the interface at room temperature results in a distribution of polarization energies and in charge separation barriers that can be significantly reduced. The dynamic nature of the interface is thus critical, with the polarization energy distributions indicating that sites along the interface shift in time between favorable and unfavorable configurations for charge separation.

  9. New acceptor-donor-acceptor (A-D-A) type copolymers for efficient organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Ayachi, S.; Alimi, K.

    2015-01-01

    Three new conjugated systems alternating acceptor-donor-acceptor (A-D-A) type copolymers have been investigated by means of Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) at the 6-31g (d) level of theory. 4,4‧-Dimethoxy-chalcone, also called the 1,3-bis(4-methoxyphenyl)prop-2-en-1-one (BMP), has been used as a common acceptor moiety. It forced intra-molecular S⋯O interactions through alternating oligo-thiophene derivatives: 4-AlkylThiophenes (4-ATP), 4-AlkylBithiophenes (4-ABTP) and 4-Thienylene Vinylene (4-TEV) as donor moieties. The band gap, HOMO and LUMO electron distributions as well as optical properties were analyzed for each molecule. The fully optimized resulting copolymers showed low band gaps (2.2-2.8 eV) and deep HOMO energy levels ranging from -4.66 to -4.86 eV. A broad absorption [300-900 nm] covering the solar spectrum and absorption maxima ranges from 486 to 604 nm. In addition, organic photovoltaic cells (OPCs) based on alternating copolymers in bulk heterojunction (BHJ) composites with the 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6]-C61 (PCBM), as an acceptor, have been optimized. Thus, the band gap decreased to 1.62 eV, the power conversion efficiencies (PCEs) were about 3-5% and the open circuit voltage Voc of the resulting molecules decreased from 1.50 to 1.27 eV.

  10. Efficient organic dye-sensitized solar cells: molecular engineering of donor-acceptor-acceptor cationic dyes.

    PubMed

    Cheng, Ming; Yang, Xichuan; Zhao, Jianghua; Chen, Cheng; Tan, Qin; Zhang, Fuguo; Sun, Licheng

    2013-12-01

    Three metal-free donor-acceptor-acceptor sensitizers with ionized pyridine and a reference dye were synthesized, and a detailed investigation of the relationship between the dye structure and the photophysical and photoelectrochemical properties and the performance of dye-sensitized solar cells (DSSCs) is described. The ionization of pyridine results in a red shift of the absorption spectrum in comparison to that of the reference dye. This is mainly attributable to the ionization of pyridine increasing the electron-withdrawing ability of the total acceptor part. Incorporation of the strong electron-withdrawing units of pyridinium and cyano acrylic acid gives rise to optimized energy levels, resulting in a large response range of wavelengths. When attached to TiO2 film, the conduction band of TiO2 is negatively shifted to a different extent depending on the dye. This is attributed to the electron recombination rate between the TiO2 film and the electrolyte being efficiently suppressed by the introduction of long alkyl chains and thiophene units. DSSCs assembled using these dyes show efficiencies as high as 8.8 %.

  11. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells.

    PubMed

    Hagberg, Daniel P; Marinado, Tannia; Karlsson, Karl Martin; Nonomura, Kazuteru; Qin, Peng; Boschloo, Gerrit; Brinck, Tore; Hagfeldt, Anders; Sun, Licheng

    2007-12-07

    A series of organic chromophores have been synthesized in order to approach optimal energy level composition in the TiO2-dye-iodide/triiodide system in the dye-sensitized solar cells. HOMO and LUMO energy level tuning is achieved by varying the conjugation between the triphenylamine donor and the cyanoacetic acid acceptor. This is supported by spectral and electrochemical experiments and TDDFT calculations. These results show that energetic tuning of the chromophores was successful and fulfilled the thermodynamic criteria for dye-sensitized solar cells, electrical losses depending on the size and orientation of the chromophores were observed.

  12. New blue emissive conjugated small molecules with low lying HOMO energy levels for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Trupthi Devaiah, C.; Hemavathi, B.; Ahipa, T. N.

    2017-03-01

    Versatile conjugated small molecules bearing cyanopyridone core (CP1-5), composed of various donor/acceptor moieties at position - 4 and - 6 have been designed, developed and characterized. Their solvatochromic studies were conducted and analyzed using Lippert-Mataga, Kamlet-Taft and Catalan solvent scales and interesting results were obtained. The polarizability/dipolarity of the solvent greatly influenced the spectra. The electrochemical studies were carried out using cyclic voltammetry to calculate the HOMO-LUMO energy levels. The study revealed that the synthesized conjugated small molecules possess low lying HOMO energy levels which can be exploited for application in various fields of optoelectronics.

  13. A paper-based multiplexed resonance energy transfer nucleic acid hybridization assay using a single form of upconversion nanoparticle as donor and three quantum dots as acceptors.

    PubMed

    Doughan, Samer; Uddayasankar, Uvaraj; Peri, Aparna; Krull, Ulrich J

    2017-04-15

    Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reductive amination to evaluate the multiplexing capacity of luminescence resonance energy transfer (LRET) between UCNPs and quantum dots (QDs). This is the first account of a multiplexed bioassay strategy that demonstrates the principle of use of a single form of UCNP as donor and three different color emitting QDs as acceptors to concurrently determine three analytes. Broad absorbance profiles of green, orange and red QDs that spanned from the first exciton absorption peak to the UV region were in overlap with a blue emission band from UCNPs composed of NaYF4 that was doped with 30% Yb(3+), 0.5% Tm(3+), allowing for LRET that was stimulated using 980 nm near-infrared radiation. The characteristic narrow and well-defined emission peaks of UCNPs and QDs allowed for the collection of luminescence from each nanoparticle using a band-pass optical filter and an epi-fluorescence microscope. The LRET system was used for the concurrent detection of uidA, Stx1A and tetA gene fragments with selectivity even in serum samples, and reached limits of detection of 26 fmol, 56 fmol and 76 fmol, respectively.

  14. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    PubMed Central

    2015-01-01

    Conspectus The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together

  15. Alternansucrase acceptor products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regioselectivity of alternansucrase (EC 2.4.1.140) differs from dextransucrase (EC 2.4.1.5) in ways that can be useful for the synthesis of novel oligosaccharide structures. For example, it has been recently shown that the major oligosaccharides produced when maltose is the acceptor include one...

  16. Energy levels of bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Farias, G. A.; Peeters, F. M.

    2015-09-01

    Within a tight binding approach we investigate the energy levels of hexagonal and triangular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We study AA- and AB- (Bernal) stacked BLG QDs and obtain the energy levels in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). Our results show that the size dependence of the energy levels is different from that of monolayer graphene QDs. The energy spectrum of AB-stacked BLG QDs with zigzag edges exhibits edge states which spread out into the opened energy gap in the presence of a perpendicular electric field. We found that the behavior of these edges states is different for the hexagonal and triangular geometries. In the case of AA-stacked BLG QDs, the electron and hole energy levels cross each other in both cases of armchair and zigzag edges as the dot size or the applied bias increases.

  17. Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation.

    PubMed

    Opitz, Andreas

    2017-04-05

    Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground

  18. Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation

    NASA Astrophysics Data System (ADS)

    Opitz, Andreas

    2017-04-01

    Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground

  19. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-03-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  20. State-Level Benefits of Energy Efficiency

    SciTech Connect

    Tonn, Bruce Edward

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  1. Effect of Electronic Acceptor Segments on Photophysical Properties of Low-Band-Gap Ambipolar Polymers

    PubMed Central

    Li, Yuanzuo; Cui, Jingang; Zhao, Jianing; Liu, Jinglin; Song, Peng; Ma, Fengcai

    2013-01-01

    Stimulated by a recent experimental report, charge transfer and photophysical properties of donor-acceptor ambipolar polymer were studied with the quantum chemistry calculation and the developed 3D charge difference density method. The effects of electronic acceptor strength on the structure, energy levels, electron density distribution, ionization potentials, and electron affinities were also obtained to estimate the transporting ability of hole and electron. With the developed 3D charge difference density, one visualizes the charge transfer process, distinguishes the role of molecular units, and finds the relationship between the role of DPP and excitation energy for the three polymers during photo-excitation. PMID:23365549

  2. Effect of electronic acceptor segments on photophysical properties of low-band-gap ambipolar polymers.

    PubMed

    Li, Yuanzuo; Cui, Jingang; Zhao, Jianing; Liu, Jinglin; Song, Peng; Ma, Fengcai

    2013-01-01

    Stimulated by a recent experimental report, charge transfer and photophysical properties of donor-acceptor ambipolar polymer were studied with the quantum chemistry calculation and the developed 3D charge difference density method. The effects of electronic acceptor strength on the structure, energy levels, electron density distribution, ionization potentials, and electron affinities were also obtained to estimate the transporting ability of hole and electron. With the developed 3D charge difference density, one visualizes the charge transfer process, distinguishes the role of molecular units, and finds the relationship between the role of DPP and excitation energy for the three polymers during photo-excitation.

  3. Energy level alignment at C60/DTDCTB/PEDOT:PSS interfaces in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Yoo, Jisu; Jung, Kwanwook; Jeong, Junkyeong; Hyun, Gyeongho; Lee, Hyunbok; Yi, Yeonjin

    2017-04-01

    The electronic structure of a narrow band gap small molecule ditolylaminothienyl-benzothiadiazole-dicyanovinylene (DTDCTB), possessing a donor-acceptor-acceptor configuration, was investigated with regard to its application as an efficient donor material in organic photovoltaics (OPVs). The interfacial orbital alignment of C60/DTDCTB/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was determined using in situ ultraviolet photoelectron and inverse photoelectron spectroscopic methods. The ionization energy and electron affinity values of DTDCTB were measured to be 5.27 eV and 3.65 eV, respectively, and thus a very small transport gap of 1.62 eV was evaluated. Large band bending of DTDCTB on PEDOT:PSS was observed, resulting in a low hole extraction barrier. Additionally, the photovoltaic gap between the highest occupied molecular orbital level of the DTDCTB donor and the lowest unoccupied molecular orbital level of the C60 acceptor was estimated to be 1.30 eV, which is known to be the theoretical maximum open-circuit voltage in OPVs employing the C60/DTDCTB active layer. The unique electronic structures of DTDCTB contributed toward the recently reported excellent power conversion efficiencies of OPVs containing a DTDCTB donor material.

  4. A High-Energy Charge-Separated State of 1.70 eV from a High-Potential Donor-Acceptor Dyad: A Catalyst for Energy-Demanding Photochemical Reactions.

    PubMed

    Lim, Gary N; Obondi, Christopher O; D'Souza, Francis

    2016-09-12

    A high potential donor-acceptor dyad composed of zinc porphyrin bearing three meso-pentafluorophenyl substituents covalently linked to C60 , as a novel dyad capable of generating charge-separated states of high energy (potential) has been developed. The calculated energy of the charge-separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin-fullerene dyad. Intramolecular photoinduced electron transfer leading to charge-separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto- to nanosecond transient absorption techniques. The high energy stored in the form of charge-separated states along with its persistence of about 50-60 ns makes this dyad a potential electron-transporting catalyst to carry out energy-demanding photochemical reactions. This type of high-energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light-to-fuel products.

  5. Development of imide- and imidazole-containing electron acceptors for use in donor-acceptor conjugated compounds and polymers

    NASA Astrophysics Data System (ADS)

    Li, Duo

    Conjugated organic compounds and polymers have attracted significant attention due to their potential application in electronic devices as semiconducting materials, such as organic solar cells (OSCs). In order to tune band gaps, donor-acceptor (D-A) structure is widely used, which has been proved to be one of the most effective strategies. This thesis consists of three parts: 1) design, syntheses and characterization of new weak acceptors based on imides and the systematic study of the structure-property relationship; (2) introduction of weak and strong acceptors in one polymer to achieve a broad coverage of light absorption and improve the power conversion efficiency (PCE); (3) modification of benzothiadiazole (BT) acceptor in order to increase the electron withdrawing ability. Imide-based electron acceptors, 4-(5-bromothiophen-2-y1)-2-(2-ethylhexyl)-9- phenyl- 1H-benzo[f]isoindole-1,3(2H)-dione (BIDO-1) and 4,9-bis(5-bromothiophen-2-yl)-2-(2-ethylhexyl)-benzo[f]isoindole-1,3-dione (BIDO-2), were designed and synthesized. In this design, naphthalene is selected as its main core to maintain a planar structure, and thienyl groups are able to facilitate the bromination reaction and lower the band gap. BIDO-1 and BIDO-2 were successfully coupled with different donors by both Suzuki cross-coupling and Stille cross-coupling reactions. Based on the energy levels and band gaps of the BIDO-containing compounds and polymers, BIDO-1 and BIDO-2 are proved to be weak electron acceptors. Pyromellitic diimide (PMDI) was also studied and found to be a stronger electron acceptor than BIDO . In order to obtain broad absorption coverage, both weak acceptor ( BIDO-2) and strong acceptor diketopyrrolopyrrole (DPP) were introduced in the same polymer. The resulting polymers show two absorption bands at 400 and 600 nm and two emission peaks at 500 and 680 nm. The band gaps of the polymers are around 1.6 eV, which is ideal for OSC application. The PCE of 1.17% was achieved. Finally

  6. Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells.

    PubMed

    Dai, Shuixing; Zhao, Fuwen; Zhang, Qianqian; Lau, Tsz-Ki; Li, Tengfei; Liu, Kuan; Ling, Qidan; Wang, Chunru; Lu, Xinhui; You, Wei; Zhan, Xiaowei

    2017-01-25

    We design and synthesize four fused-ring electron acceptors based on 6,6,12,12-tetrakis(4-hexylphenyl)-indacenobis(dithieno[3,2-b;2',3'-d]thiophene) as the electron-rich unit and 1,1-dicyanomethylene-3-indanones with 0-2 fluorine substituents as the electron-deficient units. These four molecules exhibit broad (550-850 nm) and strong absorption with high extinction coefficients of (2.1-2.5) × 10(5) M(-1) cm(-1). Fluorine substitution downshifts the LUMO energy level, red-shifts the absorption spectrum, and enhances electron mobility. The polymer solar cells based on the fluorinated electron acceptors exhibit power conversion efficiencies as high as 11.5%, much higher than that of their nonfluorinated counterpart (7.7%). We investigate the effects of the fluorine atom number and position on electronic properties, charge transport, film morphology, and photovoltaic properties.

  7. Donor Acceptor Polymerization Chemistry as a Vehicle to Low Energy Cure of Matrix Resins: Evolution of the 2-Tg Concept to Produce High Tg Polymers at Ambient Temperatures

    DTIC Science & Technology

    1989-03-01

    tetrafunctional acceptors. DSC and TGA analysis of these polymers indicated they possessed the thermal stability necessary for performance in their...be enhanced by choosing comonomers that act as "solvents", and that the "onset of decomposition" temperature as measured by TGA analysis under nitrogen

  8. Investigation of acceptor states in ZnO by junction DLTS

    NASA Astrophysics Data System (ADS)

    von Wenckstern, H.; Pickenhain, R.; Schmidt, H.; Brandt, M.; Biehne, G.; Lorenz, M.; Grundmann, M.; Brauer, G.

    2007-07-01

    We have realized a p-type ZnO surface layer by N + ion implantation of a high quality ZnO wafer and subsequent annealing. The conduction type of this surface layer was revealed by scanning capacitance microscopy. Rectifying current-voltage characteristics for processed devices were coherent with the existence of an internal pn junction. Deep donor- and acceptor-like defects were investigated by junction deep level transient spectroscopy. The donor-like levels correspond to those commonly observed for E1 and E3 defects. The acceptor states resolved have thermal activation energies of about 150 meV and 280 meV, respectively.

  9. Energy Levels of Hydrogen and Deuterium

    National Institute of Standards and Technology Data Gateway

    SRD 142 Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  10. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    NASA Astrophysics Data System (ADS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-05-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov-de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov-de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of negatively

  11. A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells.

    PubMed

    Zhou, Huaxing; Yang, Liqiang; Stoneking, Sarah; You, Wei

    2010-05-01

    Polymers to be used in bulk heterojunction (BHJ) solar cells should maintain a low highest occupied molecular orbital (HOMO) energy level as well as a narrow band gap in order to maximize the open circuit voltage (V(oc)) and the short circuit current (J(sc)). To concurrently lower the HOMO energy level and the band gap, we propose to modify the donor-acceptor low band gap polymer strategy by constructing alternating copolymers incorporating a "weak donor" and a "strong acceptor". As a result, the "weak donor" should help maintain a low HOMO energy level while the "strong acceptor" should reduce the band gap via internal charge transfer (ICT). This concept was examined by constructing a library of polymers employing the naphtho[2,1-b:3,4-b']dithiophene (NDT) unit as the weak donor, and benzothiadiazole (BT) as the strong acceptor. PNDT-BT, designed under the "weak donor-strong acceptor" strategy, demonstrated both a low HOMO energy level of -5.35 eV and a narrow band gap of 1.59 eV. As expected, a noticeably high V(oc) of 0.83 V was obtained from the BHJ device of PNDT-BT blended with PCBM. However, the J(sc) ( approximately 3 mA/cm(2)) was significantly lower than the maximum expected current from such a low band gap material, which limited the observed efficiency to 1.27% (with a 70 nm thin film). Further improvements in the efficiency are expected from these materials if new strategies can be identified to (a) increase the molecular weight and (b) improve the hole mobility while still maintaining a low HOMO energy level and a narrow band gap.

  12. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  13. Role of functionalized acceptors in heteroleptic bipyridyl Cu(I) complexes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqing; Shao, Yang; Li, Ke; Zhao, Zigang; Wei, Shuxian; Guo, Wenyue

    2016-09-01

    The intrinsic optoelectronic properties of heteroleptic bipyridyl Cu(I) complexes bearing functionalized acceptor subunits have been investigated by density functional theory and time-dependent DFT. The Cu(I) complexes exhibit distorted trigonal-pyramidal geometries and typical metal-to-ligand electron transfer characteristics at the long wavelength region. Replacing carboxylic acid with cyanoacrylic acid in acceptor subunits stabilizes the LUMO levels, thus lowering the HOMOLUMO energy gaps and facilitating favorable donor-to-acceptor intramolecular electron transfer and charge separation. Introduction of heteroaromatic groups and cyanoacrylic acid significantly improves the light-harvesting capability of the complexes. Our results highlight the effect of functionalized acceptors on the optoelectronic properties of bipyridyl Cu(I) complexes and provide a fresh perspective on screening of efficient sensitizers for dye-sensitized solar cells.

  14. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    PubMed

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  15. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    PubMed Central

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-01-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm−3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN. PMID:25338639

  16. Vibrational energy levels of CH5+

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2008-12-01

    We present a parallelized contracted basis-iterative method for calculating numerically exact vibrational energy levels of CH5+ (a 12-dimensional calculation). We use Radau polyspherical coordinates and basis functions that are products of eigenfunctions of bend and stretch Hamiltonians. The bend eigenfunctions are computed in a nondirect product basis with more than 200×106 functions and the stretch functions are computed in a product potential optimized discrete variable basis. The basis functions have amplitude in all of the 120 equivalent minima. Many low-lying levels are well converged. We find that the energy level pattern is determined in part by the curvature and width of the valley connecting the minima and in part by the slope of the walls of this valley but does not depend on the height or shape of the barriers separating the minima.

  17. Fermi level stabilization energy in cadmium oxide

    SciTech Connect

    Speaks, D. T.; Mayer, M. A.; Yu, K. M.; Mao, S. S.; Haller, E. E.; Walukiewicz, W.

    2010-04-08

    We have studied the effects of high concentrations of native point defects on the electrical and optical properties of CdO. The defects were introduced by irradiation with high energy He+, Ne+, Ar+ and C+ ions. Increasing the irradiation damage with particles heavier than He+ increases the electron concentration until a saturation level of 5x1020 cm-3 is reached. In contrast, due to the ionic character and hence strong dynamic annealing of CdO, irradiation with much lighter He+ stabilizes the electron concentration at a much lower level of 1.7x1020 cm-3. A large shift of the optical absorption edge with increasing electron concentration in irradiated samples is explained by the Burstein-Moss shift corrected for electron-electron and electron-ion interactions. The saturation of the electron concentration and the optical absorption edge energy are consistent with a defect induced stabilization of the Fermi energy at 1 eV above the conduction band edge. The result is in a good agreement with previously determined Fermi level pinning energies on CdO surfaces. The results indicate that CdO shares many similarities with InN, as both materials exhibit extremely large electron affinities and an unprecedented propensity for n-type conductivity.

  18. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    NASA Astrophysics Data System (ADS)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  19. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  20. Spectrum and energy levels of Mo VI

    NASA Astrophysics Data System (ADS)

    Reader, Joseph

    1998-05-01

    We have photographed the spectrum of the Rb-like ion Mo VI from 200 to 5300 Å with a sliding-spark discharge on our 10.7-m normal- and grazing-incidence spectrographs and have observed most of the yrast transitions given by Romanov et al.(N. P. Romanov and A. R. Striganov, Opt. Spectrosc. 27), 8 (1969). from a Penning discharge. We have obtained improved values for all of the energy levels. We confirm the odd levels of Kancerevicius et al.,(A. Kancerevicius et al.), Lithuanian Phys. J. 31, 143 (1991). but have revised a number of the even levels of Edlén et al.(B. Edlén et al.), Phys. Scr. 32, 215 (1985). The ionization energy of Edlén et al.,footnotemark[4] which had been called into question by Kancerevicius et al.footnotemark[3] as a result of their revision of the odd levels,footnotemark[4] is confirmed.

  1. Energy-level alignment at organic heterointerfaces

    PubMed Central

    Oehzelt, Martin; Akaike, Kouki; Koch, Norbert; Heimel, Georg

    2015-01-01

    Today’s champion organic (opto-)electronic devices comprise an ever-increasing number of different organic-semiconductor layers. The functionality of these complex heterostructures largely derives from the relative alignment of the frontier molecular-orbital energies in each layer with respect to those in all others. Despite the technological relevance of the energy-level alignment at organic heterointerfaces, and despite continued scientific interest, a reliable model that can quantitatively predict the full range of phenomena observed at such interfaces is notably absent. We identify the limitations of previous attempts to formulate such a model and highlight inconsistencies in the interpretation of the experimental data they were based on. We then develop a theoretical framework, which we demonstrate to accurately reproduce experiment. Applying this theory, a comprehensive overview of all possible energy-level alignment scenarios that can be encountered at organic heterojunctions is finally given. These results will help focus future efforts on developing functional organic interfaces for superior device performance. PMID:26702447

  2. Nature of the acceptor responsible for p-type conduction in liquid encapsulated Czochralski-grown undoped gallium antimonide

    NASA Astrophysics Data System (ADS)

    Ling, C. C.; Lui, M. K.; Ma, S. K.; Chen, X. D.; Fung, S.; Beling, C. D.

    2004-07-01

    Acceptors in liquid encapsulated Czochralski-grown undoped gallium antimonide (GaSb) were studied by temperature dependent Hall measurement and positron lifetime spectroscopy (PLS). Because of its high concentration and low ionization energy, a level at EV+34meV is found to be the important acceptor responsible for the p-type conduction of the samples. Two different kinds of VGa-related defects (lifetimes of 280ps and 315ps, respectively) having different microstructures were characterized by PLS. By comparing their annealing behaviors and charge state occupancies, the EV+34meV level could not be related to the two VGa-related defects.

  3. Intrinsic deep hole trap levels in Cu2O with self-consistent repulsive Coulomb energy

    NASA Astrophysics Data System (ADS)

    Huang, Bolong

    2016-03-01

    The large error of the DFT+U method on full-filled shell metal oxides is due to the residue of self-energy from the localized d orbitals of cations and p orbitals of the anions. U parameters are selfconsistently found to achieve the analytical self-energy cancellation. The improved band structures based on relaxed lattices of Cu2O are shown based on minimization of self-energy error. The experimentally reported intrinsic p-type trap levels are contributed by both Cu-vacancy and the O-interstitial defects in Cu2O. The latter defect has the lowest formation energy but contributes a deep hole trap level while the Cuvacancy has higher energy cost but acting as a shallow acceptor. Both present single-particle levels spread over nearby the valence band edge, consistent to the trend of defects transition levels. By this calculation approach, we also elucidated the entanglement of strong p-d orbital coupling to unravel the screened Coulomb potential of fully filled shells.

  4. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1.

    PubMed

    Hunt, Kristopher A; Flynn, Jeffrey M; Naranjo, Belén; Shikhare, Indraneel D; Gralnick, Jeffrey A

    2010-07-01

    It is well established that respiratory organisms use proton motive force to produce ATP via F-type ATP synthase aerobically and that this process may reverse during anaerobiosis to produce proton motive force. Here, we show that Shewanella oneidensis strain MR-1, a nonfermentative, facultative anaerobe known to respire exogenous electron acceptors, generates ATP primarily from substrate-level phosphorylation under anaerobic conditions. Mutant strains lacking ackA (SO2915) and pta (SO2916), genes required for acetate production and a significant portion of substrate-level ATP produced anaerobically, were tested for growth. These mutant strains were unable to grow anaerobically with lactate and fumarate as the electron acceptor, consistent with substrate-level phosphorylation yielding a significant amount of ATP. Mutant strains lacking ackA and pta were also shown to grow slowly using N-acetylglucosamine as the carbon source and fumarate as the electron acceptor, consistent with some ATP generation deriving from the Entner-Doudoroff pathway with this substrate. A deletion strain lacking the sole F-type ATP synthase (SO4746 to SO4754) demonstrated enhanced growth on N-acetylglucosamine and a minor defect with lactate under anaerobic conditions. ATP synthase mutants grown anaerobically on lactate while expressing proteorhodopsin, a light-dependent proton pump, exhibited restored growth when exposed to light, consistent with a proton-pumping role for ATP synthase under anaerobic conditions. Although S. oneidensis requires external electron acceptors to balance redox reactions and is not fermentative, we find that substrate-level phosphorylation is its primary anaerobic energy conservation strategy. Phenotypic characterization of an ackA deletion in Shewanella sp. strain MR-4 and genomic analysis of other sequenced strains suggest that this strategy is a common feature of Shewanella.

  5. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  6. Theoretical characterization on photoelectric properties of benzothiadiazole- and fluorene-based small molecule acceptor materials for the organic photovoltaics.

    PubMed

    Sui, Mingyue; Li, Shuangbao; Pan, Qingqing; Sun, Guangyan; Geng, Yun

    2017-01-01

    The upper efficiency of heterojunction organic photovoltaics depends on the increased open-circuit voltage (V oc) and short-circuit current (J sc). So, a higher lowest unoccupied molecular orbital (LUMO) level is necessary for organic acceptor material to possess higher V oc and more photons absorbsorption in the solar spectrum is needed for larger J sc. In this article, we theoretically designed some small molecule acceptors (2∼5) based on fluorene (F), benzothiadiazole, and cyano group (CN) referring to the reported acceptor material 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile (1), the crucial parameters affecting photoelectrical properties of compounds 2∼5 were evaluated by the density functional theory (DFT) and time dependent density functional theory (TDDFT) methods. The results reveal that compared with 1, 3 and 4 could have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, and the decreased electronic organization energy (λ e). From the simulation of transition density matrix, it is very clear that the excitons of molecules 3 and 4 are easier to separate in the material surface. Therefore, 3 and 4 may become potential acceptor candidates for organic photovoltaic cells. In addition, with the increased number of CN, the optoelectronic properties of the molecules show a regular change, mainly improve the LUMO level, energy gap, V oc, and absorption intensity. In summary, reasonably adjusting CN can effectively improve the photovoltaic properties of small molecule acceptors. Graphical Abstract Structure-property relationship of small molecule acceptors could be rationally evaluated in the article. The changes of conjugate length and CN are important strategies to alter the photovoltaic properties of small molecule acceptors. Therefore, taking the K12/1 as a reference, we have theoretically designed a series of small molecule acceptors (2-4). The calculated

  7. Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells.

    PubMed

    Kan, Bin; Feng, Huanran; Wan, Xiangjian; Liu, Feng; Ke, Xin; Wang, Yanbo; Wang, Yunchuang; Zhang, Hongtao; Li, Chenxi; Hou, Jianhui; Chen, Yongsheng

    2017-03-24

    A new nonfullerene small molecule with acceptor-donor-acceptor (A-D-A) structure, namely, NFBDT, based on a heptacyclic benzodi(cyclopentadithiophene) (FBDT) unit using benzo[1,2-b:4,5-b']dithiophene as the core unit, was designed and synthesized. Its absorption ability, energy levels, thermal stability, as well as photovoltaic performances were fully investigated. NFBDT exhibits a low optical bandgap of 1.56 eV resulting in wide and efficient absorption that covered the range from 600 to 800 nm, and suitable energy levels as an electron acceptor. With the widely used and successful wide bandgap polymer PBDB-T selected as the electron donor material, an optimized PCE of 10.42% was obtained for the PBDB-T:NFBDT-based device with an outstanding short-circuit current density of 17.85 mA cm(-2) under AM 1.5G irradiation (100 mW cm(-2)), which is so far among the highest performance of NF-OSC devices. These results demonstrate that the BDT unit could also be applied for designing NF-acceptors, and the fused-ring benzodi(cyclopentadithiophene) unit is a prospective block for designing new NF-acceptors with excellent performance.

  8. Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor.

    PubMed

    Stoltzfus, Dani M; Donaghey, Jenny E; Armin, Ardalan; Shaw, Paul E; Burn, Paul L; Meredith, Paul

    2016-11-09

    Photocurrent generation in organic bulk heterojunction (BHJ) solar cells is most commonly understood as a process which predominantly involves photoexcitation of the lower ionization potential species (donor) followed by electron transfer to the higher electron affinity material (acceptor) [i.e., photoinduced electron transfer (PET), which we term Channel I]. A mirror process also occurs in which photocurrent is generated through photoexcitation of the acceptor followed by hole transfer to the nonexcited donor or photoinduced hole transfer (PHT), which we term Channel II. The role of Channel II photocurrent generation has often been neglected due to overlap of the individual absorption spectra of the donor and acceptor materials that are commonly used. More recently Channel II charge generation has been explored for several reasons. First, many of the new high-efficiency polymeric donors are used as the minority component in bulk heterojunction blends, and therefore, the acceptor absorption is a significant fraction of the total; second, nonfullerene acceptors have been prepared, which through careful design, allow for spectral separation from the donor material, facilitating fundamental studies on charge generation. In this article, we review the methodologies for investigating the two charge generation channels. We also discuss the factors that affect charge generation via Channel I and II pathways, including energy levels of the materials involved, exciton diffusion, and other considerations. Finally, we take a comprehensive look at the nonfullerene acceptor literature and discuss what information about Channel I and Channel II can be obtained from the experiments conducted and what other experiments could be undertaken to provide further information about the operational efficiencies of Channels I and II.

  9. Alteration of cartilage glycosaminoglycan protein acceptor by somatomedin and cortisol.

    PubMed

    Kilgore, B S; McNatt, M L; Meador, S; Lee, J A; Hughes, E R; Elders, M J

    1979-02-01

    The effect of somatomedin and cortisol on embryonic chick cartilage in vitro indicates that somatomedin stimulates 35SO4 uptake while cortisol decreases it with no effect on glycosaminoglycan turnover. Xylosyltransferase activity is increased in crude fractions of somatomedin-treated cartilage but decreased in cortisol-treated cartilage. By using a Smith-degraded proteoglycan as an exogenous acceptor, xylosyltransferase activities from both treatments were equivalent, suggesting that the enzyme was not rate limiting. The results of xylosyltransferase assays conducted by mixing enzyme and endogenous acceptor from control, cortisol-treated and somatomedin-treated cartilage, suggest both effects to be at the level of the acceptor protein.

  10. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  11. Fullerene-based materials for solar cell applications: design of novel acceptors for efficient polymer solar cells--a DFT study.

    PubMed

    Mohajeri, Afshan; Omidvar, Akbar

    2015-09-14

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer solar cells (PSCs) hold promise for their potential to be used as low-cost and efficient solar energy converters. PSCs have been commonly made from bicontinuous polymer:fullerene composites or so-called bulk heterojunctions. The conjugated polymer donors and the fullerene derivative acceptors are the key materials for high performance PSCs. In the present study, we have performed density functional theory calculations to investigate the electronic structures and magnetic properties of several representative C60 fullerene derivatives, seeking ways to improve their efficiency as acceptors of photovoltaic devices. In our survey, we have successfully correlated the LUMO energy level as well as chemical hardness, hyper-hardness, nucleus-independent chemical shift, and static dipole polarizability of PC60BM-like fullerene derivative acceptors with the experimental open circuit voltage of the photovoltaic device based on the P3HT:fullerene blend. The obtained structure-property correlations allow finding the best fullerene acceptor match for the P3HT donor. For this purpose, four new fullerene derivatives are proposed and the output parameters for the corresponding P3HT-based devices are predicted. It is found that the proposed fullerene derivatives exhibit better photovoltaic properties than the traditional PC60BM acceptor. The present study opens the way for manipulating fullerene derivatives and developing promising acceptors for solar cell applications.

  12. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

    PubMed

    Li, Yongfang

    2012-05-15

    Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole

  13. Donor-acceptor pair recombination in AgIn5S8 single crystals

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.; Serpengüzel, A.; Aydinli, A.; Gürlü, O.; Yilmaz, I.

    1999-03-01

    Photoluminescence (PL) spectra of AgIn5S8 single crystals were investigated in the 1.44-1.91 eV energy region and in the 10-170 K temperature range. The PL band was observed to be centered at 1.65 eV at 10 K and an excitation intensity of 0.97 W cm-2. The redshift of this band with increasing temperature and with decreasing excitation intensity was observed. To explain the observed PL behavior, we propose that the emission is due to radiative recombination of a donor-acceptor pair, with an electron occupying a donor level located at 0.06 eV below the conduction band, and a hole occupying an acceptor level located at 0.32 eV above the valence band.

  14. Simulation study on the effects of chemical structure and molecular size on the acceptor strength in poly(3-hexylthiophene)-based copolymer with alternating donor and acceptor for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Rassamesard, Areefen; Pengpan, Teparksorn

    2017-02-01

    This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ  <  Z  <  D  <  TPD  <  OXD  <  TP  <  BT  <  TD. The TD is indicated as the most effective acceptor among those that were simulated. However, the small energy gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar

  15. Matching renewable energy systems to village-level energy needs

    SciTech Connect

    Ashworth, J.H.; Neuendorffer, J.W.

    1980-06-01

    This report provides a five step process for matching alternative renewable energy technologies with energy needs in rural villages of developing countries. Analytic tools are given for each of the five steps as well as information that can be expected. Twelve characterization criteria are developed to assist in the matching process. Three of these criteria, called discrimination criteria, are used for preliminary screening of technology possibilities for each need. The other criteria address site-specific temporal, climatic, social, cultural, and environmental characteristics of the energy need, technology, and cost considerations. To illustrate the matching process, seven basic human needs for energy are matched with seven potential renewable energy technologies. The final portion of the paper discusses the advantages of such a matching process and the resources required to initiate such an effort within a development project. Specific recommendations are given for field-testing this process and actions that could be taken immediately in basic research and development, applied research and technology modification, demonstrations, and commercialization to assist in the future diffusion of renewable energy technologies to rural areas of developing countries.

  16. The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors

    PubMed Central

    Vogel, Steven S.; Nguyen, Tuan A.; van der Meer, B. Wieb; Blank, Paul S.

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states. PMID:23152925

  17. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells.

    PubMed

    Dou, Chuandong; Long, Xiaojing; Ding, Zicheng; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang

    2016-01-22

    A double B←N bridged bipyridyl (BNBP) is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low-lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P-BNBP-T) exhibits high electron mobility, low-lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all-polymer solar cell (all-PSC) devices with P-BNBP-T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38%, which is among the highest values of all-PSCs with PTB7 as the electron donor.

  18. Microwave assisted synthesis of bithiophene based donor-acceptor-donor oligomers and their optoelectronic performances

    NASA Astrophysics Data System (ADS)

    Bathula, Chinna; Buruga, Kezia; Lee, Sang Kyu; Khazi, Imtiyaz Ahmed M.; Kang, Youngjong

    2017-07-01

    In this article we present the synthesis of two novel bithiophene based symmetrical π conjugated oligomers with donor-acceptor-donor (D-A-D) structures by microwave assisted PdCl2(dppf) catalyzed Suzuki coupling reaction. These molecules contain electron rich bithiophene as a donor, dithienothiadiazole[3,4-c]pyridine and phthalic anhydride units as acceptors. The shorter reaction time, excellent yields and easy product isolation are the advantages of this method. The photophysical prerequisites for electronic application such as strong and broad optical absorption, thermal stability, and compatible energy levels were determined for synthesized oligomers. Optical band gap for the oligomers is found to be 1.72-1.90 eV. The results demonstrated the novel oligomers to be promising candidates in organic optoelectronic applications.

  19. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  20. A comprehensive and unified picture of energy level alignment at interfaces with organic semiconductors

    NASA Astrophysics Data System (ADS)

    Akaike, Kouki; Oehzelt, Martin; Heimel, Georg; Koch, Norbert

    2016-09-01

    Controlling the energy level alignment at the ubiquitous interfaces in modern organic light emitting diodes, i.e., organic/electrode and organic/organic, is mandatory for achieving highest performance. While for some interfaces the understanding has matured over the past years - often with the help of photoelectron spectroscopy investigations, a lack of material-overarching and general models seems to persist. In this context, it is interesting to note that photoelectron experiments reported by different groups often returned a different level alignment for a given interface, which certainly should be unsettling for device engineers. It turns out that Fermi-level pinning and its consequences for charge density re-distribution across a device stack is an overarching mechanism that should always be considered. For intrinsic organic heterojunctions of materials with moderate acceptor/donor character the electrostatic potential across the interface changes only marginally - if at all. This situation, however, can be significantly altered when at least one of the two semiconductors is Fermi-level pinned by the "effective work function" of the other one, which is established by the contact to the electrode. Consequently, device engineering has to fully take into account the effect of adding the electrodes to a device stack, otherwise correlations between assumed electronic structure and device performance remain uncertain.

  1. New opportunities in multiplexed optical bioanalyses using quantum dots and donor-acceptor interactions.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2010-11-01

    This review highlights recent trends in the development of multiplexed bioanalyses using quantum dot bioconjugates and donor-acceptor interactions. In these methods, multiple optical signals are generated in response to biorecognition through modulation of the photoluminescence of populations of quantum dots with different emission colors. The donor-acceptor interactions that have been used include fluorescence resonance energy transfer, bioluminescence resonance energy transfer, charge transfer quenching, and quenching via proximal gold nanoparticles. Assays for the simultaneous detection of between two and eight target analytes have been developed, where spectral deconvolution is an important tool. Target analytes have included small molecules, nucleic acid sequences, and proteases. The unique optical properties of quantum dots offer several potential advantages in multiplexed detection, and a large degree of versatility, for example, one pot multiplexing at the ensemble level, where only wavelength discrimination is required to differentiate between detection channels. These methods are not being developed to compete with array-based technologies in terms of overall multiplexing capacity, but rather to enable new formats for multiplexed bioanalyses. In particular, quantum dot bioprobes based on donor-acceptor interactions are anticipated to provide future opportunities for multiplexed biosensing within living cells.

  2. The structure and bonding of iron-acceptor pairs in silicon

    SciTech Connect

    Zhao, S.; Assali, L.V.C.; Kimerling, L.C.

    1995-08-01

    The highly mobile interstitial iron and Group III impurities (B, Al, Ga, In) form iron-acceptor pairs in silicon. Based on the migration kinetics and taking host silicon as a dielectric medium, we have simulated the pairing process in a static silicon lattice. Different from the conventional point charge ionic model, our phenomenological calculations include (1) a correction that takes into account valence electron cloud polarization which adds a short range, attractive interaction in the iron-acceptor pair bonding; and (2) silicon lattice relaxation due to the atomic size difference which causes a local strain field. Our model explains qualitatively (1) trends among the iron-acceptor pairs revealing an increase of the electronic state hole emission energy with increasing principal quantum number of acceptor and decreasing pair separation distance; and (2) the stable and metastable sites and configurational symmetries of the iron-acceptor pairs. The iron-acceptor pairing and bonding mechanism is also discussed.

  3. Designer Metallic Acceptor-Containing Halogen Bonding: General Strategies.

    PubMed

    Zhang, Xinxing; Bowen, Kit H

    2017-03-13

    Being electrostatic interactions in nature, hydrogen bonding (HB) and halogen bonding (XB) are considered to be two parallel worlds. In principle, all the applications that HB has could also be applied to XB. However, there has been no report on a metallic XB acceptor but metal anions have been observed to be good HB acceptors. This missing mosaic piece of XB is because common metal anions are reactive for XB donors. In view of this, we propose two strategies for designing metallic acceptor-containing XB using ab initio calculations. The first one is to utilize a metal cluster anion with a high electron detachment energy, such as the superatom, Al13- as the XB acceptor. The second strategy is to design a ligand passivated/protected metal core while it still can maintain the negative charge; several exotic clusters, such as PtH5-, PtZnH5- and PtMgH5-, are utilized as examples. Based on these two strategies, we anticipate that more metallic acceptor-containing XB will be discovered.

  4. ORNL takes energy-efficient housing to a new level

    SciTech Connect

    2008-12-19

    Oak Ridge National Laboratory, TVA and the Department of Energy are taking energy-saving research into a West Knox County neighborhood. In the Campbell Creek subdivision, ORNL researchers have helped builders to construct three homes with three different levels of energy-saving features.

  5. ORNL takes energy-efficient housing to a new level

    ScienceCinema

    None

    2016-07-12

    Oak Ridge National Laboratory, TVA and the Department of Energy are taking energy-saving research into a West Knox County neighborhood. In the Campbell Creek subdivision, ORNL researchers have helped builders to construct three homes with three different levels of energy-saving features.

  6. Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook

    EIA Publications

    2016-01-01

    This paper presents average values of levelized costs for generating technologies entering service in 2018, 2022, and 2040 as represented in the National Energy Modeling System (NEMS) for the Annual Energy Outlook 2016 (AEO2016) Reference case.

  7. Calculation of Rydberg energy levels for the francium atom

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Zhong; Chu, Jin-Min

    2010-06-01

    Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of the np2Po1/2 (n = 7-50) and np2Po3/2 (n = 7-50) spectrum series for the francium atom are calculated. The calculated results are in excellent agreement with the 48 measured levels, and 40 energy levels for highly excited states are predicted.

  8. How to Draw Energy Level Diagrams in Excitonic Solar Cells.

    PubMed

    Zhu, X-Y

    2014-07-03

    Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.

  9. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    PubMed

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  10. Infrared energy levels and intensities of carbon dioxide.

    PubMed

    Rothman, L S; Benedict, W S

    1978-08-15

    Updated tables of vibrational energy levels, molecular constants, band origins, and intensities for carbon dioxide in the infrared region of the spectrum are presented. These tables are references for the AFGL Atmospheric Absorption Line Parameters Compilation.

  11. "Piekara's Chair": Mechanical Model for Atomic Energy Levels.

    ERIC Educational Resources Information Center

    Golab-Meyer, Zofia

    1991-01-01

    Uses the teaching method of models or analogies, specifically the model called "Piekara's chair," to show how teaching classical mechanics can familiarize students with the notion of energy levels in atomic physics. (MDH)

  12. Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations.

    ERIC Educational Resources Information Center

    Garofalo, Anthony

    1997-01-01

    Presents an activity that combines the concepts of quantum numbers and probability locations, energy levels, and electron configurations in a concrete, hands-on way. Uses model houses constructed out of foam board and colored beads to represent electrons. (JRH)

  13. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study.

    PubMed

    Tavangar, Zahra; Zareie, Nazanin

    2016-10-05

    A series of metal free Tetrathienoacene-based (TTA-based) organic dyes are designed and investigated as sensitizers for application in dye sensitized solar cells (DSSCs). Density function theory and time dependent density function theory calculations were performed on these dyes at vacuum and orthodichlorobenzene as the solvent. Effects of changing π-conjugation bridges and different functional groups in acceptor and donor units were investigated. UV-Vis absorption spectra were simulated to show the wavelength shifting and absorption properties. Inserting nitro and acyl chloride functional groups in acceptor and NH2 in donor units leads to the reduction of HOMO-LUMO gap by lowering the lowest unoccupied molecular orbital (LUMO) energy level and raising the highest occupied molecular orbital (HOMO) energy level and the increase in effective parameters in DSSC' efficiency. The results show that changing spacer units from thiophene to furan has a great effect on electronic structure and absorption spectra. Investigation of the electron distributions of frontier orbitals shows the HOMO and LUMO localization in donor and acceptor, respectively. Some key parameters that were studied here include light harvesting efficiency, free energy of electron injection and open circuit photo-voltage.

  14. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study

    NASA Astrophysics Data System (ADS)

    Tavangar, Zahra; Zareie, Nazanin

    2016-10-01

    A series of metal free Tetrathienoacene-based (TTA-based) organic dyes are designed and investigated as sensitizers for application in dye sensitized solar cells (DSSCs). Density function theory and time dependent density function theory calculations were performed on these dyes at vacuum and orthodichlorobenzene as the solvent. Effects of changing π-conjugation bridges and different functional groups in acceptor and donor units were investigated. UV-Vis absorption spectra were simulated to show the wavelength shifting and absorption properties. Inserting nitro and acyl chloride functional groups in acceptor and NH2 in donor units leads to the reduction of HOMO-LUMO gap by lowering the lowest unoccupied molecular orbital (LUMO) energy level and raising the highest occupied molecular orbital (HOMO) energy level and the increase in effective parameters in DSSC' efficiency. The results show that changing spacer units from thiophene to furan has a great effect on electronic structure and absorption spectra. Investigation of the electron distributions of frontier orbitals shows the HOMO and LUMO localization in donor and acceptor, respectively. Some key parameters that were studied here include light harvesting efficiency, free energy of electron injection and open circuit photo-voltage.

  15. Energy transfer from pyridine molecules towards europium cations contained in sub 5-nm Eu2O3 nanoparticles: Can a particle be an efficient multiple donor-acceptor system?

    NASA Astrophysics Data System (ADS)

    Truillet, C.; Lux, F.; Brichart, T.; Lu, G. W.; Gong, Q. H.; Perriat, P.; Martini, M.; Tillement, O.

    2013-09-01

    Sensitized Eu2O3 nanoparticles coated by polysiloxane have been prepared using a polyol method. Further grafting of pyridine molecules on particles surface enhances 400-times the emission of the Eu3+ cations. The sensitizing effect of the pyridine molecules that transfer a part of their excitation towards Eu3+ has been studied by systematic excitation and emission measurements. All of the de-excitation pathway rates involved in the emission processes of these nanoparticles were determined. In particular, the transfer efficiency which was found independent of the number of sensitizers per particle is equal to 0.13 ± 0.01, a value quite satisfying taking into account that the donors and the acceptors are separated by a polysiloxane spacer of 0.4 nm. Furthermore this multiple donor-acceptor system has been modeled in order to deduce the average transfer efficiency as a function of the single donor-acceptor transfer rate. The theoretical modeling is in complete coherence with the experiments performed on a series of samples varying the thickness of the polysiloxane shell, i.e., the spacing distance between the donors and the acceptors. All these results illustrate the interest of using such structures in applications requiring ultrasensitive detection.

  16. Quantum computing with acceptor spins in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  17. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  18. Probing the Energy Level Alignment and the Correlation with Open-Circuit Voltage in Solution-Processed Polymeric Bulk Heterojunction Photovoltaic Devices.

    PubMed

    Yang, Qing-Dan; Li, Ho-Wa; Cheng, Yuanhang; Guan, Zhiqiang; Liu, Taili; Ng, Tsz-Wai; Lee, Chun-Sing; Tsang, Sai-Wing

    2016-03-23

    Energy level alignment at the organic donor and acceptor interface is a key to determine the photovoltaic performance in organic solar cells, but direct probing of such energy alignment is still challenging especially for solution-processed bulk heterojunction (BHJ) thin films. Here we report a systematic investigation on probing the energy level alignment with different approaches in five commonly used polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PCBM) BHJ systems. We find that by tuning the weight ratio of polymer to PCBM the electronic features from both polymer and PCBM can be obtained by photoemission spectroscopy. Using this approach, we find that some of the BHJ blends simply follow vacuum level alignment, but others show strong energy level shifting as a result of Fermi level pinning. Independently, by measuring the temperature-dependent open-circuit voltage (VOC), we find that the effective energy gap (Eeff), the energy difference between the highest occupied molecular orbital of the polymer donor (EHOMO-D) and lowest unoccupied molecular orbital of the PCBM acceptor (ELUMO-A), obtained by photoemission spectroscopy in all polymer:PCBM blends has an excellent agreement with the extrapolated VOC at 0 K. Consequently, the photovoltage loss of various organic BHJ photovoltaic devices at room temperature is in a range of 0.3-0.6 V. It is believed that the demonstrated direct measurement approach of the energy level alignment in solution-processed organic BHJ will bring deeper insight into the origin of the VOC and the corresponding photovoltage loss mechanism in organic photovoltaic cells.

  19. Concerning the energy levels of silver in Ge-Si alloys

    SciTech Connect

    Tahirov, V. I.; Agamaliev, Z. A.; Sadixova, S. R.; Guliev, A. F.; Gahramanov, N. F.

    2012-03-15

    The emission from impurity states of silver (an element of the IB subgroup) in a Ge-Si alloy, containing 18 at % Si, has been studied. The donor level of silver has been found in crystals doubly doped with gallium and silver, while its first acceptor level has been revealed in crystals doped with only silver. Single crystals were grown by pulling from a melt using a feeding rod. Doping with gallium was performed by introducing this element into the feeding rod, and silver was introduced into the crystals via diffusion. The positions of the donor and first acceptor Ag levels with respect to the top of the valence band were found by analyzing the temperature dependence of the Hall coefficient and the electroneutrality equation for the crystal: 0.06 and 0.29 eV, respectively.

  20. Temperature dependent energy levels of methylammonium lead iodide perovskite

    SciTech Connect

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J. E-mail: mgupta@virginia.edu; Sun, Keye; Gupta, Mool C. E-mail: mgupta@virginia.edu; Saidi, Wissam A.; Scudiero, Louis E-mail: mgupta@virginia.edu

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  1. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.

    PubMed

    Nealson, K H; Moser, D P; Saffarini, D A

    1995-04-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  2. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  3. Photoionization absorption and zero-field spin splitting of acceptor-bound magnetic polaron in p-type Hg1-xMnxTe single crystals

    NASA Astrophysics Data System (ADS)

    Zhu, Liangqing; Shao, Jun; Lin, Tie; Lü, Xiang; Zhu, Junyu; Tang, Xiaodong; Chu, Junhao

    2012-04-01

    Temperature-dependent magnetic (2-300 K), DC Hall (10-300 K), and infrared transmission (11.5-300 K) measurements are performed on a series of p-type Hg1-xMnxTe (0.12 ≤ x ≤ 0.26) single crystals in the spin-glass regime. Photoionization absorption (PIA) of acceptor-bound magnetic polarons (acceptor-BMPs) is observed to evolve with temperature, which is better accounted for by the classical oscillator model than by the quantum defect method. At low temperatures, p-type Hg1-xMnxTe manifests distinct phenomena of paramagnetic enhancement, negative magnetoresistance, and decrease of the effective binding energy and blueshift of the PIA of the acceptor-BMPs with nearly the same degree as temperature declines. A spin-splitting model is proposed, which can well reproduce the experimentally observed zero-field spin splitting of the acceptor-BMP level at low temperatures and the increase of the spin splitting as temperature drops. The results suggest that the acceptor-BMPs in Hg1-xMnxTe may have potential applications in light-driven polaronic memories, tunable far-infrared lasers, and detectors.

  4. The origin of high PCE in PTB7 based photovoltaics: proper charge neutrality level and free energy of charge separation at PTB7/PC71BM interface

    PubMed Central

    Park, Soohyung; Jeong, Junkyeong; Hyun, Gyeongho; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin

    2016-01-01

    The energy level alignments at donor/acceptor interfaces in organic photovoltaics (OPVs) play a decisive role in device performance. However, little is known about the interfacial energetics in polymer OPVs due to technical issues of the solution process. Here, the frontier ortbial line-ups at the donor/acceptor interface in high performance polymer OPVs, PTB7/PC71BM, were investigated using in situ UPS, XPS and IPES. The evolution of energy levels during PTB7/PC71BM interface formation was investigated using vacuum electrospray deposition, and was compared with that of P3HT/PC61BM. At the PTB7/PC71BM interface, the interface dipole and the band bending were absent due to their identical charge neutrality levels. In contrast, a large interfacial dipole was observed at the P3HT/PC61BM interface. The measured photovoltaic energy gap (EPVG) was 1.10 eV for PTB7/PC71BM and 0.90 eV for P3HT/PC61BM. This difference in the EPVG leads to a larger open-circuit voltage of PTB7/PC71BM than that of P3HT/PC61BM. PMID:27734957

  5. The origin of high PCE in PTB7 based photovoltaics: proper charge neutrality level and free energy of charge separation at PTB7/PC71BM interface.

    PubMed

    Park, Soohyung; Jeong, Junkyeong; Hyun, Gyeongho; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin

    2016-10-13

    The energy level alignments at donor/acceptor interfaces in organic photovoltaics (OPVs) play a decisive role in device performance. However, little is known about the interfacial energetics in polymer OPVs due to technical issues of the solution process. Here, the frontier ortbial line-ups at the donor/acceptor interface in high performance polymer OPVs, PTB7/PC71BM, were investigated using in situ UPS, XPS and IPES. The evolution of energy levels during PTB7/PC71BM interface formation was investigated using vacuum electrospray deposition, and was compared with that of P3HT/PC61BM. At the PTB7/PC71BM interface, the interface dipole and the band bending were absent due to their identical charge neutrality levels. In contrast, a large interfacial dipole was observed at the P3HT/PC61BM interface. The measured photovoltaic energy gap (EPVG) was 1.10 eV for PTB7/PC71BM and 0.90 eV for P3HT/PC61BM. This difference in the EPVG leads to a larger open-circuit voltage of PTB7/PC71BM than that of P3HT/PC61BM.

  6. Disassembly of micelles to impart donor and acceptor gradation to enhance organic solar cell efficiency.

    PubMed

    Arulkashmir, Arulraj; Krishnamoorthy, Kothandam

    2016-02-28

    A transparent, conducting and low surface energy surface was prepared by disassembly of anionic micelles, which altered the orientation of the donor polymer and imparted gradation between the donor and acceptor. This configuration increased the solar cell device efficiency.

  7. Hexa-peri-hexabenzocoronene with Different Acceptor Units for Tuning Optoelectronic Properties.

    PubMed

    Keerthi, Ashok; Hou, Ian Cheng-Yi; Marszalek, Tomasz; Pisula, Wojciech; Baumgarten, Martin; Narita, Akimitsu

    2016-10-06

    Hexa-peri-hexabenzocoronene (HBC)-based donor-acceptor dyads were synthesized with three different acceptor units, through two pathways: 1) "pre-functionalization" of monobromo-substituted hexaphenylbenzene prior to the cyclodehydrogenation; and 2) "post-functionalization" of monobromo-substituted HBC after the cyclodehydrogenation. The HBC-acceptor dyads demonstrated varying degrees of intramolecular charge-transfer interactions, depending on the attached acceptor units, which allowed tuning of their photophysical and optoelectronic properties, including the energy gaps. The two synthetic pathways described here can be complementary and potentially be applied for the synthesis of nanographene-acceptor dyads with larger aromatic cores, including one-dimensionally extended graphene nanoribbons.

  8. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  9. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xia, Chunyu; Wu, Wei-Min; Sun, Guoping; Xu, Meiying

    2014-07-01

    To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors.

  10. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-24

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state.

  11. 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor.

    PubMed

    Bin, Haijun; Yang, Yankang; Zhang, Zhi-Guo; Ye, Long; Ghasemi, Masoud; Chen, Shanshan; Zhang, Yindong; Zhang, Chunfeng; Sun, Chenkai; Xue, Lingwei; Yang, Changduk; Ade, Harald; Li, Yongfang

    2017-03-29

    In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D-A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility and ordered bimodal crystallite packing in the blend films. Moreover, a larger interaction parameter (χ) was observed in the H11 blends calculated from Hansen solubility parameters and differential scanning calorimetry measurements. These special features combined with the complementary absorption of H11 donor and IDIC acceptor resulted in the best PCE of 9.73% for nonfullerene all small molecule OSCs up to date. Our results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.

  12. Wavelengths and Energy Levels of Neutral Kr84 and Level Shifts in All Kr Even Isotopes

    PubMed Central

    Kaufman, Victor

    1993-01-01

    Interferometrically-measured wavelengths of 109 lines of neutral Kr84 are compared with those of Kr86. Sixty energy levels of neutral Kr84 derived from those wavelengths and 25 Kr86–Kr84 isotope shifts previously measured are given along with their shifts from the energy levels of Kr86. Twenty levels of each of Kr82, Kr80, and Kr78 are also evaluated using isotope-shift information in the literature. The differences between the experimentally observed shifts and the normal mass shift leave large negative residuals which are accounted for by ionization energy differences and by the specific mass shift. It appears that the volume effect causes only a very small, if any, energy level shift. PMID:28053495

  13. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  14. Acceptor conductivity in bulk zinc oxide (0001) crystals

    NASA Astrophysics Data System (ADS)

    Adekore, Bababunmi Tolu

    ZnO is a promising wide bandgap semiconductor. Its renowned and prominent properties as its bandgap of 3.37eV at 4.2K; its very high excitonic binding energy, 60meV; its high melting temperature, 2248K constitute the basis for the recently renewed and sustained scientific interests in the material. In addition to the foregoing, the availability of bulk substrates of industrially relevant sizes provides important opportunities such as homoepitaxial deposition of the material which is a technological asset in the production of efficient optoelectronic and electronic devices. The nemesis of wide bandgap materials cannot be more exemplified than in ZnO. The notorious limitation of asymmetric doping and the haunting plague of electrically active point defects dim the bright future of the material. In this case, the search for reliable and consistent acceptor conductivity in bulk substrates has been hitherto, unsuccessful. In the dissertation that now follows, our efforts have been concerted in the search for a reliable acceptor. We have carefully investigated the science of point defects in the material, especially those responsible for the high donor conductivity. We also investigated and herein report variety of techniques of introducing acceptors into the material. We employ the most relevant and informative characterization techniques in verifying both the intended conductivity and the response of intrinsic crystals to variation in temperature and strain. And finally we explain deviations, where they exist, from ideal acceptor characteristics. Our work on reliable acceptor has been articulated in four papers. The first establishing capacitance based methods of monitoring electrically active donor defects. The second investigates the nature of anion acceptors on the oxygen sublattice. A study similar to the preceding study was conducted for cation acceptors on the zinc sublattice and reported in the third paper. Finally, an analysis of the response of the crystal to

  15. Study of the crossing of quasi-energy levels in a four-level system

    SciTech Connect

    Arushanyan, S; Melikyan, A; Saakyan, S

    2011-05-31

    It was shown previously that in taking into account only dipole transitions, the crossing of quasi-energy levels is possible in the system if any of the transitions forms a closed loop. It followed herefrom that for the analysis of the crossing conditions, it is necessary to consider a system which has at least four levels. In this paper we show that we can uniquely specify which quasi-energy levels cross at the given values of the parameters of the atomic system and radiation field, without solving an algebraic quartic equation. It was found that the most suitable system for the implementation of the crossing is the group of energy levels {sup 5}S{sub 1/2}, {sup 5}P{sub 1/2}, {sup 5}P{sub 3/2} and {sup 5}D{sub 3/2} of a rubidium atom. The performed calculations of the laser field intensity and frequency values at which crossing takes place in this system show that they are easily attainable. It turned out that in this system there occur crossing of quasi-energy levels corresponding to the excited atomic levels. (intersection of quasi-energy levels)

  16. A theoretical probe on the non-covalent interactions of sulfadoxine drug with pi-acceptors

    NASA Astrophysics Data System (ADS)

    Sandhiya, L.; Senthilkumar, K.

    2014-09-01

    A detailed analysis of the interaction between an antimalarial drug sulfadoxine and four pi-acceptors, tetrachloro-catechol, picric acid, chloranil, and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is presented in this study. The interaction of the amine, amide, methoxy, Csbnd H groups and π electron density of the drug molecule with the acceptors are studied using DFT method at M06-2X level of theory with 6-31G(d,p) basis set. The interaction energy of the complexes is calculated using M06-2X, M06-HF, B3LYP-D and MP2 methods with 6-31G(d,p) basis set. The role of weak interactions on the formation and stability of the complexes is discussed in detail. The two aromatic platforms of sulfadoxine play a major role in determining the stability of the complexes. The electron density difference maps have been plotted for the most stable drug interacting complexes to understand the changes in electron density delocalization upon the complex formation. The nature of the non-covalent interaction has been addressed from NCI plot. The infrared spectra calculated at M06-2X/6-31G(d,p) level of theory is used to characterize the most stable complexes. The SDOX-pi acceptor complexation leads to characteristic changes in the NMR spectra. The 13C, 1H, 17O and 15N NMR chemical shifts have been calculated using GIAO method at M06-2X/6-311+G(d,p)//M06-2X/6-31G(d,p) level of theory. The results obtained from this study confirm the role of non-covalent interactions on the function of the sulfadoxine drug.

  17. Degeneracy of energy levels of pseudo-Gaussian oscillators

    SciTech Connect

    Iacob, Theodor-Felix; Iacob, Felix; Lute, Marina

    2015-12-07

    We study the main features of the isotropic radial pseudo-Gaussian oscillators spectral properties. This study is made upon the energy levels degeneracy with respect to orbital angular momentum quantum number. In a previous work [6] we have shown that the pseudo-Gaussian oscillators belong to the class of quasi-exactly solvable models and an exact solution has been found.

  18. Energy levels of hybrid monolayer-bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; Ketabi, S. A.; da Costa, D. R.; Peeters, F. M.

    2016-04-01

    Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.

  19. Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin-Copper Corrole Donor-Acceptor Conjugates.

    PubMed

    Ngo, Thien H; Zieba, David; Webre, Whitney A; Lim, Gary N; Karr, Paul A; Kord, Scheghajegh; Jin, Shangbin; Ariga, Katsuhiko; Galli, Marzia; Goldup, Steve; Hill, Jonathan P; D'Souza, Francis

    2016-01-22

    An electron-deficient copper(III) corrole was utilized for the construction of donor-acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump-probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge-separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron-deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 10(10)  s(-1) and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.

  20. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  1. Energy balance regulation by thyroid hormones at central level.

    PubMed

    López, Miguel; Alvarez, Clara V; Nogueiras, Rubén; Diéguez, Carlos

    2013-07-01

    Classically, medical textbooks taught that most effects of thyroid hormones (THs) on energy homeostasis are directly exerted in peripheral tissues. However, current evidence is changing (and challenging) our perspective about the role of THs from a 'peripheral' to a 'central' vision, implying that they affect food intake, energy expenditure, and metabolism by acting, to a large extent, at the central level. Interestingly, effects of THs are interrelated with global energy sensors in the central nervous system (CNS), such as uncoupling protein 2 (UCP2), AMP-activated protein kinase (AMPK; the 'AMPK-BAT axis'), and mechanistic target of rapamycin (mTOR). Here, we review what is currently known about THs and their regulation of energy balance and metabolism in both peripheral and central tissues.

  2. Levelized cost of energy for a Backward Bent Duct Buoy

    SciTech Connect

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-12-01

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.

  3. Levelized cost of energy for a Backward Bent Duct Buoy

    DOE PAGES

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; ...

    2016-07-18

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less

  4. Levelized cost of energy for a Backward Bent Duct Buoy

    SciTech Connect

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-07-18

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.

  5. Organic molecules on metal and oxide semiconductor substrates: Adsorption behavior and electronic energy level alignment

    NASA Astrophysics Data System (ADS)

    Ruggieri, Charles M.

    Modern devices such as organic light emitting diodes use organic/oxide and organic/metal interfaces for crucial processes such as charge injection and charge transfer. Understanding fundamental physical processes occurring at these interfaces is essential to improving device performance. The ultimate goal of studying such interfaces is to form a predictive model of interfacial interactions, which has not yet been established. To this end, this thesis focuses on obtaining a better understanding of fundamental physical interactions governing molecular self-assembly and electronic energy level alignment at organic/metal and organic/oxide interfaces. This is accomplished by investigating both the molecular adsorption geometry using scanning tunneling microscopy, as well as the electronic structure at the interface using direct and inverse photoemission spectroscopy, and analyzing the results in the context of first principles electronic structure calculations. First, we study the adsorption geometry of zinc tetraphenylporphyrin (ZnTPP) molecules on three noble metal surfaces: Au(111), Ag(111), and Ag(100). These surfaces were chosen to systematically compare the molecular self-assembly and adsorption behavior on two metals of the same surface symmetry and two surface symmetries of one metal. From this investigation, we improve the understanding of self-assembly at organic/metal interfaces and the relative strengths of competing intermolecular and molecule-substrate interactions that influence molecular adsorption geometry. We then investigate the electronic structure of the ZnTPP/Au(111), Ag(111), and Ag(100) interfaces as examples of weakly-interacting systems. We compare these cases to ZnTPP on TiO2(110), a wide-bandgap oxide semiconductor, and explain the intermolecular and molecule-substrate interactions that determine the electronic energy level alignment at the interface. Finally we study tetracyanoquinodimethane (TCNQ), a strong electron acceptor, on TiO2

  6. Mechanisms of electron acceptor utilization: Implications for simulating anaerobic biodegradation

    USGS Publications Warehouse

    Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr, J.M.

    2004-01-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum- contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  7. Radiative donor-acceptor pair recombination in TlInS2 single crystals

    NASA Astrophysics Data System (ADS)

    Aydinli, A.; Gasanly, N. M.; Yilmaz, I.; Serpengüzel, A.

    1999-07-01

    Photoluminescence (PL) spectra of TlInS2 layered single crystals were investigated in the 500-860 nm wavelength region and in the 11.5-100 K temperature range. We observed two PL bands centred at 515 nm (2.41 eV, A band) and 816 nm (1.52 eV, B band) at T = 11.5 K and an excitation intensity of 7.24 W cm-2. A detailed study of the A band was carried out as a function of temperature and excitation laser intensity. A red shift of the A band position was observed for both increasing temperature and decreasing excitation laser intensity in the range from 0.12 to 7.24 W cm-2. Analysis of the data indicates that the A band is due to radiative transitions from the moderately deep donor level located at 0.25 eV below the bottom of the conduction band to the shallow acceptor level located at 0.02 eV above the top of the valence band. An energy-level diagram for radiative donor-acceptor pair transitions in TlInS2 layered single crystals is proposed.

  8. Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor.

    PubMed

    Jiang, Xudong; Xu, Yunhua; Wang, Xiaohui; Wu, Yang; Feng, Guitao; Li, Cheng; Ma, Wei; Li, Weiwei

    2017-03-15

    In this work, we provide systematic studies on the non-fullerene solar cells based on diketopyrrolopyrrole (DPP) polymers as electron donors and a well-known electron acceptor ITIC. ITIC has been widely reported in non-fullerene solar cells with high power conversion efficiencies (PCEs) above 10%, when it is combined with a wide band gap conjugated polymer, while its application in small band gap DPP polymers has never been reported. Herein, we select four DPP polymers containing different thienyl linkers, resulting in distinct absorption spectra, energy levels and crystalline properties. Non-fullerene solar cells based on DPP polymers as donors and ITIC as an acceptor show PCEs of 1.9-4.1% and energy loss of 0.55-0.82 eV. The PCEs are much lower than those of cells based on fullerene derivatives due to the poor miscibility between the DPP polymers and ITIC, as confirmed by the morphology and charge transport investigation. The results indicate that it is important to tune the miscibility between the donor and acceptor in order to realize optimized micro-phase separation, which can further enhance the performance of DPP polymer based non-fullerene solar cells.

  9. Mo uc(v) Energy Levels and f values

    NASA Astrophysics Data System (ADS)

    Pan, Lin; Beck, Donald R.

    2004-05-01

    Relativistic Configuration Interaction (RCI) calculations have been done for the lowest 12 J=0 even parity levels, and the lowest 30 J=1 odd parity levels of Mo uc(v.) For the J=0 4d^2 and 4d 5d energy differences, the average error is 229 cm-1 ( M. I. Cabeza, F. G. Meijer, and L. Iglesias, Phys. Scr. 34), 223 (1986). For the other J=0 levels, the average difference with experiment (A. Tauheed, M. S. Z. Chaghtai, and K. Rahimullah, Phys. Scr. 31), 369 (1985) is considerably greater. Our average energy errors for the 11 known ^2 J=1 levels is 233 cm-1, excluding the 5s 5p ^1 P level, which is 1580 cm-1 higher than observed ^2. We predict positions of 19 4p^5 4d^3 levels, as well as f values for the 360 transitions between the calculated levels. Gauge agreements are good for transitions with f > .01. Details of the methodology have been published elsewhere (D. R. Beck and L. Pan, Phys. Scr. 69), 91 (2004).

  10. Alignment of electronic energy levels at electrochemical interfaces.

    PubMed

    Cheng, Jun; Sprik, Michiel

    2012-08-28

    The position of electronic energy levels in a phase depends on the surface potentials at its boundaries. Bringing two phases in contact at an interface will alter the surface potentials shifting the energy levels relative to each other. Calculating such shifts for electrochemical interfaces requires a combination of methods from computational surface science and physical chemistry. The problem is closely related to the computation of potentials of electrochemically inactive electrodes. These so-called ideally polarizable interfaces are impossible to cross for electrons. In this perspective we review two density functional theory based methods that have been developed for this purpose, the workfunction method and the hydrogen insertion method. The key expressions of the two methods are derived from the formal theory of absolute electrode potentials. As an illustration of the workfunction method we review the computation of the potential of zero charge of the Pt(111)-water interface as recently published by a number of groups. The example of the hydrogen insertion method is from our own work on the rutile TiO(2)(110)-water interface at the point of zero proton charge. The calculations are summarized in level diagrams aligning the electronic energy levels of the solid electrode (Fermi level of the metal, valence band maximum and conduction band minimum of the semiconductor) to the band edges of liquid water and the standard potential for the reduction of the hydroxyl radical. All potentials are calculated at the same level of density functional theory using the standard hydrogen electrode as common energy reference. Comparison to experiment identifies the treatment of the valence band of water as a potentially dangerous source of error for application to electrocatalysis and photocatalysis.

  11. Self-energy shift of the energy levels of atomic hydrogen in photonic crystal medium

    NASA Astrophysics Data System (ADS)

    Gainutdinov, R. Kh; Khamadeev, M. A.; Steryakov, O. V.; Ziyatdinova, K. A.; Salakhov, M. Kh

    2016-05-01

    Corrections to the average kinetic energy of atomic electrons caused by the change in electron mass in the photonic crystal medium are investigated. Corresponding shift of energy levels of atoms placed in a photonic crystal is shown to be of order of the ordinary Lamb shift.

  12. Interface-induced heavy-hole/light-hole splitting of acceptors in silicon

    SciTech Connect

    Mol, J. A.; Salfi, J.; Simmons, M. Y.; Rogge, S.; Rahman, R.; Hsueh, Y.; Klimeck, G.; Miwa, J. A.

    2015-05-18

    The energy spectrum of spin-orbit coupled states of individual sub-surface boron acceptor dopants in silicon have been investigated using scanning tunneling spectroscopy at cryogenic temperatures. The spatially resolved tunnel spectra show two resonances, which we ascribe to the heavy- and light-hole Kramers doublets. This type of broken degeneracy has recently been argued to be advantageous for the lifetime of acceptor-based qubits [R. Ruskov and C. Tahan, Phys. Rev. B 88, 064308 (2013)]. The depth dependent energy splitting between the heavy- and light-hole Kramers doublets is consistent with tight binding calculations, and is in excess of 1 meV for all acceptors within the experimentally accessible depth range (<2 nm from the surface). These results will aid the development of tunable acceptor-based qubits in silicon with long coherence times and the possibility for electrical manipulation.

  13. Global Transcriptome Analysis of Shewanella oneidensis MR-1 Exposed to Different Terminal Electron Acceptors

    SciTech Connect

    Beliaev, Alex S.; Klingeman, Dawn M.; Klappenbach, Joel; Wu, Liyou; Romine, Margaret F.; Tiedje, James M.; Nealson, Kenneth H.; Fredrickson, Jim K.; Zhou, Jizhong

    2005-10-01

    To gain insight into the complex structure of the energy-generating networks in the dissimilatory metal reducer Shewanella oneidensis MR-1, global mRNA patterns were examined in cells exposed to a wide range of metal and non-metal electron acceptors. Gene expression patterns were similar irrespective of which metal ion was used as electron acceptor, with 60% of the differentially expressed genes showing similar induction or repression relative to fumarate- respiring conditions. Several groups of genes exhibited elevated expression levels in the presence of metals, including those encoding putative multidrug efflux transporters, detoxification proteins, extracytoplasmic sigma factors and PAS-domain regulators. Only one of the 42 predicted c-type cytochromes in MR-1, SO3300, displayed significantly elevated transcript levels across all metal-reducing conditions. Genes encoding decaheme cytochromes MtrC and MtrA that were previously linked to the reduction of different forms of Fe(III) and Mn(IV), exhibited only slight decreases in relative mRNA abundances under metal-reducing conditions. In contrast, specific transcriptome responses were displayed to individual non-metal electron acceptors resulting in the identification of unique groups of nitrate-, thiosulfate- and TMAO-induced genes including previously uncharacterized multi-cytochrome gene clusters. Collectively, the gene expression results reflect the fundamental differences between metal and non-metal respiratory pathways of S. oneidensis MR-1, where the coordinate induction of detoxification and stress response genes play a key role in adaptation of this organism under metal-reducing conditions. Moreover, the relative paucity and/or the constitutive nature of genes involved in electron transfer to metals is likely due to the low-specificity and the opportunistic nature of the metal-reducing electron transport pathways.

  14. Framework for State-Level Renewable Energy Market Potential Studies

    SciTech Connect

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  15. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    PubMed

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  16. Public budgets for energy RD&D and the effects on energy intensity and pollution levels.

    PubMed

    Balsalobre, Daniel; Álvarez, Agustín; Cantos, José María

    2015-04-01

    This study, based on the N-shaped cubic model of the environmental Kuznets curve, analyzes the evolution of per capita greenhouse gas emissions (GHGpc) using not just economic growth but also public budgets dedicated to energy-oriented research development and demonstration (RD&D) and energy intensity. The empirical evidence, obtained from an econometric model of fixed effects for 28 OECD countries during 1994-2010, suggests that energy innovations help reduce GHGpc levels and mitigate the negative impact of energy intensity on environmental quality. When countries develop active energy RD&D policies, they can reduce both the rates of energy intensity and the level of GHGpc emissions. This paper incorporates a moderating variable to the econometric model that emphasizes the effect that GDP has on energy intensity. It also adds a variable that reflects the difference between countries that have made a greater economic effort in energy RD&D, which in turn corrects the GHG emissions resulting from the energy intensity of each country.

  17. Department of Energy low-level radioactive waste disposal concepts

    SciTech Connect

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy (DOE) manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites. 3 refs., 9 figs.

  18. A Detailed Level Kinetics Model of NO Vibrational Energy Distributions

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Gilmore, John; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Several contemporary problems have pointed to the desirability of a detailed level kinetics approach to modeling the distribution of vibrational energy in NO. Such a model is necessary when vibrational redistribution reactions are insufficient to maintain a Boltzmann distribution over the vibrational energy states. Recent calculations of the rate constant for the first reaction of the Zeldovich mechanism (N2 + O (goes to) NO + N) have suggested that the product NO is formed in high vibrational states. In shock layer flowfields, the product NO molecules may experience an insufficient number of collisions to establish a Boltzmann distribution over vibrational states, thus necessitating a level kinetics model. In other flows, such as expansions of high temperature air, fast, near-resonance vibrational energy exchanges with N2 and O2 may also require a level specific model for NO because of the relative rates of vibrational exchange and redistribution. The proposed report will integrate computational and experimental components to construct such a model for the NO molecule.

  19. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    SciTech Connect

    Andreici, Emiliana-Laura; Petkova, Petya; Avram, Nicolae M.

    2015-12-07

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  20. Energy-level alignment and open-circuit voltage at graphene/polymer interfaces: theory and experiment

    NASA Astrophysics Data System (ADS)

    Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano

    2016-03-01

    Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.

  1. A rotamer energy level study of sulfuric acid.

    PubMed

    Partanen, Lauri; Pesonen, Janne; Sjöholm, Elina; Halonen, Lauri

    2013-10-14

    It is a common approach in quantum chemical calculations for polyatomic molecules to rigidly constrain some of the degrees of freedom in order to make the calculations computationally feasible. However, the presence of the rigid constraints also affects the kinetic energy operator resulting in the frozen mode correction, originally derived by Pesonen [J. Chem. Phys. 139, 144310 (2013)]. In this study, we compare the effects of this correction to several different approximations to the kinetic energy operator used in the literature, in the specific case of the rotamer energy levels of sulfuric acid. The two stable conformers of sulfuric acid are connected by the rotations of the O-S-O-H dihedral angles and possess C2 and Cs symmetry in the order of increasing energy. Our results show that of the models tested, the largest differences with the frozen mode corrected values were obtained by simply omitting the passive degrees of freedom. For the lowest 17 excited states, this inappropriate treatment introduces an increase of 9.6 cm(-1) on average, with an increase of 8.7 cm(-1) in the zero-point energies. With our two-dimensional potential energy surface calculated at the CCSD(T)-F12a/VDZ-F12 level, we observe a radical shift in the density of states compared to the harmonic picture, combined with an increase in zero point energy. Thus, we conclude that the quantum mechanical inclusion of the different conformers of sulfuric acid have a significant effect on its vibrational partition function, suggesting that it will also have an impact on the computational values of the thermodynamic properties of any reactions where sulfuric acid plays a role. Finally, we also considered the effect of the anharmonicities for the other vibrational degrees of freedom with a VSCF-calculation at the DF-MP2-F12/VTZ-F12 level of theory but found that the inclusion of the other conformer had the more important effect on the vibrational partition function.

  2. Potential energy surface and rovibrational energy levels of the H2-CS van der Waals complex.

    PubMed

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos

    2012-12-21

    Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H(2) is the most abundant collider. Predictions of the rovibrational energy levels of the weakly bound complex CS-H(2) (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H(2) should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational energy levels. A new four-dimensional intermolecular potential energy surface for the H(2)-CS complex is presented. Ab initio potential energy calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The potential energy surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H(2)-CS complex is found to be linear with the carbon pointing toward H(2) at the intermolecular separation of 8.6 a(o). The corresponding well depth is -173 cm(-1). The potential was used to calculate the rovibrational energy levels of the para-H(2)-CS and ortho-H(2)-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation energies are found to be 35.9 cm(-1) and 49.9 cm(-1), respectively, for the para and ortho complexes. The second virial coefficient for the H(2)-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the potential energy surface.

  3. Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content.

    PubMed

    Wang, Kun; Guo, Bing; Xu, Zhuo; Guo, Xia; Zhang, Maojie; Li, Yongfang

    2015-11-11

    A new planar D2-A-D1-A-D2 structured organic molecule with bithienyl benzodithiophene (BDT) as central donor unit D1 and fluorine-substituted benzothiadiazole (BTF) as acceptor unit and alkyl-dithiophene as end group and donor unit D2, BDT-BTF, was designed and synthesized for the application as donor material in organic solar cells (OSCs). BDT-BTF shows a broad absorption in visible region, suitable highest occupied molecular orbital energy level of -5.20 eV, and high hole mobility of 1.07 × 10(-2) cm(2)/(V s), benefitted from its high coplanarity and strong crystallinity. The OSCs based on BDT-BTF as donor (D) and PC71BM as acceptor (A) at a D/A weight ratio of 3:1 without any extra treatment exhibit high photovoltaic performance with Voc of 0.85 V, Jsc of 10.48 mA/cm(2), FF of 0.66, and PCE of 5.88%. The morphological study by transmission electron microscopy reveals that the blend of BDT-BTF and PC71BM (3:1, w/w) possesses an appropriate interpenetrating D/A network for the exciton separation and charge carrier transport, which agrees well with the good device performance. The optimized D/A weight ratio of 3:1 is the lowest acceptor content in the active layer reported so far for the high-performance OSCs, and the organic molecules with the molecular structure like BDT-BTF could be promising high-performance donor materials in solution-processable OSCs.

  4. Antimullerian Hormone Level and Endometrioma Ablation Using Plasma Energy

    PubMed Central

    Bubenheim, Michael; Auber, Mathieu; Marpeau, Loïc; Puscasiu, Lucian

    2014-01-01

    Objective: To investigate the impact of ovarian endometrioma vaporization using plasma energy on antimullerian hormone (AMH) level. Method: We report a prospective, noncomparative series (NCT01596985). Twenty-two patients with unilateral ovarian endometriomas ≥30 mm, with no surgical antecedent and no ongoing pregnancy, underwent vaporization of ovarian endometriomas using plasma energy during the period of November 29, 2010 to November 28, 2012. We assessed AMH levels before surgery, 3 months postoperatively, and at the end of follow-up. Results: The mean length of postoperative follow-up was 18.2 ± 8 months. AMH level significantly varied through the 3 assessments performed in the study, as the mean values ± SD were 3.9 ± 2.6 ng/mL before the surgery, 2.3 ± 1.1 ng/mL at 3 months, and 3.1 ± 2.2 ng/mL at the end of the follow-up (P = .001). There was a significant increase from 3 months postoperatively to the end of follow-up (median change 0.7 ng/mL, P = .01). Seventy-one percent of patients had an AMH level >2 ng/mL at the end of the follow-up versus 76% before the surgery (P = 1). During the postoperative follow-up, 11 patients tried to conceive, of whom 8 (73%) became pregnant. Conclusions: The ablation of unilateral endometriomas is followed in a majority of cases by a significant decrease in AMH level 3 months after surgery. In subsequent months, this level progressively increases, raising questions about the real factors that impact postoperative ovarian AMH production. PMID:25392649

  5. Vintage-level energy and environmental performance of manufacturing establishments

    SciTech Connect

    Boyd, G.A.; Bock, M.J.; Neifer, M.J.; Karlson, S.H.; Ross, M.H.

    1994-05-01

    This report examines the relationship between an industrial plant`s vintage and its energy and environmental performance. Basic questions related to defining vintage and measuring the effects of the manufacturing industry`s vintage distribution of plant-level capacity and energy intensity are explored in general for six energy-intensive sectors (paper, chlorine, nitrogenous fertilizer, aluminum, steel, and cement) at the four-digit standard industrial classification (SIC) level and in detail for two sectors (steel and cement). Results show that greenfield (i.e., newly opened) plants in the paper, steel, and cement industries exhibit low fossil fuel intensities. These results are consistent with expectations. New plants in the paper and steel industries, where processes are undergoing electrification, exhibit high electricity intensities. An analysis of a subsector of the steel industry -- minimills that use scrap-based, electric arc furnaces -- reveals a decline in electricity intensity of 6.2 kilowatt-hours per ton for each newer year of installed vintage. This estimate is consistent with those of engineering studies and raises confidence that analyses of vintage effects in other industries could be conducted. When a vintage measure is assigned on the basis of investment data rather than trade association data, the vintage/performance relationship results for the cement industry are reasonably robust; thus, the analysis of vintage and performance could be extended to sectors for which only US Bureau of the Census data are available.

  6. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications.

    PubMed

    Stalder, Romain; Xie, Dongping; Islam, Ashraful; Han, Liyuan; Reynolds, John R; Schanze, Kirk S

    2014-06-11

    We report on a sexithienyl and two donor-acceptor-donor oligothiophenes, employing benzothiadiazole and isoindigo as electron-acceptors, each functionalized with a phosphonic acid group for anchoring onto TiO2 substrates as light-harvesting molecules for dye sensitized solar cells (DSSCs). These dyes absorb light to wavelengths as long as 700 nm, as their optical HOMO/LUMO energy gaps are reduced from 2.40 to 1.77 eV with increasing acceptor strength. The oligomers were adsorbed onto mesoporous TiO2 films on fluorine doped tin oxide (FTO)/glass substrates and incorporated into DSSCs, which show AM1.5 power conversion efficiencies (PCEs) ranging between 2.6% and 6.4%. This work demonstrates that the donor-acceptor-donor (D-A-D) molecular structures coupled to phosphonic acid anchoring groups, which have not been used in DSSCs, can lead to high PCEs.

  7. Relationship between Electron Affinity and Half-Wave Reduction Potential: A Theoretical Study on Cyclic Electron-Acceptor Compounds.

    PubMed

    Calbo, Joaquín; Viruela, Rafael; Ortí, Enrique; Aragó, Juan

    2016-12-05

    A high-level ab initio protocol to compute accurate electron affinities and half-wave reduction potentials is presented and applied for a series of electron-acceptor compounds with potential interest in organic electronics and redox flow batteries. The comprehensive comparison between the theoretical and experimental electron affinities not only proves the reliability of the theoretical G3(MP2) approach employed but also calls into question certain experimental measurements, which need to be revised. By using the thermodynamic cycle for the one-electron attachment reaction A+e(-) →A(-) , theoretical estimates for the first half-wave reduction potential have been computed along the series of electron-acceptor systems investigated, with maximum deviations from experiment of only 0.2 V. The precise inspection of the terms contributing to the half-wave reduction potential shows that the difference in the free energy of solvation between the neutral and the anionic species (ΔΔGsolv ) plays a crucial role in accurately estimating the electron-acceptor properties in solution, and thus it cannot be considered constant even in a family of related compounds. This term, which can be used to explain the occasional lack of correlation between electron affinities and reduction potentials, is rationalized by the (de)localization of the additional electron involved in the reduction process along the π-conjugated chemical structure.

  8. The molecular potential energy surface and vibrational energy levels of methyl fluoride. Part II.

    PubMed

    Manson, Steven A; Law, Mark M; Atkinson, Ian A; Thomson, Grant A

    2006-06-28

    New analytical bending and stretching, ground electronic state, potential energy surfaces for CH(3)F are reported. The surfaces are expressed in bond-length, bond-angle internal coordinates. The four-dimensional stretching surface is an accurate, least squares fit to over 2000 symmetrically unique ab initio points calculated at the CCSD(T) level. Similarly, the five-dimensional bending surface is a fit to over 1200 symmetrically unique ab initio points. This is an important first stage towards a full nine-dimensional potential energy surface for the prototype CH(3)F molecule. Using these surfaces, highly excited stretching and (separately) bending vibrational energy levels of CH(3)F are calculated variationally using a finite basis representation method. The method uses the exact vibrational kinetic energy operator derived for XY(3)Z systems by Manson and Law (preceding paper, Part I, Phys. Chem. Chem. Phys., 2006, 8, DOI: 10.1039/b603106d). We use the full C(3v) symmetry and the computer codes are designed to use an arbitrary potential energy function. Ultimately, these results will be used to design a compact basis for fully coupled stretch-bend calculations of the vibrational energy levels of the CH(3)F system.

  9. Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics.

    PubMed

    Sauvé, Geneviève; Fernando, Roshan

    2015-09-17

    Organic photovoltaics (OPVs) are promising candidates for providing a low cost, widespread energy source by converting sunlight into electricity. Solution-processable active layers have predominantly consisted of a conjugated polymer donor blended with a fullerene derivative as the acceptor. Although fullerene derivatives have been the acceptor of choice, they have drawbacks such as weak visible light absorption and poor energy tuning that limit overall efficiencies. This has recently fueled new research to explore alternative acceptors that would overcome those limitations. During this exploration, one question arises: what are the important design principles for developing nonfullerene acceptors? It is generally accepted that acceptors should have high electron affinity, electron mobility, and absorption coefficient in the visible and near-IR region of the spectra. In this Perspective, we argue that alternative molecular acceptors, when blended with a conjugated polymer donor, should also have large nonplanar structures to promote nanoscale phase separation, charge separation and charge transport in blend films. Additionally, new material design should address the low dielectric constant of organic semiconductors that have so far limited their widespread application.

  10. Fermi level stabilization energy in group III-nitrides

    SciTech Connect

    Li, S.X.; Yu, K.M.; Wu, J.; Jones, R.E.; Walukiewicz, W.; AgerIII, J.W.; Shan, W.; Haller, E.E.; Lu, Hai; Schaff, William J.

    2005-01-07

    Energetic particle irradiation is used to systematically introduce point defects into In{sub 1-x}Ga{sub x}N alloys over the entire composition range. Three types of energetic particles (electrons, protons, and {sup 4}He{sup +}) are used to produce a displacement damage dose spanning five decades. In InN and In-rich InGaN the free electron concentration increases with increasing irradiation dose but saturates at a sufficiently high dose. The saturation is due to Fermi level pinning at the Fermi Stabilization Energy (E{sub FS}), which is located at 4.9 eV below the vacuum level. Electrochemical capacitance-voltage (ECV) measurements show that the pinning of the surface Fermi energy at E{sub FS} is also responsible for the surface electron accumulation in as-grown InN and In-rich InGaN alloys. The results are in agreement with the amphoteric defect model that predicts that the same type of native defects are responsible for the Fermi level pinning in both cases.

  11. Accurate energy levels for singly ionized platinum (Pt II)

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Engleman, Rolf, Jr.

    1988-01-01

    New observations of the spectrum of Pt II have been made with hollow-cathode lamps. The region from 1032 to 4101 A was observed photographically with a 10.7-m normal-incidence spectrograph. The region from 2245 to 5223 A was observed with a Fourier-transform spectrometer. Wavelength measurements were made for 558 lines. The uncertainties vary from 0.0005 to 0.004 A. From these measurements and three parity-forbidden transitions in the infrared, accurate values were determined for 28 even and 72 odd energy levels of Pt II.

  12. Charge retention in quantized energy levels of nanocrystals

    NASA Astrophysics Data System (ADS)

    Dâna, Aykutlu; Akça, İmran; Ergun, Orçun; Aydınlı, Atilla; Turan, Raşit; Finstad, Terje G.

    2007-04-01

    Understanding charging mechanisms and charge retention dynamics of nanocrystal (NC) memory devices is important in optimization of device design. Capacitance spectroscopy on PECVD grown germanium NCs embedded in a silicon oxide matrix was performed. Dynamic measurements of discharge dynamics are carried out. Charge decay is modelled by assuming storage of carriers in the ground states of NCs and that the decay is dominated by direct tunnelling. Discharge rates are calculated using the theoretical model for different NC sizes and densities and are compared with experimental data. Experimental results agree well with the proposed model and suggest that charge is indeed stored in the quantized energy levels of the NCs.

  13. Nanopatterning of Donor/Acceptor Hybrid Supramolecular Architectures on HOPG: An STM Study

    PubMed Central

    Wang, Ling; Chen, Qing; Pan, Ge-Bo; Wan, Li-Jun; Zhang, Shiming; Zhan, Xiaowei; Northrop, Brian H.; Stang, Peter J.

    2009-01-01

    Hybrid supramolecular architectures have been fabricated with acceptor 1,4-bis(4-pyridylethynyl)-2,3-bis-dodecyloxy-benzene (PBP) and donor 2,6-bis(3,4,5-tris-dodecyloxy-phenyl)dithieno[3,2-b:2′,3′-d]thiophene (DTT) compounds on highly oriented pyrolytic graphite (HOPG) surfaces and their structures and molecular conductance are characterized by scanning tunneling microscopy/spectroscopy (STM/STS). Stable, one-component adlayers of PBP and DTT are also investigated. The coadsorption of two-component mixtures of PBP and DTT results in a variety of hybrid nanopattern architectures that differ from those of their respective one-component surface assemblies. Adjusting the acceptor/donor molar ratio in mixed adlayer assemblies results in dramatic changes in the structure of the hybrid nanopatterns. STS measurements indicate that the HOMO and LUMO energy levels of PBP and DTT on an HOPG surface are relatively insensitive to changes in the hybrid supramolecular architectures. These results provide important insight into the design and fabrication of two-dimensional hybrid supramolecular architectures. PMID:18783221

  14. Synthesis and characterization of donor-acceptor copolymers carrying triphenylamine units for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Neumann, Katharina; Thelakkat, Mukundan

    2012-09-01

    The synthesis and analysis of solution processable polymers for organic solar cells is crucial for innovative solar cell technologies such as printing processes. In the field of donor materials for photovoltaic applications, polymers based on tetraphenylamine (TPA) are well known hole conducting materials. Here, we synthesized two conjugated TPA containing copolymers via Suzuki polycondensation. We investigated the tuning of the energy levels of the TPA based polymers by two different concepts. Firstly, we introduced an acceptor unit in the side chain. The main-chain of this copolymer was built from TPA units. The resulting copolymer 2-(4-((4'-((4-(2-ethylhexyloxy)phenyl)(paratolyl) amino)biphenyl-4-yl)(para-tolyl)amino)benzylidene) malononitrile P1 showed a broader absorption up to 550 nm. Secondly, we used a donor-acceptor concept by synthesizing a copolymer with alternating electron donating TPA and electron withdrawing Thieno[3,4-b]thiophene ester units. Consequently, the absorption maximum in the copolymer octyl-6-(4-((4-(2-ethylhexyloxy)phenyl)(p-tolyl)amino)phenyl)-4-methylthieno[3,4-b]thiophene-2-carboxylate P2 was red shifted to 580 nm. All three polymers showed high thermal stability. By UV-vis and Cyclic voltammetry measurements the optical and electrochemical properties of the polymers were analyzed.

  15. Radiative lifetime and energy of the low-energy isomeric level in 229Th

    NASA Astrophysics Data System (ADS)

    Tkalya, E. V.; Schneider, Christian; Jeet, Justin; Hudson, Eric R.

    2015-11-01

    We estimate the range of the radiative lifetime and energy of the anomalous, low-energy 3 /2+(7.8 ±0.5 eV) state in the 229Th nucleus. Our phenomenological calculations are based on the available experimental data for the intensities of M 1 and E 2 transitions between excited levels of the 229Th nucleus in the Kπ[N nZΛ ] =5 /2+[633 ] and 3 /2+[631 ] rotational bands. We also discuss the influence of certain branching coefficients, which affect the currently accepted measured energy of the isomeric state. From this work, we establish a favored region, 0.66 ×106seV3/ω3≤τ ≤2.2 ×106seV3/ω3 , where the transition lifetime τ as a function of transition energy ω should lie at roughly the 95% confidence level. Together with the result of Beck et al. [LLNL-PROC-415170 (2009)], we establish a favored area where transition lifetime and energy should lie at roughly the 90% confidence level. We also suggest new nuclear physics measurements, which would significantly reduce the ambiguity in the present data.

  16. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    SciTech Connect

    Santarius, Tilman

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  17. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    NASA Astrophysics Data System (ADS)

    Santarius, Tilman

    2015-03-01

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  18. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  19. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.

    PubMed

    Wu, Chao; Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Wen-Wei; Li, Dao-Bo; Yu, Han-Qing

    2013-05-01

    Shewanella oneidensis MR-1 is an extensively studied dissimilatory metal-reducing bacterium with a great potential for bioremediation and electricity generation. It secretes flavins as electron shuttles which play an important role in extracellular electron transfer. However, the influence of various environmental factors on the secretion of flavins is largely unknown. Here, the effects of electron acceptors, including fumarate, ferrihydrite, Fe(III)-nitrilotriacetic acid (NTA), nitrate and trimethylamine oxide (TMAO), on the secretion of flavins were investigated. The level of riboflavin and riboflavin-5'-phosphate (FMN) secreted by S. oneidensis MR-1 varied considerably with different electron acceptors. While nitrate and ferrihydrite suppressed the secretion of flavins in relative to fumarate, Fe(III)-NTA and TMAO promoted such a secretion and greatly enhanced ferrihydrite reduction and electricity generation. This work clearly demonstrates that electron acceptors could considerably affect the secretion of flavins and consequent microbial EET. Such impacts of electron acceptors in the environment deserve more attention.

  20. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  1. Rotational Energies in Various Torsional Levels of CH_2DOH

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Hilali, A. El; Margulès, L.; Motiyenko, R. A.; Klee, S.

    2012-06-01

    Using an approach accounting for the hindered internal rotation of a monodeuterated methyl group, an analysis of the torsional spectrum of the monodeuterated species of methanol CH_2DOH has been carried out recently and led to the assignment of 76 torsional subbands in its microwave, FIR, and IR spectra. Although this approach also allowed us to account for subband centers, the rotational structure of the torsional subbands is not well understood yet. In this paper, we will deal with the rotational energies of CH_2DOH. Analyses of the rotational structure of the available subbands^b have been performed using the polynomial-type expansion introduced in the case of the normal species of methanol. For each subband, FIR or IR transitions and a-type microwave lines, within the lower torsional level, were fitted. The frequencies of the latters were taken from previous investigations or from new measurements carried out from 50 to 950 GHz with the submillimeterwave solid state spectrometer in Lille. Subbands involving lower levels with v_t=0 and K ≥ 3 could be satisfactorily analyzed. For levels characterized by lower K-values, the expansion fails. In the case of the K=1, v_t=1 level, the frequencies of a-type microwave transitions involving the lower member of the K-type doublet cannot be well reproduced. For K=0 levels with v_t=1 and 2, a large number of terms is needed in the expansion. We will try to understand why the rotational energies of these levels cannot be reproduced. The results of the analyses will be compared to those obtained with a global approach based on the rotation-torsion Hamiltonian of the molecule. [2] El Hilali, Coudert, Konov, and Klee, J. Chem. Phys. 135 (2011) 194309. [3] Ioli, Moruzzi, Riminucci, Strumia, Moraes, Winnewisser, and Winnewisser, J. Mol. Spec. 171 (1995) 130. [4] Quade and Suenram, J. Chem. Phys. 73 (1980) 1127; and Su and Quade, J. Mol. Spec. 134 (1989) 290. [5] Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. 256 (2009

  2. Identifying Energy-Efficient Concurrency Levels using Machine Learning

    SciTech Connect

    Curtis-Maury, M; Singh, K; Blagojevic, F; Nikolopoulos, D S; de Supinski, B R; Schulz, M; McKee, S A

    2007-07-23

    Multicore microprocessors have been largely motivated by the diminishing returns in performance and the increased power consumption of single-threaded ILP microprocessors. With the industry already shifting from multicore to many-core microprocessors, software developers must extract more thread-level parallelism from applications. Unfortunately, low power-efficiency and diminishing returns in performance remain major obstacles with many cores. Poor interaction between software and hardware, and bottlenecks in shared hardware structures often prevent scaling to many cores, even in applications where a high degree of parallelism is potentially available. In some cases, throwing additional cores at a problem may actually harm performance and increase power consumption. Better use of otherwise limitedly beneficial cores by software components such as hypervisors and operating systems can improve system-wide performance and reliability, even in cases where power consumption is not a main concern. In response to these observations, we evaluate an approach to throttle concurrency in parallel programs dynamically. We throttle concurrency to levels with higher predicted efficiency from both performance and energy standpoints, and we do so via machine learning, specifically artificial neural networks (ANNs). One advantage of using ANNs over similar techniques previously explored is that the training phase is greatly simplified, thereby reducing the burden on the end user. Using machine learning in the context of concurrency throttling is novel. We show that ANNs are effective for identifying energy-efficient concurrency levels in multithreaded scientific applications, and we do so using physical experimentation on a state-of-the-art quad-core Xeon platform.

  3. Energy deposition study of low-energy cosmic radiation at sea level

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Pushpa

    In this dissertation work, a computer simulation model based on the Geant4 simulation package has been designed and developed to study the energy deposition and track structures of cosmic muons and their secondary electrons in tissue-like materials. The particle interactions in a cubic water volume were first simulated. To analyze the energy deposition and tracks in small structures, with the intention of studying the energy localization in nanometric structures such as DNA, the chamber was sliced in three dimentions. Validation studies have been performed by comparing the results with experimental, theoretical, and other simulation results to test the accuracy of the simulation model. A human body phantom in sea-level muon environment was modeled to measure the yearly dose to a human from cosmic muons. The yearly dose in this phantom is about 22 millirems. This is close to the accepted value for the yearly dose from cosmic radiation at sea level. Shielding cosmic muons with a concrete slab from 0 to 2 meters increased the dose received by the body. This dissertation presents an extensive study on the interactions of secondary electrons created by muons in water. Index words. Radiation Dosimetry Simulation, Track Structures, Sea-Level muon Flux, Energy Deposition

  4. Donor-acceptor pair recombination in gallium sulfide

    NASA Astrophysics Data System (ADS)

    Aydinli, A.; Gasanly, N. M.; Gökşen, K.

    2000-12-01

    Low temperature photoluminescence of GaS single crystals shows three broad emission bands below 2.4 eV. Temperature and excitation light intensity dependencies of these bands reveal that all of them originate from close donor-acceptor pair recombination processes. Temperature dependence of the peak energies of two of these bands in the visible range follow, as expected, the band gap energy shift of GaS. However, the temperature dependence of the peak energy of the third band in the near infrared shows complex behavior by blueshifting at low temperatures followed by a redshift at intermediate temperatures and a second blueshift close to room temperature, which could only be explained via a configuration coordinate model. A simple model calculation indicates that the recombination centers are most likely located at the nearest neighbor lattice or interstitial sites.

  5. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOEpatents

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  6. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    SciTech Connect

    Roch, Christina; Kuhn, Joachim; Kleesiek, Knut; Goetting, Christian

    2010-01-01

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that K{sub m} and V{sub max} values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  7. High Performance Magazine Acceptor Threshold Criteria

    DTIC Science & Technology

    1994-08-01

    detonation transition (DDT). To account for unknown mechanisms the term XDT is also used. Development of a design procedure to prevent SD requires...propagation walls are used to prevent sympathetic detonation between munitions stored in adjacent cells. Design of the walls, and their mitigation...effects, requires sympathetic detonation threshold criteria for acceptor munitions. This paper outlines the procedures being used to develop SD threshold

  8. Energy transfer and energy level decay processes in Tm{sup 3+}-doped tellurite glass

    SciTech Connect

    Gomes, Laercio; Lousteau, Joris; Milanese, Daniel; Scarpignato, Gerardo C.; Jackson, Stuart D.

    2012-03-15

    The primary excited state decay and energy transfer processes in singly Tm{sup 3+}-doped TeO{sub 2}:ZnO:Bi{sub 2}O{sub 3}:GeO{sub 2} (TZBG) glass relating to the {sup 3}F{sub 4}{yields}{sup 3}H{sub 6}{approx}1.85 {mu}m laser transition have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the {sup 3}H{sub 4} manifold at 794 nm, the {sup 3}H{sub 5} manifold at 1220 nm, and {sup 3}F{sub 4} manifold at 1760 nm has established that the {sup 3}H{sub 5} manifold is entirely quenched by multiphonon relaxation in tellurite glass. The luminescence from the {sup 3}H{sub 4} manifold with an emission peak at 1465 nm suffers strong suppression due to cross relaxation that populates the {sup 3}F{sub 4} level with a near quadratic dependence on the Tm{sup 3+} concentration. The {sup 3}F{sub 4} lifetime becomes longer as the Tm{sup 3+} concentration increases due to energy migration and decreases to 2.92 ms when [Tm{sup 3+}] = 4 mol. % as a result of quasi-resonant energy transfer to free OH{sup -} radicals present in the glass at concentrations between 1 x 10{sup 18} cm{sup -3} and 2 x 10{sup 18} cm{sup -3}. Judd-Ofelt theory in conjunction with absorption measurements were used to obtain the radiative lifetimes and branching ratios of the energy levels located below 25 000 cm{sup -1}. The spectroscopic parameters, the cross relaxation and Tm{sup 3+}({sup 3}F{sub 4}) {yields} OH{sup -} energy transfer rates were used in a numerical model for laser transitions emitting at 2335 nm and 1865 nm.

  9. Evaluating the environmental fate of pharmaceuticals using a level III model based on poly-parameter linear free energy relationships.

    PubMed

    Zukowska, Barbara; Breivik, Knut; Wania, Frank

    2006-04-15

    We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties.

  10. Nature of the attractive interaction between proton acceptors and organic ring systems.

    PubMed

    Arras, Emmanuel; Seitsonen, Ari Paavo; Klappenberger, Florian; Barth, Johannes V

    2012-12-14

    Systematic ab initio calculations are combined with a deconvolution of electrostatic contributions to analyze the interplay between potential hydrogen bond acceptors and organic rings with C(sp(2))-H groups (benzene, pyridine and cyclopentadiene). A distinct anisotropic interaction between the ring systems and the electron lone pairs of cyanide, water and other acceptor species is revealed that favors the in-plane orientation of the proton acceptor group. In the attractive regime this interaction carries a pronounced electrostatic signature. By decomposing the electrostatic contribution into parts attributed to different subunits of the ring systems we demonstrate that a major proportion of the interaction energy gain is originating from the non-adjacent moieties, that are not in close contact with. This behavior holds equally for homocyclic, heterocyclic and non-aromatic rings but contrasts that of the ethyne molecule, taken as reference for a weak hydrogen bond donor clearly exhibiting the expected localized character. The ring interaction requires the presence of π-electron clouds and typically results in an interaction energy gain of 40 to 80 meV. Our findings suggest the proton acceptor-ring interaction as a new category of intermolecular non-covalent interactions.

  11. Natural organic matter as electron acceptor: experimental evidence for its important role in anaerobic respiration

    NASA Astrophysics Data System (ADS)

    Lau, Maximilian Peter; Sander, Michael; Gelbrecht, Jörg; Hupfer, Michael

    2014-05-01

    Microbial respiration is a key driver of element cycling in oxic and anoxic environments. Upon depletion of oxygen as terminal electron acceptor (TEA), a number of anaerobic bacteria can employ alternative TEA for intracellular energy generation. Redox active quinone moieties in dissolved organic matter (DOM) are well known electron acceptors for microbial respiration. However, it remains unclear whether quinones in adsorbed and particulate OM accept electrons in a same way. In our studies we aim to understand the importance of natural organic matter (NOM) as electron acceptors for microbial energy gain and its possible implications for methanogenesis. Using a novel electrochemical approach, mediated electrochemical reduction and -oxidation, we can directly quantify reduced hydroquinone and oxidized quionone moieties in dissolved and particulate NOM samples. In a mesocosm experiment, we rewetted sediment and peat soil and followed electron transfer to the inorganic and organic electron acceptors over time. We found that inorganic and organic electron acceptor pools were depleted over the same timescales. More importantly, we showed that organic, NOM-associated electron accepting moieties represent as much as 21 40% of total TEA inventories. These findings support earlier studies that propose that the reduction of quinone moieties in particulate organic matter competitively suppresses methanogenesis in wetland soils. Our results indicate that electron transfer to organic, particulate TEA in inundated ecosystems has to be accounted for when establishing carbon budgets in and projecting greenhouse gas emissions from these systems.

  12. Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances.

    PubMed

    Wu, Yongzhen; Zhu, Weihong

    2013-03-07

    The high performance and low cost of dye-sensitized solar cells (DSSCs) have drawn great interest from both academic and industrial circles. The research on exploring novel efficient sensitizers, especially on inexpensive metal-free pure organic dyes, has never been suspended. The donor-π bridge-acceptor (D-π-A) configuration is mainstream in the design of organic sensitizers due to its convenient modulation of the intramolecular charge-transfer nature. Recently, it has been found that incorporation of additional electron-withdrawing units (such as benzothiadiazole, benzotriazole, quinoxaline, phthalimide, diketopyrrolopyrrole, thienopyrazine, thiazole, triazine, cyanovinyl, cyano- and fluoro-substituted phenyl) into the π bridge as internal acceptors, termed the D-A-π-A configuration, displays several advantages such as tuning of the molecular energy levels, red-shift of the charge-transfer absorption band, and distinct improvement of photovoltaic performance and stability. We apply the D-A-π-A concept broadly to the organic sensitizers containing additional electron-withdrawing units between electron donors and acceptors. This review is projected to summarize the category of pure organic sensitizers on the basis of the D-A-π-A feature. By comparing the structure-property relationship of typical photovoltaic D-A-π-A dyes, the important guidelines in the design of such materials are highlighted.

  13. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  14. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  15. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts.

  16. Steering quantum transitions between three crossing energy levels

    SciTech Connect

    Ivanov, S. S.; Vitanov, N. V.

    2008-02-15

    We calculate the propagator and the transition probabilities for a coherently driven three-state quantum system. The energies of the three states change linearly in time, whereas the interactions between them are pulse shaped. We derive a highly accurate analytic approximation by assuming independent pairwise Landau-Zener transitions occurring instantly at the relevant avoided crossings, and adiabatic evolution elsewhere. Quantum interferences are identified, which occur due to different possible evolution paths in Hilbert space between an initial and a final state. A detailed comparison with numerical results for Gaussian-shaped pulses demonstrates a remarkable accuracy of the analytic approximation. We use the analytic results to derive estimates for the half-width of the excitation profile, and for the parameters required for creation of a maximally coherent superposition of the three states. These results are of potential interest in ladder climbing in alkali-metal atoms by chirped laser pulses, in quantum rotors, in transitions between Zeeman sublevels of a J=1 level in a magnetic field, and in control of entanglement of a pair of spin-1/2 particles. The results for the three-state system can be generalized, without essential difficulties, to higher dimensions.

  17. Ab initio potential energy surface and vibration-rotation energy levels of sulfur dioxide.

    PubMed

    Koput, Jacek

    2017-05-05

    An accurate potential energy surface of sulfur dioxide, SO2 , in its ground electronic state X∼ 1A1 has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent basis sets up to septuple-zeta quality. The results obtained with the conventional and explicitly correlated coupled-cluster methods are compared. The role of the core-electron correlation, higher-order valence-electron correlation, scalar relativistic, and adiabatic effects in determining the structure and dynamics of the SO2 molecule is discussed. The vibration-rotation energy levels of the (32) SO2 and (34) SO2 isotopologues were predicted using a variational approach. It was shown that the inclusion of the aforementioned effects was mandatory to attain the "spectroscopic" accuracy. © 2017 Wiley Periodicals, Inc.

  18. Ab initio potential energy surface and vibration-rotation energy levels of beryllium monohydroxide.

    PubMed

    Koput, Jacek

    2017-01-05

    The accurate potential energy surface of beryllium monohydroxide, BeOH, in its ground electronic state X 2A' has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, and adiabatic effects were taken into account. The BeOH molecule was confirmed to be bent at equilibrium, with the BeOH angle of 141.2° and the barrier to linearity of 129 cm(-1) . The vibration-rotation energy levels of the BeOH and BeOD isotopologues were predicted using a variational approach and compared with recent experimental data. The results can be useful in a further analysis of high-resolution vibration-rotation spectra of these interesting species. © 2016 Wiley Periodicals, Inc.

  19. Photoionization in micelles: Addition of charged electron acceptors

    NASA Astrophysics Data System (ADS)

    Stenland, Chris; Kevan, Larry

    The relative photoyield of the electron donor N, N, N', N'-tetramethylbenzidine (TMB), solubilized in sodium and lithium dodecyl sulfate micelles with added charged electron acceptors was investigated. It was attempted to control the acceptor distance from a charged micellar interface by differently charged acceptors, cationic dimethyl viologen and anionic ferricyanide. However, back electron transfer from both cationic and anionic acceptors was found to be efficient. Thus simple electrostatic arguments for control of the photoyield do not seem applicable. Salt effects associated with the added ionic acceptors which partially neutralize the ionic micellar interface are suggested to be an important factor.

  20. Quantifying the Level of Cross-State Renewable Energy Transactions

    SciTech Connect

    Jenny Heeter, Philipp Beiter, Francisco Flores-Espino, David Hurlbut, Chang Liu

    2015-02-01

    This analysis provides first-ever assessment of the extent to which renewable energy is crossing state borders to be used to meet renewable portfolio standard (RPS) requirements. Two primary methods for data collection are Renewable Energy Certificate (REC) tracking and power flow estimates. Data from regional REC tracking systems, state agencies, and utility compliance reports help understand how cross-state transactions have been used to meet RPS compliance. Data on regional renewable energy flow use generator-specific information primarily sourced from EIA, SNL Energy, and FERC Form 1 filings. The renewable energy examined through this method may or may not have actually been used to meet RPS compliance.

  1. Dual acceptor doping and aging effect of p-ZnO:(Na, N) nanorod thin films by spray pyrolysis

    SciTech Connect

    Swapna, R. E-mail: santhoshmc@nitt.edu; Amiruddin, R. E-mail: santhoshmc@nitt.edu; Santhosh Kumar, M. C. E-mail: santhoshmc@nitt.edu

    2014-01-28

    An attempt has been made to realize p-type ZnO by dual acceptor doping (Na-N) into ZnO thin films. Na and N doped ZnO thin films of different concentrations (0 to 8 at.%) have been grown by spray pyrolysis at 623 K. The grown films on glass substrate have been characterized by X-ray diffraction (XRD), Hall measurement, UV-Vis spectrophotometer, Photoluminescence (PL) and Energy dispersive spectroscopy (EDS) to validate the p-type conduction. The surface morphology and roughness of the ZnO:(Na, N) films are studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Hall measurement shows that all the films exhibit p-type conductivity except for 0 at.% Na-N doped ZnO film. The obtained resistivity (5.60×10{sup −2} Ω cm) and hole concentration (3.15×10{sup 18} cm{sup −3}) for the best dual acceptor doped film is 6 at.%. It has been predicted that (Na{sub Zn}−N{sub O}) acceptor complex is responsible for the p-type conduction. The p-type conductivity of the ZnO:(Na, N) films is stable even after 6 months. The crystallinity of the films has been studied by XRD. Energy dispersive spectroscopy (EDS) confirms the presence of Na and N in 6 at.% ZnO:(Na, N) film. Photoluminescence (PL) spectra of ZnO:(Na, N) films show NBE and deep level emissions in the UV and visible regions, respectively. The ZnO:(Na, N) films exhibit a high transmittance about 90% in the visible region.

  2. New Perspective on Formation Energies and Energy Levels of Point Defects in Nonmetals

    NASA Astrophysics Data System (ADS)

    Ramprasad, R.; Zhu, H.; Rinke, Patrick; Scheffler, Matthias

    2012-02-01

    We propose a powerful scheme to accurately determine the formation energy and thermodynamic charge transition levels of point defects in nonmetals. Previously unknown correlations between defect properties and the valence-band width of the defect-free host material are identified allowing for a determination of the former via an accurate knowledge of the latter. These correlations are identified through a series of hybrid density-functional theory computations and an unbiased exploration of the parameter space that defines the Hyde-Scuseria-Ernzerhof family of hybrid functionals. The applicability of this paradigm is demonstrated for point defects in Si, Ge, ZnO, and ZrO2.

  3. Energy levels and transition probability matrix elements of ruby for maser applications

    NASA Technical Reports Server (NTRS)

    Berwin, R. W.

    1971-01-01

    Program computes fine structure energy levels of ruby as a function of magnetic field. Included in program is matrix formulation, each row of which contains a magnetic field and four corresponding energy levels.

  4. Clean Energy Policy Analyses. Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    SciTech Connect

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  5. Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    SciTech Connect

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  6. Calculation of astrophysical S factor at low energy levels

    NASA Astrophysics Data System (ADS)

    Andic, Halil Ibrahim; Ozer, Okan

    2017-02-01

    Nuclear reactions are very important for the structure, evolution, nucleosynthesis and various observational manifestations of main-sequence stars, white dwarfs and neutron stars. For astrophysical applications, one needs to know value of S-factor for many reactions at low energies. The experimental measurements of cross-sections at such low energies are essentially not easily available since the Coulomb barrier. Theoretical calculations are model dependent, so that nuclear physics uncertainties of calculated S-factor can be substantial. Using the supersymmetric quantum mechanics one can obtain the supersymmetric partner potential that can vary by several orders of magnitude in the energy range of a given reaction in the calculation of S factor. Since the determination of reaction rates requires accurate values of cross sections at very low energies, then in order to eliminate the main part of the energy dependence of these cross sections one makes use of the astrophysical S-factor in Taylor Expansion series about zero-energy.

  7. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level

    SciTech Connect

    Azar, R. Julian; Head-Gordon, Martin

    2012-01-14

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the C{sub s}-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  8. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level.

    PubMed

    Azar, R Julian; Head-Gordon, Martin

    2012-01-14

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the C(s)-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  9. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level

    NASA Astrophysics Data System (ADS)

    Azar, R. Julian; Head-Gordon, Martin

    2012-01-01

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the Cs-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  10. City-Level Energy Decision Making. Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities

    SciTech Connect

    Aznar, Alexandra; Day, Megan; Doris, Elizabeth; Mathur, Shivani; Donohoo-Vallett, Paul

    2015-07-08

    The Cities-LEAP technical report, City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities, explores how a sample of cities incorporates data into making energy-related decisions. This report provides the foundation for forthcoming components of the Cities-LEAP project that will help cities improve energy decision making by mapping specific city energy or climate policies and actions to measurable impacts and results.

  11. BODIPY-Based Donor-Acceptor Pi-Conjugated Alternating Copolymers

    SciTech Connect

    Popere, Bhooshan C.; Della Pelle, Andrea M.; Thayumanavan, S.

    2011-06-28

    Four novel π-conjugated copolymers incorporating 4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) core as the “donor” and quinoxaline (Qx), 2,1,3-benzothiadiazole (BzT), N,N'-di(2'-ethyl)hexyl-3,4,7,8-naphthalenetetracarboxylic diimide (NDI), and N,N'-di(2'-ethyl)hexyl-3,4,9,10-perylene tetracarboxylic diimide (PDI) as acceptors were designed and synthesized via Sonogashira polymerization. The polymers were characterized by ¹H NMR spectroscopy, gel permeation chromatography (GPC), UV–vis absorption spectroscopy, and cyclic voltammetry. Density functional theory (DFT) calculations were performed on polymer repeat units, and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were estimated from the optimized geometry using B3LYP functional and 6-311g(d,p) basis set. Copolymers with Qx and BzT possessed HOMO and LUMO energy levels comparable to those of BODIPY homopolymer, while PDI stabilized both HOMO and LUMO levels. Semiconductor behavior of these polymers was estimated in organic thin-film transistors (OTFT). While the homopolymer, Qx, and BzT-based copolymers showed only p-type semiconductor behavior, copolymers with PDI and NDI showed only n-type behavior.

  12. Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors

    PubMed Central

    Wu, Tzi-Yi; Tsao, Ming-Hsiu; Chen, Fu-Lin; Su, Shyh-Gang; Chang, Cheng-Wen; Wang, Hong-Paul; Lin, Yuan-Chung; Ou-Yang, Wen-Chung; Sun, I-Wen

    2010-01-01

    New organic dyes comprising carbazole, iminodibenzyl, or phenothiazine moieties, respectively, as the electron donors, and cyanoacetic acid or acrylic acid moieties as the electron acceptors/anchoring groups were synthesized and characterized. The influence of heteroatoms on carbazole, iminodibenzyl and phenothiazine donors, and cyano-substitution on the acid acceptor is evidenced by spectral, electrochemical, photovoltaic experiments, and density functional theory calculations. The phenothiazine dyes show solar-energy-to-electricity conversion efficiency (η) of 3.46–5.53%, whereas carbazole and iminodibenzyl dyes show η of 2.43% and 3.49%, respectively. PMID:20162019

  13. Department of Energy pretreatment of high-level and low-level wastes

    SciTech Connect

    McGinnis, C.P.; Hunt, R.D.

    1995-12-31

    The remediation of the 1 {times} 10{sup 8} gal of highly radioactive waste in the underground storage tanks (USTs) at five US Department of Energy (DOE) sites is one of DOE`s greatest challenges. Therefore, the DOE Office of Environmental Management has created the Tank Focus Area (TFA) to manage an integrated technology development program that results in the safe and efficient remediation of UST waste. The TFA has divided its efforts into five areas, which are safety, characterization, retrieval/closure, pretreatment, and immobilization. All DOE pretreatment activities are integrated by the Pretreatment Technical Integration Manager of the TFA. For FY 1996, the 14 pretreatment tasks are divided into 3 systems: supernate separations, sludge treatment, and solid/liquid separation. The plans and recent results of these TFA tasks, which include two 25,000-gal demonstrations and two former TFA tasks on Cs removal, are presented. The pretreatment goals are to minimize the volume of high-level waste and the radioactivity in low-level waste.

  14. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    SciTech Connect

    Stübner, R. E-mail: kolkov@ifpan.edu.pl; Kolkovsky, Vl. E-mail: kolkov@ifpan.edu.pl; Weber, J.

    2015-08-07

    An acceptor and a single donor state of carbon-hydrogen defects (CH{sub A} and CH{sub B}) are observed by Laplace deep level transient spectroscopy at 90 K. CH{sub A} appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CH{sub B} can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CH{sub A} and 0.14 eV for CH{sub B}. Our results reconcile previous controversial experimental results. We attribute CH{sub A} to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbon and the neighboring silicon and CH{sub B} to another carbon-hydrogen defect.

  15. Highlands County Energy Education Activities--High School Level.

    ERIC Educational Resources Information Center

    Allen, Rodney F., Ed.

    Presented are five instructional units, developed by the Tri-County Teacher Education Center, for the purpose of educating secondary school students on Florida's unique energy problems. Unit one provides a series of value clarification and awareness activities as an introduction to energy. Unit two uses mathematics exercises to examine energy…

  16. FRET study in oligopeptide-linked donor-acceptor system in PVA matrix

    NASA Astrophysics Data System (ADS)

    Shah, Sunil; Mandecki, Wlodek; Li, Ji; Gryczynski, Zygmunt; Borejdo, Julian; Gryczynski, Ignacy; Fudala, Rafal

    2016-12-01

    An oligopeptide: Lys-Gly-Pro-Arg-Ser-Leu-Ser-Gly-Lys-NH2, cleaved specifically by a matrix metalloproteinase 9 (MMP-9) at the Ser-Leu bond, was labeled on the ɛ-NH2 groups of lysine with donor (5, 6 TAMRA) and acceptor (HiLyte647) dye. The donor control was a peptide labeled with 5, 6 TAMRA only on the C-terminal lysine, and the acceptor control was free HiLyte647. Following three products were studied by dissolving in 10% (w/w) poly(vinyl alcohol) and dried on glass slides forming 200 micron films. Absorption spectra of the films show full additivity of donor and acceptor absorptions. A strong Fluorescence Resonance Energy Transfer (FRET) with an efficiency of about 85% was observed in the fluorescence emission and excitation spectra. The lifetime of the donor was shorter and heterogeneous compared with the donor control.

  17. Polymer Acceptor Based on Double B←N Bridged Bipyridine (BNBP) Unit for High-Efficiency All-Polymer Solar Cells.

    PubMed

    Long, Xiaojing; Ding, Zicheng; Dou, Chuandong; Zhang, Jidong; Liu, Jun; Wang, Lixiang

    2016-08-01

    A novel polymer acceptor based on the double B←N bridged bipyridine building block is reported. All-polymer solar cells based on the new polymer acceptor show a power conversion efficiency of as high as 6.26% at a photon energy loss of only 0.51 eV.

  18. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    SciTech Connect

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  19. Linked‐Acceptor Type Conjugated Polymer for High Performance Organic Photovoltaics with an Open‐Circuit Voltage Exceeding 1 V

    PubMed Central

    Xia, Benzheng; Zhao, Yifan; Zhang, Jianqi; Yuan, Liu; Zhu, Lingyun; Yi, Yuanping

    2015-01-01

    A linked‐acceptor type conjugated polymer is designed and sythesized based on 4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) and linked‐thieno[3,4‐c]pyrrole‐4,6‐dione (LTPD). This polymer uses alkyl‐substituted thiophene as a bridge. The PBDTT‐LTPD includes two TPD units in one repeating unit, which can enhance acceptor density in the polymer backbone and lower the highest occupied molecular orbital (HOMO) level. By contrast, variable alkyl substitutions in the thiophene‐bridges ensure the subtle regulation of polymer properties. The solar cells based on PBDTT‐LTPD display an open‐circuit voltage (V oc) that exceeds 1 V, and a maximum power conversion efficiency (PCE) of 7.59% is obtained. This PCE value is the highest for conventional single‐junction bulk heterojunction solar cells with V oc values of up to 1 V. Given that PBDTT‐LTPD exhibits a low HOMO energy level and a band gap equivalent to that of poly(3‐hexylthiophene), PBDTT‐LTPD/phenyl‐C61‐butyric acid methyl ester may be a promising candidate for the front cell in tandem polymer solar cells. PMID:27980933

  20. Donor-acceptor pair recombination luminescence from monoclinic Cu{sub 2}SnS{sub 3} thin film

    SciTech Connect

    Aihara, Naoya; Tanaka, Kunihiko Uchiki, Hisao; Kanai, Ayaka; Araki, Hideaki

    2015-07-20

    The defect levels in Cu{sub 2}SnS{sub 3} (CTS) were investigated using photoluminescence (PL) spectroscopy. A CTS thin film was prepared on a soda-lime glass/molybdenum substrate by thermal co-evaporation and sulfurization. The crystal structure was determined to be monoclinic, and the compositional ratios of Cu/Sn and S/Metal were determined to be 1.8 and 1.2, respectively. The photon energy of the PL spectra observed from the CTS thin film was lower than that previously reported. All fitted PL peaks were associated with defect related luminescence. The PL peaks observed at 0.843 and 0.867 eV were assigned to donor-acceptor pair recombination luminescence, the thermal activation energies of which were determined to be 22.9 and 24.8 meV, respectively.

  1. Framework for State-Level Renewable Energy Market Potential Studies

    EPA Pesticide Factsheets

    This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study.

  2. Calculation of the energy levels of lithium-like ions

    NASA Astrophysics Data System (ADS)

    Nadykto, B. A.

    An attempt is made to develop a straightforward and sufficiently accurate method for calculating the energies of complex ion states. The method is based on Bohr's computational model and Sommerfeld's model in relativistic form (for circular orbits only). The method proposed here makes it possible to calculate excited ion states having different atomic and quantum numbers. A similar method can be used for calculating the energies of ion states with the number of electrons exceeding three.

  3. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor

    PubMed Central

    Kane, Aunica L.; Brutinel, Evan D.; Joo, Heena; Maysonet, Rebecca; VanDrisse, Chelsey M.; Kotloski, Nicholas J.

    2016-01-01

    ABSTRACT Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in S. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in S. oneidensis. IMPORTANCE Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the

  4. Photoluminescence study of Be acceptors in GaInNAs epilayers

    NASA Astrophysics Data System (ADS)

    Tsai, Y.; Barman, B.; Scrace, T.; Petrou, A.; Fukuda, M.; Sellers, I. R.; Leroux, M.; Khalfioui, M. A.

    2014-03-01

    We have studied the photoluminescence (PL) spectra from MBE grown GaInNAs epilayers doped p-type with Beryllium acceptors. The measurements were carried out in the 5 K - 70 K temperature range and in magnetic fields (B) up to 7 tesla. The PL spectra contain two features at T = 5 K: The exciton at 1093 meV and a second broader feature at 1058 meV. The intensity of this feature decreases with increasing temperature and disappears completely by 70K while the excitonic feature persists. The emission at 1058meV is identified as the conduction band to Beryllium acceptor transition. If we take into account the binding energy of the exciton [3] we get a value of 23 meV for the Beryllium acceptor binding energy. The acceptor related transition was studied as a function of magnetic field; the energy of this transition has a linear dependence on B with a slope of 055 meV/T. Research supported by Amethyst Research In. through the State of Oklahoma, ONAP program.

  5. Spectroscopy of donor-pi-acceptor complexes for solar cells

    NASA Astrophysics Data System (ADS)

    Himpsel, F. J.; Zegkinoglou, I.; Johnson, P. S.; Pemmaraju, C. D.; Prendergast, D.; Ragoussi, M.-E.; de la Torre, G.; Pickup, D. F.; Ortega, J. E.

    2014-03-01

    A recent improvement in the design of dye sensitized solar cells has been the combination of light absorbing, electron-donating, and electron-withdrawing groups within the same sensitizer molecule. This dye architecture has contributed to increase the energy conversion efficiency, leading to record efficiency values. Here we investigate a zinc(II)-porphyrin-based complex with triphenylamine donor groups and carboxyl linkers for the attachment to an oxide acceptor. The unoccupied orbitals of these three moieties are probed by element-selective X-ray absorption spectroscopy at the N 1s, C 1s, and Zn 2p edges, complemented by time-dependent density functional theory. The attachment of electron-donating groups to the porphyrin ring significantly delocalizes the highest occupied molecular orbital (HOMO) of the molecule. This leads to a spatial separation between the HOMO and the lowest unoccupied molecular orbital (LUMO), reducing the recombination rate of photoinduced electrons and holes.

  6. Pigment-acceptor-catalyst triads for photochemical hydrogen evolution.

    PubMed

    Kitamoto, Kyoji; Sakai, Ken

    2014-04-25

    In order to solve the problems of global warming and shortage of fossil fuels, researchers have been endeavoring to achieve artificial photosynthesis: splitting water into H2 and O2 under solar light illumination. Our group has recently invented a unique system that drives photoinduced water reduction through "Z-scheme" photosynthetic pathways. Nevertheless, that system still suffered from a low turnover number (TON) of the photocatalytic cycle (TON=4.1). We have now found and describe herein a new methodology to make significant improvements in the TON, up to around TON=14-27. For the new model systems reported herein, the quantum efficiency of the second photoinduced step in the Z-scheme photosynthesis is dramatically improved by introducing multiviologen tethers to temporarily collect the high-energy electron generated in the first photoinduced step. These are unique examples of "pigment-acceptor-catalyst triads", which demonstrate a new effective type of artificial photosynthesis.

  7. New perspective on formation energies and energy levels of point defects in non-metals

    NASA Astrophysics Data System (ADS)

    Zhu, Hong; Rinke, Patrick; Scheffler, Matthias; Ramprasad, Rampi

    2012-02-01

    We propose a powerful scheme to accurately determine the formation energy and thermodynamic charge transition levels of point defects in non-metals. Previously unknown correlations between defect properties and the valence-band width of the defect-free host material are identified allowing for a determination of the former via an accurate knowledge of the latter. These correlations are identified through a series of hybrid density functional theory computations and an unbiased exploration of the parameter space that defines the Hyde-Scuseria-Ernzerhof family of hybrid-functionals. The applicability of this paradigm is demonstrated for point defects in several insulators, including Si, Ge, ZrO2 and ZnO

  8. Synthesis and characterization of fluorinated azadipyrromethene complexes as acceptors for organic photovoltaics

    PubMed Central

    Etheridge, Forrest S; Fernando, Roshan J; Pejić, Sandra; Zeller, Matthias

    2016-01-01

    Summary Homoleptic zinc(II) complexes of di(phenylacetylene)azadipyrromethene (e.g., Zn(WS3)2) are potential non-fullerene electron acceptors for organic photovoltaics. To tune their properties, fluorination of Zn(WS3)2 at various positions was investigated. Three fluorinated azadipyrromethene-based ligands were synthesized with fluorine at the para-position of the proximal and distal phenyl groups, and at the pyrrolic phenylacetylene moieties. Additionally, a CF3 moiety was added to the pyrrolic phenyl positions to study the effects of a stronger electron withdrawing unit at that position. The four ligands were chelated with zinc(II) and BF2 + and the optical and electrochemical properties were studied. Fluorination had little effect on the optical properties of both the zinc(II) and BF2 + complexes, with λmax in solution around 755 nm and 785 nm, and high molar absorptivities of 100 × 103 M−1cm−1 and 50 × 103 M−1cm−1, respectively. Fluorination of Zn(WS3)2 raised the oxidation potentials by 0.04 V to 0.10 V, and the reduction potentials by 0.01 V to 0.10 V, depending on the position and type of substitution. The largest change was observed for fluorine substitution at the proximal phenyl groups and CF3 substitution at the pyrrolic phenylacetylene moieties. The later complexes are expected to be stronger electron acceptors than Zn(WS3)2, and may enable charge transfer from other conjugated polymer donors that have lower energy levels than poly(3-hexylthiophene) (P3HT). PMID:27829899

  9. Synthesis and characterization of fluorinated azadipyrromethene complexes as acceptors for organic photovoltaics.

    PubMed

    Etheridge, Forrest S; Fernando, Roshan J; Pejić, Sandra; Zeller, Matthias; Sauvé, Geneviève

    2016-01-01

    Homoleptic zinc(II) complexes of di(phenylacetylene)azadipyrromethene (e.g., Zn(WS3)2) are potential non-fullerene electron acceptors for organic photovoltaics. To tune their properties, fluorination of Zn(WS3)2 at various positions was investigated. Three fluorinated azadipyrromethene-based ligands were synthesized with fluorine at the para-position of the proximal and distal phenyl groups, and at the pyrrolic phenylacetylene moieties. Additionally, a CF3 moiety was added to the pyrrolic phenyl positions to study the effects of a stronger electron withdrawing unit at that position. The four ligands were chelated with zinc(II) and BF2(+) and the optical and electrochemical properties were studied. Fluorination had little effect on the optical properties of both the zinc(II) and BF2(+) complexes, with λmax in solution around 755 nm and 785 nm, and high molar absorptivities of 100 × 10(3) M(-1)cm(-1) and 50 × 10(3) M(-1)cm(-1), respectively. Fluorination of Zn(WS3)2 raised the oxidation potentials by 0.04 V to 0.10 V, and the reduction potentials by 0.01 V to 0.10 V, depending on the position and type of substitution. The largest change was observed for fluorine substitution at the proximal phenyl groups and CF3 substitution at the pyrrolic phenylacetylene moieties. The later complexes are expected to be stronger electron acceptors than Zn(WS3)2, and may enable charge transfer from other conjugated polymer donors that have lower energy levels than poly(3-hexylthiophene) (P3HT).

  10. Metabolic response of Alicycliphilus denitrificans strain BC toward electron acceptor variation.

    PubMed

    Oosterkamp, Margreet J; Boeren, Sjef; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2013-10-01

    Alicycliphilus denitrificans is a versatile, ubiquitous, facultative anaerobic bacterium. Alicycliphilus denitrificans strain BC can use chlorate, nitrate, and oxygen as electron acceptor for growth. Cells display a prolonged lag-phase when transferred from nitrate to chlorate and vice versa. Furthermore, cells adapted to aerobic growth do not easily use nitrate or chlorate as electron acceptor. We further investigated these responses of strain BC by differential proteomics, transcript analysis, and enzyme activity assays. In nitrate-adapted cells transferred to chlorate and vice versa, appropriate electron acceptor reduction pathways need to be activated. In oxygen-adapted cells, adaptation to the use of chlorate or nitrate is likely difficult due to the poorly active nitrate reduction pathway and low active chlorate reduction pathway. We deduce that the Nar-type nitrate reductase of strain BC also reduces chlorate, which may result in toxic levels of chlorite if cells are transferred to chlorate. Furthermore, the activities of nitrate reductase and nitrite reductase appear to be not balanced when oxygen-adapted cells are shifted to nitrate as electron acceptor, leading to the production of a toxic amount of nitrite. These data suggest that strain BC encounters metabolic challenges in environments with fluctuations in the availability of electron acceptors. All MS data have been deposited in the ProteomeXchange with identifier PXD000258.

  11. Synthesis and photophysical properties of new catenated electron donor-acceptor materials with magnesium and free base porphyrins as donors and C60 as the acceptor

    NASA Astrophysics Data System (ADS)

    Kirner, Sabrina V.; Guldi, Dirk M.; Megiatto, Jackson D., Jr.; Schuster, David I.

    2014-12-01

    A new series of nanoscale electron donor-acceptor systems with [2]catenane architectures has been synthesized, incorporating magnesium porphyrin (MgP) or free base porphyrin (H2P) as electron donor and C60 as electron acceptor, surrounding a central tetrahedral Cu(i)-1,10-phenanthroline (phen) complex. Model catenated compounds incorporating only one or none of these photoactive moieties were also prepared. The synthesis involved the use of Sauvage's metal template protocol in combination with the 1,3-dipolar cycloaddition of azides and alkynes (``click chemistry''), as in other recent reports from our laboratories. Ground state electron interactions between the individual constituents was probed using electrochemistry and UV-vis absorption spectroscopy, while events occurring following photoexcitation in tetrahydrofuran (under both aerobic and anaerobic conditions) at various wavelengths were followed by means of time-resolved transient absorption and emission spectroscopies on the femtosecond and nanosecond time scales, respectively, complemented by measurements of quantum yields for generation of singlet oxygen. From similar studies with model catenates containing one or neither of the chromophores, the events following photoexcitation could be elucidated. The results were compared with those previously reported for analogous catenates based on zinc porphyrin (ZnP). It was determined that a series of energy transfer (EnT) and electron transfer (ET) processes take place in the present catenates, ultimately generating long-distance charge separated (CS) states involving oxidized porphyrin and reduced C60 moieties, with lifetimes ranging from 400 to 1060 nanoseconds. Shorter lived short-distance CS states possessing oxidized copper complexes and reduced C60, with lifetimes ranging from 15 to 60 ns, were formed en route to the long-distance CS states. The dynamics of the ET processes were analyzed in terms of their thermodynamic driving forces. It was clear that

  12. [Relations between the retinoic acid acceptor and teratogenesis of retinoids].

    PubMed

    Li, Zeng-Gang; Sun, Kai-Lai

    2004-09-01

    Retinoic acid can induce teratogenesis of the fetus of many animals including human, and its biological activities are induced by a serious of different retinoic acid accepters and their ligands. The retinoic acid acceptor RAR plays key roles in the teratogenesis, and the ligands of RAR are strong teratogens. The intensity sequence of the relative teratogenesis is ligandalpha, ligandbeta and ligandgamma. The ligands of the retinoic acid acceptor RXR cannot induce teratogenesis, but they can enhance the teratogenesis of the RAR stimulus. The retinoic acid acceptors can also affect the development of the fetus by adjusting the expression of the other genes. The relations between the gene mutation of the retinoic acid acceptor, various retinoic acid acceptors and their ligands and teratogenesis of retinoic acid are summarized in this article. In addition, the regulations of the retinoic acid acceptors to the other genes are also discussed.

  13. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed Central

    Barrett, M C; Dawson, A P

    1975-01-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme. PMID:1218095

  14. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  15. Insights on the design and electron-acceptor properties of conjugated organophosphorus materials.

    PubMed

    Baumgartner, Thomas

    2014-05-20

    materials, in which the electron-acceptor properties are also mirrored by the degree of antiaromaticity of the system. Particularly, fused and π-extended phosphole materials show appreciable electron-acceptor properties, evident in low reduction potentials and corresponding LUMO levels. But these features do not always translate into powerful n-type materials. My group and others have thus recently been focusing on molecular organophosphorus scaffolds that also involve incorporation of imino or carbonyl groups, next to the incorporation of low coordinate phosphorus centers, to achieve superior electron-acceptor features. This state-of-the-art research has confirmed the great potential of the organophosphorus route toward powerful electron-acceptor materials, but further work is required to also establish these species as functional n-type materials.

  16. Energy Levels and the de Broglie Relationship for High School Students

    ERIC Educational Resources Information Center

    Gianino, Concetto

    2008-01-01

    In this article, four examples of possible lessons on energy levels for high school are described: a particle in a box, a finite square well, the hydrogen atom and a harmonic oscillator. The energy levels are deduced through the use of the steady-state condition and the de Broglie relationship. In particular, the harmonic oscillator energy levels…

  17. A Quantum Model of Atoms (the Energy Levels of Atoms).

    ERIC Educational Resources Information Center

    Rafie, Francois

    2001-01-01

    Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)

  18. Teaching Field Concept and Potential Energy at A-Level.

    ERIC Educational Resources Information Center

    Poon, C. H.

    1986-01-01

    Argues for a greater emphasis on the reality of fields in electronics and gravitation instruction. Advocates that the potential energy in a system be regarded as stored in the field rather than in the material bodies of the system. Provides a rationale and examples for this position. (ML)

  19. Orbital Energy Levels in Molecular Hydrogen. A Simple Approach.

    ERIC Educational Resources Information Center

    Willis, Christopher J.

    1988-01-01

    Described are the energetics involved in the formation of molecular hydrogen using concepts that should be familiar to students beginning the study of molecular orbital theory. Emphasized are experimental data on ionization energies. Included are two-electron atomic and molecular systems. (CW)

  20. Decreased energy levels can cause and sustain obesity.

    PubMed

    Wlodek, Danuta; Gonzales, Michael

    2003-11-07

    Obesity has reached epidemic proportions and has become one of the major health problems in developed countries. Current theories consider obesity a result of overeating and sedentary life style and most efforts to treat or prevent weight gain concentrate on exercise and food intake. This approach does not improve the situation as may be seen from the steep increase in the prevalence of obesity. This encouraged us to reanalyse existing information and look for biochemical basis of obesity. Our approach was to ignore current theories and concentrate on experimental data which are described in scientific journals and are available from several databases. We developed and applied a Knowledge Discovery in Databases procedure to analyse metabolic data. We began with the contradictory information: in obesity, more calories are consumed than used up, suggesting that obese people should have excess energy. On the other side, obese people experience fatigue and decreased physical endurance that indicates diminished energy supply in the body. The result of our work is a chain of metabolic events leading to obesity. The crucial event is the inhibition of the TCA cycle at the step of aconitase. It disturbs energy metabolism and results in ATP deficiency with simultaneous fat accumulation. Further steps in obesity development are the consequences of diminished energy supply: inhibition of beta-oxidation, leptin resistance, increase in appetite and food intake and a decrease in physical activity. Thus, our theory shows that obesity does not have to be caused by overeating and sedentary life-style but may be the result of the "obese" change in metabolism which is forcing people to overeat and save energy to sustain metabolic functions of cells. This "obese" change is caused by environmental factors that activate chronic low-grade inflammatory process in the body linking obesity with the environment of developed countries.

  1. Ultrafast exciton dissociation at donor/acceptor interfaces

    NASA Astrophysics Data System (ADS)

    Grancini, G.; Fazzi, D.; Binda, M.; Maiuri, M.; Petrozza, A.; Criante, L.; Perissinotto, S.; Egelhaaf, H.-J.; Brida, D.; Cerullo, G.; Lanzani, G.

    2013-09-01

    Charge generation at donor/acceptor interface is a highly debated topic in the organic photovoltaics (OPV) community. The primary photoexcited state evolution happens in few femtosecond timescale, thus making very intriguing their full understanding. In particular charge generation is believed to occur in < 200 fs, but no clear picture emerged so far. In this work we reveal for the first time the actual charge generation mechanism following in real time the exciton dissociation mechanism by means of sub-22 fs pump-probe spectroscopy. We study a low-band-gap polymer: fullerene interface as an ideal system for OPV. We demonstrate that excitons dissociation leads, on a timescale of 20-50 fs, to two byproducts: bound interfacial charge transfer states (CTS) and free charges. The branching ratio of their formation depends on the excess photon energy provided. When high energy singlet polymer states are excited, well above the optical band gap, an ultrafast hot electron transfer happens between the polymer singlet state and the interfacial hot CTS* due to the high electronic coupling between them. Hot exciton dissociation prevails then on internal energy dissipation that occurs within few hundreds of fs. By measuring the internal quantum efficiency of a prototypical device a rising trend with energy is observed, thus indicating that hot exciton dissociation effectively leads to a higher fraction of free charges.

  2. Systematic investigation on the central metal ion dependent binding geometry of M-meso-tetrakis(N-methylpyridinium-4-yl)porphyrin to DNA and their efficiency as an acceptor in DNA-mediated energy transfer.

    PubMed

    Kim, Young Rhan; Gong, Lindan; Park, Jongjin; Jang, Yoon Jung; Kim, Jinheung; Kim, Seog K

    2012-02-23

    Binding geometry to DNA and the efficiency as a donor for energy transfer of various metallo- and nonmetallo-porphyrins were investigated mainly by polarized light spectrscopy and fluorescence measurements. Planar porphyrins including nonmetallo meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP), CuTMPyP, and NiTMPyP produced large red-shift and hypochromism in absorption spectrum and a negative circular dichroism (CD) in the Soret band suggesting that these porphyrins intercalate between DNA base-pairs as expected. In the intercalation pocket, the molecular plane of these porphyrins tilts to a large extent. From a linear dichroism (LD) study, the angle between the two electric transition moments in the Soret band were 16°, 12°, and 11° for TMPyP, NiTMPyP, and CuTMPyP, respectively. On the other hand, porphyrins with axial ligands namely, VOTMPyP, TiOTMPyP, and CoTMPyP, produced a positive CD signal in the Soret band. Hyperchromism and less red-shift were apparent in the absorption spectrum. These observations indicated that the porphyrins with an axial ligand bind outside of the DNA. The angles of both the B(x) and B(y) transition with respect to the local DNA helix were 39°~46° for all porphyrins. From these results, the conceivable binding site of porphyrins with axial ligands is suggested to be the minor groove. All porphyrins were able to quench the fluorescence of intercalated ethidium. Strong overlap between emission spectrum of ethidium and the absorption spectrum of porphyrins when they simultaneously bound to DNA was found suggesting the mechanism behind energy transfer is, at least in part, the Förster type resonance energy transfer (FRET). The minimum distance in base pairs between ethidium and porphyrin required to permit the excited ethidium to emit a photon was the longest for CoTMPyP being 17.6 base pairs and was the shortest for CuTMPyP and NiTMPyP at 8.0 base pairs. The variation in the distance was almost proportional to the extent of

  3. Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Yusheng; Chen, Shangshang; Dong, Tao; Deng, Wei; Lv, Lei; Yang, Saina; Yan, He; Huang, Hui

    2016-08-01

    Two analogous dimer and tetramer compounds, SF-PDI2 and SF-PDI4, were designed, theoretically calculated, synthesized, and developed as electron acceptors for organic solar cells. The effects of the number of the electron deficient building blocks on the optical absorption, energy levels, charge transport, morphology, crystallinity, and photovoltaic performance of the molecules were investigated. In combination with two different donors, PTB7-Th and PffBT4T-2OD, the results showed that increasing the numbers of PDI building blocks is beneficial to photovoltaic performance and leads to efficiency over 5%.

  4. Energy balance regulation by endocannabinoids at central and peripheral levels.

    PubMed

    Quarta, Carmelo; Mazza, Roberta; Obici, Silvana; Pasquali, Renato; Pagotto, Uberto

    2011-09-01

    Dysregulation of the endocannabinoid system (ECS) is a universal and, perhaps, causative feature of obesity. Central nervous system (CNS) circuits that regulate food intake were initially believed to be the targets for dysregulation. However, it is increasingly evident that endocannabinoids affect food intake, energy expenditure and substrate metabolism by acting on peripheral sites. Cannabinoid type 1 receptor (CB1r) antagonists can effectively treat obesity and associated metabolic alterations but, unfortunately, cause and exacerbate mood disorders. Drugs restricted to act on peripheral CB1rs might be safer and more effective, retaining the anti-obesity effects but lacking the adverse neurodepressive reactions. This review summarizes the emerging roles of the ECS in energy balance and discusses future pharmacological approaches for developing peripherally restricted CB1r antagonists.

  5. Benzodi(pyridothiophene): a novel acceptor unit for application in A1-A-A1 type photovoltaic small molecules.

    PubMed

    Chen, Jianhua; Xiao, Manjun; Duan, Linrui; Wang, Qiong; Tan, Hua; Su, Ning; Liu, Yu; Yang, Renqiang; Zhu, Weiguo

    2016-01-21

    A series of novel A1-A-A1 type small molecules (SMs) of BDPT-2BT, BDPT-2FBT and BDPT-2DPP were designed and synthesized, in which benzodi(pyridothiophene) (BDPT) was used as a novel weak central acceptor (A) unit, and benzothiadiazole (BT), fluorinated benzothiadiazole (FBT) and diketopyrrolopyrrole (DPP) were used as terminal acceptor (A1) units, respectively. The pentacyclic BDPT aromatic unit can form big conjugated and planar SMs with the A1 unit, resulting in enhanced π-π stacking and crystallinity. The effect of the A1 unit on the optical, electrochemical and photovoltaic properties of three SMs was observed. The broader absorption spectrum, lower HOMO energy level, higher photo-response efficiency and better photovoltaic properties were exhibited for BDPT-2DPP. A maximum PCE of 3.97% with a Voc of 0.84 V, a Jsc of 9.0 mA cm(-2) and a FF of 52.37% was obtained in the BDPT-2DPP/PC71BM-based solar cells, which is 1.8 and 1.5 times the values of the BDPT-2BT and BDPT-2FBT-based cells, respectively.

  6. Energy levels of isoelectronic impurities by large scale LDA calculations

    SciTech Connect

    Li, Jingbo; Wang, Lin-Wang

    2002-11-22

    Isoelectronic impurity states are localized states induced by stoichiometric single atom substitution in bulk semiconductor. Photoluminescence spectra indicate deep impurity levels of 0.5 to 0.9eV above the top of valence band for systems like: GaN:As, GaN:P, CdS:Te, ZnS:Te. Previous calculations based on small supercells seemingly confirmed these experimental results. However, the current ab initio calculations based on thousand atom supercells indicate that the impurity levels of the above systems are actually much shallower(0.04 to 0.23 eV), and these impurity levels should be compared with photoluminescence excitation spectra, not photoluminescence spectra.

  7. Optimization of energy level for coronary angiography with dual-energy and dual-source computed tomography.

    PubMed

    Okayama, Satoshi; Seno, Ayako; Soeda, Tsunenari; Takami, Yasuhiro; Kawakami, Rika; Somekawa, Satoshi; Ishigami, Ken-Ichi; Takeda, Yukiji; Kawata, Hiroyuki; Horii, Manabu; Uemura, Shiro; Saito, Yoshihiko

    2012-04-01

    Dual-energy computed tomography (DE-CT) uses polyenergetic X-rays at 100- and 140-kVp tube energy, and generates 120-kVp composite images that are referred to as polyenergetic images (PEIs). Moreover, DE-CT can produce monoenergetic images (MEIs) at any effective energy level. We evaluated whether the image quality of coronary angiography is improved by optimizing the energy levels of DE-CT. We retrospectively evaluated data sets obtained from 24 consecutive patients using cardiac DE-CT at 100- and 140-kVp tube energy with a dual-source scanner. Signal-to-noise ratios (SNRs) were evaluated in the left ascending coronary artery in PEIs, and in MEIs reconstructed at 40, 50, 60, 70, 80, 90, 100, 130, 160 and 190 keV. Energy levels of 100, 120 and 140 kVp generated the highest SNRs in PEIs from 10, 12 and 2 patients, respectively, at 60, 70 and 80 keV in MEIs from 2, 10 and 10 patients, respectively, and at 90 and 100 keV in those from one patient each. Optimization of the energy level for each patient increased the SNR by 16.6% in PEIs (P < 0.0001) and by 18.2% in MEIs (P < 0.05), compared with 120-kVp composite images. The image quality of coronary angiography using DE-CT can be improved by optimizing the energy level for individual patients.

  8. Prediction of the Intrinsic Hydrogen Bond Acceptor Strength of Chemical Substances from Molecular Structure

    NASA Astrophysics Data System (ADS)

    Schwöbel, Johannes; Ebert, Ralf-Uwe; Kühne, Ralph; Schüürmann, Gerrit

    2009-08-01

    Hydrogen bonding affects the partitioning of organic compounds between environmental and biological compartments as well as the three-dimensional shape of macromolecules. Using the semiempirical quantum chemical AM1 level of calculation, we have developed a model to predict the site-specific hydrogen bond (HB) acceptor strength from ground-state properties of the individual compounds. At present, the model parametrization is confined to compounds with one HB acceptor site of the following atom types: N, O, S, F, Cl, and Br that act as lone-pair HB acceptors, and π-electron (aromatic or conjugated) systems with the associated C atoms as particularly weak HB acceptors. The HB acceptor strength is expressed in terms of the Abraham parameter B and calculated from local molecular parameters, taking into account electrostatic, polarizability, and charge transfer contributions according to the Morokuma concept. For a data set of 383 compounds, the squared correlation coefficient r2 is 0.97 when electrostatic potential (ESP) derived net atomic charges are employed, and the root-mean-square (rms) error is 0.04 that is in the range of experimental uncertainty. The model is validated using an extended leave-50%-out approach, and its performance is comparatively analyzed with the ones of earlier introduced ab initio (HF/6-31G**) and density functional theory (B3LYP/6-31G**) models as well as of two increment methods with respect to the total compound set as well as HB acceptor type subsets. The discussion includes an explorative model application to amides and organophosphates that demonstrates the robustness of the approach, and further opportunities for model extensions.

  9. Energy levels of magneto-optical polaron in spherical quantum dot — Part 1: Strong coupling

    NASA Astrophysics Data System (ADS)

    Fotue, A. J.; Kenfack, S. C.; Issofa, N.; Tiotsop, M.; Fotsin, H.; Mainimo, E.; Fai, L. C.

    2015-09-01

    We investigate the influence of a magnetic field on the ground state energy of a polaron in a spherical semiconductor quantum dot (QD) using the modified LLP method. The ground state energy is split into sub-energy levels and there is a degeneracy of energy levels. It is also observed that the degenerate energy increase with the electron-phonon coupling constant and decrease with the magnetic field. The numerical results show that, under the influence of magnetic field and the interaction with the total momentum along the z-direction, the split energy increases and decreases with the longitudinal and the transverse confinement length, respectively.

  10. Binding energy levels of a slowly moving ion in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Hongwei; Li, Fuli

    2013-02-01

    The near field electric potential of a slowly moving ion in complex plasmas is studied. We find that the potential consists of the Debye-Hückel potential, the wake potential, and the potential associated with charge fluctuations. The binding energy levels of the ion are calculated by use of the Ritz variation method. The results show that the binding energy levels are related to the magnetic quantum number m. The binding energy levels are affected by speed of the ion and dust grain number density. In contract to isolated ion or static ion in plasmas, the binding energy levels of the ion are pushed up and even become unbounded.

  11. π-Extended rigid triptycene-trisaroylenimidazoles as electron acceptors.

    PubMed

    Menke, Elisabeth H; Lami, Vincent; Vaynzof, Yana; Mastalerz, Michael

    2016-01-18

    Two soluble isomeric acceptor molecules based on a triptycene core, which is connected to three aroylenimidazole units are described. Due to the inherent threefold axis, the molecules are soluble and thus could be fully photophysically characterized in solution and film. Additionally, the preliminary results of these acceptors in organic photovoltaic devices with two different donor materials are reported.

  12. Polymer triplet energy levels need not limit photocurrent collection in organic solar cells.

    PubMed

    Schlenker, Cody W; Chen, Kung-Shih; Yip, Hin-Lap; Li, Chang-Zhi; Bradshaw, Liam R; Ochsenbein, Stefan T; Ding, Feizhi; Li, Xiaosong S; Gamelin, Daniel R; Jen, Alex K-Y; Ginger, David S

    2012-12-05

    We study charge recombination via triplet excited states in donor/acceptor organic solar cells and find that, contrary to intuition, high internal quantum efficiency (IQE) can be obtained in polymer/fullerene blend devices even when the polymer triplet state is significantly lower in energy than the intermolecular charge transfer (CT) state. Our model donor system comprises the copolymer PIDT-PhanQ: poly(indacenodithiophene-co-phenanthro[9,10-b]quinoxaline), which when blended with phenyl-C(71)-butyric acid methyl ester (PC(71)BM) is capable of achieving power conversion efficiencies of 6.0% and IQE ≈ 90%, despite the fact that the polymer triplet state lies 300 meV below the interfacial CT state. However, as we push the open circuit voltage (V(OC)) higher by tailoring the fullerene reduction potential, we observe signatures of a new recombination loss process near V(OC) = 1.0 V that we do not observe for PCBM-based devices. Using photoinduced absorption and photoluminescence spectroscopy, we show that a new recombination path opens via the fullerene triplet manifold as the energy of the lowest CT state approaches the energy of the fullerene triplet. This pathway appears active even in cases where direct recombination via the polymer triplet remains thermodynamically accessible. These results suggest that kinetics, as opposed to thermodynamics, can dominate recombination via triplet excitons in these blends and that optimization of charge separation and kinetic suppression of charge recombination may be fruitful paths for the next generation of panchromatic organic solar cell materials with high V(OC) and J(SC).

  13. Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency.

    PubMed

    Zheng, Zhong; Awartani, Omar M; Gautam, Bhoj; Liu, Delong; Qin, Yunpeng; Li, Wanning; Bataller, Alexander; Gundogdu, Kenan; Ade, Harald; Hou, Jianhui

    2017-02-01

    Fullerene-free organic solar cells show over 11% power conversion efficiency, processed by low toxic solvents. The applied donor and acceptor in the bulk heterojunction exhibit almost the same highest occupied molecular orbital level, yet exhibit very efficient charge creation.

  14. Element levels in birch and spruce wood ashes: green energy?

    PubMed

    Reimann, Clemens; Ottesen, Rolf Tore; Andersson, Malin; Arnoldussen, Arnold; Koller, Friedrich; Englmaier, Peter

    2008-04-15

    Production of wood ash has increased strongly in the last ten years due to the increasing popularity of renewable and CO(2)-neutral heat and energy production via wood burning. Wood ashes are rich in many essential plant nutrients. In addition they are alkaline. The idea of using the waste ash as fertiliser in forests is appealing. However, wood is also known for its ability to strongly enrich certain heavy metals from the underlying soils, e.g. Cd, without any anthropogenic input. Concentrations of 26 chemical elements (Ag, As, Au, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sr, Ti, and Zn) in 40 samples each of birch and spruce wood ashes collected along a 120 km long transect in southern Norway are reported. The observed maximum concentrations are 1.3 wt.% Pb, 4.4 wt.% Zn and 203 mg/kg Cd in birch wood ashes. Wood ashes can thus contain very high heavy metal concentrations. Spreading wood ashes in a forest is a major anthropogenic interference with the natural biogeochemical cycles. As with the use of sewage sludge in agriculture the use of wood ashes in forests clearly needs regulation.

  15. Imaging protein interactions by FRET microscopy: FRET measurements by acceptor photobleaching.

    PubMed

    Verveer, Peter J; Rocks, Oliver; Harpur, Ailsa G; Bastiaens, Philippe I H

    2006-11-01

    This protocol describes the detection of fluorescence resonance energy transfer (FRET) by measuring the quenching of donor emission alone. As opposed to sensitized emission measurements, photobleaching can be performed with high selectivity of the acceptor because absorption spectra are steep at their red edge, allowing the acceptor to be bleached without excitation of the donor. When using acceptor photobleaching FRET measurements, care should be taken that the photochemical product of the bleached acceptor does not have residual absorption at the donor emission and, more importantly, that it does not fluoresce in the donor spectral region. Because of mass movement of protein during the extended time required for photobleaching (typically 1-20 min), it is preferable to perform this type of FRET determination on fixed cell samples. Live-cell FRET measurements based only on donor fluorescence are more feasible using fluorescence lifetime imaging (FLIM), because lifetimes are independent of probe concentration and light path length. The former is not easy to determine in cells, and the latter means that cell shape is not a factor.

  16. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    PubMed

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  17. North Dakota Industrial Arts Teachers Handbook. Energy/Power Curriculum Guide, Level I.

    ERIC Educational Resources Information Center

    Mugan, Don

    This handbook provides teachers with support material to more fully implement the North Dakota Energy and Power Curriculum Guide, Level I. It first presents the body of knowledge for Energy/Power Technology as taken from the curriculum guide. The guide is then addressed unit by unit, topic by topic. These seven units are covered: Energy/Power…

  18. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  19. Quantifying the Level of Cross-State Renewable Energy Transactions (Presentation)

    SciTech Connect

    Heeter, J.; Beiter, P.; Flores, F.; Hurlbut, D.; Liu, C.

    2015-02-01

    This presentation and associated spreadsheet examine the level of cross-state renewable energy transactions. Most state renewable portfolio standard (RPS) policies allow for out-of-state renewable energy or renewable energy certificates to count towards compliance. This analysis focuses on compliance for 2012 and provides stakeholders with an understanding of the extent to which RPSs are being met.

  20. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  1. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  2. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  3. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  4. Energy conversion modeling of the intrinsic persistent luminescence of solids via energy transfer paths between transition levels.

    PubMed

    Huang, Bolong; Sun, Mingzi

    2017-04-05

    An energy conversion model has been established for the intrinsic persistent luminescence in solids related to the native point defect levels, formations, and transitions. In this study, we showed how the recombination of charge carriers between different defect levels along the zero phonon line (ZPL) can lead to energy conversions supporting the intrinsic persistent phosphorescence in solids. This suggests that the key driving force for this optical phenomenon is the pair of electrons hopping between different charged defects with negative-Ueff. Such a negative correlation energy will provide a sustainable energy source for electron-holes to further recombine in a new cycle with a specific quantum yield. This will help us to understand the intrinsic persistent luminescence with respect to native point defect levels as well as the correlations of electronics and energetics.

  5. Rotation vibration energy level clustering in the XB1 ground electronic state of PH2

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. N.; Thiel, W.; Jensen, Per; Bunker, P. R.

    2006-10-01

    We use previously determined potential energy surfaces for the Renner-coupled XB1 and AA1 electronic states of the phosphino (PH 2) free radical in a calculation of the energies and wavefunctions of highly excited rotational and vibrational energy levels of the X˜ state. We show how spin-orbit coupling, the Renner effect, rotational excitation, and vibrational excitation affect the clustered energy level patterns that occur. We consider both 4-fold rotational energy level clustering caused by centrifugal distortion, and vibrational energy level pairing caused by local mode behaviour. We also calculate ab initio dipole moment surfaces for the X˜ and A˜ states, and the X˜-A˜ transition moment surface, in order to obtain spectral intensities.

  6. Wind energy development in the United States: Can state-level policies promote efficient development of wind energy capacity?

    NASA Astrophysics Data System (ADS)

    Goldstein, Blair S.

    In the absence of strong U.S. federal renewable energy policies, state governments have taken the lead in passing legislation to promote wind energy. Studies have shown that many of these policies, including Renewable Portfolio Standards (RPS), have aided in the development of wind energy capacity nationwide. This paper seeks to analyze whether these state-level policies have led to an efficient development of U.S. wind energy. For the purposes of this paper, wind energy development is considered efficient if competitive markets enable wind capacity to be built in the most cost effective manner, allowing states to trade wind energy between high wind potential states and low wind potential states. This concept is operationalized by analyzing how state policies that incentivize the in-state development of wind energy impact where wind capacity is developed. A multivariate regression model examining wind capacity in the 48 contiguous United States that had some wind capacity between 1999 and 2008 found these in-state policies are associated with increased wind capacity, controlling for states' wind potential. The results suggest that state-level policies are distorting where wind is developed. These findings support the enactment of a more comprehensive federal energy policy, such as a national RPS, a cap-and-trade program, or a targeted federal transmission policy. These federal policies could spur national markets that would result in the more efficient development of U.S. wind energy.

  7. Green's function calculation of through-bond electronic coupling in donor bridge acceptor model systems

    NASA Astrophysics Data System (ADS)

    de Santana, O. L.; da Gama, A. A. S.

    1999-12-01

    The Green's function formalism is applied for the calculation of the effective through-bond donor-acceptor coupling in model molecular systems. The calculation is performed at a Hartree-Fock (self-consistent) level, by using semiempirical AM1 and CNDO/S, and ab initio STO-3G methods. The results are compared with that obtained from the splitting of the appropriate levels, by using the Koopmans' theorem, within each one of the selected quantum chemical methods.

  8. Effect of temperature-dependent energy-level shifts on a semiconductor's Peltier heat

    NASA Astrophysics Data System (ADS)

    Emin, David

    1984-11-01

    The Peltier heat of a charge carrier in a semiconductor is calculated for the situation in which the electronic energy levels are temperature dependent. The temperature dependences of the electronic energy levels, generally observed optically, arise from their dependences on the vibrational energy of the lattice (e.g., as caused by thermal expansion). It has been suggested that these temperature dependences will typically have a major effect on the Peltier heat. The Peltier heat associated with a given energy level is a thermodynamic quantity; it is the product of the temperature and the change of the entropy of the system when a carrier is added in that level. As such, the energy levels cannot be treated as explicitly temperature dependent. The electron-lattice interaction causing the temperature dependence must be expressly considered. It is found that the carrier's interaction with the atomic vibrations lowers its electronic energy. However, the interaction of the carrier with the atomic vibrations also causes an infinitesimal lowering (~1N) of each of the N vibrational frequencies. As a result, there is a finite carrier-induced increase in the average vibrational energy. Above the Debye temperature, this cancels the lowering of the carrier's electronic energy. Thus, the standard Peltier-heat formula, whose derivation generally ignores the temperature dependence of the electronic energy levels, is regained. This explains the apparent success of the standard formula in numerous analyses of electronic transport experiments.

  9. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.

    PubMed

    Marinado, Tannia; Hagberg, Daniel P; Hedlund, Maria; Edvinsson, Tomas; Johansson, Erik M J; Boschloo, Gerrit; Rensmo, Håkan; Brinck, Tore; Sun, Licheng; Hagfeldt, Anders

    2009-01-07

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.

  10. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    PubMed

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    (i) ground-state effects, the energy required to breakup the noncovalent bonding interactions that stabilize either the GSCC or MSCC, (ii) spacer effects, where the structures overcome additional barriers, either steric or electrostatic or both, en route from one co-conformation to the other, and (iii) the physical environment of the bistable MIMs. By managing all three of these effects, chemists can vary these rate constants over many orders of magnitude. We also discuss progress toward achieving mechanostereoselective motion, a key principle in the design and realization of artificial molecular machines capable of doing work at the molecular level, by the strategic implementation of free energy barriers to intramolecular motion.

  11. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.

    PubMed

    Mashimo, Masato; Kato, Jiro; Moss, Joel

    2014-11-01

    ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD(+)) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g., ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g., ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1(-/-) and ARH3(-/-) mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos.

  12. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  13. Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells.

    PubMed

    Wu, Jhong-Sian; Cheng, Sheng-Wen; Cheng, Yen-Ju; Hsu, Chain-Shu

    2015-03-07

    Harvesting solar energy from sunlight to generate electricity is considered as one of the most important technologies to address the future sustainability of humans. Polymer solar cells (PSCs) have attracted tremendous interest and attention over the past two decades due to their potential advantage to be fabricated onto large area and light-weight flexible substrates by solution processing at a lower cost. PSCs based on the concept of bulk heterojunction (BHJ) configuration where an active layer comprises a composite of a p-type (donor) and an n-type (acceptor) material represents the most useful strategy to maximize the internal donor-acceptor interfacial area allowing for efficient charge separation. Fullerene derivatives such as [6,6]-phenyl-C61 or 71-butyric acid methyl ester (PCBM) are the ideal n-type materials ubiquitously used for BHJ solar cells. The major effort to develop photoactive materials is numerously focused on the p-type conjugated polymers which are generally synthesized by polymerization of electron-rich donor and electron-deficient acceptor monomers. Compared to the development of electron-deficient comonomers (acceptor segments), the development of electron-rich donor materials is considerably flourishing. Forced planarization by covalently fastening adjacent aromatic and heteroaromatic subunits leads to the formation of ladder-type conjugated structures which are capable of elongating effective conjugation, reducing the optical bandgap, promoting intermolecular π-π interactions and enhancing intrinsic charge mobility. In this review, we will summarize the recent progress on the development of various well-defined new ladder-type conjugated materials. These materials serve as the superb donor monomers to prepare a range of donor-acceptor semi-ladder copolymers with sufficient solution-processability for solar cell applications.

  14. Donor–Acceptor Oligorotaxanes Made to Order

    SciTech Connect

    Basu, Subhadeep; Coskun, Ali; Friedman, Douglas C.; Olson, Mark A.; Benitez, Diego; Tkatchouk, Ekaterina; Barin, Gokhan; Yang, Jeffrey; Fahrenbach, Albert C.; Goddard, William A.; Stoddart, J. Fraser

    2011-01-01

    Five donor–acceptor oligorotaxanes made up of dumbbells composed of tetraethylene glycol chains, interspersed with three and five 1,5-dioxynaphthalene units, and terminated by 2,6-diisopropylphenoxy stoppers, have been prepared by the threading of discrete numbers of cyclobis(paraquat-p-phenylene) rings, followed by a kinetically controlled stoppering protocol that relies on click chemistry. The well-known copper(I)-catalyzed alkyne–azide cycloaddition between azide functions placed at the ends of the polyether chains and alkyne-bearing stopper precursors was employed during the final kinetically controlled template-directed synthesis of the five oligorotaxanes, which were characterized subsequently by ¹H NMR spectroscopy at low temperature (233 K) in deuterated acetonitrile. The secondary structures, as well as the conformations, of the five oligorotaxanes were unraveled by spectroscopic comparison with the dumbbell and ring components. By focusing attention on the changes in chemical shifts of some key probe protons, obtained from a wide range of low-temperature spectra, a picture emerges of a high degree of folding within the thread protons of the dumbbells of four of the five oligorotaxanes—the fifth oligorotaxane represents a control compound in effect—brought about by a combination of C[BOND]H···O and π–π stacking interactions between the π-electron-deficient bipyridinium units in the rings and the π-electron-rich 1,5-dioxynaphthalene units and polyether chains in the dumbbells. The secondary structures of a foldamer-like nature have received further support from a solid-state superstructure of a related [3]pseudorotaxane and density functional calculations performed thereon.

  15. Intramolecular charge transfer in donor-acceptor molecules

    SciTech Connect

    Slama-Schwok, A.; Blanchard-Desce, M.; Lehn, J.M. )

    1990-05-17

    The photophysical properties of donor-acceptor molecules, push-pull polyenes and carotenoids, have been studied by absorption and fluorescence spectroscopy. The compounds bear various acceptor and donor groups, linked together by chains of different length and structure. The position of the absorption and fluorescence maxima and their variation in solvents of increasing polarity are in agreement with long-distance intramolecular charge-transfer processes, the linker acting as a molecular wire. The effects of the linker length and structure and of the nature of acceptor and donor are presented.

  16. Efficient organic solar cells with helical perylene diimide electron acceptors.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Wang, Wei; Khlyabich, Petr P; Kumar, Bharat; Xu, Qizhi; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles; Steigerwald, Michael L; Loo, Yueh-Lin; Xiao, Shengxiong; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2014-10-29

    We report an efficiency of 6.1% for a solution-processed non-fullerene solar cell using a helical perylene diimide (PDI) dimer as the electron acceptor. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces, indicating that charge carriers are created from photogenerated excitons in both the electron donor and acceptor phases. Light-intensity-dependent current-voltage measurements suggested different recombination rates under short-circuit and open-circuit conditions.

  17. Design, synthesis and study of supramolecular donor-acceptor systems mimicking natural photosynthesis processes

    NASA Astrophysics Data System (ADS)

    Bikram, Chandra

    This dissertation investigates the chemical ingenuity into the development of various photoactive supramolecular donor -- acceptor systems to produce clean and carbon free energy for the next generation. The process is inspired by the principles learned from nature's approach where the solar energy is converted into the chemical energy through the natural photosynthesis process. Owing to the importance and complexity of natural photosynthesis process, we have designed ideal donor-acceptor systems to investigate their light energy harvesting properties. This process involves two major steps: the first step is the absorption of light energy by antenna or donor systems to promote them to an excited electronic state. The second step involves, the transfer of excitation energy to the reaction center, which triggers an electron transfer process within the system. Based on this principle, the research is focused into the development of artificial photosynthesis systems to investigate dynamics of photo induced energy and electron transfer events. The derivatives of Porphyrins, Phthalocyanines, BODIPY, and SubPhthalocyanines etc have been widely used as the primary building blocks for designing photoactive and electroactive ensembles in this area because of their excellent and unique photophysical and photochemical properties. Meanwhile, the fullerene, mainly its readily available version C60 is typically used as an electron acceptor component because of its unique redox potential, symmetrical shape and low reorganization energy appropriate for improved charge separation behavior. The primary research motivation of the study is to achieve fast charge separation and slow charge recombination of the system by stabilizing the radical ion pairs which are formed from photo excitation, for maximum utility of solar energy. Besides Fullerene C60, this dissertation has also investigated the potential application of carbon nanomaterials (Carbon nanotubes and graphene) as primary

  18. Broad Bandgap D-A Copolymer Based on Bithiazole Acceptor Unit for Application in High-Performance Polymer Solar Cells with Lower Fullerene Content.

    PubMed

    Wang, Kun; Guo, Xia; Guo, Bing; Li, Wanbin; Zhang, Maojie; Li, Yongfang

    2016-07-01

    A new broad bandgap and 2D-conjugated D-A copolymer, PBDTBTz-T, based on bithienyl-benzodithiophene donor unit and bithiazole (BTz) acceptor unit, is designed and synthesized for the application as donor material in polymer solar cells (PSCs). The polymer possesses highly coplanar and crystalline structure with a higher hole mobility and lower HOMO energy level which is beneficial to achieve higher open circuit voltage (Voc ) of the PSCs with the polymer as donor. The PSCs based on PBDTBTz-T:PC71 BM blend film with a lower PC71 BM content of 40% demonstrate a power conversion efficiency (PCE) of 6.09% with a relatively higher Voc of 0.92 V. These results indicate that the lower HOMO energy level of the BTz-based D-A copolymer is beneficial to a high Voc of the PSCs. The polymer, with highly coplanar and crystalline structure, can effectively reduce the content of fullerene acceptor in the active layer and can enhance the absorption and PCE of the PSCs.

  19. Variational calculation of highly excited rovibrational energy levels of H2O2.

    PubMed

    Polyansky, Oleg L; Kozin, Igor N; Ovsyannikov, Roman I; Małyszek, Paweł; Koput, Jacek; Tennyson, Jonathan; Yurchenko, Sergei N

    2013-08-15

    Results are presented for highly accurate ab initio variational calculation of the rotation-vibration energy levels of H2O2 in its electronic ground state. These results use a recently computed potential energy surface and the variational nuclear-motion programs WARV4, which uses an exact kinetic energy operator, and TROVE, which uses a numerical expansion for the kinetic energy. The TROVE calculations are performed for levels with high values of rotational excitation, J up to 35. The purely ab initio calculations of the rovibrational energy levels reproduce the observed levels with a standard deviation of about 1 cm(-1), similar to that of the J = 0 calculation, because the discrepancy between theory and experiment for rotational energies within a given vibrational state is substantially determined by the error in the vibrational band origin. Minor adjustments are made to the ab initio equilibrium geometry and to the height of the torsional barrier. Using these and correcting the band origins using the error in J = 0 states lowers the standard deviation of the observed-calculated energies to only 0.002 cm(-1) for levels up to J = 10 and 0.02 cm(-1) for all experimentally known energy levels, which extend up to J = 35.

  20. Density of states determination in organic donor-acceptor blend layers enabled by molecular doping

    NASA Astrophysics Data System (ADS)

    Fischer, Janine; Ray, Debdutta; Kleemann, Hans; Pahner, Paul; Schwarze, Martin; Koerner, Christian; Vandewal, Koen; Leo, Karl

    2015-06-01

    Charge carrier transport is a key parameter determining the efficiency of organic solar cells, and is closely related to the density of free and trapped states. For trap characterization, impedance spectroscopy is a suitable, non-invasive method, applicable to complete organic semiconductor devices. In order to contribute to the capacitive signal, the traps must be filled with charge carriers. Typically, trap filling is achieved by illuminating the device or by injecting charge carriers through application of a forward bias voltage. However, in both cases, the exact number of charge carriers in the device is not known and depends strongly on the measurement conditions. Here, hole trap states of the model blend layer ZnPc:C60 are filled by weak p-doping, enabling trap characterization in a blend layer at a controlled hole density. We evaluate impedance spectra at different temperatures in order to determine the density of occupied states (DOOS) directly from the capacitance-frequency spectra by assuming a simple energy diagram. The reconstructed DOOS distribution is analyzed at different doping concentrations and device thicknesses and compared to thermally stimulated current measurements performed on the same devices. In both methods, a pronounced Gaussian peak at about 0.4 eV below the transport level is found as well as deep, exponential tail states, providing a deeper insight into the density of states distribution of this donor-acceptor blend layer. Additionally, the effect of doping-induced trap filling on the solar cell characteristics is studied in these devices.

  1. The role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L.

    PubMed

    Buapet, Pimchanok; Björk, Mats

    2016-07-01

    This study investigates the role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L. Electron transport rates (ETRs) and non-photochemical quenching (NPQ) of Z. marina were measured under saturating irradiance in synthetic seawater containing 2.2 mM DIC and no DIC with different O2 levels (air-equilibrated levels, 3 % of air equilibrium and restored air-equilibrated levels). Lowering O2 did not affect ETR when DIC was provided, while it caused a decrease in ETR and an increase in NPQ in DIC-free media, indicating that O2 acted as an alternative electron acceptor under low DIC. The ETR and NPQ as a function of irradiance were subsequently assessed in synthetic seawater containing (1) 2.2 mM DIC, air-equilibrated O2; (2) saturating CO2, no O2; and (3) no DIC, air-equilibrated O2. These treatments were combined with glycolaldehyde pre-incubation. Glycolaldehyde caused a marked decrease in ETR in DIC-free medium, indicating significant electron flow supported by photorespiration. Combining glycolaldehyde with O2 depletion completely suppressed ETR suggesting the operation of the Mehler reaction, a possibility supported by the photosynthesis-dependent superoxide production. However, no notable effect of suppressing the Mehler reaction on NPQ was observed. It is concluded that during DIC-limiting conditions, such as those frequently occurring in the habitats of Z. marina, captured light energy exceeds what is utilised for the assimilation of available carbon, and photorespiration is a major alternative electron acceptor, while the contribution of the Mehler reaction is minor.

  2. Ab initio ground-state potential energy function and vibration-rotation energy levels of imidogen, NH.

    PubMed

    Koput, Jacek

    2015-06-30

    The accurate ground-state potential energy function of imidogen, NH, has been determined from ab initio calculations using the multireference averaged coupled-pair functional (MR-ACPF) method in conjunction with the correlation-consistent core-valence basis sets up to octuple-zeta quality. The importance of several effects, including electron correlation beyond the MR-ACPF level of approximation, the scalar relativistic, adiabatic, and nonadiabatic corrections were discussed. Along with the large one-particle basis set, all of these effects were found to be crucial to attain "spectroscopic" accuracy of the theoretical predictions of vibration-rotation energy levels of NH.

  3. Energy Efficiency Policy in the United States. Overview of Trends at Different Levels of Government

    SciTech Connect

    Doris, Elizabeth; Cochran, Jaquelin; Vorum, Martin

    2009-12-01

    This report catalogs by sector--buildings, transportation, industrial, and power--energy efficiency policies at the federal, state, and local levels, and identifies some prominent policy trends. Four key findings emerged from this report: 1) leadership on energy efficiency is necessary--and is found--at each level of government; 2) there is no widely accepted methodology for evaluating energy efficiency policies; 3) coordination among the three levels of government--and across sectors--is increasingly important, and there are opportunities to significantly improve policy performance through a unified strategy; and 4) there are efficiencies to be gained by informing policies in one sector with experience from others.

  4. Energy Efficiency Policy in the United States: Overview of Trends at Different Levels of Government

    SciTech Connect

    Doris, E.; Cochran, J.; Vorum, M.

    2009-12-01

    This report catalogs by sector--buildings, transportation, industrial, and power--energy efficiency policies at the federal, state, and local levels, and identifies some prominent policy trends. Four key findings emerged from this report: 1) leadership on energy efficiency is necessary--and is found--at each level of government; 2) there is no widely accepted methodology for evaluating energy efficiency policies; 3) coordination among the three levels of government--and across sectors--is increasingly important, and there are opportunities to significantly improve policy performance through a unified strategy; and 4) there are efficiencies to be gained by informing policies in one sector with experience from others.

  5. Enhanced Visible Photovoltaic Response of TiO₂ Thin Film with an All-Inorganic Donor-Acceptor Type Polyoxometalate.

    PubMed

    Li, Jian-Sheng; Sang, Xiao-Jing; Chen, Wei-Lin; Zhang, Lan-Cui; Zhu, Zai-Ming; Ma, Teng-Ying; Su, Zhong-Min; Wang, En-Bo

    2015-06-24

    In the field of material chemistry, it is of great significance to develop abundant and sustainable materials for solar energy harvesting and management. Herein, after evaluating the energy band characteristics of 13 kinds of polyoxometalates (POMs), the trisubstituted POM compound K6H4[α-SiW9O37Co3(H2O)3]·17H2O (SiW9Co3) was first studied due to its relatively smaller band gap (2.23 eV) and higher lowest unoccupied molecular orbital (LUMO) level (-0.63 V vs NHE). Additionally, the preliminary computational modeling indicated that SiW9Co3 exhibited the donor-acceptor (D-A) structure, in which the cobalt oxygen clusters and tungsten skeletons act as the electron donor and electron acceptor, respectively. By employing SiW9Co3 to modify the TiO2 film, the visible photovoltaic and photocurrent response were both enhanced, and the light-induced photocurrent at 420 nm was improved by 7.1 times. Moreover, the highly dispersive and small sized SiW9Co3 nanoclusters loading on TiO2 were successfully achieved by fabricating the nanocomposite film of {TiO2/SiW9Co3}3 with the layer-by-layer method, which can result in the photovoltaic performance enhancement of dye-sensitized solar cells (DSSCs), of which the overall power conversion efficiency was improved by 25.6% from 6.79% to 8.53% through the synergistic effect of POMs and Ru-complex.

  6. Energy Level Alignment at Aqueous GaN and ZnO Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark S.; Kharche, Neerav; Muckerman, James T.

    2014-03-01

    Electronic energy level alignment at semiconductor-electrolyte interfaces is fundamental to electrochemical activity. Motivated in particular by the search for new materials that can be more efficient for photocatalysis, we develop a first principles method to calculate this alignment at aqueous interfaces and demonstrate it for the specific case of non-polar GaN and ZnO interfaces with water. In the first step, density functional theory (DFT) based molecular dynamics is used to sample the physical interface structure and to evaluate the electrostatic potential step at the interface. In the second step, the GW approach is used to evaluate the reference electronic energy level separately in the bulk semiconductor (valence band edge energy) and in bulk water (the 1b1 energy level), relative to the internal electrostatic energy reference. Use of the GW approach naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. With this predicted interface alignment, specific redox levels in water, with potentials known relative to the 1b1 level, can then be compared to the semiconductor band edge positions. Our results will be discussed in the context of experiments in which photoexcited GaN and ZnO drive the hydrogen evolution reaction. Research carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

  7. Energy structure of non-hydrogen-like impurities in quantum wells without spin-orbit coupling

    SciTech Connect

    Romanov, K. S. Averkiev, N. S.

    2012-06-15

    Hole states localized at an acceptor in a quantum well formed of a semiconductor with cubic symmetry without spin-orbit coupling (the symmetry {Gamma}{sub 15}) are considered. It is shown that the triply degenerate level is split, and the energies of the levels are calculated as functions of the well width.

  8. New Fe I Level Energies and Line Identifications from Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth C.; Kurucz, Robert L.

    2015-01-01

    The spectrum of the Fe I atom is critical to many areas of astrophysics and beyond. Measurements of the energies of its high-lying levels remain woefully incomplete, however, despite extensive laboratory and solar analysis. In this work, we use high-resolution archival absorption-line ultraviolet and optical spectra of stars whose warm temperatures favor moderate Fe I excitation. We derive the energy for a particular upper level in Kurucz's semiempirical calculations by adopting a trial value that yields the same wavelength for a given line predicted to be about as strong as that of a strong unidentified spectral line observed in the stellar spectra, then checking the new wavelengths of other strong predicted transitions that share the same upper level for coincidence with other strong observed unidentified lines. To date, this analysis has provided the upper energies of 66 Fe I levels. Many new energy levels are higher than those accessible to laboratory experiments; several exceed the Fe I ionization energy. These levels provide new identifications for over 2000 potentially detectable lines. Almost all of the new levels of odd parity include UV lines that were detected but unclassified in laboratory Fe I absorption spectra, providing an external check on the energy values. We motivate and present the procedure, provide the resulting new energy levels and their uncertainties, list all the potentially detectable UV and optical new Fe I line identifications and their gf values, point out new lines of astrophysical interest, and discuss the prospects for additional Fe I energy level determinations.

  9. Impact behaviour of Napier/polyester composites under different energy levels

    NASA Astrophysics Data System (ADS)

    Fahmi, I.; Majid, M. S. Abdul; Afendi, M.; Haslan, M.; Helmi E., A.; M. Haameem J., A.

    2016-07-01

    The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energy levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.

  10. Dielectric relaxation behavior of acceptor (Mg)-doped BaTiO3

    NASA Astrophysics Data System (ADS)

    Yoon, Seok-Hyun; Kwon, Sang-Hoon; Hur, Kang-Heon

    2011-04-01

    Dielectric relaxation behavior of acceptor (Mg)-doped BaTiO3 ceramics was investigated with the increase of Mg concentration up to 0.6 mol. % in the temperature rang of 120 ˜ 540 °C. In the high temperature range above 320 °C, the activation energies of dielectric relaxation (Eτ) showed nearly similar values of ˜ 1.2 eV irrespective of Mg concentration. However, in the low temperature range below 320 °C, they continuously decreased from ˜ 1.2 eV and then saturated to ˜ 0.4 eV with the increase of Mg concentration. The activation energies of electrical conduction (Eσ) of the bulk grain evaluated by impedance analysis also showed almost the same behavior. Such coincidence demonstrates that the observed dielectric behaviors are caused by the space charge polarization at grain boundaries by conducting charge carriers. The disappearance of the dielectric relaxation in submicrometer fine-grain specimen also supports this mechanism. The variation of Eτ and Eσ with the increase of Mg concentration in the low temperature range was supposed to be caused by the dominant hopping conduction between ionized acceptor (MgTi″) and neutral or hole-trapped acceptor (MgTi×).

  11. Building Energy Use Modeling at the U.S. State Level Under Climate Change

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Eom, J.; Clarke, L.; Kyle, P.

    2012-12-01

    Climate change plays an important role in building energy use for heating and cooling. As global building energy use accounts for as much as about 32% of global final energy consumption in 2005, the impact of climate change on greenhouse gas emissions may also be significant. As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into regional energy system planning. In this study, we have developed a detailed building energy model with U.S. 50-state representation, embedded in an integrated assessment framework (Global Change Assessment Model). The climate change impact on heating and cooling demand is measured through estimating heating and cooling degree days (HDD/CDDs) derived from MIT Integrated Global System Model (IGSM) climate data and linking the estimates to the building energy model. Having the model calibrated against historical data at the U.S. state level, we estimated the building energy use in the 21st century at the U.S. state level and analyzed its spatial pattern. We have found that the total building energy use (heating and cooling) in U.S. states is over- or under-estimated without having climate feedback taken into account, and that the difference with and without climate feedback at the state level varies from -25% to 25% in reference scenario and -15% to 10% in climate mitigation scenario. The result not only confirms earlier finding that global warming leads to increased cooling and decreased heating energy use, it also indicates that climate change has a different impact on total building energy use at national and state level, exhibiting large spatial heterogeneity across states (Figure 1). The scale impact in building energy use modeling emphasizes the importance of developing a building energy model that represents socioeconomic development, energy service expansion, and

  12. Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.

    PubMed

    Koput, Jacek

    2016-10-05

    The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3  = 16 state.

  13. Effect of energy and protein levels on nutrient utilization and their requirements in growing Murrah buffaloes.

    PubMed

    Prusty, Sonali; Kundu, Shivlal Singh; Mondal, Goutam; Sontakke, Umesh; Sharma, Vijay Kumar

    2016-04-01

    To evaluate different levels of energy and protein for optimum growth of Murrah male buffalo calves, a growth trial (150 days) was conducted on 30 calves (body weight 202.5 ± 6.8 kg). Six diets were formulated to provide 90, 100 and 110% protein level and 90 and 110% energy level requirements for buffalo calves, derived from ICAR 2013 recommendations for buffaloes. The crude protein (CP) intake was increased with higher dietary CP, whereas no effect of energy levels or interaction between protein and energy was observed on CP intake. There were significant effects (P < 0.01) of the interaction between protein and energy (P < 0.05) on metabolizable energy (ME) intake. The digestibility of dry matter (DM), organic matter (OM) and non-fibrous carbohydrate (NFC) was higher (P < 0.0001) in high-energy groups compared to low-energy groups. The CP digestibility increased with the increased CP and ME of the rations. The absorbed N was improved linearly with an increased level of dietary CP, whereas the N retention was similar among all the groups distributed as per different energy or protein levels. The nutrient intake (protein or energy) per kg body weight (BW)(0.75) at various fortnight intervals was regressed linearly from the average daily gain (ADG) per kg BW(0.75). By setting the average daily gain at zero in the developed regression equation, a maintenance requirement was obtained, i.e. 133.1 kcal ME, 6.45 g CP and 3.95 g metabolizable protein (MP) per kg BW(0.75). Requirement for growth was 6.12 kcal ME, 0.46 g CP and 0.32 g MP per kg BW(0.75) per day. Metabolizable amino acid requirement was estimated from partitioning of MP intake and ADG. The ME requirements were lower, whereas the MP requirement of Murrah buffaloes was higher than ICAR (2013) recommendations.

  14. Energy level of the nitrogen dangling bond in amorphous silicon nitride

    SciTech Connect

    Warren, W.L. ); Kanicki, J. ); Robertson, J. ); Lenahan, P.M. )

    1991-09-30

    The composition dependence and room-temperature metastability of the paramagnetic nitrogen dangling-bond center is amorphous silicon nitride suggest that its energy level lies close to the N {ital p}{pi} states, in agreement with theoretical calculations.

  15. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    SciTech Connect

    Mynbaev, K. D.; Shilyaev, A. V. Bazhenov, N. L.; Izhnin, A. I.; Izhnin, I. I.; Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A.

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  16. Experimental Energy Levels and Partition Function of the 12C2 Molecule

    NASA Astrophysics Data System (ADS)

    Furtenbacher, Tibor; Szabó, István; Császár, Attila G.; Bernath, Peter F.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2016-06-01

    The carbon dimer, the 12C2 molecule, is ubiquitous in astronomical environments. Experimental-quality rovibronic energy levels are reported for 12C2, based on rovibronic transitions measured for and among its singlet, triplet, and quintet electronic states, reported in 42 publications. The determination utilizes the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. The 23,343 transitions measured experimentally and validated within this study determine 5699 rovibronic energy levels, 1325, 4309, and 65 levels for the singlet, triplet, and quintet states investigated, respectively. The MARVEL analysis provides rovibronic energies for six singlet, six triplet, and two quintet electronic states. For example, the lowest measurable energy level of the {{a}}{}3{{{\\Pi }}}{{u}} state, corresponding to the J = 2 total angular momentum quantum number and the F 1 spin-multiplet component, is 603.817(5) cm-1. This well-determined energy difference should facilitate observations of singlet-triplet intercombination lines, which are thought to occur in the interstellar medium and comets. The large number of highly accurate and clearly labeled transitions that can be derived by combining MARVEL energy levels with computed temperature-dependent intensities should help a number of astrophysical observations as well as corresponding laboratory measurements. The experimental rovibronic energy levels, augmented, where needed, with ab initio variational ones based on empirically adjusted and spin-orbit coupled potential energy curves obtained using the Duo code, are used to obtain a highly accurate partition function, and related thermodynamic data, for 12C2 up to 4000 K.

  17. Suppressing recombination in polymer photovoltaic devices via energy-level cascades.

    PubMed

    Tan, Zhi-Kuang; Johnson, Kerr; Vaynzof, Yana; Bakulin, Artem A; Chua, Lay-Lay; Ho, Peter K H; Friend, Richard H

    2013-08-14

    An energy cascading structure is designed in a polymer photovoltaic device to suppress recombination and improve quantum yields. By the insertion of a thin polymer interlayer with intermediate energy levels, electrons and holes can effectively shuttle away from each other while being spatially separated from recombination. An increase in open-circuit voltage and short-circuit current are observed in modified devices.

  18. Reversible energy quenching and conservation

    NASA Astrophysics Data System (ADS)

    Fedorenko, S. G.; Burshtein, A. I.

    2010-05-01

    The kinetics of reversible energy transfer from photo-excited donors to energy acceptors is studied at arbitrary concentrations of both and any relationship between the decay-times of the reactants. The backward reaction of transfer products in a bulk is included in the consideration. Its contribution to delayed fluorescence, resulting from the energy conservation on the long-lived acceptors, is specified.

  19. Michael Acceptor-Based Peptidomimetic Inhibitor of Main Protease from Porcine Epidemic Diarrhea Virus.

    PubMed

    Wang, Fenghua; Chen, Cheng; Yang, Kailin; Xu, Yang; Liu, Xiaomei; Gao, Fan; Liu, He; Chen, Xia; Zhao, Qi; Liu, Xiang; Cai, Yan; Yang, Haitao

    2017-03-13

    Porcine epidemic diarrhea virus (PEDV) causes high mortality in pigs. PEDV main protease (Mpro) plays an essential role in viral replication. We solved the structure of PEDV Mpro complexed with peptidomimetic inhibitor N3 carrying a Michael acceptor warhead, revealing atomic level interactions. We further designed a series of 17 inhibitors with altered side groups. Inhibitors M2 and M17 demonstrated enhanced specificity against PEDV Mpro. These compounds have potential as future therapeutics to combat PEDV infection.

  20. Role of energy-level mismatches in a multi-pathway complex of photosynthesis

    NASA Astrophysics Data System (ADS)

    Lim, James; Ryu, Junghee; Lee, Changhyoup; Yoo, Seokwon; Jeong, Hyunseok; Lee, Jinhyoung

    2011-10-01

    Considering a multi-pathway structure in a light-harvesting complex of photosynthesis, we investigated the role of energy-level mismatches between antenna molecules in transferring the absorbed energy to a reaction center (RC). We found a condition in which the antenna molecules faithfully play their roles: when their effective absorption ratios are larger than those of the receiver molecule directly coupled to the RC. In the absence of energy-level mismatches and dephasing noise, there arises quantum destructive interference between multiple paths that restricts the energy transfer. On the other hand, the destructive interference diminishes as asymmetrically biasing the energy-level mismatches and/or introducing quantum noise of dephasing for the antenna molecules, so that the transfer efficiency is greatly enhanced to nearly unity. Remarkably, the near-unity efficiency can be achieved at a wide range of asymmetric energy-level mismatches. Temporal characteristics are also optimized at the energy-level mismatches where the transfer efficiency is nearly unity. We discuss these effects, in particular, for the Fenna-Matthews-Olson complex.

  1. Remarkable Dependence of the Final Charge Separation Efficiency on the Donor-Acceptor Interaction in Photoinduced Electron Transfer.

    PubMed

    Higashino, Tomohiro; Yamada, Tomoki; Yamamoto, Masanori; Furube, Akihiro; Tkachenko, Nikolai V; Miura, Taku; Kobori, Yasuhiro; Jono, Ryota; Yamashita, Koichi; Imahori, Hiroshi

    2016-01-11

    The unprecedented dependence of final charge separation efficiency as a function of donor-acceptor interaction in covalently-linked molecules with a rectilinear rigid oligo-p-xylene bridge has been observed. Optimization of the donor-acceptor electronic coupling remarkably inhibits the undesirable rapid decay of the singlet charge-separated state to the ground state, yielding the final long-lived, triplet charge-separated state with circa 100% efficiency. This finding is extremely useful for the rational design of artificial photosynthesis and organic photovoltaic cells toward efficient solar energy conversion.

  2. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    SciTech Connect

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  3. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.

    PubMed

    Olsson, Martin A; Söderhjelm, Pär; Ryde, Ulf

    2016-06-30

    In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  4. Chemical control over the energy-level alignment in a two-terminal junction.

    PubMed

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C S Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A

    2016-07-26

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions.

  5. Energy level alignment between C 60 and Al using ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Kang, S. J.; Kim, C. Y.; Cho, S. W.; Yoo, K.-H.; Whang, C. N.

    2006-09-01

    The energy level alignment between C 60 and Al has been investigated by using ultraviolet photoelectron spectroscopy. To obtain the interfacial electronic structure between C 60 and Al, C 60 was deposited on a clean Al substrate in a stepwise manner. The valence-band spectra were measured immediately after each step of C 60 deposition without breaking the vacuum. The measured onset of the highest occupied molecular orbital energy level was located at 1.59 eV from the Fermi level of Al. The vacuum level was shifted 0.68 eV toward lower binding energy with additional C 60 layers. The observed vacuum level shift means that the interface dipole exists at the interface between C 60 and Al. The barrier height of electron injection from Al to C 60 is 0.11 eV, which is smaller value than that of hole injection.

  6. Chemical control over the energy-level alignment in a two-terminal junction

    PubMed Central

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C. S. Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A.

    2016-01-01

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions. PMID:27456200

  7. Potassium acceptor doping of ZnO crystals

    SciTech Connect

    Parmar, Narendra S. Lynn, K. G.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  8. Analysis of nonlinear optical properties in donor–acceptor materials

    SciTech Connect

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  9. Growth and energy budget of juvenile lenok Brachymystax lenok in relation to ration level

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Zhongjie; Zhang, Tanglin; Yuan, Jing; Mou, Zhenbo; Liu, Jiashou

    2015-03-01

    We evaluated the effect of ration level (RL) on the growth and energy budget of lenok Brachymystax lenok. Juvenile lenok (initial mean body weight 3.06±0.13 g) were fed for 21 d at five different ration levels: starvation, 2%, 3%, 4% bwd (body weight per day, based on initial mean values), and apparent satiation. Feed consumption, apparent digestibility, and growth were directly measured. Specific growth rates in terms of wet weight, dry weight, protein, and energy increased logarithmically with an increase in ration levels. The relationship between specific growth rate in terms of wet weight (SGRw, %/d) and RL (%) was characterized by a decelerating curve: SGRw=-1.417+3.166ln(RL+1). The apparent digestibility coefficients of energy exhibited a decreasing pattern with increasing ration level, and there was a significant difference among different RLs. Body composition was significantly affected by ration size. The relationship between feed efficiency rate in terms of energy (FERe) and RL was: FERe=-14.167+23.793RL-3.367(RL)2, and the maximum FERe was observed at a 3.53% ration. The maintenance requirement for energy of juvenile lenok was 105.39 kJ BW (kg)-0.80/d, the utilization efficiency of DE for growth was 0.496. The energy budget equation at satiation was: 100IE=29.03FE+5.78(ZE+UE)+39.56 HE+25.63 RE, where IE is feed energy, FE is fecal energy, ZE+UE is excretory energy, HE is heat production, and RE is recovered energy. Our results suggest that the most suitable feeding rate for juvenile lenok aquaculture for wet weight growth is 2.89% bwd, whereas for energy growth, the suggested rate is 3.53% bwd at this growth stage.

  10. Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells.

    PubMed

    Jin, Xiao; Sun, Weifu; Zhang, Qin; Ruan, Kelian; Cheng, Yuanyuan; Xu, Haijiao; Xu, Zhongyuan; Li, Qinghua

    2015-06-01

    Charge carrier transport in bulk heterojunction that is central to the device performance of solar cells is sensitively dependent on the energy level alignment of acceptor and donor. However, the effect of energy level regulation induced by nickel ions on the primary photoexcited electron transfer and the performance of P3HT/TiO2 hybrid solar cells remains being poorly understood and rarely studied. Here we demonstrate that the introduction of the versatile nickel ions into TiO2 nanocrystals can significantly elevate the conduction and valence band energy levels of the acceptor, thus resulting in a remarkable reduction of energy level offset between the conduction band of acceptor and lowest unoccupied molecular orbital of donor. By applying transient photoluminescence and femtosecond transient absorption spectroscopies, we demonstrate that the electron transfer becomes more competitive after incorporating nickel ions. In particular, the electron transfer life time is shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor, thus leading to a notable increase of power conversion efficiency in organic/inorganic hybrid solar cells. This work underscores the promising virtue of engineering the reduction of 'excess' energy offset to accelerate electron transport and demonstrates the potential of nickel ions in applications of solar energy conversion and photon detectors.

  11. Electron donor-acceptor quenching and photoinduced electron transfer for coumarin dyes. Technical report, 1 January-31 October 1982

    SciTech Connect

    Jones, G. II; Griffin, S.F.; Choi, C.; Bergmark, W.R.

    1983-10-31

    The fluorescence of 7-aminocoumarins is quenched by a variety of organic electron donors or acceptors in acetonitrile. In general, donors with half-wave oxidation potentials less positive than 1.0 V vs SCE and acceptors with reduction potentials less negative than -1.5 V vs SCE are candidates for diffusion limited quenching of coumarin singlet states. Profiles of quenching rates are consistent with calculated free energies for electron transfer between excited coumarins and donors or acceptors. In flash photolysis experiments electron transfer for several dyes and quenchers (e.g., methyl viologen) is demonstrated. Relatively low yields of net electron transfer are consistently obtained due to inefficient ionic photodissociation via singlet quenching or a low yield of more photoactive coumarin triplets. Electrochemical properties of the coumarins have been investigated by cyclic voltammetry with the indications of reversible oxidation and irreversible reduction as important processes.

  12. Spectrum and energy levels of five-times ionized zirconium (Zr VI)

    NASA Astrophysics Data System (ADS)

    Reader, Joseph; Lindsay, Mark D.

    2016-02-01

    We carried out a new analysis of the spectrum of five-times-ionized zirconium Zr VI. For this we used sliding-spark discharges together with normal- and grazing-incidence spectrographs to observe the spectrum from 160 to 2000 Å. These observations showed that the analysis of this spectrum by Khan et al (1985 Phys. Scr. 31 837) contained a significant number of incorrect energy levels. We have now classified ∼420 lines as transitions between 23 even-parity levels 73 odd-parity levels. The 4s24p5, 4s4p6, 4s24p44d, 5s, 5d, 6s configurations are now complete, although a few levels of 4s24p45d are tentative. We determined Ritz-type wavelengths for ∼135 lines from the optimized energy levels. The uncertainties range from 0.0003 to 0.0020 Å. Hartree–Fock calculations and least-squares fits of the energy parameters to the observed levels were used to interpret the observed configurations. Oscillator strengths for all classified lines were calculated with the fitted parameters. The results are compared with values for the level energies, percentage compositions, and transition probabilities from recent ab initio theoretical calculations. The ionization energy was revised to 777 380 ± 300 cm‑1 (96.38 ± 0.04 eV).

  13. Energy-Water Nexus: Balancing the Tradeoffs between Two-Level Decision Makers

    DOE PAGES

    Zhang, Xiaodong; Vesselinov, Velimir Valentinov

    2016-09-03

    Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energywater nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improvesmore » upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decisionmaking in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. In conclusion, these analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved.« less

  14. Energy-Water Nexus: Balancing the Tradeoffs between Two-Level Decision Makers

    SciTech Connect

    Zhang, Xiaodong; Vesselinov, Velimir Valentinov

    2016-09-03

    Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energywater nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improves upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decisionmaking in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. In conclusion, these analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved.

  15. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    SciTech Connect

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Kenmotsu, Takahiro; Furuya, Kenji; Motohashi, Kenji

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  16. Partial least squares prediction of the first hyperpolarizabilities of donor-acceptor polyenic derivatives

    NASA Astrophysics Data System (ADS)

    Machado, A. E. de A.; da Gama, A. A. de S.; de Barros Neto, B.

    2011-09-01

    A partial least squares regression analysis of a large set of donor-acceptor organic molecules was performed to predict the magnitude of their static first hyperpolarizabilities ( β's). Polyenes, phenylpolyenes and biphenylpolyenes with augmented chain lengths displayed large β values, in agreement with the available experimental data. The regressors used were the HOMO-LUMO energy gap, the ground-state dipole moment, the HOMO energy AM1 values and the number of π-electrons. The regression equation predicts quite well the static β values for the molecules investigated and can be used to model new organic-based materials with enhanced nonlinear responses.

  17. Probing Energy Levels of Large Array Quantum Dot Superlattice by Electronic Transport Measurement

    NASA Astrophysics Data System (ADS)

    Bisri, S. Z.; Degoli, E.; Spallanzani, N.; Krishnan, G.; Kooi, B.; Ghica, C.; Yarema, M.; Protesescu, L.; Heiss, W.; Kovalenko, M.; Pulci, O.; Ossicini, S.; Iwasa, Y.; Loi, M. A.

    2015-03-01

    Colloidal quantum dot superlattice (CQDS) emerges as new type of hybrid solids allowing easy fabrication of devices that exploits the quantum confinement properties of individual QD. This materials displays peculiar characters, making investigation of their transport properties nontrivial. Besides the bandgap variations, 0D nature of QD lead to the formation of discrete energy subbands. These subbands are crucial for multiple exciton generation (for efficient solar cell), thermoelectric material and multistate transistor. Full understanding of the CQDS energy level structure is vital to use them in complex devices. Here we show a powerful method to determine the CQDS electronic energy levels from their intrinsic charge transport characteristics. Via the use of ambipolar transistors with CQDS as active materials and gated using highly capacitive ionic liquid gating, Fermi energy can be largely tuned. It can access energy levels beyond QD's HOMO & LUMO. Ability to probe not only the bandgap, but also the discrete energy level from large assembly of QD at room temperature suggests the formation of energy minibands in this system.

  18. Zone Level Occupant-Responsive Building Energy Systems at the GSA

    SciTech Connect

    Robinson, Alastair

    2014-03-01

    The General Services Administration (GSA) partnered with the U.S. Department of Energy (DOE) to develop and implement building energy system retrofits, aiming to reduce energy consumption of at least two building systems by a total of 30 percent or more, as part of DOE’s Commercial Building Partnership (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program, working with the GSA and a team of consultants. This case study reports expected energy savings from appropriate energy efficient design and operations modifications to lighting and heating, ventilating and air conditioning (HVAC) systems at the selected study sites. These retrofits comprised installation of new lighting systems with dimming capability and occupancy-sensor control at the individual light fixture level, and utilized lighting system occupancy sensor signals to continually readjust zone-level ventilation airflow according to the number of people present, down to minimum rates when vacant.

  19. Examining student ideas about energy measurements on quantum states across undergraduate and graduate levels

    NASA Astrophysics Data System (ADS)

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Energy measurements play a fundamental role in the theory of quantum mechanics, yet there is evidence that the underlying concepts are difficult for many students, even after all undergraduate instruction. We present results from an investigation into student ability to determine the possible energies that can be measured for a given wave function and Hamiltonian, to determine the probabilities of each energy measurement and how they depend on time, and to recognize how a measurement of energy affects the state. By analyzing student responses to open-ended questions, we identify five broad, interrelated sets of conceptual and reasoning difficulties related to energy measurements. Data are drawn from sophomore-, junior-, and graduate-level quantum mechanics courses. Particular attention is paid to incorrect ideas that persist across all levels.

  20. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Florida Solar Energy Center; IBACOS; National Renewable Energy Laboratory

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  1. Excitation energy dependence of the level density parameter close to the doubly magic 208Pb

    NASA Astrophysics Data System (ADS)

    Roy, Pratap; Banerjee, K.; Bhattacharya, C.; Pandey, R.; Sen, A.; Manna, S.; Kundu, S.; Rana, T. K.; Ghosh, T. K.; Mukherjee, G.; Roy, T.; Dhal, A.; Dey, A.; Meena, J. K.; Saha, A. K.; Pandit, Deepak; Mukhopadhyay, S.; Bhattacharya, S.

    2016-12-01

    Neutron evaporation spectra have been measured from 4He+208Pb and 4He+209Bi reactions by using 4He-ion beams of several bombarding energies. Excitation-energy dependence of the level density parameter has been studied for the two systems in the excitation energy range of ˜18 -50 MeV. For both the reactions an overall reduction of the asymptotic level density parameter with increasing excitation energy (temperature) is observed. The trend of the data was compared with the Thomas-Fermi model predictions and found to be in reasonable agreement. The value of the shell damping parameter has been extracted from the lowest-energy data in the case of Po,211210 and At,212211 nuclei close to the Z =82 and N =126 shell closure, and it was found to be consistent with the recent measurement in the vicinity of doubly magic 208Pb nucleus.

  2. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment.

  3. Characterization of dark quencher chromophores as nonfluorescent acceptors for single-molecule FRET.

    PubMed

    Le Reste, Ludovic; Hohlbein, Johannes; Gryte, Kristofer; Kapanidis, Achillefs N

    2012-06-06

    Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate

  4. Developing Energy Literacy in US Middle-Level Students Using the Geospatial Curriculum Approach

    NASA Astrophysics Data System (ADS)

    Bodzin, Alec M.; Fu, Qiong; Peffer, Tamara E.; Kulo, Violet

    2013-06-01

    This quantitative study examined the effectiveness of a geospatial curriculum approach to promote energy literacy in an urban school district and examined factors that may account for energy content knowledge achievement. An energy literacy measure was administered to 1,044 eighth-grade students (ages 13-15) in an urban school district in Pennsylvania, USA. One group of students received instruction with a geospatial curriculum approach (geospatial technologies (GT)) and another group of students received 'business as usual' (BAU) curriculum instruction. For the GT students, findings revealed statistically significant gains from pretest to posttest (p < 0.001) on knowledge of energy resource acquisition, energy generation, storage and transport, and energy consumption and conservation. The GT students had year-end energy content knowledge scores significantly higher than those who learned with the BAU curriculum (p < 0.001; effect size being large). A multiple regression found that prior energy content knowledge was the only significant predictor to the year-end energy content knowledge achievement for the GT students (p < 0.001). The findings support that the implementation of a geospatial curriculum approach that employs learning activities that focus on the spatial nature of energy resources can improve the energy literacy of urban middle-level education students.

  5. Starch levels on performance, milk composition and energy balance of lactating dairy cows.

    PubMed

    Carmo, Carolina Almeida; Batistel, Fernanda; de Souza, Jonas; Martinez, Junio Cesar; Correa, Paulo; Pedroso, Alexandre Mendonça; Santos, Flávio Augusto Portela

    2015-01-01

    The objective of this experiment was to evaluate the effects of starch levels in diets with the replacement of citrus pulp for corn on milk yield, milk composition, and energy balance of lactating dairy cows. Twenty-eight multiparous Holstein cows were used in seven 4 × 4 Latin squares conducted concurrently, and each experimental period consisted of 20 days (16 days for adaptation and 4 days for sampling). The experimental treatments comprised four starch levels: 15, 20, 25, and 30% in the diet. The dry matter intake increased linearly with increasing starch levels. The milk yield and 3.5% fat-corrected milk yield showed quadratic response to increasing starch levels. The milk protein content and milk total solids content responded linearly to increasing starch levels. The feed efficiency, milk lactose content, milk urea nitrogen, plasma urea nitrogen, and plasma glucose concentration were not affected by starch levels. The estimated net energy for lactation (NEL) intake increased linearly as the starch level was raised. Although the milk NEL output per kilogram of milk was not affected by starch, the milk NEL output daily responded quadratically to starch levels. In addition, the NEL in body weight gain also responded quadratically to increasing starch levels. The efficiency of energy use for milk yield and the NEL efficiency for production also responded quadratically to increasing starch levels. Diets for mid-lactating dairy cows producing around 30 kg/day of milk should be formulated to provide around 25% starch to optimize performance.

  6. Identification of photoluminescence bands in AlGaAs/InGaAs/GaAs PHEMT heterostructures with donor-acceptor-doped barriers

    SciTech Connect

    Gulyaev, D. V. Zhuravlev, K. S.; Bakarov, A. K.; Toropov, A. I.

    2015-02-15

    The photoluminescence of AlGaAs/InGaAs/GaAs pseudomorphic high-electron mobility transistor heterostructures with donor-acceptor-doped AlGaAs barriers is studied. It is found that the introduction of additional p{sup +}-doped AlGaAs layers into the design brings about the appearance of new bands in the photoluminescence spectra. These bands are identified as resulting from transitions (i) in donor-acceptor pairs in doped AlGaAs layers and (ii) between the conduction subband and acceptor levels in the undoped InGaAs quantum well.

  7. Energy levels of odd-even nuclei using broken pair model

    SciTech Connect

    Hamammu, I. M.; Haq, S.; Eldahomi, J. M.

    2012-09-06

    A method to calculate energy levels and wave functions of odd-even nuclei, in the frame work of the broken pair model have been developed. The accuracy of the model has been tested by comparing the shell model results of limiting cases in which the broken pair model exactly coincides with the shell model, where there are two-proton/neutron + one-neutron/proton in the valence levels. The model is then applied to calculate the energy levels of some nuclei in the Zirconium region. The model results compare reasonably well with the shell model as well as with the experimental data.

  8. First-Principles Approach to Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark

    2015-03-01

    We have developed a first principles method to calculate the energy level alignment between semiconductor band edges and reference energy levels at aqueous interfaces. This alignment is fundamental to understand the electrochemical characteristics of any semiconductor electrode in general and the potential for photocatalytic activity in particular. For example, in the search for new photo-catalytic materials, viable candidates must demonstrate both efficient absorption of the solar spectrum and an appropriate alignment of the band edge levels in the semiconductor to the redox levels for the target reactions. In our approach, the interface-specific contribution to the electrostatic step across the interface is evaluated using density functional theory (DFT) based molecular dynamics to sample the physical interface structure and the corresponding change in the electrostatic potential at the interface. The reference electronic levels in the semiconductor and in the water are calculated using the GW approach, which naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. Taken together, our calculations provide the alignment of the semiconductor valence band edge to the centroid of the highest occupied 1b1 level in water. The known relationship of the 1b1 level to the normal hydrogen electrode completes the connection to electrochemical levels. We discuss specific results for GaN, ZnO, and TiO2. The effect of interface structural motifs, such as different degrees of water dissociation, and of dynamical characteristics, will be presented together with available experimental data. Work supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886.

  9. Development of Spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene]-Based A-π-D-π-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells.

    PubMed

    Wang, Wengong; Shen, Ping; Dong, Xinning; Weng, Chao; Wang, Guo; Bin, Haijun; Zhang, Jing; Zhang, Zhi-Guo; Li, Yongfang

    2017-02-08

    Three acceptor-π-donor-π-acceptor (A-π-D-π-A) small molecules (STFYT, STFRDN, and STFRCN) with spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene] (STF) as the central donor unit, terthiophene as the π-conjugated bridge, indenedione, 3-ethylrhodanine, or 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit are designed, synthesized, and characterized as electron donor materials in solution-processing organic solar cells (OSCs). The effects of the spiro STF-based central core and different acceptors on the molecular configuration, absorption properties, electronic energy levels, carrier transport properties, the morphology of active layers, and photovoltaic properties are investigated in detail. The three molecules exhibit desirable physicochemical features: wide absorption bands (300-850 nm) and high molar absorption coefficients (4.82 × 10(4) to 7.56 × 10(4) M(-1) cm(-1)) and relatively low HOMO levels (-5.15 to -5.38 eV). Density functional theory calculations reveal that the spiro STF central core benefits to reduce the steric hindrance effect between the central donor block and terthiophene bridge and suppress excessive intermolecular aggregations. The optimized OSCs based on these molecules deliver power conversion efficiencies (PCEs) of 6.68%, 3.30%, and 4.33% for STFYT, STFRDN, and STFRCN, respectively. The higher PCE of STFYT-based OSCs should be ascribed to its better absorption ability, higher and balanced hole and electron mobilities, and superior active layer morphology as compared to the other two compounds. So far, this is the first example of developing the A-π-D-π-A type small molecules with a spiro central donor core for high-performance OSC applications. Meanwhile, these results demonstrate that using spiro central block to construct A-π-D-π-A molecule is an alternative and effective strategy for achieving high-performance small molecule donor materials.

  10. Electron acceptor-dependent respiratory and physiological stratifications in biofilms.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Sun, Guoping; Wu, Wei-Min; Xu, Meiying

    2015-01-06

    Bacterial respiration is an essential driving force in biogeochemical cycling and bioremediation processes. Electron acceptors respired by bacteria often have solid and soluble forms that typically coexist in the environment. It is important to understand how sessile bacteria attached to solid electron acceptors respond to ambient soluble alternative electron acceptors. Microbial fuel cells (MFCs) provide a useful tool to investigate this interaction. In MFCs with Shewanella decolorationis, azo dye was used as an alternative electron acceptor in the anode chamber. Different respiration patterns were observed for biofilm and planktonic cells, with planktonic cells preferred to respire with azo dye while biofilm cells respired with both the anode and azo dye. The additional azo respiration dissipated the proton accumulation within the anode biofilm. There was a large redox potential gap between the biofilms and anode surface. Changing cathodic conditions caused immediate effects on the anode potential but not on the biofilm potential. Biofilm viability showed an inverse and respiration-dependent profile when respiring with only the anode or azo dye and was enhanced when respiring with both simultaneously. These results provide new insights into the bacterial respiration strategies in environments containing multiple electron acceptors and support an electron-hopping mechanism within Shewanella electrode-respiring biofilms.

  11. C sub 60 bonding and energy-level alignment on metal and semiconductor surfaces

    SciTech Connect

    Ohno, T.R.; Chen, Y.; Harvey, S.E.; Kroll, G.H.; Weaver, J.H. ); Haufler, R.E.; Smalley, R.E. )

    1991-12-15

    Electronic-structure studies of C{sub 60} condensed on metal surfaces show that the energy levels derived from the fullerene align with the substrate Fermi level, not the vacuum level. For thick layers grown on metals at 300 K, the binding energy of the C 1{ital s} main line was 284.7 eV and the center of the band derived from the highest occupied molecular orbital was 2.25 eV below the Fermi level. For monolayer amounts of C{sub 60} adsorbed on Au and Cr, however, the C 1{ital s} line was broadened asymmetrically and shifted to lower binding energy, the shakeup features were less distinct, and a band derived from the lowest unoccupied molecular orbital (LUMO) was shifted toward the Fermi level. These monolayer effects demonstrate partial occupancy of a LUMO-derived state, dipole formation, and changes in screening that are associated with LUMO occupancy. Results for C{sub 60} monolayers on {ital n}-type GaAs(110) show transfer of {le}0.02 electron per fullerene, as gauged by substrate band bending. For C{sub 60} on {ital p}-type GaAs, however, the bands remained flat because electron redistribution was not possible, and the C{sub 60}-derived energy levels were aligned to the substrate vacuum level.

  12. Design of Acceptors with Suitable Frontier Molecular Orbitals to Match Donors via Substitutions on Perylene Diimide for Organic Solar Cells

    PubMed Central

    Lv, Xiaoli; Li, Zhuoxin; Li, Songyang; Luan, Guoyou; Liang, Dadong; Tang, Shanshan; Jin, Ruifa

    2016-01-01

    A series of perylene diimide (PDI) derivatives have been investigated at the CAM-B3LYP/6-31G(d) and the TD-B3LYP/6-31+G(d,p) levels to design solar cell acceptors with high performance in areas such as suitable frontier molecular orbital (FMO) energies to match oligo(thienylenevinylene) derivatives and improved charge transfer properties. The calculated results reveal that the substituents slightly affect the distribution patterns of FMOs for PDI-BI. The electron withdrawing group substituents decrease the FMO energies of PDI-BI, and the electron donating group substituents slightly affect the FMO energies of PDI-BI. The di-electron withdrawing group substituents can tune the FMOs of PDI-BI to be more suitable for the oligo(thienylenevinylene) derivatives. The electron withdrawing group substituents result in red shifts of absorption spectra and electron donating group substituents result in blue shifts for PDI-BI. The –CN substituent can improve the electron transport properties of PDI-BI. The –CH3 group in different positions slightly affects the electron transport properties of PDI-BI. PMID:27187370

  13. Design of Acceptors with Suitable Frontier Molecular Orbitals to Match Donors via Substitutions on Perylene Diimide for Organic Solar Cells.

    PubMed

    Lv, Xiaoli; Li, Zhuoxin; Li, Songyang; Luan, Guoyou; Liang, Dadong; Tang, Shanshan; Jin, Ruifa

    2016-05-13

    A series of perylene diimide (PDI) derivatives have been investigated at the CAM-B3LYP/6-31G(d) and the TD-B3LYP/6-31+G(d,p) levels to design solar cell acceptors with high performance in areas such as suitable frontier molecular orbital (FMO) energies to match oligo(thienylenevinylene) derivatives and improved charge transfer properties. The calculated results reveal that the substituents slightly affect the distribution patterns of FMOs for PDI-BI. The electron withdrawing group substituents decrease the FMO energies of PDI-BI, and the electron donating group substituents slightly affect the FMO energies of PDI-BI. The di-electron withdrawing group substituents can tune the FMOs of PDI-BI to be more suitable for the oligo(thienylenevinylene) derivatives. The electron withdrawing group substituents result in red shifts of absorption spectra and electron donating group substituents result in blue shifts for PDI-BI. The -CN substituent can improve the electron transport properties of PDI-BI. The -CH₃ group in different positions slightly affects the electron transport properties of PDI-BI.

  14. The rapid bi-level exploration on the evolution of regional solar energy development

    NASA Astrophysics Data System (ADS)

    Guan, Qing; An, Haizhong; Li, Huajiao; Hao, Xiaoqing

    2017-01-01

    As one of the renewable energy, solar energy is experiencing increased but exploratory development worldwide. The positive or negative influences of regional characteristics, like economy, production capacity and allowance policies, make them have uneven solar energy development. In this paper, we aim at quickly exploring the features of provincial solar energy development, and their concerns about solar energy. We take China as a typical case, and combine text mining and two-actor networks. We find that the classification of levels based on certain nodes and the amount of degree avoids missing meaningful information that may be ignored by global level results. Moreover, eastern provinces are hot focus for the media, western countries are key to bridge the networks and special administrative region has local development features; third, most focus points are more about the application than the improvement of material. The exploration of news provides practical information to adjust researches and development strategies of solar energy. Moreover, the bi-level exploration, which can also be expanded to multi-level, is helpful for governments or researchers to grasp more targeted and precise knowledge.

  15. Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization

    NASA Astrophysics Data System (ADS)

    Subramani, Deepak N.; Lermusiaux, Pierre F. J.

    2016-04-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.

  16. The ratio and topology effects of benzodithiophene donor-benzooxadiazole acceptor fragments on the optoelectronic properties of donor molecules toward solar cell materials.

    PubMed

    Bibi, Shamsa; Zhang, Jingping

    2015-03-28

    A series of conjugated donor molecules (DmAnSq where m = 1-4, n = 1-7 while D = benzodithiophene, A = benzooxadiazole and S denotes ethyne spacers between D and A or D and D fragments) with various ratios of D/A fragments and topologies have been designed and investigated for OPV applications. An increase in the ratio of the acceptor fragment with respect to the donor fragment decreases the LUMO energy level and narrows the Eg for the designed molecule. More vertically (C4 and C8 substituted phenyl ring positions) bonded acceptor fragments than linearly (C2 and C6 substituted thiophene ring positions) bonded fragments result in a significant red shift in the maximum absorption wavelength. While, linearly bonded fragments lead to stronger absorption bands. Molecules with D-A-D topology exhibit more significant optical and electronic characteristics than those with D-D topology. All donor molecules (m = 2-4) of the D-A-D type show lower λh values than those of 1 donor containing (DAn) molecules. D-D type molecules show only lower λe values than DAn molecules because of the presence of a second donor fragment. The charge transfer phenomenon is shape dependent. The branched or anisotropic X, H, π, n, and square shaped molecules display higher charge transfer rates than the corresponding linear isomers due to better dimensionality. On the basis of these results, we suggest that designed donor and corresponding matched acceptor molecules have potential to act as promising candidates in solar cell devices.

  17. Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light

    NASA Astrophysics Data System (ADS)

    Wu, Z. W.; Volotka, A. V.; Surzhykov, A.; Dong, C. Z.; Fritzsche, S.

    2016-06-01

    The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of density matrix and second-order perturbation theory. Emphasis has been placed on "signatures" for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of photon energy of incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed, especially for the 1 s22 s22 p63 s ,Ji=1 /2 +γ1→(1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 →1 s22 s22 p63 s ,Jf=1 /2 +γ2 photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the γ2 fluorescence emission is found upon the level sequence and splitting of the intermediate (1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 overlapping resonances owing to their finite lifetime (linewidth). We therefore suggest that accurate measurements of the angular distribution and linear polarization might help identify the sequence and small splittings of closely spaced energy levels, even if they cannot be spectroscopically resolved.

  18. Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors

    PubMed Central

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian

    2016-01-01

    Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications. PMID:27263856

  19. Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian

    2016-06-01

    Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications.

  20. Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation

    NASA Astrophysics Data System (ADS)

    Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2016-10-01

    The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl-Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-order differential equation with constant coefficients. For the harmonic oscillator, Pöschl-Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl-Teller and Gaussian wells.

  1. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    SciTech Connect

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  2. An overview of molecular acceptors for organic solar cells

    NASA Astrophysics Data System (ADS)

    Hudhomme, Piétrick

    2013-07-01

    Organic solar cells (OSCs) have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  3. Electron acceptor taxis and blue light effect on bacterial chemotaxis.

    PubMed

    Taylor, B L; Miller, J B; Warrick, H M; Koshland, D E

    1979-11-01

    Salmonella typhimurium and Escherichia coli from anaerobic cultures displayed tactic responses to gradients of nitrate, fumarate, and oxygen when the appropriate electron transport pathway was present. Such responses were named "electron acceptor taxis" because they are elicited by terminal electron acceptors. Mutant strains of S. typhimurium and E. coli were used to establish that functioning electron transport pathways to nitrate and fumarate are required for taxis to these compounds. Aerotaxis in S. typhimurium was blocked by 1.0 mM KCN, which inhibited oxygen uptake. Similarly, a functioning electron transport pathway was shown to be essential for the tumbling response of S. typhimurium and E. coli to intense light (290 to 530 nm). Some inhibitors and uncouplers of respiration were repellents of S. typhimurium. We propose that behavioral responses to light or electron acceptors involve electron transport-mediated perturbations of the proton motive force.

  4. Gut inflammation provides a respiratory electron acceptor for Salmonella

    PubMed Central

    Winter, Sebastian E.; Thiennimitr, Parameth; Winter, Maria G.; Butler, Brian P.; Huseby, Douglas L.; Crawford, Robert W.; Russell, Joseph M.; Bevins, Charles L.; Adams, L. Garry; Tsolis, Renée M.; Roth, John R.; Bäumler, Andreas J.

    2010-01-01

    Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation reacted with endogenous, luminal sulphur compounds (thiosulfate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to utilize tetrathionate as an electron acceptor produced a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus, the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen. PMID:20864996

  5. Molecular level energy and electron transfer processes at nanocrystalline titanium dioxide interfaces

    NASA Astrophysics Data System (ADS)

    Farzad, Fereshteh

    This thesis describes photo-induced molecular electron and energy transfer processes occurring at nanocrystalline semiconductor interfaces. The Introductory Chapter provides background and describes how these materials may be useful for solar energy conversion. In Chapter 2, results describing excitation of Ru(deeb)(bpy)2 2+, bis(2,2'-bipyridine)(2,2'-bipyridine-4,4 '-diethylester)ruthenium(II) hexafluorophosphate, bound to nanocrystalline TiO2 thin films, immersed in an acetonitrile bath are presented. The data indicates that light excitation forms predominately long-lived metal-to-ligand charge-transfer, MLCT, excited states under these conditions. Modeling of the data as a function of irradiance has been accomplished assuming parallel unimolecular and bimolecular excited state deactivation processes. The quantum yield for excited state formation depends on the excitation irradiance, consistent with triplet-triplet annihilation processes that occur with k > 1 x 108 s-1. Chapter 3 extends the work described in Chapter 2 to LiClO4 acetonitrile solutions. Li+ addition results in a red shift in the MLCT absorption and photoluminescence, PL, and a concentration dependent quenching of the PL intensity on TiO2. The Li+ induced spectroscopic changes were found to be reversible by varying the electrolyte composition. A second-order kinetic model quantified charge recombination transients. A model is proposed wherein Li+ ion adsorption stabilizes TiO2 acceptor states resulting in energetically more favorable interfacial electron transfer. The photophysical and photoelectrochemical properties of porous nanocrystalline anatase TiO2 electrodes modified with Ru(deeb)(bpy)2 2+, Os(deeb)(bpy)22+, and mixtures of both are described in Chapters 4 and 5. In regenerative solar cells with 0.5 M LiI/0.05 M I2 acetonitrile electrolyte, both compounds efficiently inject electrons into TiO2 producing monochromatic incident photon-to-current efficiencies (IPCE), IPCE (460 nm) = 0.70 + 0

  6. Spectrum and energy levels of quadruply-ionized molybdenum (Mo V)

    NASA Astrophysics Data System (ADS)

    Reader, Joseph; Tauheed, Ahmad

    2015-07-01

    The spectrum of quadruply-ionized molybdenum Mo V was observed from 200 to 4700 Å with sliding spark discharges on 10.7 m normal- and grazing-incidence spectrographs. The existing analyses of this spectrum (Tauheed et al 1985 Phys. Scr. 31 369; Cabeza et al 1986 Phys. Scr. 34 223) were extended to include the 5s2, 5p2, 5s5d, 5s6s, 4d5f, and 4d5g configurations as well as the missing 3H6 level of 4d4f and about 75 levels of the core-excited configuration 4p54d3. The values of the 4d5d 1S0, 5s5p 1P1, and 4d6p 3P0 levels were revised. There are now about 900 lines classified as transitions between 66 even parity and 191 odd parity energy levels. Of these, about 600 lines and 130 levels are new. From the optimized energy level values, Ritz-type wavelengths were determined for about 380 lines, with uncertainties varying from 0.0003 to 0.002 Å. The observed configurations were theoretically interpreted by means of Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels. The fitted parameters were used to calculate oscillator strengths for all classified lines. A few unclassified lines and undesignated levels are also given. An improved value for the ionization energy was obtained by combining the observed energy of the 4d5g configuration with an ab initio calculation of its term value. The adopted value is 438 900 ± 150 cm-1 (54.417 ± 0.019 eV).

  7. Energy Use and Power Levels in New Monitors and Personal Computers

    SciTech Connect

    Roberson, Judy A.; Homan, Gregory K.; Mahajan, Akshay; Nordman, Bruce; Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan G.

    2002-07-23

    Our research was conducted in support of the EPA ENERGY STAR Office Equipment program, whose goal is to reduce the amount of electricity consumed by office equipment in the U.S. The most energy-efficient models in each office equipment category are eligible for the ENERGY STAR label, which consumers can use to identify and select efficient products. As the efficiency of each category improves over time, the ENERGY STAR criteria need to be revised accordingly. The purpose of this study was to provide reliable data on the energy consumption of the newest personal computers and monitors that the EPA can use to evaluate revisions to current ENERGY STAR criteria as well as to improve the accuracy of ENERGY STAR program savings estimates. We report the results of measuring the power consumption and power management capabilities of a sample of new monitors and computers. These results will be used to improve estimates of program energy savings and carbon emission reductions, and to inform rev isions of the ENERGY STAR criteria for these products. Our sample consists of 35 monitors and 26 computers manufactured between July 2000 and October 2001; it includes cathode ray tube (CRT) and liquid crystal display (LCD) monitors, Macintosh and Intel-architecture computers, desktop and laptop computers, and integrated computer systems, in which power consumption of the computer and monitor cannot be measured separately. For each machine we measured power consumption when off, on, and in each low-power level. We identify trends in and opportunities to reduce power consumption in new personal computers and monitors. Our results include a trend among monitor manufacturers to provide a single very low low-power level, well below the current ENERGY STAR criteria for sleep power consumption. These very low sleep power results mean that energy consumed when monitors are off or in active use has become more important in terms of contribution to the overall unit energy consumption (UEC

  8. Higher-order JWKB expressions for the energy levels and the wavefunction at the origin

    SciTech Connect

    Pasupathy, J.; Singh, V.

    1980-09-01

    An exact quantization condition is derived for the energy levels of a particle in a radial potential assumed finite at the origin. This is used to derive corrections to the semiclassical JWKB quantization condition. The normalization integral of the wavefunction is further related to the energy derivative of wavefunction at origin and use this expression to derive the corrections to the semiclassical JWKB expressions for the wavefunction at origin. An application to upsilon leptonic decay width is also given.

  9. High level predictions on the potential energy hypersurface of the nitric oxide dimer

    SciTech Connect

    Huang, Q.; Magers, D.H.; Leszczynski, J.

    1994-12-31

    The potential energy hypersurface of the NO dimer is investigated at the SCF and MP2 levels of theory using three spit-valence basis sets: 6-31G(d), 6-311G(2d), 6-311G(3df). Seven minimum energy conformers are identified. Their molecular structures, energetics, and harmonic vibrational frequencies are discussed and compared to available experimental data.

  10. Method and system for in vivo measurement of bone tissue using a two level energy source

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Judy, P. F. (Inventor)

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content.

  11. Advanced Quantum Mechanical Calculation of Superheavy Ions: Energy Levels, Radiation and Finite Nuclear Size Effects

    SciTech Connect

    Glushkov, Alexander V.; Gurnitskaya, E.P.; Loboda, A.V.

    2005-10-26

    Advanced quantum approach to calculation of spectra for superheavy ions with an account of relativistic, correlation, nuclear, radiative effects is developed and based on the gauge invariant quantum electrodynamics (QED) perturbation theory (PT). The Lamb shift polarization part is calculated in the Ueling approximation, self-energy part is defined within a new non-PT procedure of Ivanov-Ivanova. Calculation results for energy levels, hyperfine structure parameters of some heavy elements ions are presented.

  12. Effect of a metallic gate on the energy levels of a shallow donor

    SciTech Connect

    Slachmuylders, A. F.; Partoens, B.; Peeters, F. M.; Magnus, W.

    2008-02-25

    We have investigated the effect of a metallic gate on the bound states of a shallow donor located near the gate. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anticrossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.

  13. Orbital Engineering in Nickelate Heterostructures Driven by Anisotropic Oxygen Hybridization rather than Orbital Energy Levels

    SciTech Connect

    Fabbris, G.; Meyers, D.; Okamoto, J.; Pelliciari, J.; Disa, A. S.; Huang, Y.; Chen, Z. -Y.; Wu, W. B.; Chen, C. T.; Ismail-Beigi, S.; Ahn, C. H.; Walker, F. J.; Huang, D. J.; Schmitt, T.; Dean, M. P. M.

    2016-09-30

    We used resonant inelastic x-ray scattering to investigate the electronic origin of orbital polarization in nickelate heterostructures taking LaTiO3-LaNiO3-3×(LaAlO3), a system with exceptionally large polarization, as a model system. Furthermore, we find that heterostructuring generates only minor changes in the Ni 3d orbital energy levels, contradicting the often-invoked picture in which changes in orbital energy levels generate orbital polarization. Instead, O K-edge x-ray absorption spectroscopy demonstrates that orbital polarization is caused by an anisotropic reconstruction of the oxygen ligand hole states. This also provides an explanation for the limited success of theoretical predictions based on tuning orbital energy levels and implies that future theories should focus on anisotropic hybridization as the most effective means to drive large changes in electronic structure and realize novel emergent phenomena.

  14. The analysis and kinetic energy balance of an upper-level wind maximum during intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Jedlovec, G. J.

    1982-01-01

    The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.

  15. Orbital Engineering in Nickelate Heterostructures Driven by Anisotropic Oxygen Hybridization rather than Orbital Energy Levels

    DOE PAGES

    Fabbris, G.; Meyers, D.; Okamoto, J.; ...

    2016-09-30

    We used resonant inelastic x-ray scattering to investigate the electronic origin of orbital polarization in nickelate heterostructures taking LaTiO3-LaNiO3-3×(LaAlO3), a system with exceptionally large polarization, as a model system. Furthermore, we find that heterostructuring generates only minor changes in the Ni 3d orbital energy levels, contradicting the often-invoked picture in which changes in orbital energy levels generate orbital polarization. Instead, O K-edge x-ray absorption spectroscopy demonstrates that orbital polarization is caused by an anisotropic reconstruction of the oxygen ligand hole states. This also provides an explanation for the limited success of theoretical predictions based on tuning orbital energy levels andmore » implies that future theories should focus on anisotropic hybridization as the most effective means to drive large changes in electronic structure and realize novel emergent phenomena.« less

  16. Computing converged free energy differences between levels of theory via nonequilibrium work methods: Challenges and opportunities.

    PubMed

    Kearns, Fiona L; Hudson, Phillip S; Woodcock, Henry L; Boresch, Stefan

    2017-03-08

    We demonstrate that Jarzynski's equation can be used to reliably compute free energy differences between low and high level representations of systems. The need for such a calculation arises when employing the so-called "indirect" approach to free energy simulations with mixed quantum mechanical/molecular mechanical (QM/MM) Hamiltonians; a popular technique for circumventing extensive simulations involving quantum chemical computations. We have applied this methodology to several small and medium sized organic molecules, both in the gas phase and explicit solvent. Test cases include several systems for which the standard approach; that is, free energy perturbation between low and high level description, fails to converge. Finally, we identify three major areas in which the difference between low and high level representations make the calculation of ΔAlow→high difficult: bond stretching and angle bending, different preferred conformations, and the response of the MM region to the charge distribution of the QM region. © 2016 Wiley Periodicals, Inc.

  17. Correspondence between energy levels and evolution curves of fixed points in nonlinear Landau-Zener model

    NASA Astrophysics Data System (ADS)

    Liu, Xuan-Zuo; Tian, Dong-Ping; Chong, Bo

    2016-06-01

    Liu et al. [Phys. Rev. Lett. 90(17), 170404 (2003)] proved that the characters of transition probabilities in the adiabatic limit should be entirely determined by the topology of energy levels and the stability of fixed points in the classical Hamiltonian system, according to the adiabatic theorem. In the special case of nonlinear Landau-Zener model, we simplify their results to be that the properties of transition probabilities in the adiabatic limit should just be determined by the attributes of fixed points. It is because the topology of energy levels is governed by the behavior and symmetries of fixed points, and intuitively this fact is represented as a correspondence between energy levels and evolution curves of the fixed points which can be quantitatively described as the same complexity numbers.

  18. Acceptor specificity in the transglycosylation reaction using Endo-M.

    PubMed

    Tomabechi, Yusuke; Odate, Yuki; Izumi, Ryuko; Haneda, Katsuji; Inazu, Toshiyuki

    2010-11-22

    To determine the structural specificity of the glycosyl acceptor of the transglycosylation reaction using endo-β-N-acetylglucosaminidase (ENGase) (EC 3.2.1.96) from Mucor hiemalis (Endo-M), several acceptor derivatives were designed and synthesized. The narrow regions of the 1,3-diol structure from the 4- to 6-hydroxy functions of GlcNAc were found to be essential for the transglycosylation reaction using Endo-M. Furthermore, it was determined that Endo-M strictly recognizes a 1,3-diol structure consisting of primary and secondary hydroxyl groups.

  19. Donor-acceptor chemistry in the main group.

    PubMed

    Rivard, Eric

    2014-06-21

    This Perspective article summarizes recent progress from our laboratory in the isolation of reactive main group species using a general donor-acceptor protocol. A highlight of this program is the use of carbon-based donors in combination with suitable Lewis acidic acceptors to yield stable complexes of parent Group 14 element hydrides (e.g. GeH2 and H2SiGeH2). It is anticipated that this strategy could be extended to include new synthetic targets from throughout the Periodic Table with possible applications in bottom-up materials synthesis and main group element catalysis envisioned.

  20. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    SciTech Connect

    Jenkin, Thomas; Beiter, Philipp; Margolis, Robert

    2016-02-01

    Growing levels of variable renewable energy resources arguably create new challenges for capacity market designs, because variable renewable energy suppresses wholesale energy prices while providing relatively little capacity. This effect becomes more pronounced the higher the variable renewable energy penetration in a market. The purpose of this report is threefold. First, we provide a brief outline of the purpose and design of various capacity markets using administratively determined capacity demand curves. Second, we discuss some of the main challenges raised in existing literature and a set of interviews that we conducted with market participants, regulators, and observers. Third, we consider some of the challenges to capacity markets that arise with higher variable renewable energy penetration.

  1. Level set method coupled with Energy Image features for brain MR image segmentation.

    PubMed

    Punga, Mirela Visan; Gaurav, Rahul; Moraru, Luminita

    2014-06-01

    Up until now, the noise and intensity inhomogeneity are considered one of the major drawbacks in the field of brain magnetic resonance (MR) image segmentation. This paper introduces the energy image feature approach for intensity inhomogeneity correction. Our approach of segmentation takes the advantage of image features and preserves the advantages of the level set methods in region-based active contours framework. The energy image feature represents a new image obtained from the original image when the pixels' values are replaced by local energy values computed in the 3×3 mask size. The performance and utility of the energy image features were tested and compared through two different variants of level set methods: one as the encompassed local and global intensity fitting method and the other as the selective binary and Gaussian filtering regularized level set method. The reported results demonstrate the flexibility of the energy image feature to adapt to level set segmentation framework and to perform the challenging task of brain lesion segmentation in a rather robust way.

  2. Energy levels, radiative rates, and lifetimes for transitions in W LVIII

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (GRASP) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (FAC), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼98 Ryd), which mainly belong to the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}3d, 3s{sup 2}3p{sup 3}3d{sup 2}, 3s3p{sup 4}3d{sup 2}, 3s{sup 2}3p{sup 2}3d{sup 3}, and 3p{sup 6}3d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  3. Low Levels of Energy Expenditure in Childhood Cancer Survivors: Implications for Obesity Prevention

    PubMed Central

    Zhang, Fang Fang; Roberts, Susan B.; Parsons, Susan K.; Must, Aviva; Kelly, Michael J.; Wong, William W.; Saltzman, Edward

    2014-01-01

    Childhood cancer survivors are at an increased risk of obesity but causes for this elevated risk are uncertain. We evaluated total energy expenditure (TEE) in childhood cancer survivors using the doubly labeled water method in a cross-sectional study of 17 survivors of pediatric leukemia or lymphoma (median age 11.5 years). Mean TEE was 2,073 kcal/day, which was nearly 500 kcal/day lower than estimated energy requirements with recommended levels of physical activity. This energy gap is likely to contribute to the risk of obesity in this population and future trials are needed to assess implications and potential treatment strategies. PMID:25197775

  4. The levelized cost of energy for distributed PV : a parametric study.

    SciTech Connect

    Goodrich, Alan C.; Cameron, Christopher P.

    2010-06-01

    The maturation of distributed solar PV as an energy source requires that the technology no longer compete on module efficiency and manufacturing cost ($/Wp) alone. Solar PV must yield sufficient energy (kWh) at a competitive cost (c/kWh) to justify its system investment and ongoing maintenance costs. These metrics vary as a function of system design and interactions between parameters, such as efficiency and area-related installation costs. The calculation of levelized cost of energy includes energy production and costs throughout the life of the system. The life of the system and its components, the rate at which performance degrades, and operation and maintenance requirements all affect the cost of energy. Cost of energy is also affected by project financing and incentives. In this paper, the impact of changes in parameters such as efficiency and in assumptions about operating and maintenance costs, degradation rate and system life, system design, and financing will be examined in the context of levelized cost of energy.

  5. Energy levels and zero field splitting parameter for Fe2+ doped in ZnS

    NASA Astrophysics Data System (ADS)

    Ivaşcu, Simona

    2013-11-01

    The aim of present paper is to report the results on the modeling of the crystal field parameters of Fe2+ doped in host matrix ZnS, simulate the energy levels scheme and calculate the zero field splitting parameter D of such system. The crystal field parameters were modeled in the frame of the superposition model of crystal field and the simulation of the energy levels scheme and calculation of the zero field splitting parameters done by diagonalization the Hamiltonian of Fe2+:ZnS system. The obtained results were disscused and compared with experimental data. Satisfactory agreement have been obtained.

  6. Theoretical Study of Donor - Spacer - Acceptor Structure Molecule for Molecular Rectifier

    NASA Astrophysics Data System (ADS)

    Mizuseki, Hiroshi; Kenji, Niimura; Belosludov, Rodion; Farajian, Amir; Kawazoe, Yoshiyuki

    2003-03-01

    Recently, the molecular electronics has attracted strong attention as a ``post-silicone technology'' to establish a future nanoscale electronic devices. To realize this molecular device, unimolecular rectifiering function is one of the most important constituents in nanotechnology [C. Majumder, H. Mizuseki, and Y. Kawazoe, Molecular Scale Rectifier: Theoretical Study, J. Phys. Chem. A, 105 (2001) 9454-9459.]. In the present study, the geometric and electronic structure of alkyl derivative C37H50N4O4 (PNX) molecule, (donor - spacer - acceptor), a leading candidate of molecular rectifying device, has been investigated theoretically using ab initio quantum mechanical calculation. The results suggest that in such donor-acceptor molecular complexes, while the lowest unoccupied orbital concentrates on the acceptor subunit, the highest occupied molecular orbital is localized on the donor subunit. The approximate potential differences for optimized PNX molecule have been estimated at the B3PW91/6-311g++(d,p) level of theory, which achieves quite good agreement with experimentally reported results. This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.

  7. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: tetrahedral molecules.

    PubMed

    Nikitin, A V; Rey, M; Tyuterev, Vl G

    2015-03-07

    A simultaneous use of the full molecular symmetry and of an exact kinetic energy operator (KEO) is of key importance for accurate predictions of vibrational levels at a high energy range from a potential energy surface (PES). An efficient method that permits a fast convergence of variational calculations would allow iterative optimization of the PES parameters using experimental data. In this work, we propose such a method applied to tetrahedral AB4 molecules for which a use of high symmetry is crucial for vibrational calculations. A symmetry-adapted contracted angular basis set for six redundant angles is introduced. Simple formulas using this basis set for explicit calculation of the angular matrix elements of KEO and PES are reported. The symmetric form (six redundant angles) of vibrational KEO without the sin(q)(-2) type singularity is derived. The efficient recursive algorithm based on the tensorial formalism is used for the calculation of vibrational matrix elements. A good basis set convergence for the calculations of vibrational levels of the CH4 molecule is demonstrated.

  8. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: Tetrahedral molecules

    SciTech Connect

    Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.

    2015-03-07

    A simultaneous use of the full molecular symmetry and of an exact kinetic energy operator (KEO) is of key importance for accurate predictions of vibrational levels at a high energy range from a potential energy surface (PES). An efficient method that permits a fast convergence of variational calculations would allow iterative optimization of the PES parameters using experimental data. In this work, we propose such a method applied to tetrahedral AB{sub 4} molecules for which a use of high symmetry is crucial for vibrational calculations. A symmetry-adapted contracted angular basis set for six redundant angles is introduced. Simple formulas using this basis set for explicit calculation of the angular matrix elements of KEO and PES are reported. The symmetric form (six redundant angles) of vibrational KEO without the sin(q){sup −2} type singularity is derived. The efficient recursive algorithm based on the tensorial formalism is used for the calculation of vibrational matrix elements. A good basis set convergence for the calculations of vibrational levels of the CH{sub 4} molecule is demonstrated.

  9. Donor and Acceptor States in GaAs-(Ga, Al)As Quantum Dots:. Effects of Hydrostatic Pressure and AN Intense Laser

    NASA Astrophysics Data System (ADS)

    Miguez, A.; Franco, R.; Silva-Valencia, J.

    We calculated the binding energies of shallow donors and acceptors in a spherical GaAs-Ga1-xAlx As quantum dot under the combined effect of isotropic hydrostatic pressure and an intense laser. We used a variational approach within the effective mass approximation. The binding energy was computed as a function of hydrostatic pressure, dot sizes and laser field amplitude. The results showed that the impurity binding energy increases with pressure and decreases with the laser field amplitude when other parameters are fixed. We also found that the pressure effects are more dramatic for donor than acceptor impurities, especially for quantum dots with small radii.

  10. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    SciTech Connect

    Aggarwal, Sunny Singh, J.; Jha, A.K.S.; Mohan, Man

    2014-07-15

    Fine-structure energies of the 67 levels belonging to the 1s{sup 2}, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  11. Improvement of photovoltaic performance by substituent effect of donor and acceptor structure of TPA-based dye-sensitized solar cells.

    PubMed

    Inostroza, Natalia; Mendizabal, Fernando; Arratia-Pérez, Ramiro; Orellana, Carlos; Linares-Flores, Cristian

    2016-01-01

    We report a computational study of a series of organic dyes built with triphenylamine (TPA) as an electron donor group. We designed a set of six dyes called (TPA-n, where n = 0-5). In order to enhance the electron-injection process, the electron-donor effect of some specific substituent was studied. Thus, we gave insights into the rational design of organic TPA-based chromophores for use in dye-sensitized solar cells (DSSCs). In addition, we report the HOMO, LUMO, the calculated excited state oxidized potential E(dye*)(eV) and the free energy change for electron-injection ΔGinject(eV), and the UV-visible absorption bands for TPA-n dyes by a time-dependent density functional theory (TDDFT) procedure at the B3LYP and CAM-B3LYP levels with solvent effect. The results demonstrate that the introduction of the electron-acceptor groups produces an intramolecular charge transfer showing a shift of the absorption wavelengths of TPA-n under studies. Graphical Abstract Several organic dyes TPA-n with different donors and acceptors are modeled. A strong conjugation acrros the donor and anchoring groips (TPA-n) bas been studied. Candidate TPA-3 shows a promising results.

  12. Critical increase in Na-doping facilitates acceptor band movements that yields ~180 meV shallow hole conduction in ZnO bulk crystals

    PubMed Central

    Parmar, Narendra S.; Yim, Haena; Choi, Ji-Won

    2017-01-01

    Stable p-type conduction in ZnO has been a long time obstacle in utilizing its full potential such as in opto-electronic devices. We designed a unique experimental set-up in the laboratory for high Na-doping by thermal diffusion in the bulk ZnO single crystals. SIMS measurement shows that Na concentration increases by 3 orders of magnitude, to ~3 × 1020 cm−3 as doping temperature increases to 1200 °C. Electronic infrared absorption was measured for Na-acceptors. Absorption bands were observed near (0.20–0.24) eV. Absorption bands blue shifted by 0.04 eV when doped at 1200 °C giving rise to shallow acceptor level. NaZn band movements as a function of doping temperature are also seen in Photoluminescence emission (PL), Photoluminescence excitation (PLE) and UV-Vis transmission measurements. Variable temperature Hall measurements show stable p-type conduction with hole binding energy ~0.18 eV in ZnO samples that were Na-doped at 1200 °C. PMID:28272444

  13. Critical increase in Na-doping facilitates acceptor band movements that yields ~180 meV shallow hole conduction in ZnO bulk crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra S.; Yim, Haena; Choi, Ji-Won

    2017-03-01

    Stable p-type conduction in ZnO has been a long time obstacle in utilizing its full potential such as in opto-electronic devices. We designed a unique experimental set-up in the laboratory for high Na-doping by thermal diffusion in the bulk ZnO single crystals. SIMS measurement shows that Na concentration increases by 3 orders of magnitude, to ~3 × 1020 cm‑3 as doping temperature increases to 1200 °C. Electronic infrared absorption was measured for Na-acceptors. Absorption bands were observed near (0.20–0.24) eV. Absorption bands blue shifted by 0.04 eV when doped at 1200 °C giving rise to shallow acceptor level. NaZn band movements as a function of doping temperature are also seen in Photoluminescence emission (PL), Photoluminescence excitation (PLE) and UV-Vis transmission measurements. Variable temperature Hall measurements show stable p-type conduction with hole binding energy ~0.18 eV in ZnO samples that were Na-doped at 1200 °C.

  14. Influence of lanthanide ion energy levels on luminescence of corresponding metalloporphyrins.

    PubMed

    Zhao, Huimin; Zang, Lixin; Guo, Chengshan

    2017-03-15

    Lanthanide (Ln) porphyrins exhibit diverse luminescence properties that have not been fully explained yet. A series of Ln ions (Ln ions = La(3+), Ce(3+), Pr(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), Ho(3+), Er(3+), Tm(3+), Yb(3+), and Lu(3+)) were coordinated with hematoporphyrin monomethyl ether (HMME), and their luminescence properties and related differences were studied. Spectral analysis indicated that all Ln-HMMEs exhibit fluorescence emission. Gd- and Lu-HMMEs were the only lanthanide-HMMEs displaying strong molecular π-π room-temperature phosphorescence (RTP) with quantum yield ΦP > 10(-3). Tb(3+) can also induce RTP from HMME but ΦP of Tb-HMME is much smaller (ΦP ∼ 10(-4)). The observed luminescence property differences were analyzed in detail, focusing on the 4f energy levels of Ln ions. These levels mostly lie below the lowest singlet (S1) and triplet (T1) excited states of HMME, resulting in energy transfer from the T1 state in HMME to Ln ions and, therefore, in the absence of RTP from the corresponding metalloporphyrins. Gd(3+) and Lu(3+) are the only lanthanide ions not possessing such 4f energy levels, avoiding T1 quenching in Gd- and Lu-HMMEs. Although Tb(3+) has low-lying 4f energy levels, the corresponding transition from the ground state is partly forbidden, resulting in weak energy transfer from HMME to Tb(3+) that accounts for the low RTP quantum yield of the corresponding complex. Thus, our results indicate that the luminescence property differences of lanthanide porphyrins are due to the disparate energy levels of the Ln ions.

  15. An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors

    PubMed Central

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.

    2014-01-01

    ABSTRACT Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found. PMID:25425235

  16. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE PAGES

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; ...

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  17. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    SciTech Connect

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.

  18. Three Redox States of a Diradical Acceptor-Donor-Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization.

    PubMed

    Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume

    2016-06-16

    The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations.

  19. Extensive and accurate energy levels and transition rates for Al-like Zn XVIII

    NASA Astrophysics Data System (ADS)

    Si, R.; Zhang, C. Y.; Liu, Y. W.; Chen, Z. B.; Guo, X. L.; Li, S.; Yan, J.; Chen, C. Y.; Wang, K.

    2017-03-01

    Energy levels and transition rates for electric-dipole (E1), electric-quadrupole (E2), magnetic-dipole (M1), and magnetic-quadrupole (M2) transitions of the lowest 393 levels arising from the 3l3 (0 ≤ l ⩽ 2), 3s2 4 l (0 ≤ l ⩽ 3), 3 s 3 p 4 l (0 ≤ l ⩽ 3), 3p2 4 l (0 ≤ l ⩽ 2), 3 s 3 d 4 l (0 ≤ l ⩽ 1), and 3s2 5 l (0 ≤ l ⩽ 4) configurations in Al-like Zn are calculated through the multi-configuration Dirac-Hartree-Fock (MCDHF) method and second-order many-body perturbation theory (MBPT). In the MCDHF calculation, valence-valence and core-valence correlations with the 2 p and 2 s electrons are taken into account. The effect of Breit interaction and quantum electrodynamics corrections on excitation level energies and level lifetimes are assessed though the MCDHF and MBPT calculations. The two sets of level energies are in excellent agreement of better than 0.1%, while the level lifetimes mostly agree to within 2%. Comparisons are also made with experimental measurements and other theoretical results to assess the accuracy of our calculations.

  20. Energy level alignment at hybridized organic-metal interfaces from a GW projection approach

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Tamblyn, Isaac; Quek, Su Ying

    Energy level alignments at organic-metal interfaces are of profound importance in numerous (opto)electronic applications. Standard density functional theory (DFT) calculations generally give incorrect energy level alignments and missing long-range polarization effects. Previous efforts to address this problem using the many-electron GW method have focused on physisorbed systems where hybridization effects are insignificant. Here, we use state-of-the-art GW methods to predict the level alignment at the amine-Au interface, where molecular levels do hybridize with metallic states. This non-trivial hybridization implies that DFT result is a poor approximation to the quasiparticle states. However, we find that the self-energy operator is approximately diagonal in the molecular basis, allowing us to use a projection approach to predict the level alignments. Our results indicate that the metallic substrate reduces the HOMO-LUMO gap by 3.5 4.0 eV, depending on the molecular coverage/presence of Au adatoms. Our GW results are further compared with those of a simple image charge model that describes the level alignment in physisorbed systems. Syq and YC acknowledge Grant NRF-NRFF2013-07 and the medium-sized centre program from the National Research Foundation, Singapore.

  1. Vibrational Energy Levels via Finite-Basis Calculations Using a Quasi-Analytic Form of the Kinetic Energy.

    PubMed

    Vázquez, Juana; Harding, Michael E; Stanton, John F; Gauss, Jürgen

    2011-05-10

    A variational method for the calculation of low-lying vibrational energy levels of molecules with small amplitude vibrations is presented. The approach is based on the Watson Hamiltonian in rectilinear normal coordinates and characterized by a quasi-analytic integration over the kinetic energy operator (KEO). The KEO beyond the harmonic approximation is represented by a Taylor series in terms of the rectilinear normal coordinates around the equilibrium configuration. This formulation of the KEO enables its extension to arbitrary order until numerical convergence is reached for those states describing small amplitude motions and suitably represented with a rectilinear system of coordinates. A Gauss-Hermite quadrature grid representation of the anharmonic potential is used for all the benchmark examples presented. Results for a set of molecules with linear and nonlinear configurations, i.e., CO2, H2O, and formyl fluoride (HFCO), illustrate the performance of the method and the versatility of our implementation.

  2. Short-lived electron transfer in donor-bridge-acceptor systems

    NASA Astrophysics Data System (ADS)

    Psiachos, D.

    2016-10-01

    We investigate time-dependent electron transfer (ET) in benchmark donor-bridge-acceptor systems. For the small bridge sizes studied, we obtain results far different from the perturbation theory which underlies scattering-based approaches, notably a lack of destructive interference in the ET for certain arrangements of bridge molecules. We also calculate wavepacket transmission in the non-steady-state regime, finding a featureless spectrum, while for the current we find two types of transmission: sequential and direct, where in the latter, the current transmission increases as a function of the energy of the transferred electron, a regime inaccessible by conventional scattering theory.

  3. Solvent-tuned intramolecular charge-recombination rates in a conjugated donor-acceptor molecule

    NASA Technical Reports Server (NTRS)

    Khundkar, Lutfur R.; Stiegman, A. E.; Perry, Joseph W.

    1990-01-01

    The nonradiative charge-recombination rates from the charge-transfer state of a new conjugated donor-acceptor molecule (p-cyano-p-prime-methylthiodiphenylacetylene) can be tuned over almost an order of magnitude by varying the polarity of the solvent. These measurements of intramolecular recombination show a turnover of rates as a function of emission energy, consistent with the 'normal' and 'inverted' behavior of Marcus theory. Steady-state spectra and time-resolved measurements make it possible to quantitatively compare thermal and optical electron-transfer rates as a function of driving force and demonstrate their correspondence.

  4. Energy levels of neutral and singly ionized berkelium, /sup 249/Bk I and II

    SciTech Connect

    Worden, E.F.; Conway, J.G.; Blaise, J.

    1987-09-01

    Energy-level analyses of the observed emission spectrum of berkelium have yielded 179 odd and 186 even levels of neutral berkelium Bk I, and 42 odd and 117 even levels of singly ionized berkelium Bk II. The levels are tabulated with the J value, the g value, the configuration and hyperfine constants A and B, and the width given for many of the levels. The ground states of Bk I and Bk II are (Rn)5f/sup 9/7s/sup 2/ /sup 6/H/sup 0//sub 15/2/ and (Rn)5f/sup 9/7s /sup 7/H/sup 0//sub 8/, respectively. A table lists the lowest level of each identified electronic configuration of Bk I and Bk II.

  5. On-Site Renewable Energy and Green Buildings: A System-Level Analysis.

    PubMed

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2016-05-03

    Adopting a green building rating system (GBRSs) that strongly considers use of renewable energy can have important environmental consequences, particularly in developing countries. In this paper, we studied on-site renewable energy and GBRSs at the system level to explore potential benefits and challenges. While we have focused on GBRSs, the findings can offer additional insight for renewable incentives across sectors. An energy model was built for 25 sites to compute the potential solar and wind power production on-site and available within the building footprint and regional climate. A life-cycle approach and cost analysis were then completed to analyze the environmental and economic impacts. Environmental impacts of renewable energy varied dramatically between sites, in some cases, the environmental benefits were limited despite the significant economic burden of those renewable systems on-site and vice versa. Our recommendation for GBRSs, and broader policies and regulations, is to require buildings with higher environmental impacts to achieve higher levels of energy performance and on-site renewable energy utilization, instead of fixed percentages.

  6. Effects of Seismological and Soil Parameters on Earthquake Energy demand in Level Ground Sand Deposits

    NASA Astrophysics Data System (ADS)

    nabili, sara; shahbazi majd, nafiseh

    2013-04-01

    any specified level were estimated by three several method including the strain energy in which is the areas of hysteresis loops, the arias intensity and the kinetic energy computed from the acceleration time histories at its corresponding level. Finally, the dependency of the demand energy to the soil and seismological parameters was shown by means of several diagrams.

  7. Electron Acceptor-Electron Donor Interactions. XV and XVI.

    DTIC Science & Technology

    mixtures exhibit simple eutectic phase diagrams and the thermochromic effect is interpreted as a randomized structure in the liquid , whereas the solid is a...two-phase aggregate of isolated acceptor and onor crystals . The charge-transfer spectra of solutions of tungsten and molybdenum hexafluorides and iodine heptafluoride in n-hexane and cyclohexane were obtained.

  8. Poly(trifluoromethyl)azulenes: structures and acceptor properties.

    PubMed

    Clikeman, Tyler T; Bukovsky, Eric V; Kuvychko, Igor V; San, Long K; Deng, Shihu H M; Wang, Xue-Bin; Chen, Yu-Sheng; Strauss, Steven H; Boltalina, Olga V

    2014-06-14

    Six new poly(trifluoromethyl)azulenes prepared in a single high-temperature reaction exhibit strong electron accepting properties in the gas phase and in solution and demonstrate the propensity to form regular π-stacked columns in donor-acceptor crystals when mixed with pyrene as a donor.

  9. Energy Levels in Helium and Neon Atoms by an Electron-Impact Method.

    ERIC Educational Resources Information Center

    Taylor, N.; And Others

    1981-01-01

    Electronic energy levels in noble gas atoms may be determined with a simple teaching apparatus incorporating a resonance potentials tube in which the electron beam intensity is held constant. The resulting spectra are little inferior to those obtained by more elaborate electron-impact methods and complement optical emission spectra. (Author/SK)

  10. Exploring Learners' Conceptual Resources: Singapore a Level Students' Explanations in the Topic of Ionisation Energy

    ERIC Educational Resources Information Center

    Taber, Keith S.; Tan, Kim Chwee Daniel

    2007-01-01

    This paper describes findings from a study to explore Singapore A-level (Grades 11 and 12, 16-19 yr old) students' understanding of ionisation energy, an abstract and complex topic that is featured in school chemistry courses. Previous research had reported that students in the United Kingdom commonly use alternative notions based on the perceived…

  11. Improved Experimental and Theoretical Energy Levels of Carbon I from Solar Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Chang, Edward S.; Geller, Murray

    1997-01-01

    We have improved the energy levels in neutral carbon using high resolution infrared solar spectra. The main source is the ATMOS spectrum measured by the Fourier transaform spectroscopy technique from 600 to 4800 cm-1, supplemented by the MARK IV balloon data, covering from 4700 to 5700 cm-1.

  12. Prospective Physics Teachers' Level of Understanding Energy, Power and Force Concepts

    ERIC Educational Resources Information Center

    Saglam-Arslan, Aysegul; Kurnaz, Mehmet Altan

    2009-01-01

    The aim of this study is to determine prospective physics teachers' level of understanding of the concepts of energy and the related concepts of force and power. The study was carried out with the participation of 56 physics education department students at a university in Karadeniz region. All participants had previously taken an introductory…

  13. Saturation of Energy Levels in Analytical Atomic Fluorescence Spectrometry. II. Experimental.

    DTIC Science & Technology

    1981-01-30

    RESEARCH Contract N14-76-C-0838 Task Ao. NR 051-622 TECHNICAL REPORT NO. 34 SATURATION OF ENERGY LEVELS IN ANALYTICAL ATOMIC FLUORESCENCE SPECTROMETRY II...an assumption which is valid only if the daral o’l of 111, cxcilIatio n pulse is mucl ) longer than the fluorescence life- time of the tjaii!,ition

  14. Energy Related Technology Programs at the Non-Baccalaureate Postsecondary Level.

    ERIC Educational Resources Information Center

    Brooking, Walter J.

    Guidelines are presented for institution administrators considering the initiation of programs to train energy-related technicians at the associate degree level. Two essential preliminary steps are outlined: Acquiring and analyzing all available information about the proposed field including national legislation and surveying the probable need for…

  15. Entropy-Energy Inequality for a Qutrit on the Example of a Three-Level Atom

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Markovich, L. A.

    2017-03-01

    We consider the entropy-energy inequality for a three-level atom implemented on superconducting circuits with the Josephson junction. It is suggested to use the positivity of the relative entropy of the qutritquantum system for verification of tomography of quantum states of qudits. The relations obtained are considered in detail on the example of the temperature density matrix.

  16. Peculiarities of collisional excitation transfer with excited screened energy levels of atoms

    SciTech Connect

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskiy, A. V.

    2007-09-15

    We report an experimental discovery of deviations from the known regularities in collisional excitation transfer processes for metal atoms. The collisional excitation transfer with excited screened energy levels of thulium and dysprosium atoms is studied. The selecting role of the screening 6s shell in collisional excitation transfer is shown.

  17. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    DOE PAGES

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and themore » dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less

  18. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    SciTech Connect

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1benergy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.

  19. Energy levels and radiative data for Kr-like W38+ from MCDHF and RMBPT calculations

    NASA Astrophysics Data System (ADS)

    Guo, XueLing; Grumer, Jon; Brage, Tomas; Si, Ran; Chen, ChongYang; Jönsson, Per; Wang, Kai; Yan, Jun; Hutton, Roger; Zou, YaMing

    2016-07-01

    Energies, transition rates, line strengths and lifetimes have been computed for all levels of the 4p 6 and 4p 54d configurations of W38+ by using the multi-configuration Dirac-Hartree-Fock (MCDHF) method as well as relativistic many-body perturbation theory. We investigate systematically correlation, relativistic and quantum electro-dynamical (QED) effects of different properties, including excitation energies and transition rates. We demonstrate that it is important to include the core-valence correlation of rather deep subshells (including 3d and 3p) to reach close to spectroscopic accuracy for the transition energies. We also show that high-multipole transitions (E3, M2) are important for the lifetime of some metastable levels of 4p 54d ({}3{F}3,{}1{D}2,{}3{D}2). The present results are in good agreement with experiments and of considerably higher accuracy than those achieved in previous theoretical works.

  20. Variational Calculations of Ro-Vibrational Energy Levels and Transition Intensities for Tetratomic Molecules

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    A description is given of an algorithm for computing ro-vibrational energy levels for tetratomic molecules. The expressions required for evaluating transition intensities are also given. The variational principle is used to determine the energy levels and the kinetic energy operator is simple and evaluated exactly. The computational procedure is split up into the determination of one dimensional radial basis functions, the computation of a contracted rotational-bending basis, followed by a final variational step coupling all degrees of freedom. An angular basis is proposed whereby the rotational-bending contraction takes place in three steps. Angular matrix elements of the potential are evaluated by expansion in terms of a suitable basis and the angular integrals are given in a factorized form which simplifies their evaluation. The basis functions in the final variational step have the full permutation symmetries of the identical particles. Sample results are given for HCCH and BH3.

  1. First-Principles Approach to Calculating Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-01

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water. The application to the specific cases of nonpolar (101 ¯0) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.

  2. A comparison of fatigue and energy levels at 6 weeks and 14 to 19 months postpartum.

    PubMed

    Troy, N W

    1999-05-01

    It has been assumed that women recover from pregnancy and childbirth within 6 weeks. Recent research shows that women's fatigue levels are the same, or higher, at 6 weeks postpartum as at the time of delivery. This study determined the differences in primiparous women's fatigue and energy levels at 6 weeks and 14 to 19 months postpartum. Determinations of how some contributing factors and outcomes of postpartum fatigue relate to each other and to fatigue and energy at 14 to 19 months postpartum were also made. Analyses revealed that women are more fatigued and less energetic at 14 to 19 months than they were at 6 weeks postpartum. Quality of sleep did not correlate with fatigue or energy. At 14 to 19 months postpartum return to full functional status is almost complete, with household and infant care responsibilities being most complete. The women were experiencing mild life crises of various sorts, were somewhat depressed, and were gratified in the mothering role.

  3. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (<100 meV), and thus allows RISC at ambient temperature. We found that the EL emission in OLED based on the exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  4. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  5. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels.

    PubMed

    Dickman, Elizabeth M; Newell, Jennifer M; González, María J; Vanni, Michael J

    2008-11-25

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types.

  6. Fermi level pinning and the charge transfer contribution to the energy of adsorption at semiconducting surfaces

    SciTech Connect

    Krukowski, Stanisław; Kempisty, Paweł; Strak, Paweł; Sakowski, Konrad

    2014-01-28

    It is shown that charge transfer, the process analogous to formation of semiconductor p-n junction, contributes significantly to adsorption energy at semiconductor surfaces. For the processes without the charge transfer, such as molecular adsorption of closed shell systems, the adsorption energy is determined by the bonding only. In the case involving charge transfer, such as open shell systems like metal atoms or the dissociating molecules, the energy attains different value for the Fermi level differently pinned. The Density Functional Theory (DFT) simulation of species adsorption at different surfaces, such as SiC(0001) or GaN(0001) confirms these predictions: the molecular adsorption is independent on the coverage, while the dissociative process adsorption energy varies by several electronvolts.

  7. Energies and Electric Dipole Transitions for Low-Lying Levels of Protactinium IV and Uranium V

    NASA Astrophysics Data System (ADS)

    Ürer, Güldem; Özdemir, Leyla

    2012-02-01

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z =91) and uranium V (Z =92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature.

  8. Conjugated polymers based on benzo[2,1-b:3,4-b']dithiophene with low-lying highest occupied molecular orbital energy levels for organic photovoltaics.

    PubMed

    Xiao, Shengqiang; Stuart, Andrew C; Liu, Shubin; You, Wei

    2009-07-01

    Fusing bithiophene units with a benzo moiety, benzo[2,1-b:3,4-b']dithiophene (BDT), was projected by theoretical calculations to lower the highest occupied molecular orbital (HOMO) energy level of the resulting polymers compared with that of the bithiophene unit, which would enhance the open circuit voltage of bulk heterojunction photovoltaic cells fabricated from BDT-based polymers blended with PCBM. The homopolymer of BDT (HMPBDT) and alternating copolymer of BDT with 2,1,3-benzothiadiazole (PBDT-BT) were therefore synthesized and fully characterized. Both the homopolymer (HMPBDT) and the copolymer (PBDT-BT) were experimentally confirmed to have low HOMO energy levels (-5.70 eV for HMPBDT and -5.34 eV for PBDT-BT). Introducing the acceptor moiety (2,1,3-benzothiadiazole) successfully lowered the optical band gap of the copolymer from 2.31 eV (HMPBDT) to 1.78 eV (PBDT-BT). Bulk heterojunction photovoltaic devices were fabricated from blends of these structurally related polymers with PBCM to investigate the photovoltaic performances. The optimized device of HMPBDT:PCBM (1:3, 180 nm) exhibited an improved open circuit voltage (V(oc)) of 0.76 V, a short circuit current (J(sc)) of 0.34 mA/cm(2), and a fill factor (FF) of 0.40, offering an overall efficiency of 0.10%. The observed large phase separation of the thin film by AFM and the large band gap were accountable for the small current. The optimized device of PBDT-BT:PCBM (1:3, 55 nm) demonstrated a better efficiency of 0.6%, with V(oc) = 0.72 V, J(sc) = 2.06 mA/cm(2), and FF = 0.42. The much improved current was attributed to the lower bandgap and better film morphology. However, the low hole mobility limited the thickness of the PBDT-BT:PCBM film, making inaccessible the thicker film which would utilize more light and enhance the current. Further improvements are expected if the mobility and film morphology can be improved by the new materials design, together with low band gap and low HOMO energy level.

  9. Adenylate nucleotide levels and energy charge in Arthrobacter crystallopoietes during growth and starvation.

    PubMed

    Leps, W T; Ensign, J C

    1979-07-01

    The adenylate nucleotide concentrations, based on internal water space, were determined in cells of Arthrobacter crystallopoietes during growth and starvation and the energy charge of the cells was calculated. The energy charge of spherical cells rose during the first 10 h of growth, then remained nearly constant for as long as 20 h into the stationary phase. The energy charge of rod-shaped cells rose during the first 4 h of growth, then remained constant during subsequent growth and decreased in the stationary growth phase. Both spherical and rod-shaped cells excreted adenosine monophosphate but not adenosine triphosphate or adenosine diphosphate during starvation. The intracellular energy charge of spherical cells declined during the initial 10 h and then remained constant for 1 week of starvation at a value of 0.78. The intracellular energy charge of rod-shaped cells declined during the first 24 h of starvation, remained constant for the next 80 h, then decreased to a value of 0.73 after a total of 168 h starvation. Both cell forms remained more than 90% viable during this time. Addition of a carbon and energy source to starving cells resulted in an increase in the ATP concentration and as a result the energy charge increased to the smae levels as found during growth.

  10. Cascade splitting of two atomic energy levels due to multiphoton absorption

    NASA Astrophysics Data System (ADS)

    Ruan, Ya-Ping; Jia, Feng-Dong; Sun, Zhen; Lv, Shuang-Fei; Qing, Bo; Huang, Wei; Xue, Ping; Xu, Xiang-Yuan; Dai, Xing-Can; Zhong, Zhi-Ping

    2014-09-01

    We have theoretically and experimentally studied the spectroscopic properties of dressed levels in a strong monochromatic field, and propose a model of cascade splitting of two atomic energy levels. In this model two related dressed levels can be split into four levels, and transitions connecting four new levels will constitute spectroscopic structures. Two types of proof-in-principle experiments are performed to verify the model. One experiment measures the probe absorption spectra of a degenerate two-level atomic system with two strong monochromatic coupling fields. The system consists of 52S1/2,F=2 and 52P3/2,F'=3 states of Rb87 atoms in a magneto-optical trap (MOT) as well as the cooling beams and an additional coupling field. New spectral features are observed and proven to be due to the transitions of new levels generated by splitting of the dressed levels. The other experiment measures the pump-probe spectra in a degenerate two-level atomic system with one strong monochromatic coupling field. The system consists of 52S1/2,F=2 and 52P3/2,F'=3 states of the Rb87 atom in a magneto-optical trap and one coupling field. We have observed spectral features that obviously differ from the prediction that comes from the two-level dressed-atom approach. They cannot be explained by existing theories. The model of cascade splitting of two atomic energy levels is employed to explain the observations in these two types of experiments.

  11. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  12. Delayed dopamine signaling of energy level builds appetitive long-term memory in Drosophila.

    PubMed

    Musso, Pierre-Yves; Tchenio, Paul; Preat, Thomas

    2015-02-24

    Sensory cues relevant to a food source, such as odors, can be associated with post-ingestion signals related either to food energetic value or toxicity. Despite numerous behavioral studies, a global understanding of the mechanisms underlying these long delay associations remains out of reach. Here, we demonstrate in Drosophila that the long-term association between an odor and a nutritious sugar depends on delayed post-ingestion signaling of energy level. We show at the neural circuit level that the activity of two pairs of dopaminergic neurons is necessary and sufficient to signal energy level to the olfactory memory center. Accordingly, we have identified in these dopaminergic neurons a delayed calcium trace that correlates with appetitive long-term memory formation. Altogether, these findings demonstrate that the Drosophila brain remembers food quality through a two-step mechanism that consists of the integration of olfactory and gustatory sensory information and then post-ingestion energetic value.

  13. Magnetic field dependence of energy levels in biased bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Farias, G. A.; Peeters, F. M.

    2016-02-01

    Using the tight-binding approach, we study the influence of a perpendicular magnetic field on the energy levels of hexagonal, triangular, and circular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We obtain the energy levels for AB (Bernal)-stacked BLG QDs in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). We find different regions in the spectrum of biased QDs with respect to the crossing point between the lowest-electron and -hole Landau levels of a biased BLG sheet. Those different regions correspond to electron states that are localized at the center, edge, or corner of the BLG QD. Quantum Hall corner states are found to be absent in circular BLG QDs. The spatial symmetry of the carrier density distribution is related to the symmetry of the confinement potential, the position of zigzag edges, and the presence or absence of interlayer inversion symmetry.

  14. Effects of Dietary Energy Levels on the Physiological Parameters and Reproductive Performance of Gestating Gilts

    PubMed Central

    Jin, S. S.; Jung, S. W.; Jang, J. C.; Chung, W. L.; Jeong, J. H.; Kim, Y. Y.

    2016-01-01

    This experiment was conducted to investigate the effects of dietary energy levels on the physiological parameters and reproductive performance of gestating first parity sows. A total of 52 F1 gilts (Yorkshire×Landrace) were allocated to 4 dietary treatments using a completely randomized design. Each treatment contained diets with 3,100, 3,200, 3,300, or 3,400 kcal of metabolizable energy (ME)/kg, and the daily energy intake of the gestating gilts in each treatment were 6,200, 6,400, 6,600, and 6,800 kcal of ME, respectively. During gestation, the body weight (p = 0.04) and weight gain (p = 0.01) of gilts linearly increased with increasing dietary energy levels. Backfat thickness was not affected at d110 of gestation by dietary treatments, but increased linearly (p = 0.05) from breeding to d 110 of gestation. There were no significant differences on the litter size or litter birth weight. During lactation, the voluntary feed intake of sows tended to decrease when the dietary energy levels increased (p = 0.08). No difference was observed in backfat thickness of the sows within treatments; increasing energy levels linearly decreased the body weight of sows (p<0.05) at d 21 of lactation and body weight gain during lactation (p<0.01). No significant differences were observed in the chemical compositions of colostrum and milk. Therefore, these results indicated that high-energy diets influenced the bodyweight and backfat thickness of sows during gestation and lactation. NRC (2012) suggested that the energy requirement of the gestation gilt should be between 6,678 and 7,932 kcal of ME/d. Similarly, our results suggested that 3,100 kcal of ME/kg is not enough to maintain the reproductive performance for gilts during gestation with 2 kg feed daily. Gilts in the treatment 3,400 kcal of ME/kg have a higher weaning number of piglets, but bodyweight and backfat loss were higher than other treatments during lactation. But bodyweight and backfat loss were higher than other

  15. Interaction of /sup 125/I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    SciTech Connect

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target.

  16. Energy levels and transition rates for helium-like ions with Z = 10-36

    NASA Astrophysics Data System (ADS)

    Si, R.; Guo, X. L.; Wang, K.; Li, S.; Yan, J.; Chen, C. Y.; Brage, T.; Zou, Y. M.

    2016-08-01

    Aims: Helium-like ions provide an important X-ray spectral diagnostics in astrophysical and high-temperature fusion plasmas. An interpretation of the observed spectra provides information on temperature, density, and chemical compositions of the plasma. Such an analysis requires information for a wide range of atomic parameters, including energy levels and transition rates. Our aim is to provide a set of accurate energy levels and transition rates for helium-like ions with Z = 10-36. Methods: The second-order many-body perturbation theory (MBPT) was adopted in this paper. To support our MBPT results, we performed an independent calculation using the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Results: We provide accurate energies for the lowest singly excited 70 levels among 1snl(n ≤ 6,l ≤ (n-1)) configurations and the lowest doubly excited 250 levels arising from the K-vacancy 2ln'l'(n' ≤ 6,l' ≤ (n'-1)) configurations of helium-like ions with Z = 10-36. Wavelengths, transition rates, oscillator strengths, and line strengths are calculated for the E1, M1, E2, and M2 transitions among these levels. The radiative lifetimes are reported for all the calculated levels. Conclusions: Our MBPT results for singly excited n ≤ 2 levels show excellent agreement with other elaborate calculations, while those for singly excited n ≥ 3 and doubly excited levels show significant improvements over previous theoretical results. Our results will be very helpful for astrophysical line identification and plasma diagnostics. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A141

  17. Fragment charge difference method for estimating donor-acceptor electronic coupling: Application to DNA π-stacks

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Rösch, Notker

    2002-09-01

    The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.

  18. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-02-01

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  19. Increased Efficiency in Small Molecule Organic Solar Cells Through the Use of a 56-π Electron Acceptor - Methano Indene Fullerene

    NASA Astrophysics Data System (ADS)

    Ryan, James W.; Matsuo, Yutaka

    2015-02-01

    Organic solar cells (OSCs) offer the possibility of harnessing the sun's ubiquitous energy in a low-cost, environmentally friendly and renewable manner. OSCs based on small molecule semiconductors (SMOSCs) - have made a substantial improvement in recent years and are now achieving power conversion efficiencies (PCEs) that match those achieved for polymer:fullerene OSCs. To date, all efficient SMOSCs have relied on the same fullerene acceptor, PCBM, in order to achieve high performance. The use of PCBM however, is unfavourable due to its low lying LUMO level, which limits the open-circuit voltage (VOC). Alternative fullerene derivatives with higher lying LUMOs are thus required to improve the VOC. The challenge, however, is to prevent the typical concomitant decrease in the short circuit current density (JSC) when using a higher LUMO fullerene. In this communication, we address the issue by applying methano indene fullerene, MIF, a bis-functionalised C60 fullerene that has a LUMO level 140 mV higher than PCBM, in solution processed SMOSCs with a well known small molecule donor, DPP(TBFu)2. MIF-based devices show an improved VOC of 140 mV over PC61BM and only a small decrease in the JSC, with the PCE increasing to 5.1% (vs. 4.5% for PC61BM).

  20. Phonon contribution to electrical resistance of acceptor-doped single-wall carbon nanotubes assembled into transparent films

    NASA Astrophysics Data System (ADS)

    Tsebro, V. I.; Tonkikh, A. A.; Rybkovskiy, D. V.; Obraztsova, E. A.; Kauppinen, E. I.; Obraztsova, E. D.

    2016-12-01

    The electrical resistance of pristine and acceptor-doped single-wall carbon nanotubes assembled into transparent films was measured in the temperature range of 5 to 300 K. The doping was accomplished by filling the nanotubes with iodine or CuCl from the gas phase. After doping the films resistance appeared to drop down by one order of magnitude, to change the nonmonotonic temperature behavior, and to reduce the crossover temperature. The experimental data have been perfectly fitted in frames of the known heterogeneous model with two contributions: from the nanotube bundles (with quasi-one-dimensional conductivity) and from the interbundle electron tunneling. The doping was observed to decrease the magnitudes of both contributions. In this paper we have revealed the main reason of changes in the nanotube part. It is considered to be connected with the involvement of low-energy phonons, which start to participate in the intravalley scattering due to the shift of the Fermi level after doping. The values of the Fermi level shift into the valence band are estimated to be equal to -0.6 eV in the case of iodine doping and -0.9 eV in the case of CuCl doping. These values are in qualitative agreement with the optical absorption data.

  1. The excitation of electronic transverse energy levels in an intense magnetic field

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.

    1978-01-01

    Observations of the X-ray pulsar Hercules X-1 show a line emission feature at about 60 keV, which has been interpreted as the fundamental electron cyclotron line in a magnetic field of around six trillion gauss. In this interpretation, the line radiation results from transitions between transverse energy levels, which are quantized by the field. The expected line luminosity from the excitation of these levels by protons which are falling into the polar cap of a neutron star are calculated. They are assumed to attain kinetic energies up to around 200 MeV, the gravitational potential energy at the surface. The cross sections for high energy Coulomb encounters between small pitch angle protons and electrons in a strong field are measured and used to calculate the energy loss rate of the infalling protons. This rate, together with the rate of elastic nuclear proton collisions, is then used to calculate the number of line photons an infalling proton can be expected to produce, directly or indirectly. The results are applied to Hercules X-1.

  2. Resonant nature of intrinsic defect energy levels in PbTe revealed by infrared photoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Bingpo; Cai, Chunfeng; Jin, Shuqiang; Ye, Zhenyu; Wu, Huizhen; Qi, Zhen

    2014-07-01

    Step-scan Fourier-transform infrared photoreflectance and modulated photoluminescence spectroscopy were used to characterize the optical transitions of the epitaxial PbTe thin film grown by molecular beam epitaxy on BaF2 (111) substrate in the vicinity of energy gap of lead telluride at 77 K. It is found that the intrinsic defect energy levels in the electronic structure are of resonant nature. The Te-vacancy energy level is located above the conduction band minimum by 29.1 meV. Another defect (VX) energy level situated below valance band maximum by 18.1 meV is also revealed. Whether it is associated with the Pb vacancy is still not clear. It might also be related to the misfit dislocations stemming from the lattice mismatch between PbTe and BaF2 substrate. The experimental results support the theory prediction (N. J. Parada and G. W. Pratt, Jr., Phys. Rev. Lett. 22, 180 (1969), N. J. Parada, Phys. Rev. B 3, 2042 (1971)) and are consistent with the reported Hall experimental results (G. Bauer, H. Burkhard, H. Heinrich, and A. Lopez-Otero, J. Appl. Phys. 47, 1721 (1976)).

  3. Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications

    SciTech Connect

    Pérez, E. Castán, H.; García, H.; Dueñas, S.; Bailón, L.; Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G.; Olea, J.

    2015-01-12

    In the attempt to form an intermediate band in the bandgap of silicon substrates to give it the capability to absorb infrared radiation, we studied the deep levels in supersaturated silicon with titanium. The technique used to characterize the energy levels was the thermal admittance spectroscopy. Our experimental results showed that in samples with titanium concentration just under Mott limit there was a relationship among the activation energy value and the capture cross section value. This relationship obeys to the well known Meyer-Neldel rule, which typically appears in processes involving multiple excitations, like carrier capture/emission in deep levels, and it is generally observed in disordered systems. The obtained characteristic Meyer-Neldel parameters were Tmn = 176 K and kTmn = 15 meV. The energy value could be associated to the typical energy of the phonons in the substrate. The almost perfect adjust of all experimental data to the same straight line provides further evidence of the validity of the Meyer Neldel rule, and may contribute to obtain a deeper insight on the ultimate meaning of this phenomenon.

  4. EXAFS study of dopant ions with different charges in nanocrystalline anatase: evidence for space-charge segregation of acceptor ions.

    PubMed

    Knauth, Philippe; Chadwick, Alan V; Lippens, Pierre E; Auer, Gerhard

    2009-06-02

    Nanocrystalline TiO(2) (anatase) is an essential oxide for environment and energy applications. A combination of EXAFS spectroscopy and DFT calculations on a series of dopants with quite similar ion radius, but increasing ion charge, show boundary space charge segregation of acceptor cations. The picture illustrates the Fourier-transformed EXAFS spectrum for Sn(4+)-doped TiO(2).A series of dopants, including acceptor ions (Zn(2+), Y(3+)), isovalent ions (Zr(4+), Sn(4+)) as well as a donor ion (Nb(5+)), were studied by EXAFS spectroscopy in nanocrystalline TiO(2) anatase powders and nanoceramics. Similar results were found for nanocrystalline powders and nanocrystalline ceramics, made by hot-pressing the powders. Boundary segregation was observed for the acceptor ions yttrium and zinc, whereas tin, zirconium and niobium ions were placed on substitutional bulk sites and did not segregate, whatever their concentration. These results can be interpreted based on defect thermodynamics, in the framework of a space charge segregation model with positive boundary core, due to excess oxide ion vacancies, and negative space charge regions, where ionized acceptors are segregated.

  5. Spectrophotometric study of the charge-transfer and ion-pair complexation of methamphetamine with some acceptors.

    PubMed

    Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader

    2008-04-01

    The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 microg ml(-1) for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.

  6. Spectrophotometric study of the charge-transfer and ion-pair complexation of methamphetamine with some acceptors

    NASA Astrophysics Data System (ADS)

    Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader

    2008-04-01

    The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 μg ml -1 for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.

  7. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  8. (Dibenzoylmethanato)boron difluoride derivatives containing triphenylamine moieties: a new type of electron-donor/π-acceptor system for dye-sensitized solar cells.

    PubMed

    Mizuno, Yosuke; Yisilamu, Yilihamu; Yamaguchi, Tomoya; Tomura, Masaaki; Funaki, Takashi; Sugihara, Hideki; Ono, Katsuhiko

    2014-10-06

    (Dibenzoylmethanato)boron difluoride derivatives containing triphenylamine moieties were synthesized as a new type of electron-donor/π-acceptor system. These new compounds exhibited long-wavelength absorptions in the UV/Vis spectra, and reversible oxidation and reduction waves in cyclic voltammetry experiments. Their amphoteric redox properties are based on their resonance hybrid forms, in which a positive charge is delocalized on the triphenylamine moieties and a negative charge is localized on the boron atoms. Molecular orbital (MO) calculations indicate that their HOMO and LUMO energies vary with the number of phenylene rings connected to the difluoroboron-chelating ring. This is useful for optimizing the HOMO and LUMO levels to an iodine redox (I(-)/I3(-)) potential and a titanium dioxide conduction band, respectively. Dye-sensitized solar cells fabricated by using these compounds as dye sensitizers exhibited solar-to-electric power conversion efficiencies of 2.7-4.4 % under AM 1.5 solar light.

  9. Effects of acceptor-donor complexes on electronic structure properties in co-doped TiO2: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Cai, L. L.; Yuan, X. B.; Hu, G. C.; Ren, J. F.

    2016-07-01

    We theoretically investigate the doping effects induced by impurity complexes on the electronic structures of anatase TiO2 based on the density functional theory. Mono-doping and co-doping effects are discussed separately. The results show that the impurity doping can make the band-edges shift. The induced defect levels in the band gaps by impurity doping reduce the band gap predominantly. The compensated acceptor-donor pairs in the co-doped TiO2 will improve the photoelectrochemical activity. From the calculations, it is also found that (S+Zr)-co-doped TiO2 has the ideal band gap and band edge, at the same time, the binding energy is higher than other systems, so (S+Zr)-co-doping in TiO2 is more promise in photoelectrochemical experiments.

  10. Energy-level statistics in the fine conformational resolution of RNA folding dynamics

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Burastero, Teresita; Salthú, Rodolfo; Tablar, Ana

    1999-11-01

    This work is aimed at determining the energy-level statistics of the fine resolution of soft-mode dynamics warranting an adiabatically simplified structural relaxation of a folding biopolymer chain. The parameters defining the intrabasin structure relaxation are specified for RNA, so that each Watson-Crick base-pairing pattern may be treated as a quasiequilibrium ensemble of substates or torsional isomers within relevant folding time scales. The temperature-dependent threshold for energy dispersion associated with the fine structure of each superbasin is determined so as to warrant the adiabatic entrainment of the torsional dynamics.

  11. Seleno groups control the energy-level alignment between conjugated organic molecules and metals

    SciTech Connect

    Niederhausen, Jens; Heimel, Georg; Wilke, Andreas; Rabe, Jürgen P.; Duhm, Steffen; Bürker, Christoph; Schreiber, Frank; Xin, Qian; Vollmer, Antje; Kera, Satoshi; Ueno, Nobuo; Koch, Norbert

    2014-01-07

    The charge injection from metallic electrodes into hole transporting layers of organic devices often suffers from deviations from vacuum-level alignment at the interface. Even for weakly interacting cases, Pauli repulsion causes an interface dipole between the metal and conjugated organic molecules (COMs) (so called “push-back” or “cushion” effect), which leads notoriously to an increase of the hole injection barrier. On the other hand, for chalcogenol self assembled monolayers (SAMs) on metal surfaces, chemisorption via the formation of chalcogen-metal bonds is commonly observed. In these cases, the energy-level alignment is governed by chalcogen-derived interface states in the vicinity of the metal Fermi-level. In this work, we present X-ray and ultraviolet photoelectron spectroscopy data that demonstrate that the interfacial energy-level alignment mechanism found for chalcogenol SAMs also applies to seleno-functionalized COMs. This can be exploited to mitigate the push-back effect at metal contacts, notably also when COMs with low ionization energies are employed, permitting exceedingly low hole injection barriers, as shown here for the interfaces of tetraseleno-tetracene with Au(111), Ag(111), and Cu(111)

  12. Energy Level Alignment at Metal/Solution-Processed Organic Semiconductor Interfaces.

    PubMed

    Atxabal, Ainhoa; Braun, Slawomir; Arnold, Thorsten; Sun, Xiangnan; Parui, Subir; Liu, Xianjie; Gozalvez, Cristian; Llopis, Roger; Mateo-Alonso, Aurelio; Casanova, Felix; Ortmann, Frank; Fahlman, Mats; Hueso, Luis E

    2017-03-15

    Energy barriers between the metal Fermi energy and the molecular levels of organic semiconductor devoted to charge transport play a fundamental role in the performance of organic electronic devices. Typically, techniques such as electron photoemission spectroscopy, Kelvin probe measurements, and in-device hot-electron spectroscopy have been applied to study these interfacial energy barriers. However, so far there has not been any direct method available for the determination of energy barriers at metal interfaces with n-type polymeric semiconductors. This study measures and compares metal/solution-processed electron-transporting polymer interface energy barriers by in-device hot-electron spectroscopy and ultraviolet photoemission spectroscopy. It not only demonstrates in-device hot-electron spectroscopy as a direct and reliable technique for these studies but also brings it closer to technological applications by working ex situ under ambient conditions. Moreover, this study determines that the contamination layer coming from air exposure does not play any significant role on the energy barrier alignment for charge transport. The theoretical model developed for this work confirms all the experimental observations.

  13. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    PubMed Central

    2015-01-01

    A key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors. PMID:25741626

  14. Quantification of Water Energy Nexus for Sustainable Development at Local Level: Case Study of Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Grover, S.; Tayal, S.

    2014-12-01

    Interdependency between water and energy is generally transacted in trade-off mode; where either of the resource gets affected because of the other. Generally this trade-off is commonly known as water-energy nexus. Many studies have been undertaken in various parts of the world using various approaches to tease out the intricate nexus. This research has adopted a different approach to quantify the inter-dependency. The adopted approach made an attempt to tease out the nexus from demand side for both the resources. For water demand assessment PODIUM Sim model was used and for other parameters available secondary data was used. Using this approach percentage share of water for energy and energy for water was estimated. For an informed decision making and sustainable development, assessment was carried out at state level as most of the policies are made specifically for the state. The research was done for the southernmost state of India, Tamil Nadu which is a rapidly growing industrial hub. Tamil Nadu is energy and water intensive state and the analysis shows that the share of water demand from energy sector compared to water demand from other major sectors is miniscule. While, the energy demand in water sector for various processes in different sectors compared to energy demand as total has a comparable share of range 15-25%. This analysis indicated the relative risk sectors face in competition for the resource. It point outs that water sector faces fierce competition with other sectors for energy. Moreover, the results of the study has assessed that state has negative water balance, which may make access to water more energy intensive with time. But, a projection into future scenario with an assumption based on the ongoing policy program of improving irrigation efficiency was made. It provided a solution of a potential positive equilibrium which conserves both water and energy. This scenario gave promising results which indicated less of water demand from

  15. Energy levels of Th+ between 7.3 and 8.3 eV

    NASA Astrophysics Data System (ADS)

    Herrera-Sancho, O. A.; Nemitz, N.; Okhapkin, M. V.; Peik, E.

    2013-07-01

    Using resonant two-step laser excitation of trapped 232Th+ ions, we observe 43 previously unknown energy levels within the energy range from 7.3 to 8.3 eV. The high density of states promises a strongly enhanced electronic bridge excitation of the 229mTh nuclear state that is expected in this energy range. From the observation of resonantly enhanced three-photon ionization of Th+, the second ionization potential of thorium can be inferred to lie within the range between 11.9 and 12.3 eV. Pulsed laser radiation in a wide wavelength range from 237 to 289 nm is found to provide efficient photodissociation of molecular ions that are formed in reactions of Th+ with impurities in the buffer gas, leading to a significantly increased storage time for Th+ in the ion trap.

  16. Energy pumping analysis of skating motion in a half pipe and on a level surface

    NASA Astrophysics Data System (ADS)

    Feng, Z. C.; Xin, Ming

    2015-01-01

    In this paper, an energy pumping mechanism for locomotion is analysed. The pumping is accomplished by exerting forces perpendicular to the direction of motion. The paper attempts to demonstrate an interesting application of the classical mechanics to two sporting events: a person skating in a half pipe and a person travelling on a level surface on a skateboard. The equations of motion based on simplified mechanical models are derived using the Lagrange mechanics. The energy-pumping phenomenon is revealed through numerical simulations with simple pumping actions. The result presented in this paper can be used as an interesting class project in undergraduate mechanics or physics courses. It also motivates potential new applications of energy pumping in many engineering fields.

  17. Bidirectional Five-Level Power Processing Interface for Low Voltage Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Huang, Jain-Yi; Jou, Hurng-Liahng; Wu, Kuen-Der; Lin, You-Si; Wu, Jinn-Chang

    A bidirectional five-level power processing interface for low voltage battery energy storage system (BESS) is developed in this paper. This BESS consists of a bidirectional five-level DC-AC converter, a bidirectional dual boost/buck DC-DC converter and a battery set. This five-level DC-AC converter includes a bidirectional full-bridge converter and a bidirectional dual buck DC-DC converter. The five-level power processing interface can charge power to the battery set form the utility or discharge the power from the battery set to the utility depending on the demanded operation of user. A hardware prototype is developed to verify the performance of this BESS. Experimental results show the performance of the developed BESS is as expected.

  18. Phase diagram of a graphene bilayer in the zero-energy Landau level

    NASA Astrophysics Data System (ADS)

    Knothe, Angelika; Jolicoeur, Thierry

    2016-12-01

    Bilayer graphene under a magnetic field has an octet of quasidegenerate levels due to spin, valley, and orbital degeneracies. This zero-energy Landau level is resolved into several incompressible states whose nature is still elusive. We use a Hartree-Fock treatment of a realistic tight-binding four-band model to understand the quantum ferromagnetism phenomena expected for integer fillings of the octet levels. We include the exchange interaction with filled Landau levels below the octet states. This Lamb-shift-like effect contributes to the orbital splitting of the octet. We give phase diagrams as a function of applied bias and magnetic field. Some of our findings are in agreement with experiments. We discuss the possible appearance of phases with orbital coherence.

  19. The program LOPT for least-squares optimization of energy levels

    NASA Astrophysics Data System (ADS)

    Kramida, A. E.

    2011-02-01

    The article describes a program that solves the least-squares optimization problem for finding the energy levels of a quantum-mechanical system based on a set of measured energy separations or wavelengths of transitions between those energy levels, as well as determining the Ritz wavelengths of transitions and their uncertainties. The energy levels are determined by solving the matrix equation of the problem, and the uncertainties of the Ritz wavenumbers are determined from the covariance matrix of the problem. Program summaryProgram title: LOPT Catalogue identifier: AEHM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 254 No. of bytes in distributed program, including test data, etc.: 427 839 Distribution format: tar.gz Programming language: Perl v.5 Computer: PC, Mac, Unix workstations Operating system: MS Windows (XP, Vista, 7), Mac OS X, Linux, Unix (AIX) RAM: 3 Mwords or more Word size: 32 or 64 Classification: 2.2 Nature of problem: The least-squares energy-level optimization problem, i.e., finding a set of energy level values that best fits the given set of transition intervals. Solution method: The solution of the least-squares problem is found by solving the corresponding linear matrix equation, where the matrix is constructed using a new method with variable substitution. Restrictions: A practical limitation on the size of the problem N is imposed by the execution time, which scales as N and depends on the computer. Unusual features: Properly rounds the resulting data and formats the output in a format suitable for viewing with spreadsheet editing software. Estimates numerical errors resulting from the limited machine precision. Running time: 1 s for N=100, or 60 s for N=400 on a typical PC.

  20. Energy Levels and Oscillator Strengths for Allowed Transitions in S III

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1995-01-01

    We have calculated energy levels and oscillator strengths for dipole-allowed transitions between the terms belonging to the 3s(sup 2)3p(sup 2), 3s3p(sup 3), 3S(sup 2)3p3d, 3S(sup 2)3p4s, 3S(sup 2)3p4p and 3s(sup 2)3p4d configurations of S iii in the LS-coupling scheme. We used flexible radial functions and included a large number of configurations in the configuration-interaction expansions to ensure convergence. The calculated energy levels are in close agreement with the recent laboratory measurement. The present oscillator strengths are compared with other calculations and experiments and most of the existing discrepancies between the available calculations are resolved.

  1. Correlation, Breit and Quantum Electrodynamics effects on energy level and transition properties of W54+ ion

    NASA Astrophysics Data System (ADS)

    Ding, Xiaobin; Sun, Rui; Koike, Fumihiro; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Dong, Chenzhong

    2017-03-01

    The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The ground states [Ne]3 s 23 p 63 d 2 and first excited states [Ne]3 s 23 p 53 d 3 of W54+ ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space method was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3 s and 3 p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W54+ ion.

  2. Global exploration of the energy landscape of solids on the ab initio level.

    PubMed

    Doll, K; Schön, J C; Jansen, M

    2007-12-14

    Predicting which crystalline modifications can be present in a chemical system requires the global exploration of its energy landscape. Due to the large computational effort involved, in the past this search for sufficiently stable minima has been performed employing a variety of empirical potentials and cost functions followed by a local optimization on the ab initio level. However, this entails the risk of overlooking important modifications that are not modeled accurately using empirical potentials. In order to overcome this critical limitation, we develop an approach to employ ab initio energy functions during the global optimization phase of the structure prediction. As an example, we perform a global exploration of the landscape of LiF on the ab initio level and show that the relevant crystalline modifications are found during the search.

  3. Continuous or discrete: Tuning the energy level alignment of organic layers with alkali dopants

    NASA Astrophysics Data System (ADS)

    Ules, Thomas; Lüftner, Daniel; Reinisch, Eva Maria; Koller, Georg; Puschnig, Peter; Ramsey, Michael G.

    2016-11-01

    This paper investigates the effects of cesium (Cs) deposited on pentacene (5A) and sexiphenyl (6P) monolayers on the Ag(110) substrate. The process of doping and the energy level alignment are studied quantitatively and contrasted. While ultimately for both molecules lowest unoccupied molecular orbital (LUMO) filling on charge transfer upon Cs dosing is observed, the doping processes are tellingly different. In the case of 5A, hybrid molecule-substrate states and doping states coexist at lowest Cs exposures, while for 6P doping states appear only after Cs has completely decoupled the monolayer from the substrate. With the support of density functional theory calculations, this different behavior is rationalized by the local character of electrostatic potential changes induced by dopants in relation to the spatial extent of the molecules. This also has severe effects on the energy level alignment, which for most dopant/molecule systems cannot be considered continuous but discrete.

  4. Absolute Binding Energies of Core Levels in Solids from First Principles

    NASA Astrophysics Data System (ADS)

    Ozaki, Taisuke; Lee, Chi-Cheng

    2017-01-01

    A general method is presented to calculate absolute binding energies of core levels in metals and insulators, based on a penalty functional and an exact Coulomb cutoff method in the framework of density functional theory. The spurious interaction of core holes between supercells is avoided by the exact Coulomb cutoff method, while the variational penalty functional enables us to treat multiple splittings due to chemical shift, spin-orbit coupling, and exchange interaction on equal footing, both of which are not accessible by previous methods. It is demonstrated that the absolute binding energies of core levels for both metals and insulators are calculated by the proposed method in a mean absolute (relative) error of 0.4 eV (0.16%) for eight cases compared to experimental values measured with x-ray photoemission spectroscopy within a generalized gradient approximation to the exchange-correlation functional.

  5. Symmetry breaking in the zero-energy Landau level in bilayer graphene.

    PubMed

    Zhao, Y; Cadden-Zimansky, P; Jiang, Z; Kim, P

    2010-02-12

    The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high-field regime, the eightfold degeneracy in the zero-energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding to filling factors nu=0, 1, 2, and 3. Measurements of the activation energy gaps for the nu=2 and 3 filling factors in tilted magnetic fields exhibit no appreciable dependence on the in-plane magnetic field, suggesting that these Landau level splittings are independent of spin. In addition, measurements taken at the nu=0 charge neutral point show that, similar to single layer graphene, the bilayer becomes insulating at high fields.

  6. [Selective excitation spectra and energy level structure of Dy3+:ThO2 crystal].

    PubMed

    Yin, M; Krupa, J C

    2001-08-01

    Dy3+:ThO2 crystal was grown by the flux technique for the first time. The emission spectra, excitation spectra and fluorescence decay curves were measured and discussed. By using emission spectra obtained under selective dye laser excitation at 12 K, together with the crystal-field theory, the site symmetry of Dy3+ ions in ThO2 was determined as C3 nu and its energy level structure was tabulated. The lifetime of radiative level 4F9/2 was also determined as 0.40 ms.

  7. Level Energies, Oscillator Strengths and Lifetimes for Transitions in Pb IV

    SciTech Connect

    Colon, C.; Alonso-Medina, A.; Zanon, A.; Albeniz, J.

    2008-10-22

    Oscillator strengths for several lines of astrophysical interest arising from some configurations and some levels radiative lifetimes of Pb IV have been calculated. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree-Fock calculations. We use for the IC calculations the standard method of least square fitting of experimental energy levels by means of computer codes from Cowan. Transition Probabilities and oscillator strengths obtained, although in general agreement with the rare experimental data, do present some noticeable discrepancies that are studied in the text.

  8. COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND IMPROVED ENERGY LEVELS FOR SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-15

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 A. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  9. Comprehensive Observations of the Ultraviolet Spectrum and Improved Energy Levels for Singly Ionized Chromium (Cr II)

    NASA Astrophysics Data System (ADS)

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-01

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 Å. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  10. Vibrational energy levels for CH4 from an ab initio potential

    NASA Technical Reports Server (NTRS)

    Schwenke, D. W.; Partridge, H.

    2001-01-01

    Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.

  11. Vibrational energy levels for CH4 from an ab initio potential.

    PubMed

    Schwenke, D W; Partridge, H

    2001-03-15

    Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.

  12. Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy.

    PubMed

    Wang, Li; Chen, Yunjie; Pan, Xiaohua; Hong, Xunning; Xia, Deshen

    2010-05-15

    This paper presents a variational level set approach in a multi-phase formulation to segmentation of brain magnetic resonance (MR) images with intensity inhomogeneity. In our model, the local image intensities are characterized by Gaussian distributions with different means and variances. We define a local Gaussian distribution fitting energy with level set functions and local means and variances as variables. The means and variances of local intensities are considered as spatially varying functions. Therefore, our method is able to deal with intensity inhomogeneity without inhomogeneity correction. Our method has been applied to 3T and 7T MR images with promising results.

  13. Energy levels and radiative rates for transitions in Fe V, Co VI and Ni VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2017-03-01

    Energy levels, Landé g-factors and radiative lifetimes are reported for the lowest 182 levels of the 3d4, 3d34s and 3d34p configurations of Fe V, Co VI and Ni VII. Additionally, radiative rates (A-values) have been calculated for the E1, E2 and M1 transitions among these levels. The calculations have been performed in a quasi-relativistic approach (QR) with a very large configuration interaction (CI) wavefunction expansion, which has been found to be necessary for these ions. Our calculated energies for all ions are in excellent agreement with the available measurements, for most levels. Discrepancies among various calculations for the radiative rates of E1 transitions in Fe V are up to a factor of two for stronger transitions (f ≥ 0.1), and larger (over an order of magnitude) for weaker ones. The reasons for these discrepancies have been discussed and mainly are due to the differing amount of CI and methodologies adopted. However, there are no appreciable discrepancies in similar data for M1 and E2 transitions, or the g-factors for the levels of Fe V, the only ion for which comparisons are feasible.

  14. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    SciTech Connect

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.

  15. Optical characterization of semi-insulating GaAs - Determination of the Fermi energy, the concentraion of the midgap EL2 level and its occupancy

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Bugajski, M.; Matsui, M.; Gatos, H. C.

    1987-01-01

    The key electronic characteristics of semiinsulating GaAs, i.e., the Fermi energy, concentration, and occupancy of the midgap donor EL2, and the net concentration of ionized acceptors can all be determined from high-resolution measurements of the EL2 intracenter absorption. The procedure is based on the measurement of zero-phonon line intensity before and after the complete transfer of EL2 to its metastable state followed by thermal recovery. The procedure is quantitative, involves no fitting parameters, and unlike existing methods, is applicable even when a significant part of the EL2 is ionized.

  16. Energy levels of ABC-stacked trilayer graphene quantum dots with infinite-mass boundary conditions

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; da Costa, D. R.; Ketabi, S. A.; Peeters, F. M.

    2016-10-01

    Using the continuum model, we investigate the confined states and the corresponding wave functions of ABC-stacked trilayer graphene (TLG) quantum dots (QDs). First, a general infinite-mass boundary condition is derived and applied to calculate the electron and hole energy levels of a circular QD in both the absence and presence of a perpendicular magnetic field. Our analytical results for the energy spectra agree with those obtained by using the tight-binding model, where a TLG QD is surrounded by a staggered potential. Our findings show that (i ) the energy spectrum exhibits intervalley symmetry EKe(m ) =-EK'h(m ) for the electron (e) and hole (h) states, where m is the angular momentum quantum number, (i i ) the zero-energy Landau level (LL) is formed by the magnetic states with m ⩽0 for both Dirac valleys, that is different from monolayer and bilayer graphene QD with infinite-mass potential in which only one of the cones contributes, and (i i i ) groups of three quantum Hall edge states in the tight-binding magnetic spectrum approach the zero LL, which results from the layer symmetry in TLG QDs.

  17. A Novel Ultrasonic Method for Liquid Level Measurement Based on the Balance of Echo Energy.

    PubMed

    Zhang, Bin; Wei, Yue-Juan; Liu, Wen-Yi; Zhang, Yan-Jun; Yao, Zong; Zhang, Liang; Xiong, Ji-Jun

    2017-03-28

    This study presents a novel method for determining the liquid level from the outside of a sealed container, which is based on the balance of echo energy received by two receiving sensors. The proposed method uses one transmitting transducer and two receiving sensors that are encapsulated in a coupling plane and arranged by certain rules. The calculation and comparison of echo energy are grounded on the difference ultrasonic impedance between gas and liquid media. First, by analyzing the propagation and attenuation characteristics of ultrasonic waves in a solid, an acoustic model for calculating the echo energy is established and simulated in MATLAB. Second, the proposed method is evaluated through a series of experiments. The difference and ratio of echo energy received by two receiving sensors are calculated and compared under two different coupling conditions. Two kinds of the sensors that are arranged by different rules are selected for measuring the liquid level, and the measurement are analyzed and discussed in detail. Finally, the experimental results indicate that the proposed method can meet the proposed accuracy requirements and can effectively solve the problems caused by some poor coupling conditions.

  18. Calculations of energy levels and lifetimes of low-lying states of barium and radium

    SciTech Connect

    Dzuba, V. A.; Ginges, J. S. M.

    2006-03-15

    We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations.

  19. Energy Levels and Branching Ratios of Tm3+ in Ten Garnet Laser Materials

    DTIC Science & Technology

    1991-04-01

    Judd - Ofelt parameters for Tm 3 + in garnets............................................... 8 3. Energy levels of the 1H, and 3 F4 multiplets of Tm 3...electric dipole line strengths, Sed, are from et al [7] were used to calculate the Judd - Ofelt table 6 of that reference. The branching ratio for parameters...while f14 approximately equals the T--- experimental values, and the calculated Ql6 is ij T) ij(6) approximately five times too large. Judd - Ofelt T

  20. Energy levels, radiative rates, and lifetimes for transitions in W XL

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (GRASP). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ∼43 Ryd), which mainly belong to the 4s{sup 2}4p{sup 5},4s{sup 2}4p{sup 4}4d,4s{sup 2}4p{sup 4}4f,4s4p{sup 6},4p{sup 6}4d,4s4p{sup 5}4d,4s{sup 2}4p{sup 3}4d{sup 2}, and 4s{sup 2}4p{sup 3}4d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in GRASP. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  1. Quantum cosmological Friedman models with a Yang-Mills field and positive energy levels

    NASA Astrophysics Data System (ADS)

    Gerhardt, Claus

    2010-02-01

    We prove the existence of a spectral resolution of the Wheeler-DeWitt equation when the matter field is provided by a Yang-Mills field, with or without mass term, if the spatial geometry of the underlying spacetime is homothetic to {\\bb R}^{3} . The energy levels of the resulting quantum model, i.e. the eigenvalues of the corresponding self-adjoint Hamiltonian with a pure point spectrum, are strictly positive. This work has been supported by the DFG.

  2. An organic donor/acceptor lateral superlattice at the nanoscale.

    PubMed

    Otero, Roberto; Ecija, David; Fernandez, Gustavo; Gallego, José María; Sanchez, Luis; Martín, Nazario; Miranda, Rodolfo

    2007-09-01

    A precise control of the nanometer-scale morphology in systems containing mixtures of donor/acceptor molecules is a key factor to improve the efficiency of organic photovoltaic devices. Here we report on a scanning tunneling microscopy study of the first stages of growth of 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole, as electron donor, and phenyl-C61-butyric acid methyl ester, as electron acceptor, on a Au(111) substrate under ultrahigh vacuum conditions. Due to differences in bonding strength with the substrate and different interactions with the Au(111) herringbone surface reconstruction, mixed thin films spontaneously segregate into a lateral superlattice of interdigitated nanoscale stripes with a characteristic width of about 10-20 nm, a morphology that has been predicted to optimize the efficiency of organic solar cells.

  3. Cross-conjugated chromophores: synthesis of iso-polydiacetylenes with Donor/Acceptor substitution

    PubMed

    Ciulei; Tykwinski

    2000-11-16

    The iterative construction of cross-conjugated donor (D), acceptor (A), and donor-acceptor (D-A) substituted iso-polydiacetylene (iso-PDA) oligomers has been achieved utilizing palladium-catalyzed cross-coupling techniques. Structure-property relationships for these compounds have been analyzed for cross-conjugated pi-electronic communication as a result of contributions from donor, acceptor, or donor-acceptor functionalization.

  4. Pronounced polarization-induced energy level shifts at boundaries of organic semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Cochrane, K. A.; Schiffrin, A.; Roussy, T. S.; Capsoni, M.; Burke, S. A.

    2015-10-01

    Organic semiconductor devices rely on the movement of charge at and near interfaces, making an understanding of energy level alignment at these boundaries an essential element of optimizing materials for electronic and optoelectronic applications. Here we employ low temperature scanning tunneling microscopy and spectroscopy to investigate a model system: two-dimensional nanostructures of the prototypical organic semiconductor, PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) adsorbed on NaCl (2 ML)/Ag(111). Pixel-by-pixel scanning tunneling spectroscopy allows mapping of occupied and unoccupied electronic states across these nanoislands with sub-molecular spatial resolution, revealing strong electronic differences between molecules at the edges and those in the centre, with energy level shifts of up to 400 meV. We attribute this to the change in electrostatic environment at the boundaries of clusters, namely via polarization of neighbouring molecules. The observation of these strong shifts illustrates a crucial issue: interfacial energy level alignment can differ substantially from the bulk electronic structure in organic materials.

  5. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L.

    NASA Astrophysics Data System (ADS)

    Agustia, Yuda Virgantara; Suyitno, Arifin, Zainal; Sutanto, Bayu

    2016-03-01

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, EHOMO and ELUMO was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where Ered = -0.37V, ELUMO = -4.28 eV, Eox = 1.15V, EHOMO = -5.83 eV, and Eband gap = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  6. Pronounced polarization-induced energy level shifts at boundaries of organic semiconductor nanostructures

    PubMed Central

    Cochrane, K. A.; Schiffrin, A.; Roussy, T. S.; Capsoni, M.; Burke, S. A.

    2015-01-01

    Organic semiconductor devices rely on the movement of charge at and near interfaces, making an understanding of energy level alignment at these boundaries an essential element of optimizing materials for electronic and optoelectronic applications. Here we employ low temperature scanning tunneling microscopy and spectroscopy to investigate a model system: two-dimensional nanostructures of the prototypical organic semiconductor, PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) adsorbed on NaCl (2 ML)/Ag(111). Pixel-by-pixel scanning tunneling spectroscopy allows mapping of occupied and unoccupied electronic states across these nanoislands with sub-molecular spatial resolution, revealing strong electronic differences between molecules at the edges and those in the centre, with energy level shifts of up to 400 meV. We attribute this to the change in electrostatic environment at the boundaries of clusters, namely via polarization of neighbouring molecules. The observation of these strong shifts illustrates a crucial issue: interfacial energy level alignment can differ substantially from the bulk electronic structure in organic materials. PMID:26440933

  7. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    SciTech Connect

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-24

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  8. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning.

    PubMed

    Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N

    2015-04-15

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  9. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor-acceptor dyads.

    PubMed

    Grévin, Benjamin; Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena; Méry, Stéphane

    2016-01-01

    Self-assembled donor-acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor-donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor-acceptor supramolecular architectures down to the elementary building block level.

  10. Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors

    SciTech Connect

    Nardes, Alexandre M.; Ferguson, Andrew J.; Wolfer, Pascal; Gui, Kurt; Burn, Paul L.; Meredith, Paul; Kopidakis, Nikos

    2014-03-05

    We present a comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85 % of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. Here, we propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub

  11. Naphthalenediimide-alt-Fused Thiophene D-A Copolymers for the Application as Acceptor in All-Polymer Solar Cells.

    PubMed

    Xue, Lingwei; Yang, Yankang; Zhang, Zhi-Guo; Zhang, Jing; Gao, Liang; Bin, Haijun; Yang, YunXu; Li, Yongfang

    2016-10-06

    Three n-type alternating D-A copolymers based on a naphthalenediimide (NDI) acceptor (A) unit and three different donor (D) units with varied electron-donating strength including thiophene (P(NDI-T)), thieno[3,2-b]thiophene (P(NDI-TT)), and thieno[3,2-b;4,5-b]dithiophene (P(NDI-TDT)), were synthesized, for the application as acceptor materials in all-polymer solar cells (all-PSCs). The effect of the donor units of thiophene, thienothiophene (TT) and thienodithiophene (TDT) on the physicochemical and photovoltaic properties of the n-type D-A copolymers was systematically investigated. It was found that the absorption spectrum is red-shifted and the energy band gap (Eg ) is reduced for the NDI-based D-A copolymers with increasing number of thiophene rings in the thiophene or fused thiophene donor units. All-PSCs were fabricated with the medium band gap conjugated polymer J51 (Eg of ca 1.9 eV) as polymer donor and the n-type D-A copolymers as acceptor. The power conversion efficiency reached 2.59 %, 3.70 % and 5.10 % for the all-PSCs with P(NDI-T), P(NDI-TT), and P(NDI-TDT) as acceptor, respectively. The results indicate that a larger conjugated fused molecular plane with more thiophene rings as donor units in the NDI-based D-A copolymers is beneficial to reduce the band gap, broaden the absorption and enhance the photovoltaic performance of n-type D-A copolymer acceptors.

  12. An analysis of Renewable Portfolio Standard policy formulation and its influence on state level energy prices

    NASA Astrophysics Data System (ADS)

    McCollester, Peter Colin

    Over the past two decades, environmental concern has crept to the forefront of the world policy agenda. This concern has manifested itself differently throughout the world. In the United States, this has come in the form of Renewable Portfolio Standards (RPS) which have become one of the primary policy tools which states use to encourage renewable energy generation. The advent of RPS has spurred intense debate at a federal and state level, centering on the economic merits of promoting renewable energy generation. Detractors argue that RPS will raise electricity rates, since generation from renewable sources is typically costlier than energy generated from fossil fuels. At this point, evidence to the relationship between RPS on electricity prices remains unclear. Researchers have attempted to understand this relationship through a variety of means. The most common being regression based models, which utilize readily available United States Energy Information Agency (US EIA) data, and have uncovered a number of important independent variables which are incorporated into the model in this study. Examples include personal income, state population, and deregulation of an energy market. In addition to empirical studies, the National Renewable Energy Laboratory (NREL) has created complex mathematical models which generate scenario projections based on a number of assumptions. While interesting, these are forward looking tools and as such have not yielded a tremendous amount of insight into the underlying policy mechanics of RPS. A challenge of addressing this topic which is worth noting is that much of the research available which analyzes the merits of RPS caters to distinct political or private sector agendas. The research gathered for this study is comprehensive, and attempts to avoid studies with any clear political, ideological, or financial motivation. Using the insights from previous researchers this study develops a rigorous fixed effects regression model to

  13. Spectrophotometric studies on the charge-transfer interaction between p-nitroaniline with chloranilic acid as π-acceptor in different polar solvents

    NASA Astrophysics Data System (ADS)

    Singh, Neeti; Ahmad, Afaq

    2017-01-01

    The charge transfer interaction between the donor p-nitroaniline with the acceptor chloranilic acid has been studied spectrophotometrically in various solvents such as chloroform, ethanol, and methanol at room temperature. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (KCT), molar extinction coefficient (εCT), standard free energy (ΔG), oscillator strength (f), transition dipole moment (μN), resonance energy (RN) and ionization potential (ID). The results indicate that the formation constant (KCT) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used. The formation of the complex has been confirmed by UV-visible, FT-IR, and 1H NMR techniques.

  14. Detection of high-frequency energy level changes in speech and singing.

    PubMed

    Monson, Brian B; Lotto, Andrew J; Story, Brad H

    2014-01-01

    Previous work has shown that human listeners are sensitive to level differences in high-frequency energy (HFE) in isolated vowel sounds produced by male singers. Results indicated that sensitivity to HFE level changes increased with overall HFE level, suggesting that listeners would be more "tuned" to HFE in vocal production exhibiting higher levels of HFE. It follows that sensitivity to HFE level changes should be higher (1) for female vocal production than for male vocal production and (2) for singing than for speech. To test this hypothesis, difference limens for HFE level changes in male and female speech and singing were obtained. Listeners showed significantly greater ability to detect level changes in singing vs speech but not in female vs male speech. Mean differences limen scores for speech and singing were about 5 dB in the 8-kHz octave (5.6-11.3 kHz) but 8-10 dB in the 16-kHz octave (11.3-22 kHz). These scores are lower (better) than those previously reported for isolated vowels and some musical instruments.

  15. Detection of high-frequency energy level changes in speech and singing

    PubMed Central

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2014-01-01

    Previous work has shown that human listeners are sensitive to level differences in high-frequency energy (HFE) in isolated vowel sounds produced by male singers. Results indicated that sensitivity to HFE level changes increased with overall HFE level, suggesting that listeners would be more “tuned” to HFE in vocal production exhibiting higher levels of HFE. It follows that sensitivity to HFE level changes should be higher (1) for female vocal production than for male vocal production and (2) for singing than for speech. To test this hypothesis, difference limens for HFE level changes in male and female speech and singing were obtained. Listeners showed significantly greater ability to detect level changes in singing vs speech but not in female vs male speech. Mean differences limen scores for speech and singing were about 5 dB in the 8-kHz octave (5.6–11.3 kHz) but 8–10 dB in the 16-kHz octave (11.3–22 kHz). These scores are lower (better) than those previously reported for isolated vowels and some musical instruments. PMID:24437780

  16. Engineered oligosaccharyltransferases with greatly relaxed acceptor site specificity

    PubMed Central

    Ollis, Anne A.; Zhang, Sheng; Fisher, Adam C.; DeLisa, Matthew P.

    2015-01-01

    The Campylobacter jejuni protein glycosylation locus (pgl) encodes machinery for asparagine-linked (N-linked) glycosylation and serves as the archetype for bacterial N-glycosylation. This machinery has been functionally transferred into Escherichia coli, thereby enabling convenient mechanistic dissection of the N-glycosylation process in this genetically tractable host. Here, we sought to identify sequence determinants in the oligosaccharyltransferase PglB that restrict its specificity to only those glycan acceptor sites containing a negatively charged residue at the −2 position relative to asparagine. This involved creation of a genetic assay named glycoSNAP (glycosylation of secreted N-linked acceptor proteins) that facilitates high-throughput screening of glycophenotypes in E. coli. Using this assay, we isolated several C. jejuni PglB variants that were capable of glycosylating an array of noncanonical acceptor sequences including one in a eukaryotic N-glycoprotein. Collectively, these results underscore the utility of glycoSNAP for shedding light on poorly understood aspects of N-glycosylation and for engineering designer N-glycosylation biocatalysts. PMID:25129029

  17. Income-generating activities for family planning acceptors.

    PubMed

    1989-07-01

    The Income Generating Activities program for Family Planning Acceptors was introduced in Indonesia in 1979. Capital input by the Indonesian National Family Planning Coordination Board and the UN Fund for Population Activities was used to set up small businesses by family planning acceptors. In 2 years, when the businesses become self-sufficient, the loans are repaid, and the money is used to set up new family planning acceptors in business. The program strengthens family planning acceptance, improves the status of women, and enhances community self-reliance. The increase in household income generated by the program raises the standards of child nutrition, encourages reliance on the survival of children, and decreases the value of large families. Approximately 18,000 Family Planning-Income Generating Activities groups are now functioning all over Indonesia, with financial assistance from the central and local governments, the World Bank, the US Agency for International Development, the UN Population Fund, the Government of the Netherlands, and the Government of Australia through the Association of South East Asian Nations.

  18. Design directed self-assembly of donor-acceptor polymers.

    PubMed

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements.

  19. Quantum dots as FRET acceptors for highly sensitive multiplexing immunoassays

    NASA Astrophysics Data System (ADS)

    Geissler, Daniel; Hildebrandt, Niko; Charbonnière, Loïc J.; Ziessel, Raymond F.; Löhmannsröben, Hans-Gerd

    2009-02-01

    Homogeneous immunoassays have the benefit that they do not require any time-consuming separation steps. FRET is one of the most sensitive homogeneous methods used for immunoassays. Due to their extremely strong absorption over a broad wavelength range the use of quantum dots as FRET acceptors allows for large Foerster radii, an important advantage for assays in the 5 to 10 nm distance range. Moreover, because of their size-tunable emission, quantum dots of different sizes can be used with a single donor for the detection of different analytes (multiplexing). As the use of organic dyes with short fluorescence decay times as donors is known to be inefficient with quantum dot acceptors, lanthanide complexes with long luminescence decays are very efficient alternatives. In this contribution we present the application of commercially available biocompatible CdSe/ZnS core/shell quantum dots as multiplexing FRET acceptors together with a single terbium complex as donor in a homogeneous immunoassay system. Foerster radii of 10 nm and FRET efficiencies of 75 % are demonstrated. The high sensitivity of the terbium-toquantum dot FRET assay is shown by sub-100-femtomolar detection limits for two different quantum dots (emitting at 605 and 655 nm) within the same biotin-streptavidin assay. Direct comparison to the FRET immunoassay "gold standard" (FRET from Eu-TBP to APC) yields a three orders of magnitude sensitivity improvement, demonstrating the big advantages of quantum dots not only for multiplexing but also for highly sensitive nanoscale analysis.

  20. 2012 ELECTRON DONOR-ACCEPTOR INTERACTIONS GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect

    McCusker, James

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.