Science.gov

Sample records for acceptor peptide bap

  1. In Vivo Biotinylation of Bacterial Magnetic Particles by a Truncated Form of Escherichia coli Biotin Ligase and Biotin Acceptor Peptide

    PubMed Central

    Maeda, Yoshiaki; Yoshino, Tomoko; Matsunaga, Tadashi

    2010-01-01

    Escherichia coli biotin ligase can attach biotin molecules to a lysine residue of biotin acceptor peptide (BAP), and biotinylation of particular BAP-fused proteins in cells was carried out by coexpression of E. coli biotin ligase (in vivo biotinylation). This in vivo biotinylation technology has been applied for protein purification, analysis of protein localization, and protein-protein interaction in eukaryotic cells, while such studies have not been reported in bacterial cells. In this study, in vivo biotinylation of bacterial magnetic particles (BacMPs) synthesized by Magnetospirillum magneticum AMB-1 was attempted by heterologous expression of E. coli biotin ligase. To biotinylate BacMPs in vivo, BAP was fused to a BacMP surface protein, Mms13, and E. coli biotin ligase was simultaneously expressed in the truncated form lacking the DNA-binding domain. This truncation-based approach permitted the growth of AMB-1 transformants when biotin ligase was heterologously expressed. In vivo biotinylation of BAP on BacMPs was confirmed using an alkaline phosphatase-conjugated antibiotin antibody. The biotinylated BAP-displaying BacMPs were then exposed to streptavidin by simple mixing. The streptavidin-binding capacity of BacMPs biotinylated in vivo was 35-fold greater than that of BacMPs biotinylated in vitro, where BAP-displaying BacMPs purified from bacterial cells were biotinylated by being mixed with E. coli biotin ligase. This study describes not only a simple method to produce biotinylated nanomagnetic particles but also a possible expansion of in vivo biotinylation technology for bacterial investigation. PMID:20622127

  2. A Novel β-Peptidyl Aminopeptidase (BapA) from Strain 3-2W4 Cleaves Peptide Bonds of Synthetic β-Tri- and β-Dipeptides

    PubMed Central

    Geueke, Birgit; Namoto, Kenji; Seebach, Dieter; Kohler, Hans-Peter E.

    2005-01-01

    A novel bacterial strain that was capable of growing on the β-tripeptide H-βhVal-βhAla-βhLeu-OH as the sole carbon and nitrogen source was isolated from an enrichment culture. On the basis of physiological characterization, partial 16S rRNA sequencing, and fatty acid analysis, strain 3-2W4 was identified as a member of the family Sphingomonadaceae. Growth on the β-tripeptide and the β-dipeptide H-βhAla-βhLeu-OH was observed, and emerging metabolites were characterized. Small amounts of a persisting metabolite, the N-acetylated β-dipeptide, were identified in both media. According to dissolved organic carbon measurements, 74 to 80% of the available carbon was dissimilated. The β-peptide-degrading enzyme was purified from the crude cell extract of cells from strain 3-2W4 grown on complex medium. The enzyme was composed of two subunits, and the N-terminal sequences of both were determined. With this information, it was possible to identify the complete nucleotide sequence and to deduce the primary structure of the gene bapA. The gene encoded a β-peptidyl aminopeptidase (BapA) of 402 amino acids that was synthesized as preprotein with a signal sequence of 29 amino acids. The enzyme was cleaved into two subunits (residues 30 to 278 and 279 to 402). It belonged to the N-terminal nucleophile (Ntn) hydrolase superfamily. PMID:16109932

  3. Transition Metal Donor-Peptide-Acceptor Complexes: From Intramolecular Electron Transfer Reactions to the Study of Reactive Intermediates

    SciTech Connect

    Isied, Stephan S.

    2003-03-11

    The trans-polyproline (PII) oligomers (Figure 1) are unusually rigid peptide structures which have been extensively studied by our group for peptide mediated intramolecular electron transfer (ET) at long distances. We have previously studied ET across a series of metal ion donor (D) acceptor (A) oligoproline peptides with different distances, driving forces and reorganizational energies. The majority of these experiments involve generating the ET intermediate using pulse radiolysis methods, although more recently photochemical methods are also used. Results of these studies showed that ET across peptides can vary by more than twelve orders of magnitude. Using ruthenium bipyridine donors, ET reaction rate constants across several proline residues (n = 4 - 9) occurred in the millisecond (ms) to {micro}s timescale, thus limiting the proline peptide conformational motions to only minor changes (far smaller than the large changes that occur on the ms to sec timescale, such as trans to cis proline isomerization). The present report describes our large data base of experimental results for D-peptide-A complexes in terms of a model where the involvement of both superexchange and hopping (hole and electron) mechanisms account for the long range ET rate constants observed. Our data shows that the change from superexchange to hopping mechanisms occurs at different distances depending on the type of D and A and their interactions with the peptides. Our model is also consistent with generalized models for superexchange and hopping which have been put forward by a number of theoretical groups to account for long range ET phenomena.

  4. Design, synthesis, and evaluation of aza-peptide Michael acceptors as selective and potent inhibitors of caspases-2, -3, -6, -7, -8, -9, and -10.

    PubMed

    Ekici, Ozlem Dogan; Li, Zhao Zhao; Campbell, Amy J; James, Karen Ellis; Asgian, Juliana L; Mikolajczyk, Jowita; Salvesen, Guy S; Ganesan, Rajkumar; Jelakovic, Stjepan; Grütter, Markus G; Powers, James C

    2006-09-21

    Aza-peptide Michael acceptors are a novel class of inhibitors that are potent and specific for caspases-2, -3, -6, -7, -8, -9, and -10. The second-order rate constants are in the order of 10(6) M(-1) s(-1). The aza-peptide Michael acceptor inhibitor 18t (Cbz-Asp-Glu-Val-AAsp-trans-CH=CH-CON(CH(2)-1-Naphth)(2) is the most potent compound and it inhibits caspase-3 with a k(2) value of 5620000 M(-1) s(-1). The inhibitor 18t is 13700, 190, 6.4, 594, 37500, and 173-fold more selective for caspase-3 over caspases-2, -6, -7, -8, -9, and -10, respectively. Aza-peptide Michael acceptors designed with caspase specific sequences are selective and do not show any cross reactivity with clan CA cysteine proteases such as papain, cathepsin B, and calpains. High-resolution crystal structures of caspase-3 and caspase-8 in complex with aza-peptide Michael acceptor inhibitors demonstrate the nucleophilic attack on C2 and provide insight into the selectivity and potency of the inhibitors with respect to the P1' moiety.

  5. BAP1 and Cancer

    PubMed Central

    Carbone, Michele; Yang, Haining; Pass, Harvey I.; Krausz, Thomas; Testa, Joseph R.; Gaudino, Giovanni

    2013-01-01

    Preface BAP1 is a deubiquitylase that is found associated with multi-protein complexes that regulate key cellular pathways, including the cell cycle, cellular differentiation, cell death, gluconeogenesis and the DNA damage response (DDR). Recent findings indicate that germline BAP1 mutations cause a novel cancer syndrome, characterized, at least in the affected families studied so far, by the onset at an early age of benign melanocytic skin tumours with mutated BAP1, and later in life by a high incidence of mesothelioma, uveal melanoma, cutaneous melanoma and possibly additional cancers. PMID:23550303

  6. Bap31 enhances the endoplasmic reticulum export and quality control of human class I MHC molecules.

    PubMed

    Ladasky, John J; Boyle, Sarah; Seth, Malini; Li, Hewang; Pentcheva, Tsvetelina; Abe, Fumiyoshi; Steinberg, Steven J; Edidin, Michael

    2006-11-01

    The assembly of class I MHC molecules and their export from the endoplasmic reticulum (ER) is governed by chaperones and accessory proteins. We present evidence that the putative cargo receptor protein Bap31 participates in the transport and the quality control of human class I molecules. Transfection of the human adenocarcinoma cell line HeLa with yellow fluorescent protein-Bap31 chimeras increased surface levels of class I in a dose-dependent manner, by as much as 3.7-fold. The increase in surface class I resulted from an increase in the rate of export of newly synthesized class I molecules to the cell surface and from an increase in the stability of the exported molecules. We propose that Bap31 performs quality control on class I molecules in two distinct phases: first, by exporting peptide-loaded class I molecules to the ER/Golgi intermediate compartment, and second, by retrieving class I molecules that have lost peptides in the acidic post-ER environment. This function of Bap31 is conditional or redundant, because we find that Bap31 deficiency does not reduce surface class I levels. Overexpression of the Bap31 homolog, Bap29, decreases surface class levels in HeLa, indicating that it does not substitute for Bap31.

  7. Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum.

    PubMed

    Menes, Rodolfo Javier; Muxí, Lucía

    2002-01-01

    A novel anaerobic, moderately thermophilic, peptide-fermenting bacterium, strain NGA(T), was isolated from an anaerobic wool-scouring wastewater treatment lagoon. The cells were gram-negative, straight rods of 0.5-1.0 x 2.0-4.0 microm, motile by means of a single flagellum. The DNA G+C content was 51.5 mol%. The optimum pH and temperature range for growth were 6.6-7.3 and 55-60 degrees C, respectively. The optimum NaCl concentration was 0.08 g l(-1). The bacterium fermented organic acids (malate, tartrate, pyruvate, glycerol and fumarate), a few carbohydrates (starch, glucose, fructose and gluconate), Casamino acids, tryptone and yeast extract. Carbohydrates and organic acids were converted to acetate, hydrogen and CO2. The bacterium oxidized leucine to isovalerate with crotonate as an electron acceptor, but not in co-culture with Methanothermobacter thermoautotrophicus DSM 3720T. Thiosulfate, sulfur and cystine were reduced to sulfide and crotonate was reduced to butyrate with glucose and tryptone-yeast extract as electron donors. Phylogenetic analysis of the 16S rRNA gene indicated that strain NGA(T) was related to Anaerobaculum thermoterrenum (98% similarity), the only described species of the genus. The DNA-DNA hybridization value for strain NGA(T) and A. thermoterrenum ACM 5076T was 40.8%. On the basis of these results, strain NGA(T) is proposed as a novel species of the genus Anaerobaculum, namely Anaerobaculum mobile sp. nov. The type strain is NGA(T) (= DSM 13181T =ATCC BAA-54T).

  8. A population-based analysis of germline BAP1 mutations in melanoma.

    PubMed

    O'Shea, Sally J; Robles-Espinoza, Carla Daniela; McLellan, Lauren; Harrigan, Jeanine; Jacq, Xavier; Hewinson, James; Iyer, Vivek; Merchant, Will; Elliott, Faye; Harland, Mark; Timothy Bishop, D; Newton-Bishop, Julia; Adams, David J

    2017-01-05

    Germline mutation of the BRCA1 associated protein-1 (BAP1) gene has been linked to uveal melanoma, mesothelioma, meningioma, renal cell carcinoma and basal cell carcinoma. Germline variants have also been found in familial cutaneous melanoma pedigrees, but their contribution to sporadic melanoma has not been fully assessed. We sequenced BAP1 in 1,977 melanoma cases and 754 controls and used deubiquitinase assays, a pedigree analysis, and a histopathological review to assess the consequences of the mutations found. Sequencing revealed 30 BAP1 variants in total, of which 27 were rare (ExAc allele frequency <0.002). Of the 27 rare variants, 22 were present in cases (18 missense, one splice acceptor, one frameshift and two near splice regions) and 5 in controls (all missense). A missense change (S98R) in a case that completely abolished BAP1 deubiquitinase activity was identified. Analysis of cancers in the pedigree of the proband carrying the S98R variant and in two other pedigrees carrying clear loss-of-function alleles showed the presence of BAP1-associated cancers such as renal cell carcinoma, mesothelioma and meningioma, but not uveal melanoma. Two of these three probands carrying BAP1 loss-of-function variants also had melanomas with histopathological features suggestive of a germline BAP1 mutation. The remaining cases with germline mutations, which were predominantly missense mutations, were associated with less typical pedigrees and tumours lacking a characteristic BAP1-associated histopathological appearances, but may still represent less penetrant variants. Germline BAP1 alleles defined as loss-of-function or predicted to be deleterious/damaging are rare in melanoma.

  9. Bap29/31 influences the intracellular traffic of MHC class I molecules.

    PubMed

    Paquet, Marie-Eve; Cohen-Doyle, Myrna; Shore, Gordon C; Williams, David B

    2004-06-15

    In this study, we examine the role of the putative cargo receptor B cell-associated protein (Bap)29/31 in the export of MHC class I molecules out of the endoplasmic reticulum (ER). We show that Bap31 binds to two allotypes of mouse class I molecules, with the interaction initiated at the time of H chain association with beta(2)-microglobulin and maintained until the class I molecule has left the ER. We also show that Bap31 is part of the peptide-loading complex, although is not required for its formation. Bap31 binds not only to class I molecules, but can bind to tapasin in the absence of class I. Consistent with an important role in recruiting class I molecules to transport vesicles, we show that in the absence of Bap29/31, there is a loss of class I colocalization with mSec31 (p137), a component of mammalian coat protein complex II coats. This observation is also associated with a delay in class I traffic from ER to Golgi. Our results are consistent with the view that class I molecules are largely recruited to ER exit sites by Bap29/31, and that Bap29/31 is a cargo receptor for MHC class I molecules.

  10. Comparison of several methods for BAP measurement.

    PubMed

    Nakajima, J; Murata, Y; Sakamoto, M

    2006-01-01

    It has been more important for management of water quality to estimate the amount of bioavailable phosphorus (BAP) in suspended solids (SS) entering lakes and estuaries. AGP test or extraction by 0.1 mol l(-1) NaOH (C-BOD) is widely used. Recently, highly bioavailable phosphorus (HBAP) was introduced to indicate a more easily soluble and bioavailable fraction using successive extraction by 0.1 mol l(-1) HCl and 0.1 mol l(-1) NaOH. New biologically measured BAP (B-BAP) using bacterial respiration activity was introduced in this paper. B-BAP was estimated from oxygen uptake rate (OUR), which was measured by a respiratory meter for BOD measurement using a pressure sensor. B-BAP is useful for a rapid and direct measurement of phosphorus bioavailability. B-BAP, HBAP and C-BAP in river SS were measured and compared with each other. The percentages of HBAP and B-BAP to PP were large in the urban river, while the percentage of NaOH-P or C-BAP was large in the rivers flowing in agricultural areas. By comparison with phosphorus fractions in paddy soil and activated sludge it was suggested that SS in the rivers flowing in agricultural areas mainly consisted of clay, silt or sand, while the SS in the urban river consisted of a large percentage of organic particles as well. Phosphorus in SS was suggested to be more easily bioavailable in the urban river than the rivers in agricultural areas. The ratio of C-BAP/B-BAP was large in the rivers in agricultural areas and small in the urban river. As HBAP contents were almost similar to B-BAP contents in the river SS, HBAP can be a suitable index of phosphorus indicating easily and rapidly the bioavailable fraction in SS.

  11. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA.

    PubMed

    Bag, Subhendu Sekhar; Jana, Subhashis; Pradhan, Manoj Kumar

    2016-08-15

    The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO-LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor-acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor-acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide-protein interaction.

  12. Interaction of Bap31 and MHC class I molecules and their traffic out of the endoplasmic reticulum.

    PubMed

    Abe, Fumiyoshi; Van Prooyen, Nancy; Ladasky, John J; Edidin, Michael

    2009-04-15

    The endoplasmic reticulum (ER) protein Bap31 associates with nascent class I MHC molecules. It appears to mediate the export of class I MHC molecules from the ER and may also be involved in their quality control. In this study, we use Förster resonance energy transfer and quantitative fluorescence imaging to show that in human, HeLa cells, Bap31 clusters with MHC class I (HLA-A2) molecules in the ER, and traffics via export vesicles to the ER/Golgi intermediate compartment. Förster resonance energy transfer between Bap31 and HLA-A2 and forward traffic increases when MHC class I molecules are loaded with a pulse of peptide. The increased forward traffic is blocked by overexpression of Bap29, a partner protein for Bap31, which localizes to the ER. Thus, in HeLa cells, Bap31 is involved in the exit of peptide-loaded MHC class I from the ER, and its function is regulated by its interaction with its homologue, Bap29.

  13. The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE

    PubMed Central

    Treerat, Puthayalai; Alwis, Priyangi; D’Cruze, Tanya; Cullinane, Meabh; Vadivelu, Jamunarani; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2015-01-01

    Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness. PMID:26624293

  14. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    SciTech Connect

    Patarroyo, Manuel E.; Almonacid, Hannia; Moreno-Vranich, Armando

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.

  15. Structural and biophysical characterization of the cytoplasmic domains of human BAP29 and BAP31.

    PubMed

    Quistgaard, Esben M; Löw, Christian; Moberg, Per; Guettou, Fatma; Maddi, Karthik; Nordlund, Pär

    2013-01-01

    Two members of the B-cell associated 31 (BAP31) family are found in humans; BAP29 and BAP31. These are ubiquitously expressed receptors residing in the endoplasmic reticulum. BAP31 functions in sorting of membrane proteins and in caspase-8 mediated apoptosis, while BAP29 appears to mainly corroborate with BAP31 in sorting. The N-terminal half of these proteins is membrane-bound while the C-terminal half is cytoplasmic. The latter include the so called variant of death effector domain (vDED), which shares weak sequence homology with DED domains. Here we present two structures of BAP31 vDED determined from a single and a twinned crystal, grown at pH 8.0 and pH 4.2, respectively. These structures show that BAP31 vDED forms a dimeric parallel coiled coil with no structural similarity to DED domains. Solution studies support this conclusion and strongly suggest that an additional α-helical domain is present in the C-terminal cytoplasmic region, probably forming a second coiled coil. The thermal stability of BAP31 vDED is quite modest at neutral pH, suggesting that it may assemble in a dynamic fashion in vivo. Surprisingly, BAP29 vDED is partially unfolded at pH 7, while a coiled coil is formed at pH 4.2 in vitro. It is however likely that folding of the domain is triggered by other factors than low pH in vivo. We found no evidence for direct interaction of the cytoplasmic domains of BAP29 and BAP31.

  16. Structural and Biophysical Characterization of the Cytoplasmic Domains of Human BAP29 and BAP31

    PubMed Central

    Quistgaard, Esben M.; Löw, Christian; Moberg, Per; Guettou, Fatma; Maddi, Karthik; Nordlund, Pär

    2013-01-01

    Two members of the B-cell associated 31 (BAP31) family are found in humans; BAP29 and BAP31. These are ubiquitously expressed receptors residing in the endoplasmic reticulum. BAP31 functions in sorting of membrane proteins and in caspase-8 mediated apoptosis, while BAP29 appears to mainly corroborate with BAP31 in sorting. The N-terminal half of these proteins is membrane-bound while the C-terminal half is cytoplasmic. The latter include the so called variant of death effector domain (vDED), which shares weak sequence homology with DED domains. Here we present two structures of BAP31 vDED determined from a single and a twinned crystal, grown at pH 8.0 and pH 4.2, respectively. These structures show that BAP31 vDED forms a dimeric parallel coiled coil with no structural similarity to DED domains. Solution studies support this conclusion and strongly suggest that an additional α-helical domain is present in the C-terminal cytoplasmic region, probably forming a second coiled coil. The thermal stability of BAP31 vDED is quite modest at neutral pH, suggesting that it may assemble in a dynamic fashion in vivo. Surprisingly, BAP29 vDED is partially unfolded at pH 7, while a coiled coil is formed at pH 4.2 in vitro. It is however likely that folding of the domain is triggered by other factors than low pH in vivo. We found no evidence for direct interaction of the cytoplasmic domains of BAP29 and BAP31. PMID:23967155

  17. Benzo[a]pyrene (BaP)

    Integrated Risk Information System (IRIS)

    Benzo [ a ] pyrene ( BaP ) ; CASRN 50 - 32 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  18. Limited caspase cleavage of human BAP31.

    PubMed

    Määttä, J; Hallikas, O; Welti, S; Hildén, P; Schröder, J; Kuismanen, E

    2000-11-10

    Human BAP31 was cleaved at both of its two identical caspase cleavage sites in two previously reported models of apoptosis. We show here that only the most carboxy-terminal site is cleaved during apoptosis induced in HeLa cells by tunicamycin, tumor necrosis factor and cycloheximide, or staurosporine. Similar results were obtained in HL-60 cells using Fas/APO-1 antibodies, or cycloheximide. This limited cleavage, which is inhibited by several caspase inhibitors, removes eight amino acids from human BAP31 including the KKXX coat protein I binding motif. Ectopic expression of the resulting cleavage product induces redistribution of mannosidase II from the Golgi and prevents endoplasmic reticulum to Golgi transport of virus glycoproteins.

  19. Alternansucrase acceptor products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regioselectivity of alternansucrase (EC 2.4.1.140) differs from dextransucrase (EC 2.4.1.5) in ways that can be useful for the synthesis of novel oligosaccharide structures. For example, it has been recently shown that the major oligosaccharides produced when maltose is the acceptor include one...

  20. Genetics Home Reference: BAP1 tumor predisposition syndrome

    MedlinePlus

    ... BAP1 tumor predisposition syndrome . For example, exposure to asbestos likely contributes to the development of malignant mesothelioma. While asbestos increases the risk of malignant mesothelioma in the ...

  1. Monoclonal antibodies against human BAP31 for immunocytochemistry.

    PubMed

    Song, Chaojun; Wang, Fuli; Xu, Zhuwei; Hu, Jintao; Tao, Haiqiang; Yang, Angang; Yang, Kun; Jin, Boquan

    2009-06-01

    Human BAP31 is a 28 kDa polytopic integral protein of the ER and part of a large BAP hetero-oligomeric complex that includes the related BAP29 protein and connections to actomyosin. BAP31 interacts with mIgD, cellubrevin, major histocompatibility complex class I, and BCL-2/BCL-X(L), and plays an important role in regulating the egress of these proteins and in apoptosis. Northern blot analyses have revealed BAP31 RNA transcripts in many tissues, including thymus, spleen, brain, kidney, testis, liver, and lung. However, prominent BAP31 protein expression analyzed by immunohistochemistry is restricted to a minority of cells in normal human tissue. Further studies should be made to verify the expression profiles of BAP31 in the protein level. Production of high affinity MAbs suitable for immunohistochemical staining has lagged. Here we generate a set of MAbs that could be used in Western blot, immunoprecipitation, and immunocytochemistry, providing a new powerful tool for investigation of expression profile of BAP31 protein and furthers the study of BAP31 functions.

  2. A recurrent germline BAP1 mutation and extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma.

    PubMed

    Wadt, K A W; Aoude, L G; Johansson, P; Solinas, A; Pritchard, A; Crainic, O; Andersen, M T; Kiilgaard, J F; Heegaard, S; Sunde, L; Federspiel, B; Madore, J; Thompson, J F; McCarthy, S W; Goodwin, A; Tsao, H; Jönsson, G; Busam, K; Gupta, R; Trent, J M; Gerdes, A-M; Brown, K M; Scolyer, R A; Hayward, N K

    2015-09-01

    We report four previously undescribed families with germline BRCA1-associated protein-1 gene (BAP1) mutations and expand the clinical phenotype of this tumor syndrome. The tumor spectrum in these families is predominantly uveal malignant melanoma (UMM), cutaneous malignant melanoma (CMM) and mesothelioma, as previously reported for germline BAP1 mutations. However, mutation carriers from three new families, and one previously reported family, developed basal cell carcinoma (BCC), thus suggesting inclusion of BCC in the phenotypic spectrum of the BAP1 tumor syndrome. This notion is supported by the finding of loss of BAP1 protein expression by immunochemistry in two BCCs from individuals with germline BAP1 mutations and no loss of BAP1 staining in 53 of sporadic BCCs consistent with somatic mutations and loss of heterozygosity of the gene in the BCCs occurring in mutation carriers. Lastly, we identify the first reported recurrent mutation in BAP1 (p.R60X), which occurred in three families from two different continents. In two of the families, the mutation was inherited from a common founder but it arose independently in the third family.

  3. Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation

    PubMed Central

    Cucarella, Carme; Solano, Cristina; Valle, Jaione; Amorena, Beatriz; Lasa, Íñigo; Penadés, José R.

    2001-01-01

    Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection. PMID:11292810

  4. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges.

    PubMed

    Iacovacci, Veronica; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2016-01-15

    The bioartificial pancreas (BAP) represents a viable solution for the treatment of type 1 diabetes (T1D). By encapsulating pancreatic cells in a semipermeable membrane to allow nutrient, insulin and glucose exchange, the side effects produced by islets and whole organ transplantation-related immunosuppressive therapy can be circumvented. Several factors, mainly related to materials properties, capsule morphology and biological environment, play a key role in optimizing BAP systems. The BAP is an extremely complex delivery system for insulin. Despite considerable efforts, in some instances meeting with limited degree of success, a BAP capable of restoring physiological pancreas functions without the need for immunosuppressive drugs and of controlling blood glucose levels especially in large animal models and a few clinical trials, does not exist. The state of the art in terms of materials, fabrication techniques and cell sources, as well as the current status of commercial devices and clinical trials, are described in this overview from an interdisciplinary viewpoint. In addition, challenges to the creation of effective BAP systems are highlighted including future perspectives in terms of component integration from both a biological and an engineering viewpoint.

  5. From the Eyes of the Front Line: BCBAs Evaluate BAP

    PubMed Central

    Dixon, Mark R.; Reed, Derek; Smith, Tristam

    2013-01-01

    Master's-level Board Certified Behavior Analysts® were emailed an anonymous webbased survey regarding the journal Behavior Analysis in Practice (BAP). Following a 96-hour response window, 284 completed surveys were obtained. Data revealed that many participants regard the journal as beneficial to their profession, yet considered it too expensive and in need of a sharper focus on practitioner issues. Most supported BAP's emphasis on empirical research, and many recommended additional content areas such as clinical case formulations, objective product information, and a layout that blends the features of an empirical journal and a popular magazine. In summary, this survey indicates that, as a practitioner-oriented journal, BAP has the potential to occupy a valuable niche for master's-level behavior analysts and that journal leaders might enhance its value by modifying its marketing, content, and structure. PMID:25729504

  6. A Tumor-Specific Neo-Antigen Caused by a Frameshift Mutation in BAP1 Is a Potential Personalized Biomarker in Malignant Peritoneal Mesothelioma.

    PubMed

    Lai, Jun; Zhou, Zhan; Tang, Xiao-Jing; Gao, Zhi-Bin; Zhou, Jie; Chen, Shu-Qing

    2016-05-14

    Malignant peritoneal mesothelioma (MPM) is an aggressive rare malignancy associated with asbestos exposure. A better understanding of the molecular pathogenesis of MPM will help develop a targeted therapy strategy. Oncogene targeted depth sequencing was performed on a tumor sample and paired peripheral blood DNA from a patient with malignant mesothelioma of the peritoneum. Four somatic base-substitutions in NOTCH2, NSD1, PDE4DIP, and ATP10B and 1 insert frameshift mutation in BAP1 were validated by the Sanger method at the transcriptional level. A 13-amino acids neo-peptide of the truncated Bap1 protein, which was produced as a result of this novel frameshift mutation, was predicted to be presented by this patient's HLA-B protein. The polyclonal antibody of the synthesized 13-mer neo-peptide was produced in rabbits. Western blotting results showed a good antibody-neoantigen specificity, and Immunohistochemistry (IHC) staining with the antibody of the neo-peptide clearly differentiated neoplastic cells from normal cells. A search of the Catalogue of Somatic Mutations in Cancer (COSMIC) database also revealed that 53.2% of mutations in BAP1 were frameshift indels with neo-peptide formation. An identified tumor-specific neo-antigen could be the potential molecular biomarker for personalized diagnosis to precisely subtype rare malignancies such as MPM.

  7. The specificity of association of the IgD molecule with the accessory proteins BAP31/BAP29 lies in the IgD transmembrane sequence.

    PubMed

    Adachi, T; Schamel, W W; Kim, K M; Watanabe, T; Becker, B; Nielsen, P J; Reth, M

    1996-04-01

    Mature B cells co-express on their cell surface two classes of antigen receptor, the IgM and IgD immunoglobulins. The structural and functional differences between the two receptor classes are poorly understood. Recently two proteins of 29 and 31 kDa (BAP29 and BAP31) have been described that are preferentially associated with membrane IgD but only weakly with membrane IgM. We describe here the cloning of full-length murine and human BAP31 cDNAs encoding proteins of 245 and 246 amino acids respectively. The two BAP31 proteins are 95% identical. The BAP31 gene is ubiquitously expressed in murine tissues and is located on the X chromosome in both mouse and man. The murine BAP31 protein has 43% sequence identity to murine BAP29. Both proteins have a hydrophobic N-terminus and an alpha-helical C-terminus which ends with a KKXX motif implicated in vesicular transport. By a mutational analysis we have identified amino acids in the transmembrane sequence of the delta m chain that are critical for binding to BAP31/BAP29. A structural model of the BAPs and their potential functions are discussed.

  8. Mesothelioma: Identification of the Key Molecular Events Triggered by BAP1

    DTIC Science & Technology

    2015-09-01

    transformation. Moreover, we found that BAP1 silenced HM cells are much less sensitive to asbestos induced cytotoxicity compared to cells with wild type...BAP1, and a larger pool of cells survives asbestos exposure increasing the probability of malignant transformation. Accordingly we found that BAP1...silenced HM cells exposed to asbestos form significantly more foci in tissue culture compared to cells containing wild type BAP1. Together these in

  9. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  10. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  11. Changes in Bone Alkaline Phosphatase and Procollagen Type-1 C-Peptide after Static and Dynamic Exercises

    ERIC Educational Resources Information Center

    Kubo, Keitaro; Yuki, Kazuhito; Ikebukuro, Toshihiro

    2012-01-01

    We investigated the effects of two types of nonweight-bearing exercise on changes in bone-specific alkaline phosphatase (BAP) and pro-collagen type 1 C-peptide (P1P). BAP is a specific marker of bone synthesis, whereas P1P reflects synthesis of type 1 collagen in other organs as well as bone. Eight participants performed static and dynamic…

  12. Intra-beam scattering studies for low emittance at BAPS

    NASA Astrophysics Data System (ADS)

    Tian, Sai-Ke; Wang, Jiu-Qing; Xu, Gang; Jiao, Yi

    2015-06-01

    The target parameters of modern ultra-low emittance storage ring light sources are entering into a regime where intra-beam scattering (IBS) becomes important and, in the case of the Beijing Advanced Photon Source (BAPS), which is being designed at the Institute of High Energy Physics (IHEP), even a limitation for achieving the desired emittances in both transverse planes at the diffraction limit for X-ray wavelengths (≈10 pm). Due to the low emittance, the IBS effect will be very strong. Accurate calculations are needed to check if the design goal (ɛh+ɛv = 20 pm) can be reached. In this paper, we present the results of numerical simulation studies of the IBS effect on a BAPS temporary design lattice.

  13. Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma.

    PubMed

    Xu, Jinfei; Kadariya, Yuwaraj; Cheung, Mitchell; Pei, Jianming; Talarchek, Jacqueline; Sementino, Eleonora; Tan, Yinfei; Menges, Craig W; Cai, Kathy Q; Litwin, Samuel; Peng, Hongzhuang; Karar, Jayashree; Rauscher, Frank J; Testa, Joseph R

    2014-08-15

    Malignant mesotheliomas are highly aggressive tumors usually caused by exposure to asbestos. Germline-inactivating mutations of BAP1 predispose to mesothelioma and certain other cancers. However, why mesothelioma is the predominate malignancy in some BAP1 families and not others, and whether exposure to asbestos is required for development of mesothelioma in BAP1 mutation carriers are not known. To address these questions experimentally, we generated a Bap1(+/-) knockout mouse model to assess its susceptibility to mesothelioma upon chronic exposure to asbestos. Bap1(+/-) mice exhibited a significantly higher incidence of asbestos-induced mesothelioma than wild-type (WT) littermates (73% vs. 32%, respectively). Furthermore, mesotheliomas arose at an accelerated rate in Bap1(+/-) mice than in WT animals (median survival, 43 weeks vs. 55 weeks after initial exposure, respectively) and showed increased invasiveness and proliferation. No spontaneous mesotheliomas were seen in unexposed Bap1(+/-) mice followed for up to 87 weeks of age. Mesothelioma cells from Bap1(+/-) mice showed biallelic inactivation of Bap1, consistent with its proposed role as a recessive cancer susceptibility gene. Unlike in WT mice, mesotheliomas from Bap1(+/-) mice did not require homozygous loss of Cdkn2a. However, normal mesothelial cells and mesothelioma cells from Bap1(+/-) mice showed downregulation of Rb through a p16(Ink4a)-independent mechanism, suggesting that predisposition of Bap1(+/-) mice to mesothelioma may be facilitated, in part, by cooperation between Bap1 and Rb. Drawing parallels to human disease, these unbiased genetic findings indicate that BAP1 mutation carriers are predisposed to the tumorigenic effects of asbestos and suggest that high penetrance of mesothelioma requires such environmental exposure.

  14. Food protein-derived bioactive peptides: production, processing, and potential health benefits.

    PubMed

    Udenigwe, Chibuike C; Aluko, Rotimi E

    2012-01-01

    Bioactive peptides (BAPs), derived through enzymatic hydrolysis of food proteins, have demonstrated potential for application as health-promoting agents against numerous human health and disease conditions, including cardiovascular disease, inflammation, and cancer. The feasibility of pharmacological application of these peptides depends on absorption and bioavailability in intact forms in target tissues, which in turn depends on structure of the peptides. Therefore, production and processing of peptides based on important structure-function parameters can lead to the production of potent peptides. This article reviews the literature on BAPs with emphasis on strategic production and processing methods as well as antihypertensive, anticancer, anticalmodulin, hypocholesterolemic, and multifunctional properties of the food protein-derived peptides. It is recommended that future research efforts on BAP should be directed toward elucidation of their in vivo molecular mechanisms of action, safety at various doses, and pharmacological activity in maintaining homeostasis during aberrant health conditions in human subjects.

  15. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response.

    PubMed

    Dai, Fangyan; Lee, Hyemin; Zhang, Yilei; Zhuang, Li; Yao, Hui; Xi, Yuanxin; Xiao, Zhen-Dong; You, M James; Li, Wei; Su, Xiaoping; Gan, Boyi

    2017-03-21

    The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.

  16. A novel BAP1 mutation is associated with melanocytic neoplasms and thyroid cancer.

    PubMed

    McDonnell, Kevin J; Gallanis, Gregory T; Heller, Kathleen A; Melas, Marilena; Idos, Gregory E; Culver, Julie O; Martin, Sue-Ellen; Peng, David H; Gruber, Stephen B

    2016-03-01

    Germline mutations in the tumor suppressor gene, BRCA-1 associated protein (BAP1), underlie a tumor predisposition syndrome characterized by increased risk for numerous cancers including uveal melanoma, melanocytic tumors and mesothelioma, among others. In the present study we report the identification of a novel germline BAP1 mutation, c.1777C>T, which produces a truncated BAP1 protein product and segregates with cancer. Family members with this mutation demonstrated a primary clinical phenotype of autosomal dominant, early-onset melanocytic neoplasms with immunohistochemistry (IHC) of these tumors demonstrating lack of BAP1 protein expression. In addition, family members harboring the BAP1 c.1777C>T germline mutation developed other neoplastic disease including thyroid cancer. IHC analysis of the thyroid cancer, as well, demonstrated loss of BAP1 protein expression. Our investigation identifies a new BAP1 mutation, further highlights the relevance of BAP1 as a clinically important tumor suppressor gene, and broadens the range of cancers associated with BAP1 inactivation. Further study will be required to understand the full scope of BAP1-associated neoplastic disease.

  17. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response

    PubMed Central

    Dai, Fangyan; Lee, Hyemin; Zhang, Yilei; Zhuang, Li; Yao, Hui; Xi, Yuanxin; Xiao, Zhen-Dong; You, M. James; Li, Wei; Su, Xiaoping; Gan, Boyi

    2017-01-01

    The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer. PMID:28275095

  18. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    SciTech Connect

    Roch, Christina; Kuhn, Joachim; Kleesiek, Knut; Goetting, Christian

    2010-01-01

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that K{sub m} and V{sub max} values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  19. Mesothelioma: Identification of the Key Molecular Events Triggered by BAP1

    DTIC Science & Technology

    2014-09-01

    amounts of asbestos that would normally not cause MM in the population at large. In order to study the mechanism(s), we assembled a unique cohort and...BAP1 status regulate NF-kB activity and HMGB1 release, and we also found that monoallelic BAP1 loss increases susceptibility to low doses of asbestos ...by using a mouse model. 15. SUBJECT TERMS mesothelioma, BAP1, asbestos , mechanisms 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  20. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair

    PubMed Central

    Yu, Helen; Pak, Helen; Hammond-Martel, Ian; Ghram, Mehdi; Rodrigue, Amélie; Daou, Salima; Barbour, Haithem; Corbeil, Luc; Hébert, Josée; Drobetsky, Elliot; Masson, Jean Yves; Di Noia, Javier M.; Affar, El Bachir

    2014-01-01

    The cellular response to highly genotoxic DNA double-strand breaks (DSBs) involves the exquisite coordination of multiple signaling and repair factors. Here, we conducted a functional RNAi screen and identified BAP1 as a deubiquitinase required for efficient assembly of the homologous recombination (HR) factors BRCA1 and RAD51 at ionizing radiation (IR) -induced foci. BAP1 is a chromatin-associated protein frequently inactivated in cancers of various tissues. To further investigate the role of BAP1 in DSB repair, we used a gene targeting approach to knockout (KO) this deubiquitinase in chicken DT40 cells. We show that BAP1-deficient cells are (i) sensitive to IR and other agents that induce DSBs, (ii) defective in HR-mediated immunoglobulin gene conversion, and (iii) exhibit an increased frequency of chromosomal breaks after IR treatment. We also show that BAP1 is recruited to chromatin in the proximity of a single site-specific I-SceI–induced DSB. Finally, we identified six IR-induced phosphorylation sites in BAP1 and showed that mutation of these residues inhibits BAP1 recruitment to DSB sites. We also found that both BAP1 catalytic activity and its phosphorylation are critical for promoting DNA repair and cellular recovery from DNA damage. Our data reveal an important role for BAP1 in DSB repair by HR, thereby providing a possible molecular basis for its tumor suppressor function. PMID:24347639

  1. Loss of BAP1 function leads to EZH2-dependent transformation

    PubMed Central

    LaFave, Lindsay M.; Béguelin, Wendy; Koche, Richard; Teater, Matt; Spitzer, Barbara; Chramiec, Alan; Papalexi, Efthymia; Keller, Matthew D.; Hricik, Todd; Konstantinoff, Katerina; Micol, Jean-Baptiste; Durham, Benjamin; Knutson, Sarah K.; Campbell, John E.; Blum, Gil; Shi, Xinxu; Doud, Emma H.; Krivtsov, Andrei V.; Chung, Young Rock; Khodos, Inna; de Stanchina, Elisa; Ouerfelli, Ouathek; Adusumilli, Prasad S.; Thomas, Paul M.; Kelleher, Neil L.; Luo, Minkui; Keilhack, Heike; Abdel-Wahab, Omar; Melnick, Ari; Armstrong, Scott A.

    2015-01-01

    Introductory Paragraph BAP1 and ASXL1 interact to form a polycomb deubiquitinase complex that removes monoubiquitin from histone H2A lysine 119 (H2AK119Ub). However, BAP1 and ASXL1 are mutated in distinct cancer types, consistent with independent roles in regulating epigenetic state and malignant transformation. Here we demonstrate that Bap1 loss results in increased trimethylated histone H3 lysine 27 (H3K27me3), elevated Ezh2 expression, and enhanced repression of Polycomb Repressive Complex 2 (PRC2) targets. These findings contrast with the reduction in H3K27me3 seen with Asxl1 loss. Conditional deletion of Bap1 and Ezh2 in vivo abrogates the myeloid progenitor expansion induced by Bap1 loss alone. Loss of Bap1 results in a marked decrease in H4K20 monomethylation (H4K20me1). Consistent with a role for H4K20me1 in EZH2 transcriptional regulation, expression of SETD8, the H4K20me1 methyltransferase, reduces EZH2 expression and abrogates the proliferation of BAP1-mutant cells. Further, mesothelioma cells that lack BAP1 are sensitive to EZH2 pharmacologic inhibition, suggesting a novel therapeutic approach for BAP1-mutant malignancies. PMID:26437366

  2. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    SciTech Connect

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet; Quistgaard, Esben M.; Nordlund, Par; Thanabalu, Thirumaran; Torres, Jaume

    2015-08-15

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target.

  3. SarA Positively Controls Bap-Dependent Biofilm Formation in Staphylococcus aureus

    PubMed Central

    Trotonda, María Pilar; Manna, Adhar C.; Cheung, Ambrose L.; Lasa, Iñigo; Penadés, José R.

    2005-01-01

    The biofilm-associated protein Bap is a staphylococcal surface protein involved in biofilm formation. We investigated the influence of the global regulatory locus sarA on bap expression and Bap-dependent biofilm formation in three unrelated Staphylococcus aureus strains. The results showed that Bap-dependent biofilm formation was diminished in the sarA mutants by an agr-independent mechanism. Complementation studies using a sarA clone confirmed that the defect in biofilm formation was due to the sarA mutation. As expected, the diminished capacity to form biofilms in the sarA mutants correlated with the decreased presence of Bap in the bacterial surface. Using transcriptional fusion and Northern analysis data, we demonstrated that the sarA gene product acts as an activator of bap expression. Finally, the bap promoter was characterized and the transcriptional start point was mapped by the rapid amplification of cDNA ends technique. As expected, we showed that purified SarA protein binds specifically to the bap promoter, as determined by gel shift and DNase I footprinting assays. Based on the previous studies of others as well as our work demonstrating the role for SarA in icaADBC and bap expression (J. Valle, A. Toledo-Arana, C. Berasain, J. M. Ghigo, B. Amorena, J. R. Penades, and I. Lasa, Mol. Microbiol. 48:1075-1087), we propose that SarA is an essential regulator controlling biofilm formation in S. aureus. PMID:16077127

  4. BAP31 is involved in T cell activation through TCR signal pathways

    PubMed Central

    Niu, Kunwei; Xu, Jialin; Cao, Yuhua; Hou, Yue; Shan, Mu; Wang, Yanqing; Xu, Yang; Sun, Mingyi; Wang, Bing

    2017-01-01

    BAP31 is a ubiquitously expressed endoplasmic reticulum (ER) membrane protein. The functions of BAP31 in the immune system have not been investigated due to the lack of animal models. Therefore we created a BAP31 conditional knockdown mouse by performing a knockdown of BAP31 in the thymus. In doing so, we demonstrate that the maturation of T cells is normal but the number of T cells is less in the thymus of the knockout mouse. In addition, the spleen and lymph nodes of peripheral immune organs contained a lesser proportion of the mature T cells in the thymus specific BAP31 knockout mice. The BAP31 knockout T cells decreased the proliferation activated by TCR signal pathways. Further studies clarified that BAP31 affects the phosphorylation levels of both Zap70/Lck/Lat of the upstream members and Akt/GSK/Jnk/Erk of the downstream members of TCR signal pathways. Furthermore, BAP31 can regulate the expression of some markers such as CD3/TCRα/TCRβ and some cytokines like IL-2/IFN-γ/IL-6/TNF-α which are important for T cell activation. Taken together, these results demonstrate that BAP31 may play an important role in T cell activation by regulating TCR signaling. PMID:28333124

  5. Role of Biofilm-Associated Protein Bap in the Pathogenesis of Bovine Staphylococcus aureus

    PubMed Central

    Cucarella, Carme; Tormo, M. Ángeles; Úbeda, Carles; Trotonda, M. Pilar; Monzón, Marta; Peris, Critòfol; Amorena, Beatriz; Lasa, Íñigo; Penadés, José R.

    2004-01-01

    Staphylococcus aureus is a common cause of intramammary infections, which frequently become chronic, associated with the ability of the bacteria to produce biofilm. Here, we report a relationship between the ability to produce chronic bovine mastitis and biofilm formation. We have classified bovine mastitis S. aureus isolates into three groups based on the presence of particular genetic elements required for biofilm formation: group 1 (ica+ bap+), group 2 (ica+, bap negative), and group 3 (ica negative, bap negative). Overall, animals naturally infected with group 1 and 2 isolates had a lower milk somatic cell count than those infected with isolates of group 3. In addition, Bap-positive isolates were significantly more able to colonize and persist in the bovine mammary gland in vivo and were less susceptible to antibiotic treatments when forming biofilms in vitro. Analysis of the structural bap gene revealed the existence of alternate forms of expression of the Bap protein in S. aureus isolates obtained under field conditions throughout the animal's life. The presence of anti-Bap antibodies in serum samples taken from animals with confirmed S. aureus infections indicated the production of Bap during infection. Furthermore, disruption of the ica operon in a bap-positive strain had no effect on in vitro biofilm formation, a finding which strongly suggested that Bap could compensate for the deficiency of the PIA/PNAG product (a biofilm matrix polysaccharide). Altogether, these results demonstrate that, in the bovine intramammary gland, the presence of Bap may facilitate a biofilm formation connected with the persistence of S. aureus. PMID:15039341

  6. Benzo(A)pyrene (BaP) treatment results in complete infertility in female pigeons

    SciTech Connect

    Hough, J.L.; Darrow, D.; Eaton, J.; Baird, M.B. )

    1991-03-11

    BaP is a carcinogenic polycyclic aromatic hydrocarbon (PAH) and a common environmental pollutant. Show Racer and White Carneau female pigeons injected weekly with BaP for 3 for 5 months were completely infertile, with ovaries appearing necrotic or oxidized. Fertility in benzo(e)pyrene (BeP, a noncarcinogenic PAH) treated birds was the same as for corn oil treated controls, as was embryo development. Thus, infertility in BaP treated birds appears to be related to its structure-carcinogenic potential. There was no readily apparent affect of BaP treatment on testes from male birds. In order to determine whether BaP metabolites covalently bind to DNA in the ovaries of these birds, pigeons were injected with BaP or BeP, controls were injected with corn oil. Animals were sacrificed 24h later, the ovaries or testes removed, and the DNA isolated and analyzed for PAH-DNA adducts by {sup 32}P-post labeling assay. One major and one minor PAH-DNA adduct was found in ovaries and testes from BaP treated birds. However, no PAH adducts were found in BeP treated or control animals. Thus, problems with fertility may arise because of the alteration in DNA by BaP metabolite binding in ovaries where rapid cell growth occurs during egg production.

  7. Novel immunohistochemical monoclonal antibody against rat B cell receptor Associated Protein 31 (BAP31).

    PubMed

    Song, Chaojun; Yan, Binyuan; Chen, Lihua; Li, Yongming; Wei, Yuying; Sun, Yuanjie; Yang, Angang; Yang, Kun; Jin, Boquan

    2009-10-01

    BAP31 is an evolutionarily conserved polytopic integral protein of the endoplasmic reticulum (ER) membrane implicated in regulating the export of selected membrane proteins from the ER to downstream compartments of the secretory pathway. BAP31 interacts with mIgD, cellubrevin, major histocompatibility complex class I, and BCL-2/BCL-X(L) and plays an important role in regulating the egress of these proteins and in apoptosis. Although BAP31 RNA is ubiquitous, the protein's anatomic localization in rat tissues has not been determined. This is partially because production of high affinity antibodies, especially monoclonal antibodies (MAbs) suitable for immunohistochemical staining, has lagged. To gain further insight into its possible functions, we generated a novel MAb specific for rat BAP31 in immunocytochemistry and immunohistochemistry and localized BAP31 in some rat tissues. Immunoreactivity of BAP31 was prominent in fundic glands, colon, pancreatic acinuses, and liver but not in skeleton muscle and lung. Thus, successful production of rat BAP31 monoclonal antibodies provides a new powerful tool for investigation of BAP31 function in the rat model.

  8. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.

    PubMed

    Nealson, K H; Moser, D P; Saffarini, D A

    1995-04-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  9. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  10. Export of cellubrevin from the endoplasmic reticulum is controlled by BAP31.

    PubMed

    Annaert, W G; Becker, B; Kistner, U; Reth, M; Jahn, R

    1997-12-15

    Cellubrevin is a ubiquitously expressed membrane protein that is localized to endosomes throughout the endocytotic pathway and functions in constitutive exocytosis. We report that cellubrevin binds with high specificity to BAP31, a representative of a highly conserved family of integral membrane proteins that has recently been discovered to be binding proteins of membrane immunoglobulins. The interaction between BAP31 and cellubrevin is sensitive to high ionic strength and appears to require the transmembrane regions of both proteins. No other proteins of liver membrane extracts copurified with BAP31 on immobilized recombinant cellubrevin, demonstrating that the interaction is specific. Synaptobrevin I bound to BAP31 with comparable affinity, whereas only weak binding was detectable with synaptobrevin II. Furthermore, a fraction of BAP31 and cellubrevin was complexed when each of them was quantitatively immunoprecipitated from detergent extracts of fibroblasts (BHK 21 cells). During purification of clathrin-coated vesicles or early endosomes, BAP31 did not cofractionate with cellubrevin. Rather, the protein was enriched in ER-containing fractions. When BHK cells were analyzed by immunocytochemistry, BAP31 did not overlap with cellubrevin, but rather colocalized with resident proteins of the ER. In addition, immunoreactive vesicles were clustered in a paranuclear region close to the microtubule organizing center, but different from the Golgi apparatus. When microtubules were depolymerized with nocodazole, this accumulation disappeared and BAP31 was confined to the ER. Truncation of the cytoplasmic tail of BAP31 prevented export of cellubrevin, but not of the transferrin receptor from the ER. We conclude that BAP31 represents a novel class of sorting proteins that controls anterograde transport of certain membrane proteins from the ER to the Golgi complex.

  11. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-24

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state.

  12. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5

    PubMed Central

    Qin, Junying; Zhou, Zhongmei; Chen, Wenlin; Wang, Chunyan; Zhang, Hailin; Ge, Guangzhe; Shao, Ming; You, Dingyun; Fan, Zhixiang; Xia, Houjun; Liu, Rong; Chen, Ceshi

    2015-01-01

    The transcription factor KLF5 is highly expressed in basal-like breast cancer and promotes breast cancer cell proliferation, survival, migration and tumour growth. Here we show that, in breast cancer cells, KLF5 is stabilized by the deubiquitinase (DUB) BAP1. With a genome-wide siRNA library screen of DUBs, we identify BAP1 as a bona fide KLF5 DUB. BAP1 interacts directly with KLF5 and stabilizes KLF5 via deubiquitination. KLF5 is in the BAP1/HCF-1 complex, and this newly identified complex promotes cell cycle progression partially by inhibiting p27 gene expression. Furthermore, BAP1 knockdown inhibits tumorigenicity and lung metastasis, which can be rescued partially by ectopic expression of KLF5. Collectively, our findings not only identify BAP1 as the DUB for KLF5, but also reveal a critical mechanism that regulates KLF5 expression in breast cancer. Our findings indicate that BAP1 could be a potential therapeutic target for breast and other cancers. PMID:26419610

  13. Early genotoxic effects in gill cells and haemocytes of Dreissena polymorpha exposed to cadmium, B[a]P and a combination of B[a]P and Cd.

    PubMed

    Vincent-Hubert, Françoise; Arini, Adeline; Gourlay-Francé, Catherine

    2011-07-14

    The aim of this study was to assess the genotoxic potential of environmentally relevant concentrations of Cd on the zebra mussel, an important freshwater sentinel organism, and to determine the stability of DNA damage in gill cells and haemocytes. The oxidative DNA damage and the co-genotoxicity of Cd in combination with B[a]P were investigated. We measured DNA damage in haemocytes and gill cells of zebra mussels exposed for 11 days to a constant concentration of Cd (10μg/L), B[a]P (10μg/L) or the two combined chemicals (10μg/L+1μg/L). Enzymatic dissociation of gills with dispase gave the lower percentage DNA in tail, compared with collagenase/dispase or collagenase. Bioaccumulation of cadmium in the soft tissues of mussels exposed to CdCl(2) or CdCl(2)+B[a]P increased in a time-dependent manner indicating that both exposures were effective. Cd (10μg/L) is genotoxic only during the first 3 days of exposure in gill cells, while in haemocytes the genotoxicity of Cd was observed later. B[a]P (10μg/L) induced an early increase of DNA damage in gill cells (after 10h and 1 day), while in both gill cells and haemocytes, B[a]P caused a marked increase of DNA damage after 3 days of exposure. The Cd+B[a]P mixture decreased the DNA-damaging effect of Cd and B[a]P in both cell types. Cd induced an increase of DNA damage in Fpg-treated slides, indicating that Cd contributed to oxidative DNA damage. Cadmium induced a cytogenetic effect in gill cells, assessed by the number of micronuclei, throughout the duration of the exposure, while B[a]P did not induce any cytogenetic effect. B[a]P, Cd and Cd+B[a]P induced a transient increase in the number of bi-nucleated cells. Our data clearly show that gills are more sensitive to Cd and B[a]P, which makes them more suitable for future bio-monitoring studies.

  14. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  15. Germline BAP1 Mutational Landscape of Asbestos-Exposed Malignant Mesothelioma Patients with Family History of Cancer.

    PubMed

    Ohar, Jill A; Cheung, Mitchell; Talarchek, Jacqueline; Howard, Suzanne E; Howard, Timothy D; Hesdorffer, Mary; Peng, Hongzhuang; Rauscher, Frank J; Testa, Joseph R

    2016-01-15

    Heritable mutations in the BAP1 tumor suppressor gene predispose individuals to mesothelioma and other cancers. However, a large-scale assessment of germline BAP1 mutation incidence and associated clinical features in mesothelioma patients with a family history of cancer has not been reported. Therefore, we examined the germline BAP1 mutation status of 150 mesothelioma patients with a family history of cancer, 50 asbestos-exposed control individuals with a family history of cancers other than mesothelioma, and 153 asbestos-exposed individuals without familial cancer. No BAP1 alterations were found in control cohorts, but were identified in nine of 150 mesothelioma cases (6%) with a family history of cancer. Alterations among these cases were characterized by both missense and frameshift mutations, and enzymatic activity of BAP1 missense mutants was decreased compared with wild-type BAP1. Furthermore, BAP1 mutation carriers developed mesothelioma at an earlier age that was more often peritoneal than pleural (five of nine) and exhibited improved long-term survival compared to mesothelioma patients without BAP1 mutations. Moreover, many tumors harboring BAP1 germline mutations were associated with BAP1 syndrome, including mesothelioma and ocular/cutaneous melanomas, as well as renal, breast, lung, gastric, and basal cell carcinomas. Collectively, these findings suggest that mesothelioma patients presenting with a family history of cancer should be considered for BAP1 genetic testing to identify those individuals who might benefit from further screening and routine monitoring for the purpose of early detection and intervention.

  16. Germline BAP1 mutational landscape of asbestos-exposed malignant mesothelioma patients with family history of cancer

    PubMed Central

    Ohar, Jill A.; Cheung, Mitchell; Talarchek, Jacqueline; Howard, Suzanne E.; Howard, Timothy D.; Hesdorffer, Mary; Peng, Hongzhuang; Rauscher, Frank J.; Testa, Joseph R.

    2015-01-01

    Heritable mutations in the BAP1 tumor suppressor gene predispose individuals to mesothelioma and other cancers. However, a large-scale assessment of germline BAP1 mutation incidence and associated clinical features in mesothelioma patients with a family history of cancer has not been reported. Therefore, we examined the germline BAP1 mutation status of 150 mesothelioma patients with a family history of cancer, 50 asbestos-exposed control individuals with a family history of cancers other than mesothelioma, and 153 asbestos-exposed individuals without familial cancer. No BAP1 alterations were found in control cohorts, but were identified in 9 of 150 mesothelioma cases (6%) with a family history of cancer. Alterations among these cases were characterized by both missense and frameshift mutations, and enzymatic activity of BAP1 missense mutants was decreased compared to wild-type BAP1. Furthermore, BAP1 mutation carriers developed mesothelioma at an earlier age that was more often peritoneal than pleural (5 of 9), and exhibited improved long-term survival compared to mesothelioma patients without BAP1 mutations. Moreover, many tumors harboring BAP1 germline mutations were associated with BAP1 syndrome, including mesothelioma and ocular/cutaneous melanomas, as well as renal, breast, lung, gastric, and basal cell carcinomas. Collectively, these findings suggest that mesothelioma patients presenting with a family history of cancer should be considered for BAP1 genetic testing to identify those individuals who might benefit from further screening and routine monitoring for the purpose of early detection and intervention. PMID:26719535

  17. FRET study in oligopeptide-linked donor-acceptor system in PVA matrix

    NASA Astrophysics Data System (ADS)

    Shah, Sunil; Mandecki, Wlodek; Li, Ji; Gryczynski, Zygmunt; Borejdo, Julian; Gryczynski, Ignacy; Fudala, Rafal

    2016-12-01

    An oligopeptide: Lys-Gly-Pro-Arg-Ser-Leu-Ser-Gly-Lys-NH2, cleaved specifically by a matrix metalloproteinase 9 (MMP-9) at the Ser-Leu bond, was labeled on the ɛ-NH2 groups of lysine with donor (5, 6 TAMRA) and acceptor (HiLyte647) dye. The donor control was a peptide labeled with 5, 6 TAMRA only on the C-terminal lysine, and the acceptor control was free HiLyte647. Following three products were studied by dissolving in 10% (w/w) poly(vinyl alcohol) and dried on glass slides forming 200 micron films. Absorption spectra of the films show full additivity of donor and acceptor absorptions. A strong Fluorescence Resonance Energy Transfer (FRET) with an efficiency of about 85% was observed in the fluorescence emission and excitation spectra. The lifetime of the donor was shorter and heterogeneous compared with the donor control.

  18. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis

    PubMed Central

    Wang, Shan-Shan; Gu, Yi-Feng; Wolff, Nicholas; Stefanius, Karoliina; Christie, Alana; Dey, Anwesha; Hammer, Robert E.; Xie, Xian-Jin; Rakheja, Dinesh; Pedrosa, Ivan; Carroll, Thomas; McKay, Renée M.; Kapur, Payal; Brugarolas, James

    2014-01-01

    Why different species are predisposed to different tumor spectra is not well understood. In particular, whether the physical location of tumor suppressor genes relative to one another influences tumor predisposition is unknown. Renal cancer presents a unique opportunity to explore this question. Renal cell carcinoma (RCC) of clear-cell type (ccRCC), the most common type, begins with an intragenic mutation in the von Hippel–Lindau (VHL) gene and loss of 3p (where VHL is located). Chromosome 3p harbors several additional tumor suppressor genes, including BRCA1-associated protein-1 (BAP1). In the mouse, Vhl is on a different chromosome than Bap1. Thus, whereas loss of 3p in humans simultaneously deletes one copy of BAP1, loss of heterozygosity in the corresponding Vhl region in the mouse would not affect Bap1. To test the role of BAP1 in ccRCC development, we generated mice deficient for either Vhl or Vhl together with one allele of Bap1 in nephron progenitor cells. Six2-Cre;VhlF/F;Bap1F/+ mice developed ccRCC, but Six2-Cre;VhlF/F mice did not. Kidneys from Six2-Cre;VhlF/F;Bap1F/+ mice resembled kidneys from humans with VHL syndrome, containing multiple lesions spanning from benign cysts to cystic and solid RCC. Although the tumors were small, they showed nuclear atypia and exhibited features of human ccRCC. These results provide an explanation for why VHL heterozygous humans, but not mice, develop ccRCC. They also explain why a mouse model of ccRCC has been lacking. More broadly, our data suggest that differences in tumor predisposition across species may be explained, at least in part, by differences in the location of two-hit tumor suppressor genes across the genome. PMID:25359211

  19. Positive nuclear BAP1 immunostaining helps differentiate non-small cell lung carcinomas from malignant mesothelioma.

    PubMed

    Carbone, Michele; Shimizu, David; Napolitano, Andrea; Tanji, Mika; Pass, Harvey I; Yang, Haining; Pastorino, Sandra

    2016-09-13

    The differential diagnosis between pleural malignant mesothelioma (MM) and lung cancer is often challenging. Immunohistochemical (IHC) stains used to distinguish these malignancies include markers that are most often positive in MM and less frequently positive in carcinomas, and vice versa. However, in about 10-20% of the cases, the IHC results can be confusing and inconclusive, and novel markers are sought to increase the diagnostic accuracy.We stained 45 non-small cell lung cancer samples (32 adenocarcinomas and 13 squamous cell carcinomas) with a monoclonal antibody for BRCA1-associated protein 1 (BAP1) and also with an IHC panel we routinely use to help differentiate MM from carcinomas, which include, calretinin, Wilms Tumor 1, cytokeratin 5, podoplanin D2-40, pankeratin CAM5.2, thyroid transcription factor 1, Napsin-A, and p63. Nuclear BAP1 expression was also analyzed in 35 MM biopsies. All 45 non-small cell lung cancer biopsies stained positive for nuclear BAP1, whereas 22/35 (63%) MM biopsies lacked nuclear BAP1 staining, consistent with previous data. Lack of BAP1 nuclear staining was associated with MM (two-tailed Fisher's Exact Test, P = 5.4 x 10-11). Focal BAP1 staining was observed in a subset of samples, suggesting polyclonality. Diagnostic accuracy of other classical IHC markers was in agreement with previous studies. Our study indicated that absence of nuclear BAP1 stain helps differentiate MM from lung carcinomas. We suggest that BAP1 staining should be added to the IHC panel that is currently used to distinguish these malignancies.

  20. Positive nuclear BAP1 immunostaining helps differentiate non-small cell lung carcinomas from malignant mesothelioma

    PubMed Central

    Carbone, Michele; Shimizu, David; Napolitano, Andrea; Tanji, Mika; Pass, Harvey I.; Yang, Haining; Pastorino, Sandra

    2016-01-01

    The differential diagnosis between pleural malignant mesothelioma (MM) and lung cancer is often challenging. Immunohistochemical (IHC) stains used to distinguish these malignancies include markers that are most often positive in MM and less frequently positive in carcinomas, and vice versa. However, in about 10–20% of the cases, the IHC results can be confusing and inconclusive, and novel markers are sought to increase the diagnostic accuracy. We stained 45 non-small cell lung cancer samples (32 adenocarcinomas and 13 squamous cell carcinomas) with a monoclonal antibody for BRCA1-associated protein 1 (BAP1) and also with an IHC panel we routinely use to help differentiate MM from carcinomas, which include, calretinin, Wilms Tumor 1, cytokeratin 5, podoplanin D2-40, pankeratin CAM5.2, thyroid transcription factor 1, Napsin-A, and p63. Nuclear BAP1 expression was also analyzed in 35 MM biopsies. All 45 non-small cell lung cancer biopsies stained positive for nuclear BAP1, whereas 22/35 (63%) MM biopsies lacked nuclear BAP1 staining, consistent with previous data. Lack of BAP1 nuclear staining was associated with MM (two-tailed Fisher's Exact Test, P = 5.4 × 10−11). Focal BAP1 staining was observed in a subset of samples, suggesting polyclonality. Diagnostic accuracy of other classical IHC markers was in agreement with previous studies. Our study indicated that absence of nuclear BAP1 stain helps differentiate MM from lung carcinomas. We suggest that BAP1 staining should be added to the IHC panel that is currently used to distinguish these malignancies. PMID:27447750

  1. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis.

    PubMed

    Wang, Shan-Shan; Gu, Yi-Feng; Wolff, Nicholas; Stefanius, Karoliina; Christie, Alana; Dey, Anwesha; Hammer, Robert E; Xie, Xian-Jin; Rakheja, Dinesh; Pedrosa, Ivan; Carroll, Thomas; McKay, Renée M; Kapur, Payal; Brugarolas, James

    2014-11-18

    Why different species are predisposed to different tumor spectra is not well understood. In particular, whether the physical location of tumor suppressor genes relative to one another influences tumor predisposition is unknown. Renal cancer presents a unique opportunity to explore this question. Renal cell carcinoma (RCC) of clear-cell type (ccRCC), the most common type, begins with an intragenic mutation in the von Hippel-Lindau (VHL) gene and loss of 3p (where VHL is located). Chromosome 3p harbors several additional tumor suppressor genes, including BRCA1-associated protein-1 (BAP1). In the mouse, Vhl is on a different chromosome than Bap1. Thus, whereas loss of 3p in humans simultaneously deletes one copy of BAP1, loss of heterozygosity in the corresponding Vhl region in the mouse would not affect Bap1. To test the role of BAP1 in ccRCC development, we generated mice deficient for either Vhl or Vhl together with one allele of Bap1 in nephron progenitor cells. Six2-Cre;Vhl(F/F);Bap1(F/+) mice developed ccRCC, but Six2-Cre;Vhl(F/F) mice did not. Kidneys from Six2-Cre;Vhl(F/F);Bap1(F/+) mice resembled kidneys from humans with VHL syndrome, containing multiple lesions spanning from benign cysts to cystic and solid RCC. Although the tumors were small, they showed nuclear atypia and exhibited features of human ccRCC. These results provide an explanation for why VHL heterozygous humans, but not mice, develop ccRCC. They also explain why a mouse model of ccRCC has been lacking. More broadly, our data suggest that differences in tumor predisposition across species may be explained, at least in part, by differences in the location of two-hit tumor suppressor genes across the genome.

  2. Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival.

    PubMed

    Baumann, Francine; Flores, Erin; Napolitano, Andrea; Kanodia, Shreya; Taioli, Emanuela; Pass, Harvey; Yang, Haining; Carbone, Michele

    2015-01-01

    BRCA1-associated protein-1 (BAP1) mutations cause a new cancer syndrome, with a high rate of malignant mesothelioma (MM). Here, we tested the hypothesis that MM associated with germline BAP1 mutations has a better prognosis compared with sporadic MM. We compared survival among germline BAP1 mutation MM patients with that of all MM (N = 10 556) recorded in the United States Surveillance, Epidemiology, and End Results (SEER) data from 1973 to 2010. We identified 23 MM patients--11 alive--with germline BAP1 mutations and available data on survival. Ten patients had peritoneal MM, ten pleural MM and three MM in both locations. Thirteen patients had one or more malignancies in addition to MM. Actuarial median survival for the MM patients with germline BAP1 mutations was 5 years, as compared with <1 year for the median survival in the United States SEER MM group. Five-year survival was 47%, 95% confidence interval (24-67%), as compared with 6.7% (6.2-7.3%) in the control SEER group. Analysis of the pooled cohort of germline BAP1 mutation MM showed that patients with peritoneal MM (median survival of 10 years, P = 0.0571), or with a second malignancy in addition to MM (median survival of 10 years, P = 0.0716), survived for a longer time compared with patients who only had pleural MM, or MM patients without a second malignancy, respectively. In conclusion, we found that MM patients with germline BAP1 mutations have an overall 7-fold increased long-term survival, independently of sex and age. Appropriate genetic counseling and clinical management should be considered for MM patients who are also BAP1 mutation carriers.

  3. Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals

    PubMed Central

    Taglialegna, Agustina; Navarro, Susanna; Ventura, Salvador; Garnett, James A.; Matthews, Steve; Penades, José R.; Lasa, Iñigo; Valle, Jaione

    2016-01-01

    Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria. PMID:27327765

  4. Bap31 is a novel target of the human papillomavirus E5 protein.

    PubMed

    Regan, Jennifer A; Laimins, Laimonis A

    2008-10-01

    The E5 proteins of human papillomaviruses (HPVs) are small hydrophobic proteins that are expressed in the early and late stages of the viral life cycle; however, their role in HPV pathogenesis is not clearly understood. In this study, a split-ubiquitin yeast (Saccharomyces cerevisiae) two-hybrid system was used to identify B-cell-associated protein 31 (Bap31) as a binding partner of HPV E5 proteins. The association of these proteins was confirmed by coimmunoprecipitation of complexes of Bap31 with either HPV type 16 (HPV16) or HPV31 E5. In addition, Bap31 and E5 were found to colocalize in perinuclear patterns consistent with localization to the endoplasmic reticulum. Mutational analysis of E5 identified amino acids in the extreme C terminus as important for stabilizing the interaction with Bap31. Deletion of these C-terminal amino acids of E5 in the context of complete HPV31 genomes resulted in impaired proliferative capacity of HPV-positive keratinocytes following differentiation. When small interfering RNAs were used to reduce the levels of Bap31, the proliferative ability of HPV-positive keratinocytes upon differentiation was also reduced, implicating Bap31 as a regulator of this process. These studies identify a novel binding partner of the high-risk HPV E5 proteins and provide insight into how the E5 proteins may modulate the life cycle in differentiating cells.

  5. Control of cystic fibrosis transmembrane conductance regulator expression by BAP31.

    PubMed

    Lambert, G; Becker, B; Schreiber, R; Boucherot, A; Reth, M; Kunzelmann, K

    2001-06-08

    Expression of the cystic fibrosis transmembrane conductance regulator (CFTR) is stringently controlled by molecular chaperones participating in formation of the quality control system. It has been shown that about 75% of all CFTR protein and close to 100% of the [DeltaPhe(508)] CFTR variant are rapidly degraded before leaving the endoplasmic reticulum (ER). B cell antigen receptor-associated proteins (BAPs) are ubiquitously expressed integral membrane proteins that may control association with the cytoskeleton, vesicular transport, or retrograde transport from the cis Golgi to the ER. The present study delivers evidence for cytosolic co-localization of both BAP31 and CFTR and for the control of expression of recombinant CFTR in Chinese hamster ovary (CHO) cells and Xenopus oocytes by BAP31. Antisense inhibition of BAP31 in various cell types increased expression of both wild-type CFTR and [DeltaPhe(508)]CFTR and enabled cAMP-activated Cl(-) currents in [DeltaPhe(508)]CFTR-expressing CHO cells. Coexpression of CFTR together with BAP31 attenuated cAMP-activated Cl(-) currents in Xenopus oocytes. These data therefore suggest association of BAP31 with CFTR that may control maturation or trafficking of CFTR and thus expression in the plasma membrane.

  6. A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum.

    PubMed

    Schamel, Wolfgang W A; Kuppig, Stephan; Becker, Bernd; Gimborn, Kerstin; Hauri, Hans-Peter; Reth, Michael

    2003-08-19

    B cell antigen receptors (BCRs) are multimeric transmembrane protein complexes comprising membrane-bound immunoglobulins (mIgs) and Ig-alpha/Ig-beta heterodimers. In most cases, transport of mIgs from the endoplasmic reticulum (ER) to the cell surface requires assembly with the Ig-alpha/Ig-beta subunits. In addition to Ig-alpha/Ig-beta, mIg molecules also bind two ER-resident membrane proteins, BAP29 and BAP31, and the chaperone heavy chain binding protein (BiP). In this article, we show that neither Ig-alpha/Ig-beta nor BAP29/BAP31 nor BiP bind simultaneously to the same mIgD molecule. Blue native PAGE revealed that only a minor fraction of intracellular mIgD is associated with high-molecular-weight BAP29/BAP31 complexes. BAP-binding to mIgs was found to correlate with ER retention of chimeric mIgD molecules. On high-level expression in Drosophila melanogaster S2 cells, mIgD molecules were detected on the cell surface in the absence of Ig-alpha/Ig-beta. This aberrant transport was prevented by coexpression of BAP29 and BAP31. Thus, BAP complexes contribute to ER retention of mIg complexes that are not bound to Ig-alpha/Ig-beta. Furthermore, the mechanism of ER retention of both BAP31 and mIgD is not through retrieval from a post-ER compartment, but true ER retention. In conclusion, BAP29 and BAP31 might be the long sought after retention proteins and/or chaperones that act on transmembrane regions of various proteins.

  7. Uptake, metabolism and macromolecular binding of benzo(a)pyrene (BaP) metabolites in channel catfish

    SciTech Connect

    Elskus, A.A.; McElroy, A.E.

    1995-12-31

    Polynuclear aromatic hydrocarbons (PAH), such as BaP, are contaminants with demonstrated carcinogenicity, yet little is known about the fate of PAH metabolites in aquatic organisms. Some invertebrates actively metabolize BaP to hydroxylated and conjugated forms, becoming BaP metabolite-rich prey items for fish. The authors examined the fate of BaP metabolites acquired by fish through diet. Channel catfish, Ictaluruspunctatus, were fed a single dose (2.5 umoles/kg fish) of either {sup 3}H-parent BaP or individual {sup 3}H-BaP metabolites: 3-hydroxy, 9-hydroxy, 9-sulfate or 9-glucuronidated BaP. After 24 hrs fish were killed, and samples of intestinal mucosa, bile, liver and muscle immediately frozen at {minus}80 C. Mean (n = 3--5) percent of dose retained was lowest for conjugated BaP (3.7%), 2--4 times higher for hydroxylated BaP (8.9%), and 5 times higher for parent BaP (18.9%). Differences were also observed between the distributions of individual metabolites in tissues. Radioactivity derived from parent and hydroxylated BaP was several fold higher in intestinal mucosa and bile than in liver or muscle. In contrast, radioactivity derived from conjugated BaP metabolites was more evenly distributed between all four tissues. These data demonstrate that in fish (1) dietary BaP metabolites are absorbed by the intestine, and they or their metabolites are transported to and absorbed by major tissue reservoirs (liver, muscle), (2) conjugated metabolites are less readily absorbed and/or retained than parent or hydroxylated BaP, and (3) some differences in metabolic fate exist between metabolites from the same class. DNA, RNA and protein adducts, as well as metabolite profiles, are being determined in liver and intestine.

  8. Jumping the gun: Smoking constituent BaP causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress

    SciTech Connect

    Sobinoff, A.P.; Pye, V.; Nixon, B.; Roman, S.D.; McLaughlin, E.A.

    2012-04-01

    Benzo(a)pyrene (BaP) is an ovotoxic constituent of cigarette smoke associated with pre-mature ovarian failure and decreased rates of conception in IVF patients. Although the overall effect of BaP on female fertility has been documented, the exact molecular mechanisms behind its ovotoxicity remain elusive. In this study we examined the effects of BaP exposure on the ovarian transcriptome, and observed the effects of in vivo exposure on oocyte dysfunction. Microarray analysis of BaP cultured neonatal ovaries revealed a complex mechanism of ovotoxicity involving a small cohort of genes associated with follicular growth, cell cycle progression, and cell death. Histomorphological and immunohistochemical analysis supported these results, with BaP exposure causing increased primordial follicle activation and developing follicle atresia in vitro and in vivo. Functional analysis of oocytes obtained from adult Swiss mice treated neonatally revealed significantly increased levels of mitochondrial ROS/lipid peroxidation, and severely reduced sperm-egg binding and fusion in both low (1.5 mg/kg/daily) and high (3 mg/kg/daily) dose treatments. Our results reveal a complex mechanism of BaP induced ovotoxicity involving developing follicle atresia and accelerated primordial follicle activation, and suggest short term neonatal BaP exposure causes mitochondrial leakage resulting in reduced oolemma fluidity and impaired fertilisation in adulthood. This study highlights BaP as a key compound which may be partially responsible for the documented effects of cigarette smoke on follicular development and sub-fertility. -- Highlights: ► BaP exposure up-regulates canonical pathways linked with follicular growth/atresia. ► BaP causes primordial follicle activation and developing follicle atresia. ► BaP causes oocyte mitochondrial ROS and lipid peroxidation, impairing fertilisation. ► Short term neonatal BaP exposure compromises adult oocyte quality.

  9. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  10. Biophotonics determination of 6-benzylaminopurine (6-BAP) plant growth regulator using OFRR biosensor

    NASA Astrophysics Data System (ADS)

    Yang, Gilmo; Kang, Sukwon; Lee, Kangjin; Kim, Giyoung; Son, Jaeryong; Mo, Changyeun

    2010-04-01

    The identification of pesticide and 6-benzylaminopurine (6-BAP) plant growth regulator was carried out using a label-free opto-fluidic ring resonator (OFRR) biosensor. The OFRR sensing platform is a recent advancement in opto-fluidic technology that integrates photonic sensing technology with microfluidics. It features quick detection time, small sample volume, accurate quantitative and kinetic results. The most predominant advantage of the OFRR integrated with microfluidics is that we can potentially realize the multi-channel and portable biosensor that detects numerous analytes simultaneously. Antisera for immunoassay were raised in rabbits against the 6-BAP-BSA conjugate. Using the immunization protocol and unknown cytokinin reacting with same antibody, comparable sensitivity and specificity were obtained. 6-BAP antibody was routinely used for cytokinin analysis. A sensitive and simple OFRR method with a good linear relationship was developed for the determination of 6-BAP. The detection limit was also examined. The biosensor demonstrated excellent reproducibility when periodically exposed to 6-BAP.

  11. Current management of bipolar affective disorder: is it reflective of the BAP guidelines?

    PubMed

    Farrelly, N; Dibben, C; Hunt, N

    2006-01-01

    In October 2003 the British Association of Psychopharmacology (BAP) published evidence-based guidelines on the management of bipolar disorder. The aim of this study was to assess whether the guidelines could provide the basis for examining clinical decisions and the extent to which practice accords with these guidelines. Case notes of out patients with bipolar disorder were reviewed. Demographic details, and treatment recommendations were determined. The management of affective episodes was evaluated and compared with BAP guidelines. In 84 subjects, 224 affective episodes were identified. Treatment was consistent with BAP guidelines in 72% of episodes. Mania was more likely to be managed in accordance with guidelines than depression or mixed episodes. The use of antidepressant medication was the most likely intervention to deviate from recommendations. Reasons for treatments at odds with the guidelines were identified. Our study demonstrates that clinical practice among a range of psychiatrists broadly reflects the guidelines that have been issued by the British Association of Psychopharmacology (BAP). The BAP guidelines offer a practical and auditable basis for the short- and long-term treatment of bipolar affective disorder.

  12. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein.

    PubMed

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet; Quistgaard, Esben M; Nordlund, Par; Thanabalu, Thirumaran; Torres, Jaume

    2015-08-01

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target.

  13. Uptake and translocation of benzo[a]pyrene (B[a]P) in two ornamental plants and dissipation in soil.

    PubMed

    Sun, Yuebing; Zhou, Qixing

    2016-02-01

    Pot experiments were conducted to evaluate the phytoremediation of B[a]P contaminated soil using two ornamental plants (Tagetes patula and Mirabilis jalapa). The results showed that the dry biomass of two plants was increased at low B[a]P contaminated soil and then inhibited with increasing B[a]P concentrations. It exhibited a significantly positive linear relationship between B[a]P absorption in roots, stems, leaves and shoots of the tested plants and the concentration of B[a]P in soils (P<0.01). Meanwhile, the contents of B[a]P in different tissues of the plants increased with growing time. After planting T. patula and M. jalapa, plant-promoted biodegradation of B[a]P was account for 79.5-99.8% and 71.1-99.9%, respectively, whereas the amount of B[a]P dissipation enhancement was only 0.2-20.5% and 0.1-28.9%, respectively. Moreover, low bioaccumulation factor (BF) and translocation factor (TF) values indicated that T. patula and M. jalapa took up B[a]P from contaminated soil and transferred them to the aerial parts with low efficiency. The B[a]P removal rates in rhizosphere soils at different growing stages of T. patula and M. jalapa were 2.7-26.8% and 0.4%-33.9%, respectively, higher than those of non-rhizopshere soils. Therefore, the presence of T. patula and M. jalapa roots was effective in promoting the phytoremediation of B[a]P contaminated soils.

  14. BAP31 and its caspase cleavage product regulate cell surface expression of tetraspanins and integrin-mediated cell survival.

    PubMed

    Stojanovic, Marina; Germain, Marc; Nguyen, Mai; Shore, Gordon C

    2005-08-26

    BAP31, a resident integral protein of the endoplasmic reticulum membrane, regulates the export of other integral membrane proteins to the downstream secretory pathway. Here we show that cell surface expression of the tetraspanins CD9 and CD81 is compromised in mouse cells from which the Bap31 gene has been deleted. CD9 and CD81 facilitate the function of multiprotein complexes at the plasma membrane, including integrins. Of note, BAP31 does not appear to influence the egress of alpha5beta1 or alpha(v)beta3 integrins to the cell surface, but in Bap31-null mouse cells, these integrins are not able to maintain cellular adhesion to the extracellular matrix in the presence of reduced serum. Consequently, Bap31-null cells are sensitive to serum starvation-induced apoptosis. Reconstitution of wild-type BAP31 into these Bap31-null cells restores integrin-mediated cell attachment and cell survival after serum stress, whereas interference with the functions of CD9, alpha5beta1, or alpha(v)beta3 by antagonizing antibodies makes BAP31 cells act similar to Bap31-null cells in these respects. Finally, in human KB epithelial cells protected from apoptosis by BCL-2, the caspase-8 cleavage product, p20 BAP31, inhibits egress of tetraspanin and integrin-mediated cell attachment. Thus, p20 BAP31 can operate upstream of BCL-2 in living cells to influence cell surface properties due to its effects on protein egress from the endoplasmic reticulum.

  15. High Performance Magazine Acceptor Threshold Criteria

    DTIC Science & Technology

    1994-08-01

    detonation transition (DDT). To account for unknown mechanisms the term XDT is also used. Development of a design procedure to prevent SD requires...propagation walls are used to prevent sympathetic detonation between munitions stored in adjacent cells. Design of the walls, and their mitigation...effects, requires sympathetic detonation threshold criteria for acceptor munitions. This paper outlines the procedures being used to develop SD threshold

  16. BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol.

    PubMed

    Geiger, Roger; Andritschke, Daniel; Friebe, Sarah; Herzog, Fabian; Luisoni, Stefania; Heger, Thomas; Helenius, Ari

    2011-09-25

    How non-enveloped viruses overcome host cell membranes is poorly understood. Here, we show that after endocytosis and transport to the endoplasmic reticulum (ER), but before crossing the ER membrane to the cytosol, incoming simian virus 40 particles are structurally remodelled leading to exposure of the amino-terminal sequence of the minor viral protein VP2. These hydrophobic sequences anchor the virus to membranes. A negatively charged residue, Glu 17, in the α-helical, membrane-embedded peptide is essential for infection, most likely by introducing an 'irregularity' recognized by the ER-associated degradation (ERAD) system for membrane proteins. Using a siRNA-mediated screen, the lumenal chaperone BiP and the ER-membrane protein BAP31 (both involved in ERAD) were identified as being essential for infection. They co-localized with the virus in discrete foci and promoted its ER-to-cytosol dislocation. Virus-like particles devoid of VP2 failed to cross the membrane. The results demonstrated that ERAD-factors assist virus transport across the ER membrane.

  17. Bap, a Biofilm Matrix Protein of Staphylococcus aureus Prevents Cellular Internalization through Binding to GP96 Host Receptor

    PubMed Central

    Valle, Jaione; Latasa, Cristina; Gil, Carmen; Toledo-Arana, Alejandro; Solano, Cristina; Penadés, José R.; Lasa, Iñigo

    2012-01-01

    The biofilm matrix, composed of exopolysaccharides, proteins, nucleic acids and lipids, plays a well-known role as a defence structure, protecting bacteria from the host immune system and antimicrobial therapy. However, little is known about its responsibility in the interaction of biofilm cells with host tissues. Staphylococcus aureus, a leading cause of biofilm-associated chronic infections, is able to develop a biofilm built on a proteinaceous Bap-mediated matrix. Here, we used the Bap protein as a model to investigate the role that components of the biofilm matrix play in the interaction of S. aureus with host cells. The results show that Bap promotes the adhesion but prevents the entry of S. aureus into epithelial cells. A broad analysis of potential interaction partners for Bap using ligand overlayer immunoblotting, immunoprecipitation with purified Bap and pull down with intact bacteria, identified a direct binding between Bap and Gp96/GRP94/Hsp90 protein. The interaction of Bap with Gp96 provokes a significant reduction in the capacity of S. aureus to invade epithelial cells by interfering with the fibronectin binding protein invasion pathway. Consistent with these results, Bap deficient bacteria displayed an enhanced capacity to invade mammary gland epithelial cells in a lactating mice mastitis model. Our observations begin to elucidate the mechanisms by which components of the biofilm matrix can facilitate the colonization of host tissues and the establishment of persistent infections. PMID:22876182

  18. Association of active caspase 8 with the mitochondrial membrane during apoptosis: potential roles in cleaving BAP31 and caspase 3 and mediating mitochondrion-endoplasmic reticulum cross talk in etoposide-induced cell death.

    PubMed

    Chandra, Dhyan; Choy, Grace; Deng, Xiaodi; Bhatia, Bobby; Daniel, Peter; Tang, Dean G

    2004-08-01

    It was recently demonstrated that during apoptosis, active caspase 9 and caspase 3 rapidly accumulate in the mitochondrion-enriched membrane fraction (D. Chandra and D. G. Tang, J. Biol. Chem.278:17408-17420, 2003). We now show that active caspase 8 also becomes associated with the membranes in apoptosis caused by multiple stimuli. In MDA-MB231 breast cancer cells treated with etoposide (VP16), active caspase 8 is detected only in the membrane fraction, which contains both mitochondria and endoplasmic reticulum (ER), as revealed by fractionation studies. Immunofluorescence microscopy, however, shows that procaspase 8 and active caspase 8 predominantly colocalize with the mitochondria. Biochemical analysis demonstrates that both procaspase 8 and active caspase 8 are localized mainly on the outer mitochondrial membrane (OMM) as integral proteins. Functional analyses with dominant-negative mutants, small interfering RNAs, peptide inhibitors, and Fas-associated death domain (FADD)- and caspase 8-deficient Jurkat T cells establish that the mitochondrion-localized active caspase 8 results mainly from the FADD-dependent and tumor necrosis factor receptor-associated death domain-dependent mechanisms and that caspase 8 activation plays a causal role in VP16-induced caspase 3 activation and cell death. Finally, we present evidence that the OMM-localized active caspase 8 can activate cytosolic caspase 3 and ER-localized BAP31. Cleavage of BAP31 leads to the generation of ER- localized, proapoptotic BAP20, which may mediate mitochondrion-ER cross talk through a Ca(2+)-dependent mechanism.

  19. BAP31 is involved in the retention of cytochrome P450 2C2 in the endoplasmic reticulum.

    PubMed

    Szczesna-Skorupa, Elzbieta; Kemper, Byron

    2006-02-17

    Microsomal cytochrome P450 2C2 is an integral endoplasmic reticulum (ER) membrane protein that is directly retained in the ER and excluded from transport vesicles. We have used bimolecular fluorescence complementation and co-immunoprecipitation to show that a ubiquitous ER membrane protein (BAP31) interacts with P450 2C2 in transfected COS-1 cells. A chimera containing only the N-terminal signal anchor of P450 2C1 (P450 2C1-(1-29)) also interacted with BAP31, which is consistent with interaction of the two proteins via their transmembrane domains. Down-regulation of BAP31 expression with small interfering RNA resulted in redistribution of green fluorescent protein-tagged P450 2C2 or P450 2C1-(1-29) from the ER into the nuclear membrane and compact perinuclear compartment structures as well as the cell surface in a small fraction of the cells. In Bap31-null embryonic stem cells, a significant fraction of P450 2C2 or P450 2C1-(1-29) was detected at the cell surface and nuclear envelope, but was redistributed to the ER by expression of BAP31. The expression level of P450 2C2 was significantly increased in COS-1 cells with repressed levels of BAP31. Formation of the pro-apoptotic p20 fragment of BAP31 was detected in transfected COS-1 cells expressing P450 2C2, and annexin V staining was consistent with the activation of an apoptotic pathway in these cells. Down-regulation of BAP31 with small interfering RNA partially reversed the apoptosis. These results suggest that interaction of P450 2C2 with BAP31 is important for its ER retention and expression level and that BAP31 may be involved in the regulation of apoptosis induced by the ER overload response to increased expression of P450.

  20. Photoionization in micelles: Addition of charged electron acceptors

    NASA Astrophysics Data System (ADS)

    Stenland, Chris; Kevan, Larry

    The relative photoyield of the electron donor N, N, N', N'-tetramethylbenzidine (TMB), solubilized in sodium and lithium dodecyl sulfate micelles with added charged electron acceptors was investigated. It was attempted to control the acceptor distance from a charged micellar interface by differently charged acceptors, cationic dimethyl viologen and anionic ferricyanide. However, back electron transfer from both cationic and anionic acceptors was found to be efficient. Thus simple electrostatic arguments for control of the photoyield do not seem applicable. Salt effects associated with the added ionic acceptors which partially neutralize the ionic micellar interface are suggested to be an important factor.

  1. Molecular characteristics of bap-positive Staphylococcus aureus strains from dairy cow mastitis.

    PubMed

    Snel, Gustavo G M; Monecke, Stefan; Ehricht, Ralf; Piccinini, Renata

    2015-08-01

    The biofilm-associated protein (Bap) of Staphylococcus aureus is a high molecular weight cell-wall-anchored protein involved in biofilm formation, first described in bovine mastitis strains from Spain. So far, studies regarding Bap were mainly based on the Spanish strain V329 and its mutants, but no information on the genetic variability of bap-positive Staph. aureus strains is yet available in the literature. The present study investigated the molecular characteristics of 8 bap-positive Staph. aureus strains from subclinical bovine mastitis, isolated in 5 herds; somatic cell counts (SCC) of milk samples were also registered. Strains were characterised using MLST, SPA typing and microarray and the results were compared with V329. All isolates from this study and V329 were assigned to ST126, t605, but some molecular differences were observed. Only herd A and B strains harboured the genes for β-lactams resistance; the leukocidin D/E gene, a type I site-specific deoxyribonuclease subunit, 3rd locus gene and serin-protease A and B were carried by all strains, but not by V329, while serin-protease E was absent in V329 and in another isolate. Four isolates and V329 harboured the fibronectin-binding protein B gene. SCC showed the highest value in the milk sample affected by the only strain carrying all the virulence factors considered. Potential large variability of virulence was evidenced among V329 and all bap-positive Staph. aureus strains considered: the carriage of fnb could enhance the accumulation of biofilm, but the lack of lukD/E and splA, B or E might decrease the invasiveness of strain.

  2. Binomial distribution-based quantitative measurement of multiple-acceptors fluorescence resonance energy transfer by partially photobleaching acceptor

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yu, Huaina; Zhang, Jianwei; Chen, Tongsheng

    2014-06-01

    We report that binomial distribution depending on acceptor photobleaching degree can be used to characterize the proportions of various kinds of FRET (Fluorescence Resonance Energy Transfer) constructs resulted from partial acceptor photobleaching of multiple-acceptors FRET system. On this basis, we set up a rigorous quantitation theory for multiple-acceptors FRET construct named as Mb-PbFRET which is not affected by the imaging conditions and fluorophore properties. We experimentally validate Mb-PbFRET with FRET constructs consisted of one donor and two or three acceptors inside living cells on confocal and wide-field microscopes.

  3. Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondria.

    PubMed

    Wang, Bing; Nguyen, Mai; Breckenridge, David G; Stojanovic, Marina; Clemons, Paul A; Kuppig, Stephan; Shore, Gordon C

    2003-04-18

    BAP31 is a polytopic integral protein of the endoplasmic reticulum membrane and, like BID, is a preferred substrate of caspase-8. Upon Fas/CD95 stimulation, BAP31 is cleaved within its cytosolic domain, generating proapoptotic p20 BAP31. In human KB epithelial cells expressing the caspase-resistant mutant crBAP31, Fas stimulation resulted in cleavage of BID and insertion of BAX into mitochondrial membrane, but subsequent oligomerization of BAX and BAK, egress of cytochrome c to the cytosol, and apoptosis were impaired. Bap31-null mouse cells expressing crBAP31 cannot generate the endogenous p20 BAP31 cleavage product, yet crBAP31 conferred resistance to cellular condensation and cytochrome c release in response to activation of ectopic FKBPcasp8 by FK1012z. Full-length BAP31, therefore, is a direct inhibitor of these caspase-8-initiated events, acting independently of its ability to sequester p20, with which it interacts. Employing a novel split ubiquitin yeast two-hybrid screen for BAP31-interacting membrane proteins, the putative ion channel protein of the endoplasmic reticulum, A4, was detected and identified as a constitutive binding partner of BAP31 in human cells. Ectopic A4 that was introduced into A4-deficient cells cooperated with crBAP31 to resist Fas-induced egress of cytochrome c from mitochondria and cytoplasmic apoptosis.

  4. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  5. CDIP1-BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress.

    PubMed

    Namba, Takushi; Tian, Fang; Chu, Kiki; Hwang, So-Young; Yoon, Kyoung Wan; Byun, Sanguine; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W

    2013-10-31

    Resolved endoplasmic reticulum (ER) stress response is essential for intracellular homeostatic balance, but unsettled ER stress can lead to apoptosis. Here, we show that a proapoptotic p53 target, CDIP1, acts as a key signal transducer of ER-stress-mediated apoptosis. We identify B-cell-receptor-associated protein 31 (BAP31) as an interacting partner of CDIP1. Upon ER stress, CDIP1 is induced and enhances an association with BAP31 at the ER membrane. We also show that CDIP1 binding to BAP31 is required for BAP31 cleavage upon ER stress and for BAP31-Bcl-2 association. The recruitment of Bcl-2 to the BAP31-CDIP1 complex, as well as CDIP1-dependent truncated Bid (tBid) and caspase-8 activation, contributes to BAX oligomerization. Genetic knockout of CDIP1 in mice leads to impaired response to ER-stress-mediated apoptosis. Altogether, our data demonstrate that the CDIP1/BAP31-mediated regulation of mitochondrial apoptosis pathway represents a mechanism for establishing an ER-mitochondrial crosstalk for ER-stress-mediated apoptosis signaling.

  6. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction.

    PubMed

    Iwasawa, Ryota; Mahul-Mellier, Anne-Laure; Datler, Christoph; Pazarentzos, Evangelos; Grimm, Stefan

    2011-02-02

    The mitochondria and the endoplasmic reticulum (ER) are two organelles that critically contribute to apoptosis induction. While it is established that they communicate, how cell death signals are transmitted from the mitochondria to the ER is unknown. Here, we show that the mitochondrial fission protein Fission 1 homologue (Fis1) conveys an apoptosis signal from the mitochondria to the ER by interacting with Bap31 at the ER and facilitating its cleavage into the pro-apoptotic p20Bap31. Exogenous apoptosis inducers likewise use this signalling route and induce the procession of Bap31. Moreover, we show that the recruitment of procaspase-8 to the Fis1-Bap31 platform is an early event during apoptosis induction. The association of procaspase-8 with the Fis1-Bap31 complex is dependent on the variant of death effector domain (vDED) in Bap31 and is required for the activation of procaspase-8. This signalling pathway establishes a feedback loop by releasing Ca(2+) from the ER that activates the mitochondria for apoptosis. Hence, the Fis1-Bap31 complex (ARCosome) that spans the mitochondria-ER interface serves as a platform to activate the initiator procaspase-8, and thereby bridges two critical organelles for apoptosis signalling.

  7. BAP31 interacts with Sec61 translocons and promotes retrotranslocation of CFTRDeltaF508 via the derlin-1 complex.

    PubMed

    Wang, Bing; Heath-Engel, Hannah; Zhang, Donglei; Nguyen, Nhi; Thomas, David Y; Hanrahan, John W; Shore, Gordon C

    2008-06-13

    BAP31 is an endoplasmic reticulum protein-sorting factor that associates with newly synthesized integral membrane proteins and controls their fate (i.e., egress, retention, survival, or degradation). BAP31 is itself an integral membrane protein and a constituent of several large protein complexes. Here, we show that a part of the BAP31 population interacts with two components of the Sec61 preprotein translocon, Sec61beta and TRAM. BAP31 associates with the N terminus of one of its newly synthesized client proteins, the DeltaF508 mutant of CFTR, and promotes its retrotranslocation from the ER and degradation by the cytoplasmic 26S proteasome system. Depletion of BAP31 reduces the proteasomal degradation of DeltaF508 and permits a significant fraction of the surviving protein to reach the cell surface. Of note, BAP31 also associates physically and functionally with the Derlin-1 protein disclocation complex in the DeltaF508 degradation pathway. Thus, BAP31 operates at early steps to deliver newly synthesized CFTRDeltaF508 to its degradation pathway.

  8. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum.

    PubMed

    Breckenridge, David G; Nguyen, Mai; Kuppig, Stephan; Reth, Michael; Shore, Gordon C

    2002-04-02

    BAP31 is an integral protein of the endoplasmic reticulum membrane and a substrate of caspase-8. Here, we describe the procaspase-8 isoform, procaspase-8L, which is ubiquitously expressed and selectively recruited to the BAP31 complex in response to apoptotic signaling by E1A. Procaspase-8L is characterized by the N-terminal extension (Nex) domain, which extends procaspase-8/a at the N terminus and is required for selective association of procaspase-8L with the BAP31 complex. Gene deletion identified BAP31 and related BAP29 as required for processing of procaspase-8L in response to E1A, by a FADD-independent mechanism that was blocked by BCL-2. Further, Bap29,31 deletion, as well as a Nex-domain dominant-negative mutant, curtailed the activation of downstream caspases (IETDase and DEVDase) and cell death in response to E1A. Preferential recruitment of procaspase-8L by the BAP31 complex at the endoplasmic reticulum suggests an additional pathway for regulating initiator caspase-8 during apoptosis.

  9. [Relations between the retinoic acid acceptor and teratogenesis of retinoids].

    PubMed

    Li, Zeng-Gang; Sun, Kai-Lai

    2004-09-01

    Retinoic acid can induce teratogenesis of the fetus of many animals including human, and its biological activities are induced by a serious of different retinoic acid accepters and their ligands. The retinoic acid acceptor RAR plays key roles in the teratogenesis, and the ligands of RAR are strong teratogens. The intensity sequence of the relative teratogenesis is ligandalpha, ligandbeta and ligandgamma. The ligands of the retinoic acid acceptor RXR cannot induce teratogenesis, but they can enhance the teratogenesis of the RAR stimulus. The retinoic acid acceptors can also affect the development of the fetus by adjusting the expression of the other genes. The relations between the gene mutation of the retinoic acid acceptor, various retinoic acid acceptors and their ligands and teratogenesis of retinoic acid are summarized in this article. In addition, the regulations of the retinoic acid acceptors to the other genes are also discussed.

  10. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed Central

    Barrett, M C; Dawson, A P

    1975-01-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme. PMID:1218095

  11. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  12. Germline BAP1 mutations misreported as somatic based on tumor-only testing.

    PubMed

    Abdel-Rahman, Mohamed H; Rai, Karan; Pilarski, Robert; Davidorf, Frederick H; Cebulla, Colleen M

    2016-04-01

    We present three unrelated patients with germline mutations in BAP1 misreported as somatic mutations. All had strong family histories of cancer. One of these patients presented with an invasive breast cancer with the tumor tissue showing partial loss of the mutant rather than the wild type allele, suggesting that the germline BAP1 mutation didn't contribute to breast cancer development in this patient. This data highlights the importance of sequencing matching germline and tumor DNA for proper assessment of somatic versus germline mutation status. In patients with somatic mutations reported from laboratories carrying out tumor-only genomic testing, the possibility that a variant may be a germline mutation should be considered, especially if the personal and/or family history suggests hereditary cancer predisposition. Since tumor-only testing can reveal germline mutations, ethical issues for patients being tested should be considered including proper consent and genetic counseling.

  13. Preliminary structural studies on the leucine-zipper homology region of the human protein Bap31.

    PubMed

    Mukasa, Takashi; Santelli, Eugenio; Reed, John C; Pascual, Jaime

    2007-04-01

    B-cell receptor-associated protein 31 (Bap31) is an integral membrane protein located in the endoplasmic reticulum (ER) that participates in the transport and quality control of membrane proteins and plays a role in determining cell sensitivity to ER stress and apoptosis. Its cytoplasmic region contains two target sites for caspase cleavage in certain apoptotic pathways. Here, the subcloning, expression, purification and crystallization of the Homo sapiens Bap31 leucine-zipper C-terminal fragment, which spans residues Gly160-Glu246, are reported. An N-terminally His-tagged protein was overexpressed in Escherichia coli and purified by chromatographic methods. X-ray diffraction data were collected in-house to 2.5 A resolution. Crystals belong to space group P6(1)22/P6(5)22, with unit-cell parameters a = b = 70.7, c = 80.6 A. Data analysis indicates the presence of one molecule per asymmetric unit.

  14. Indoor Spatial Monitoring of Combustion Generated Pollutants (TSP, CO, and BaP) by Indian Cookstoves

    DTIC Science & Technology

    1988-07-01

    insulation, furnishings, tobacco smoke Asbestos , mineral, and Fire-retardant, accoustic, synthetic fibres thermal, or electrical insulation Organic substances...nitrosamines, and polonium . Researchers indicate BaP, one of the well known carcinogen as a potential candidate for promoting lung cancer even though...important to monitor the exposure of cooks. Five battery operated and light weight TSP (Gilian HFS 113) and one CO (Ecolyzer 210 ) samplers were procured. The

  15. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry

    PubMed Central

    Carter, Charles W.; Wolfenden, Richard

    2016-01-01

    abstract The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  16. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-03-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  17. Quantum computing with acceptor spins in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  18. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  19. Identification of bap and icaA genes involved in biofilm formation in coagulase negative staphylococci isolated from feline conjunctiva.

    PubMed

    Płoneczka-Janeczko, Katarzyna; Lis, Paweł; Bierowiec, Karolina; Rypuła, Krzysztof; Chorbiński, Paweł

    2014-12-01

    Bap and icaA genes are commonly known to be involved in the biofilm formation. The prevalence of bap and icaA genes and biofilm formation was determined in conjunctival isolates of coagulase negative staphylococci (CNS) collected from cats. The study was conducted on 90 archival CNS isolates collected from feline conjunctiva obtained from clinically healthy cats and cats with ocular problems. Biofilm formation was examined using the microtiter plate (MTP) method. The prevalence of icaA and bap genes was determined using polymerase chain reaction (PCR). Genetic profiles of the bap-positive isolates were examined using the modified random amplified polymorphic DNA (RAPD) method. Of the 90 CNS isolates investigated, 58.9% (53/90) were confirmed to form biofilms on a polystyrene plate after 24 h, and the intensity of the biofilm production varied strongly between positive strains. Among the biofilm-producing isolates, 24.5% (13/53) carried the icaA gene and 3.8% (2/53) carried the bap gene. Among the isolates that did not produce biofilms, the icaA gene and bap gene were detected in 8.1% (3/37) and 2.7% (1/37) of isolates, respectively. This is the first report demonstrating that CNS isolated from feline conjunctiva can potentially be a bap gene reservoir. Preliminary comparison of the genetic profiles of three bap-positive isolates collected from cats showed that each of the isolates has a different genetic background with a high similarity with the human strain of S. epidermidis.

  20. Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish.

    PubMed

    Knecht, Andrea L; Truong, Lisa; Simonich, Michael T; Tanguay, Robert L

    Polycyclic aromatic hydrocarbons (PAHs) are produced from incomplete combustion of organic materials or fossil fuels, and are present in crude oil and coal; therefore, they are ubiquitous environmental contaminants present in urban air, dust, soil, and water. It is widely recognized that PAHs pose risks to human health, especially for the developing fetus and infant where PAH exposures have been linked to in-utero mortality, cardiovascular effects, and lower intelligence. Using the zebrafish model, we evaluated the developmental toxicity of benzo[a]pyrene (B[a]P). Zebrafish embryos were exposed from 6 to 120h post fertilization (hpf) to 0.4 and 4μM B[a]P. The Viewpoint Zebrabox systems were used to evaluate larval photomotor response (LPR) activity and we identified that exposure to 4μM B[a]P resulted in a hyperactive LPR phenotype. To evaluate the role of aryl hydrocarbon receptor (AHR) in this larval phenotype, we exposed ahr2(hu2334) null larvae to 4μM B[a]P. Though ahr2(hu2334) larvae did not display hyperactive swimming, these larvae had a decrease in LPR activity, suggesting that AHR2 plays a role in B[a]P induced larval hyperactivity. To determine if developmental B[a]P exposures would produce adult behavioral deficits, a subset of exposed animals was raised to adulthood and tested in a conditioned stimulus test using shuttleboxes. Developmentally exposed B[a]P zebrafish exhibited decreased learning and memory. Together this data demonstrates that developmental B[a]P exposure adversely impacts larval behavior, and learning in adult zebrafish.

  1. Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria.

    PubMed

    Nguyen, M; Breckenridge, D G; Ducret, A; Shore, G C

    2000-09-01

    BAP31 is a 28-kDa integral membrane protein of the endoplasmic reticulum whose cytosolic domain contains two identical caspase recognition sites (AAVD.G) that are preferentially cleaved by initiator caspases, including caspase 8. Cleavage of BAP31 during apoptosis generates a p20 fragment that remains integrated in the membrane and, when expressed ectopically, is a potent inducer of cell death. To examine the consequences of maintaining the structural integrity of BAP31 during apoptosis, the caspase recognition aspartate residues were mutated to alanine residues, and Fas-mediated activation of caspase 8 and cell death were examined in human KB epithelial cells stably expressing the caspase-resistant mutant crBAP31. crBAP31 only modestly slowed the time course for activation of caspases, as assayed by the processing of procaspases 8 and 3 and the measurement of total DEVDase activity. As a result, cleavage of the caspase targets poly(ADP-ribosyl) polymerase and endogenous BAP31, as well as the redistribution of phosphatidylserine and fragmentation of DNA, was observed. In contrast, cytoplasmic membrane blebbing and fragmentation and apoptotic redistribution of actin were strongly inhibited, cell morphology was retained near normal, and the irreversible loss of cell growth potential following removal of the Fas stimulus was delayed. Of note, crBAP31-expressing cells also resisted Fas-mediated release of cytochrome c from mitochondria, and the mitochondrial electrochemical potential was only partly reduced. These results argue that BAP31 cleavage is important for manifesting cytoplasmic apoptotic events associated with membrane fragmentation and reveal an unexpected cross talk between mitochondria and the endoplasmic reticulum during Fas-mediated apoptosis in vivo.

  2. Contiguous deletion of SLC6A8 and BAP31 in a patient with severe dystonia and sensorineural deafness.

    PubMed

    Osaka, Hitoshi; Takagi, Atsushi; Tsuyusaki, Yu; Wada, Takahito; Iai, Mizue; Yamashita, Sumimasa; Shimbo, Hiroko; Saitsu, Hirotomo; Salomons, Gajja S; Jakobs, Cornelis; Aida, Noriko; Toshihiro, Shinka; Kuhara, Tomiko; Matsumoto, Naomichi

    2012-05-01

    We report here a 6-year-old boy exhibiting severe dystonia, profound intellectual and developmental disability with liver disease, and sensorineural deafness. A deficient creatine peak in brain (1)H-MR spectroscopy and high ratio of creatine/creatinine concentration in his urine lead us to suspect a creatine transporter (solute carrier family 6, member 8; SLC6A8) deficiency, which was confirmed by the inability to take up creatine into fibroblasts. We found a large ~19 kb deletion encompassing exons 5-13 of SLC6A8 and exons 5-8 of the B-cell receptor-associated protein (BAP31) gene. This case is the first report in which the SLC6A8 and BAP31 genes are both deleted. The phenotype of BAP31 mutations has been reported only as a part of Xq28 deletion syndrome or contiguous ATP-binding cassette, sub-family D, member 1 (ABCD1)/DXS1375E (BAP31) deletion syndrome [MIM ID #300475], where liver dysfunction and sensorineural deafness have been suggested to be attributed to the loss of function of BAP31. Our case supports the idea that the loss of BAP31 is related to liver dysfunction and hearing loss.

  3. The resident endoplasmic reticulum protein, BAP31, associates with gamma-actin and myosin B heavy chain.

    PubMed

    Ducret, Axel; Nguyen, Mai; Breckenridge, David G; Shore, Gordon C

    2003-01-01

    BAP31 is a 28-kDa integral membrane protein of the endoplasmic reticulum whose cytosolic domain contains two caspase recognition sites that are preferentially cleaved by initiator caspases, such as caspase-8. Recently, we reported that the caspase-resistant BAP31 inhibited Fas-mediated apoptotic membrane fragmentation and the release of cytochrome c from mitochondria in KB epithelial cells (Nguyen M., Breckenridge G., Ducret A & Shore G. (2000) Mol. Cell. Biol.20, 6731-6740). We describe here the characterization by capillary liquid chromatography microelectrospray tandem MS of a BAP31 immunocomplex isolated from a HepG2 cell lysate in the absence of a death signal. We show that BAP31 specifically associates with nonmuscle myosin heavy chain B and nonmuscle gamma-actin, two components of the cytoskeleton actomyosin complex. Collectively, these data confirm that BAP31, in addition to its potential role as a chaperone, may play a fundamental role in the structural organization of the cytoplasm. Here we also show that Fas stimulation of apoptosis releases BAP31 associations with these motor proteins, a step that may contribute to extranuclear events, such as membrane remodelling, during the execution phase of apoptosis.

  4. New acceptor-donor-acceptor (A-D-A) type copolymers for efficient organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Ayachi, S.; Alimi, K.

    2015-01-01

    Three new conjugated systems alternating acceptor-donor-acceptor (A-D-A) type copolymers have been investigated by means of Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) at the 6-31g (d) level of theory. 4,4‧-Dimethoxy-chalcone, also called the 1,3-bis(4-methoxyphenyl)prop-2-en-1-one (BMP), has been used as a common acceptor moiety. It forced intra-molecular S⋯O interactions through alternating oligo-thiophene derivatives: 4-AlkylThiophenes (4-ATP), 4-AlkylBithiophenes (4-ABTP) and 4-Thienylene Vinylene (4-TEV) as donor moieties. The band gap, HOMO and LUMO electron distributions as well as optical properties were analyzed for each molecule. The fully optimized resulting copolymers showed low band gaps (2.2-2.8 eV) and deep HOMO energy levels ranging from -4.66 to -4.86 eV. A broad absorption [300-900 nm] covering the solar spectrum and absorption maxima ranges from 486 to 604 nm. In addition, organic photovoltaic cells (OPCs) based on alternating copolymers in bulk heterojunction (BHJ) composites with the 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6]-C61 (PCBM), as an acceptor, have been optimized. Thus, the band gap decreased to 1.62 eV, the power conversion efficiencies (PCEs) were about 3-5% and the open circuit voltage Voc of the resulting molecules decreased from 1.50 to 1.27 eV.

  5. Efficient organic dye-sensitized solar cells: molecular engineering of donor-acceptor-acceptor cationic dyes.

    PubMed

    Cheng, Ming; Yang, Xichuan; Zhao, Jianghua; Chen, Cheng; Tan, Qin; Zhang, Fuguo; Sun, Licheng

    2013-12-01

    Three metal-free donor-acceptor-acceptor sensitizers with ionized pyridine and a reference dye were synthesized, and a detailed investigation of the relationship between the dye structure and the photophysical and photoelectrochemical properties and the performance of dye-sensitized solar cells (DSSCs) is described. The ionization of pyridine results in a red shift of the absorption spectrum in comparison to that of the reference dye. This is mainly attributable to the ionization of pyridine increasing the electron-withdrawing ability of the total acceptor part. Incorporation of the strong electron-withdrawing units of pyridinium and cyano acrylic acid gives rise to optimized energy levels, resulting in a large response range of wavelengths. When attached to TiO2 film, the conduction band of TiO2 is negatively shifted to a different extent depending on the dye. This is attributed to the electron recombination rate between the TiO2 film and the electrolyte being efficiently suppressed by the introduction of long alkyl chains and thiophene units. DSSCs assembled using these dyes show efficiencies as high as 8.8 %.

  6. π-Extended rigid triptycene-trisaroylenimidazoles as electron acceptors.

    PubMed

    Menke, Elisabeth H; Lami, Vincent; Vaynzof, Yana; Mastalerz, Michael

    2016-01-18

    Two soluble isomeric acceptor molecules based on a triptycene core, which is connected to three aroylenimidazole units are described. Due to the inherent threefold axis, the molecules are soluble and thus could be fully photophysically characterized in solution and film. Additionally, the preliminary results of these acceptors in organic photovoltaic devices with two different donor materials are reported.

  7. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO3

    NASA Astrophysics Data System (ADS)

    Putilov, L. P.; Tsidilkovski, V. I.

    2017-03-01

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔHox of oxide is determined by the energy εA of acceptor-bound states along with the formation energy EV of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of εA and EV values corresponding to the positive or negative ΔHox are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth εA: it becomes negligible at εA less than a certain value (at which the acceptor levels are still deep). With increasing εA, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO3 as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the εA magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.

  8. Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula.

    PubMed

    Sun, Yuebing; Zhou, Qixing; Xu, Yingming; Wang, Lin; Liang, Xuefeng

    2011-02-28

    Pot-culture experiments were conducted to investigate the single effect of benzo[a]pyrene (B[a]P) and the joint effect of metal-B[a]P on the growth of Tagetes patula and its uptake, accumulation and dissipation of heavy metals and B[a]P. Results showed that the low concentration of B[a]P (≤10 mg kg(-1)) could facilitate plant growth and resulted in an increase in biomass at the rate of 10.0-49.7% relative to the control. There were significantly positive correlations between the concentrations of B[a]P accumulated in tissues of the plants and soil B[a]P (P<0.001). However, the occurrence of Cd, Cu and Pb had inhibitive effects on plant growth and B[a]P uptake and accumulation on the whole. T. patula still exhibited a steady feature of Cd-hyperaccumulator under combined contaminated soils. By contrast, the effectiveness of Cu and Pb absorption in the plants was very weak. Plant-promoted biodegradation of B[a]P was the dominant contribution, 79.2-92.4% and 78.2-92.9% of dissipation of B[a]P came from plant-biodegradation under single B[a]P and metal-B[a]P contaminated soils, respectively. Therefore, T. patula might be useful for phytoremediation of B[a]P and B[a]P-Cd contaminated sites.

  9. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  10. Aza-peptidyl Michael acceptor and epoxide inhibitors--potent and selective inhibitors of Schistosoma mansoni and Ixodes ricinus legumains (asparaginyl endopeptidases).

    PubMed

    Ovat, Asli; Muindi, Fanuel; Fagan, Crystal; Brouner, Michelle; Hansell, Elizabeth; Dvorák, Jan; Sojka, Daniel; Kopácek, Petr; McKerrow, James H; Caffrey, Conor R; Powers, James C

    2009-11-26

    Aza-peptide Michael acceptors and epoxides with the general structure of YCO-Ala-Ala-AAsn-trans-CH horizontal lineCHCOR and YCO-Ala-Ala-AAsn-EP-COR, respectively, are shown to be potent inhibitors of asparaginyl endopeptidases (legumains) from the bloodfluke, Schistosoma mansoni (SmAE), and the hard tick, Ixodes ricinus (IrAE). Structure-activity relationships (SARs) were determined for a set of 41 aza-peptide Michael acceptors and eight aza-peptide epoxides. Both enzymes prefer disubstituted amides to monosubstituted amides in the P1' position, and potency increased as we increased the hydrophobicity of the inhibitor in this position. Extending the inhibitor to P5 resulted in increased potency, especially against IrAE, and both enzymes prefer small over large hydrophobic residues at P2. Aza-peptide Michael acceptor inhibitors are more potent than aza-peptide epoxide inhibitors, and for some of these compounds, second-order inhibiton rate constants are the fastest yet discovered. Given the central functions of these enzymes in both parasites, the data presented here may facilitate the eventual design of selective antiparasitic drugs.

  11. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    PubMed

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  12. Molecular Analysis and Expression of bap Gene in Biofilm-Forming Multi-Drug-Resistant Acinetobacter baumannii

    PubMed Central

    Azizi, Omid; Shahcheraghi, Fereshteh; Salimizand, Himen; Modarresi, Farzan; Shakibaie, Mohammad Reza; Mansouri, Shahla; Ramazanzadeh, Rashid; Badmasti, Farzad; Nikbin, Vajihe

    2016-01-01

    Background: Acinetobacter baumannii is commonly resistant to nearly all antibiotics due to presence of antibiotic resistance genes and biofilm formation. In this study we determined the presence of certain antibiotic-resistance genes associated with biofilm production and the influence of low iron concentration on expression of the biofilm-associated protein gene (bap) in development of biofilm among multi-drug-resistant A. baumannii (MDRAB) Methods: Sixty-five MDRAB isolates from clinical samples were collected. Molecular typing was carried out by random amplified polymorphism DNA polymerase chain reaction (RAPD-PCR). Biofilm formation was assayed by the microtiter method. Results: The sequence of bap was determined and deposited in the GenBank database (accession no. KR080550.1). Expression of bap in the presence of low iron was analyzed by relative quantitative real time PCR (rqRT-PCR). Nearly half of the isolates belonged to RAPD-types A and B remaining were either small clusters or singleton. The results of biofilm formation revealed that 23 (35.4%), 18 (27.7%), 13 (20%), and 11 (16.9%) of the isolates had strong, moderate, weak, and no biofilm activities, respectively. ompA and csuE genes were detected in all, while bap and blaPER-1 were detected in 43 (66%) and 42 (64%) of the isolates that showed strong and moderate biofilm activities (p ≤ 0.05), respectively. Analysis of bap expression by rqRT-PCR revealed five isolates with four-fold bap overexpression in the presence of low iron concentration (20 µM). Conclusion: The results suggest that bap overexpression may influence biofilm formation in presence of low iron concentration PMID:28070537

  13. The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer*♦

    PubMed Central

    Daou, Salima; Hammond-Martel, Ian; Mashtalir, Nazar; Barbour, Haithem; Gagnon, Jessica; Iannantuono, Nicholas V. G.; Nkwe, Nadine Sen; Motorina, Alena; Pak, Helen; Yu, Helen; Wurtele, Hugo; Milot, Eric; Mallette, Frédérick A.; Carbone, Michele; Affar, El Bachir

    2015-01-01

    The deubiquitinase (DUB) and tumor suppressor BAP1 catalyzes ubiquitin removal from histone H2A Lys-119 and coordinates cell proliferation, but how BAP1 partners modulate its function remains poorly understood. Here, we report that BAP1 forms two mutually exclusive complexes with the transcriptional regulators ASXL1 and ASXL2, which are necessary for maintaining proper protein levels of this DUB. Conversely, BAP1 is essential for maintaining ASXL2, but not ASXL1, protein stability. Notably, cancer-associated loss of BAP1 expression results in ASXL2 destabilization and hence loss of its function. ASXL1 and ASXL2 use their ASXM domains to interact with the C-terminal domain (CTD) of BAP1, and these interactions are required for ubiquitin binding and H2A deubiquitination. The deubiquitination-promoting effect of ASXM requires intramolecular interactions between catalytic and non-catalytic domains of BAP1, which generate a composite ubiquitin-binding interface (CUBI). Notably, the CUBI engages multiple interactions with ubiquitin involving (i) the ubiquitin carboxyl hydrolase catalytic domain of BAP1, which interacts with the hydrophobic patch of ubiquitin, and (ii) the CTD domain, which interacts with a charged patch of ubiquitin. Significantly, we identified cancer-associated mutations of BAP1 that disrupt the CUBI and notably an in-frame deletion in the CTD that inhibits its interaction with ASXL1/2 and DUB activity and deregulates cell proliferation. Moreover, we demonstrated that BAP1 interaction with ASXL2 regulates cell senescence and that ASXL2 cancer-associated mutations disrupt BAP1 DUB activity. Thus, inactivation of the BAP1/ASXL2 axis might contribute to cancer development. PMID:26416890

  14. BAP1 immunohistochemistry has limited prognostic utility as a complement of CDKN2A (p16) fluorescence in situ hybridization in malignant pleural mesothelioma.

    PubMed

    M McGregor, Stephanie; McElherne, James; Minor, Agata; Keller-Ramey, Jennifer; Dunning, Ryan; Husain, Aliya N; Vigneswaran, Wickii; Fitzpatrick, Carrie; Krausz, Thomas

    2017-02-01

    BRCA-associated protein 1 (BAP1) immunohistochemistry (IHC) and CDKN2A (p16) fluorescence in situ hybridization (FISH) have shown clinical utility in confirming the diagnosis of malignant pleural mesothelioma (MPM), but the role for using these 2 markers to guide clinical management is not yet clear. Although p16 loss is predictive of poor prognosis, there is controversy as to whether BAP1 loss is predictive of a more favorable prognosis; how these results interact with one another has not been explored. We performed CDKN2A FISH on a previously published tissue microarray on which we had performed BAP1 IHC, revealing combined BAP1/p16 status for 93 MPM cases. As expected, BAP1 IHC in combination with CDKN2A FISH resulted in high sensitivity (84%) and specificity (100%) for MPM, and p16 loss was an independent predictor of poor survival (hazard ratio, 2.2553; P = .0135). There was no association between BAP1 loss and p16 loss, as 26%, 28%, 30%, and 16% of overall cases demonstrated loss of BAP1 alone, loss of p16 alone, loss of both BAP1 and p16, or neither abnormality, respectively. Although multivariate analysis demonstrated that BAP1 IHC is not an independent predictor of prognosis, when viewed in combination with homozygous CDKN2A deletion, risk stratification was evident. More specifically, patients with CDKN2A disomy and loss of BAP1 expression had improved outcomes compared with those with CDKN2A disomy and retained BAP1 expression (hazard ratio, 0.2286; P = .0017), and this finding was notably evident among epithelioid cases. We conclude that BAP1 IHC provides prognostic information within the context of CDKN2A FISH that may have clinical utility beyond diagnosis.

  15. Donor–Acceptor Oligorotaxanes Made to Order

    SciTech Connect

    Basu, Subhadeep; Coskun, Ali; Friedman, Douglas C.; Olson, Mark A.; Benitez, Diego; Tkatchouk, Ekaterina; Barin, Gokhan; Yang, Jeffrey; Fahrenbach, Albert C.; Goddard, William A.; Stoddart, J. Fraser

    2011-01-01

    Five donor–acceptor oligorotaxanes made up of dumbbells composed of tetraethylene glycol chains, interspersed with three and five 1,5-dioxynaphthalene units, and terminated by 2,6-diisopropylphenoxy stoppers, have been prepared by the threading of discrete numbers of cyclobis(paraquat-p-phenylene) rings, followed by a kinetically controlled stoppering protocol that relies on click chemistry. The well-known copper(I)-catalyzed alkyne–azide cycloaddition between azide functions placed at the ends of the polyether chains and alkyne-bearing stopper precursors was employed during the final kinetically controlled template-directed synthesis of the five oligorotaxanes, which were characterized subsequently by ¹H NMR spectroscopy at low temperature (233 K) in deuterated acetonitrile. The secondary structures, as well as the conformations, of the five oligorotaxanes were unraveled by spectroscopic comparison with the dumbbell and ring components. By focusing attention on the changes in chemical shifts of some key probe protons, obtained from a wide range of low-temperature spectra, a picture emerges of a high degree of folding within the thread protons of the dumbbells of four of the five oligorotaxanes—the fifth oligorotaxane represents a control compound in effect—brought about by a combination of C[BOND]H···O and π–π stacking interactions between the π-electron-deficient bipyridinium units in the rings and the π-electron-rich 1,5-dioxynaphthalene units and polyether chains in the dumbbells. The secondary structures of a foldamer-like nature have received further support from a solid-state superstructure of a related [3]pseudorotaxane and density functional calculations performed thereon.

  16. Intramolecular charge transfer in donor-acceptor molecules

    SciTech Connect

    Slama-Schwok, A.; Blanchard-Desce, M.; Lehn, J.M. )

    1990-05-17

    The photophysical properties of donor-acceptor molecules, push-pull polyenes and carotenoids, have been studied by absorption and fluorescence spectroscopy. The compounds bear various acceptor and donor groups, linked together by chains of different length and structure. The position of the absorption and fluorescence maxima and their variation in solvents of increasing polarity are in agreement with long-distance intramolecular charge-transfer processes, the linker acting as a molecular wire. The effects of the linker length and structure and of the nature of acceptor and donor are presented.

  17. Alteration of cartilage glycosaminoglycan protein acceptor by somatomedin and cortisol.

    PubMed

    Kilgore, B S; McNatt, M L; Meador, S; Lee, J A; Hughes, E R; Elders, M J

    1979-02-01

    The effect of somatomedin and cortisol on embryonic chick cartilage in vitro indicates that somatomedin stimulates 35SO4 uptake while cortisol decreases it with no effect on glycosaminoglycan turnover. Xylosyltransferase activity is increased in crude fractions of somatomedin-treated cartilage but decreased in cortisol-treated cartilage. By using a Smith-degraded proteoglycan as an exogenous acceptor, xylosyltransferase activities from both treatments were equivalent, suggesting that the enzyme was not rate limiting. The results of xylosyltransferase assays conducted by mixing enzyme and endogenous acceptor from control, cortisol-treated and somatomedin-treated cartilage, suggest both effects to be at the level of the acceptor protein.

  18. Efficient organic solar cells with helical perylene diimide electron acceptors.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Wang, Wei; Khlyabich, Petr P; Kumar, Bharat; Xu, Qizhi; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles; Steigerwald, Michael L; Loo, Yueh-Lin; Xiao, Shengxiong; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2014-10-29

    We report an efficiency of 6.1% for a solution-processed non-fullerene solar cell using a helical perylene diimide (PDI) dimer as the electron acceptor. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces, indicating that charge carriers are created from photogenerated excitons in both the electron donor and acceptor phases. Light-intensity-dependent current-voltage measurements suggested different recombination rates under short-circuit and open-circuit conditions.

  19. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  20. Endoplasmic reticulum membrane-sorting protein of lymphocytes (BAP31) is highly expressed in neurons and discrete endocrine cells.

    PubMed

    Manley, H A; Lennon, V A

    2001-10-01

    BAP31 is a transmembrane protein that associates with nascent membrane proteins in transit between endoplasmic reticulum (ER) and cis-Golgi. Its C-terminal dilysine (KKEE) motif, mediating return to the ER, is consistent with a role in early sorting of membrane proteins. An initiator caspase-binding site in the C-terminal domain of BAP31 is implicated in cytoplasmic membrane fragmentation events of apoptosis. Although BAP31 RNA is ubiquitous, the protein's anatomic localization has not been determined. To gain further insight into its possible functions, we localized BAP31 in primate tissues using monoclonal antibodies. Immunoreactivity was prominent in T- and B-lymphocytes in blood and in thymus, in cerebellar Purkinje neuron bodies and dendrites, in gonadotrophs of the anterior pituitary, ovarian thecal and follicular cells, active but not quiescent thyroid epithelium, adrenal cortex more than medulla, and proximal more than distal renal tubules. Blood vessels and skeletal muscle were nonreactive. The anatomic distribution of BAP31 and the nature of proteins identified thus far as its cargo exiting the ER, suggest an interaction with proteins assembling in macromolecular complexes en route to selected sites of exocytotic and signaling activities. Apoptotic associations in mature tissues could be physiological (lymphocytes, endocrine cells) or pathological (Purkinje neurons, renal tubules).

  1. Synthesis and Evaluation of Derivatives of the Proteasome Deubiquitinase Inhibitor b-AP15

    PubMed Central

    Wang, Xin; D'Arcy, Pádraig; Caulfield, Thomas R.; Paulus, Aneel; Chitta, Kasyapa; Mohanty, Chitralekha; Gullbo, Joachim; Chanan-Khan, Asher; Linder, Stig

    2016-01-01

    The ubiquitin–proteasome system (UPS) is increasingly recognized as a therapeutic target for the development of anticancer therapies. The success of the 20S proteasome core particle (20S CP) inhibitor bortezomib in the clinical management of multiple myeloma has raised the possibility of identifying other UPS components for therapeutic intervention. We previously identified the small molecule b-AP15 as an inhibitor of 19S proteasome deubiquitinase (DUB) activity. Building upon our previous data, we performed a structure–activity relationship (SAR) study on b-AP15 and identified VLX1570 as an analog with promising properties, including enhanced potency and improved solubility in aqueous solution. In silico modeling was consistent with interaction of VLX1570 with key cysteine residues located at the active sites of the proteasome DUBs USP14 and UCHL5. VLX1570 was found to inhibit proteasome deubiquitinase activity in vitro in a manner consistent with competitive inhibition. Furthermore, using active-site-directed probes, VLX1570 also inhibited proteasome DUB activity in exposed cells. Importantly, VLX1570 did not show inhibitory activity on a panel of recombinant non-proteasome DUBs, on recombinant kinases, or on caspase-3 activity, suggesting that VLX1570 is not an overtly reactive general enzyme inhibitor. Taken together, our data shows the chemical and biological properties of VLX1570 as an optimized proteasome DUB inhibitor. PMID:25854145

  2. Systematic comparisons between PRISM version 1.0.0, BAP, and CSMIP ground-motion processing

    USGS Publications Warehouse

    Kalkan, Erol; Stephens, Christopher

    2017-02-23

    A series of benchmark tests was run by comparing results of the Processing and Review Interface for Strong Motion data (PRISM) software version 1.0.0 to Basic Strong-Motion Accelerogram Processing Software (BAP; Converse and Brady, 1992), and to California Strong Motion Instrumentation Program (CSMIP) processing (Shakal and others, 2003, 2004). These tests were performed by using the MatLAB implementation of PRISM, which is equivalent to its public release version in Java language. Systematic comparisons were made in time and frequency domains of records processed in PRISM and BAP, and in CSMIP, by using a set of representative input motions with varying resolutions, frequency content, and amplitudes. Although the details of strong-motion records vary among the processing procedures, there are only minor differences among the waveforms for each component and within the frequency passband common to these procedures. A comprehensive statistical evaluation considering more than 1,800 ground-motion components demonstrates that differences in peak amplitudes of acceleration, velocity, and displacement time series obtained from PRISM and CSMIP processing are equal to or less than 4 percent for 99 percent of the data, and equal to or less than 2 percent for 96 percent of the data. Other statistical measures, including the Euclidian distance (L2 norm) and the windowed root mean square level of processed time series, also indicate that both processing schemes produce statistically similar products.

  3. Preliminary structural studies on the leucine-zipper homology region of the human protein Bap31

    SciTech Connect

    Mukasa, Takashi; Santelli, Eugenio; Reed, John C.; Pascual, Jaime

    2007-04-01

    A leucine-zipper with properties as apoptotic regulator in the ER has been crystallized. X-ray data to 2.5 Å resolution were collected, molecular replacement solutions were identified and refinement has been started. B-cell receptor-associated protein 31 (Bap31) is an integral membrane protein located in the endoplasmic reticulum (ER) that participates in the transport and quality control of membrane proteins and plays a role in determining cell sensitivity to ER stress and apoptosis. Its cytoplasmic region contains two target sites for caspase cleavage in certain apoptotic pathways. Here, the subcloning, expression, purification and crystallization of the Homo sapiens Bap31 leucine-zipper C-terminal fragment, which spans residues Gly160–Glu246, are reported. An N-terminally His-tagged protein was overexpressed in Escherichia coli and purified by chromatographic methods. X-ray diffraction data were collected in-house to 2.5 Å resolution. Crystals belong to space group P6{sub 1}22/P6{sub 5}22, with unit-cell parameters a = b = 70.7, c = 80.6 Å. Data analysis indicates the presence of one molecule per asymmetric unit.

  4. Nitrogen is a deep acceptor in ZnO

    SciTech Connect

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence band relative to the vacuum level.

  5. Nitrogen is a deep acceptor in ZnO

    DOE PAGES

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  6. Ion-pair mediated transport of small model peptides in liquid phase micro extraction under acidic conditions.

    PubMed

    Reubsaet, J Léon E; Paulsen, Jonas V

    2005-02-01

    This paper discusses the behaviour of five small model peptides in a three phase (aqueous donor-organic-aqueous acceptor) liquid phase micro extraction system in relation to their physico-chemical properties (charge, hydrophobicity). It is proved that for all peptides transport over the organic phase is mediated by aliphatic sulphonic acids. Heptane-1-sulphonic acid gave the best overall recoveries. It appeared that peptides with hydrophobic properties (IPI) and a high number of positive charges (KYK) show good recoveries and are enriched in the acceptor phase. Variation in the pH (1.6-4.4) of the donor phase shows that there are peptide-dependent optimal pH-values for their recovery. Increasing pH in the acceptor phase shows that in most cases the recovery decreases due to decreased ion-pair mediated membrane transport. For KYK the partition between the organic phase and the aqueous acceptor-phase is also driven by the solubility in the aqueous acceptor phase. Increase of the ion strength of the acceptor phase did not affect the recovery of the peptides. Except for KYK, which showed decreased recovery when the ion strength increased. Another finding is that delocalisation of positive charge causes bad recovery, probably due to incomplete ion-pair-peptide complex formation.

  7. Fullerene-bisadduct acceptors for polymer solar cells.

    PubMed

    Li, Yongfang

    2013-10-01

    Polymer solar cells (PSCs) have drawn great attention in recent years for their simple device structure, light weight, and low-cost fabrication in comparison with inorganic semiconductor solar cells. However, the power-conversion efficiency (PCE) of PSCs needs to be increased for their future application. The key issue for improving the PCE of PSCs is the design and synthesis of high-efficiency conjugated polymer donors and fullerene acceptors for the photovoltaic materials. For the acceptor materials, several fullerene-bisadduct acceptors with high LUMO energy levels have demonstrated excellent photovoltaic performance in PSCs with P3HT as a donor. In this Focus Review, recent progress in high-efficiency fullerene-bisadduct acceptors is discussed, including the bisadduct of PCBM, indene-C60 bisadduct (ICBA), indene-C70 bisadduct (IC70BA), DMPCBA, NCBA, and bisTOQC. The LUMO levels and photovoltaic performance of these bisadduct acceptors with P3HT as a donor are summarized and compared. In addition, the applications of an ICBA acceptor in new device structures and with other conjugated polymer donors than P3HT are also introduced and discussed.

  8. Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2.

    PubMed

    Usami, Yuki; Uemura, Satsohi; Mochizuki, Takahiro; Morita, Asami; Shishido, Fumi; Inokuchi, Jin-ichi; Abe, Fumiyoshi

    2014-07-01

    Leucine is a major amino acid in nutrients and proteins and is also an important precursor of higher alcohols during brewing. In Saccharomyces cerevisiae, leucine uptake is mediated by multiple amino acid permeases, including the high-affinity leucine permease Bap2. Although BAP2 transcription has been extensively analyzed, the mechanisms by which a substrate is recognized and moves through the permease remain unknown. Recently, we determined 15 amino acid residues required for Tat2-mediated tryptophan import. Here we introduced homologous mutations into Bap2 amino acid residues and showed that 7 residues played a role in leucine import. Residues I109/G110/T111 and E305 were located within the putative α-helix break in TMD1 and TMD6, respectively, according to the structurally homologous Escherichia coli arginine/agmatine antiporter AdiC. Upon leucine binding, these α-helix breaks were assumed to mediate a conformational transition in Bap2 from an outward-open to a substrate-binding occluded state. Residues Y336 (TMD7) and Y181 (TMD3) were located near I109 and E305, respectively. Bap2-mediated leucine import was inhibited by some amino acids according to the following order of severity: phenylalanine, leucine>isoleucine>methionine, tyrosine>valine>tryptophan; histidine and asparagine had no effect. Moreover, this order of severity clearly coincided with the logP values (octanol-water partition coefficients) of all amino acids except tryptophan. This result suggests that the substrate partition efficiency to the buried Bap2 binding pocket is the primary determinant of substrate specificity rather than structural amino acid side chain recognition.

  9. B(a)P adduct levels and fertility: A cross‑sectional study in a Sicilian population.

    PubMed

    Oliveri Conti, Gea; Calogero, Aldo Eugenio; Giacone, Filippo; Fiore, Maria; Barchitta, Martina; Agodi, Antonella; Ferrante, Margherita

    2017-03-27

    Benzo(a)pyrene (BaP) is a carcinogenic polycyclic aromatic hydrocarbon for human tissues. Still today it is not fully investigated if BaP can affect negatively the male fertility through the BaP‑DNA adducts production. In the present study, BaP Tetrol I‑1 (TI‑1) and BaP Tetrol II‑2 (TII‑2) BaP‑DNA adducts were investigated in spermatozoa of a Sicilian male population. Semen samples from 86 volunteers in two eastern Sicilian cities (Regalbuto and Melilli) were collected. The quality of semen was evaluated in all samples according to the World Health Organization (WHO) guidelines. We analyzed BaP‑DNA adducts in extracted sperm cell DNA using the modified high‑performance liquid chromatography‑fluorescence method to detects both Tetrols. Differences between Tetrol levels were assessed by the Wilcoxon signed‑rank test and the Mann‑Whitney U test, as appropriate. Correlation between semen quality parameters and Tetrol concentrations were analyzed using the Spearman's correlation coefficient. Σ(TI‑1+TII‑2) were significantly higher in spermatozoa of volunteers from Regalbuto. Furthermore, a greater dispersion of the levels of adducts was observed in these specimens. TI‑1 adducts were higher than TII‑2 in Melilli samples (95% CI) and TII‑2 were higher than TI‑1 in Regalbuto semen samples (95% CI). A significant inverse correlation between sperm progressive motility and both TI‑1 and TII‑2 adducts was observed. The present study showed that BaP negatively affects male fertility by TI‑1 and TII‑2 DNA‑adduct production. These results suggest that DNA adducts could be used as biomarker to assess BaP exposure by air pollution. Further studies are needed to confirm if these findings could affect male fertility because of the growing impairment of this function observed in recent years.

  10. The B.A.P. PACOCHA (SS-48) Collision: The Escape and Medical Recompression Treatment of Survivors

    DTIC Science & Technology

    1989-03-30

    eqxivalent. The air flow is independent of the volume of the compartment, and assumes good mixing. A few calculations show: 54 + 33 x 2 x 22 - 116...scfm - Air flow required for 2 scfm/man 54 + 33 x 4 x 22 - 232 scfm - Air flow required for 4 scfm/man No figures are available for the manifolu...406), sister ship of PACOCEA B.A.P. DOS DE RAYO initial sub sent to search B.A.P. ABTAO, connected to supply salvage air to PACOCHA KIOWA MARU, 412 ton

  11. The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors

    PubMed Central

    Vogel, Steven S.; Nguyen, Tuan A.; van der Meer, B. Wieb; Blank, Paul S.

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states. PMID:23152925

  12. 18F-Labeled Silicon-Based Fluoride Acceptors: Potential Opportunities for Novel Positron Emitting Radiopharmaceuticals

    PubMed Central

    Bernard-Gauthier, Vadim; Wängler, Carmen; Wängler, Bjoern; Schirrmacher, Ralf

    2014-01-01

    Background. Over the recent years, radiopharmaceutical chemistry has experienced a wide variety of innovative pushes towards finding both novel and unconventional radiochemical methods to introduce fluorine-18 into radiotracers for positron emission tomography (PET). These “nonclassical” labeling methodologies based on silicon-, boron-, and aluminium-18F chemistry deviate from commonplace bonding of an [18F]fluorine atom (18F) to either an aliphatic or aromatic carbon atom. One method in particular, the silicon-fluoride-acceptor isotopic exchange (SiFA-IE) approach, invalidates a dogma in radiochemistry that has been widely accepted for many years: the inability to obtain radiopharmaceuticals of high specific activity (SA) via simple IE. Methodology. The most advantageous feature of IE labeling in general is that labeling precursor and labeled radiotracer are chemically identical, eliminating the need to separate the radiotracer from its precursor. SiFA-IE chemistry proceeds in dipolar aprotic solvents at room temperature and below, entirely avoiding the formation of radioactive side products during the IE. Scope of Review. A great plethora of different SiFA species have been reported in the literature ranging from small prosthetic groups and other compounds of low molecular weight to labeled peptides and most recently affibody molecules. Conclusions. The literature over the last years (from 2006 to 2014) shows unambiguously that SiFA-IE and other silicon-based fluoride acceptor strategies relying on 18F− leaving group substitutions have the potential to become a valuable addition to radiochemistry. PMID:25157357

  13. BAP1 immunohistochemistry and p16 FISH results in combination provide higher confidence in malignant pleural mesothelioma diagnosis: ROC analysis of the two tests.

    PubMed

    Hida, Tomoyuki; Hamasaki, Makoto; Matsumoto, Shinji; Sato, Ayuko; Tsujimura, Tohru; Kawahara, Kunimitsu; Iwasaki, Akinori; Okamoto, Tatsuro; Oda, Yoshinao; Honda, Hiroshi; Nabeshima, Kazuki

    2016-10-01

    Differentiation of malignant pleural mesothelioma (MPM) from benign mesothelial proliferation remains problematic. Loss of nuclear staining of BRCA1-associated protein 1 (BAP1; detected using immunohistochemistry (IHC)) and homozygous deletion (HD) of p16 (detected using fluorescence in situ hybridization (FISH)) are useful for differentiation of MPM from reactive mesothelial hyperplasia (RMH), but the correlation between BAP1 expression loss and p16 HD has not been fully described. We performed BAP1 IHC and p16-specific FISH for 40 MPM and 20 RMH cases, and measured proportions of cells showing BAP1 expression and p16 HD for each case. The diagnostic accuracy for MPM and the cut-off values of the two methods were assessed using receiver operating characteristic (ROC) analysis. BAP1 expression loss, p16 HD and coexistence of both were present in 27 (67.5 %), 27 (67.5 %) and 17 (42.5 %) MPM cases, respectively. Three MPM cases (7.5 %) and all 20 RMH cases had neither BAP1 loss nor p16 HD. There was no correlation between the results of the two methods. Their combination showed higher sensitivity (92.5 %, 37/40) and estimated probability than BAP1 IHC and p16-specific FISH used alone. BAP1 IHC and p16-specific FISH have independent diagnostic value, and have increased reliability when used in combination, for MPM diagnosis.

  14. Bcl-XL cooperatively associates with the Bap31 complex in the endoplasmic reticulum, dependent on procaspase-8 and Ced-4 adaptor.

    PubMed

    Ng, F W; Shore, G C

    1998-02-06

    Bap31 is a polytopic integral membrane protein of the endoplasmic reticulum and forms a complex with Bcl-2/Bcl-XL and procaspase-8 (Ng, F. W. H., Nguyen, M., Kwan, T., Branton, P. E., Nicholson, W. D., Cromlish, J. A., and Shore, G. C. (1997) J. Cell Biol. 139, 327-338). In co-transfected human cells, procaspase-8 is capable of interacting with Ced-4, an important adaptor molecule in Caenorhabditis elegans that binds to and activates the C. elegans procaspase, proCed-3. Here, we show that the predicted death effector homology domain within the cytosolic region of Bap31 interacts with Ced-4 and contributes to recruitment of procaspase-8. Bcl-XL, which binds directly but weakly to the polytopic transmembrane region of Bap31, indirectly and cooperatively associates with the Bap31 cytosolic domain, dependent on the presence of procaspase-8 and Ced-4. Ced-4Deltac does not interact with Bcl-XL but rather displaces it from Bap31, suggesting that an endogenous Ced-4-like adaptor is a normal constituent of the Bap31 complex and is required for stable association of Bcl-XL with Bap31 in vivo. These findings indicate that Bap31 is capable of recruiting essential components of a core death regulatory machinery.

  15. Immunological evaluation of OMV(PagL)+Bap(1-487aa) and AbOmpA(8-346aa)+Bap(1-487aa) as vaccine candidates against Acinetobacter baumannii sepsis infection.

    PubMed

    Badmasti, Farzad; Ajdary, Soheila; Bouzari, Saeid; Fooladi, Abbas Ali Imani; Shahcheraghi, Fereshteh; Siadat, Seyed Davar

    2015-10-01

    Acinetobacter baumannii is an important nosocomial pathogen that causes a high morbidity and mortality rate in infected patients with sepsis form. The surface exposed virulence proteins and serum resistance factors helping to dissemination of this bacterium to bloodstream are the most promising vaccine candidates against this microorganism. In this project we immunologically evaluated OMV(PagL)+Bap(1-487aa) and AbOmpA (8-346aa)+Bap(1-487aa) as combination forms as well as Bap(1-487aa), AbOmpA(8-346aa) and OMV(PagL) singly, with addition of alum adjuvant as vaccine candidates. The titers of total IgG, IgG1 and IgG2c as well as concentration of IL-4 and IFN-γ and survival rates were measured in a C57BL/6 murine model with disseminated sepsis. The ratio of IgG1/IgG2c and profile of IL-4/IFN-γ in OMV (PagL)+Bap (1-487aa) formulation shows the humoral and cellular immune responses have been induced robustly and have created a full protection against A. baumannii ATCC 19606 and MDR AB-44 strains. We found that the two combination vaccine candidates were protective and induced both Th1 and Th2 responses.

  16. alpha-Chymotrypsin as the catalyst for peptide synthesis.

    PubMed Central

    Morihara, K; Oka, T

    1977-01-01

    alpha-Chymotrypsin (EC 3.4.21.1)-catalysed syntheses of peptides were performed with various N-acylated amino acid or peptide esters as donors, and amino acid derivatives, peptides or their derivatives as acceptors. Under optimal conditions the synthesis was almost quantitative. As acceptor nucleophiles, free amino acids or the ester derivatives were inadequate, but amino acid amides or hydrazides, di- or tri-peptides, or the amides, hydrazides and esters of the peptides were useful. The nucleophile specificity for synthesis was markedly similar to the leaving-group specificity in hydrolysis; hydrophobic or bulky amino acid residues were most effecient at both P1' and P2' positions [notation of Schechter & Berger (1967) Biochem. Biophys. Res. Commun. 27, 157-162], but L-proline as well as D-amino acid residues were the worst choices. The synthesis was further dependent on the solubility of the products synthesized; a higher yield of products was expected with lower solubility. As donor esters, good substrates were all useful. Accordingly, fragment condensation was possible by using N-acylated peptide esters and various peptides. The present study suggested that alpha-chymotrypsin may become a useful tool for peptide synthesis. PMID:880216

  17. Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment of L. monocytogenes but is absent from many field isolates.

    PubMed

    Jordan, Suzanne J; Perni, Stefano; Glenn, Sarah; Fernandes, Isabel; Barbosa, Manuela; Sol, Manuela; Tenreiro, Rogerio P; Chambel, Lelia; Barata, Belarmino; Zilhao, Isabel; Aldsworth, Timothy G; Adriao, Andreia; Faleiro, M Leonor; Shama, Gilbert; Andrew, Peter W

    2008-09-01

    Listeria monocytogenes is a food-borne pathogen capable of adhering to a range of surfaces utilized within the food industry, including stainless steel. The factors required for the attachment of this ubiquitous organism to abiotic surfaces are still relatively unknown. In silico analysis of the L. monocytogenes EGD genome identified a putative cell wall-anchored protein (Lmo0435 [BapL]), which had similarity to proteins involved in biofilm formation by staphylococci. An insertion mutation was constructed in L. monocytogenes to determine the influence of this protein on attachment to abiotic surfaces. The results show that the protein may contribute to the surface adherence of strains that possess BapL, but it is not an essential requirement for all L. monocytogenes strains. Several BapL-negative field isolates demonstrated an ability to adhere to abiotic surfaces equivalent to that of BapL-positive strains. BapL is not required for the virulence of L. monocytogenes in mice.

  18. Designer Metallic Acceptor-Containing Halogen Bonding: General Strategies.

    PubMed

    Zhang, Xinxing; Bowen, Kit H

    2017-03-13

    Being electrostatic interactions in nature, hydrogen bonding (HB) and halogen bonding (XB) are considered to be two parallel worlds. In principle, all the applications that HB has could also be applied to XB. However, there has been no report on a metallic XB acceptor but metal anions have been observed to be good HB acceptors. This missing mosaic piece of XB is because common metal anions are reactive for XB donors. In view of this, we propose two strategies for designing metallic acceptor-containing XB using ab initio calculations. The first one is to utilize a metal cluster anion with a high electron detachment energy, such as the superatom, Al13- as the XB acceptor. The second strategy is to design a ligand passivated/protected metal core while it still can maintain the negative charge; several exotic clusters, such as PtH5-, PtZnH5- and PtMgH5-, are utilized as examples. Based on these two strategies, we anticipate that more metallic acceptor-containing XB will be discovered.

  19. Electron acceptor-dependent respiratory and physiological stratifications in biofilms.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Sun, Guoping; Wu, Wei-Min; Xu, Meiying

    2015-01-06

    Bacterial respiration is an essential driving force in biogeochemical cycling and bioremediation processes. Electron acceptors respired by bacteria often have solid and soluble forms that typically coexist in the environment. It is important to understand how sessile bacteria attached to solid electron acceptors respond to ambient soluble alternative electron acceptors. Microbial fuel cells (MFCs) provide a useful tool to investigate this interaction. In MFCs with Shewanella decolorationis, azo dye was used as an alternative electron acceptor in the anode chamber. Different respiration patterns were observed for biofilm and planktonic cells, with planktonic cells preferred to respire with azo dye while biofilm cells respired with both the anode and azo dye. The additional azo respiration dissipated the proton accumulation within the anode biofilm. There was a large redox potential gap between the biofilms and anode surface. Changing cathodic conditions caused immediate effects on the anode potential but not on the biofilm potential. Biofilm viability showed an inverse and respiration-dependent profile when respiring with only the anode or azo dye and was enhanced when respiring with both simultaneously. These results provide new insights into the bacterial respiration strategies in environments containing multiple electron acceptors and support an electron-hopping mechanism within Shewanella electrode-respiring biofilms.

  20. An asbestos-exposed family with multiple cases of pleural malignant mesothelioma without inheritance of a predisposing BAP1 mutation.

    PubMed

    Cheung, Mitchell; Kadariya, Yuwaraj; Pei, Jianming; Talarchek, Jacqueline; Facciolo, Francesco; Visca, Paolo; Righi, Luisella; Cozzi, Ilaria; Testa, Joseph R; Ascoli, Valeria

    2015-10-01

    We report a family with domestic exposure to asbestos and diagnosis of multiple cancers, including eight pleural malignant mesotheliomas and several other lung or pleural tumors. DNA sequence analysis revealed no evidence for an inherited mutation of BAP1. Sequence analysis of other potentially relevant genes, including TP53, CDKN2A, and BARD1, also revealed no mutation. DNA microarray analysis of tissue from two mesotheliomas revealed multiple genomic imbalances, including consistent losses of overlapping segments in 2q, 6q, 9p, 14q, 15q, and 22q, but no losses of chromosome 3 harboring the BAP1 locus. However, the results of immunohistochemical analysis demonstrated loss of nuclear BAP1 staining in three of six mesotheliomas tested, suggesting that somatic alterations of BAP1 occurred in a subset of tumors from this family. Since mesothelioma could be confirmed in only a single generation, domestic exposure to asbestos may be the predominant cause of mesothelioma in this family. Given the existence of unspecified malignant pleural tumors and lung cancers in a prior generation, we discuss the possibility that some other tumor susceptibility or modifier gene(s) may contribute to the high incidence of mesothelioma in this family. Because the incidence of mesothelioma in this family is higher than that expected even in workers heavily exposed to asbestos, we conclude that both asbestos exposure and genetic factors have played a role in the high rate of mesothelioma and potentially other pleural or lung cancers seen in this family. 

  1. Computer program design specifications for the Balloon-borne Ultraviolet Stellar Spectrometer (BUSS) science data decommutation program (BAPS48)

    NASA Technical Reports Server (NTRS)

    Rodriguez, R. M.

    1975-01-01

    The Balloon-Borne Ultraviolet Stellar Spectrometer (BUSS) Science Data Docummutation Program (BAPS48) is a pulse code modulation docummutation program that will format the BUSS science data contained on a one inch PCM tracking tape into a seven track serial bit stream formatted digital tape.

  2. Persistence of Multidrug-Resistant Acinetobacter baumannii Isolates Harboring blaOXA-23 and bap for 5 Years.

    PubMed

    Sung, Ji Youn; Koo, Sun Hoe; Kim, Semi; Kwon, Gye Cheol

    2016-08-28

    The emergence and dissemination of carbapenemase-producing Acinetobacter baumannii isolates have been reported worldwide, and A. baumannii isolates harboring blaOXA-23 are often resistant to various antimicrobial agents. Antimicrobial resistance can be particularly strong for biofilm-forming A. baumannii isolates. We investigated the genetic basis for carbapenem resistance and biofilm-forming ability of multidrug-resistant (MDR) clinical isolates. Ninety-two MDR A. baumannii isolates were collected from one university hospital located in the Chungcheong area of Korea over a 5-year period. Multiplex PCR and DNA sequencing were performed to characterize carbapenemase and bap genes. Clonal characteristics were analyzed using REP-PCR. In addition, imaging and quantification of biofilms were performed using a crystal violet assay. All 92 MDR A. baumannii isolates involved in our study contained the blaOXA-23 and bap genes. The average absorbance of biomass in Bap-producing strains was much greater than that in non-Bap-producing strains. In our study, only three REP-PCR types were found, and the isolates showing type A or type B were found more than 60 times among unique patients during the 5 years of surveillance. These results suggest that the isolates have persisted and colonized for 5 years, and biofilm formation ability has been responsible for their persistence and colonization.

  3. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    SciTech Connect

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  4. An overview of molecular acceptors for organic solar cells

    NASA Astrophysics Data System (ADS)

    Hudhomme, Piétrick

    2013-07-01

    Organic solar cells (OSCs) have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  5. Electron acceptor taxis and blue light effect on bacterial chemotaxis.

    PubMed

    Taylor, B L; Miller, J B; Warrick, H M; Koshland, D E

    1979-11-01

    Salmonella typhimurium and Escherichia coli from anaerobic cultures displayed tactic responses to gradients of nitrate, fumarate, and oxygen when the appropriate electron transport pathway was present. Such responses were named "electron acceptor taxis" because they are elicited by terminal electron acceptors. Mutant strains of S. typhimurium and E. coli were used to establish that functioning electron transport pathways to nitrate and fumarate are required for taxis to these compounds. Aerotaxis in S. typhimurium was blocked by 1.0 mM KCN, which inhibited oxygen uptake. Similarly, a functioning electron transport pathway was shown to be essential for the tumbling response of S. typhimurium and E. coli to intense light (290 to 530 nm). Some inhibitors and uncouplers of respiration were repellents of S. typhimurium. We propose that behavioral responses to light or electron acceptors involve electron transport-mediated perturbations of the proton motive force.

  6. Gut inflammation provides a respiratory electron acceptor for Salmonella

    PubMed Central

    Winter, Sebastian E.; Thiennimitr, Parameth; Winter, Maria G.; Butler, Brian P.; Huseby, Douglas L.; Crawford, Robert W.; Russell, Joseph M.; Bevins, Charles L.; Adams, L. Garry; Tsolis, Renée M.; Roth, John R.; Bäumler, Andreas J.

    2010-01-01

    Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation reacted with endogenous, luminal sulphur compounds (thiosulfate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to utilize tetrathionate as an electron acceptor produced a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus, the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen. PMID:20864996

  7. Acceptor specificity in the transglycosylation reaction using Endo-M.

    PubMed

    Tomabechi, Yusuke; Odate, Yuki; Izumi, Ryuko; Haneda, Katsuji; Inazu, Toshiyuki

    2010-11-22

    To determine the structural specificity of the glycosyl acceptor of the transglycosylation reaction using endo-β-N-acetylglucosaminidase (ENGase) (EC 3.2.1.96) from Mucor hiemalis (Endo-M), several acceptor derivatives were designed and synthesized. The narrow regions of the 1,3-diol structure from the 4- to 6-hydroxy functions of GlcNAc were found to be essential for the transglycosylation reaction using Endo-M. Furthermore, it was determined that Endo-M strictly recognizes a 1,3-diol structure consisting of primary and secondary hydroxyl groups.

  8. Donor-acceptor chemistry in the main group.

    PubMed

    Rivard, Eric

    2014-06-21

    This Perspective article summarizes recent progress from our laboratory in the isolation of reactive main group species using a general donor-acceptor protocol. A highlight of this program is the use of carbon-based donors in combination with suitable Lewis acidic acceptors to yield stable complexes of parent Group 14 element hydrides (e.g. GeH2 and H2SiGeH2). It is anticipated that this strategy could be extended to include new synthetic targets from throughout the Periodic Table with possible applications in bottom-up materials synthesis and main group element catalysis envisioned.

  9. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  10. Inference on germline BAP1 mutations and asbestos exposure from the analysis of familial and sporadic mesothelioma in a high-risk area.

    PubMed

    Betti, Marta; Casalone, Elisabetta; Ferrante, Daniela; Romanelli, Antonio; Grosso, Federica; Guarrera, Simonetta; Righi, Luisella; Vatrano, Simona; Pelosi, Giuseppe; Libener, Roberta; Mirabelli, Dario; Boldorini, Renzo; Casadio, Caterina; Papotti, Mauro; Matullo, Giuseppe; Magnani, Corrado; Dianzani, Irma

    2015-01-01

    Inherited loss-of-function mutations in the BAP1 oncosuppressor gene are responsible for an inherited syndrome with predisposition to malignant mesothelioma (MM), uveal and keratinocytic melanoma, and other malignancies. Germline mutations that were inherited in an autosomal dominant fashion were identified in nine families with multiplex MM cases and 25 families with multiple melanoma, renal cell carcinoma, and other tumors. Germline mutations were also identified in sporadic MM cases, suggesting that germline mutations in BAP1 occur frequently. In this article, we report the analysis of BAP1 in five multiplex MM families and in 103 sporadic cases of MM. One family carried a new truncating germline mutation. Using immunohistochemistry, we show that BAP1 is not expressed in tumor tissue, which is in accordance with Knudson's two hits hypothesis. Interestingly, whereas the three individuals who were possibly exposed to asbestos developed MM, the individual who was not exposed developed a different tumor type, that is, mucoepidermoid carcinoma. This finding suggests that the type of carcinogen exposure may be important for the cancer type that is developed by mutation carriers. On the contrary, the other families or the 103 sporadic patients did not show germline mutations in BAP1. Our data show that BAP1 mutations are very rare in patients with sporadic MM, and we report a new BAP1 mutation, extend the cancer types associated with these mutations, and suggest the existence of other yet unknown genes in the pathogenesis of familial MM.

  11. Evaluation of anti-cancer and anti-oxidative potential of Syzygium Cumini against benzo[a]pyrene (BaP) induced gastric carcinogenesis in mice.

    PubMed

    Goyal, P K; Verma, Preeti; Sharma, Priyanka; Parmar, Jyoti; Agarwal, Annapurna

    2010-01-01

    Syzygium cummini extract (SCE) was used in the present study to explore anti-tumor promoting activity in a stomach carcinogenesis model in mice. For this purpose, Swiss albino mice were administered with 1 mg of benzo-a-pyrene (BaP) in 100?l sesame oil by oral gavage twice a week for 4 consecutive weeks. The animals were sacrificed 14 weeks after the last administration of BaP. Oral administration of the extract to pre-treated (i.e. SCE as 25mg/kg b. wt./ day before BaP application for 2 weeks), post-treated (i.e. SCE after BaP application for 8 weeks) and pre-post treated (i.e. SCE for 2 weeks before treatment of BaP followed by the concomitant treatment with SCE and BaP for 4 weeks during and 2 weeks after the last dose of BaP) groups provided a significant reduction in tumor incidence, tumor burden and cumulative number of gastric carcinomas along with a significant elevation of phase II detoxifying enzymes, and inhibition of lipid per oxidation in the stomach. Thus, the present data suggest that the Syzygium cummini extract has anti-tumor and anti-oxidative potential against chemical induced stomach carcinogenesis.

  12. Loss of BAP1 expression is very rare in peritoneal and gynecologic serous adenocarcinomas and can be useful in the differential diagnosis with abdominal mesothelioma.

    PubMed

    Andrici, Juliana; Jung, Jason; Sheen, Amy; D'Urso, Lisa; Sioson, Loretta; Pickett, Justine; Parkhill, Thomas R; Verdonk, Brandon; Wardell, Kathryn L; Singh, Arjun; Clarkson, Adele; Watson, Nicole; Toon, Christopher W; Gill, Anthony J

    2016-05-01

    Gynecologic and primary peritoneal serous carcinoma may be difficult to distinguish from abdominal mesotheliomas clinically, morphologically, and immunohistochemically. BAP1 double-hit inactivation and subsequent loss of protein expression have been reported in more than half of all abdominal mesotheliomas. We therefore sought to investigate the expression of BAP1 in serous carcinoma and explore its potential utility as a marker in the differential diagnosis with mesothelioma. We searched the computerized database of the Department of Anatomical Pathology, Royal North Shore Hospital, Australia, for all cases of gynecologic and peritoneal serous carcinomas and mesotheliomas diagnosed between 1998 and 2014. Immunohistochemistry for BAP1 was then performed on tissue microarray sections. Cases with completely absent nuclear staining in the presence of a positive internal control in nonneoplastic cells were considered negative. If staining was equivocal (eg, absent nuclear staining but no internal control), staining was repeated on whole sections. Loss of BAP1 expression was found in only 1 of 395 (0.3%) serous carcinomas but in 6 of 9 (67%) abdominal mesotheliomas (P < .001) and 131 of 277 (47%) thoracic mesotheliomas (P < .001). We conclude that BAP1 loss occurs extremely infrequently in gynecologic and peritoneal serous adenocarcinomas, whereas it is very common in mesotheliomas including abdominal mesothelioma. Therefore, although positive staining for BAP1 cannot be used to exclude a diagnosis of mesothelioma, loss of BAP1 expression can be used to very strongly support a pathological diagnosis of abdominal mesothelioma over serous carcinoma.

  13. Three Redox States of a Diradical Acceptor-Donor-Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization.

    PubMed

    Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume

    2016-06-16

    The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations.

  14. Epitope Mapping of Antibodies Suggests the Novel Membrane Topology of B-Cell Receptor Associated Protein 31 on the Cell Surface of Embryonic Stem Cells: The Novel Membrane Topology of BAP31.

    PubMed

    Kim, Won-Tae; Choi, Hong Seo; Hwang, Hyo Jeong; Jung, Han-Sung; Ryu, Chun Jeih

    2015-01-01

    When located in the endoplasmic reticulum (ER) membrane, B-cell receptor associated protein 31 (BAP31) is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs), 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs), but not to surface molecules on mouse embryonic stem cells (mESCs). Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (α-BAP31). We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C- terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208-217, while α-BAP31 recognized C-terminal residues 165-246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody α-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies.

  15. Epitope Mapping of Antibodies Suggests the Novel Membrane Topology of B-Cell Receptor Associated Protein 31 on the Cell Surface of Embryonic Stem Cells: The Novel Membrane Topology of BAP31

    PubMed Central

    Kim, Won-Tae; Choi, Hong Seo; Hwang, Hyo Jeong; Jung, Han-Sung; Ryu, Chun Jeih

    2015-01-01

    When located in the endoplasmic reticulum (ER) membrane, B-cell receptor associated protein 31 (BAP31) is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs), 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs), but not to surface molecules on mouse embryonic stem cells (mESCs). Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (α-BAP31). We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C- terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208–217, while α-BAP31 recognized C-terminal residues 165–246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody α-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies. PMID:26102500

  16. Electron Acceptor-Electron Donor Interactions. XV and XVI.

    DTIC Science & Technology

    mixtures exhibit simple eutectic phase diagrams and the thermochromic effect is interpreted as a randomized structure in the liquid , whereas the solid is a...two-phase aggregate of isolated acceptor and onor crystals . The charge-transfer spectra of solutions of tungsten and molybdenum hexafluorides and iodine heptafluoride in n-hexane and cyclohexane were obtained.

  17. Poly(trifluoromethyl)azulenes: structures and acceptor properties.

    PubMed

    Clikeman, Tyler T; Bukovsky, Eric V; Kuvychko, Igor V; San, Long K; Deng, Shihu H M; Wang, Xue-Bin; Chen, Yu-Sheng; Strauss, Steven H; Boltalina, Olga V

    2014-06-14

    Six new poly(trifluoromethyl)azulenes prepared in a single high-temperature reaction exhibit strong electron accepting properties in the gas phase and in solution and demonstrate the propensity to form regular π-stacked columns in donor-acceptor crystals when mixed with pyrene as a donor.

  18. Evaluation of the Influence of Amino Acid Composition on the Propensity for Collision-Induced Dissociation of Model Peptides Using Molecular Dynamics Simulations

    SciTech Connect

    Cannon, William R.; Taasevigen, Danny J.; Baxter, Douglas J.; Laskin, Julia

    2007-09-01

    The dynamical behavior of model peptides was evaluated with respect to their ability to form internal proton donor-acceptor pairs using molecular dynamics simulations. The proton donor-acceptor pairs are postulated to be prerequisites for peptide bond cleavage resulting in formation of b and y ions during low energy collision-induced dissociation in tandem mass spectrometry (MS/MS). The simulations for the polyalanine pentamer Ala5H+ were compared to experimental data from collision energy-resolved surface induced dissociation (SID) studies. The results of the simulation are insightful into the events that likely lead up to the fragmentation of peptides. 9-mer polyalanine-based model peptides were used to examine the dynamical effect of each of the 20 common amino acids on the probability to form donor-acceptor pairs at labile peptide bonds. A continuous range of probabilities was observed as a function of the substituted amino acid. However, the location of the peptide bond involved in the donor-acceptor pair plays a critical role in the dynamical behavior. This influence of position on the probability of forming a donor-acceptor pair would be hard to predict from statistical analyses on experimental spectra of aggregate, diverse peptides. In addition, the inclusion of basic side chains in the model peptides alters the probability of forming donor-acceptor pairs across the entire backbone. In this case there are still more ionizing protons than basic residues, but the side chains of the basic amino acids form stable hydrogen bond networks with the peptide carbonyl oxygens and thus act to prevent free access of “mobile protons” to labile peptide bonds. It is clear from the work that the identification of peptides from low-energy CID using automated computational methods should consider the location of the fragmenting bond as well as the amino acid composition.

  19. Development of imide- and imidazole-containing electron acceptors for use in donor-acceptor conjugated compounds and polymers

    NASA Astrophysics Data System (ADS)

    Li, Duo

    Conjugated organic compounds and polymers have attracted significant attention due to their potential application in electronic devices as semiconducting materials, such as organic solar cells (OSCs). In order to tune band gaps, donor-acceptor (D-A) structure is widely used, which has been proved to be one of the most effective strategies. This thesis consists of three parts: 1) design, syntheses and characterization of new weak acceptors based on imides and the systematic study of the structure-property relationship; (2) introduction of weak and strong acceptors in one polymer to achieve a broad coverage of light absorption and improve the power conversion efficiency (PCE); (3) modification of benzothiadiazole (BT) acceptor in order to increase the electron withdrawing ability. Imide-based electron acceptors, 4-(5-bromothiophen-2-y1)-2-(2-ethylhexyl)-9- phenyl- 1H-benzo[f]isoindole-1,3(2H)-dione (BIDO-1) and 4,9-bis(5-bromothiophen-2-yl)-2-(2-ethylhexyl)-benzo[f]isoindole-1,3-dione (BIDO-2), were designed and synthesized. In this design, naphthalene is selected as its main core to maintain a planar structure, and thienyl groups are able to facilitate the bromination reaction and lower the band gap. BIDO-1 and BIDO-2 were successfully coupled with different donors by both Suzuki cross-coupling and Stille cross-coupling reactions. Based on the energy levels and band gaps of the BIDO-containing compounds and polymers, BIDO-1 and BIDO-2 are proved to be weak electron acceptors. Pyromellitic diimide (PMDI) was also studied and found to be a stronger electron acceptor than BIDO . In order to obtain broad absorption coverage, both weak acceptor ( BIDO-2) and strong acceptor diketopyrrolopyrrole (DPP) were introduced in the same polymer. The resulting polymers show two absorption bands at 400 and 600 nm and two emission peaks at 500 and 680 nm. The band gaps of the polymers are around 1.6 eV, which is ideal for OSC application. The PCE of 1.17% was achieved. Finally

  20. Acceptor conductivity in bulk zinc oxide (0001) crystals

    NASA Astrophysics Data System (ADS)

    Adekore, Bababunmi Tolu

    ZnO is a promising wide bandgap semiconductor. Its renowned and prominent properties as its bandgap of 3.37eV at 4.2K; its very high excitonic binding energy, 60meV; its high melting temperature, 2248K constitute the basis for the recently renewed and sustained scientific interests in the material. In addition to the foregoing, the availability of bulk substrates of industrially relevant sizes provides important opportunities such as homoepitaxial deposition of the material which is a technological asset in the production of efficient optoelectronic and electronic devices. The nemesis of wide bandgap materials cannot be more exemplified than in ZnO. The notorious limitation of asymmetric doping and the haunting plague of electrically active point defects dim the bright future of the material. In this case, the search for reliable and consistent acceptor conductivity in bulk substrates has been hitherto, unsuccessful. In the dissertation that now follows, our efforts have been concerted in the search for a reliable acceptor. We have carefully investigated the science of point defects in the material, especially those responsible for the high donor conductivity. We also investigated and herein report variety of techniques of introducing acceptors into the material. We employ the most relevant and informative characterization techniques in verifying both the intended conductivity and the response of intrinsic crystals to variation in temperature and strain. And finally we explain deviations, where they exist, from ideal acceptor characteristics. Our work on reliable acceptor has been articulated in four papers. The first establishing capacitance based methods of monitoring electrically active donor defects. The second investigates the nature of anion acceptors on the oxygen sublattice. A study similar to the preceding study was conducted for cation acceptors on the zinc sublattice and reported in the third paper. Finally, an analysis of the response of the crystal to

  1. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  2. Yet1p and Yet3p, the yeast homologs of BAP29 and BAP31, interact with the endoplasmic reticulum translocation apparatus and are required for inositol prototrophy.

    PubMed

    Wilson, Joshua D; Barlowe, Charles

    2010-06-11

    The mammalian B-cell receptor-associated proteins of 29 and 31 kDa (BAP29 and BAP31) are conserved integral membrane proteins that have reported roles in endoplasmic reticulum (ER) quality control, ER export of secretory cargo, and programmed cell death. In this study we investigated the yeast homologs of BAP29 and BAP31, known as Yet1p and Yet3p, to gain insight on cellular function. We found that Yet1p forms a complex with Yet3p (Yet complex) and that complex assembly was important for subunit stability and proper ER localization. The Yet complex was not efficiently packaged into ER-derived COPII vesicles and therefore does not appear to act as an ER export receptor. Instead, a fraction of the Yet complex was detected in association with the ER translocation apparatus (Sec complex). Specific mutations in the Sec complex or Yet complex influenced these interactions. Moreover, associations between the Yet complex and Sec complex were increased by ER stress and diminished when protein translocation substrates were depleted. Surprisingly, yet1Delta and yet3Delta mutant strains displayed inositol starvation-related growth defects. In accord with the biochemical data, these growth defects were exacerbated by a combination of certain mutations in the Sec complex with yet1Delta or yet3Delta mutations. We propose a model for the Yet-Sec complex interaction that places Yet1p and Yet3p at the translocation pore to manage biogenesis of specific transmembrane secretory proteins.

  3. Somatic embryo-like structures of strawberry regenerated in vitro on media supplemented with 2,4-D and BAP.

    PubMed

    Omar, Genesia F; Mohamed, Fouad H; Haensch, Klaus-Thomas; Sarg, Sawsan H; Morsey, Mohamed M

    2013-09-01

    Somatic embryo-like structures (SELS) were produced in vitro from leaf disk and petiole explants of two cultivars of strawberry (Fragaria x ananassa Duch) on Murashige and Skoog medium with different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP) and sucrose to check the embryonic nature of these structures histologically. A large number of SELS could be regenerated in both cultivars on media with 2-4 mg L(-1) 2,4-D in combination with 0.5 -1 mg L(-1) BAP and 50 g x L(-1) sucrose. Histological examination of SELS revealed the absence of a root pole. Therefore these structures cannot be strictly classified as somatic embryos. The SELS formed under the tested culture conditions represent malformed shoot-like and leaf-like structures. The importance of these results for the propagation of strawberries via somatic embryogenesis is discussed.

  4. The no-observed-adverse-effect level (NOAEL) of baby aloe powder (BAP) for nutraceutical application based upon toxicological evaluation.

    PubMed

    Kwack, Seung Jun; Do, Seon-Gil; Kim, Young Woo; Kim, Yeon-Joo; Gwak, Hyo-Min; Park, Hyun Jong; Roh, Taehyun; Shin, Min Kyung; Lim, Seong Kwang; Kim, Hyung Sik; Lee, Byung-Mu

    2014-01-01

    Aloe has been used in versatile herbal medications and nutraceuticals throughout history. Aloe is widely considered to be generally safe for humans and used globally. The effectiveness and pharmacological properties of aloe are dependent upon when the plant is collected. However, little is known about the toxicology of whole-body aloe collected within less than 1 yr. Based upon widespread exposure to aloe, it is important to determine a daily intake level of this chemical to ensure its safety for humans. To determine the no-observed-adverse-effect level (NOAEL) of baby aloe powder (BAP) for clinical application, Sprague-Dawley (SD) rats were treated orally for 4 wk with 4 different concentrations: 0, 0.125, 0.5, and 2 g/kg body weight (bw). In this study, no significant or dose-dependent toxicological effects of BAP were observed in biochemical or hematological parameters, urinalysis, clinical signs, body weight, and food and water consumption. There were changes in some biomarkers in certain treated groups compared to controls; however, all values were within their reference ranges and not dose-dependent. Based on these results, the NOAEL of BAP was estimated to be greater than 2 g/kg bw in male and 2 g/kg bw in female SD rats. Collectively, these data suggest that BAP used in this study did not produce any marked subacute toxic effects up to a maximum concentration of 2 g/kg bw, and thus use in nutraceuticals and in pharmaceutical and cosmetic applications at a concentration of >2 g/kg is warranted.

  5. Mechanisms of electron acceptor utilization: Implications for simulating anaerobic biodegradation

    USGS Publications Warehouse

    Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr, J.M.

    2004-01-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum- contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  6. Effects of subchronic exposure to benzo[a]pyrene (B[a]P) on learning and memory, and neurotransmitters in male Sprague-Dawley rat.

    PubMed

    Xia, Yinyin; Cheng, Shuqun; He, Junlin; Liu, Xueqing; Tang, Yan; Yuan, Haiyan; He, Lijun; Lu, Tao; Tu, Baijie; Wang, Yingxiong

    2011-03-01

    The harmful effects of the environmental carcinogen, benzo[a]pyrene (B[a]P), on mammalian neurodevelopment and behavior as yet remain unclear. Several studies have suggested that B[a]P impairs learning and memory. In the present investigation, we investigated the effects of subchronic exposure to B[a]P on rats. Male rats received daily injection of B[a]P (0, 1.0, 2.5, and 6.25 mg/kg, i.p.) or vehicle for 13 weeks. Employing the Morris water maze (MWM) test, we observed that rats exposed to either 2.5 mg/kg or 6.25 mg/kg B[a]P had modified behavior compared to controls as indicated by the increased mean latencies, the decreased number of crossing platform and the decreased swimming time in the target area. B[a]P treatment decreased the levels of malondialdehyde (MDA), nitric oxide (NO), nitric oxide synthase (NOS), superoxide dismutase (SOD), acetylcholine (ACh), choline acetyltransferase (ChAT), and increased the activity of acetylcholinesterase (AChE). Endogenous monoamine levels, norepinephrine (NE), adrenaline (A), dopamine (DA) and 5-hydroxytryptamine (5-HT) and their selected metabolites dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA) in hippocampus were measured using high performance liquid chromatography (HPLC). B[a]P at both doses, 2.5 and 6.25 mg/kg, increased NE, DA, DOPAC and 5-HT content in the hippocampus. Our results suggested a close link between the modified levels of neurotransmitters in the hippocampus and the impaired behavioral performance, indicating that B[a]P is a potential neurotoxic pollutant.

  7. Combined genotoxic effects of a polycyclic aromatic hydrocarbon (B(a)P) and an heterocyclic amine (PhIP) in relation to colorectal carcinogenesis.

    PubMed

    Jamin, Emilien L; Riu, Anne; Douki, Thierry; Debrauwer, Laurent; Cravedi, Jean-Pierre; Zalko, Daniel; Audebert, Marc

    2013-01-01

    Colorectal neoplasia is the third most common cancer worldwide. Environmental factors such as diet are known to be involved in the etiology of this cancer. Several epidemiological studies have suggested that specific neo-formed mutagenic compounds related to meat consumption are an underlying factor involved in the association between diet and colorectal cancer. Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) are known mutagens and possible human carcinogens formed at the same time in meat during cooking processes. We studied the genotoxicity of the model PAH benzo(a)pyrene (B(a)P) and HCA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), alone or in mixture, using the mouse intestinal cell line Apc(Min/+), mimicking the early step of colorectal carcinogenesis, and control Apc(+/+) cells. The genotoxicity of B(a)P and PhIP was investigated using both cell lines, through the quantification of B(a)P and PhIP derived DNA adducts, as well as the use of a genotoxic assay based on histone H2AX phosphorylation quantification. Our results demonstrate that heterozygous Apc mutated cells are more effective to metabolize B(a)P. We also established in different experiments that PhIP and B(a)P were more genotoxic on Apc (Min/+) cells compared to Apc (+/+) . Moreover when tested in mixture, we observed a combined genotoxicity of B(a)P and PhIP on the two cell lines, with an increase of PhIP derived DNA adducts in the presence of B(a)P. Because of their genotoxic effects observed on heterozygous Apc mutated cells and their possible combined genotoxic effects, both B(a)P and PhIP, taken together, could be implicated in the observed association between meat consumption and colorectal cancer.

  8. Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy.

    PubMed

    Granville, D J; Carthy, C M; Jiang, H; Shore, G C; McManus, B M; Hunt, D W

    1998-10-16

    Photodynamic therapy (PDT) is a clinical approach that utilizes light-activated drugs for the treatment of a variety of pathologic conditions. The initiating events of PDT-induced apoptosis are poorly defined. It has been shown for other proapoptotic stimuli that the integral endoplasmic reticulum protein Bap31 is cleaved by caspases 1 and 8, but not by caspase-3. Further, a 20 kDa Bap31 cleavage fragment is generated which can induce apoptosis. In the current report, we sought to determine whether Bap31 cleavage and generation of p20 is an early event in PDT-induced apoptosis. The mitochondrial release of cytochrome c, involvement of caspases 1, 2, 3, 4, 6, 7, 8, and 10 and the status of several known caspase substrates, including Bap31, were evaluated in PDT-treated HeLa cells. Cytochrome c appeared in the cytosol immediately following light activation of the photosensitizer benzoporphyrin derivative monoacid ring A. Activation of caspases 3, 6, 7, and 8 was evident within 1-2 h post PDT. Processing of caspases 1, 2, 4, and 10 was not observed. Cleavage of Bap31 was observed at 2-3 h post PDT. The caspase-3 inhibitor DEVD-fmk blocked caspase-8 and Bap31 cleavage suggesting that caspase-8 and Bap31 processing occur downstream of caspase-3 activation in PDT-induced apoptosis. These results demonstrate that release of mitochondrial cytochrome c into the cytoplasm is a primary event following PDT, preceding caspase activation and cleavage of Bap31. To our knowledge, this is the first example of a chemotherapeutic agent inducing caspase-8 activation and demonstrates that caspase-8 activation can occur after cytochrome c release.

  9. Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells.

    PubMed

    Dai, Shuixing; Zhao, Fuwen; Zhang, Qianqian; Lau, Tsz-Ki; Li, Tengfei; Liu, Kuan; Ling, Qidan; Wang, Chunru; Lu, Xinhui; You, Wei; Zhan, Xiaowei

    2017-01-25

    We design and synthesize four fused-ring electron acceptors based on 6,6,12,12-tetrakis(4-hexylphenyl)-indacenobis(dithieno[3,2-b;2',3'-d]thiophene) as the electron-rich unit and 1,1-dicyanomethylene-3-indanones with 0-2 fluorine substituents as the electron-deficient units. These four molecules exhibit broad (550-850 nm) and strong absorption with high extinction coefficients of (2.1-2.5) × 10(5) M(-1) cm(-1). Fluorine substitution downshifts the LUMO energy level, red-shifts the absorption spectrum, and enhances electron mobility. The polymer solar cells based on the fluorinated electron acceptors exhibit power conversion efficiencies as high as 11.5%, much higher than that of their nonfluorinated counterpart (7.7%). We investigate the effects of the fluorine atom number and position on electronic properties, charge transport, film morphology, and photovoltaic properties.

  10. An organic donor/acceptor lateral superlattice at the nanoscale.

    PubMed

    Otero, Roberto; Ecija, David; Fernandez, Gustavo; Gallego, José María; Sanchez, Luis; Martín, Nazario; Miranda, Rodolfo

    2007-09-01

    A precise control of the nanometer-scale morphology in systems containing mixtures of donor/acceptor molecules is a key factor to improve the efficiency of organic photovoltaic devices. Here we report on a scanning tunneling microscopy study of the first stages of growth of 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole, as electron donor, and phenyl-C61-butyric acid methyl ester, as electron acceptor, on a Au(111) substrate under ultrahigh vacuum conditions. Due to differences in bonding strength with the substrate and different interactions with the Au(111) herringbone surface reconstruction, mixed thin films spontaneously segregate into a lateral superlattice of interdigitated nanoscale stripes with a characteristic width of about 10-20 nm, a morphology that has been predicted to optimize the efficiency of organic solar cells.

  11. Cross-conjugated chromophores: synthesis of iso-polydiacetylenes with Donor/Acceptor substitution

    PubMed

    Ciulei; Tykwinski

    2000-11-16

    The iterative construction of cross-conjugated donor (D), acceptor (A), and donor-acceptor (D-A) substituted iso-polydiacetylene (iso-PDA) oligomers has been achieved utilizing palladium-catalyzed cross-coupling techniques. Structure-property relationships for these compounds have been analyzed for cross-conjugated pi-electronic communication as a result of contributions from donor, acceptor, or donor-acceptor functionalization.

  12. Identification of bapA in Strains of Salmonella enterica subsp. enterica Isolated from Wild Animals Kept in Captivity in Sinaloa, Mexico

    PubMed Central

    López-Valenzuela, Martin; Cárcamo-Aréchiga, Nora; Cota-Guajardo, Silvia; López-Salazar, Mayra; Montiel-Vázquez, Edith

    2016-01-01

    bapA, previously named stm2689, encodes the BapA protein, which, along with cellulose and fimbriae, constitutes biofilms. Biofilms are communities of microorganisms that grow in a matrix of exopolysaccharides and may adhere to living tissues or inert surfaces. Biofilm formation is associated with the ability to persist in different environments, which contributes to the pathogenicity of several species. We analyzed the presence of bapA in 83 strains belonging to 17 serovars of Salmonella enterica subsp. enterica from wildlife in captivity at Culiacan's Zoo and Mazatlán's Aquarium. Each isolate amplified a product of 667 bp, which corresponds to the expected size of the bapA initiator, with no observed variation between different serovars analyzed. bapA gene was found to be highly conserved in Salmonella and can be targeted for the genus-specific detection of this organism from different sources. Since bapA expression improves bacterial proliferation outside of the host and facilitates resistance to disinfectants and desiccation, the survival of Salmonella in natural habitats may be favored. Thus, the risk of bacterial contamination from these animals is increased. PMID:27379195

  13. Combined Genetic and Genealogic Studies Uncover a Large BAP1 Cancer Syndrome Kindred Tracing Back Nine Generations to a Common Ancestor from the 1700s.

    PubMed

    Carbone, Michele; Flores, Erin G; Emi, Mitsuru; Johnson, Todd A; Tsunoda, Tatsuhiko; Behner, Dusty; Hoffman, Harriet; Hesdorffer, Mary; Nasu, Masaki; Napolitano, Andrea; Powers, Amy; Minaai, Michael; Baumann, Francine; Bryant-Greenwood, Peter; Lauk, Olivia; Kirschner, Michaela B; Weder, Walter; Opitz, Isabelle; Pass, Harvey I; Gaudino, Giovanni; Pastorino, Sandra; Yang, Haining

    2015-12-01

    We recently discovered an inherited cancer syndrome caused by BRCA1-Associated Protein 1 (BAP1) germline mutations, with high incidence of mesothelioma, uveal melanoma and other cancers and very high penetrance by age 55. To identify families with the BAP1 cancer syndrome, we screened patients with family histories of multiple mesotheliomas and melanomas and/or multiple cancers. We identified four families that shared an identical BAP1 mutation: they lived across the US and did not appear to be related. By combining family histories, molecular genetics, and genealogical approaches, we uncovered a BAP1 cancer syndrome kindred of ~80,000 descendants with a core of 106 individuals, whose members descend from a couple born in Germany in the early 1700s who immigrated to North America. Their descendants spread throughout the country with mutation carriers affected by multiple malignancies. Our data show that, once a proband is identified, extended analyses of these kindreds, using genomic and genealogical studies to identify the most recent common ancestor, allow investigators to uncover additional branches of the family that may carry BAP1 mutations. Using this knowledge, we have identified new branches of this family carrying BAP1 mutations. We have also implemented early-detection strategies that help identify cancers at early-stage, when they can be cured (melanomas) or are more susceptible to therapy (MM and other malignancies).

  14. Occurrence of genes coding for MSCRAMM and biofilm-associated protein Bap in Staphylococcus spp. isolated from bovine subclinical mastitis and relationship with somatic cell counts.

    PubMed

    Zuniga, Eveline; Melville, Priscilla A; Saidenberg, André B S; Laes, Marco A; Gonsales, Fernanda F; Salaberry, Sandra R S; Gregori, Fabio; Brandão, Paulo E; dos Santos, Franklin G B; Lincopan, Nilton E; Benites, Nilson R

    2015-12-01

    This study aimed to elucidate aspects of the epidemiology of bovine subclinical mastitis through the assessment of genes encoding MSCRAMM (microbial surface components recognizing adhesive matrix molecules - a group of adhesins) and protein Bap (implicated in biofilm formation), in coagulase-positive (CPS) and coagulase-negative (CNS) Staphylococcus isolated from subclinical mastitis. Milk samples were collected for microbiological exams, somatic cell count (SCC) and a survey of the genes coding for MSCRAMM (cna, eno, ebpS, fnbA, fnbB and fib) and biofilm-associated protein Bap (bap) in 106 Staphylococcus spp. isolates using PCR. The frequencies of occurrence of eno (82.1%), fnbA (72.6%), fib (71.7%) and bap (56.6%) were higher (P < 0.0001) compared with the other assessed genes (cna, ebpS and fnbB). The higher frequency of occurrence (P < 0.005) of the bap gene in CNS compared with CPS suggests that in these species biofilm formation is an important mechanism for the persistence of the infection. The medians of the SCCs in the samples where eno, fnbA, fib and bap genes were detected were higher compared with Staphylococcus without the assessed genes (P < 0.05) and negative samples (P < 0.01), which indicated that the presence of these MSCRAMM may be related to a higher intensity of the inflammatory process.

  15. Identification of bapA in Strains of Salmonella enterica subsp. enterica Isolated from Wild Animals Kept in Captivity in Sinaloa, Mexico.

    PubMed

    Silva-Hidalgo, Gabriela; López-Valenzuela, Martin; Cárcamo-Aréchiga, Nora; Cota-Guajardo, Silvia; López-Salazar, Mayra; Montiel-Vázquez, Edith

    2016-01-01

    bapA, previously named stm2689, encodes the BapA protein, which, along with cellulose and fimbriae, constitutes biofilms. Biofilms are communities of microorganisms that grow in a matrix of exopolysaccharides and may adhere to living tissues or inert surfaces. Biofilm formation is associated with the ability to persist in different environments, which contributes to the pathogenicity of several species. We analyzed the presence of bapA in 83 strains belonging to 17 serovars of Salmonella enterica subsp. enterica from wildlife in captivity at Culiacan's Zoo and Mazatlán's Aquarium. Each isolate amplified a product of 667 bp, which corresponds to the expected size of the bapA initiator, with no observed variation between different serovars analyzed. bapA gene was found to be highly conserved in Salmonella and can be targeted for the genus-specific detection of this organism from different sources. Since bapA expression improves bacterial proliferation outside of the host and facilitates resistance to disinfectants and desiccation, the survival of Salmonella in natural habitats may be favored. Thus, the risk of bacterial contamination from these animals is increased.

  16. Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors

    SciTech Connect

    Nardes, Alexandre M.; Ferguson, Andrew J.; Wolfer, Pascal; Gui, Kurt; Burn, Paul L.; Meredith, Paul; Kopidakis, Nikos

    2014-03-05

    We present a comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85 % of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. Here, we propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub

  17. Engineered oligosaccharyltransferases with greatly relaxed acceptor site specificity

    PubMed Central

    Ollis, Anne A.; Zhang, Sheng; Fisher, Adam C.; DeLisa, Matthew P.

    2015-01-01

    The Campylobacter jejuni protein glycosylation locus (pgl) encodes machinery for asparagine-linked (N-linked) glycosylation and serves as the archetype for bacterial N-glycosylation. This machinery has been functionally transferred into Escherichia coli, thereby enabling convenient mechanistic dissection of the N-glycosylation process in this genetically tractable host. Here, we sought to identify sequence determinants in the oligosaccharyltransferase PglB that restrict its specificity to only those glycan acceptor sites containing a negatively charged residue at the −2 position relative to asparagine. This involved creation of a genetic assay named glycoSNAP (glycosylation of secreted N-linked acceptor proteins) that facilitates high-throughput screening of glycophenotypes in E. coli. Using this assay, we isolated several C. jejuni PglB variants that were capable of glycosylating an array of noncanonical acceptor sequences including one in a eukaryotic N-glycoprotein. Collectively, these results underscore the utility of glycoSNAP for shedding light on poorly understood aspects of N-glycosylation and for engineering designer N-glycosylation biocatalysts. PMID:25129029

  18. Income-generating activities for family planning acceptors.

    PubMed

    1989-07-01

    The Income Generating Activities program for Family Planning Acceptors was introduced in Indonesia in 1979. Capital input by the Indonesian National Family Planning Coordination Board and the UN Fund for Population Activities was used to set up small businesses by family planning acceptors. In 2 years, when the businesses become self-sufficient, the loans are repaid, and the money is used to set up new family planning acceptors in business. The program strengthens family planning acceptance, improves the status of women, and enhances community self-reliance. The increase in household income generated by the program raises the standards of child nutrition, encourages reliance on the survival of children, and decreases the value of large families. Approximately 18,000 Family Planning-Income Generating Activities groups are now functioning all over Indonesia, with financial assistance from the central and local governments, the World Bank, the US Agency for International Development, the UN Population Fund, the Government of the Netherlands, and the Government of Australia through the Association of South East Asian Nations.

  19. Design directed self-assembly of donor-acceptor polymers.

    PubMed

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements.

  20. Quantum dots as FRET acceptors for highly sensitive multiplexing immunoassays

    NASA Astrophysics Data System (ADS)

    Geissler, Daniel; Hildebrandt, Niko; Charbonnière, Loïc J.; Ziessel, Raymond F.; Löhmannsröben, Hans-Gerd

    2009-02-01

    Homogeneous immunoassays have the benefit that they do not require any time-consuming separation steps. FRET is one of the most sensitive homogeneous methods used for immunoassays. Due to their extremely strong absorption over a broad wavelength range the use of quantum dots as FRET acceptors allows for large Foerster radii, an important advantage for assays in the 5 to 10 nm distance range. Moreover, because of their size-tunable emission, quantum dots of different sizes can be used with a single donor for the detection of different analytes (multiplexing). As the use of organic dyes with short fluorescence decay times as donors is known to be inefficient with quantum dot acceptors, lanthanide complexes with long luminescence decays are very efficient alternatives. In this contribution we present the application of commercially available biocompatible CdSe/ZnS core/shell quantum dots as multiplexing FRET acceptors together with a single terbium complex as donor in a homogeneous immunoassay system. Foerster radii of 10 nm and FRET efficiencies of 75 % are demonstrated. The high sensitivity of the terbium-toquantum dot FRET assay is shown by sub-100-femtomolar detection limits for two different quantum dots (emitting at 605 and 655 nm) within the same biotin-streptavidin assay. Direct comparison to the FRET immunoassay "gold standard" (FRET from Eu-TBP to APC) yields a three orders of magnitude sensitivity improvement, demonstrating the big advantages of quantum dots not only for multiplexing but also for highly sensitive nanoscale analysis.

  1. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    PubMed

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  2. 2012 ELECTRON DONOR-ACCEPTOR INTERACTIONS GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect

    McCusker, James

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  3. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors.

    PubMed

    Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A

    2015-04-15

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, (1)H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  4. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2015-04-01

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  5. Association of BAP31 with CD11b/CD18. Potential role in intracellular trafficking of CD11b/CD18 in neutrophils.

    PubMed

    Zen, Ke; Utech, Markus; Liu, Yuan; Soto, Illena; Nusrat, Asma; Parkos, Charles A

    2004-10-22

    The beta2 integrin CD11b/CD18 is an integral membrane protein that is present in the plasma membrane and secondary granules of neutrophils and functions as a major adhesion molecule. Upon cellular activation, there is translocation of intracellular pools of CD11b/CD18 to the plasma membrane in concert with enhanced cellular adhesion. Although much is known about the function of CD11b/CD18, how this protein is transported within the cell is less well defined. Here we report that CD11b/CD18 specifically binds to BAP31, a member of a novel class of sorting proteins regulating cellular anterograde transport. Through experiments aimed at identifying CD11b/CD18-binding proteins, we produced a monoclonal antibody termed E1B2 that recognizes a 28-kDa membrane protein that co-precipitates with CD11b/CD18. Microsequence analysis of the E1B2 antigen revealed that it is BAP31. Co-association of CD11b/CD18 and BAP31 was confirmed in co-immunoprecipitation and protein binding assays. Additional experiments revealed that the binding of BAP31 to CD11b/CD18 was not dependent on divalent cations nor mediated by the I-domain of CD11b. Using glutathione S-transferase fusion chimeras, we determined that binding of CD11b/CD18 to BAP31 is mediated through interactions with the cytoplasmic tail of BAP31. Immunolocalization studies revealed colocalization of BAP31 and CD11b/CD18 within neutrophil secondary granules. Subcellular fractionation studies in polymorphonuclear leukocytes (PMN) revealed similar patterns of redistribution of BAP31 and CD11b/CD18 from fractions enriched in secondary granules to the plasma membrane following stimulation with formylmethionylleucylphenylalanine (fMLP). Given the known sorting properties of BAP31, these findings suggest that BAP31 may play a role in regulating intracellular trafficking of CD11b/CD18 in neutrophils.

  6. Method for producing and regenerating a synthetic CO[sub 2] acceptor

    DOEpatents

    Lancet, M. S.; Curran, G. P.; Gorin, E.

    1982-05-18

    A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

  7. Method for producing and regenerating a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

    1982-01-01

    A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

  8. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  9. Antimicrobial Peptides

    PubMed Central

    Bahar, Ali Adem; Ren, Dacheng

    2013-01-01

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics). PMID:24287494

  10. The combined effects of BDE47 and BaP on oxidatively generated DNA damage in L02 cells and the possible molecular mechanism.

    PubMed

    An, Jing; Yin, Lingling; Shang, Yu; Zhong, Yufang; Zhang, Xinyu; Wu, Minghong; Yu, Zhiqiang; Sheng, Guoying; Fu, Jiamo; Huang, Yuecheng

    2011-04-03

    Polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) coexist widely in the environment and have generated adverse effects on the environment and human health. The purpose of this study was to investigate the combined toxic effects of these chemicals and the related mechanism. L02 cells were exposed to BDE47 (5, 10μmol/L) or/and BaP (50μmol/L) in different administration order. The cell growth and survival, DNA strand breaks, oxidative stress index (ROS, SOD, GSH, and MDA), LDH release and the expression level of CYP1 family members were measured. The result showed that BDE47 or/and BaP had no effect on the cell growth and survival under the present conditions. However, compared with the groups treated with BDE47 or BaP alone, the combined-treated groups induced significantly elevated DNA strand breaks, ROS production, and MDA level. Especially, pretreatment with BDE47 followed by BaP led to the strongest effects. Addition of the antioxidant N-acetyl-l-cysteine (NAC) markedly reduced the ROS level and partly suppressed the DNA strand breaks induced by BDE47 or/and BaP. Meanwhile, the combined treatment groups also markedly increased the SOD activity, GSH content, and LDH release level compared with the control group. The real-time PCR results showed that BaP could significantly induce the expression of CYP1A1 and CYP1B1, however, the pre-treatment with BDE47 appeared to attenuate the BaP-induced CYP1 expression. All of above findings indicated that BDE47 and BaP had a synergistic effect on oxidatively generated DNA damage in L02 cells via regulation on the oxidative stress response and the expression of CYP1 metabolism enzymes.

  11. Toxic effects of male Perna viridis gonad exposed to BaP, DDT and their mixture: A metabolomic and proteomic study of the underlying mechanism.

    PubMed

    Song, Qinqin; Zheng, Pengfei; Qiu, Liguo; Jiang, Xiu; Zhao, Hongwei; Zhou, Hailong; Han, Qian; Diao, Xiaoping

    2016-01-05

    Benzo(a)pyrene and dichlorodiphenyltrichloroethane are typical persistent organic pollutants, and also the widespread environmental estrogens with known toxicity towards green mussels Perna viridis. In this study, the toxicological effects of BaP and DDT and their mixture were assessed in green mussel gonads using proteomic and metabolomic approaches. Metabolomics by NMR spectroscopy revealed that BaP did not show obvious metabolite changes in the gonad of male green mussel. DDT mainly caused some disturbance of osmotic regulation and energy metabolism by changing BCAAs, alanine, threonine, arginine, etc., unknown metabolite (3.53 ppm), glycine, homarine and ATP at different levels. However, the mixture of BaP and DDT mainly caused some disturbance in osmotic regulation and energy metabolism by differentially altering branched chain amino acids, glutamate, alanine, arginine, unknown metabolite (3.53 ppm), glycine, 4-aminobutyrate, dimethylglycine, homarine and ATP. The results suggest that DDT alone may cause most of metabolites changes in the mixture exposed male mussel gonad, and the results also show that the male P. viridis gonad was more sensitive to DDT than BaP exposures. Proteomic study showed that BaP, DDT and their mixture may have different modes of action. Proteomic responses revealed that BaP induced signal transduction, oxidative stress, spermatogenesis, etc. in the male green mussel gonad; whereas DDT exposure altered proteins that were associated with signal transduction, oxidative stress, cytoskeleton and cell structure, cellular organization, energy metabolism, etc. However, the mixture of BaP and DDT affected proteins related to cytoskeleton and cell structure, oxidative stress, cellular organization, etc. This research demonstrated that metabolomic and proteomic approaches could better elucidate the underlying mechanism of environmental pollutants gonad toxicity.

  12. Source apportionment of elevated BaP concentrations in PM10 aerosols in an alpine valley in Austria

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Puxbaum, Hans; Jankowski, Nicole; Sampaio Cordeiro Wagner, Lylian

    2010-05-01

    INTRODUCTION: In a village situated at 1215 m a.s.l. in a natural preserve in an Austrian alpine valley elevated BaP concentrations have been measured in the last years. A highly frequented highway leading from Italy to Germany passes near the village. Monthly means of particulate BaP concentrations show a clear seasonal trend with values below 1 ng/m³ during the warmer months and with concentrations up to 9 ng/m³ in the cold season. Annual averages in the years 2000 - 2005 ranged between 1.4 and 2.8 ng/m³ - much higher than the EU target value of 1 ng/m³. We used a macrotracer model developed at the Vienna University of Technology to determine the contributions of the sources for BaP emissions, which were mainly space heating with wood and traffic from the highway. EXPERIMENTAL: The macrotracer concept is a nine component model to derive source contribution and explains 80-100% of PM10 aerosols in Austria. The amount of traffic exhaust is derived by using EC as tracer, whereas EC produced by wood burning is subtracted, the amount of wood smoke is derived by the anhydro-sugar levoglucosan and the ratio between the anhydro-sugars levoglucosan and mannosan. For the source apportionment of BaP the applied factors reflect on the one hand the composition of the automotive fleet in Austria and on the other hand the composition of the fire wood in the region. Filter samples collected with a high volume sampler in winter were analyzed for PM10 aerosol mass, total, organic, elemental and carbonate carbon, HULIS, anhydro-sugars, polyols and ions (major ions and organic acids) and PAHs. In the same way emission samples taken at a motor test stand and at a test stand for wood combustion were analyzed (Schmidl et al. 2008). The saccharides were determined using high pH anion exchange and pulsed amperometry (HPAE-PAD). Details of the analytical method are given in Iinuma et al., 2009. Elemental and organic carbon were determined with a thermal-optical instrument (Sunset lab

  13. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    PubMed Central

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  14. Functional screening of mammalian mechanosensitive genes using Drosophila RNAi library– Smarcd3/Bap60 is a mechanosensitive pro-inflammatory gene

    PubMed Central

    Kumar, Sandeep; Jang, In-hwan; Kim, Chan Woo; Kang, Dong-Won; Lee, Won Jae; Jo, Hanjoong

    2016-01-01

    Disturbed blood flow (d-flow) induces atherosclerosis by altering the expression of mechanosensitive genes in the arterial endothelium. Previously, we identified >580 mechanosensitive genes in the mouse arterial endothelium, but their role in endothelial inflammation is incompletely understood. From this set, we obtained 84 Drosophila RNAi lines that silences the target gene under the control of upstream activation sequence (UAS) promoter. These lines were crossed with C564-GAL4 flies expressing GFP under the control of drosomycin promoter, an NF-κB target gene and a marker of pathogen-induced inflammation. Silencing of psmd12 or ERN1 decreased infection-induced drosomycin expression, while Bap60 silencing significantly increased the drosomycin expression. Interestingly, knockdown of Bap60 in adult flies using temperature-inducible Bap60 RNAi (C564ts-GAL4-Bap60-RNAi) enhanced drosomycin expression upon Gram-positive bacterial challenge but the basal drosomycin expression remained unchanged compared to the control. In the mammalian system, smarcd3 (mammalian ortholog of Bap60) expression was reduced in the human- and mouse aortic endothelial cells exposed to oscillatory shear in vitro as well as in the d-flow regions of mouse arterial endothelium in vivo. Moreover, siRNA-mediated knockdown of smarcd3 induced endothelial inflammation. In summary, we developed an in vivo Drosophila RNAi screening method to identify flow-sensitive genes that regulate endothelial inflammation. PMID:27819340

  15. Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Brune, D. C.; Blankenship, R. E.

    1992-01-01

    Photosynthetic reaction centers isolated from Heliobacillus mobilis exhibit a single major protein on SDS-PAGE of 47 000 Mr. Attempts to sequence the reaction center polypeptide indicated that the N-terminus is blocked. After enzymatic and chemical cleavage, four peptide fragments were sequenced from the Heliobacillus mobilis apoprotein. Only one of these sequences showed significant specific similarity to any of the protein and deduced protein sequences in the GenBank data base. This fragment is identical with 56% of the residues, including both cysteines, found in highly conserved region that is proposed to bind iron-sulfur center Fx in the Photosystem I reaction center peptide that is the psaB gene product. The similarity to the psaA gene product in this region is 48%. Redox titrations of laser-flash-induced photobleaching with millisecond decay kinetics on isolated reaction centers from Heliobacterium gestii indicate a midpoint potential of -414 mV with n = 2 titration behavior. In membranes, the behavior is intermediate between n = 1 and n = 2, and the apparent midpoint potential is -444 mV. This is compared to the behavior in Photosystem I, where the intermediate electron acceptor A1, thought to be a phylloquinone molecule, has been proposed to undergo a double reduction at low redox potentials in the presence of viologen redox mediators. These results strongly suggest that the acceptor side electron transfer system in reaction centers from heliobacteria is indeed analogous to that found in Photosystem I. The sequence similarities indicate that the divergence of the heliobacteria from the Photosystem I line occurred before the gene duplication and subsequent divergence that lead to the heterodimeric protein core of the Photosystem I reaction center.

  16. Donor-acceptor complexation and dehydrogenation chemistry of aminoboranes.

    PubMed

    Malcolm, Adam C; Sabourin, Kyle J; McDonald, Robert; Ferguson, Michael J; Rivard, Eric

    2012-12-03

    A series of formal donor-acceptor adducts of aminoborane (H(2)BNH(2)) and its N-substituted analogues (H(2)BNRR') were prepared: LB-H(2)BNRR'(2)-BH(3) (LB = DMAP, IPr, IPrCH(2) and PCy(3); R and R' = H, Me or tBu; IPr = [(HCNDipp)(2)C:] and Dipp = 2,6-iPr(2)C(6)H(3)). To potentially access complexes of molecular boron nitride, LB-BN-LA (LA = Lewis acid), preliminary dehydrogenation chemistry involving the parent aminoborane adducts LB-H(2)BNH(2)-BH(3) was investigated using [Rh(COD)Cl](2), CuBr, and NiBr(2) as dehydrogenation catalysts. In place of isolating the intended dehydrogenated BN donor-acceptor complexes, the formation of borazine was noted as a major product. Attempts to prepare the fluoroarylborane-capped aminoborane complexes, LB-H(2)BNH(2)-B(C(6)F(5))(3), are also described.

  17. Conductivity of a Weyl semimetal with donor and acceptor impurities

    NASA Astrophysics Data System (ADS)

    Rodionov, Ya. I.; Syzranov, S. V.

    2015-05-01

    We study transport in a Weyl semimetal with donor and acceptor impurities. At sufficiently high temperatures transport is dominated by electron-electron interactions, while the low-temperature resistivity comes from the scattering of quasiparticles on screened impurities. Using the diagrammatic technique, we calculate the conductivity σ (T ,ω ,nA,nD) in the impurities-dominated regime as a function of temperature T , frequency ω , and the concentrations nA and nD of acceptors and donors and discuss the crossover behavior between the regimes of low and high temperatures and impurity concentrations. In a sufficiently compensated material [| nA-nD|≪ (nA+nD) ] with a small effective fine structure constant α ,σ (ω ,T ) ∝T2/(T-2-i ω .const) in a wide interval of temperatures. For very low temperatures, or in the case of an uncompensated material, the transport is effectively metallic. We discuss experimental conditions necessary for realizing each regime.

  18. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls.

    PubMed

    Slawik, Christian; Rickmeyer, Christiane; Brehm, Martin; Böhme, Alexander; Schüürmann, Gerrit

    2017-02-22

    Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functio-nalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft and soft-soft adducts.

  19. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration.

    PubMed

    Richter, Katrin; Schicklberger, Marcus; Gescher, Johannes

    2012-02-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions.

  20. Effects of different concentrations of 2,4-D and BAP on somatic embryogenesis induction in saffron (Crocus sativus L.).

    PubMed

    Rajabpoor, Sh; Azghandi, A V; Saboora, A

    2007-11-01

    To optimize an in vitro protocol for propagation of saffron through somatic embryogenesis, effects of various concentrations of 2,4-D ( 0, 0.25, 0.5, 1, 2, 4 and 8 mg L(-1)) in combination with BAP (0, 0.25, 0.5, 1, 2, 4 and 8 mg L(-1)) were studied. Surface-sterilized corms were cut transversally into equal portions and the upper or lower parts were used separately as explants. All treatments were maintained in the darkness at 24 +/- 2 degrees C. After 70 days, the first globular embryos were observed and the number of embryos on each explant reached to its maximum 3 months after culture. Statistical analysis showed that there were significant differences between treatments regarding the number of embryos induced on each explant. The most effective treatment was 2.0 mg L(-1) 2,4-D + 1.0 mg L(-1) BAP for both types of explant (inducing 6.5 +/- 1.3 and 35.95 +/- 4.9 embryos on each explant for the upper and lower parts, respectively). The average percentages of explants showing embryogenic response were 33.3 and 93.3% for the upper and the lower part of corm tissue respectively in this treatment. Complementary studies are in progress to optimize maturation and germination stages of these somatic embryos.

  1. Membrane-Associated RING-CH proteins associate with Bap31 and target CD81 and CD44 to lysosomes.

    PubMed

    Bartee, Eric; Eyster, Craig A; Viswanathan, Kasinath; Mansouri, Mandana; Donaldson, Julie G; Früh, Klaus

    2010-12-02

    Membrane-associated RING-CH (MARCH) proteins represent a family of transmembrane ubiquitin ligases modulating intracellular trafficking and turnover of transmembrane protein targets. While homologous proteins encoded by gamma-2 herpesviruses and leporipoxviruses have been studied extensively, limited information is available regarding the physiological targets of cellular MARCH proteins. To identify host cell proteins targeted by the human MARCH-VIII ubiquitin ligase we used stable isotope labeling of amino-acids in cell culture (SILAC) to monitor MARCH-dependent changes in the membrane proteomes of human fibroblasts. Unexpectedly, we observed that MARCH-VIII reduced the surface expression of Bap31, a chaperone that predominantly resides in the endoplasmic reticulum (ER). We demonstrate that Bap31 associates with the transmembrane domains of several MARCH proteins and controls intracellular transport of MARCH proteins. In addition, we observed that MARCH-VIII reduced the surface expression of the hyaluronic acid-receptor CD44 and both MARCH-VIII and MARCH-IV sequestered the tetraspanin CD81 in endo-lysosomal vesicles. Moreover, gene knockdown of MARCH-IV increased surface levels of endogenous CD81 suggesting a constitutive involvement of this family of ubiquitin ligases in the turnover of tetraspanins. Our data thus suggest a role of MARCH-VIII and MARCH-IV in the regulated turnover of CD81 and CD44, two ubiquitously expressed, multifunctional proteins.

  2. C-Peptide Test

    MedlinePlus

    ... vital for the body to use its main energy source, glucose . Since C-peptide and insulin are produced ... these cases, C-peptide measurement is a useful alternative to testing for insulin. C-peptide measurements can ...

  3. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase.

    PubMed

    Watanabe, Kazunori; Toh, Yukimatsu; Suto, Kyoko; Shimizu, Yoshihiro; Oka, Natsuhisa; Wada, Takeshi; Tomita, Kozo

    2007-10-18

    Eubacterial leucyl/phenylalanyl-tRNA protein transferase (LF-transferase) catalyses peptide-bond formation by using Leu-tRNA(Leu) (or Phe-tRNA(Phe)) and an amino-terminal Arg (or Lys) of a protein, as donor and acceptor substrates, respectively. However, the catalytic mechanism of peptide-bond formation by LF-transferase remained obscure. Here we determine the structures of complexes of LF-transferase and phenylalanyl adenosine, with and without a short peptide bearing an N-terminal Arg. Combining the two separate structures into one structure as well as mutation studies reveal the mechanism for peptide-bond formation by LF-transferase. The electron relay from Asp 186 to Gln 188 helps Gln 188 to attract a proton from the alpha-amino group of the N-terminal Arg of the acceptor peptide. This generates the attacking nucleophile for the carbonyl carbon of the aminoacyl bond of the aminoacyl-tRNA, thus facilitating peptide-bond formation. The protein-based mechanism for peptide-bond formation by LF-transferase is similar to the reverse reaction of the acylation step observed in the peptide hydrolysis reaction by serine proteases.

  4. Binding characteristics of homogeneous molecularly imprinted polymers for acyclovir using an (acceptor-donor-donor)-(donor-acceptor-acceptor) hydrogen-bond strategy, and analytical applications for serum samples.

    PubMed

    Wu, Suqin; Tan, Lei; Wang, Ganquan; Peng, Guiming; Kang, Chengcheng; Tang, Youwen

    2013-04-12

    This paper demonstrates a novel approach to assembling homogeneous molecularly imprinted polymers (MIPs) based on mimicking multiple hydrogen bonds between nucleotide bases by preparing acyclovir (ACV) as a template and using coatings grafted on silica supports. (1)H NMR studies confirmed the AAD-DDA (A for acceptor, D for donor) hydrogen-bond array between template and functional monomer, while the resultant monodisperse molecularly imprinted microspheres (MIMs) were evaluated using a binding experiment, high performance liquid chromatography (HPLC), and solid phase extraction. The Langmuir isothermal model and the Langmuir-Freundlich isothermal model suggest that ACV-MIMs have more homogeneous binding sites than MIPs prepared through normal imprinting. In contrast to previous MIP-HPLC columns, there were no apparent tailings for the ACV peaks, and ACV-MIMs had excellent specific binding properties with a Ka peak of 3.44 × 10(5)M(-1). A complete baseline separation is obtained for ACV and structurally similar compounds. This work also successfully used MIMs as a specific sorbent for capturing ACV from serum samples. The detection limit and mean recovery of ACV was 1.8 ng/mL(-1) and 95.6%, respectively, for molecularly imprinted solid phase extraction coupled with HPLC. To our knowledge, this was the first example of MIPs using AAD-DDA hydrogen bonds.

  5. The structure and bonding of iron-acceptor pairs in silicon

    SciTech Connect

    Zhao, S.; Assali, L.V.C.; Kimerling, L.C.

    1995-08-01

    The highly mobile interstitial iron and Group III impurities (B, Al, Ga, In) form iron-acceptor pairs in silicon. Based on the migration kinetics and taking host silicon as a dielectric medium, we have simulated the pairing process in a static silicon lattice. Different from the conventional point charge ionic model, our phenomenological calculations include (1) a correction that takes into account valence electron cloud polarization which adds a short range, attractive interaction in the iron-acceptor pair bonding; and (2) silicon lattice relaxation due to the atomic size difference which causes a local strain field. Our model explains qualitatively (1) trends among the iron-acceptor pairs revealing an increase of the electronic state hole emission energy with increasing principal quantum number of acceptor and decreasing pair separation distance; and (2) the stable and metastable sites and configurational symmetries of the iron-acceptor pairs. The iron-acceptor pairing and bonding mechanism is also discussed.

  6. Evaluation of the impact of wood combustion on benzo[a]pyrene (BaP) concentrations; ambient measurements and dispersion modeling in Helsinki, Finland

    NASA Astrophysics Data System (ADS)

    Hellén, Heidi; Kangas, Leena; Kousa, Anu; Vestenius, Mika; Teinilä, Kimmo; Karppinen, Ari; Kukkonen, Jaakko; Niemi, Jarkko V.

    2017-03-01

    Even though emission inventories indicate that wood combustion is a major source of polycyclic aromatic hydrocarbons (PAHs), estimating its impacts on PAH concentration in ambient air remains challenging. In this study the effect of local small-scale wood combustion on the benzo[a]pyrene (BaP) concentrations in ambient air in the Helsinki metropolitan area in Finland is evaluated, using ambient air measurements, emission estimates, and dispersion modeling. The measurements were conducted at 12 different locations during the period from 2007 to 2015. The spatial distributions of annual average BaP concentrations originating from wood combustion were predicted for four of those years: 2008, 2011, 2013, and 2014. According to both the measurements and the dispersion modeling, the European Union target value for the annual average BaP concentrations (1 ng m-3) was clearly exceeded in certain suburban detached-house areas. However, in most of the other urban areas, including the center of Helsinki, the concentrations were below the target value. The measured BaP concentrations highly correlated with the measured levoglucosan concentrations in the suburban detached-house areas. In street canyons, the measured concentrations of BaP were at the same level as those in the urban background, clearly lower than those in suburban detached-house areas. The predicted annual average concentrations matched with the measured concentrations fairly well. Both the measurements and the modeling clearly indicated that wood combustion was the main local source of ambient air BaP in the Helsinki metropolitan area.

  7. Silymarin protects PBMC against B(a)P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes-An in vitro study

    SciTech Connect

    Kiruthiga, P.V.; Pandian, S. Karutha; Devi, K. Pandima

    2010-09-01

    PAHs are a ubiquitous class of environmental contaminants that have a large number of hazardous consequences on human health. An important prototype of PAHs, B(a)P, is notable for being the first chemical carcinogen to be discovered and the one classified by EPA as a probable human carcinogen. It undergoes metabolic activation to QD, which generate ROS by redox cycling system in the body and oxidatively damage the macromolecules. Hence, a variety of antioxidants have been tested as possible protectors against B(a)P toxicity. Silymarin is one such compound, which has high human acceptance, used clinically and consumed as dietary supplement around the world for its strong anti-oxidant efficacy. Silymarin was employed as an alternative approach for treating B(a)P induced damage and oxidative stress in PBMC, with an emphasis to provide the molecular basis for the effect of silymarin against B(a)P induced toxicity. PBMC cells exposed to either benzopyrene (1 {mu}M) or silymarin (2.4 mg/ml) or both was monitored for toxicity by assessing LPO, PO, redox status (GSH/GSSG ratio), glutathione metabolizing enzymes GR and GPx and antioxidant enzymes CAT and SOD. This study also investigated the protective effect of silymarin against B(a)P induced biochemical alteration at the molecular level by FT-IR spectroscopy. Our findings were quite striking that silymarin possesses substantial protective effect against B(a)P induced oxidative stress and biochemical changes by restoring redox status, modulating glutathione metabolizing enzymes, hindering the formation of protein oxidation products, inhibiting LPO and further reducing ROS mediated damages by changing the level of antioxidant enzymes. The results suggest that silymarin exhibits multiple protections and it should be considered as a potential protective agent for environmental contaminant induced immunotoxicity.

  8. Two acceptor levels and hopping conduction in Mn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Kajikawa, Yasutomo

    2017-01-01

    By analysing the experimental data of the temperature-dependent Hall-effect measurements, an additional acceptor level has been confirmed to exist in Mn-doped p-GaAs besides the isolated substitutional Mn acceptor level. It is found that, in most of the investigated samples, the room-temperature hole concentration is governed by the additional acceptor level rather than the isolated substitutional Mn acceptor level. The concentration of the additional acceptor level is found to increase almost in proportion to the square of the concentration of the isolated substitutional Mn acceptors, suggesting that the additional acceptor level is related to Mn dimers. This suggests that the ferromagnetism observed in more heavily Mn-doped GaAs may be attributed to Mn clusters. For some of the samples in which the characteristic of nearest-neighbour hopping conduction in the substitutional Mn acceptor impurity band is evident, the hopping activation energy is deduced and is proved to increase in proportion to the cube root of the concentration of the substitutional Mn acceptors.

  9. Protected sphingosine from phytosphingosine as an efficient acceptor in glycosylation reaction.

    PubMed

    Di Benedetto, Roberta; Zanetti, Luca; Varese, Monica; Rajabi, Mehdi; Di Brisco, Riccardo; Panza, Luigi

    2014-02-07

    A convenient, simple, and high-yielding five-step synthesis of a sphingosine acceptor from phytosphingosine is reported, and its behavior in glycosylation reactions is described. Different synthetic paths to sphingosine acceptors using tetrachlorophthalimide as a protecting group for the sphingosine amino function and different glycosylation methods have been explored. Among the acceptors tested, the easiest accessible acceptor, unprotected on the two hydroxyl groups in positions 1 and 3, was regioselectively glycosylated on the primary position, the regioselectivity depending on the donor used.

  10. Process for gasification using a synthetic CO/sub 2/ acceptor

    SciTech Connect

    Lancet, M.S.; Curran, G.P.

    1980-11-04

    Conoco's gasification process uses a synthetic CO/sub 2/ acceptor consisting essentially of at least one calcium compound (either calcium oxide or calcium carbonate) supported in a refractory carrier matrix having the general formula Ca/sub 5/(SiO/sub 4/)/sub 2/CO/sub 3/. The synthetic acceptor is more effective than a natural calcium oxide acceptor during the gasification process because the thermally stable matrix causes the calcium compounds to remain in discrete particles that tend to reactivate with each passage through the process. This eliminates the need for large quantities of fresh makeup acceptor materials.

  11. Spectroscopy of donor-pi-acceptor complexes for solar cells

    NASA Astrophysics Data System (ADS)

    Himpsel, F. J.; Zegkinoglou, I.; Johnson, P. S.; Pemmaraju, C. D.; Prendergast, D.; Ragoussi, M.-E.; de la Torre, G.; Pickup, D. F.; Ortega, J. E.

    2014-03-01

    A recent improvement in the design of dye sensitized solar cells has been the combination of light absorbing, electron-donating, and electron-withdrawing groups within the same sensitizer molecule. This dye architecture has contributed to increase the energy conversion efficiency, leading to record efficiency values. Here we investigate a zinc(II)-porphyrin-based complex with triphenylamine donor groups and carboxyl linkers for the attachment to an oxide acceptor. The unoccupied orbitals of these three moieties are probed by element-selective X-ray absorption spectroscopy at the N 1s, C 1s, and Zn 2p edges, complemented by time-dependent density functional theory. The attachment of electron-donating groups to the porphyrin ring significantly delocalizes the highest occupied molecular orbital (HOMO) of the molecule. This leads to a spatial separation between the HOMO and the lowest unoccupied molecular orbital (LUMO), reducing the recombination rate of photoinduced electrons and holes.

  12. Pigment-acceptor-catalyst triads for photochemical hydrogen evolution.

    PubMed

    Kitamoto, Kyoji; Sakai, Ken

    2014-04-25

    In order to solve the problems of global warming and shortage of fossil fuels, researchers have been endeavoring to achieve artificial photosynthesis: splitting water into H2 and O2 under solar light illumination. Our group has recently invented a unique system that drives photoinduced water reduction through "Z-scheme" photosynthetic pathways. Nevertheless, that system still suffered from a low turnover number (TON) of the photocatalytic cycle (TON=4.1). We have now found and describe herein a new methodology to make significant improvements in the TON, up to around TON=14-27. For the new model systems reported herein, the quantum efficiency of the second photoinduced step in the Z-scheme photosynthesis is dramatically improved by introducing multiviologen tethers to temporarily collect the high-energy electron generated in the first photoinduced step. These are unique examples of "pigment-acceptor-catalyst triads", which demonstrate a new effective type of artificial photosynthesis.

  13. Donor-acceptor pair recombination in gallium sulfide

    NASA Astrophysics Data System (ADS)

    Aydinli, A.; Gasanly, N. M.; Gökşen, K.

    2000-12-01

    Low temperature photoluminescence of GaS single crystals shows three broad emission bands below 2.4 eV. Temperature and excitation light intensity dependencies of these bands reveal that all of them originate from close donor-acceptor pair recombination processes. Temperature dependence of the peak energies of two of these bands in the visible range follow, as expected, the band gap energy shift of GaS. However, the temperature dependence of the peak energy of the third band in the near infrared shows complex behavior by blueshifting at low temperatures followed by a redshift at intermediate temperatures and a second blueshift close to room temperature, which could only be explained via a configuration coordinate model. A simple model calculation indicates that the recombination centers are most likely located at the nearest neighbor lattice or interstitial sites.

  14. Recent advances in photoinduced donor/acceptor copolymerization

    NASA Astrophysics Data System (ADS)

    Jönsson, S.; Viswanathan, K.; Hoyle, C. E.; Clark, S. C.; Miller, C.; Morel, F.; Decker, C.

    1999-05-01

    Photoinitiated free radical polymerization of donor (D)/acceptor (A) type monomers has gained considerable interest due to the possibility to efficiently photopolymerize non-acrylate based systems. Furthermore, this photoinduced alternating copolymerization can be accomplished without the presence of a conventional free radical generating photoinitiator. In the past, we have shown that the structural influences in the direct photolysis of N-Alkyl and N-Arylmaleimides as well as their corresponding ground state charge transfer complexes (CTC) with suitable donors have carefully been investigated. For certain combinations of A and D type monomers, a direct photolysis of the ground state complex or the excitation of the acceptor, followed by the formation of an exciplex, has been shown to initiate the copolymerization. Herein, we show that the main route of initiation is based on inter or intra molecular H-abstraction from an excited state maleimide, whereby no exciplex formation takes place. H-abstraction will predominantly take place in systems where easily abstractable hydrogens are present. Our laser flash photolysis investigation, ESR [1] (A. Hiroshi, I. Takasi, T. Nosi, Macromol. Chem. 190 (1989) 2821) and phosphorescence emissions [2,3] (K.S. Chen, T. Foster, J.K.S. Wan, J. Phys. Chem. 84 (1980) 2473; C.J. Seliskar, S.P. McGlynn, J. Chem. Phys. 55 (1971) 4337) studies show that triplet excited states of N-alkyl substituted maleimides (RMI), which are well known strong precursors for direct H-abstractions from aliphatic ethers and secondary alcohols, are formed upon excitation. Rates of copolymerization and degrees of conversion for copolymerization of maleimide/vinyl ether pairs in air and nitrogen have been measured as a function of hydrogen abstractability of the excited triplet state MI as well as the influence of concentration and hydrogen donating effect of the hydrogen donor.

  15. Contrasting performance of donor-acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells.

    PubMed

    Khlyabich, Petr P; Rudenko, Andrey E; Burkhart, Beate; Thompson, Barry C

    2015-02-04

    Here two contrasting approaches to polymer-fullerene solar cells are compared. In the first approach, two distinct semi-random donor-acceptor copolymers are blended with phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The two poly(3-hexylthiophene)-based polymers contain either the acceptor thienopyrroledione (TPD) or diketopyrrolopyrrole (DPP). In the second approach, semi-random donor-acceptor copolymers containing both TPD and DPP acceptors in the same polymer backbone, termed two-acceptor polymers, are blended with PC61BM to give binary blend solar cells. The two approaches result in bulk heterojunction solar cells that have the same molecular active-layer components but differ in the manner in which these molecular components are mixed, either by physical mixing (ternary blend) or chemical "mixing" in the two-acceptor (binary blend) case. Optical properties and photon-to-electron conversion efficiencies of the binary and ternary blends were found to have similar features and were described as a linear combination of the individual components. At the same time, significant differences were observed in the open-circuit voltage (Voc) behaviors of binary and ternary blend solar cells. While in case of two-acceptor polymers, the Voc was found to be in the range of 0.495-0.552 V, ternary blend solar cells showed behavior inherent to organic alloy formation, displaying an intermediate, composition-dependent and tunable Voc in the range from 0.582 to 0.684 V, significantly exceeding the values achieved in the two-acceptor containing binary blend solar cells. Despite the differences between the physical and chemical mixing approaches, both pathways provided solar cells with similar power conversion efficiencies, highlighting the advantages of both pathways toward highly efficient organic solar cells.

  16. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  17. Accumulation of acyl-enzyme in DD-peptidase-catalysed reactions with analogues of peptide substrates.

    PubMed Central

    Jamin, M; Adam, M; Damblon, C; Christiaens, L; Frère, J M

    1991-01-01

    Thioester substrates can be used to study the hydrolysis and transfer reactions catalysed by beta-lactamases and DD-peptidases. With the latter enzymes, accumulation of the acyl-enzyme can be detected directly. The efficiency of various amines as acceptor substrates was in excellent agreement with previous results obtained with peptide substrates of the DD-peptidases. The results indicated the presence of a specific binding site for the acceptor substrates. Although most of the results agreed well with a simple partition model, more elaborate hypotheses will be needed to account for all the data presented. PMID:1747125

  18. p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum.

    PubMed

    Ng, F W; Nguyen, M; Kwan, T; Branton, P E; Nicholson, D W; Cromlish, J A; Shore, G C

    1997-10-20

    We have identified a human Bcl-2-interacting protein, p28 Bap31. It is a 28-kD (p28) polytopic integral protein of the endoplasmic reticulum whose COOH-terminal cytosolic region contains overlapping predicted leucine zipper and weak death effector homology domains, flanked on either side by identical caspase recognition sites. In cotransfected 293T cells, p28 is part of a complex that includes Bcl-2/Bcl-XL and procaspase-8 (pro-FLICE). Bax, a pro-apoptotic member of the Bcl-2 family, does not associate with the complex; however, it prevents Bcl-2 from doing so. In the absence (but not presence) of elevated Bcl-2 levels, apoptotic signaling by adenovirus E1A oncoproteins promote cleavage of p28 at the two caspase recognition sites. Purified caspase-8 (FLICE/MACH/Mch5) and caspase-1(ICE), but not caspase-3 (CPP32/apopain/ Yama), efficiently catalyze this reaction in vitro. The resulting NH2-terminal p20 fragment induces apoptosis when expressed ectopically in otherwise normal cells. Taken together, the results suggest that p28 Bap31 is part of a complex in the endoplasmic reticulum that mechanically bridges an apoptosis-initiating caspase, like procaspase-8, with the anti-apoptotic regulator Bcl-2 or Bcl-XL. This raises the possibility that the p28 complex contributes to the regulation of procaspase-8 or a related caspase in response to E1A, dependent on the status of the Bcl-2 setpoint within the complex.

  19. Dichotomous Role of Exciting the Donor or the Acceptor on Charge Generation in Organic Solar Cells.

    PubMed

    Hendriks, Koen H; Wijpkema, Alexandra S G; van Franeker, Jacobus J; Wienk, Martijn M; Janssen, René A J

    2016-08-10

    In organic solar cells, photoexcitation of the donor or acceptor phase can result in different efficiencies for charge generation. We investigate this difference for four different 2-pyridyl diketopyrrolopyrrole (DPP) polymer-fullerene solar cells. By comparing the external quantum efficiency spectra of the polymer solar cells fabricated with either [60]PCBM or [70]PCBM fullerene derivatives as acceptor, the efficiency of charge generation via donor excitation and acceptor excitation can both be quantified. Surprisingly, we find that to make charge transfer efficient, the offset in energy between the HOMO levels of donor and acceptor that govern charge transfer after excitation of the acceptor must be larger by ∼0.3 eV than the offset between the corresponding two LUMO levels when the donor is excited. As a consequence, the driving force required for efficient charge generation is significantly higher for excitation of the acceptor than for excitation of the donor. By comparing charge generation for a total of 16 different DPP polymers, we confirm that the minimal driving force, expressed as the photon energy loss, differs by about 0.3 eV for exciting the donor and exciting the acceptor. Marcus theory may explain the dichotomous role of exciting the donor or the acceptor on charge generation in these solar cells.

  20. Titanium dioxide nanoparticles provide protection against polycyclic aromatic hydrocarbon BaP and chrysene-induced perturbation of DNA repair machinery: A computational biology approach.

    PubMed

    Dhasmana, Anupam; Jamal, Qazi Mohd Sajid; Gupta, Richa; Siddiqui, Mohd Haris; Kesari, Kavindra Kumar; Wadhwa, Gulshan; Khan, Saif; Haque, Shafiul; Lohani, Mohtashim

    2016-07-01

    We examined the interaction of polycyclic hydrocarbons (PAHs) like benzo-α-pyrene (BaP), chrysene, and their metabolites 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene,9,10-oxide (BPDE) and chrysene 1,2-diol-3,4-epoxide-2 (CDE), with the enzymes involved in DNA repair. We investigated interaction of 120 enzymes with PAHs and screened out 40 probable targets among DNA repair enzymes, on the basis of higher binding energy than positive control. Out of which, 20 enzymes lose their function in the presence of BaP, chrysene, and their metabolites, which may fetter DNA repair pathways resulting in damage accumulation and finally leading to cancer formation. We propose the use of nanoparticles as a guardian against the PAH's induced toxicity. PAHs enter the cell via aryl hydrocarbon receptor (AHR). TiO2 NP showed a much higher docking score with AHR (12,074) as compared with BaP and chrysene with AHR (4,600 and 4,186, respectively), indicating a preferential binding of TiO2 NP with the AHR. Further, docking of BaP and chrysene with the TiO2 NP bound AHR complex revealed their strong adsorption on TiO2 NP itself, and not on their original binding site (at AHR). TiO2 NPs thereby prevent the entry of PAHs into the cell via AHR and hence protect cells against the deleterious effects induced by PAHs.

  1. BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies.

    PubMed

    Piva, Francesco; Santoni, Matteo; Matrana, Marc R; Satti, Suma; Giulietti, Matteo; Occhipinti, Giulia; Massari, Francesco; Cheng, Liang; Lopez-Beltran, Antonio; Scarpelli, Marina; Principato, Giovanni; Cascinu, Stefano; Montironi, Rodolfo

    2015-01-01

    Several novel recurrent mutations of histone modifying and chromatin remodeling genes have been identified in renal cell carcinoma. These mutations cause loss of function of several genes located in close proximity to VHL and include PBRM1, BAP1 and SETD2. PBRM1 encodes for BAF180, a component of the SWI/SNF chromatin remodeling complex, and is inactivated in, on average, 36% of clear cell renal cell carcinoma (ccRCC). Mutations of BAP1 encode for the histone deubiquitinase BRCA1 associated protein-1, and are present in 10% of ccRCCs. They are largely mutually exclusive with PBRM1 mutations. Mutations to SETD2, a histone methyltransferase, occur in 10% of ccRCC. BAP1- or SETD2-mutated ccRCCs have been associated with poor overall survival, while PBRM1 mutations seem to identify a favorable group of ccRCC tumors. This review describes the roles of PBRM1, BAP1 and SETD2 in the development and progression of ccRCC and their potential for future personalized approaches.

  2. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol.

    PubMed

    Breckenridge, David G; Stojanovic, Marina; Marcellus, Richard C; Shore, Gordon C

    2003-03-31

    Stimulation of cell surface death receptors activates caspase-8, which targets a limited number of substrates including BAP31, an integral membrane protein of the endoplasmic reticulum (ER). Recently, we reported that a caspase-resistant BAP31 mutant inhibited several features of Fas-induced apoptosis, including the release of cytochrome c (cyt.c) from mitochondria (Nguyen, M., D.G. Breckenridge, A. Ducret, and G.C. Shore. 2000. Mol. Cell. Biol. 20:6731-6740), implicating ER-mitochondria crosstalk in this pathway. Here, we report that the p20 caspase cleavage fragment of BAP31 can direct pro-apoptotic signals between the ER and mitochondria. Adenoviral expression of p20 caused an early release of Ca2+ from the ER, concomitant uptake of Ca2+ into mitochondria, and mitochondrial recruitment of Drp1, a dynamin-related protein that mediates scission of the outer mitochondrial membrane, resulting in dramatic fragmentation and fission of the mitochondrial network. Inhibition of Drp1 or ER-mitochondrial Ca2+ signaling prevented p20-induced fission of mitochondria. p20 strongly sensitized mitochondria to caspase-8-induced cyt.c release, whereas prolonged expression of p20 on its own ultimately induced caspase activation and apoptosis through the mitochondrial apoptosome stress pathway. Therefore, caspase-8 cleavage of BAP31 at the ER stimulates Ca2+-dependent mitochondrial fission, enhancing the release of cyt.c in response to this initiator caspase.

  3. Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated Degradation.

    PubMed

    Wakana, Yuichi; Takai, Sawako; Nakajima, Ken-Ichi; Tani, Katsuko; Yamamoto, Akitsugu; Watson, Peter; Stephens, David J; Hauri, Hans-Peter; Tagaya, Mitsuo

    2008-05-01

    Certain endoplasmic reticulum (ER)-associated degradation (ERAD) substrates with transmembrane domains are segregated from other ER proteins and sorted into a juxtanuclear subcompartment, known as the ER quality control compartment. Bap31 is an ER protein with three transmembrane domains, and it is assumed to be a cargo receptor for ER export of some transmembrane proteins, especially those prone to ERAD. Here, we show that Bap31 is a component of the ER quality control compartment and that it moves between the peripheral ER and a juxtanuclear ER or ER-related compartment distinct from the conventional ER-Golgi intermediate compartment. The third and second transmembrane domains of Bap31 are principally responsible for the movement to and recycling from the juxtanuclear region, respectively. This cycling was blocked by depolymerization of microtubules and disruption of dynein-dynactin function. Overexpression of Sar1p and Arf1 mutants affected Bap31 cycling, suggesting that this cycling pathway is related to the conventional vesicular transport pathways.

  4. Metabolism and distribution of benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) in human lung cells by liquid chromatography tandem mass spectrometry: detection of an adenine B[a]P-7,8-dione adduct.

    PubMed

    Huang, Meng; Liu, Xiaojing; Basu, Sankha S; Zhang, Li; Kushman, Mary E; Harvey, Ronald G; Blair, Ian A; Penning, Trevor M

    2012-05-21

    Benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) is produced in human lung cells by the oxidation of (±)-B[a]P-7,8-trans-dihydrodiol, which is catalyzed by aldo-keto reductases (AKRs). However, information relevant to the cell-based metabolism of B[a]P-7,8-dione is lacking. We studied the metabolic fate of 2 μM 1,3-[(3)H(2)]-B[a]P-7,8-dione in human lung adenocarcinoma A549 cells, human bronchoalveolar H358 cells, and immortalized human bronchial epithelial HBEC-KT cells. In these three cell lines, 1,3-[(3)H(2)]-B[a]P-7,8-dione was rapidly consumed, and radioactivity was distributed between the organic and aqueous phase of ethyl acetate-extracted media, as well as in the cell lysate pellets. After acidification of the media, several metabolites of 1,3-[(3)H(2)]-B[a]P-7,8-dione were detected in the organic phase of the media by high performance liquid chromatography-ultraviolet-radioactivity monitoring (HPLC-UV-RAM). The structures of B[a]P-7,8-dione metabolites varied in the cell lines and were identified as B[a]P-7,8-dione conjugates with glutathione (GSH) and N-acetyl-l-cysteine (NAC), 8-O-monomethylated-catechol, catechol monosulfate, and monoglucuronide, and monohydroxylated-B[a]P-7,8-dione by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We also obtained evidence for the first time for the formation of an adenine adduct of B[a]P-7,8-dione. Among these metabolites, the identity of the GSH-B[a]P-7,8-dione and the NAC-B[a]P-7,8-dione was further validated by comparison to authentic synthesized standards. The pathways of B[a]P-7,8-dione metabolism in the three human lung cell lines are formation of GSH and NAC conjugates, reduction to the catechol followed by phase II conjugation reactions leading to its detoxification, monohydroxylation, as well as formation of the adenine adduct.

  5. Influence of dietary fat type on benzo(a)pyrene [B(a)P] biotransformation in a B(a)P-induced mouse model of colon cancer.

    PubMed

    Diggs, Deacqunita L; Myers, Jeremy N; Banks, Leah D; Niaz, Mohammad S; Hood, Darryl B; Roberts, L Jackson; Ramesh, Aramandla

    2013-12-01

    In the US alone, around 60,000 lives/year are lost due to colon cancer. Diet and environment have been implicated in the development of sporadic colon tumors. The objective of this study was to determine how dietary fat potentiates the development of colon tumors through altered B(a)P biotransformation, using the Adenomatous polyposis coli with Multiple intestinal neoplasia mouse model. Benzo(a)pyrene was administered to mice through tricaprylin, and unsaturated (USF; peanut oil) and saturated (SF; coconut oil) fats at doses of 50 and 100 μg/kg via oral gavage over a 60-day period. Blood, colon, and liver were collected at the end of exposure period. The expression of B(a)P biotransformation enzymes [cytochrome P450 (CYP)1A1, CYP1B1 and glutathione-S-transferase] in liver and colon were assayed at the level of protein, mRNA and activities. Plasma and tissue samples were analyzed by reverse phase high-performance liquid chromatography for B(a)P metabolites. Additionally, DNA isolated from colon and liver tissues was analyzed for B(a)P-induced DNA adducts by the (32)P-postlabeling method using a thin-layer chromatography system. Benzo(a)pyrene exposure through dietary fat altered its metabolic fate in a dose-dependent manner, with 100 μg/kg dose group registering an elevated expression of B(a)P biotransformation enzymes, and greater concentration of B(a)P metabolites, compared to the 50 μg/kg dose group (P<.05). This effect was more pronounced for SF group compared to USF group (P<.05). These findings establish that SF causes sustained induction of B(a)P biotransformation enzymes and extensive metabolism of this toxicant. As a consequence, B(a)P metabolites were generated to a greater extent in colon and liver, whose concentrations also registered a dose-dependent increase. These metabolites were found to bind with DNA and form B(a)P-DNA adducts, which may have contributed to colon tumors in a subchronic exposure regimen.

  6. Hexa-peri-hexabenzocoronene with Different Acceptor Units for Tuning Optoelectronic Properties.

    PubMed

    Keerthi, Ashok; Hou, Ian Cheng-Yi; Marszalek, Tomasz; Pisula, Wojciech; Baumgarten, Martin; Narita, Akimitsu

    2016-10-06

    Hexa-peri-hexabenzocoronene (HBC)-based donor-acceptor dyads were synthesized with three different acceptor units, through two pathways: 1) "pre-functionalization" of monobromo-substituted hexaphenylbenzene prior to the cyclodehydrogenation; and 2) "post-functionalization" of monobromo-substituted HBC after the cyclodehydrogenation. The HBC-acceptor dyads demonstrated varying degrees of intramolecular charge-transfer interactions, depending on the attached acceptor units, which allowed tuning of their photophysical and optoelectronic properties, including the energy gaps. The two synthetic pathways described here can be complementary and potentially be applied for the synthesis of nanographene-acceptor dyads with larger aromatic cores, including one-dimensionally extended graphene nanoribbons.

  7. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  8. Vacancy-Induced Electronic Structure Variation of Acceptors and Correlation with Proton Conduction in Perovskite Oxides.

    PubMed

    Kim, Hye-Sung; Jang, Ahreum; Choi, Si-Young; Jung, WooChul; Chung, Sung-Yoon

    2016-10-17

    In most proton-conducing perovskite oxides, the electrostatic attraction between negatively charged acceptor dopants and protonic defects having a positive charge is known to be a major cause of retardation of proton conduction, a phenomenon that is generally referred to as proton trapping. We experimentally show that proton trapping can be suppressed by clustering of positively charged oxygen vacancies to acceptors in BaZrO3-δ and BaCeO3-δ . In particular, to ensure the vacancy-acceptor association is effective against proton trapping, the valence electron density of acceptors should not significantly vary when the oxygen vacancies cluster, based on the weak hybridization between the valence d or p orbitals of acceptors and the 2p orbitals of oxygen.

  9. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xia, Chunyu; Wu, Wei-Min; Sun, Guoping; Xu, Meiying

    2014-07-01

    To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors.

  10. The activation energy for Mg acceptor in the Ga-rich InGaN alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Wei, Tong; Chen, Li-Ying; Wang, Sha-Sha; Wang, Jun

    2017-02-01

    The activation energy for Mg acceptor in InxGa1-xN alloys is investigated. It is found that there are three factors to influence the activation energy for Mg acceptor. One is the stronger dependence of the VBM of InxGa1-xN depending on In content than that of the Mg acceptor energy level. The other is the concentration of Mg acceptors. Another is the extending of the valence band-tail states into the band gap. In addition, a model based on modifying the effective mass model is developed. It is found that the model can describe the activation energy for Mg acceptor in the Ga-rich InxGa1-xN alloys well after considering the influence of the valence band-tail states.

  11. Stimulation of the ATPase activity of rat brain protein kinase C by phospho acceptor substrates of the enzyme.

    PubMed

    O'Brian, C A; Ward, N E

    1991-03-05

    We recently reported that autophosphorylated rat brain protein kinase C (PKC) catalyzes a Ca2(+)- and phosphatidylserine- (PS-) dependent ATPase reaction. The Ca2(+)- and PS-dependent ATPase and histone kinase reactions of PKC each had a Km app(ATP) of 6 microM. Remarkably, the catalytic fragment of PKC lacked detectable ATPase activity. In this paper, we show that subsaturating concentrations of protein substrates accelerate the ATPase reaction catalyzed by PKC and that protein and peptide substrates of PKC induce ATPase catalysis by the catalytic fragment. At subsaturating concentrations, histone III-S and protamine sulfate each accelerated the ATPase activity of PKC in the presence of Ca2+ and PS by as much as 1.5-fold. At saturating concentrations, the protein substrates were inhibitory. Poly(L-lysine) failed to accelerate the ATPase activity, indicating that the acceleration observed with histone III-S and protamine sulfate was not simply a result of their gross physical properties. Furthermore, histone III-S induced the ATPase activity of the catalytic fragment of PKC, at both subsaturating and saturating histone concentrations. The induction of ATPase activity was also elicited by the peptide substrate Arg-Arg-Lys-Ala-Ser-Gly-Pro-Pro-Val, when the peptide was present at concentrations near its Km app. The induction of the ATPase activity by the nonapeptide provides strong evidence that the binding of phospho acceptor substrates to the active site of PKC can stimulate ATP hydrolysis. Taken together, our results indicate that PKC-catalyzed protein phosphorylation is inefficient, since it is accompanied by Pi production.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Changes in the Metabolome of Picea balfouriana Embryogenic Tissues That Were Linked to Different Levels of 6-BAP by Gas Chromatography-Mass Spectrometry Approach

    PubMed Central

    Li, Q. F.; Wang, J. H.; Pulkkinen, P.; Kong, L. S.

    2015-01-01

    Embryogenic cultures of Picea balfouriana, which is an important commercial species for reforestation in Southern China, easily lose their embryogenic ability during long-term culture. Embryogenic tissue that proliferated at lower concentrations (3.6 μM and 2.5 μM) of 6-benzylaminopurine (6-BAP) were more productive, and generated 113 ± 6 and 89 ± 3 mature embryos per 100 mg embryogenic tissue, respectively. A metabolomic approach was used to study the changes in metabolites linked to embryogenic competence related to three different 6-BAP concentrations (2.5 μM, 3.6 μM, and 5 μM). A total of 309 compounds were obtained, among which 123 metabolites mapped to Kyoto Encyclopedia of Genes and genomes (KEGG) pathways. The levels of 35 metabolites were significantly differentially regulated among the three 6-BAP treatments, and 32 metabolites differed between the 2.5 μM and 5 μM treatments. A total of 17 metabolites appeared only once among the three comparisons. The combination of a score plot and a loading plot showed that in the samples with higher embryogenic ability (3.6 μM and 2.5 μM), up-regulated metabolites were mostly amino acids and down-regulated metabolites were mostly primary carbohydrates (especially sugars). These results suggested that 6-BAP may influence embryogenic competence by nitrogen metabolism, which could cause an increase in amino acid levels and higher amounts of aspartate, isoleucine, and leucine in tissues with higher embryogenic ability. Furthermore, we speculated that 6-BAP may affect the amount of tryptophan in tissues, which would change the indole-3-acetic acid levels and influence the embryogenic ability. PMID:26517840

  13. Seasonal variation of benzo(a)pyrene in the Spanish airborne PM10. Multivariate linear regression model applied to estimate BaP concentrations.

    PubMed

    Callén, M S; López, J M; Mastral, A M

    2010-08-15

    The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography mass-spectrometry mass-spectrometry (GC-MS-MS). Multivariate linear regression models (MLRM) were used to predict BaP air concentrations in two sampling places, taking PM10 and meteorological variables as possible predictors. The model obtained with data from two sampling sites (all sites model) (R(2)=0.817, PRESS/SSY=0.183) included the significant variables like PM10, temperature, solar radiation and wind speed and was internally and externally validated. The first validation was performed by cross validation and the last one by BaP concentrations from previous campaigns carried out in Zaragoza from 2001-2004. The proposed model constitutes a first approximation to estimate BaP concentrations in urban atmospheres with very good internal prediction (Q(CV)(2)=0.813, PRESS/SSY=0.187) and with the maximal external prediction for the 2001-2002 campaign (Q(ext)(2)=0.679 and PRESS/SSY=0.321) versus the 2001-2004 campaign (Q(ext)(2)=0.551, PRESS/SSY=0.449).

  14. Ultrafast exciton dissociation at donor/acceptor interfaces

    NASA Astrophysics Data System (ADS)

    Grancini, G.; Fazzi, D.; Binda, M.; Maiuri, M.; Petrozza, A.; Criante, L.; Perissinotto, S.; Egelhaaf, H.-J.; Brida, D.; Cerullo, G.; Lanzani, G.

    2013-09-01

    Charge generation at donor/acceptor interface is a highly debated topic in the organic photovoltaics (OPV) community. The primary photoexcited state evolution happens in few femtosecond timescale, thus making very intriguing their full understanding. In particular charge generation is believed to occur in < 200 fs, but no clear picture emerged so far. In this work we reveal for the first time the actual charge generation mechanism following in real time the exciton dissociation mechanism by means of sub-22 fs pump-probe spectroscopy. We study a low-band-gap polymer: fullerene interface as an ideal system for OPV. We demonstrate that excitons dissociation leads, on a timescale of 20-50 fs, to two byproducts: bound interfacial charge transfer states (CTS) and free charges. The branching ratio of their formation depends on the excess photon energy provided. When high energy singlet polymer states are excited, well above the optical band gap, an ultrafast hot electron transfer happens between the polymer singlet state and the interfacial hot CTS* due to the high electronic coupling between them. Hot exciton dissociation prevails then on internal energy dissipation that occurs within few hundreds of fs. By measuring the internal quantum efficiency of a prototypical device a rising trend with energy is observed, thus indicating that hot exciton dissociation effectively leads to a higher fraction of free charges.

  15. Potassium acceptor doping of ZnO crystals

    SciTech Connect

    Parmar, Narendra S. Lynn, K. G.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  16. Poly(trifluoromethyl)azulenes: structures and acceptor properties

    SciTech Connect

    Clikeman, Tyler T.; Bukovsky, Eric V.; Kuvychko, Igor V.; San, Long K.; Deng, Shihu; Wang, Xue B.; Chen, Yu-Sheng; Strauss, Steven H.; Boltalina, Olga V.

    2014-07-10

    Azulene is a non-alternant, non-benzenoid aromatic hydrocarbon with an intense blue colour, a dipole moment of 1.0 D,1 positive electron affinity, and an “anomalous” emission from the second excited state in violation of Kasha’s rule.2,3 Azulene’s unique properties have potential uses in molecular switches,4,5 molecular diodes,6 organic photovoltaics,7 and charge transfer complexes.8-12 Introduction of electron-withdrawing groups to the azulenic core, such as CN,8,13,14 halogens,15-19 and CF3,20,21 can enhance certain electrical and photophysical properties. In this work, we report six new trifluoromethyl derivatives of azulene (AZUL), three isomers of AZUL(CF3)3 and three isomers of AZUL(CF3)4, and the first X-ray structure of a π-stacked donor-acceptor complex of a trifluoromethyl azulene with donor pyrene.

  17. Analysis of nonlinear optical properties in donor–acceptor materials

    SciTech Connect

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  18. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor

    SciTech Connect

    Kumazaki, Shigeichi; Kandori, Hideki; Yoshihara, Keitaro ); Iwaki, Masayo; Itoh, Shigeru ); Ikegamu, Isamu )

    1994-10-27

    Rates of sequential electron transfer reactions from the primary electron donor chlorophyll dimer (P700) to the electron acceptor chlorophyll a-686 (A[sub 0]) and to the secondary acceptor quinone (Q[sub [phi

  19. Bacterial Labionin-Containing Peptides and Sactibiotics: Unusual Types of Antimicrobial Peptides with Potential Use in Clinical Settings (A Review).

    PubMed

    Coelho, Marcus Lívio Varella; de Souza Duarte, Andreza Freitas; do Carmo de Freire Bastos, Maria

    2016-09-30

    One of the biggest challenges faced presently by clinicians is the emergence of multi drug--resistant pathogens that can infect humans and animals.To control the infections caused by such pathogens the development of new drugs is required. Bacteria are a rich source of ribosomally-synthesized antimicrobial peptides known as bacteriocins, which are characterized by the presence of a self-defense immunity system. Labionin-containing lantibiotics and sactibiotics are post-translationally modified bacteriocins with peculiar features. Labionin-containing peptides belong tosubclass Iclantibiotics in which the carbacyclic triamino triacid labionin, a structural variant of lanthionine,and a methyl-substitute labionin derivative are found, giving the molecule a labyrinthine structure. Sactibiotics are circular or linear peptides belonging to a distinct bacteriocin class (class V) which is characterized by the presence of cross-linkages formed by the thiol group of cysteine residues and the α-carbon of acceptor amino acids. A few examples of these bacteriocins have been described in the literature to date, although putative gene clusters with the potential to encode such peptides can be found in the genome of many bacterial species. Some peptides already under study exhibit potential biotechnological applications because of their remarkable antibacterial or antiviral activities, as well as their analgesic activity. Therefore, in this review, the main findings concerning these peptides will be addressed and discussed, with anemphasis on their potential use in clinical settings.

  20. Analysis of Shewanella oneidensis Membrane Protein Expression in Response to Electron Acceptor Availability

    SciTech Connect

    Giometti, Carol S.; Khare, Tripti; Verberkmoes, Nathan; O'Loughlin, Ed; Lindberg, Carl; Thompson, Melissa; Hettich, Robert

    2006-04-05

    Shewanella oneidensis MR-1, a gram negative metal-reducing bacterium, can utilize a large number of electron acceptors. In the natural environment, S. oneidensis utilizes insoluble metal oxides as well as soluble terminal electron acceptors. The purpose of this ERSP project is to identify differentially expressed proteins associated with the membranes of S. oneidensis MR-1 cells grown with different electron acceptors, including insoluble metal oxides. We hypothesize that through the use of surface labeling, subcellular fractionation, and a combination of proteome analysis tools, proteins involved in the reduction of different terminal electron acceptors will be elucidated. We are comparing the protein profiles from cells grown with the soluble electron acceptors oxygen and fumarate and with those from cells grown with the insoluble iron oxides goethite, ferrihydrite and lepidocrocite. Comparison of the cell surface proteins isolated from cells grown with oxygen or anaerobically with fumarate revealed an increase in the abundance of over 25 proteins in anaerobic cells, including agglutination protein and flagellin proteins along with the several hypothetical proteins. In addition, the surface protein composition of cells grown with the insoluble iron oxides varies considerably from the protein composition observed with either soluble electron acceptor as well as between the different insoluble acceptors.

  1. Quantitative analysis of 3-OHB[a]P and (+)-anti-BPDE as biomarkers of B[a]P exposure in rats.

    PubMed

    Lin, Qi; Xiao-Chen, Liu; Bo, Yang; Na, Liu; Min, Shi; Gang, Chen; Hui, Liu; Jie, Zhou; Fa-Sheng, Li

    2016-03-01

    The aim of this study was to develop an analytical method for the determination the levels of metabolites of benzo[a]pyrene (B[a]P), 3-hydroxybenzo(a)pyrene (3-OHB[a]P) and (+)-anti-benzo(a)pyrene diol-epoxide [(+)-anti-BPDE, combined with DNA to form adducts], in rat blood and tissues exposed to B[a]P exposure by high-performance liquid chromatography with fluorescence detection (HPLC/FD), and to investigate the usefulness of 3-OHB[a]P and (+)-anti-BPDE as markers of intragastrical exposure to B[a]P in rats. The levels of 3-OH-B[a]P and B[a]P-tetrol I-1 released after acid hydrolysis of (+)-anti-BPDE in the samples were measured by HPLC/FD. The calibration curves were linear (r(2) > 0.9904), and the lower limit of quantification ranged from 0.34 to 0.45 ng/mL for 3-OHB[a]P and from 0.43 to 0.58 ng/mL for (+)-anti-BPDE. The intra- and inter-day stability assay data suggested that the method is accurate and precise. The recoveries of 3-OHB[a]P and (+)-anti-BPDE were in the ranges of 73.6 ± 5.0 to 116.5 ± 6.3% and 73.3 ± 8.5 to 141.2 ± 13.8%, respectively. A positive correlation was found between the concentration of intragastrical B[a]P and the concentrations of 3-OH-B[a]P and (+)-anti-BPDE in the blood and in most of the tissues studied, except for the brain and kidney, which showed no correlation between B[a]P and 3-OHB[a]P and between B[a]P and (+)-anti-BPDE, respectively. A sensitive, reliable and rapid HPLC/FD was developed and validated for analysis of 3-OHB[a]P and (+)-anti-BPDE in rat blood and tissues. There was a positive correlation between the concentration of 3-OHB[a]P or (+)-anti-BPDE in the blood and the concentration of 3-OHB[a]P or (+)-anti-BPDE in the most other tissues examined. The concentration of 3-OHB[a]P or (+)-anti-BPDE in the blood could be used as an indicator of the concentration of 3-OHB[a]P or (+)-anti-BPDE in the other tissues in response to B[a]P exposure. These results demonstrate that 3-OHB[a]P and (+)-anti-BPDE are potential

  2. Benzo(a)pyrene (B(a)P) metabolism and in vitro formation of B(a)P-DNA adducts by hepatic microsomes from rats fed diets containing corn and menhaden oils

    SciTech Connect

    Dharwadkar, S.; Bellow, J.; Ramanathan, R.; Wade, A.

    1986-03-01

    Dietary unsaturated fat is required for maximum induction of hepatic mixed function oxidases responsible for activating carcinogens which may bind covalently to DNA. The aim of this study was to assess the influence of dietary fat type on in vitro B(a)P metabolism and B(a)P-DNA adduct formation. Male rats were starved 2 days and refed diet devoid of fat, or containing 20% corn oil (CO) or 20% menhaden oil (MO) for 4 days. Both dietary fats increased Vmax for B(a)P hydroxylation without affecting Km. Phenobarbital (PB) administration increased Vmax in all animals but Km was increased only in rats fed the fat diets. PB resulted in decreased B(a)P metabolism when conducted at 15 =M only in rats fed the two fat diets even in the presence of increased cytochrome P-450 (P-450). This effect was due to a decrease in B(a)P metabolism at low substrate concentrations in PB treated fat-fed animals. Binding of B(a)P to calf-thymus DNA was increased in animals fed both fats which was enhanced further by PB only in rats fed the CO and MO diets. When the data are calculated as B(a)P metabolized per unit of P-450, PB seems to induce a P-450 in fat-fed animals having lower affinity and capacity for B(a)P metabolism and activation.

  3. The yeast split-ubiquitin membrane protein two-hybrid screen identifies BAP31 as a regulator of the turnover of endoplasmic reticulum-associated protein tyrosine phosphatase-like B.

    PubMed

    Wang, Bing; Pelletier, Jerry; Massaad, Michel J; Herscovics, Annette; Shore, Gordon C

    2004-04-01

    In the past decade, traditional yeast two-hybrid techniques have identified a plethora of interactions among soluble proteins operating within diverse cellular pathways. The discovery of associations between membrane proteins by genetic approaches, on the other hand, is less well established due to technical limitations. Recently, a split-ubiquitin system was developed to overcome this barrier, but so far, this system has been limited to the analysis of known membrane protein interactions. Here, we constructed unique split-ubiquitin-linked cDNA libraries and provide details for implementing this system to screen for binding partners of a bait protein, in this case BAP31. BAP31 is a resident integral protein of the endoplasmic reticulum, where it operates as a chaperone or cargo receptor and regulator of apoptosis. Here we describe a novel human member of the protein tyrosine phosphatase-like B (PTPLB) family, an integral protein of the endoplasmic reticulum membrane with four membrane-spanning alpha helices, as a BAP31-interacting protein. PTPLB turns over rapidly through degradation by the proteasome system. Comparisons of mouse cells with a deletion of Bap31 or reconstituted with human BAP31 indicate that BAP31 is required to maintain PTPLB, consistent with a chaperone or quality control function for BAP31 in the endoplasmic reticulum membrane.

  4. Synthesis and electrochemical studies of charge-transfer complexes of thiazolidine-2,4-dione with σ and π acceptors

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Kumar, Pradeep; Katyal, Anju; Kalra, Rashmi; Dass, Sujata K.; Prakash, Satya; Chandra, Ramesh

    2010-03-01

    In the present work, we report the synthesis and characterization of novel charge-transfer complexes of thiazolidine-2,4-dione (TZD) with sigma acceptor (iodine) and pi acceptors (chloranil, dichlorodicyanoquinone, picric acid and duraquinone). We also evaluated their thermal and electrochemical properties and we conclude that these complexes are frequency dependent. Charge-transfer complex between thiazolidine-2,4-dione and iodine give best conductivity. In conclusion, complex with sigma acceptors are more conducting than with pi acceptors.

  5. Optical spectroscopy of single beryllium acceptors in GaAs/AlGaAs quantum well

    NASA Astrophysics Data System (ADS)

    Petrov, P. V.; Kokurin, I. A.; Klimko, G. V.; Ivanov, S. V.; Ivánov, Yu. L.; Koenraad, P. M.; Silov, A. Yu.; Averkiev, N. S.

    2016-09-01

    We carry out microphotoluminescence measurements of an acceptor-bound exciton (A0X ) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into account a quantum well (QW) confinement, an electron-hole and hole-hole exchange interaction. By means of fitting the measured data with the model we are able to study the fine structure of individual acceptors inside the QW. The good agreement between our experiments and the model indicates that we observe single acceptors in a pure two-dimensional environment whose states are unstrained in the QW plain.

  6. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  7. Peptide Antimicrobial Agents

    PubMed Central

    Jenssen, Håvard; Hamill, Pamela; Hancock, Robert E. W.

    2006-01-01

    Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides with antifungal and antiparasitic activities are discussed in less detail, although the broad-spectrum activities of such peptides indicate that they are important host defense molecules. Knowledge regarding the relationship between peptide structure and function as well as their mechanism of action is being applied in the design of antimicrobial peptide variants as potential novel therapeutic agents. PMID:16847082

  8. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  9. PH dependent adhesive peptides

    SciTech Connect

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  10. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors

    EPA Science Inventory

    Lab- and pilot-scale simultaneous nitrification, denitrification and phosphorus removal-sequencing batch reactors were operated under cyclic anaerobic and micro-aerobic conditions. The use of oxygen, nitrite, and nitrate as electron acceptors by Candidatus Accumulibacter phosphat...

  11. Selection of the acceptor medium in in vitro measurements of drug release from dermatological ointments.

    PubMed

    Gloor, M; Shabafrouz, H

    1983-01-01

    Comparative measurements of in vitro agent release using hydrophilic, intermediate, and lipophilic acceptor phases and in vivo measurements of the blanching effect with triamcinolone acetonide are reported. White petrolatum, wool alcohols ointment, and polyethylene glycol ointment served as donator phases. The results demonstrate that the lipophilic acceptor phase (isopropyl palmitate) is most representative for the in vivo acceptor phase. Conclusions cannot be drawn regarding in vivo effectiveness from measurements of agent release to the hydrophilic (phosphate buffer, pH 6) and intermediate (n-octanol) acceptor phases. In vitro measurements of agent release have a screening character and must usually be supplemented by very elaborate penetration models of the human skin for a definitive evaluation of an ointment.

  12. Reversal-bounded multipushdown machines. [Turing acceptors for context free languages

    NASA Technical Reports Server (NTRS)

    Baker, B. S.; Book, R. V.

    1974-01-01

    Several representations of the recursively enumerable (r.e.) sets are presented. The first states that every r.e. set is the homomorphic image of the intersection of two linear context-free languages. The second states that every r.e. set is accepted by an on-line Turing acceptor with two pushdown stores such that in every computation, each pushdown store can make at most one reversal (that is, one change from 'pushing' to 'popping'). It is shown that this automata theoretic representation cannot be strengthened by restricting the acceptors to be deterministic multitape, nondeterministic one-tape, or nondeterministic multicounter acceptors. This provides evidence that reversal bounds are not a natural measure of computational complexity for multitape Turing acceptors.

  13. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications.

    PubMed

    Stalder, Romain; Xie, Dongping; Islam, Ashraful; Han, Liyuan; Reynolds, John R; Schanze, Kirk S

    2014-06-11

    We report on a sexithienyl and two donor-acceptor-donor oligothiophenes, employing benzothiadiazole and isoindigo as electron-acceptors, each functionalized with a phosphonic acid group for anchoring onto TiO2 substrates as light-harvesting molecules for dye sensitized solar cells (DSSCs). These dyes absorb light to wavelengths as long as 700 nm, as their optical HOMO/LUMO energy gaps are reduced from 2.40 to 1.77 eV with increasing acceptor strength. The oligomers were adsorbed onto mesoporous TiO2 films on fluorine doped tin oxide (FTO)/glass substrates and incorporated into DSSCs, which show AM1.5 power conversion efficiencies (PCEs) ranging between 2.6% and 6.4%. This work demonstrates that the donor-acceptor-donor (D-A-D) molecular structures coupled to phosphonic acid anchoring groups, which have not been used in DSSCs, can lead to high PCEs.

  14. Interface-induced heavy-hole/light-hole splitting of acceptors in silicon

    SciTech Connect

    Mol, J. A.; Salfi, J.; Simmons, M. Y.; Rogge, S.; Rahman, R.; Hsueh, Y.; Klimeck, G.; Miwa, J. A.

    2015-05-18

    The energy spectrum of spin-orbit coupled states of individual sub-surface boron acceptor dopants in silicon have been investigated using scanning tunneling spectroscopy at cryogenic temperatures. The spatially resolved tunnel spectra show two resonances, which we ascribe to the heavy- and light-hole Kramers doublets. This type of broken degeneracy has recently been argued to be advantageous for the lifetime of acceptor-based qubits [R. Ruskov and C. Tahan, Phys. Rev. B 88, 064308 (2013)]. The depth dependent energy splitting between the heavy- and light-hole Kramers doublets is consistent with tight binding calculations, and is in excess of 1 meV for all acceptors within the experimentally accessible depth range (<2 nm from the surface). These results will aid the development of tunable acceptor-based qubits in silicon with long coherence times and the possibility for electrical manipulation.

  15. Preparation and spectroscopic studies on charge-transfer complexes of 2-hydroxypyridine with electron acceptors

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.

    2013-07-01

    The CT-interactions of electron acceptors such as iodine (I2), chloranilic acid (H2CA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) with 2-hydroxypyridine (HPyO) have been investigated in the defined solvent. The data indicate the formation of CT-complexes with the general formula [(HPyO)(acceptor)]. The 1:1 stoichiometry of the (HPyO)-acceptors were based on elemental analysis, IR spectra and thermogravimetric analysis of the solid CT-complexes along with the photometric titration measurements for the reactions. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes are discussed.

  16. Preparation and spectroscopic studies on charge-transfer complexes of famciclovir drug with different electron acceptors

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.; Teleb, Said M.; Nour, El-Metwally

    2012-09-01

    The CT-interaction of electron acceptors such as chloranilic acid (H2CA), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and and 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) with the antiviral drug famciclovir (FCV) have been investigated spectrophotometrically in the defined solvent. The data indicate the formation of CT-complexes with the general formula [(FCV)(acceptor)]. The 1:1 stoichiometry of the (FCV)-acceptors were based on elemental analysis, IR spectra and thermogravimetric analysis of the solid CT-complexes along with the photometric titration measurements for the reactions. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptor. Factors affecting the CT-processes such as redox potentials and steric hinderance of reactants are discussed.

  17. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.

    PubMed

    Wu, Chao; Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Wen-Wei; Li, Dao-Bo; Yu, Han-Qing

    2013-05-01

    Shewanella oneidensis MR-1 is an extensively studied dissimilatory metal-reducing bacterium with a great potential for bioremediation and electricity generation. It secretes flavins as electron shuttles which play an important role in extracellular electron transfer. However, the influence of various environmental factors on the secretion of flavins is largely unknown. Here, the effects of electron acceptors, including fumarate, ferrihydrite, Fe(III)-nitrilotriacetic acid (NTA), nitrate and trimethylamine oxide (TMAO), on the secretion of flavins were investigated. The level of riboflavin and riboflavin-5'-phosphate (FMN) secreted by S. oneidensis MR-1 varied considerably with different electron acceptors. While nitrate and ferrihydrite suppressed the secretion of flavins in relative to fumarate, Fe(III)-NTA and TMAO promoted such a secretion and greatly enhanced ferrihydrite reduction and electricity generation. This work clearly demonstrates that electron acceptors could considerably affect the secretion of flavins and consequent microbial EET. Such impacts of electron acceptors in the environment deserve more attention.

  18. Disassembly of micelles to impart donor and acceptor gradation to enhance organic solar cell efficiency.

    PubMed

    Arulkashmir, Arulraj; Krishnamoorthy, Kothandam

    2016-02-28

    A transparent, conducting and low surface energy surface was prepared by disassembly of anionic micelles, which altered the orientation of the donor polymer and imparted gradation between the donor and acceptor. This configuration increased the solar cell device efficiency.

  19. Time-resolved spectroscopy of the fluorescence quenching of a donor — acceptor pair by halothane

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Draxler, S.; Lippitsch, M. E.

    1992-04-01

    Donor (anthracene) sensitized acceptor (perylene) fluorescence is quenched more efficiently by halothane than is intrinsic perylene fluorescence. The underlying process of dynamic fluorescence quenching is investigated by time-resolved fluorescence spectroscopy.

  20. Sterilization-CO2-Injection (SCI) BaPS: Establishment of a new method to measure rates of soil respiration and gross nitrification in calcareous agricultural soils

    NASA Astrophysics Data System (ADS)

    Conrads, Hannah; Ingwersen, Joachim; Streck, Thilo

    2013-04-01

    Soil respiration and nitrification are key processes in carbon and nitrogen cycling in soil. An exact measurement of these two processes is a prerequisite for understanding the release of trace gases from soils. During the last decades the Barometric Process Separation (BaPS) method has become a widely used method to measure the turnover rates of these two processes. Its application, however, is currently limited to acidic to slightly acidic soils. In calcareous soils huge amounts of CO2 from soil respiration are dissolved in the soil solution, and the application of the BaPS method is hampered by the exact quantification of this flux. Small errors in this flux may result in huge errors in the calculation of the nitrification and respiration rates. In order to overcome this shortcoming and to extend the applicability of the method to a wider range of soils (especially agricultural soils) we developed a new adaptive method, the Sterilization-CO2-Injection (SCI) method, which aims to determine the CO2 dissolution flux (CO2,aq) experimentally. Therefore, an additional measuring step is introduced in which a sterilized soil subsample is incubated in the BaPS apparatus and known amounts of a pure CO2 gas are injected into the system while CO2 partial pressure is monitored. After each injection peak CO2 partial pressure decreases until a new stable equilibrium concentration is reached. This behavior is used to compute the amount of CO2 transferred to the soil solution applying simple mass balance calculation. The paired information about CO2 and CO2,aq is used to derive a regression equation, which gives CO2,aq as a function of the CO2 partial pressure. This relation is further used within the standard BaPS method. Results of the SCI-BaPS method for gross nitrification rates will be presented and compared to data measured by the 15N pool dilution method (Kirkham and Bartholomew, 1954). Results were obtained with calcareous and acidic agricultural soil samples. It turned

  1. ABAB Phthalocyanines: Scaffolds for Building Unprecedented Donor–π–Acceptor Chromophores

    PubMed Central

    Fazio, Ettore; Jaramillo‐García, Javier; Medel, María; Urbani, Maxence; Grätzel, Michael

    2016-01-01

    Abstract Unique donor–π–acceptor phthalocyanines have been synthesized through the asymmetric functionalization of an ABAB phthalocyanine, crosswise functionalized with two iodine atoms through Pd‐catalyzed cross‐coupling reactions with adequate electron‐donor and electron‐acceptor moieties. These push–pull molecules have been optically and electrochemically characterized, and their ability to perform as chromophores for dye‐sensitized solar cells has been tested. PMID:28168157

  2. Process for gasification using a synthetic CO/sub 2/ acceptor

    SciTech Connect

    Curran, G.P.; Lancet, M.S.

    1980-11-04

    A gasification process is disclosed using a synthetic CO/sub 2/ acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca/sub 5/(SiO/sub 4/)/sub 2/CO/sub 3/. A method for producing the synthetic CO/sub 2/ acceptor is also disclosed.

  3. An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Non-Fullerene Solar Cells.

    PubMed

    Zhang, Andong; Li, Cheng; Yang, Fan; Zhang, Jianqi; Wang, Zhaohui; Wei, Zhixiang; Li, Weiwei

    2017-03-01

    A star-shaped electron acceptor based on porphyrin as a core and perylene bisimide as end groups was constructed for application in non-fullerene organic solar cells. The new conjugated molecule exhibits aligned energy levels, good electron mobility, and complementary absorption with a donor polymer. These advantages facilitate a high power conversion efficiency of 7.4 % in non-fullerene solar cells, which represents the highest photovoltaic performance based on porphyrin derivatives as the acceptor.

  4. Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10.

    PubMed

    Liu, Tao; Guo, Yuan; Yi, Yuanping; Huo, Lijun; Xue, Xiaonan; Sun, Xiaobo; Fu, Huiting; Xiong, Wentao; Meng, Dong; Wang, Zhaohui; Liu, Feng; Russell, Thomas P; Sun, Yanming

    2016-12-01

    Two different nonfullerene acceptors and one copolymer are used to fabricate ternary organic solar cells (OSCs). The two acceptors show unique interactions that reduce crystallinity and form a homogeneous mixed phase in the blend film, leading to a high efficiency of ≈10.3%, the highest performance reported for nonfullerene ternary blends. This work provides a new approach to fabricate high-performance OSCs.

  5. ABAB Phthalocyanines: Scaffolds for Building Unprecedented Donor-π-Acceptor Chromophores.

    PubMed

    Fazio, Ettore; Jaramillo-García, Javier; Medel, María; Urbani, Maxence; Grätzel, Michael; Nazeerudin, Mohammad K; de la Torre, Gema; Torres, Tomas

    2017-02-01

    Unique donor-π-acceptor phthalocyanines have been synthesized through the asymmetric functionalization of an ABAB phthalocyanine, crosswise functionalized with two iodine atoms through Pd-catalyzed cross-coupling reactions with adequate electron-donor and electron-acceptor moieties. These push-pull molecules have been optically and electrochemically characterized, and their ability to perform as chromophores for dye-sensitized solar cells has been tested.

  6. Electron Donor-Acceptor Quenching and Photoinduced Electron Transfer for Coumarin Dyes.

    DTIC Science & Technology

    1983-10-31

    Mechanism of cousarin photodegradation . Ithe behavior of eoiuma dyes is water ad In aqueous detergent media,. and the effsects of medism aud, additives on...D-i36 345 ELECTRON DONOR-ACCEPTOR UENCHING AND PHOTOINDUCED i/i Ai ELECTRON TRANSFER FOR COUMARIN DYES (U) BOSTON UNIY MR DEPT OF CHEMISTRY G JONES...TYPE OF REPORT & PEIOD COVERED Electron Donor-acceptor Quenching and Photo- Technical, 1/1/82-10/31/82 induced Electron Transfer for Coumarin Dyes S

  7. Process for gasification using a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1980-01-01

    A gasification process is disclosed using a synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  8. Linking fate model in freshwater and PBPK model to assess human internal dosimetry of B(a)P associated with drinking water.

    PubMed

    Ciffroy, Philippe; Tanaka, T; Johansson, E; Brochot, C

    2011-08-01

    In the present study, we demonstrate an integrated modeling approach for predicting internal tissue concentrations of chemicals by coupling a multimedia environmental model and a generic physiologically based pharmacokinetic (PBPK) model. A case study was designed for a region situated on the Seine river watershed, downstream of the Paris megacity, and for benzo(a)pyrene emitted from industrial zones in the region. In this case study, these two models are linked only by water intake from riverine system for the multimedia model into human body for the PBPK model. The limited monitoring data sets of B(a)P concentrations in bottom sediment and in raw river water, obtained at the downstream of Paris, were used to re-construct long-term daily concentrations of B(a)P in river water. The re-construction of long-term series of B(a)P level played a key role for the intermediate model calibration (conducted in multimedia model) and thus for improving model input to PBPK model. In order to take into account the parametric uncertainty in the model inputs, some input parameters relevant for the multimedia model were given by probability density functions (PDFs); some generic PDFs were updated with site-specific measurements by a Bayesian approach. The results of this study showed that the multimedia model fits well with actual annual measurements in sediments over one decade. No accumulation of B(a)P in the organs was observed. In conclusion, this case study demonstrated the feasibility of a full-chain assessment combining multimedia environmental predictions and PBPK modeling, including uncertainty and sensitivity analyses.

  9. Usefulness of p16/CDKN2A fluorescence in situ hybridization and BAP1 immunohistochemistry for the diagnosis of biphasic mesothelioma.

    PubMed

    Wu, Di; Hiroshima, Kenzo; Yusa, Toshikazu; Ozaki, Daisuke; Koh, Eitetsu; Sekine, Yasuo; Matsumoto, Shinji; Nabeshima, Kazuki; Sato, Ayuko; Tsujimura, Tohru; Yamakawa, Hisami; Tada, Yuji; Shimada, Hideaki; Tagawa, Masatoshi

    2017-02-01

    Malignant mesothelioma is a highly aggressive neoplasm, and the histologic subtype is one of the most reliable prognostic factors. Some biphasic mesotheliomas are difficult to distinguish from epithelioid mesotheliomas with atypical fibrous stroma. The aim of this study was to analyze p16/CDKN2A deletions in mesotheliomas by fluorescence in situ hybridization (FISH) and BAP1 immunohistochemistry to evaluate their potential role in the diagnosis of biphasic mesothelioma. We collected 38 cases of pleural mesotheliomas. The results of this study clearly distinguished 29 cases of biphasic mesothelioma from 9 cases of epithelioid mesothelioma. The proportion of biphasic mesotheliomas with homozygous deletions of p16/CDKN2A in total was 96.6% (28/29). Homozygous deletion of p16/CDKN2A was observed in 18 (94.7%) of 19 biphasic mesotheliomas with 100% concordance of the p16/CDKN2A deletion status between the epithelioid and sarcomatoid components in each case. Homozygous deletion of the p16/CDKN2A was observed in 7 (77.8%) of 9 epithelioid mesotheliomas but not in fibrous stroma. BAP1 loss was observed in 5 (38.5%) of 13 biphasic mesotheliomas and in both epithelioid and sarcomatoid components. BAP1 loss was observed in 5 (62.5%) of 8 epithelioid mesotheliomas but not in fibrous stroma. Homozygous deletion of p16/CDKN2A is common in biphasic mesotheliomas, and the analysis of only one component of mesothelioma is sufficient to show that the tumor is malignant. However, compared with histology alone, FISH analysis of the p16/CDKN2A status and BAP1 immunohistochemistry in the spindled mesothelium provide a more objective means to differentiate between biphasic mesothelioma and epithelioid mesothelioma with atypical stromal cells.

  10. Long-term Coexposure to Hexavalent Chromium and B[a]P Causes Tissue-Specific Differential Biological Effects in Liver and Gastrointestinal Tract of Mice

    PubMed Central

    Sánchez-Martín, Francisco Javier; Fan, Yunxia; Carreira, Vinicius; Ovesen, Jerald L.; Vonhandorf, Andrew; Xia, Ying; Puga, Alvaro

    2015-01-01

    Complex mixtures of environmental agents often cause mixture-specific health effects that cannot be accounted for by a single mechanism. To study the biological effects of exposure to a mixture of chromium-VI and benzo[a]pyrene (B[a]P), often found together in the environment, we exposed mice for 60 days to 0, 55, 550, or 5500 ppb Cr(VI) in drinking water followed by 90 days of coexposure to B[a]P at 0, 1.25, 12.5, or 125 mg/kg/day and examined liver and gastrointestinal (GI) tract for exposure effects. In the liver, the mixture caused more significant histopathology than expected from the sum of effects of the individual components, while in the GI tract, Cr(VI) alone caused significant enterocyte hypertrophy and increases in cell proliferation and DNA damage that were also observed in mice coexposed to B[a]P. Expression of genes involved in drug metabolism, tumor suppression, oxidative stress, and inflammation was altered in mixed exposures relative to control and to singly exposed mice. Drug metabolism and oxidative stress genes were upregulated and tumor suppressor and inflammation genes downregulated in the proximal GI tract, whereas most markers were upregulated in the distal GI tract and downregulated in the liver. Oral exposure to Cr(VI) and B[a]P mixtures appears to have tissue-specific differential consequences in liver and GI tract that cannot be predicted from the effects of each individual toxicant. Tissue specificity may be particularly critical in cases of extended exposure to mixtures of these agents, as may happen in the occupational setting or in areas where drinking water contains elevated levels of Cr(VI). PMID:25820237

  11. Long-term Coexposure to Hexavalent Chromium and B[a]P Causes Tissue-Specific Differential Biological Effects in Liver and Gastrointestinal Tract of Mice.

    PubMed

    Sánchez-Martín, Francisco Javier; Fan, Yunxia; Carreira, Vinicius; Ovesen, Jerald L; Vonhandorf, Andrew; Xia, Ying; Puga, Alvaro

    2015-07-01

    Complex mixtures of environmental agents often cause mixture-specific health effects that cannot be accounted for by a single mechanism. To study the biological effects of exposure to a mixture of chromium-VI and benzo[a]pyrene (B[a]P), often found together in the environment, we exposed mice for 60 days to 0, 55, 550, or 5500 ppb Cr(VI) in drinking water followed by 90 days of coexposure to B[a]P at 0, 1.25, 12.5, or 125 mg/kg/day and examined liver and gastrointestinal (GI) tract for exposure effects. In the liver, the mixture caused more significant histopathology than expected from the sum of effects of the individual components, while in the GI tract, Cr(VI) alone caused significant enterocyte hypertrophy and increases in cell proliferation and DNA damage that were also observed in mice coexposed to B[a]P. Expression of genes involved in drug metabolism, tumor suppression, oxidative stress, and inflammation was altered in mixed exposures relative to control and to singly exposed mice. Drug metabolism and oxidative stress genes were upregulated and tumor suppressor and inflammation genes downregulated in the proximal GI tract, whereas most markers were upregulated in the distal GI tract and downregulated in the liver. Oral exposure to Cr(VI) and B[a]P mixtures appears to have tissue-specific differential consequences in liver and GI tract that cannot be predicted from the effects of each individual toxicant. Tissue specificity may be particularly critical in cases of extended exposure to mixtures of these agents, as may happen in the occupational setting or in areas where drinking water contains elevated levels of Cr(VI).

  12. A switchable stapled peptide.

    PubMed

    Kalistratova, Aleksandra; Legrand, Baptiste; Verdié, Pascal; Naydenova, Emilia; Amblard, Muriel; Martinez, Jean; Subra, Gilles

    2016-03-01

    The O-N acyl transfer reaction has gained significant popularity in peptide and medicinal chemistry. This reaction has been successfully applied to the synthesis of difficult sequence-containing peptides, cyclic peptides, epimerization-free fragment coupling and more recently, to switchable peptide polymers. Herein, we describe a related strategy to facilitate the synthesis and purification of a hydrophobic stapled peptide. The staple consists of a serine linked through an amide bond formed from its carboxylic acid function and the side chain amino group of diaminopropionic acid and through an ester bond formed from its amino group and the side chain carboxylic acid function of aspartic acid. The α-amino group of serine was protonated during purification. Interestingly, when the peptide was placed at physiological pH, the free amino group initiated the O-N shift reducing the staple length by one atom, leading to a more hydrophobic stapled peptide.

  13. Enhanced natural attenuation of BTEX in the nitrate-reducing environment by different electron acceptors.

    PubMed

    Zhao, Yongsheng; Qu, Dan; Hou, Zhimin; Zhou, Rui

    2015-01-01

    Enhancing natural attenuation of benzene, toluene, ethylbenzene, and xylene (BTEX) in groundwater is a potential remediation technology. This study focused on selecting appropriate electron acceptors to promote BTEX degradation in a nitrate-reducing environment. Nitrate-reducing soil was obtained from simulated BTEX-contaminated column. Enhancing experiments were conducted in the microcosm with nitrate-reducing material and simulated BTEX-polluted groundwater to investigate the promoting feasibility of adding dissolved oxygen (DO), nitrate, chelated Fe(III), and sulphate as electron acceptors. The concentrations of BTEX, electron acceptors, and their reducing products were measured. The order of promoting BTEX degradation with four electron acceptors was nitrate>sulphate>chelated Fe(III)>DO, and the first-order decay coefficients were 0.0432, 0.0333, 0.0240, and 0.0155, respectively. Nitrate, sulphate, and chelated Fe(III) enhanced attenuation. Nitrate was the most effective electron acceptor under nitrate-reducing conditions. Selecting proper electron acceptor is significant in promoting BTEX degradation according to the biogeochemical characteristics of local underground environment.

  14. Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics.

    PubMed

    Sauvé, Geneviève; Fernando, Roshan

    2015-09-17

    Organic photovoltaics (OPVs) are promising candidates for providing a low cost, widespread energy source by converting sunlight into electricity. Solution-processable active layers have predominantly consisted of a conjugated polymer donor blended with a fullerene derivative as the acceptor. Although fullerene derivatives have been the acceptor of choice, they have drawbacks such as weak visible light absorption and poor energy tuning that limit overall efficiencies. This has recently fueled new research to explore alternative acceptors that would overcome those limitations. During this exploration, one question arises: what are the important design principles for developing nonfullerene acceptors? It is generally accepted that acceptors should have high electron affinity, electron mobility, and absorption coefficient in the visible and near-IR region of the spectra. In this Perspective, we argue that alternative molecular acceptors, when blended with a conjugated polymer donor, should also have large nonplanar structures to promote nanoscale phase separation, charge separation and charge transport in blend films. Additionally, new material design should address the low dielectric constant of organic semiconductors that have so far limited their widespread application.

  15. A new classification of the amino acid side chains based on doublet acceptor energy levels.

    PubMed Central

    Sneddon, S F; Morgan, R S; Brooks, C L

    1988-01-01

    We describe a new classification of the amino acid side chains based on the potential energy level at which each will accept an extra (doublet) electron. The doublet acceptor energy level, and the doublet acceptor orbital were calculated using semiempirical INDO/2-UHF molecular orbital theory. The results of these calculations show that the side chains fall into four groups. We have termed these groups repulsive, insulating, semiconducting, and attractive in accordance with where each lies on the relative energy scale. We use this classification to examine the role of residues between the donor and acceptor in modulating the rate and mechanism of electron transfer in proteins. With the calculated acceptor levels, we construct a potential barrier for those residues between the donor and acceptor. It is the area beneath this barrier that determines the decay of electronic coupling between donor and acceptor, and thus the transfer rate. We have used this schematic approach to characterize the four electron transfer pathways in myoglobin recently studied by Mayo et al. (Mayo, S.L., W.R. Ellis, R.J. Crutchley, and H.B. Gray. 1986. Science [Wash. DC]. 233:948-952). PMID:3342271

  16. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE PAGES

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  17. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y.; Black, Charles T.; Steigerwald, Michael L.; Loo, Yueh-Lin; Ng, Fay; Zhu, X.-Y.; Nuckolls, Colin

    2015-09-01

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  18. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  19. Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors.

    PubMed

    Aerts, Dirk; Verhaeghe, Tom F; Roman, Bart I; Stevens, Christian V; Desmet, Tom; Soetaert, Wim

    2011-09-27

    In this study, the transglucosylation potential of six sucrose phosphorylase (SP) enzymes has been compared using eighty putative acceptors from different structural classes. To increase the solubility of hydrophobic acceptors, the addition of various co-solvents was first evaluated. All enzymes were found to retain at least 50% of their activity in 25% dimethylsulfoxide, with the enzymes from Bifidobacterium adolescentis and Streptococcus mutans being the most stable. Screening of the enzymes' specificity then revealed that the vast majority of acceptors are transglucosylated very slowly by SP, at a rate that is comparable to the contaminating hydrolytic reaction. The enzyme from S. mutans displayed the narrowest acceptor specificity and the one from Leuconostoc mesenteroides NRRL B1355 the broadest. However, high activity could only be detected on l-sorbose and l-arabinose, besides the native acceptors d-fructose and phosphate. Improving the affinity for alternative acceptors by means of enzyme engineering will, therefore, be a major challenge for the commercial exploitation of the transglucosylation potential of sucrose phosphorylase.

  20. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    SciTech Connect

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Sfeir, Matthew Y.; Black, Charles T.; Steigerwald, Michael L.; Loo, Yueh -Lin; Ng, Fay; Zhu, X. -Y.; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.

  1. Density and energy level of a deep-level Mg acceptor in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Matsuura, Hideharu; Morine, Tatsuya; Nagamachi, Shinji

    2015-01-01

    Reliably determining the densities and energy levels of deep-level dominant acceptors in heavily doped wide-band-gap semiconductors has been a topic of recent discussion. In these discussions, the focus is on both Hall scattering factors for holes and distribution functions for acceptors. Mg acceptor levels in 4H-SiC seem to be deep, and so here the electrical properties of Mg-implanted 4H-SiC layers are studied by measuring Hall effects. The obtained Hall scattering factors are not reliable because they drop to less than 0.5 at high measurement temperatures. Moreover, the Fermi-Dirac distribution function is unsuitable for examining Mg acceptors because the obtained acceptor density is much higher than the concentration of implanted Mg atoms. However, by using a distribution function that includes the influence of the excited states of a deep-level acceptor, the density and energy level of Mg acceptors can be reliably determined.

  2. Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels.

    PubMed

    Berdugo, Cristina; Nalluri, Siva Krishna Mohan; Javid, Nadeem; Escuder, Beatriu; Miravet, Juan F; Ulijn, Rein V

    2015-11-25

    Coupling of peptide self-assembly to dynamic sequence exchange provides a useful approach for the discovery of self-assembling materials. In here, we demonstrate the discovery and optimization of aqueous, gel-phase nanostructures based on dynamically exchanging peptide sequences that self-select to maximize charge transfer of n-type semiconducting naphthalenediimide (NDI)-dipeptide bioconjugates with various π-electron-rich donors (dialkoxy/hydroxy/amino-naphthalene or pyrene derivatives). These gel-phase peptide libraries are characterized by spectroscopy (UV-vis and fluorescence), microscopy (TEM), HPLC, and oscillatory rheology and it is found that, of the various peptide sequences explored (tyrosine Y-NDI with tyrosine Y, phenylalanine F, leucine L, valine V, alanine A or glycine G-NH2), the optimum sequence is tyrosine-phenylalanine in each case; however, both its absolute and relative yield amplification is dictated by the properties of the donor component, indicating cooperativity of peptide sequence and donor/acceptor pairs in assembly. The methodology provides an in situ discovery tool for nanostructures that enable dynamic interfacing of supramolecular electronics with aqueous (biological) systems.

  3. Barium recovery by crystallization in a fluidized-bed reactor: effects of pH, Ba/P molar ratio and seed.

    PubMed

    Su, Chia-Chi; Reano, Resmond L; Dalida, Maria Lourdes P; Lu, Ming-Chun

    2014-06-01

    The effects of process conditions, including upward velocity inside the column, the amount of added seed and seed size, the pH value of the precipitant or the phosphate stream and the Ba/P molar ratio in a fluidized-bed reactor (FBR) were studied with a view to producing BaHPO₄ crystals of significant size and maximize the removal of barium. XRD were used to identify the products that were collected from the FBR. Experimental results show that an upward velocity of 48 cmmin(-1) produced the largest BaHPO₄ crystals with a size of around 0.84-1.0mm. The addition of seed crystals has no effect on barium removal. The use of a seed of a size in the ranges unseeded<0.149-0.29 mm<0.149 mm<0.29-0.42 mm produced increasing amounts of increasingly large crystals. The largest BaHPO₄ crystals were obtained at pH 8.4-8.8 with a Ba/P molar ratio of 1.0. In the homogeneous and heterogeneous processes, around 98% of barium was removed at pH 8.4-8.6 and [Ba]/[P]=1.0. The XRD results show that a significant amount of barium phosphate (Ba₃(PO₄)₂) was obtained at pH 11. The compounds BaHPO₄ and BaO were present at a pH of below 10.

  4. Prevalence of Germline BAP1, CDKN2A, and CDK4 Mutations in an Australian Population-Based Sample of Cutaneous Melanoma Cases.

    PubMed

    Aoude, Lauren G; Gartside, Michael; Johansson, Peter; Palmer, Jane M; Symmons, Judith; Martin, Nicholas G; Montgomery, Grant W; Hayward, Nicholas K

    2015-04-01

    Mutations in Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) and Cyclin-Dependent Kinase 4 (CDK4) contribute to susceptibility in approximately 40% of high-density cutaneous melanoma (CMM) families and about 2% of unselected CMM cases. BRCA-1 associated protein-1 (BAP1) has been more recently shown to predispose to CMM and uveal melanoma (UMM) in some families; however, its contribution to CMM development in the general population is unreported. We sought to determine the contribution of these genes to CMM susceptibility in a population-based sample of cases from Australia. We genotyped 1,109 probands from Queensland families and found that approximately 1.31% harbored mutations in CDKN2A, including some with novel missense mutations (p.R22W, p.G35R and p.I49F). BAP1 missense variants occurred in 0.63% of cases but no CDK4 variants were observed in the sample. This is the first estimate of the contribution of BAP1 and CDK4 to a population-based sample of CMM and supports the previously reported estimate of CDKN2A germline mutation prevalence.

  5. Systemic control of cell division and endoreduplication by NAA and BAP by modulating CDKs in root tip cells of Allium cepa.

    PubMed

    Tank, Jigna G; Thaker, Vrinda S

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.

  6. Systemic Control of Cell Division and Endoreduplication by NAA and BAP by Modulating CDKs in Root Tip Cells of Allium cepa

    PubMed Central

    Tank, Jigna G.; Thaker, Vrinda S.

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed. PMID:24955358

  7. Bcl2 at the endoplasmic reticulum protects against a Bax/Bak-independent paraptosis-like cell death pathway initiated via p20Bap31.

    PubMed

    Heath-Engel, Hannah M; Wang, Bing; Shore, Gordon C

    2012-02-01

    Bap31 is an integral ER membrane protein which functions as an escort factor in the sorting of newly synthesized membrane proteins within the endoplasmic reticulum (ER). During apoptosis signaling, Bap31 is subject to early cleavage by initiator caspase-8. The resulting p20Bap31 (p20) fragment has been shown to initiate proapoptotic ER-mitochondria Ca2+ transmission, and to exert dominant negative (DN) effects on ER protein trafficking. We now report that ectopic expression of p20 in E1A/DNp53-transformed baby mouse kidney epithelial cells initiates a non-apoptotic form of cell death with paraptosis-like morphology. This pathway was characterized by an early rise in ER Ca2+ stores and massive dilation of the ER/nuclear envelope, dependent on intact ER Ca2+ stores. Ablation of the Bax/Bak genes had no effect on these ER/nuclear envelope transformations, and delayed but did not prevent cell death. ER-restricted expression of Bcl2 in the absence of Bax/Bak, however, delayed both ER/nuclear envelope dilation and cell death. This prosurvival role of Bcl2 at the ER thus extended beyond inhibition of Bax/Bak, and correlated with its ability to lower ER Ca2+ stores. Furthermore, these results indicate that ER restricted Bcl2 is capable of antagonizing not only apoptosis, but also a non-apoptotic, Bax/Bak independent, paraptosis-like form of cell death.

  8. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    NASA Astrophysics Data System (ADS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-05-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov-de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov-de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of negatively

  9. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.

  10. Addition of porphyrins to cigarette filters to reduce the levels of benzo[a]pyrene (B[a]P) and tobacco-specific N-nitrosamines (TSNAs) in mainstream cigarette smoke.

    PubMed

    Wang, Changguo; Dai, Ya; Feng, Guanglin; He, Rong; Yang, Wenmin; Li, Dongliang; Zhou, Xuezheng; Zhu, Lijun; Tan, Lanlan

    2011-07-13

    Tobacco-specific N-nitrosamines (TSNAs) and benzo[a]pyrene (B[a]P) in mainstream cigarette smoke (MSS) cause smoking-related diseases and environmental pollution. Porphyrins were added to cigarette filters to reduce B[a]P (porphyrins A-E) and TSNAs (porphyrin F) in MSS. The porphyrin-B[a]P and porphyrin F-TSNAs (N'-nitrosoanabasine (NAB), N'-nitrosoanatabine (NAT), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and N-nitrosonornicotine (NNN)) interactions were investigated by fluorescence quenching and UV-visible spectroscopy. The correlation coefficients were 0.987-0.997 (B[a]P) and 0.994-0.999 (TSNAs), and the binding constants were (1.67-5.02) × 10(5) (B[a]P) and 3.42 × 10(3)-1.40 × 10(4) (TSNAs). Up to 36.72% of B[a]P and 46.67% of the TSNAs were eliminated from MSS, with greater reductions when more porphyrin was included in the filter. With the same mass of porphyrin in the filter, the reduction trend for B[a]P by porphyrins A-E was A > B > C > D > E. The reduction trend for TSNAs by porphyrin F was NNN > NAB > NNK > NAT. The porphyrin mode of action is possibly through strong π-π interactions.

  11. Predicting and Improving the Membrane Permeability of Peptidic Small Molecules

    PubMed Central

    Rafi, Salma B.; Hearn, Brian R.; Vedantham, Punitha; Jacobson, Matthew P.; Renslo, Adam R.

    2012-01-01

    We evaluate experimentally and computationally the membrane permeability of matched sets of peptidic small molecules bearing natural or bioisosteric unnatural amino acids. We find that the intentional introduction of hydrogen bond acceptor-donor pairs in such molecules can improve membrane permeability while retaining or improving other favorable drug-like properties. We employ an all-atom force-field based method to calculate changes in free energy associated with the transfer of the peptidic molecules from water to membrane. This computational method correctly predicts rank-order experimental permeability trends within congeneric series and is much more predictive than calculations (e.g. clogP) that do not consider three-dimensional conformation. PMID:22394492

  12. Resonance energy transfer study of peptide-lipid complexes.

    PubMed

    Gorbenko, G; Saito, H; Molotkovsky, J; Tanaka, M; Egashira, M; Nakano, M; Handa, T

    2001-09-18

    Resonance energy transfer involving tryptophan as a donor and anthrylvinyl-labeled phosphatidylcholine (AV-PC), 3-methoxybenzanthrone (MBA) and 8-anilino-1-naphthalene sulfonic acid (ANS) as acceptors has been examined to obtain information on the structure of peptide-lipid systems consisting of 18A or Ac-18A-NH(2) peptides and large unilamellar phosphatidylcholine vesicles. The lower and upper limits for the tryptophan distance from the bilayer midplane have been assessed in terms of the models of energy transfer in two-dimensional systems, taking into account orientational effects. Evidence for the existence of preferential orientations of Ac-18A-NH(2) with respect to the lipid-water interface has been obtained.

  13. [Induction-resonance energy transfer between the terbium-binding peptide and the red fluorescent proteins Dsred2 and TagRFP].

    PubMed

    Arslanbaeva, L P; Zherdeva, V V; Ivashina, T V; Vinokurov, L M; Morozov, B V; Olenin, A N; Savitskiĭ, A P

    2011-01-01

    Two novel FRET-pairs: Tb3+ -binding peptide-DsRed2 and Tb3+ -binding peptide-TagRFP have been produced based on the terbium-binding peptide and the red fluorescent proteins DsRed2 and TagRFP. Two induction-resonance energy transfer processes in both FRET-pairs have been registered, from tryptophan of the terbium-binding peptide to Tb3+ and from sensitized Tb3+ to the acceptor, the chromophore, DsRed2 or TagRFP. The lifetimes of terbium in the presence and absence of the acceptor have been determined. It has been shown that the lifetime of Tb3+ in the presence of 150 mM NaCl decreases in both FRET-pairs. The efficiency of fluorescent resonance transfer from Tb3+ to the acceptor proteins is 28 and 35% for Tb3+ -binding peptide-DsRed2 and Tb3+ -binding peptide-TagRFP, respectively.

  14. Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.

    PubMed

    Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd

    2013-08-16

    α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.

  15. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    PubMed Central

    2010-01-01

    Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen) and acceptors (Fe(III), fumarate) was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III) as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III) as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III), while growth in the presence of Fe(III) and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production. PMID:21092215

  16. Peptide Biomarkers as Evidence of Perchlorate Biodegradation▿ †

    PubMed Central

    Bansal, Reema; Crawford, Ronald L.; Paszczynski, Andrzej J.

    2011-01-01

    Perchlorate is a known health hazard for humans, fish, and other species. Therefore, it is important to assess the response of an ecosystem exposed to perchlorate contamination. The data reported here show that a liquid chromatography-mass spectrometry-based proteomics approach for the detection of perchlorate-reducing enzymes can be used to measure the ability of microorganisms to degrade perchlorate, including determining the current perchlorate degradation status. Signature peptides derived from chlorite dismutase (CD) and perchlorate reductase can be used as biomarkers of perchlorate presence and biodegradation. Four peptides each derived from CD and perchlorate reductase subunit A (PcrA) and seven peptides derived from perchlorate reductase subunit B (PcrB) were identified as signature biomarkers for perchlorate degradation, as these sequences are conserved in the majority of the pure and mixed perchlorate-degrading microbial cultures examined. However, chlorite dismutase signature biomarker peptides from Dechloromonas agitata CKB were found to be different from those in other cultures used and should also be included with selected CD biomarkers. The combination of these peptides derived from the two enzymes represents a promising perchlorate presence/biodegradation biomarker system. The biomarker peptides were detected at perchlorate concentrations as low as 0.1 mM and at different time points both in pure cultures and within perchlorate-reducing environmental enrichment consortia. The peptide biomarkers were also detected in the simultaneous presence of perchlorate and an alternate electron acceptor, nitrate. We believe that this technique can be useful for monitoring bioremediation processes for other anthropogenic environmental contaminants with known metabolic pathways. PMID:21115710

  17. Polycyclic peptide therapeutics.

    PubMed

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases.

  18. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  19. The natriuretic peptides.

    PubMed

    Baxter, Gary F

    2004-03-01

    The natriuretic peptides are a family of widely distributed, but evolutionarily conserved, polypeptide mediators that exert a range of actions throughout the body. In cardiovascular homeostasis, the endocrine roles of the cardiac-derived atrial and B-type natriuretic peptide (ANP and BNP) in regulating central fluid volume and blood pressure have been recognised for two decades. However, there is a growing realisation that natriuretic peptide actions go far beyond their volume regulating effects. These pleiotropic actions include local (autocrine/paracrine) regulatory actions of ANP and BNP within the heart, and of another natriuretic peptide, CNP, within the vessel wall. Effects on function and growth of the local tissue environment are likely to be of great importance, especially in disease states where tissue and circulating levels of ANP and BNP rise markedly. At present, the relevance of other natriuretic peptides (notably uroguanylin and DNP) to human physiology and pathology remain uncertain. Other articles in this issue of Basic Research in Cardiology review the molecular physiology of natriuretic peptide signalling, with a particular emphasis on the lessons from genetically targetted mice; the vascular activity of natriuretic peptides; the regulation and roles of natriuretic peptides in ischaemic myocardium; and the diagnostic, prognostic and therapeutic roles of natriuretic peptides in heart failure.

  20. Insights on the design and electron-acceptor properties of conjugated organophosphorus materials.

    PubMed

    Baumgartner, Thomas

    2014-05-20

    The development of conjugated organic materials has become a rapidly evolving field of research, particularly with a view toward practical applications in so-called organic electronics that encompass a variety of device types, such as OLEDs, OPVs, and OFETs. Almost all of these devices minimally require the presence of electron-donor and -acceptor components that act as p- and n-type semiconductors, respectively. Research over the past two decades has shown that while there is an abundant resource of organic p-type materials, suitable n-type species are few and far between. To overcome this severe bottleneck for the further development of organic electronics, researchers have identified organo-main-group avenues as valuable alternatives toward organic electron-acceptor materials that may ultimately be used as n-type components in practical devices. One particular element of interest in this context is phosphorus, which at first glance may not necessarily suggest such properties. In this Account, I provide detailed insights on the origin of the electron-acceptor properties of organophosphorus-based conjugated materials and include an overview of important molecular species that have been developed by my group and others. To this end, I explain that the electron-acceptor properties of conjugated organophosphorus materials originate from an interaction known as negative hyperconjugation. While this particular interaction creates a simply inductively withdrawing phosphoryl substituent for π-conjugated scaffolds, incorporation of a phosphorus atom as an integral part of a cyclic substructure within a π-conjugated system provides a much more complex, versatile, and consequently highly valuable tool for the tuning of the electron-acceptor properties of the materials. Notably, the degree of negative hyperconjugation can effectively be tailored in various ways via simple substitution at the phosphorus center. This is now well established for phosphole-based molecular

  1. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    PubMed Central

    2015-01-01

    Conspectus The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together

  2. Nature of the attractive interaction between proton acceptors and organic ring systems.

    PubMed

    Arras, Emmanuel; Seitsonen, Ari Paavo; Klappenberger, Florian; Barth, Johannes V

    2012-12-14

    Systematic ab initio calculations are combined with a deconvolution of electrostatic contributions to analyze the interplay between potential hydrogen bond acceptors and organic rings with C(sp(2))-H groups (benzene, pyridine and cyclopentadiene). A distinct anisotropic interaction between the ring systems and the electron lone pairs of cyanide, water and other acceptor species is revealed that favors the in-plane orientation of the proton acceptor group. In the attractive regime this interaction carries a pronounced electrostatic signature. By decomposing the electrostatic contribution into parts attributed to different subunits of the ring systems we demonstrate that a major proportion of the interaction energy gain is originating from the non-adjacent moieties, that are not in close contact with. This behavior holds equally for homocyclic, heterocyclic and non-aromatic rings but contrasts that of the ethyne molecule, taken as reference for a weak hydrogen bond donor clearly exhibiting the expected localized character. The ring interaction requires the presence of π-electron clouds and typically results in an interaction energy gain of 40 to 80 meV. Our findings suggest the proton acceptor-ring interaction as a new category of intermolecular non-covalent interactions.

  3. Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors.

    PubMed Central

    Frébortová, Jitka; Fraaije, Marco W; Galuszka, Petr; Sebela, Marek; Pec, Pavel; Hrbác, Jan; Novák, Ondrej; Bilyeu, Kristin D; English, James T; Frébort, Ivo

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors. PMID:14965342

  4. Metabolic response of Alicycliphilus denitrificans strain BC toward electron acceptor variation.

    PubMed

    Oosterkamp, Margreet J; Boeren, Sjef; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2013-10-01

    Alicycliphilus denitrificans is a versatile, ubiquitous, facultative anaerobic bacterium. Alicycliphilus denitrificans strain BC can use chlorate, nitrate, and oxygen as electron acceptor for growth. Cells display a prolonged lag-phase when transferred from nitrate to chlorate and vice versa. Furthermore, cells adapted to aerobic growth do not easily use nitrate or chlorate as electron acceptor. We further investigated these responses of strain BC by differential proteomics, transcript analysis, and enzyme activity assays. In nitrate-adapted cells transferred to chlorate and vice versa, appropriate electron acceptor reduction pathways need to be activated. In oxygen-adapted cells, adaptation to the use of chlorate or nitrate is likely difficult due to the poorly active nitrate reduction pathway and low active chlorate reduction pathway. We deduce that the Nar-type nitrate reductase of strain BC also reduces chlorate, which may result in toxic levels of chlorite if cells are transferred to chlorate. Furthermore, the activities of nitrate reductase and nitrite reductase appear to be not balanced when oxygen-adapted cells are shifted to nitrate as electron acceptor, leading to the production of a toxic amount of nitrite. These data suggest that strain BC encounters metabolic challenges in environments with fluctuations in the availability of electron acceptors. All MS data have been deposited in the ProteomeXchange with identifier PXD000258.

  5. Natural organic matter as electron acceptor: experimental evidence for its important role in anaerobic respiration

    NASA Astrophysics Data System (ADS)

    Lau, Maximilian Peter; Sander, Michael; Gelbrecht, Jörg; Hupfer, Michael

    2014-05-01

    Microbial respiration is a key driver of element cycling in oxic and anoxic environments. Upon depletion of oxygen as terminal electron acceptor (TEA), a number of anaerobic bacteria can employ alternative TEA for intracellular energy generation. Redox active quinone moieties in dissolved organic matter (DOM) are well known electron acceptors for microbial respiration. However, it remains unclear whether quinones in adsorbed and particulate OM accept electrons in a same way. In our studies we aim to understand the importance of natural organic matter (NOM) as electron acceptors for microbial energy gain and its possible implications for methanogenesis. Using a novel electrochemical approach, mediated electrochemical reduction and -oxidation, we can directly quantify reduced hydroquinone and oxidized quionone moieties in dissolved and particulate NOM samples. In a mesocosm experiment, we rewetted sediment and peat soil and followed electron transfer to the inorganic and organic electron acceptors over time. We found that inorganic and organic electron acceptor pools were depleted over the same timescales. More importantly, we showed that organic, NOM-associated electron accepting moieties represent as much as 21 40% of total TEA inventories. These findings support earlier studies that propose that the reduction of quinone moieties in particulate organic matter competitively suppresses methanogenesis in wetland soils. Our results indicate that electron transfer to organic, particulate TEA in inundated ecosystems has to be accounted for when establishing carbon budgets in and projecting greenhouse gas emissions from these systems.

  6. Origin of simultaneous donor-acceptor emission in single molecules of peryleneimide-terrylenediimide labeled polyphenylene dendrimers.

    PubMed

    Melnikov, Sergey M; Yeow, Edwin K L; Uji-i, Hiroshi; Cotlet, Mircea; Müllen, Klaus; De Schryver, Frans C; Enderlein, Jörg; Hofkens, Johan

    2007-02-01

    Förster type resonance energy transfer (FRET) in donor-acceptor peryleneimide-terrylenediimide dendrimers has been examined at the single molecule level. Very efficient energy transfer between the donor and the acceptor prevent the detection of donor emission before photobleaching of the acceptor. Indeed, in solution, on exciting the donor, only acceptor emission is detected. However, at the single molecule level, an important fraction of the investigated individual molecules (about 10-15%) show simultaneous emission from both donor and acceptor chromophores. The effect becomes apparent mostly after photobleaching of the majority of donors. Single molecule photon flux correlation measurements in combination with computer simulations and a variety of excitation conditions were used to determine the contribution of an exciton blockade to this two-color emission. Two-color defocused wide-field imaging showed that the two-color emission goes hand in hand with an unfavorable orientation between one of the donors and the acceptor chromophore.

  7. Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Ramavenkateswari, K.; Venkatachalam, P.

    2016-09-01

    This work investigates the proficiency of acceptor-donor-acceptor (A-D-A) organic dye Diisopropyl azodicarboxylate (DIAC) as photosensitizer on the photovoltaic parameters of silver (Ag) doped TiO2 photoanode dye-sensitized solar cells (DSSCs) with quasi-solid state electrolyte/hole transport material (HTM) spiro-MeOTAD. TNSs (TiO2 nanosticks) photoanodes are prepared through sol-gel method and hydrothermal technique. X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and BET measurement were used to characterize the structure and morphology of TiO2 nanostructures. The Diisopropyl azodicarboxylate organic dye with TNPs-Ag@TNSs composite photoanode structure and spiro-MeOTAD HTM exhibited better power conversion efficiency (PCE).

  8. Ultrafast Non-Förster Intramolecular Donor-Acceptor Excitation Energy Transfer.

    PubMed

    Athanasopoulos, Stavros; Alfonso Hernandez, Laura; Beljonne, David; Fernandez-Alberti, Sebastian; Tretiak, Sergei

    2017-04-06

    Ultrafast intramolecular electronic energy transfer in a conjugated donor-acceptor system is simulated using nonadiabatic excited-state molecular dynamics. After initial site-selective photoexcitation of the donor, transition density localization is monitored throughout the S2 → S1 internal conversion process, revealing an efficient unidirectional donor → acceptor energy-transfer process. Detailed analysis of the excited-state trajectories uncovers several salient features of the energy-transfer dynamics. While a weak temperature dependence is observed during the entire electronic energy relaxation, an ultrafast initially temperature-independent process allows the molecular system to approach the S2-S1 potential energy crossing seam within the first ten femtoseconds. Efficient energy transfer occurs in the absence of spectral overlap between the donor and acceptor units and is assisted by a transient delocalization phenomenon of the excited-state wave function acquiring Frenkel-exciton character at the moment of quantum transition.

  9. Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing

    NASA Astrophysics Data System (ADS)

    Ton-That, C.; Zhu, L.; Lockrey, M. N.; Phillips, M. R.; Cowie, B. C. C.; Tadich, A.; Thomsen, L.; Khachadorian, S.; Schlichting, S.; Jankowski, N.; Hoffmann, A.

    2015-07-01

    X-ray absorption near-edge spectroscopy, photoluminescence, cathodoluminescence, and Raman spectroscopy have been used to investigate the chemical states of nitrogen dopants in ZnO nanowires. It is found that nitrogen exists in multiple states: NO,NZn, and loosely bound N2 molecule. The results establish a direct link between a donor-acceptor pair emission at 3.232 eV and the concentration of loosely bound N2. This work confirms that N2 at Zn site is a potential candidate for producing a shallow acceptor state in N-doped ZnO as theoretically predicted by Lambrecht and Boonchun [Phys. Rev. B 87, 195207 (2013), 10.1103/PhysRevB.87.195207]. Additionally, shallow acceptor states arising from NO complexes have been ruled out in this paper.

  10. Spectroscopic studies of charge transfer complexes between colchicine and some π acceptors

    NASA Astrophysics Data System (ADS)

    Arslan, Mustafa; Duymus, Hulya

    2007-07-01

    Charge transfer complexes between colchicine as donor and π acceptors such as tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), p-chloranil ( p-CHL) have been studied spectrophotometrically in dichloromethane at 21 °C. The stoichiometry of the complexes was found to be 1:1 ratio by the Job method between donor and acceptors with the maximum absorption band at a wavelength of 535, 585 and 515 nm. The equilibrium constant and thermodynamic parameters of the complexes were determined by Benesi-Hildebrand and van't Hoff equations. Colchicine in pure form and in dosage form was applied in this study. The formation constants for the complexes were shown to be dependent on the structure of the electron acceptors used.

  11. Growth of Strain SES-3 with Arsenate and Other Diverse Electron Acceptors

    PubMed Central

    Laverman, A. M.; Blum, J. S.; Schaefer, J. K.; Phillips, E.; Lovley, D. R.; Oremland, R. S.

    1995-01-01

    The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors. PMID:16535143

  12. Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology

    SciTech Connect

    Loeffler, F.E.; Tiedje, J.M.; Sanford, R.A.

    1999-09-01

    Measurements of the hydrogen consumption threshold and the tracking of electrons transferred to the chlorinated electron acceptor (f{sub e}) reliably detected chlororespiratory physiology in both mixed cultures and pure cultures capable of using tetrachloroethene, cis-1,2-dichloroethene, vinyl chloride, 2-chlorophenol, 3-chlorobenzoate, 3-chloro-4-hydroxybenzoate, or 1,2-dichloropropane as an electron acceptor. Hydrogen was consumed to significantly lower threshold concentrations of less than 0.4 ppmv compared with the values obtained for the same cultures without a chlorinated compound as an electron acceptor. The f{sub e} values ranged from 0.63 to 0.7, values which are in good agreement with theoretical calculations based on the thermodynamics of reductive dechlorination as the terminal electron-accepting process. In contrast, a mixed methanogenic culture that cometabolized 3-chlorophenol exhibited a significantly lower f{sub e} value, 0.012.

  13. Geometry for the Primary Electron Donor and the Bacteriopheophytin Acceptor in Rhodopseudomonas viridis Photosynthetic Reaction Centers

    PubMed Central

    Tiede, D. M.; Choquet, Y.; Breton, J.

    1985-01-01

    The tetrapyrrole electron donors and acceptors (bacteriochlorophyll, BCh; bacteriopheophytin, BPh) within the bacterial photosynthetic reaction center (RC) are arranged with a specific geometry that permits rapid (picosecond time scale) electron tunneling to occur between them. Here we have measured the angle between the molecular planes of the bacteriochlorophyll dimer (primary donor), B2, and the acceptor bacteriopheophytin, H, by analyzing the dichroism of the absorption change associated with H reduction, formed by photoselection with RCs of Rhodopseudomonas viridis. This angle between molecular planes is found to be 60° ± 2. This means that the ultrafast electron tunneling must occur between donors and acceptors that are fixed by the protein to have a noncoplanar alignment. Nearly perpendicular alignments have been determined for other electron tunneling complexes involving RCs. These geometries can be contrasted with models proposed for heme-heme electron transfer complexes, which have emphasized that mutually parallel orientations should permit the most kinetically facile transfers. PMID:19431588

  14. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors.

    PubMed

    Chou, Kenny F; Dennis, Allison M

    2015-06-05

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  15. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.

    PubMed

    Cai, Jing; Zheng, Ping; Mahmood, Qaisar

    2016-01-01

    The current investigation reports the effect of cathode electron acceptors on simultaneous sulfide and nitrate removal in two-chamber microbial fuel cells (MFCs). Potassium permanganate and potassium ferricyanide were common cathode electron acceptors and evaluated for substrate removal and electricity generation. The abiotic MFCs produced electricity through spontaneous electrochemical oxidation of sulfide. In comparison with abiotic MFC, the biotic MFC showed better ability for simultaneous nitrate and sulfide removal along with electricity generation. Keeping external resistance of 1,000 Ω, both MFCs showed good capacities for substrate removal where nitrogen and sulfate were the main end products. The steady voltage with potassium permanganate electrodes was nearly twice that of with potassium ferricyanide. Cyclic voltammetry curves confirmed that the potassium permanganate had higher catalytic activity than potassium ferricyanide. The potassium permanganate may be a suitable choice as cathode electron acceptor for enhanced electricity generation during simultaneous treatment of sulfide and nitrate in MFCs.

  16. Rapid Energy Transfer Enabling Control of Emission Polarization in Perylene Bisimide Donor-Acceptor Triads.

    PubMed

    Menelaou, Christopher; ter Schiphorst, Jeroen; Kendhale, Amol M; Parkinson, Patrick; Debije, Michael G; Schenning, Albertus P H J; Herz, Laura M

    2015-04-02

    Materials showing rapid intramolecular energy transfer and polarization switching are of interest for both their fundamental photophysics and potential for use in real-world applications. Here, we report two donor-acceptor-donor triad dyes based on perylene-bisimide subunits, with the long axis of the donors arranged either parallel or perpendicular to that of the central acceptor. We observe rapid energy transfer (<2 ps) and effective polarization control in both dye molecules in solution. A distributed-dipole Förster model predicts the excitation energy transfer rate for the linearly arranged triad but severely underestimates it for the orthogonal case. We show that the rapid energy transfer arises from a combination of through-bond coupling and through-space transfer between donor and acceptor units. As they allow energy cascading to an excited state with controllable polarization, these triad dyes show high potential for use in luminescent solar concentrator devices.

  17. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    PubMed Central

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  18. Identification of a Deep Acceptor Level in ZnO Due to Silver Doping

    NASA Astrophysics Data System (ADS)

    Chai, J.; Mendelsberg, R. J.; Reeves, R. J.; Kennedy, J.; von Wenckstern, H.; Schmidt, M.; Grundmann, M.; Doyle, K.; Myers, T. H.; Durbin, S. M.

    2010-05-01

    There remains considerable interest in the behavior of acceptors in ZnO, the ultimate goal being the realization of device grade p-type material. Silver is a candidate acceptor, and, in this study, in situ doping of silver was performed during plasma-assisted molecular beam epitaxy. Silver concentrations, as determined by ion beam analysis, ranged between 1018 cm-3and 1020 cm-3, with as much as 94% incorporated substitutionally on Zn lattice sites. Variable magnetic field Hall effect measurements detected no evidence of holes, and 4 K photoluminescence was dominated by donor bound excitons. Transient capacitance measurements, however, suggested that incorporated silver had led to the formation of an acceptor, located approximately 320 meV above the valence band edge, indicating that compensation remains a significant issue in determining the conductivity of ZnO.

  19. Peptide bioregulators inhibit apoptosis.

    PubMed

    Khavinson, V K; Kvetnoii, I M

    2000-12-01

    The effects of peptide bioregulators epithalon and vilon on the dynamics of irradiation-induced apoptotic death of spleen lymphocytes in rats indicate that these agents inhibit physiologically programmed cell death. The antiapoptotic effect of vilon was more pronounced, which corroborates the concept on tissue-specific effect of peptide bioregulators.

  20. Bacteriocin Inducer Peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  1. Glycolic acid inhibits enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper snake venom: insights from docking and molecular modeling.

    PubMed

    Pereañez, Jaime Andrés; Patiño, Arley Camilo; Rey-Suarez, Paola; Núñez, Vitelbina; Henao Castañeda, Isabel Cristina; Rucavado, Alexandra

    2013-09-01

    Glycolic acid (GA) (2-Hydroxyethanoic acid) is widely used as chemical peeling agent in Dermatology and, more recently, as a therapeutic and cosmetic compound in the field of skin care and disease treatment. In this work we tested the inhibitory ability of glycolic acid on the enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper venom, which induces a variety of toxic actions. Glycolic acid inhibited the proteolytic activity of BaP1 on azocasein, with an IC₅₀ of 1.67 mM. The compound was also effective at inhibiting the hemorrhagic activity of BaP1 in skin and muscle in experiments involving preincubation of enzyme and inhibitor prior to injection. When BaP1 was injected i.m. and then, at the same site, different concentrations of glycolic acid were administered at either 0 or 5 min, 7 mM solutions of the inhibitor partially abrogated hemorrhagic activity when administered at 0 min. Moreover, glycolic acid inhibited, in a concentration-dependent manner, edema-forming activity of BaP1 in the footpad. In order to have insights on the mode of action of glycolic acid, UV-vis and intrinsic fluorescence studies were performed. Results of these assays suggest that glycolic acid interacts directly with BaP1 and chelates the Zn²⁺ ion at the active site. These findings were supported by molecular docking results, which suggested that glycolic acid forms hydrogen bonds with residues Glu143, Arg110 and Ala111 of the enzyme. Additionally, molecular modeling results suggest that the inhibitor chelates Zn²⁺, with a distance of 3.58 Å, and may occupy part of substrate binding cleft of BaP1. Our results suggest that glycolic acid is a candidate for the development of inhibitors to be used in snakebite envenomation.

  2. Molecular origin of photovoltaic performance in donor-block-acceptor all-conjugated block copolymers

    DOE PAGES

    Smith, Kendall A.; Lin, Yen -Hao; Mok, Jorge W.; ...

    2015-11-03

    All-conjugated block copolymers may be an effective route to self-assembled photovoltaic devices, but we lack basic information on the relationship between molecular characteristics and photovoltaic performance. Here, we synthesize a library of poly(3-hexylthiophene) (P3HT) block poly((9,9-dialkylfluorene)-2,7-diyl-alt-[4,7-bis(alkylthiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT) donor-block-acceptor all-conjugated block copolymers and carry out a comprehensive study of processing conditions, crystallinity, domain sizes, and side-chain structure on photovoltaic device performance. We find that all block copolymers studied exhibit an out-of-plane crystal orientation after deposition, and on thermal annealing at high temperatures the crystal orientation flips to an in-plane orientation. By varying processing conditions on polymer photovoltaic devices, we show thatmore » the crystal orientation has only a modest effect (15-20%) on photovoltaic performance. The addition of side-chains to the PFTBT block is found to decrease photovoltaic power conversion efficiencies by at least an order of magnitude. Through grazing-incidence X-ray measurements we find that the addition of side-chains to the PFTBT acceptor block results in weak segregation and small (< 10 nm) block copolymer self-assembled donor and acceptor domains. This work is the most comprehensive to date on all-conjugated block copolymer systems and suggests that photovoltaic performance of block copolymers depends strongly on the miscibility of donor and acceptor blocks, which impacts donor and acceptor domain sizes and purity. Lastly, strategies for improving the device performance of block copolymer photovoltaics should seek to increase segregation between donor and acceptor polymer domains.« less

  3. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    SciTech Connect

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  4. Prediction of the Intrinsic Hydrogen Bond Acceptor Strength of Chemical Substances from Molecular Structure

    NASA Astrophysics Data System (ADS)

    Schwöbel, Johannes; Ebert, Ralf-Uwe; Kühne, Ralph; Schüürmann, Gerrit

    2009-08-01

    Hydrogen bonding affects the partitioning of organic compounds between environmental and biological compartments as well as the three-dimensional shape of macromolecules. Using the semiempirical quantum chemical AM1 level of calculation, we have developed a model to predict the site-specific hydrogen bond (HB) acceptor strength from ground-state properties of the individual compounds. At present, the model parametrization is confined to compounds with one HB acceptor site of the following atom types: N, O, S, F, Cl, and Br that act as lone-pair HB acceptors, and π-electron (aromatic or conjugated) systems with the associated C atoms as particularly weak HB acceptors. The HB acceptor strength is expressed in terms of the Abraham parameter B and calculated from local molecular parameters, taking into account electrostatic, polarizability, and charge transfer contributions according to the Morokuma concept. For a data set of 383 compounds, the squared correlation coefficient r2 is 0.97 when electrostatic potential (ESP) derived net atomic charges are employed, and the root-mean-square (rms) error is 0.04 that is in the range of experimental uncertainty. The model is validated using an extended leave-50%-out approach, and its performance is comparatively analyzed with the ones of earlier introduced ab initio (HF/6-31G**) and density functional theory (B3LYP/6-31G**) models as well as of two increment methods with respect to the total compound set as well as HB acceptor type subsets. The discussion includes an explorative model application to amides and organophosphates that demonstrates the robustness of the approach, and further opportunities for model extensions.

  5. Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor.

    PubMed

    Stoltzfus, Dani M; Donaghey, Jenny E; Armin, Ardalan; Shaw, Paul E; Burn, Paul L; Meredith, Paul

    2016-11-09

    Photocurrent generation in organic bulk heterojunction (BHJ) solar cells is most commonly understood as a process which predominantly involves photoexcitation of the lower ionization potential species (donor) followed by electron transfer to the higher electron affinity material (acceptor) [i.e., photoinduced electron transfer (PET), which we term Channel I]. A mirror process also occurs in which photocurrent is generated through photoexcitation of the acceptor followed by hole transfer to the nonexcited donor or photoinduced hole transfer (PHT), which we term Channel II. The role of Channel II photocurrent generation has often been neglected due to overlap of the individual absorption spectra of the donor and acceptor materials that are commonly used. More recently Channel II charge generation has been explored for several reasons. First, many of the new high-efficiency polymeric donors are used as the minority component in bulk heterojunction blends, and therefore, the acceptor absorption is a significant fraction of the total; second, nonfullerene acceptors have been prepared, which through careful design, allow for spectral separation from the donor material, facilitating fundamental studies on charge generation. In this article, we review the methodologies for investigating the two charge generation channels. We also discuss the factors that affect charge generation via Channel I and II pathways, including energy levels of the materials involved, exciton diffusion, and other considerations. Finally, we take a comprehensive look at the nonfullerene acceptor literature and discuss what information about Channel I and Channel II can be obtained from the experiments conducted and what other experiments could be undertaken to provide further information about the operational efficiencies of Channels I and II.

  6. Deglycosylation of chondroitin sulfate proteoglycan and derived peptides

    SciTech Connect

    Campbell, S.C.; Krueger, R.C.; Schwartz, N.B. )

    1990-01-30

    In order to define the domain structure of proteoglycans as well as identify primary amino acid sequences specific for attachment of the various carbohydrate substituents, reliable techniques for deglycosylating proteoglycans are required. In this study, deglycosylation of cartilage chondroitin sulfate proteoglycan (CSPG) with minimal core protein cleavage was accomplished by digestion with chondroitinase ABC and keratanase, followed by treatment with anhydrous HF in pyridine. Nearly complete deglycosylation of secreted proteoglycan was verified within 45 min of HF treatment by loss of incorporated ({sup 3}H)glucosamine label from the proteoglycan as a function of time of treatment, as well as by direct analysis of carbohydrate content and xylosyltransferase acceptor activity of unlabeled core protein preparations. The deglycosylated CSPG preparations were homogeneous and of high molecular weight. Comparison of the intact deglycosylated core protein preparations with newly synthesized unprocessed precursors suggested that extensive proteolytic cleavage of the core protein did not occur during normal intracellular processing. Furthermore, peptide patterns generated after clostripain digestion of core protein precursor and of deglycosylated secreted proteoglycan were comparable. With the use of the clostripain digestion procedure, peptides were produced from unlabeled proteoglycan, and two predominant peptides from the most highly glycosylated regions were isolated, characterized, and deglycosylated. These peptides were found to follow similar kinetics of deglycosylation and to acquire xylose activity comparable to the intact core protein.

  7. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  8. Threshold-like complexation of conjugated polymers with small molecule acceptors in solution within the neighbor-effect model.

    PubMed

    Sosorev, Andrey Yu; Parashchuk, Olga D; Zapunidi, Sergey A; Kashtanov, Grigoriy S; Golovnin, Ilya V; Kommanaboyina, Srikanth; Perepichka, Igor F; Paraschuk, Dmitry Yu

    2016-02-14

    In some donor-acceptor blends based on conjugated polymers, a pronounced charge-transfer complex (CTC) forms in the electronic ground state. In contrast to small-molecule donor-acceptor blends, the CTC concentration in polymer:acceptor solution can increase with the acceptor content in a threshold-like way. This threshold-like behavior was earlier attributed to the neighbor effect (NE) in the polymer complexation, i.e., next CTCs are preferentially formed near the existing ones; however, the NE origin is unknown. To address the factors affecting the NE, we record the optical absorption data for blends of the most studied conjugated polymers, poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene) (P3HT), with electron acceptors of fluorene series, 1,8-dinitro-9,10-antraquinone (), and 7,7,8,8-tetracyanoquinodimethane () in different solvents, and then analyze the data within the NE model. We have found that the NE depends on the polymer and acceptor molecular skeletons and solvent, while it does not depend on the acceptor electron affinity and polymer concentration. We conclude that the NE operates within a single macromolecule and stems from planarization of the polymer chain involved in the CTC with an acceptor molecule; as a result, the probability of further complexation with the next acceptor molecules at the adjacent repeat units increases. The steric and electronic microscopic mechanisms of NE are discussed.

  9. Modular supramolecular approach for co-crystallization of donors and acceptors into ordered networks

    DOEpatents

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alex K.; Tayi, Alok S.; Sue, Andrew C. H.; Narayanan, Ashwin

    2016-09-20

    Organic charge-transfer (CT) co-crystals in a mixed stack system are disclosed, wherein a donor molecule (D) and an acceptor molecule (A) occupy alternating positions (DADADA) along the CT axis. A platform is provided which amplifies the molecular recognition of donors and acceptors and produces co-crystals at ambient conditions, wherein the platform comprises (i) a molecular design of the first constituent (.alpha.-complement), (ii) a molecular design of the second compound (.beta.-complement), and (iii) a solvent system that promotes co-crystallization.

  10. Copper-catalyzed asymmetric conjugate addition of organometallic reagents to extended Michael acceptors.

    PubMed

    Schmid, Thibault E; Drissi-Amraoui, Sammy; Crévisy, Christophe; Baslé, Olivier; Mauduit, Marc

    2015-01-01

    The copper-catalyzed asymmetric conjugate addition (ACA) of nucleophiles onto polyenic Michael acceptors represents an attractive and powerful methodology for the synthesis of relevant chiral molecules, as it enables in a straightforward manner the sequential generation of two or more stereogenic centers. In the last decade, various chiral copper-based catalysts were evaluated in combination with different nucleophiles and Michael acceptors, and have unambiguously demonstrated their usefulness in the control of the regio- and enantioselectivity of the addition. The aim of this review is to report recent breakthroughs achieved in this challenging field.

  11. Investigation of acceptor states in ZnO by junction DLTS

    NASA Astrophysics Data System (ADS)

    von Wenckstern, H.; Pickenhain, R.; Schmidt, H.; Brandt, M.; Biehne, G.; Lorenz, M.; Grundmann, M.; Brauer, G.

    2007-07-01

    We have realized a p-type ZnO surface layer by N + ion implantation of a high quality ZnO wafer and subsequent annealing. The conduction type of this surface layer was revealed by scanning capacitance microscopy. Rectifying current-voltage characteristics for processed devices were coherent with the existence of an internal pn junction. Deep donor- and acceptor-like defects were investigated by junction deep level transient spectroscopy. The donor-like levels correspond to those commonly observed for E1 and E3 defects. The acceptor states resolved have thermal activation energies of about 150 meV and 280 meV, respectively.

  12. Effect of Electronic Acceptor Segments on Photophysical Properties of Low-Band-Gap Ambipolar Polymers

    PubMed Central

    Li, Yuanzuo; Cui, Jingang; Zhao, Jianing; Liu, Jinglin; Song, Peng; Ma, Fengcai

    2013-01-01

    Stimulated by a recent experimental report, charge transfer and photophysical properties of donor-acceptor ambipolar polymer were studied with the quantum chemistry calculation and the developed 3D charge difference density method. The effects of electronic acceptor strength on the structure, energy levels, electron density distribution, ionization potentials, and electron affinities were also obtained to estimate the transporting ability of hole and electron. With the developed 3D charge difference density, one visualizes the charge transfer process, distinguishes the role of molecular units, and finds the relationship between the role of DPP and excitation energy for the three polymers during photo-excitation. PMID:23365549

  13. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOEpatents

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  14. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    SciTech Connect

    Kalpana, P.; Merwyn, A.; Nithiananthi, P.; Jayakumar, K.; Reuben, Jasper D.

    2015-06-24

    The Coulomb interaction of holes in a Semimagnetic Cd{sub 1-x}Mn{sub x}Te / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  15. Improving an organic photodiode by incorporating a tunnel barrier between the donor and acceptor layers

    NASA Astrophysics Data System (ADS)

    Campbell, I. H.; Crone, B. K.

    2012-07-01

    We demonstrate increased photocurrent quantum efficiency in a model donor/acceptor (tetracene/C60) photodiode by incorporating an insulating tunnel barrier between the tetracene and C60 layers. Photodiode efficiency results from the interplay of a number of processes which add to or subtract from the overall device efficiency. The positive rates are those of exciton dissociation and charge separation, the negative rates include exciton and charge transfer complex recombination. We show that by introducing a thin insulating layer between the donor and acceptor layers in a photodiode, we can modify the exciton dissociation and charge transfer complex recombination rates and improve device performance.

  16. Effect of electronic acceptor segments on photophysical properties of low-band-gap ambipolar polymers.

    PubMed

    Li, Yuanzuo; Cui, Jingang; Zhao, Jianing; Liu, Jinglin; Song, Peng; Ma, Fengcai

    2013-01-01

    Stimulated by a recent experimental report, charge transfer and photophysical properties of donor-acceptor ambipolar polymer were studied with the quantum chemistry calculation and the developed 3D charge difference density method. The effects of electronic acceptor strength on the structure, energy levels, electron density distribution, ionization potentials, and electron affinities were also obtained to estimate the transporting ability of hole and electron. With the developed 3D charge difference density, one visualizes the charge transfer process, distinguishes the role of molecular units, and finds the relationship between the role of DPP and excitation energy for the three polymers during photo-excitation.

  17. Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors

    PubMed Central

    Wu, Tzi-Yi; Tsao, Ming-Hsiu; Chen, Fu-Lin; Su, Shyh-Gang; Chang, Cheng-Wen; Wang, Hong-Paul; Lin, Yuan-Chung; Ou-Yang, Wen-Chung; Sun, I-Wen

    2010-01-01

    New organic dyes comprising carbazole, iminodibenzyl, or phenothiazine moieties, respectively, as the electron donors, and cyanoacetic acid or acrylic acid moieties as the electron acceptors/anchoring groups were synthesized and characterized. The influence of heteroatoms on carbazole, iminodibenzyl and phenothiazine donors, and cyano-substitution on the acid acceptor is evidenced by spectral, electrochemical, photovoltaic experiments, and density functional theory calculations. The phenothiazine dyes show solar-energy-to-electricity conversion efficiency (η) of 3.46–5.53%, whereas carbazole and iminodibenzyl dyes show η of 2.43% and 3.49%, respectively. PMID:20162019

  18. Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases.

    PubMed

    Hindsgaul, O; Kaur, K J; Srivastava, G; Blaszczyk-Thurin, M; Crawley, S C; Heerze, L D; Palcic, M M

    1991-09-25

    The glycosyltransferases controlling the biosynthesis of cell-surface complex carbohydrates transfer glycosyl residues from sugar nucleotides to specific hydroxyl groups of acceptor oligosaccharides. These enzymes represent prime targets for the design of glycosylation inhibitors with the potential to specifically alter the structures of cell-surface glycoconjugates. With the aim of producing such inhibitors, synthetic oligosaccharide substrates were prepared for eight different glycosyltransferases. The enzymes investigated were: A, alpha(1----2, porcine submaxillary gland); B, alpha(1----3/4, Lewis); C, alpha(1----4, mung bean); D, alpha(1----3, Lex)-fucosyltransferases; E, beta(1----4)-galactosyltransferase; F, beta(1----6)-N-acetylglucosaminyltransferase V; G, beta(1----6)-mucin-N-acetylglucosaminyltransferase ("core-2" transferase); and H, alpha(2----3)-sialyltransferase from rat liver. These enzymes all transfer sugar residues from their respective sugar nucleotides (GDP-Fuc, UDP-Gal, UDP-GlcNAc, and CMP-sialic acid) with inversion of configuration at their anomeric centers. The Km values for their synthetic oligosaccharide acceptors were in the range of 0.036-1.3 mM. For each of these eight enzymes, acceptor analogs were next prepared where the hydroxyl group undergoing glycosylation was chemically removed and replaced by hydrogen. The resulting deoxygenated acceptor analogs can no longer be substrates for the corresponding glycosyltransferases and, if still bound by the enzymes, should act as competitive inhibitors. In only four of the eight cases examined (enzymes A, C, F, and G) did the deoxygenated acceptor analogs inhibit their target enzymes, and their Ki values (all competitive) remained in the general range of the corresponding acceptor Km values. No inhibition was observed for the remaining four enzymes even at high concentrations of deoxygenated acceptor analog. For these latter enzymes it is suggested that the reactive acceptor hydroxyl groups are

  19. A Stable Monomeric SiO2 Complex with Donor-Acceptor Ligands.

    PubMed

    Rodriguez, Ricardo; Gau, David; Saouli, Jérémy; Baceiredo, Antoine; Saffon-Merceron, Nathalie; Branchadell, Vicenç; Kato, Tsuyoshi

    2017-03-27

    Isolation of a monomeric SiO2 compound 3 as a stable donor-acceptor complex with two different ligands -a σ-donating ligand (pyridine, dimethylaminopyridine, N-heterocyclic carbene) and a donor-acceptor ligand (iminophosphorane)-is presented. The SiO2 complex 3 is soluble in ordinary organic solvents and is stable at room temperature in solution and in the solid state. Of particular interest, 3 remains reactive and can be used as a stable and soluble unimolecular SiO2 reagent.

  20. Cyclic Opioid Peptides.

    PubMed

    Remesic, Michael; Lee, Yeon Sun; Hruby, Victor J

    2016-01-01

    For decades the opioid receptors have been an attractive therapeutic target for the treatment of pain. Since the first discovery of enkephalin, approximately a dozen endogenous opioid peptides have been known to produce opioid activity and analgesia, but their therapeutics have been limited mainly due to low blood brain barrier penetration and poor resistance to proteolytic degradation. One versatile approach to overcome these drawbacks is the cyclization of linear peptides to cyclic peptides with constrained topographical structure. Compared to their linear parents, cyclic analogs exhibit better metabolic stability, lower offtarget toxicity, and improved bioavailability. Extensive structure-activity relationship studies have uncovered promising compounds for the treatment of pain as well as further elucidate structural elements required for selective opioid receptor activity. The benefits that come with employing cyclization can be further enhanced through the generation of polycyclic derivatives. Opioid ligands generally have a short peptide chain and thus the realm of polycyclic peptides has yet to be explored. In this review, a brief history of designing ligands for the opioid receptors, including classic linear and cyclic ligands, is discussed along with recent approaches and successes of cyclic peptide ligands for the receptors. Various scaffolds and approaches to improve bioavailability are elaborated and concluded with a discourse towards polycyclic peptides.

  1. Relating skin sensitizing potency to chemical reactivity: reactive Michael acceptors inhibit NF-κB signaling and are less sensitizing than S(N)Ar- and S(N)2- reactive chemicals.

    PubMed

    Natsch, Andreas; Haupt, Tina; Laue, Heike

    2011-11-21

    The skin sensitization potency of chemicals is partly related to their reactivity to proteins. This can be quantified as the rate constant of the reaction with a model peptide, and a kinetic profiling approach to determine rate constants was previously proposed. A linear relationship between the skin sensitization potency in the local lymph node assay (LLNA) and the rate constant for Michael acceptors was reported, characterized by a relatively flat regression line. Thus, a 10-fold increase of reactivity correlates to an increase of the sensitization potential of only 1.7-fold. Here, we first validate this model by repeating previous data and testing additional Michael acceptors and prove that the model is both reproducible and robust to the addition of new data. Chemicals of different mechanistic applicability domains, namely, S(N)Ar- and S(N)2-reactive sensitizers, were then tested with the same kinetic profiling approach. A linear relationship between sensitization potency in the LLNA and rate constants was also found, yet with a much steeper slope, i.e., for S(N)Ar- and S(N)2-reactive sensitizers, increasing reactivity correlates to a much stronger increase in sensitization potency. On the basis of the well-known inhibitory activity of some Michael acceptors on IKK kinase, it was hypothesized that the difference in the slopes is due to the specific anti-inflammatory potential of Michael acceptor chemicals. Therefore, all chemicals were tested for anti-inflammatory activity in a reporter gene assay for the inhibition of NF-κB activation. Increasingly reactive Michael acceptors have increasing anti-inflammatory potential in this assay, whereas no such biological activity was detected for the S(N)Ar and S(N)2 reactive sensitizers. Thus, the increasing reactivity of Michael acceptors confers both anti-inflammatory and skin sensitizing/pro-inflammatory potential, which may partially neutralize each other. This may be the reason for the relatively weak relationship

  2. Molecular Dynamics Study of the Lung Surfactant Peptide SP-B1–25 with DPPC Monolayers: Insights into Interactions and Peptide Position and Orientation

    PubMed Central

    Kandasamy, Senthil K.; Larson, Ronald G.

    2005-01-01

    We have performed molecular dynamics simulations of the interactions of the peptide SP-B1–25, which is a truncated version of the full pulmonary surfactant protein SP-B, with dipalmitoylphosphatidylcholine monolayers, which are the major lipid components of lung surfactant. Simulations of durations of 10–20 ns show that persistent hydrogen bonds form between the donor atoms of the protein and the acceptors of the lipid headgroup and that these bonds determine the position, orientation, and secondary structure of the peptide in the membrane environment. From an ensemble of initial conditions, the most probable equilibrium orientation of the α-helix of the peptide is predicted to be parallel to the interface, matching recent experimental results on model lipid mixtures. Simulations of a few mutated analogs of SP-B1–25 also suggest that the charged amino acids are important in determining the position of the peptide in the interface. The first eight amino acids of the peptide, also known as the insertion sequence, are found to be essential in reducing the fluctuations and anchoring the peptide in the lipid/water interface. PMID:15738465

  3. 2004 Electron Donor Acceptor Interactions Gordon Conference - August 8-13, 2004

    SciTech Connect

    GUILFORD JONES BOSTON UNIVERSITY PHOTONICS CENTER 8 ST. MARY'S ST BOSTON, MA 02215

    2005-09-14

    The 2004 Gordon Conference on Donor/Acceptor Interactions will take place at Salve Regina University in Newport, Rhode Island on August 8-13, 2004. The conference will be devoted to the consequences of charge interaction and charge motion in molecular and materials systems.

  4. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  5. Limited Cash Flow on Slot Machines: Effects of Prohibition of Note Acceptors on Adolescent Gambling Behaviour

    ERIC Educational Resources Information Center

    Hansen, Marianne; Rossow, Ingeborg

    2010-01-01

    This study addresses the impact of prohibition of note acceptors on gambling behaviour and gambling problems among Norwegian adolescents. Data comprised school surveys at three time points; 2004 and 2005 (before intervention) and 2006 (after intervention). Net samples comprised 20.000 students aged 13-19 years at each data collection. Identical…

  6. Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface.

    PubMed

    Chen, Lijia; Zhang, Qiaoming; Lei, Yanlian; Zhu, Furong; Wu, Bo; Zhang, Ting; Niu, Guoxi; Xiong, Zuhong; Song, Qunliang

    2013-10-21

    In this work, we report our effort to understand the photocurrent generation that is contributed via electron-exciton interaction at the donor/acceptor interface in organic solar cells (OSCs). Donor/acceptor bi-layer heterojunction OSCs, of the indium tin oxide/copper phthalocyanine (CuPc)/fullerene (C60)/molybdenum oxide/Al type, were employed to study the mechanism of photocurrent generation due to the electron-exciton interaction, where CuPc and C60 are the donor and the acceptor, respectively. It is shown that the electron-exciton interaction and the exciton dissociation processes co-exist at the CuPc/C60 interface in OSCs. Compared to conventional donor/acceptor bi-layer OSCs, the cells with the above configuration enable holes to be extracted at the C60 side while electrons can be collected at the CuPc side, resulting in a photocurrent in the reverse direction. The photocurrent thus observed is contributed to primarily by the charge carriers that are generated by the electron-exciton interaction at the CuPc/C60 interface, while charges derived from the exciton dissociation process also exist at the same interface. The mechanism of photocurrent generation due to electron-exciton interaction in the OSCs is further investigated, and it is manifested by the transient photovoltage characteristics and the external quantum efficiency measurements.

  7. Solvent as electron donor: Donor/acceptor electronic coupling is a dynamical variable

    SciTech Connect

    Castner, E.W. Jr.; Kennedy, D.; Cave, R.J.

    2000-04-06

    The authors combine analysis of measurements by femtosecond optical spectroscopy, computer simulations, and the generalized Mulliken-Hush (GMH) theory in the study of electron-transfer reactions and electron donor-acceptor interactions. The study focus is on ultrafast photoinduced electron-transfer reactions from aromatic amine solvent donors to excited-state acceptors. The experimental results from femtosecond dynamical measurements fall into three categories: six coumarin acceptors reductively quenched by N,N-dimethylaniline (DMA), eight electron-donating amine solvents reductively quenching coumarin 152 (7-(dimethylamino)-4-(trifluoromethyl)-coumarin), and reductive quenching dynamics of two coumarins by DMA as a function of dilution in the nonreactive solvents toluene and chlorobenzene. Applying a combination of molecular dynamics trajectories, semiempirical quantum mechanical calculations (of the relevant adiabatic electronic states), and GMH theory to the C152/DMA photoreaction, the authors calculate the electron donor/acceptor interaction parameter H{sub DA} at various time frames, H{sub DA} is strongly modulated by both inner-sphere and outer-sphere nuclear dynamics, leading us to conclude that H{sub DA} must be considered as a dynamical variable.

  8. Photoluminescence study of Be acceptors in GaInNAs epilayers

    NASA Astrophysics Data System (ADS)

    Tsai, Y.; Barman, B.; Scrace, T.; Petrou, A.; Fukuda, M.; Sellers, I. R.; Leroux, M.; Khalfioui, M. A.

    2014-03-01

    We have studied the photoluminescence (PL) spectra from MBE grown GaInNAs epilayers doped p-type with Beryllium acceptors. The measurements were carried out in the 5 K - 70 K temperature range and in magnetic fields (B) up to 7 tesla. The PL spectra contain two features at T = 5 K: The exciton at 1093 meV and a second broader feature at 1058 meV. The intensity of this feature decreases with increasing temperature and disappears completely by 70K while the excitonic feature persists. The emission at 1058meV is identified as the conduction band to Beryllium acceptor transition. If we take into account the binding energy of the exciton [3] we get a value of 23 meV for the Beryllium acceptor binding energy. The acceptor related transition was studied as a function of magnetic field; the energy of this transition has a linear dependence on B with a slope of 055 meV/T. Research supported by Amethyst Research In. through the State of Oklahoma, ONAP program.

  9. Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis.

    PubMed

    Baraquet, Claudine; Théraulaz, Laurence; Iobbi-Nivol, Chantal; Méjean, Vincent; Jourlin-Castelli, Cécile

    2009-07-01

    Shewanella oneidensis uses a wide range of terminal electron acceptors for respiration. In this study, we show that the chemotactic response of S. oneidensis to anaerobic electron acceptors requires functional electron transport systems. Deletion of the genes encoding dimethyl sulphoxide and trimethylamine N-oxide reductases, or inactivation of these molybdoenzymes as well as nitrate reductase by addition of tungstate, abolished electron acceptor taxis. Moreover, addition of nigericin prevented taxis towards trimethylamine N-oxide, dimethyl sulphoxide, nitrite, nitrate and fumarate, showing that this process depends on the DeltapH component of the proton motive force. These data, together with those concerning response to metals (Bencharit and Ward, 2005), support the idea that, in S. oneidensis, taxis towards electron acceptors is governed by an energy taxis mechanism. Surprisingly, energy taxis in S. oneidensis is not mediated by the PAS-containing chemoreceptors but rather by a chemoreceptor (SO2240) containing a Cache domain. Four other chemoreceptors also play a minor role in this process. These results indicate that energy taxis can be mediated by new types of chemoreceptors.

  10. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    NASA Astrophysics Data System (ADS)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  11. Donator acceptor map of psittacofulvins and anthocyanins: are they good antioxidant substances?

    PubMed

    Martínez, Ana

    2009-04-09

    Psittacofulvins represent an unusual class of pigments (noncarotenoid lipochromes), which are found only in the red, orange, and yellow plumage of parrots. Anthocyanins are flavonoids, and they are one of the primary types of colorants found in plants. Blue butterflies acquire blue and UV hues on their wings, owing to the presence of flavonoids. It is assumed that these natural pigments are valuable antioxidants because they are able to scavenge free radicals. The aim of this investigation is to rationalize the scavenging activity of psittacofulvins and anthocyanins, in terms of the one electron transfer mechanism, taking into account that to prevent oxidative stress, substances must either donate or accept electrons. Density functional approximation calculations are used to obtain ionization potentials, electron affinities, electrodonating, and electroaccepting power indexes. Taking these values, a donator acceptor map (DAM) was constructed, indicating that anthocyanins are good electron donors, whereas psittacofulvins are good electron acceptors. Anthocyanins and vitamins are antioxidants, whereas psittacofulvins and carotenoids are antireductants (oxidants). In terms of solvent effects, animal pigments (carotenoids, psittacofulvins, and anthocyanins) are much better electron acceptors in water than in either the gas phase or benzene. Solvent effects do not alter the electron donor capacity of vitamins, but anthocyanins become effective electron acceptors in water, rather than effective electron donors. The information presented here may also be valuable for the design and analysis of further experiments.

  12. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.

    PubMed

    Mashimo, Masato; Kato, Jiro; Moss, Joel

    2014-11-01

    ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD(+)) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g., ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g., ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1(-/-) and ARH3(-/-) mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos.

  13. Imaging protein interactions by FRET microscopy: FRET measurements by acceptor photobleaching.

    PubMed

    Verveer, Peter J; Rocks, Oliver; Harpur, Ailsa G; Bastiaens, Philippe I H

    2006-11-01

    This protocol describes the detection of fluorescence resonance energy transfer (FRET) by measuring the quenching of donor emission alone. As opposed to sensitized emission measurements, photobleaching can be performed with high selectivity of the acceptor because absorption spectra are steep at their red edge, allowing the acceptor to be bleached without excitation of the donor. When using acceptor photobleaching FRET measurements, care should be taken that the photochemical product of the bleached acceptor does not have residual absorption at the donor emission and, more importantly, that it does not fluoresce in the donor spectral region. Because of mass movement of protein during the extended time required for photobleaching (typically 1-20 min), it is preferable to perform this type of FRET determination on fixed cell samples. Live-cell FRET measurements based only on donor fluorescence are more feasible using fluorescence lifetime imaging (FLIM), because lifetimes are independent of probe concentration and light path length. The former is not easy to determine in cells, and the latter means that cell shape is not a factor.

  14. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics.

    PubMed

    Li, Hanying; Fan, Congcheng; Fu, Weifei; Xin, Huolin L; Chen, Hongzheng

    2015-01-12

    Organic single crystals are ideal candidates for high-performance photovoltaics due to their high charge mobility and long exciton diffusion length; however, they have not been largely considered for photovoltaics due to the practical difficulty in making a heterojunction between donor and acceptor single crystals. Here, we demonstrate that extended single-crystalline heterojunctions with a consistent donor-top and acceptor-bottom structure throughout the substrate can be simply obtained from a mixed solution of C60 (acceptor) and 3,6-bis(5-(4-n-butylphenyl)thiophene-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (donor). 46 photovoltaic devices were studied with the power conversion efficiency of (0.255±0.095)% under 1 sun, which is significantly higher than the previously reported value for a vapor-grown organic single-crystalline donor-acceptor heterojunction (0.007%). As such, this work opens a practical avenue for the study of organic photovoltaics based on single crystals.

  15. Dominant effects of first monolayer energetics at donor/acceptor interfaces on organic photovoltaics.

    PubMed

    Izawa, Seiichiro; Nakano, Kyohei; Suzuki, Kaori; Hashimoto, Kazuhito; Tajima, Keisuke

    2015-05-20

    Energy levels of the first monolayer are manipulated at donor/acceptor interfaces in planar heterojunction organic photovoltaics by using molecular self-organization. A "cascade" energy landscape allows thermal-activation-free charge generation by photoirradiation, destabilizes the energy of the interfacial charge-transfer state, and suppresses bimolecular charge recombination, resulting in a higher open-circuit voltage and fill factor.

  16. [4 + 2] Annulation of Donor-Acceptor Cyclopropanes with Acetylenes Using 1,2-Zwitterionic Reactivity.

    PubMed

    Novikov, Roman A; Tarasova, Anna V; Denisov, Dmitry A; Borisov, Denis D; Korolev, Victor A; Timofeev, Vladimir P; Tomilov, Yury V

    2017-02-23

    A new process for the [4 + 2] annulation of donor-acceptor cyclopropanes with acetylenes under the effect of anhydrous GaCl3 using 1,2-zwitterion reactivity was elaborated. The reaction opens access to substituted dihydronaphthalenes, naphthalenes, and other fused carbocycles. The direction of the reaction can be efficiently controlled by temperature.

  17. Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells.

    PubMed

    Jadhav, D A; Ghadge, A N; Mondal, Debika; Ghangrekar, M M

    2014-02-01

    Effect of oxygen and sodium hypochlorite (NaOCl) as cathodic electron acceptors on performance of a clayware microbial fuel cell (MFC) was evaluated in this study. Maximum power density of 6.57 W/m(3) was obtained with NaOCl as catholyte, which is about 9 times higher than oxygen being used as an electron acceptor. Voltammetry and Tafel analysis further supported the faster reduction kinetics lead to increase in power output and reduction in internal resistance of MFC operated with NaOCl as an electron acceptor. Using NaOCl as catholyte, higher exchange current density of 10.91 and 11.52 mA/m(2) and lower charge transfer resistance of 0.58 and 0.56 kΩ m(2) was observed for anode and cathode, respectively. Higher organic matter removal of about 90% with 25% Coulombic efficiency was achieved using NaOCl as catholyte. Higher internal resistance, lower cathode potential and slow reduction kinetics deteriorated performance of MFC using oxygen as cathodic electron acceptor.

  18. Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells.

    PubMed

    Wu, Jhong-Sian; Cheng, Sheng-Wen; Cheng, Yen-Ju; Hsu, Chain-Shu

    2015-03-07

    Harvesting solar energy from sunlight to generate electricity is considered as one of the most important technologies to address the future sustainability of humans. Polymer solar cells (PSCs) have attracted tremendous interest and attention over the past two decades due to their potential advantage to be fabricated onto large area and light-weight flexible substrates by solution processing at a lower cost. PSCs based on the concept of bulk heterojunction (BHJ) configuration where an active layer comprises a composite of a p-type (donor) and an n-type (acceptor) material represents the most useful strategy to maximize the internal donor-acceptor interfacial area allowing for efficient charge separation. Fullerene derivatives such as [6,6]-phenyl-C61 or 71-butyric acid methyl ester (PCBM) are the ideal n-type materials ubiquitously used for BHJ solar cells. The major effort to develop photoactive materials is numerously focused on the p-type conjugated polymers which are generally synthesized by polymerization of electron-rich donor and electron-deficient acceptor monomers. Compared to the development of electron-deficient comonomers (acceptor segments), the development of electron-rich donor materials is considerably flourishing. Forced planarization by covalently fastening adjacent aromatic and heteroaromatic subunits leads to the formation of ladder-type conjugated structures which are capable of elongating effective conjugation, reducing the optical bandgap, promoting intermolecular π-π interactions and enhancing intrinsic charge mobility. In this review, we will summarize the recent progress on the development of various well-defined new ladder-type conjugated materials. These materials serve as the superb donor monomers to prepare a range of donor-acceptor semi-ladder copolymers with sufficient solution-processability for solar cell applications.

  19. A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells.

    PubMed

    Zhou, Huaxing; Yang, Liqiang; Stoneking, Sarah; You, Wei

    2010-05-01

    Polymers to be used in bulk heterojunction (BHJ) solar cells should maintain a low highest occupied molecular orbital (HOMO) energy level as well as a narrow band gap in order to maximize the open circuit voltage (V(oc)) and the short circuit current (J(sc)). To concurrently lower the HOMO energy level and the band gap, we propose to modify the donor-acceptor low band gap polymer strategy by constructing alternating copolymers incorporating a "weak donor" and a "strong acceptor". As a result, the "weak donor" should help maintain a low HOMO energy level while the "strong acceptor" should reduce the band gap via internal charge transfer (ICT). This concept was examined by constructing a library of polymers employing the naphtho[2,1-b:3,4-b']dithiophene (NDT) unit as the weak donor, and benzothiadiazole (BT) as the strong acceptor. PNDT-BT, designed under the "weak donor-strong acceptor" strategy, demonstrated both a low HOMO energy level of -5.35 eV and a narrow band gap of 1.59 eV. As expected, a noticeably high V(oc) of 0.83 V was obtained from the BHJ device of PNDT-BT blended with PCBM. However, the J(sc) ( approximately 3 mA/cm(2)) was significantly lower than the maximum expected current from such a low band gap material, which limited the observed efficiency to 1.27% (with a 70 nm thin film). Further improvements in the efficiency are expected from these materials if new strategies can be identified to (a) increase the molecular weight and (b) improve the hole mobility while still maintaining a low HOMO energy level and a narrow band gap.

  20. Anti-antimicrobial Peptides

    PubMed Central

    Ryan, Lloyd; Lamarre, Baptiste; Diu, Ting; Ravi, Jascindra; Judge, Peter J.; Temple, Adam; Carr, Matthew; Cerasoli, Eleonora; Su, Bo; Jenkinson, Howard F.; Martyna, Glenn; Crain, Jason; Watts, Anthony; Ryadnov, Maxim G.

    2013-01-01

    Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance. PMID:23737519

  1. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  2. Helical-Peptide-Catalyzed Enantioselective Michael Addition Reactions and Their Mechanistic Insights.

    PubMed

    Ueda, Atsushi; Umeno, Tomohiro; Doi, Mitsunobu; Akagawa, Kengo; Kudo, Kazuaki; Tanaka, Masakazu

    2016-08-05

    Helical peptide foldamer catalyzed Michael addition reactions of nitroalkane or dialkyl malonate to α,β-unsaturated ketones are reported along with the mechanistic considerations of the enantio-induction. A wide variety of α,β-unsaturated ketones, including β-aryl, β-alkyl enones, and cyclic enones, were found to be catalyzed by the helical peptide to give Michael adducts with high enantioselectivities (up to 99%). On the basis of X-ray crystallographic analysis and depsipeptide study, the amide protons, N(2)-H and N(3)-H, at the N terminus in the α-helical peptide catalyst were crucial for activating Michael donors, while the N-terminal primary amine activated Michael acceptors through the formation of iminium ion intermediates.

  3. Synthesis and biological properties of amino acids and peptides containing a tetrazolyl moiety

    NASA Astrophysics Data System (ADS)

    Popova, E. A.; Trifonov, R. E.

    2015-09-01

    Literature data published mainly in the last 15 years on the synthesis and biological properties of amino acid analogues and derivatives containing tetrazolyl moieties are analyzed. Tetrazolyl analogues and derivatives of amino acids and peptides are shown to be promising for medicinal chemistry. Being polynitrogen heterocyclic systems comprising four endocyclic nitrogen atoms, tetrazoles can behave as acids and bases and form strong hydrogen bonds with proton donors (more rarely, with acceptors). They have high metabolic stability and are able to penetrate biological membranes. The review also considers the synthesis and properties of linear and cyclic peptides based on modified amino acids incorporating a tetrazolyl moiety. A special issue is the discussion of the biological properties of tetrazole-containing amino acids and peptides, which exhibit high biological activity and can be used to design new drugs. The bibliography includes 200 references.

  4. Determination of acceptor-to-donor cross section ratio for two-photon excitation in living cells

    NASA Astrophysics Data System (ADS)

    Hou, Zexian; Wang, Yuhua; Zheng, Liqin; Chen, Tongsheng; Yang, Hongqin; Xie, Shusen

    2016-10-01

    The cross section is a significant parameter for fluorescence protein and determination of acceptor-to-donor cross section ratio for two-photon excitation in living cells is the vital issue for two-photon excitation FRET quantification. In this study, Hela cells were labeled with FPs that acceptor-to-donor concentration ratio is 1 to 1 and acceptor-to-donor cross section ratio ranged from 700nm to 960nm was obtained by emission spectral unmixing with independent excitation crosstalk correction. The results show that acceptor-to-donor cross section ratio declines with the excitation wavelength from 700nm to 790nm and then increases inversely from 790nm to 960nm. This method can quickly determine the cross section without any additional references, which could provide a powerful and convenient tool for measuring acceptor-to-donor cross section ratio by two-photon excitation in living cells.

  5. Donor-Acceptor-Donor Modular Small Organic Molecules Based on the Naphthalene Diimide Acceptor Unit for Solution-Processable Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Patil, Hemlata; Gupta, Akhil; Bilic, Ante; Jackson, Sam Leslie; Latham, Kay; Bhosale, Sheshanath V.

    2014-09-01

    Two novel solution-processable small organic molecules, 4,9-bis(4-(diphenylamino)phenyl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8(2 H,7 H)-tetraone ( S6) and 4,9-bis(benzo[ b]thiophen-2-yl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8 (2 H,7 H)-tetraone ( S7), have been successfully designed, synthesized, characterized, and applied in solution-processable photovoltaic devices. S6 and S7 contain a common electron-accepting moiety, naphthalene diimide (NDI), with different electron-donating moieties, triphenylamine ( S6) and benzothiophene ( S7), and are based on a donor-acceptor-donor structure. S7 was isolated as black, rod-shaped crystals. Its triclinic structure was determined by single crystal x-ray diffraction (XRD): space group , Z = 2, a = 9.434(5) Å, b = 14.460(7) Å, c = 15.359(8) Å, α = 67.256(9) degrees, β = 80.356(11) degrees, γ = 76.618(10) degrees, at 150 Kelvin (K), R = 0.073. Ultraviolet-visible absorption spectra revealed that use of triphenylamine donor functionality with the NDI acceptor unit resulted in an enhanced intramolecular charge transfer (ICT) transition and reduction of the optical band gap compared with the benzothiophene analogue. Solution-processable inverted bulk heterojunction devices with the structure indium tin oxide/zinc oxide (30 nm)/active layer/molybdenum trioxide (10 nm)/silver (100 nm) were fabricated with S6 and S7 as donors and (6,6)-phenyl C70-butyric acid methyl ester (PC70BM) as acceptor. Power conversion efficiencies of 0.22% for S6/PC70BM and 0.10% for S7/PC70BM were achieved for the preliminary photovoltaic devices under simulated AM 1.5 illumination (100 mW cm-2). This paper reports donor-acceptor-donor modular small organic molecules, with NDI as central accepting unit, that have been screened for use in solution-processable inverted photovoltaic devices.

  6. Melanins from opioid peptides.

    PubMed

    Rosei, M A

    1996-12-01

    Opioid peptides and other Tyr-NH2-terminal peptides are substrates in vitro for mushroom and sepia tyrosine, giving rise to synthetic melanins retaining the peptide moiety (opiomelanins). The melanopeptides are characterized by a total solubility in hydrophylic solvents at neutral and basic pH. Opioid peptides (enkephalins, endorphins, and esorphins), if oxidized by tyrosinase in the presence of Dopa, are easily incorporated into Dopa-melanin, producing mixed-type pigments that can also be solubilized in hydrophylic solvents. Melanins derived from opioid peptides exhibit paramagnetism, as evidenced by an EPR spectrum identical to that of Dopa-melanin. However, the presence of the linked peptide chain is able to influence dramatically the electron transfer properties and the oxidizing behaviour of the melanopeptides, so that whereas Tyr-Gly-melanin appears to behave as Dopa-melanin, Enk-melanin does not exhibit any oxidizing activity. Opiomelanins are characterized by a peculiar UV-VIS spectrum; that is, by the presence of a distinct peak (330 nm) that disappears upon chemical treatment by acid hydrolysis. Opiomelanins are stable pigments at neutral and basic pH in the dark, whereas the addition of H2O2 leads to a 15% degradation. Under stimulated solar illumination, opiomelanins are more easily destroyed with respect to Dopa-melanin, with increasing degradation when exposed to increased hydrogen peroxide concentrations and more alkaline pH. Some speculations on the possible existence and role of opiomelanins have been outlined.

  7. Peptide Optical waveguides.

    PubMed

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil

    2017-02-01

    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  8. Modular, Antibody-free Time-Resolved LRET Kinase Assay Enabled by Quantum Dots and Tb3+-sensitizing Peptides

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Parker, Laurie L.

    2016-07-01

    Fluorescent drug screening assays are essential for tyrosine kinase inhibitor discovery. Here we demonstrate a flexible, antibody-free TR-LRET kinase assay strategy that is enabled by the combination of streptavidin-coated quantum dot (QD) acceptors and biotinylated, Tb3+ sensitizing peptide donors. By exploiting the spectral features of Tb3+ and QD, and the high binding affinity of the streptavidin-biotin interaction, we achieved multiplexed detection of kinase activity in a modular fashion without requiring additional covalent labeling of each peptide substrate. This strategy is compatible with high-throughput screening, and should be adaptable to the rapidly changing workflows and targets involved in kinase inhibitor discovery.

  9. Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin-Copper Corrole Donor-Acceptor Conjugates.

    PubMed

    Ngo, Thien H; Zieba, David; Webre, Whitney A; Lim, Gary N; Karr, Paul A; Kord, Scheghajegh; Jin, Shangbin; Ariga, Katsuhiko; Galli, Marzia; Goldup, Steve; Hill, Jonathan P; D'Souza, Francis

    2016-01-22

    An electron-deficient copper(III) corrole was utilized for the construction of donor-acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump-probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge-separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron-deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 10(10)  s(-1) and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.

  10. The Pushkin—Varshney—Kamoonpuri equation for the evaluation of association constants for the charge transfer complexes of sparingly soluble acceptors

    NASA Astrophysics Data System (ADS)

    Qureshi, Pushkin M.; Varshney, Rishi K.; Kamoonpuri, S. Iqbal M.

    The proposed Pushkin—Varshney—Kamoonpuri equation proposes a simple way in which the association constants of complexes of sparingly soluble acceptors may be evaluated. The method can be used where the concentration of the acceptor is not known.

  11. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  12. Cyclization in opioid peptides.

    PubMed

    Piekielna, Justyna; Perlikowska, Renata; Gach, Katarzyna; Janecka, Anna

    2013-06-01

    Endogenous opioid peptides have been studied extensively as potential therapeutics for the treatment of pain. The major problems of using natural opioid peptides as drug candidates are their poor receptor specificity, metabolic instability and inability to reach the brain after systemic administration. A lot of synthetic efforts have been made to opioid analogs with improved pharmacological properties. One important structural modification leading to such analogs is cyclization of linear sequences. Intramolecular cyclization has been shown to improve biological properties of various bioactive peptides. Cyclization reduces conformational freedom responsible for the simultaneous activation of two or more receptors, increases metabolic stability and lipophilicity which may result in a longer half-life and easier penetration across biological membranes. This review deals with various strategies that have been employed to synthesize cyclic analogs of opioid peptides. Discussed are such bridging bonds as amide and amine linkages, sulfur-containing bonds, including monosulfide, disulfide and dithioether bridges, bismethylene bonds, monosulfide bridges of lanthionine and, finally, carbonyl and guanidine linkages. Opioid affinities and activities of cyclic analogs are given and compared with linear opioid peptides. Analgesic activities of analogs evaluated in the in vivo pain tests are also discussed.

  13. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor

    NASA Astrophysics Data System (ADS)

    Diehl, Katharine L.; Kolesnichenko, Igor V.; Robotham, Scott A.; Bachman, J. Logan; Zhong, Ye; Brodbelt, Jennifer S.; Anslyn, Eric V.

    2016-10-01

    The coupling and decoupling of molecular units is a fundamental undertaking of organic chemistry. Herein we report the use of a very simple conjugate acceptor, derived from Meldrum's acid, for the sequential ‘clicking’ together of an amine and a thiol in aqueous conditions at neutral pH. Subsequently, this linkage can be ‘declicked’ by a chemical trigger to release the original amine and thiol undisturbed. The reactivity differs from that of other crosslinking agents because the selectivity for sequential functionalization derives from an altering of the electrophilicity of the conjugate acceptor on the addition of the amine. We describe the use of the procedure to modify proteins, create multicomponent libraries and synthesize oligomers, all of which can be declicked to their starting components in a controlled fashion when desired. Owing to the mild reaction conditions and ease of use in a variety of applications, the method is predicted to have wide utility.

  14. Effect of geometry on the screened acceptor binding energy in a quantum wire

    SciTech Connect

    Shanthi, R. Vijaya Nithiananthi, P.

    2014-04-24

    The effect of various Geometries G(x, y) of the GaAs/Al{sub x}Ga{sub 1−x}As Quantum wire like G{sub 1}: (L, L) {sub 2}: (L, L/2) {sub 3}: (L/2, L/4) on the binding energy of an on-center acceptor impurity has been investigated through effective mass approximation using variational technique. The observations were made including the effect of spatial dependent dielectric screening for different concentration of Al, at T=300K. The influence of spatial dielectric screening on different geometries of the wire has been compared and hence the behavior of the acceptor impurity in GaAs/Al{sub x}Ga{sub 1−x}As Quantum wire has been discussed.

  15. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    PubMed

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations.

  16. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    SciTech Connect

    Mynbaev, K. D.; Shilyaev, A. V. Bazhenov, N. L.; Izhnin, A. I.; Izhnin, I. I.; Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A.

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  17. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    PubMed

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  18. Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis.

    PubMed

    Genz, Maika; Vickers, Clare; van den Bergh, Tom; Joosten, Henk-Jan; Dörr, Mark; Höhne, Matthias; Bornscheuer, Uwe T

    2015-11-11

    To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5'-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions.

  19. Microwave assisted synthesis of bithiophene based donor-acceptor-donor oligomers and their optoelectronic performances

    NASA Astrophysics Data System (ADS)

    Bathula, Chinna; Buruga, Kezia; Lee, Sang Kyu; Khazi, Imtiyaz Ahmed M.; Kang, Youngjong

    2017-07-01

    In this article we present the synthesis of two novel bithiophene based symmetrical π conjugated oligomers with donor-acceptor-donor (D-A-D) structures by microwave assisted PdCl2(dppf) catalyzed Suzuki coupling reaction. These molecules contain electron rich bithiophene as a donor, dithienothiadiazole[3,4-c]pyridine and phthalic anhydride units as acceptors. The shorter reaction time, excellent yields and easy product isolation are the advantages of this method. The photophysical prerequisites for electronic application such as strong and broad optical absorption, thermal stability, and compatible energy levels were determined for synthesized oligomers. Optical band gap for the oligomers is found to be 1.72-1.90 eV. The results demonstrated the novel oligomers to be promising candidates in organic optoelectronic applications.

  20. Solution-processable donor-acceptor polymers with modular electronic properties and very narrow bandgaps.

    PubMed

    Foster, Michael E; Zhang, Benjamin A; Murtagh, Dustin; Liu, Yi; Sfeir, Matthew Y; Wong, Bryan M; Azoulay, Jason D

    2014-09-01

    Bridgehead imine-substituted cyclopentadithiophene structural units, in combination with highly electronegative acceptors that exhibit progressively delocalized π-systems, afford donor-acceptor (DA) conjugated polymers with broad absorption profiles that span technologically relevant wavelength (λ) ranges from 0.7 < λ < 3.2 μm. A joint theoretical and experimental study demonstrates that the presence of the cross-conjugated substituent at the donor bridgehead position results in the capability to fine-tune structural and electronic properties so as to achieve very narrow optical bandgaps (Eg (opt) < 0.5 eV). This strategy affords modular DA copolymers with broad- and long-wavelength light absorption in the infrared and materials with some of the narrowest bandgaps reported to date.

  1. Frequency modulated femtosecond stimulated Raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer.

    PubMed

    Grumstrup, Erik M; Chen, Zhuo; Vary, Ryan P; Moran, Andrew M; Schanze, Kirk S; Papanikolas, John M

    2013-07-11

    A Raman-pump frequency modulation scheme and an automated signal-processing algorithm are developed for improved collection of time-resolved femtosecond stimulated Raman spectra. Together, these two advancements remove the broad background signals endemic to FSRS measurements and retrieve signals with high sensitivity. We apply this frequency-modulated femtosecond stimulated Raman spectroscopy (FM-FSRS) to the characterization of ultrafast energy transport in a copolymer comprised of polystyrene linked oligo(phenylene-ethynylene) donor and thiophene-benzothiadiazole acceptor chromophores. After photoexcitation of the donor, ultrafast energy transfer is monitored by the decay of donor vibrational modes and simultaneous growth of acceptor modes. The FM-FSRS method shows clear advantages in signal-to-noise levels, mitigation of artifact features, and ease of data processing over the conventional FSRS technique.

  2. The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy.

    PubMed

    Sun, Qiang

    2010-02-07

    In this work, the Raman spectra of aqueous C(12)E(5) solutions are recorded and utilized to demonstrate the existence of single donator-single acceptor (DA) hydrogen bonding in water. From Raman OH stretching bands of aqueous C(12)E(5) solutions, the relative intensity of 3430 cm(-1) subband increases with C(12)E(5) concentrations. For confined water, the DA hydrogen bonding can be expected to be the important hydrogen bonding species. Therefore, the 3430 cm(-1) component can be ascribed to OH vibration engaged in DA hydrogen bonding. This is in agreement with our recent explanation on Raman OH stretching band of water. For water at ambient conditions, the double donor-double acceptor (DDAA) and DA should be the dominant hydrogen bonding species, the ratio of DDAA to DA can be approximately to be 0.75:1, and the mean hydrogen bonding can be determined to be 2.75.

  3. The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2010-02-01

    In this work, the Raman spectra of aqueous C12E5 solutions are recorded and utilized to demonstrate the existence of single donator-single acceptor (DA) hydrogen bonding in water. From Raman OH stretching bands of aqueous C12E5 solutions, the relative intensity of 3430 cm-1 subband increases with C12E5 concentrations. For confined water, the DA hydrogen bonding can be expected to be the important hydrogen bonding species. Therefore, the 3430 cm-1 component can be ascribed to OH vibration engaged in DA hydrogen bonding. This is in agreement with our recent explanation on Raman OH stretching band of water. For water at ambient conditions, the double donor-double acceptor (DDAA) and DA should be the dominant hydrogen bonding species, the ratio of DDAA to DA can be approximately to be 0.75:1, and the mean hydrogen bonding can be determined to be 2.75.

  4. Donor-acceptor type low band gap polymers: polysquaraines and related systems.

    PubMed

    Ajayaghosh, Ayyappanpillai

    2003-07-01

    In recent years, considerable effort has been directed towards the synthesis of conjugated polymers with low optical band gaps (Eg), since they show intrinsic electrical conductivity. One of the approaches towards the designing of such polymers is the use of strong donor and acceptor monomers at regular arrangements in the repeating units, which has limited success in many cases. An alternate strategy is the use of organic dyes, having inherently low HUMO-LUMO separation, as building blocks. Extension of conjugation in organic dyes is therefore expected to result in oligomers and polymers with near infrared absorption, which is a signature of low band gaps. Squaraine dyes are ideal candidates for this purpose due to their unique optical properties. This review highlights the recent developments in the area of donor-acceptor type low band gap polymers with special emphasis on polysquaraines.

  5. Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis

    PubMed Central

    Genz, Maika; Vickers, Clare; van den Bergh, Tom; Joosten, Henk-Jan; Dörr, Mark; Höhne, Matthias; Bornscheuer, Uwe T.

    2015-01-01

    To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5′-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions. PMID:26569229

  6. Donor-acceptor pair recombination in AgIn5S8 single crystals

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.; Serpengüzel, A.; Aydinli, A.; Gürlü, O.; Yilmaz, I.

    1999-03-01

    Photoluminescence (PL) spectra of AgIn5S8 single crystals were investigated in the 1.44-1.91 eV energy region and in the 10-170 K temperature range. The PL band was observed to be centered at 1.65 eV at 10 K and an excitation intensity of 0.97 W cm-2. The redshift of this band with increasing temperature and with decreasing excitation intensity was observed. To explain the observed PL behavior, we propose that the emission is due to radiative recombination of a donor-acceptor pair, with an electron occupying a donor level located at 0.06 eV below the conduction band, and a hole occupying an acceptor level located at 0.32 eV above the valence band.

  7. Performance of sodium bromate as cathodic electron acceptor in microbial fuel cell.

    PubMed

    Dai, Hongyan; Yang, Huimin; Liu, Xian; Zhao, Yu; Liang, Zhenhai

    2016-02-01

    The potential of using sodium bromate as a cathodic electron acceptor in a microbial fuel cell (MFC) was determined in this study. The effects of sodium bromate concentration and initial catholyte pH on the electricity production of the MFC were investigated. The MFC performance improved with increasing sodium bromate concentration and decreasing catholyte pH. The maximum voltage output (0.538 V), power density (1.4908 W m(-3)), optimal open circuit potential (1.635 V), coulombic efficiency (11.1%), exchange current density (0.538 A m(-3)) and charge transfer resistance (4274.1 Ω) were obtained at pH 3.0 and 100 mM sodium bromate. This work is the first to confirm that sodium bromate could be used as an electron acceptor in MFCs.

  8. Charge trapping in mixed organic donor-acceptor semiconductor thin films.

    PubMed

    Nunomura, Shota; Che, Xiaozhou; Forrest, Stephen R

    2014-12-03

    A pump-probe method, whereby trapped charges are optically induced to contribute to the total photocurrent, is applied to quantitatively determine the trap density in small-molecule organic semiconductor thin films and donor-acceptor blends used in organic solar cells. The trapped charge density is correlated to the cell performance, and the dependence of charge trapping on the presence of nanocrystalline domains is discussed.

  9. Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors

    PubMed Central

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian

    2016-01-01

    Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications. PMID:27263856

  10. Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian

    2016-06-01

    Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications.

  11. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  12. Naphthalene diimide-difluorobenzene-based polymer acceptors for all-polymer solar cells.

    PubMed

    Deng, Ping; Ho, Carr Hoi Yi; Lu, Yong; Li, Ho-Wa; Tsang, Sai-Wing; So, Shu Kong; Ong, Beng S

    2017-03-18

    Regio-random (P1) and -regular (P2) difluorobenzene-naphthalene-containing polymer acceptors were developed for bulk-heterojunction all-polymer solar cells (all-PSCs). P2 exhibited significantly higher crystallinity in thin films, providing high spectral absorptivity and electron mobility than P1. When used in all-PSC devices, P2 afforded a respectably higher power conversion efficiency of over 5%.

  13. Neutral nitrogen acceptors in ZnO: The {sup 67}Zn hyperfine interactions

    SciTech Connect

    Golden, E. M.; Giles, N. C.; Evans, S. M.; Halliburton, L. E.

    2014-03-14

    Electron paramagnetic resonance (EPR) is used to characterize the {sup 67}Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N{sup −}) initially present in the crystal are converted to their paramagnetic neutral charge state (N{sup 0}) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N{sup 0} acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion along the [0001] direction is referred to as an axial neighbor and the three equivalent zinc ions in the basal plane are referred to as nonaxial neighbors. For axial neighbors, the {sup 67}Zn hyperfine parameters are A{sub ‖} = 37.0 MHz and A{sub ⊥} = 8.4 MHz with the unique direction being [0001]. For nonaxial neighbors, the {sup 67}Zn parameters are A{sub 1} = 14.5 MHz, A{sub 2} = 18.3 MHz, and A{sub 3} = 20.5 MHz with A{sub 3} along a [101{sup ¯}0] direction (i.e., in the basal plane toward the nitrogen) and A{sub 2} along the [0001] direction. These {sup 67}Zn results and the related {sup 14}N hyperfine parameters provide information about the distribution of unpaired spin density at substitutional neutral nitrogen acceptors in ZnO.

  14. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1

    SciTech Connect

    Gerritse, J.; Drzyzga, O.; Kloetstra, G.; Keijmel, M.; Wiersum, L.P.; Hutson, R.; Collins, M.D.; Gottschal, J.C.

    1999-12-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethane (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 {micro}m and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35 C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H{sub 2}, format, L-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except format and H{sub 2}) are oxidized to acetate and CO{sub 2}. when L-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher. Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumate or nitrate.

  15. Green's function calculation of through-bond electronic coupling in donor bridge acceptor model systems

    NASA Astrophysics Data System (ADS)

    de Santana, O. L.; da Gama, A. A. S.

    1999-12-01

    The Green's function formalism is applied for the calculation of the effective through-bond donor-acceptor coupling in model molecular systems. The calculation is performed at a Hartree-Fock (self-consistent) level, by using semiempirical AM1 and CNDO/S, and ab initio STO-3G methods. The results are compared with that obtained from the splitting of the appropriate levels, by using the Koopmans' theorem, within each one of the selected quantum chemical methods.

  16. Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor-Acceptor Combinations

    DTIC Science & Technology

    2006-01-01

    poly- mers;[103] such systems may be exploitable for bioassays. 2.6. Photochromic Dyes Jovin and co-workers define photochromic compounds as “having...having different absorption (and in some cases, fluorescence) spectra”.[104] The primary attraction of using photochromic dyes as FRET acceptors is the...structed with this concept. Spiropyrans and functionally related molecules are among the more prominent photochromic compounds. These mole- cules

  17. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Zhou, Li; Huang, Long-Biao; Zhuang, Jiaqing; Sonar, Prashant; Roy, V. A. L.

    2015-01-01

    Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices. PMID:26029856

  18. Michael Acceptor-Based Peptidomimetic Inhibitor of Main Protease from Porcine Epidemic Diarrhea Virus.

    PubMed

    Wang, Fenghua; Chen, Cheng; Yang, Kailin; Xu, Yang; Liu, Xiaomei; Gao, Fan; Liu, He; Chen, Xia; Zhao, Qi; Liu, Xiang; Cai, Yan; Yang, Haitao

    2017-03-13

    Porcine epidemic diarrhea virus (PEDV) causes high mortality in pigs. PEDV main protease (Mpro) plays an essential role in viral replication. We solved the structure of PEDV Mpro complexed with peptidomimetic inhibitor N3 carrying a Michael acceptor warhead, revealing atomic level interactions. We further designed a series of 17 inhibitors with altered side groups. Inhibitors M2 and M17 demonstrated enhanced specificity against PEDV Mpro. These compounds have potential as future therapeutics to combat PEDV infection.

  19. Development of novel 1,4-benzodiazepine-based Michael acceptors as antitrypanosomal agents.

    PubMed

    Ettari, Roberta; Previti, Santo; Cosconati, Sandro; Maiorana, Santina; Schirmeister, Tanja; Grasso, Silvana; Zappalà, Maria

    2016-08-01

    Novel 1,4-benzodiazepines, endowed with a Michael acceptor moiety, were designed taking advantage of a computational prediction of their pharmacokinetic parameters. Among all the synthesized derivatives, we identified a new lead compound (i.e., 4a), bearing a vinyl ketone warhead and endowed with a promising antitrypanosomal activity against Trypanosoma brucei brucei (IC50=5.29μM), coupled with a lack of cytotoxicity towards mammalian cells (TC50 >100μM).

  20. A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics.

    PubMed

    Liu, Shi-Yong; Wu, Chen-Hao; Li, Chang-Zhi; Liu, Sheng-Qiang; Wei, Kung-Hwa; Chen, Hong-Zheng; Jen, Alex K-Y

    2015-04-01

    A nonfullerene acceptor based on a 3D tetraperylene diimide is developed for bulk heterojunction organic photovoltaics. The disruption of perylene diimide planarity with a 3D framework suppresses the self-aggregation of perylene diimide and inhibits excimer formation. From planar monoperylene diimide to 3D tetraperylene diimide, a significant improvement of power conversion efficiency from 0.63% to 3.54% can be achieved.

  1. Light-induced noncentrosymmetry in acceptor-donor-substituted azobenzene solutions

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Si, Jinhai; Wang, Yougui; Ye, Peixian; Fu, Xingfa; Qiu, Ling; Shen, Yuquan

    1995-10-01

    Light-induced noncentrosymmetry was achieved experimentally in acceptor-donor-substituted azobenzene solutions and observed by phase-matched nondegenerate six-wave mixing. The microscopic origin of the induced noncentrosymmetry was found to be orientational hole burning, which was distinguished directly with net orientation of molecules by experimental observations. The decay time of the induced noncentrosymmetry depended on the rotational orientation time of the sample's molecule, which varied linearly with the viscosity of the solvent.

  2. Peptides in oral diseases.

    PubMed

    Lucchese, Alberta; Guida, Agostino; Petruzzi, Massimo; Capone, Giovanni; Laino, Luigi; Serpico, Rosario

    2012-01-01

    The oral cavity is home to numerous viruses and micro-organisms recognized as having a role in various oral diseases as well as in infections in other parts of the body. Indeed, in general a microbial infection underlies or is believed to underlie the ample spectrum of oral diseases, from tooth enamel decay to periodontal lesions, from candidiasis to virus-induced oral squamous cell carcinomas, and bullous autoimmune oral disorders. This clinico-pathological context stresses the need of targeted therapies to specifically kill infectious agents in a complex environment such as the oral cavity, and explains the current interest in exploring peptide-based therapeutic approaches in oral and dental research. Here, we review the therapeutic potential of antimicrobial peptides such as LL-37, beta defensins, adrenomedullin, histatins, and of various peptides modulating gene expression and immuno-biological interaction(s) in oral diseases.

  3. Molecular modeling of peptides.

    PubMed

    Kuczera, Krzysztof

    2015-01-01

    This article presents a review of the field of molecular modeling of peptides. The main focus is on atomistic modeling with molecular mechanics potentials. The description of peptide conformations and solvation through potentials is discussed. Several important computer simulation methods are briefly introduced, including molecular dynamics, accelerated sampling approaches such as replica-exchange and metadynamics, free energy simulations and kinetic network models like Milestoning. Examples of recent applications for predictions of structure, kinetics, and interactions of peptides with complex environments are described. The reliability of current simulation methods is analyzed by comparison of computational predictions obtained using different models with each other and with experimental data. A brief discussion of coarse-grained modeling and future directions is also presented.

  4. Theoretical Study of Donor - Spacer - Acceptor Structure Molecule for Molecular Rectifier

    NASA Astrophysics Data System (ADS)

    Mizuseki, Hiroshi; Kenji, Niimura; Belosludov, Rodion; Farajian, Amir; Kawazoe, Yoshiyuki

    2003-03-01

    Recently, the molecular electronics has attracted strong attention as a ``post-silicone technology'' to establish a future nanoscale electronic devices. To realize this molecular device, unimolecular rectifiering function is one of the most important constituents in nanotechnology [C. Majumder, H. Mizuseki, and Y. Kawazoe, Molecular Scale Rectifier: Theoretical Study, J. Phys. Chem. A, 105 (2001) 9454-9459.]. In the present study, the geometric and electronic structure of alkyl derivative C37H50N4O4 (PNX) molecule, (donor - spacer - acceptor), a leading candidate of molecular rectifying device, has been investigated theoretically using ab initio quantum mechanical calculation. The results suggest that in such donor-acceptor molecular complexes, while the lowest unoccupied orbital concentrates on the acceptor subunit, the highest occupied molecular orbital is localized on the donor subunit. The approximate potential differences for optimized PNX molecule have been estimated at the B3PW91/6-311g++(d,p) level of theory, which achieves quite good agreement with experimentally reported results. This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.

  5. New opportunities in multiplexed optical bioanalyses using quantum dots and donor-acceptor interactions.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2010-11-01

    This review highlights recent trends in the development of multiplexed bioanalyses using quantum dot bioconjugates and donor-acceptor interactions. In these methods, multiple optical signals are generated in response to biorecognition through modulation of the photoluminescence of populations of quantum dots with different emission colors. The donor-acceptor interactions that have been used include fluorescence resonance energy transfer, bioluminescence resonance energy transfer, charge transfer quenching, and quenching via proximal gold nanoparticles. Assays for the simultaneous detection of between two and eight target analytes have been developed, where spectral deconvolution is an important tool. Target analytes have included small molecules, nucleic acid sequences, and proteases. The unique optical properties of quantum dots offer several potential advantages in multiplexed detection, and a large degree of versatility, for example, one pot multiplexing at the ensemble level, where only wavelength discrimination is required to differentiate between detection channels. These methods are not being developed to compete with array-based technologies in terms of overall multiplexing capacity, but rather to enable new formats for multiplexed bioanalyses. In particular, quantum dot bioprobes based on donor-acceptor interactions are anticipated to provide future opportunities for multiplexed biosensing within living cells.

  6. His166 is the Schiff base proton acceptor in attractant phototaxis receptor sensory rhodopsin I.

    PubMed

    Sasaki, Jun; Takahashi, Hazuki; Furutani, Yuji; Sineshchekov, Oleg A; Spudich, John L; Kandori, Hideki

    2014-09-23

    Photoactivation of attractant phototaxis receptor sensory rhodopsin I (SRI) in Halobacterium salinarum entails transfer of a proton from the retinylidene chromophore's Schiff base (SB) to an unidentified acceptor residue on the cytoplasmic half-channel, in sharp contrast to other microbial rhodopsins, including the closely related repellent phototaxis receptor SRII and the outward proton pump bacteriorhodopsin, in which the SB proton acceptor is an aspartate residue salt-bridged to the SB in the extracellular (EC) half-channel. His166 on the cytoplasmic side of the SB in SRI has been implicated in the SB proton transfer reaction by mutation studies, and mutants of His166 result in an inverted SB proton release to the EC as well as inversion of the protein's normally attractant phototaxis signal to repellent. Here we found by difference Fourier transform infrared spectroscopy the appearance of Fermi-resonant X-H stretch modes in light-minus-dark difference spectra; their assignment with (15)N labeling and site-directed mutagenesis demonstrates that His166 is the SB proton acceptor during the photochemical reaction cycle of the wild-type SRI-HtrI complex.

  7. Examining Forster Energy Transfer for Semiconductor Nanocrystaline Quantum Dot Donors and Acceptors

    SciTech Connect

    Curutchet, C.; Franceschetti, A.; Zunger, A.; Scholes, G. D.

    2008-01-01

    Excitation energy transfer involving semiconductor quantum dots (QDs) has received increased attention in recent years because their properties, such as high photostability and size-tunable optical properties, have made QDs attractive as Forster resonant energy transfer (FRET) probes or sensors. An intriguing question in FRET studies involving QDs has been whether the dipole approximation, commonly used to predict the electronic coupling, is sufficiently accurate. Accurate estimates of electronic couplings between two 3.9 nm CdSe QDs and between a QD and a chlorophyll molecule are reported. These calculations are based on transition densities obtained from atomistic semiempirical calculations and time-dependent density functional theory for the QD and the chlorophyll, respectively. In contrast to the case of donor-acceptor molecules, where the dipole approximation breaks down at length scales comparable to the molecular dimensions, we find that the dipole approximation works surprisingly well when donor and/or acceptor is a spherical QD, even at contact donor-acceptor separations. Our conclusions provide support for the use of QDs as FRET probes for accurate distance measurements.

  8. Molecular Donor-Bridge-Acceptor Strategies for High-Capacitance Organic Dielectric Materials.

    PubMed

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2015-06-10

    Donor-bridge-acceptor (DBA) systems occupy a rich history in molecular electronics and photonics. A key property of DBA materials is their typically large and tunable (hyper)polarizabilities. While traditionally, classical descriptions such as the Clausius-Mossotti formalism have been used to relate molecular polarizabilities to bulk dielectric response, recent work has shown that these classical equations are inadequate for numerous materials classes. Creating high-dielectric organic materials is critically important for utilizing unconventional semiconductors in electronic circuitry. Employing a plane-wave density functional theory formalism, we investigate the dielectric response of highly polarizable DBA molecule-based thin films. Such films are found to have large dielectric response arising from cooperative effects between donor and acceptor units when mediated by a conjugated bridge. Moreover, the dielectric response can be systematically tuned by altering the building block donor, acceptor, or bridge structures and is found to be nonlinearly dependent on electric field strength. The computed dielectric constants are largely independent of the density functional employed, and qualitative trends are readily evident. Remarkably large computed dielectric constants >15.0 and capacitances >6.0 μF/cm(2) are achieved for squaraine monolayers, significantly higher than in traditional organic dielectrics. Such calculations should provide a guide for designing high-capacitance organic dielectrics that should greatly enhance transistor performance.

  9. Field emission analysis of band bending in donor/acceptor heterojunction

    NASA Astrophysics Data System (ADS)

    Xing, Yingjie; Li, Shuai; Wang, Guiwei; Zhao, Tianjiao; Zhang, Gengmin

    2016-06-01

    The donor/acceptor heterojunction plays an important role in organic solar cells. An investigation of band bending in the donor/acceptor heterojunction is helpful in analysis of the charge transport behavior and for the improvement of the device performance. In this work, we report an approach for detection of band bending in a donor/acceptor heterojunction that has been prepared on a small and sharp tungsten tip. In situ field emission measurements are performed after the deposition process, and a linear Fowler-Nordheim plot is obtained from the fresh organic film surface. The thickness-dependent work function is then measured in the layer-by-layer deposited heterojunction. Several different types of heterojunction (zinc phthalocyanine (ZnPc)/C60, copper phthalocyanine (CuPc)/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, and CuPc/C60) are fabricated and analyzed. The different charge transfer directions in the heterojunctions are distinguished by field emission measurements. The calculation method used to determine the band bending is then discussed in detail. A triple layer heterojunction (C60/ZnPc/CuPc) is also analyzed using this method. A small amount of band bending is measured in the outer CuPc layer. This method provides an independent reference method for determination of the band bending in an organic heterojunction that will complement photoemission spectroscopy and current-voltage measurement methods.

  10. Dielectric relaxation behavior of acceptor (Mg)-doped BaTiO3

    NASA Astrophysics Data System (ADS)

    Yoon, Seok-Hyun; Kwon, Sang-Hoon; Hur, Kang-Heon

    2011-04-01

    Dielectric relaxation behavior of acceptor (Mg)-doped BaTiO3 ceramics was investigated with the increase of Mg concentration up to 0.6 mol. % in the temperature rang of 120 ˜ 540 °C. In the high temperature range above 320 °C, the activation energies of dielectric relaxation (Eτ) showed nearly similar values of ˜ 1.2 eV irrespective of Mg concentration. However, in the low temperature range below 320 °C, they continuously decreased from ˜ 1.2 eV and then saturated to ˜ 0.4 eV with the increase of Mg concentration. The activation energies of electrical conduction (Eσ) of the bulk grain evaluated by impedance analysis also showed almost the same behavior. Such coincidence demonstrates that the observed dielectric behaviors are caused by the space charge polarization at grain boundaries by conducting charge carriers. The disappearance of the dielectric relaxation in submicrometer fine-grain specimen also supports this mechanism. The variation of Eτ and Eσ with the increase of Mg concentration in the low temperature range was supposed to be caused by the dominant hopping conduction between ionized acceptor (MgTi″) and neutral or hole-trapped acceptor (MgTi×).

  11. Electron acceptors based on alpha-position substituted PDI for OPV solar cells.

    SciTech Connect

    Zhao, Donglin; Wu, Qinghe; Cai, Zhengxu; Zheng, T; Chen, Wei; Lu, Jessica; Yu, L

    2016-02-23

    The ortho-position functionalized perylene diimide derivatives (alphaPPID, alphaPBDT) were synthesized and used as the electron acceptors in nonfullerene organic photovoltaics. Due to the good planarity of ortho-position functionalized PDI, the alphaPPID and alphaPBDT show strong tendency to form aggregate because of their enhanced intermolecular pie-pie interaction. Moreover, they maintain the pure domains and the same packing order as in the pure film if they are blended with PBT7-TH and the SCLC measurement also shows the high electron mobility. The inverted OPVs employing alphaPDI-based compounds as acceptor and PBT7-TH as the donor give the highest PCE of 4.92 % for alphaPBDT based device and 3.61 % for alphaPPID based device, which is 39 % and 4 % higher than that for their counterpart betaPBDT and betaPPID. The charge separation study shows the more efficient exciton dissociation at interfaces between PDI based compounds and PBT7-TH. The results suggest that compared to beta-substituted ones, alpha-substituted PDI derivatives are more promising electron acceptors for OPV.

  12. Transferase Activity of Lactobacillal and Bifidobacterial β-Galactosidases with Various Sugars as Galactosyl Acceptors

    PubMed Central

    2016-01-01

    The β-galactosidases from Lactobacillus reuteri L103 (Lreuβgal), Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (Lbulβgal), and Bifidobacterium breve DSM 20281 (Bbreβgal-I and Bbreβgal-II) were investigated in detail with respect to their propensity to transfer galactosyl moieties onto lactose, its hydrolysis products d-glucose and d-galactose, and certain sugar acceptors such as N-acetyl-d-glucosamine (GlcNAc), N-acetyl-d-galactosamine (GalNAc), and l-fucose (Fuc) under defined, initial velocity conditions. The rate constants or partitioning ratios (kNu/kwater) determined for these different acceptors (termed nucleophiles, Nu) were used as a measure for the ability of a certain substance to act as a galactosyl acceptor of these β-galactosidases. When using Lbulβgal or Bbreβgal-II, the galactosyl transfer to GlcNAc was 6 and 10 times higher than that to lactose, respectively. With lactose and GlcNAc used in equimolar substrate concentrations, Lbulβgal and Bbreβgal-II catalyzed the formation of N-acetyl-allolactosamine with the highest yields of 41 and 24%, respectively, as calculated from the initial GlcNAc concentration. PMID:26975338

  13. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.

    PubMed

    Kumar, Challa V; Duff, Michael R

    2008-12-01

    Specific donor and acceptor pairs have been assembled in bovine serum albumin (BSA), at neutral pH and room temperature, and these dye-protein complexes indicated efficient donor to acceptor singlet-singlet energy transfer. For example, pyrene-1-butyric acid served as the donor and Coumarin 540A served as the acceptor. Both the donor and the acceptor bind to BSA with affinity constants in excess of 2x10(5) M(-1), as measured in absorption and circular dichroism (CD) spectral titrations. Simultaneous binding of both the donor and the acceptor chromophores was supported by CD spectra and one chromophore did not displace the other from the protein host, even when limited concentrations of the host were used. For example, a 1:1:1 complex between the donor, acceptor and the host can be readily formed, and spectral data clearly show that the binding sites are mutually exclusive. The ternary complexes (two different ligands bound to the same protein molecule) provided opportunities to examine singlet-singlet energy transfer between the protein-bound chromophores. Donor emission was quenched by the addition of the acceptor, in the presence of limited amounts of BSA, while no energy transfer was observed in the absence of the protein host, under the same conditions. The excitation spectra of the donor-acceptor-host complexes clearly show the sensitization of acceptor emission by the donor. Protein denaturation, as induced by the addition of urea or increasing the temperature to 360 K, inhibited energy transfer, which indicate that protein structure plays an important role. Sensitization also proceeded at low temperature (77 K) and diffusion of the donor or the acceptor is not required for energy transfer. Stern-Volmer quenching plots show that the quenching constant is (3.1+/-0.2)x10(4) M(-1), at low acceptor concentrations (<35 microM). Other albumins such as human and porcine proteins also served as good hosts for the above experiments. For the first time, non

  14. Epitope peptides and immunotherapy.

    PubMed

    Tanabe, Soichi

    2007-02-01

    Allergic diseases affect atopic individuals, who synthesize specific Immunoglobulins E (IgE) to environmental allergens, usually proteins or glycoproteins. These allergens include grass and tree pollens, indoor allergens such as house dust mites and animal dander, and various foods. Because allergen-specific IgE antibodies are the main effector molecules in the immune response to allergens, many studies have focused on the identification of IgE-binding epitopes (called B cell epitopes), specific and minimum regions of allergen molecules that binds to IgE. Our initial studies have provided evidence that only four to five amino acid residues are enough to comprise an epitope, since pentapeptide QQQPP in wheat glutenin is minimally required for IgE binding. Afterwards, various kinds of B cell epitope structures have been clarified. Such information contributes greatly not only to the elucidation of the etiology of allergy, but also to the development of strategies for the treatment and prevention of allergy. Allergen-specific T cells also play an important role in allergy and are obvious targets for intervention in the disease. Currently, the principle approach is to modify B cell epitopes to prevent IgE binding while preserving T cell epitopes to retain the capacity for immunotherapy. There is mounting evidence that the administration of peptide(s) containing immunodominant T cell epitopes from an allergen can induce T cell nonresponsiveness (immunotherapy). There have been clinical studies of peptide immunotherapy performed, the most promising being for bee venom sensitivity. Clinical trials of immunotherapy for cat allergen peptide have also received attention. An alternative strategy for the generation of an effective but hypoallergenic preparation for immunotherapy is to modify T cell epitope peptides by, for example, single amino acid substitution. In this article, I will present an overview of epitopes related to allergic disease, particularly stress on

  15. Related impurities in peptide medicines.

    PubMed

    D'Hondt, Matthias; Bracke, Nathalie; Taevernier, Lien; Gevaert, Bert; Verbeke, Frederick; Wynendaele, Evelien; De Spiegeleer, Bart

    2014-12-01

    Peptides are an increasingly important group of pharmaceuticals, positioned between classic small organic molecules and larger bio-molecules such as proteins. Currently, the peptide drug market is growing twice as fast as other drug markets, illustrating the increasing clinical as well as economical impact of this medicine group. Most peptides today are manufactured by solid-phase peptide synthesis (SPPS). This review will provide a structured overview of the most commonly observed peptide-related impurities in peptide medicines, encompassing the active pharmaceutical ingredients (API or drug substance) as well as the finished drug products. Not only is control of these peptide-related impurities and degradants critical for the already approved and clinically used peptide-drugs, these impurities also possess the capability of greatly influencing initial functionality studies during early drug discovery phases, possibly resulting in erroneous conclusions. The first group of peptide-related impurities is SPPS-related: deletion and insertion of amino acids are related to inefficient Fmoc-deprotection and excess use of amino acid reagents, respectively. Fmoc-deprotection can cause racemization of amino acid residues and thus diastereomeric impurities. Inefficient deprotection of amino acid side chains results into peptide-protection adducts. Furthermore, unprotected side chains can react with a variety of reagents used in the synthesis. Oxidation of amino acid side chains and dimeric-to-oligomeric impurities were also observed. Unwanted peptide counter ions such as trifluoroacetate, originating from the SPPS itself or from additional purification treatments, may also be present in the final peptide product. Contamination of the desired peptide product by other unrelated peptides was also seen, pointing out the lack of appropriate GMP. The second impurity group results from typical peptide degradation mechanisms such as β-elimination, diketopiperazine, pyroglutamate

  16. Peptide -- Silica Hybrid Networks

    NASA Astrophysics Data System (ADS)

    Altunbas, Aysegul; Sharma, Nikhil; Nagarkar, Radhika; Schneider, Joel; Pochan, Darrin

    2010-03-01

    In this study, a bio-inspired route was used to fabricate scaffolds that display hierarchical organization of an inorganic layer around an organic self-assembled peptide fibril template. The 20 amino acid peptide used in this study intramolecular folds into a beta-hairpin conformation on addition of a desired solution stimulus. This intramolecular folding is followed by intermolecular self-assembly of the peptides into a three dimensional network of entangled fibrils rich in beta-sheet with a high density of lysine groups exposed on the fibril-surfaces. The lysine-rich surface chemistry was utilized to create a silica shell around the fibrils. The mineralization process of the fibrils results in a rigid, porous silica network that retains the microscale and nanoscale structure of the peptide fibril network. Structural characterization via Transmission Electron Microscopy, cryogenic-Scanning Electron Microscopy, mechanical characterization via oscillatory rheology, Small Angle X-ray and Neutron Scattering of the silicified hydrogels will be presented.

  17. Brain Peptides and Psychopharmacology

    ERIC Educational Resources Information Center

    Arehart-Treichel, Joan

    1976-01-01

    Proteins isolated from the brain and used as drugs can improve and apparently even transfer mental states and behavior. Much of the pioneering work and recent research with humans and animals is reviewed and crucial questions that are being posed about the psychologically active peptides are related. (BT)

  18. Peptide Nanofilament Engineering

    DTIC Science & Technology

    2006-05-31

    This laboratory studied four systems involving molecular self-assembly during this project period. Each system will open a new avenue of research in developing novel applications for use in biomedical engineering and materials science. These systems include self-assembling oligopeptides that form stable beta sheets in water, peptides that form inter- and

  19. Bioinformatic identification of plant peptides.

    PubMed

    Lease, Kevin A; Walker, John C

    2010-01-01

    Plant peptides play a number of important roles in defence, development and many other aspects of plant physiology. Identifying additional peptide sequences provides the starting point to investigate their function using molecular, genetic or biochemical techniques. Due to their small size, identifying peptide sequences may not succeed using the default bioinformatic approaches that work well for average-sized proteins. There are two general scenarios related to bioinformatic identification of peptides to be discussed in this paper. In the first scenario, one already has the sequence of a plant peptide and is trying to find more plant peptides with some sequence similarity to the starting peptide. To do this, the Basic Local Alignment Search Tool (BLAST) is employed, with the parameters adjusted to be more favourable for identifying potential peptide matches. A second scenario involves trying to identify plant peptides without using sequence similarity searches to known plant peptides. In this approach, features such as protein size and the presence of a cleavable amino-terminal signal peptide are used to screen annotated proteins. A variation of this method can be used to screen for unannotated peptides from genomic sequences. Bioinformatic resources related to Arabidopsis thaliana will be used to illustrate these approaches.

  20. Enantioselective cis-β-lactam synthesis by intramolecular C-H functionalization from enoldiazoacetamides and derivative donor-acceptor cyclopropenes

    PubMed Central

    Deng, Yongming; Yim, David N.; Zavalij, Peter Y.

    2015-01-01

    β-Lactam derivatives are produced through intermediate donor-acceptor cyclopropene intermediates in high yield, exclusive cis-diastereoselectivity, and high enantiocontrol in a chiral dirhodium carboxylate catalyzed intramolecular C-H functionalization reaction of enoldiazoacetamides. PMID:26029355

  1. Endo-β-N-acetylglucosaminidase catalysed glycosylation: tolerance of enzymes to structural variation of the glycosyl amino acid acceptor.

    PubMed

    Tomabechi, Yusuke; Squire, Marie A; Fairbanks, Antony J

    2014-02-14

    Endo-β-N-Acetylglucosaminidases (ENGases) are highly useful biocatalysts that can be used to synthetically access a wide variety of defined homogenous N-linked glycoconjugates in a convergent manner. The synthetic efficiency of a selection of family GH85 ENGases was investigated as the structure of the acceptor substrate was varied. Several different GlcNAc-asparagine acceptors were synthesised, and used in conjunction with penta- and decasaccharide oxazoline donors. Different enzymes showed different tolerances of modification of the GlcNAc acceptor. Whilst none tolerated modification of either the 4- or 6-hydroxyl, both Endo M and Endo D tolerated modification of OH-3. For Endo D the achievable synthetic efficiency was increased by a factor of three by the use a 3-O-benzyl protected acceptor. The presence of a fucose at position-3 was not tolerated by any of the enzymes assayed.

  2. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing

    NASA Astrophysics Data System (ADS)

    Li, Ning; Perea, José Darío; Kassar, Thaer; Richter, Moses; Heumueller, Thomas; Matt, Gebhard J.; Hou, Yi; Güldal, Nusret S.; Chen, Haiwei; Chen, Shi; Langner, Stefan; Berlinghof, Marvin; Unruh, Tobias; Brabec, Christoph J.

    2017-02-01

    The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells.

  3. Role of functionalized acceptors in heteroleptic bipyridyl Cu(I) complexes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqing; Shao, Yang; Li, Ke; Zhao, Zigang; Wei, Shuxian; Guo, Wenyue

    2016-09-01

    The intrinsic optoelectronic properties of heteroleptic bipyridyl Cu(I) complexes bearing functionalized acceptor subunits have been investigated by density functional theory and time-dependent DFT. The Cu(I) complexes exhibit distorted trigonal-pyramidal geometries and typical metal-to-ligand electron transfer characteristics at the long wavelength region. Replacing carboxylic acid with cyanoacrylic acid in acceptor subunits stabilizes the LUMO levels, thus lowering the HOMOLUMO energy gaps and facilitating favorable donor-to-acceptor intramolecular electron transfer and charge separation. Introduction of heteroaromatic groups and cyanoacrylic acid significantly improves the light-harvesting capability of the complexes. Our results highlight the effect of functionalized acceptors on the optoelectronic properties of bipyridyl Cu(I) complexes and provide a fresh perspective on screening of efficient sensitizers for dye-sensitized solar cells.

  4. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing

    PubMed Central

    Li, Ning; Perea, José Darío; Kassar, Thaer; Richter, Moses; Heumueller, Thomas; Matt, Gebhard J.; Hou, Yi; Güldal, Nusret S.; Chen, Haiwei; Chen, Shi; Langner, Stefan; Berlinghof, Marvin; Unruh, Tobias; Brabec, Christoph J.

    2017-01-01

    The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells. PMID:28224984

  5. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells.

    PubMed

    Liu, Yuhang; Mu, Cheng; Jiang, Kui; Zhao, Jingbo; Li, Yunke; Zhang, Lu; Li, Zhengke; Lai, Joshua Yuk Lin; Hu, Huawei; Ma, Tingxuan; Hu, Rongrong; Yu, Demei; Huang, Xuhui; Tang, Ben Zhong; Yan, He

    2015-02-01

    A tetraphenylethylene core-based small molecular acceptor with a unique 3D molecular structure is developed. Bulk-heterojunction blend films with a small feature size (≈20 nm) are obtained, which lead to non-fullerene organic solar cells (OSCs) with 5.5% power conversion efficiency. The work provides a new molecular design approach to efficient non-fullerene OSCs based on 3D-structured small-molecule acceptors.

  6. Development and Characterization of New Donor-Acceptor Conjugated Polymers and Fullerene Nanoparticles for High Performance Bulk Heterojunction Solar Cells

    DTIC Science & Technology

    2011-01-14

    Nanoparticles for High Performance Bulk Heterojunction Solar Cells Jan. 14,2011 Name of Principal Investigators: Kung-Hwa Wei - e-mail address : khwei...donor-π-bridge-acceptor side chains for high efficiency polymer solar cells . Different from the commonly used linear D-A conjugated polymers, the...Development and Characterization of New Donor-Acceptor Conjugated Polymers and Fullerene Nanoparticles for High Performance Bulk Heterojunction Solar Cells

  7. Donor-Acceptor Conjugated Linear Polyenes: A Study of Excited State Intramolecular Charge Transfer, Photoisomerization and Fluorescence Probe Properties.

    PubMed

    Hota, Prasanta Kumar; Singh, Anil Kumar

    2014-07-27

    Numerous studies of donor-acceptor conjugated linear polyenes have been carried out with the goal to understand the exact nature of the excited state electronic structure and dynamics. In this article we discuss our endeavours with regard to the excited state intramolecular charge transfer, photoisomerization and fluorescence probe properties of various donor-acceptor substituted compounds of diphenylpolyene [Ar(CH = CH) n Ar] series and ethenylindoles.

  8. Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency.

    PubMed

    Zhao, Wenchao; Li, Sunsun; Zhang, Shaoqing; Liu, Xiaoyu; Hou, Jianhui

    2017-01-01

    Ternary polymer solar cells are fabricated based on one donor PBDB-T and two acceptors (a methyl-modified small-molecular acceptor (IT-M) and a bis-adduct of Bis[70]PCBM). A high power conversion efficiency of 12.2% can be achieved. The photovoltaic performance of the ternary polymer solar cells is not sensitive to the composition of the blend.

  9. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    NASA Astrophysics Data System (ADS)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  10. A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization

    PubMed Central

    Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.

    2011-01-01

    Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human

  11. Counting peptide-water hydrogen bonds in unfolded proteins.

    PubMed

    Gong, Haipeng; Porter, Lauren L; Rose, George D

    2011-02-01

    It is often assumed that the peptide backbone forms a substantial number of additional hydrogen bonds when a protein unfolds. We challenge that assumption in this article. Early surveys of hydrogen bonding in proteins of known structure typically found that most, but not all, backbone polar groups are satisfied, either by intramolecular partners or by water. When the protein is folded, these groups form approximately two hydrogen bonds per peptide unit, one donor or acceptor for each carbonyl oxygen or amide hydrogen, respectively. But when unfolded, the backbone chain is often believed to form three hydrogen bonds per peptide unit, one partner for each oxygen lone pair or amide hydrogen. This assumption is based on the properties of small model compounds, like N-methylacetamide, or simply accepted as self-evident fact. If valid, a chain of N residues would have approximately 2N backbone hydrogen bonds when folded but 3N backbone hydrogen bonds when unfolded, a sufficient difference to overshadow any uncertainties involved in calculating these per-residue averages. Here, we use exhaustive conformational sampling to monitor the number of H-bonds in a statistically adequate population of blocked polyalanyl-six-mers as the solvent quality ranges from good to poor. Solvent quality is represented by a scalar parameter used to Boltzmann-weight the population energy. Recent experimental studies show that a repeating (Gly-Ser) polypeptide undergoes a denaturant-induced expansion accompanied by breaking intramolecular peptide H-bonds. Results from our simulations augment this experimental finding by showing that the number of H-bonds is approximately conserved during such expansion⇋compaction transitions.

  12. A synthetic strategy for the preparation of cyclic peptide mimetics based on SET-promoted photocyclization processes.

    PubMed

    Yoon, Ung Chan; Jin, Ying Xue; Oh, Sun Wha; Park, Chan Hyo; Park, Jong Hoon; Campana, Charles F; Cai, Xiaolu; Duesler, Eileen N; Mariano, Patrick S

    2003-09-03

    A novel method for the synthesis of cyclic peptide analogues has been developed. The general approach relies on the use of SET-promoted photocyclization reactions of peptides that contain N-terminal phthalimides as light absorbing electron acceptor moieties and C-terminal alpha-amidosilane or alpha-amidocarboxylate centers. Prototypical substrates are prepared by coupling preformed peptides with the acid chloride of N-phthalimidoglycine. Irradiation of these substrates results in the generation of cyclic peptide analogues in modest to good yields. The chemical efficiencies of these processes are not significantly affected by (1) the lengths of the peptide chains separating the phthalimide and alpha-amidosilane or alpha-amidocarboxylate centers and (2) the nature of the penultimate cation radical alpha-heterolytic fragmentation process (i.e., desilylation vs decarboxylation). An evaluation of the effects of N-alkyl substitution on the amide residues in the peptide chain showed that N-alkyl substitution does not have a major impact on the efficiencies of the photocyclization reactions but that it profoundly increases the stability of the cyclic peptide.

  13. Fluoroolefins as peptide mimetics: a computational study of structure, charge distribution, hydration, and hydrogen bonding.

    PubMed

    Urban, Joseph J; Tillman, Brendon G; Cronin, William Andrew

    2006-09-28

    The design of peptide mimetic compounds is greatly facilitated by the identification of functionalities that can act as peptide replacements. The fluoroalkene moiety has recently been employed for that purpose. The purpose of this work is to characterize prototypical fluoroalkenes (fluoroethylene and 2-fluoro-2-butene) with respect to key properties of peptides (amides) including structure, charge distribution, hydration, and hydrogen bonding. The results are compared to those obtained for model peptides (formamide, N-methylacetamide). Calculations have been carried out at the MP2 and B3LYP levels of theory with the 6-311++G(2d,p) and 6-311++G(2d,2p) basis sets. The results suggest that the fluoroalkene is similar in steric requirements to a peptide bond but that there is less charge separation. Calculations of the hydration free energies with the PCM bulk continuum solvent model indicate that the fluoroalkene has much smaller hydration free energies than an amide but that the difference in solvation free energy for cis and trans isomers is comparable. In studies of complexes with water molecules, the fluoroalkene is found to engage in interactions that are analogous to backbone hydrogen-bonding interactions that govern many properties of natural peptides and proteins but with smaller interaction energies. In addition, key structural differences are noted when the fluoroalkene is playing the role of hydrogen-bond acceptor which may have implications in binding, aggregation, and conformational preferences in fluoroalkene peptidomimetics. The issue of cooperativity in hydrogen-bonding interactions in complexes with multiple waters has also been investigated. The fluoroalkene is found to exhibit cooperative effects that mirror those of the peptide but are smaller in magnitude. Thus, pairwise addivitity of interactions appears to more adequately describe the fluoroalkenes than the peptides they are intended to mimic.

  14. Peptide synthesis in aqueous environments: the role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides.

    PubMed

    Schreiner, Eduard; Nair, Nisanth N; Wittekindt, Carsten; Marx, Dominik

    2011-06-01

    A comprehensive study of free energy landscapes and mechanisms of COS-mediated polymerization of glycine via N-carboxy anhydrides (NCAs, "Leuchs anhydrides") and peptide hydrolysis at the water-pyrite interface at extreme thermodynamic conditions is presented. Particular emphasis is set on the catalytic effects of the mineral surface including the putative role of the ubiquitous sulfur vacancy defects. It is found that the mere presence of a surface is able to change the free energetics of the elementary reaction steps. This effect can be understood in terms of a reduction of entropic contributions to the reactant state by immobilizing the reactants and/or screening them from bulk water in a purely geometric ("steric") sense. Additionally, the pyrite directly participates chemically in some of the reaction steps, thus changing the reaction mechanism qualitatively compared to the situation in bulk water. First, the adsorption of reactants on the surface can preform a product-like structure due to immobilizing and scaffolding them appropriately. Second, pyrite can act as a proton acceptor, thus replacing water in this role. Third, sulfur vacancies are found to increase the reactivity of the surface. The finding that the presence of pyrite speeds up the rate-determining step in the formation of peptides with respect to the situation in bulk solvent while stabilizing the produced peptide against hydrolysis is of particular interest to the hypothesis of prebiotic peptide formation at hydrothermal aqueous conditions. Apart from these implications, the generality of the studied organic reactions are of immediate relevance to many fields such as (bio)geochemistry, biomineralization, and environmental chemistry.

  15. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.

    PubMed

    Kang, Tae Eui; Cho, Han-Hee; Cho, Chul-Hee; Kim, Ki-Hyun; Kang, Hyunbum; Lee, Myounghee; Lee, Sunae; Kim, Bongsoo; Im, Chan; Kim, Bumjoon J

    2013-02-01

    Polymer solar cells (PSCs) consisting of fullerene bis-adduct and poly(3-hexylthiophene) (P3HT) blends have shown higher efficiencies than P3HT:phenyl C(61)-butyric acid methyl ester (PCBM) devices, because of the high-lying lowest unoccupied molecular orbital (LUMO) level of the fullerene bis-adducts. In contrast, the use of fullerene bis-adducts in donor-acceptor (DA) copolymer systems typically causes a decrease in the device's performance due to the decreased short-circuit current (J(SC)) and the fill factor (FF). However, the reason for such poor performance in DA copolymer:fullerene bis-adduct blends is not fully understood. In this work, bulk-heterojunction (BHJ)-type PSCs composed of three different electron donors with four different electron acceptors were chosen and compared. The three electron donors were (1) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl] (PBDTTPD), (2) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), and (3) P3HT polymers. The four electron acceptors were (1) PCBM, (2) indene-C(60) monoadduct (ICMA), (3) indene-C(60) bis-adduct (ICBA), and (4) indene-C(60) tris-adduct (ICTA). To understand the difference in the performance of BHJ-type PSCs for the three different polymers in terms of the choice of fullerene acceptor, the structural, optical, and electrical properties of the blends were measured by the external quantum efficiency (EQE), photoluminescence, grazing incidence X-ray scattering, and transient absorption spectroscopy. We observed that while the molecular packing and optical properties cannot be the main reasons for the dramatic decrease in the PCE of the DA copolymers and ICBA, the value of the driving force for charge transfer (ΔG(CT)) is a key parameter for determining the change in J(SC) and device efficiency in the DA copolymer- and P3HT-based PSCs in

  16. Enhancing peptide ligand binding to vascular endothelial growth factor by covalent bond formation.

    PubMed

    Marquez, Bernadette V; Beck, Heather E; Aweda, Tolulope A; Phinney, Brett; Holsclaw, Cynthia; Jewell, William; Tran, Diana; Day, Jeffrey J; Peiris, Malalage N; Nwosu, Charles; Lebrilla, Carlito; Meares, Claude F

    2012-05-16

    Formation of a stable covalent bond between a synthetic probe molecule and a specific site on a target protein has many potential applications in biomedical science. For example, the properties of probes used as receptor-imaging ligands may be improved by increasing their residence time on the targeted receptor. Among the more interesting cases are peptide ligands, the strongest of which typically bind to receptors with micromolar dissociation constants, and which may depend on processes other than simple binding to provide images. The side chains of cysteine, histidine, or lysine are attractive for chemical attachment to improve binding to a receptor protein, and a system based on acryloyl probes attaching to engineered cysteine provides excellent positron emission tomographic images in animal models (Wei et al. (2008) J. Nucl. Med. 49, 1828-1835). In nature, lysine is a more common but less reactive residue than cysteine, making it an interesting challenge to modify. To seek practically useful cross-linking yields with naturally occurring lysine side chains, we have explored not only acryloyl but also other reactive linkers with different chemical properties. We employed a peptide-VEGF model system to discover that a 19mer peptide ligand, which carried a lysine-tagged dinitrofluorobenzene group, became attached stably and with good yield to a unique lysine residue on human vascular endothelial growth factor (VEGF), even in the presence of 70% fetal bovine serum. The same peptide carrying acryloyl and related Michael acceptors gave low yields of attachment to VEGF, as did the chloroacetyl peptide.

  17. Concepts for Biologically Active Peptides

    PubMed Central

    Kastin, Abba J.; Pan, Weihong

    2012-01-01

    Here we review a unique aspect of CNS research on biologically active peptides that started against a background of prevalent dogmas but ended by exerting considerable influence on the field. During the course of refuting some doctrines, we introduced several concepts that were unconventional and paradigm-shifting at the time. We showed that (1) hypothalamic peptides can act ‘up’ on the brain as well as ‘down’ on the pituitary, (2) peripheral peptides can affect the brain, (3) peptides can cross the blood-brain barrier, (4) the actions of peptides can persist longer than their half-lives in blood, (5) perinatal administration of peptides can exert actions persisting into adulthood, (6) a single peptide can have more than one action, (7) dose-response relationships of peptides need not be linear, (8) the brain produces antiopiate as well as opiate peptides, (9) there is a selective high affinity endogenous peptide ligand for the mu-opiate receptor, (10) a peptide’s name does not restrict its effects, and (11) astrocytes assume an active role in response to metabolic disturbance and hyperleptinemia. The evolving questions in our laboratories reflect the diligent effort of the neuropeptide community to identify the roles of peptides in the CNS. The next decade is expected to see greater progress in the following areas: (a) interactions of peptides with other molecules in the CNS; (b) peptide involvement in cell-cell interactions; and (c) peptides in neuropsychiatric, autoimmune, and neurodegenerative diseases. The development of peptidomics and gene silencing approaches will expedite the formation of many new concepts in a new era. PMID:20726835

  18. Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions

    PubMed Central

    Stergiou, Anastasios; Pagona, Georgia

    2014-01-01

    Summary Graphene research and in particular the topic of chemical functionalization of graphene has exploded in the last decade. The main aim is to increase the solubility and thereby enhance the processability of the material, which is otherwise insoluble and inapplicable for technological applications when stacked in the form of graphite. To this end, initially, graphite was oxidized under harsh conditions to yield exfoliated graphene oxide sheets that are soluble in aqueous media and amenable to chemical modifications due to the presence of carboxylic acid groups at the edges of the lattice. However, it was obvious that the high-defect framework of graphene oxide cannot be readily utilized in applications that are governed by charge-transfer processes, for example, in solar cells. Alternatively, exfoliated graphene has been applied toward the realization of some donor–acceptor hybrid materials with photo- and/or electro-active components. The main body of research regarding obtaining donor–acceptor hybrid materials based on graphene to facilitate charge-transfer phenomena, which is reviewed here, concerns the incorporation of porphyrins and phthalocyanines onto graphene sheets. Through illustrative schemes, the preparation and most importantly the photophysical properties of such graphene-based ensembles will be described. Important parameters, such as the generation of the charge-separated state upon photoexcitation of the organic electron donor, the lifetimes of the charge-separation and charge-recombination as well as the incident-photon-to-current efficiency value for some donor–acceptor graphene-based hybrids, will be discussed. PMID:25247140

  19. Global Transcriptome Analysis of Shewanella oneidensis MR-1 Exposed to Different Terminal Electron Acceptors

    SciTech Connect

    Beliaev, Alex S.; Klingeman, Dawn M.; Klappenbach, Joel; Wu, Liyou; Romine, Margaret F.; Tiedje, James M.; Nealson, Kenneth H.; Fredrickson, Jim K.; Zhou, Jizhong

    2005-10-01

    To gain insight into the complex structure of the energy-generating networks in the dissimilatory metal reducer Shewanella oneidensis MR-1, global mRNA patterns were examined in cells exposed to a wide range of metal and non-metal electron acceptors. Gene expression patterns were similar irrespective of which metal ion was used as electron acceptor, with 60% of the differentially expressed genes showing similar induction or repression relative to fumarate- respiring conditions. Several groups of genes exhibited elevated expression levels in the presence of metals, including those encoding putative multidrug efflux transporters, detoxification proteins, extracytoplasmic sigma factors and PAS-domain regulators. Only one of the 42 predicted c-type cytochromes in MR-1, SO3300, displayed significantly elevated transcript levels across all metal-reducing conditions. Genes encoding decaheme cytochromes MtrC and MtrA that were previously linked to the reduction of different forms of Fe(III) and Mn(IV), exhibited only slight decreases in relative mRNA abundances under metal-reducing conditions. In contrast, specific transcriptome responses were displayed to individual non-metal electron acceptors resulting in the identification of unique groups of nitrate-, thiosulfate- and TMAO-induced genes including previously uncharacterized multi-cytochrome gene clusters. Collectively, the gene expression results reflect the fundamental differences between metal and non-metal respiratory pathways of S. oneidensis MR-1, where the coordinate induction of detoxification and stress response genes play a key role in adaptation of this organism under metal-reducing conditions. Moreover, the relative paucity and/or the constitutive nature of genes involved in electron transfer to metals is likely due to the low-specificity and the opportunistic nature of the metal-reducing electron transport pathways.

  20. An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors

    PubMed Central

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.

    2014-01-01

    ABSTRACT Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found. PMID:25425235

  1. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE PAGES

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; ...

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  2. Design, synthesis and study of supramolecular donor-acceptor systems mimicking natural photosynthesis processes

    NASA Astrophysics Data System (ADS)

    Bikram, Chandra

    This dissertation investigates the chemical ingenuity into the development of various photoactive supramolecular donor -- acceptor systems to produce clean and carbon free energy for the next generation. The process is inspired by the principles learned from nature's approach where the solar energy is converted into the chemical energy through the natural photosynthesis process. Owing to the importance and complexity of natural photosynthesis process, we have designed ideal donor-acceptor systems to investigate their light energy harvesting properties. This process involves two major steps: the first step is the absorption of light energy by antenna or donor systems to promote them to an excited electronic state. The second step involves, the transfer of excitation energy to the reaction center, which triggers an electron transfer process within the system. Based on this principle, the research is focused into the development of artificial photosynthesis systems to investigate dynamics of photo induced energy and electron transfer events. The derivatives of Porphyrins, Phthalocyanines, BODIPY, and SubPhthalocyanines etc have been widely used as the primary building blocks for designing photoactive and electroactive ensembles in this area because of their excellent and unique photophysical and photochemical properties. Meanwhile, the fullerene, mainly its readily available version C60 is typically used as an electron acceptor component because of its unique redox potential, symmetrical shape and low reorganization energy appropriate for improved charge separation behavior. The primary research motivation of the study is to achieve fast charge separation and slow charge recombination of the system by stabilizing the radical ion pairs which are formed from photo excitation, for maximum utility of solar energy. Besides Fullerene C60, this dissertation has also investigated the potential application of carbon nanomaterials (Carbon nanotubes and graphene) as primary

  3. Predicting Michael-acceptor reactivity and toxicity through quantum chemical transition-state calculations.

    PubMed

    Mulliner, Denis; Wondrousch, Dominik; Schüürmann, Gerrit

    2011-12-21

    The electrophilic reactivity of Michael acceptors is an important determinant of their toxicity. For a set of 35 α,β-unsaturated aldehydes, ketones and esters with experimental rate constants of their reaction with glutathione (GSH), k(GSH), quantum chemical transition-state calculations of the corresponding Michael addition of the model nucleophile methane thiol (CH(3)SH) have been performed at the B3LYP/6-31G** level, focusing on the 1,2-olefin addition pathway without and with initial protonation. Inclusion of Boltzmann-weighting of conformational flexibility yields intrinsic reaction barriers ΔE(‡) that for the case of initial protonation correctly reflect the structural variation of k(GSH) across all three compound classes, except that they fail to account for a systematic (essentially incremental) decrease in reactivity upon α-substitution. By contrast, the reduction in k(GSH) through β-substitution is well captured by ΔE(‡). Empirical correction for the α-substitution effect yields a high squared correlation coefficient (r(2) = 0.96) for the quantum chemical prediction of log k(GSH), thus enabling an in silico screening of the toxicity-relevant electrophilicity of α,β-unsaturated carbonyls. The latter is demonstrated through application of the calculation scheme for a larger set of 46 Michael-acceptor aldehydes, ketones and esters with experimental values for their toxicity toward the ciliates Tetrahymena pyriformis in terms of 50% growth inhibition values after 48 h exposure (EC(50)). The developed approach may add in the predictive hazard evaluation of α,β-unsaturated carbonyls such as for the European REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) Directive, enabling in particular an early identification of toxicity-relevant Michael-acceptor reactivity.

  4. Flexible biological arsenite oxidation utilizing NOx and O2 as alternative electron acceptors.

    PubMed

    Wang, Jie; Wan, Junfeng; Wu, Zihao; Li, Hongli; Li, Haisong; Dagot, Christophe; Wang, Yan

    2017-03-18

    The feasibility of flexible microbial arsenite (As(III)) oxidation coupled with the reduction of different electron acceptors was investigated. The results indicated the acclimated microorganisms could oxidize As(III) with oxygen, nitrate and nitrite as the alternative electron acceptors. A series of batch tests were conducted to measure the kinetic parameters of As(III) oxidation and to evaluate the effects of environmental conditions including pH and temperature on the activity of biological As(III) oxidation dependent on different electron acceptors. Kinetic results showed that oxygen-dependent As(III) oxidation had the highest oxidation rate (0.59 mg As g(-1) VSS min(-1)), followed by nitrate- (0.40 mg As g(-1) VSS min(-1)) and nitrite-dependent As(III) oxidation (0.32 mg As g(-1) VSS min(-1)). The kinetic data of aerobic As(III) oxidation were fitted well with the Monod kinetic model, while the Haldane substrate inhibition model was better applicable to describe the inhibition of anoxic As(III) oxidation. Both aerobic and anoxic As(III) oxidation performed the optimal activity at the near neutral pH. Besides, the optimal temperature for oxygen-, nitrate- and nitrite-dependent As(III) oxidation was 30 ± 1 °C, 40 ± 1 °C and 20 ± 1 °C, respectively.

  5. Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics.

    PubMed

    Hartnett, Patrick E; Timalsina, Amod; Matte, H S S Ramakrishna; Zhou, Nanjia; Guo, Xugang; Zhao, Wei; Facchetti, Antonio; Chang, Robert P H; Hersam, Mark C; Wasielewski, Michael R; Marks, Tobin J

    2014-11-19

    Perylenediimide (PDI)-based acceptors offer a potential replacement for fullerenes in bulk-heterojunction (BHJ) organic photovoltaic cells (OPVs). The most promising efforts have focused on creating twisted PDI dimers to disrupt aggregation and thereby suppress excimer formation. Here, we present an alternative strategy for developing high-performance OPVs based on PDI acceptors that promote slip-stacking in the solid state, thus preventing the coupling necessary for rapid excimer formation. This packing structure is accomplished by substitution at the PDI 2,5,8,11-positions ("headland positions"). Using this design principle, three PDI acceptors, N,N-bis(n-octyl)-2,5,8,11-tetra(n-hexyl)-PDI (Hexyl-PDI), N,N-bis(n-octyl)-2,5,8,11-tetraphenethyl-PDI (Phenethyl-PDI), and N,N-bis(n-octyl)-2,5,8,11-tetraphenyl-PDI (Phenyl-PDI), were synthesized, and their molecular and electronic structures were characterized. They were then blended with the donor polymer PBTI3T, and inverted OPVs of the structure ITO/ZnO/Active Layer/MoO3/Ag were fabricated and characterized. Of these, 1:1 PBTI3T:Phenyl-PDI proved to have the best performance with Jsc = 6.56 mA/cm(2), Voc = 1.024 V, FF = 54.59%, and power conversion efficiency (PCE) = 3.67%. Devices fabricated with Phenethyl-PDI and Hexyl-PDI have significantly lower performance. The thin film morphology and the electronic and photophysical properties of the three materials are examined, and although all three materials undergo efficient charge separation, PBTI3T:Phenyl-PDI is found to have the deepest LUMO, intermediate crystallinity, and the most well-mixed domains. This minimizes geminate recombination in Phenyl-PDI OPVs and affords the highest PCE. Thus, slip-stacked PDI strategies represent a promising approach to fullerene replacements in BHJ OPVs.

  6. A theoretical probe on the non-covalent interactions of sulfadoxine drug with pi-acceptors

    NASA Astrophysics Data System (ADS)

    Sandhiya, L.; Senthilkumar, K.

    2014-09-01

    A detailed analysis of the interaction between an antimalarial drug sulfadoxine and four pi-acceptors, tetrachloro-catechol, picric acid, chloranil, and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is presented in this study. The interaction of the amine, amide, methoxy, Csbnd H groups and π electron density of the drug molecule with the acceptors are studied using DFT method at M06-2X level of theory with 6-31G(d,p) basis set. The interaction energy of the complexes is calculated using M06-2X, M06-HF, B3LYP-D and MP2 methods with 6-31G(d,p) basis set. The role of weak interactions on the formation and stability of the complexes is discussed in detail. The two aromatic platforms of sulfadoxine play a major role in determining the stability of the complexes. The electron density difference maps have been plotted for the most stable drug interacting complexes to understand the changes in electron density delocalization upon the complex formation. The nature of the non-covalent interaction has been addressed from NCI plot. The infrared spectra calculated at M06-2X/6-31G(d,p) level of theory is used to characterize the most stable complexes. The SDOX-pi acceptor complexation leads to characteristic changes in the NMR spectra. The 13C, 1H, 17O and 15N NMR chemical shifts have been calculated using GIAO method at M06-2X/6-311+G(d,p)//M06-2X/6-31G(d,p) level of theory. The results obtained from this study confirm the role of non-covalent interactions on the function of the sulfadoxine drug.

  7. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    SciTech Connect

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.

  8. Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content.

    PubMed

    Wang, Kun; Guo, Bing; Xu, Zhuo; Guo, Xia; Zhang, Maojie; Li, Yongfang

    2015-11-11

    A new planar D2-A-D1-A-D2 structured organic molecule with bithienyl benzodithiophene (BDT) as central donor unit D1 and fluorine-substituted benzothiadiazole (BTF) as acceptor unit and alkyl-dithiophene as end group and donor unit D2, BDT-BTF, was designed and synthesized for the application as donor material in organic solar cells (OSCs). BDT-BTF shows a broad absorption in visible region, suitable highest occupied molecular orbital energy level of -5.20 eV, and high hole mobility of 1.07 × 10(-2) cm(2)/(V s), benefitted from its high coplanarity and strong crystallinity. The OSCs based on BDT-BTF as donor (D) and PC71BM as acceptor (A) at a D/A weight ratio of 3:1 without any extra treatment exhibit high photovoltaic performance with Voc of 0.85 V, Jsc of 10.48 mA/cm(2), FF of 0.66, and PCE of 5.88%. The morphological study by transmission electron microscopy reveals that the blend of BDT-BTF and PC71BM (3:1, w/w) possesses an appropriate interpenetrating D/A network for the exciton separation and charge carrier transport, which agrees well with the good device performance. The optimized D/A weight ratio of 3:1 is the lowest acceptor content in the active layer reported so far for the high-performance OSCs, and the organic molecules with the molecular structure like BDT-BTF could be promising high-performance donor materials in solution-processable OSCs.

  9. Short-lived electron transfer in donor-bridge-acceptor systems

    NASA Astrophysics Data System (ADS)

    Psiachos, D.

    2016-10-01

    We investigate time-dependent electron transfer (ET) in benchmark donor-bridge-acceptor systems. For the small bridge sizes studied, we obtain results far different from the perturbation theory which underlies scattering-based approaches, notably a lack of destructive interference in the ET for certain arrangements of bridge molecules. We also calculate wavepacket transmission in the non-steady-state regime, finding a featureless spectrum, while for the current we find two types of transmission: sequential and direct, where in the latter, the current transmission increases as a function of the energy of the transferred electron, a regime inaccessible by conventional scattering theory.

  10. Formal [4 + 2] cycloaddition of donor-acceptor cyclobutanes and aldehydes: stereoselective access to substituted tetrahydropyrans.

    PubMed

    Parsons, Andrew T; Johnson, Jeffrey S

    2009-10-14

    A highly diastereoselective synthesis of 2,6-cis-disubstituted tetrahydropyrans (THPs) via Lewis acid-catalyzed formal [4 + 2] cycloaddition of donor-acceptor cyclobutanes and aldehydes has been developed. THP products are formed in up to 96% yield and 99:1 diastereoselectivity. Aromatic, cinnamyl, and aliphatic aldehydes are competent dipolarophiles in this system. This methodology was extended to a [[2 + 2] + 2] cycloaddition of 4-methoxystyrene, dimethyl methylidene malonate, and an aldehyde to furnish THPs directly without prior isolation of the cyclobutane.

  11. Donor-acceptor alternating copolymer nanowires for highly efficient organic solar cells.

    PubMed

    Lee, Jaewon; Jo, Sae Byeok; Kim, Min; Kim, Heung Gyu; Shin, Jisoo; Kim, Haena; Cho, Kilwon

    2014-10-22

    A donor-acceptor conjugated copolymer enables the formation of nanowire systems that can be successfully introduced into bulk-heterojunction organic solar cells. A simple binary solvent mixture that makes polarity control possible allows kinetic control over the self-assembly of the crystalline polymer into a nanowire structure during the film-forming process. The enhanced photoconductivity of the nanowire-embedded photoactive layer efficiently facilitates photon harvesting in the solar cells. The resultant maximum power conversion efficiency is 8.2% in a conventional single-cell structure, revealing a 60% higher performance than in devices without nanowires.

  12. Photoinduced electron transfer in rigidly linked dimethoxynapthalene-N-methylpyridinium donor-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Clayton, Andrew H. A.; Ghiggino, Kenneth P.; Wilson, Gerard J.; Keyte, Peter J.; Paddon-Row, Michael N.

    1992-07-01

    Photoinduced electron transfer (ET) is studied in a series of novel molecules containing a dimethoxynaphthalene (DMN) donor and either a pyridine (P) or N-methylpyridinium (P-Me +) acceptor covalently linked via a rigid nonbornalogous bridge ( n sigma bonds in length). ET rates of the order of 10 10 s -1 were measured for the DMN- n-P-Me + series ( n = 4, 6), while no appreciable ET was observed for the DMN- n-P compounds. Electronic and nuclear factors are discussed and the results rationalized in terms of Marcus—Hush and non-adiabatic ET theories.

  13. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  14. Bioactive Diterpenoid Containing a Reversible “Spring-Loaded” (E,Z)-dieneone Michael Acceptor

    PubMed Central

    Gupta, Prasoon; Sharma, Upasana; Schulz, Thomas C.; Sherrer, Eric S.; McLean, Amanda B.; Robins, Allan J.; West, Lyndon M.

    2012-01-01

    Three new briarane diterpenoids, briareolate esters L – N (1 – 3) have been isolated from a gorgonian Briareum asbestinum. Briareolate esters L (1) and M (2) are the first natural products possessing a 10-membered macrocyclic ring with a (E,Z)-dieneone and exhibit growth inhibition activity against both human embryonic stem cells (BG02) and a pancreatic cancer cell line (BxPC-3). Briareolate ester L (1), was found to contain a “spring-loaded” (E,Z)-dieneone Michael acceptor group that can form a reversible covalent bond to model sulfur-based nucleophiles. PMID:21749084

  15. Partial least squares prediction of the first hyperpolarizabilities of donor-acceptor polyenic derivatives

    NASA Astrophysics Data System (ADS)

    Machado, A. E. de A.; da Gama, A. A. de S.; de Barros Neto, B.

    2011-09-01

    A partial least squares regression analysis of a large set of donor-acceptor organic molecules was performed to predict the magnitude of their static first hyperpolarizabilities ( β's). Polyenes, phenylpolyenes and biphenylpolyenes with augmented chain lengths displayed large β values, in agreement with the available experimental data. The regressors used were the HOMO-LUMO energy gap, the ground-state dipole moment, the HOMO energy AM1 values and the number of π-electrons. The regression equation predicts quite well the static β values for the molecules investigated and can be used to model new organic-based materials with enhanced nonlinear responses.

  16. Solvent-tuned intramolecular charge-recombination rates in a conjugated donor-acceptor molecule

    NASA Technical Reports Server (NTRS)

    Khundkar, Lutfur R.; Stiegman, A. E.; Perry, Joseph W.

    1990-01-01

    The nonradiative charge-recombination rates from the charge-transfer state of a new conjugated donor-acceptor molecule (p-cyano-p-prime-methylthiodiphenylacetylene) can be tuned over almost an order of magnitude by varying the polarity of the solvent. These measurements of intramolecular recombination show a turnover of rates as a function of emission energy, consistent with the 'normal' and 'inverted' behavior of Marcus theory. Steady-state spectra and time-resolved measurements make it possible to quantitatively compare thermal and optical electron-transfer rates as a function of driving force and demonstrate their correspondence.

  17. Sensing metabolites using donor-acceptor nanodistributions in fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Rolinski, O. J.; Birch, D. J. S.; McCartney, L. J.; Pickup, J. C.

    2001-04-01

    Before fluorescence sensing techniques can be applied to media as delicate and complicated as human tissue, an adequate interpretation of the measured observables is required, i.e., an inverse problem needs to be solved. Recently we have solved the inverse problem relating to the kinetics of fluorescence resonance energy transfer (FRET), which clears the way for the determination of the donor-acceptor distribution function in FRET assays. In this letter this approach to monitoring metabolic processes is highlighted and the application to glucose sensing demonstrated.

  18. Donor/Acceptor Mixed Self-Assembled Monolayers for Realising a Multi-Redox-State Surface.

    PubMed

    Casado-Montenegro, Javier; Marchante, Elena; Crivillers, Núria; Rovira, Concepció; Mas-Torrent, Marta

    2016-06-17

    Mixed molecular self-assembled monolayers (SAMs) on gold, based on two types of electroactive molecules, that is, electron-donor (ferrocene) and electron-acceptor (anthraquinone) molecules, are prepared as an approach to realise surfaces exhibiting multiple accessible redox states. The SAMs are investigated in different electrolyte media. The nature of these media has a strong impact on the types of redox processes that take place and on the redox potentials. Under optimised conditions, surfaces with three redox states are achieved. Such states are accessible in a relatively narrow potential window in which the SAMs on gold are stable. This communication elucidates the key challenges in fabricating bicomponent SAMs as electrochemical switches.

  19. Evidence of donor-acceptor pair recombination from a new emission band in semiconducting diamond

    NASA Astrophysics Data System (ADS)

    Freitas, J. A., Jr.; Klein, P. B.; Collins, A. T.

    1994-04-01

    Presented in this paper are the results of steady state and time-resolved photoluminescence studies of a new red emission band, peaked near 1.84 eV, that was observed recently from boron-doped synthetic diamond grown at high temperature and high pressure. This new band is characterized by the known donor-acceptor pair recombination from distant pairs. Two synthetic type IIb samples were studied namely, SYNTH No. 1 and SYNTH No. 2 which were grown using Ni and Fe-Al as solvent catalyst, respectively.

  20. Peptide mass fingerprinting.

    PubMed

    Thiede, Bernd; Höhenwarter, Wolfgang; Krah, Alexander; Mattow, Jens; Schmid, Monika; Schmidt, Frank; Jungblut, Peter R

    2005-03-01

    Peptide mass fingerprinting by MALDI-MS and sequencing by tandem mass spectrometry have evolved into the major methods for identification of proteins following separation by two-dimensional gel electrophoresis, SDS-PAGE or liquid chromatography. One main technological goal of proteome analyses beside high sensitivity and automation was the comprehensive analysis of proteins. Therefore, the protein species level with the essential information on co- and post-translational modifications must be achieved. The power of peptide mass fingerprinting for protein identification was described here, as exemplified by the identification of protein species with high molecular masses (spectrin alpha and beta), low molecular masses (elongation factor EF-TU fragments), splice variants (alpha A crystallin), aggregates with disulfide bridges (alkylhydroperoxide reductase), and phosphorylated proteins (heat shock protein 27). Helpful tools for these analyses were the use of the minimal protein identifier concept and the software program MS-Screener to remove mass peaks assignable to contaminants and neighbor spots.

  1. Identification of oligomerizing peptides.

    PubMed

    Dhiman, A; Rodgers, M E; Schleif, R

    2001-06-08

    The AraC DNA binding domain is inactive in a monomeric form but can activate transcription from the arabinose operon promoters upon its dimerization. We used this property to identify plasmids encoding peptide additions to the AraC DNA binding domain that could dimerize the domain. We generated a high diversity library of plasmids by inserting 90-base oligonucleotides of random sequence ahead of DNA coding for the AraC DNA binding domain in an expression vector, transforming, and selecting colonies containing functional oligomeric peptide-AraC DNA binding domain chimeric proteins by their growth on minimal arabinose medium. Six of seven Ara(+) candidates were partially characterized, and one was purified. Equilibrium analytical centrifugation experiments showed that it dimerizes with a dissociation constant of approximately 2 micrometer.

  2. Avian host defense peptides.

    PubMed

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.

  3. Synthesis and photophysical properties of new catenated electron donor-acceptor materials with magnesium and free base porphyrins as donors and C60 as the acceptor

    NASA Astrophysics Data System (ADS)

    Kirner, Sabrina V.; Guldi, Dirk M.; Megiatto, Jackson D., Jr.; Schuster, David I.

    2014-12-01

    A new series of nanoscale electron donor-acceptor systems with [2]catenane architectures has been synthesized, incorporating magnesium porphyrin (MgP) or free base porphyrin (H2P) as electron donor and C60 as electron acceptor, surrounding a central tetrahedral Cu(i)-1,10-phenanthroline (phen) complex. Model catenated compounds incorporating only one or none of these photoactive moieties were also prepared. The synthesis involved the use of Sauvage's metal template protocol in combination with the 1,3-dipolar cycloaddition of azides and alkynes (``click chemistry''), as in other recent reports from our laboratories. Ground state electron interactions between the individual constituents was probed using electrochemistry and UV-vis absorption spectroscopy, while events occurring following photoexcitation in tetrahydrofuran (under both aerobic and anaerobic conditions) at various wavelengths were followed by means of time-resolved transient absorption and emission spectroscopies on the femtosecond and nanosecond time scales, respectively, complemented by measurements of quantum yields for generation of singlet oxygen. From similar studies with model catenates containing one or neither of the chromophores, the events following photoexcitation could be elucidated. The results were compared with those previously reported for analogous catenates based on zinc porphyrin (ZnP). It was determined that a series of energy transfer (EnT) and electron transfer (ET) processes take place in the present catenates, ultimately generating long-distance charge separated (CS) states involving oxidized porphyrin and reduced C60 moieties, with lifetimes ranging from 400 to 1060 nanoseconds. Shorter lived short-distance CS states possessing oxidized copper complexes and reduced C60, with lifetimes ranging from 15 to 60 ns, were formed en route to the long-distance CS states. The dynamics of the ET processes were analyzed in terms of their thermodynamic driving forces. It was clear that

  4. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor.

    PubMed

    Joshi, Bishnu Prasad; Park, Junwon; Lee, Wan In; Lee, Keun-Hyeung

    2009-05-15

    A novel fluorescent peptide sensor containing tryptophan (donor) and dansyl fluorophore (acceptor) was synthesized for monitoring heavy and transition metal (HTM) ions on the basis of metal ion binding motif (Cys-X-X-X-Cys). The peptide probe successfully exhibited a turn on and ratiometric response for several heavy metal ions such as Hg(2+), Cd(2+), Pb(2+), Zn(2+), and Ag(+) in aqueous solution. The enhancements of emission intensity were achieved in the presence of the HTM ions by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The detection limits of the sensor for Cd(2+), Pb(2+), Zn(2+), and Ag(+) were lower than the EPA's drinking water maximum contaminant levels (MCL). We described the fluorescent enhancement, binding affinity, and detection limit of the peptide probe for HTM ions.

  5. Antimicrobial Peptides and Colitis

    PubMed Central

    Ho, Samantha; Pothoulakis, Charalabos; Koon, Hon Wai

    2013-01-01

    Antimicrobial peptides (AMPs) are important components of innate immunity. They are often expressed in response to colonic inflammation and infection. Over the last several years, the roles of several antimicrobial peptides have been explored. Gene expression of many AMPs (beta defensin HBD2-4 and cathelicidin) is induced in response to invasion of gut microbes into the mucosal barrier. Some AMPs are expressed in a constitutive manner (alpha defensin HD 5-6 and beta defensin HBD1), while others (defensin and bactericidal/permeability increasing protein BPI) are particularly associated with Inflammatory Bowel Disease (IBD) due to altered defensin expression or development of autoantibodies against Bactericidal/permeability increasing protein (BPI). Various AMPs have different spectrum and strength of antimicrobial effects. Some may play important roles in modulating the colitis (cathelicidin) while others (lactoferrin, hepcidin) may represent biomarkers of disease activity. The use of AMPs for therapeutic purposes is still at an early stage of development. A few natural AMPs were shown to be able to modulate colitis when delivered intravenously or intracolonically (cathelicidin, elafin and SLPI) in mouse colitis models. New AMPs (synthetic or artificial non-human peptides) are being developed and may represent new therapeutic approaches against colitis. This review discusses the latest research developments in the AMP field with emphasis in innate immunity and pathophysiology of colitis. PMID:22950497

  6. Simulation study on the effects of chemical structure and molecular size on the acceptor strength in poly(3-hexylthiophene)-based copolymer with alternating donor and acceptor for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Rassamesard, Areefen; Pengpan, Teparksorn

    2017-02-01

    This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ  <  Z  <  D  <  TPD  <  OXD  <  TP  <  BT  <  TD. The TD is indicated as the most effective acceptor among those that were simulated. However, the small energy gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar

  7. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    SciTech Connect

    Li, Mingxing; Wang, Hongfeng; He, Lei; Zang, Huidong; Xu, Hengxing; Hu, Bin

    2014-07-14

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field < 10 mT) and spin-exchange (at high field > 10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  8. Probing reactivity of PQQ-dependent carbohydrate dehydrogenases using artificial electron acceptor.

    PubMed

    Tetianec, Lidija; Bratkovskaja, Irina; Kulys, Juozas; Casaite, Vida; Meskys, Rolandas

    2011-02-01

    The kinetic parameters of carbohydrate oxidation catalyzed by Acinetobacter calcoaceticus pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) and Escherichia coli PQQ-dependent aldose sugar dehydrogenase (ASDH) were determined using various electron acceptors. The radical cations of organic compounds and 2,6-dichlorophenolindophenol are the most reactive with both enzymes in presence of glucose. The reactivity of dioxygen with ASDH is low; the bimolecular constant k (ox) = 660 M(-1) s(-1), while GDH reactivity with dioxygen is even less. The radical cation of 3-(10H-phenoxazin-10-yl)propionic acid was used as electron acceptor for reduced enzyme in the study of dehydrogenases carbohydrates specificity. Mono- and disaccharide reactivity with GDH is higher than the reactivity of oligosaccharides. For ASDH, the reactivity increased with the carbohydrate monomer number increase. The specificity of quinoproteins was compared with specificity of flavoprotein Microdochium nivale carbohydrate oxidase due to potential enzymes application for lactose oxidation.

  9. Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor.

    PubMed

    Nguyen, Van Khanh; Tran, Huong T; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2017-02-09

    The purpose of this study was to identify bacteria that can perform As(III) oxidation for environmental bioremediation. Two bacterial strains, named JHS3 and JHW3, which can autotrophically oxidize As(III)-As(V) with oxygen as an electron acceptor, were isolated from soil and water samples collected in the vicinity of an arsenic-contaminated site. According to 16S ribosomal RNA sequence analysis, both strains belong to the ɤ-Proteobacteria class and share 99% sequence identity with previously described strains. JHS3 appears to be a new strain of the Acinetobacter genus, whereas JHW3 is likely to be a novel strain of the Klebsiella genus. Both strains possess the aioA gene encoding an arsenite oxidase and are capable of chemolithoautotrophic growth in the presence of As(III) up to 10 mM as a primary electron donor. Cell growth and As(III) oxidation rate of both strains were significantly enhanced during cultivation under heterotrophic conditions. Under anaerobic conditions, only strain JHW3 oxidized As(III) using nitrate or a solid-state electrode of a bioelectrochemical system as a terminal electron acceptor. Kinetic studies of As(III) oxidation under aerobic condition demonstrated a higher V max and K m from strain JHW3 than strain JHS3. This study indicated the potential application of strain JHW3 for remediation of subsurface environments contaminated with arsenic.

  10. Donor-acceptor substituted phenylethynyltriphenylenes – excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission

    PubMed Central

    Nandy, Ritesh

    2010-01-01

    Summary Several 2-(phenylethynyl)triphenylene derivatives bearing electron donor and acceptor substituents on the phenyl rings have been synthesized. The absorption and fluorescence emission properties of these molecules have been studied in solvents of different polarity. For a given derivative, solvent polarity had minimal effect on the absorption maxima. However, for a given solvent the absorption maxima red shifted with increasing conjugation of the substituent. The fluorescence emission of these derivatives was very sensitive to solvent polarity. In the presence of strongly electron withdrawing (–CN) and strongly electron donating (–NMe2) substituents large Stokes shifts (up to 130 nm, 7828 cm−1) were observed in DMSO. In the presence of carbonyl substituents (–COMe and –COPh), the largest Stokes shift (140 nm, 8163 cm−1) was observed in ethanol. Linear correlation was observed for the Stokes shifts in a Lippert–Mataga plot. Linear correlation of Stokes shift was also observed with E T(30) scale for protic and aprotic solvents but with different slopes. These results indicate that the fluorescence emission arises from excited state intramolecular charge transfer in these molecules where the triphenylene chromophore acts either as a donor or as an acceptor depending upon the nature of the substituent on the phenyl ring. HOMO–LUMO energy gaps have been estimated from the electrochemical and spectral data for these derivatives. The HOMO and LUMO surfaces were obtained from DFT calculations. PMID:21085512

  11. Identifying electron transfer coordinates in donor-bridge-acceptor systems using mode projection analysis

    PubMed Central

    Yang, Xunmo; Keane, Theo; Delor, Milan; Meijer, Anthony J. H. M.; Weinstein, Julia; Bittner, Eric R.

    2017-01-01

    We report upon an analysis of the vibrational modes that couple and drive the state-to-state electronic transfer branching ratios in a model donor-bridge-acceptor system consisting of a phenothiazine-based donor linked to a naphthalene-monoimide acceptor via a platinum-acetylide bridging unit. Our analysis is based upon an iterative Lanczos search algorithm that finds superpositions of vibronic modes that optimize the electron/nuclear coupling using input from excited-state quantum chemical methods. Our results indicate that the electron transfer reaction coordinates between a triplet charge-transfer state and lower lying charge-separated and localized excitonic states are dominated by asymmetric and symmetric modes of the acetylene groups on either side of the central atom in this system. In particular, we find that while a nearly symmetric mode couples both the charge-separation and charge-recombination transitions more or less equally, the coupling along an asymmetric mode is far greater suggesting that IR excitation of the acetylene modes preferentially enhances charge-recombination transition relative to charge-separation. PMID:28233775

  12. Spectrophotometric and electrical studies of charge-transfer complexes of sodium flucloxacillin with π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Didamony, Akram M.

    2006-11-01

    The present study is interested to develop a simple, rapid and accurate spectrophotometric method for determination of sodium flucloxacillin (fluc) in pure form and pharmaceutical formulations. The charge-transfer (CT) interactions between sodium flucloxacillin as electron donor and chloranilic acid (CLA), dichloroquinone 4-chloroimide (DCQ), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ) and 7,7,8,8 tetracyano- p-quinodimethane (TCNQ), as π-electron acceptors have been investigated spectrophotometrically. Different variables affecting the reaction were studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9979-0.9995) were found between the absorbance and the concentration of the drug in the range 16-880 μg ml -1. The proposed methods were applied successfully to the determination of the examined drug either in pure or pharmaceutical dosage forms with good accuracy and precision. The formation of the CT-complexes and the sites of interaction were confirmed by elemental analysis CHN, UV-vis, IR, 1H NMR and mass spectra techniques. Based on Job's method of continuous variation plots, the obtained results indicate the formation of 1:1 charge-transfer complexes with the general formula [(fluc)(acceptor)]. Statistical analysis of the obtained results showed no significant difference between the proposed method and official method.

  13. Crystal Structures of a Poplar Xyloglucan Endotransglycosylase Reveal Details of Transglycosylation Acceptor Binding

    PubMed Central

    Johansson, Patrik; Brumer, Harry; Baumann, Martin J.; Kallas, Åsa M.; Henriksson, Hongbin; Denman, Stuart E.; Teeri, Tuula T.; Jones, T. Alwyn

    2004-01-01

    Xyloglucan endotransglycosylases (XETs) cleave and religate xyloglucan polymers in plant cell walls via a transglycosylation mechanism. Thus, XET is a key enzyme in all plant processes that require cell wall remodeling. To provide a basis for detailed structure–function studies, the crystal structure of Populus tremula x tremuloides XET16A (PttXET16A), heterologously expressed in Pichia pastoris, has been determined at 1.8-Å resolution. Even though the overall structure of PttXET16A is a curved β-sandwich similar to other enzymes in the glycoside hydrolase family GH16, parts of its substrate binding cleft are more reminiscent of the distantly related family GH7. In addition, XET has a C-terminal extension that packs against the conserved core, providing an additional β-strand and a short α-helix. The structure of XET in complex with a xyloglucan nonasaccharide, XLLG, reveals a very favorable acceptor binding site, which is a necessary but not sufficient prerequisite for transglycosylation. Biochemical data imply that the enzyme requires sugar residues in both acceptor and donor sites to properly orient the glycosidic bond relative to the catalytic residues. PMID:15020748

  14. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

    PubMed Central

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-01-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and −0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration. PMID:27503002

  15. The excited states of stilbene and stilbenoid donor-acceptor dye systems. A theoretical study

    NASA Astrophysics Data System (ADS)

    Rettig, Wolfgang; Strehmel, Bernd; Majenz, Wilfried

    1993-07-01

    Semiempirical calculations within the CNDO/S framework are used to characterize the nature of the "phantom-singlet" excited state P * (double-bond twisted geometry) of stilbene and stilbenoid donor-acceptor dye systems including the laser dyes DCM and DASPMI. P * is highly polar (closed shell "hole-pair" nature) for weakly perturbed stilbenes but for larger donor-acceptor strength, the order of ground and excited state is reversed, and P * becomes of small polarity ("dot-dot" nature), fully consistent with the established model of biradicaloid states. For stilbene, a slight geometric symmetry reduction is necessary in order to localize the orbitals on the subunits. Only then are the calculated results consistent with those for methyl-substituted stilbene. The localized orbital description of twisted stilbene shows that P * contains negligible doubly excited character and possesses a very small gap to the ground state contrary to what is stated in the previous literature. The planar systems are also investigated and correlated with Dähne's triad rule of polymethine systems.

  16. Nanopatterning of Donor/Acceptor Hybrid Supramolecular Architectures on HOPG: An STM Study

    PubMed Central

    Wang, Ling; Chen, Qing; Pan, Ge-Bo; Wan, Li-Jun; Zhang, Shiming; Zhan, Xiaowei; Northrop, Brian H.; Stang, Peter J.

    2009-01-01

    Hybrid supramolecular architectures have been fabricated with acceptor 1,4-bis(4-pyridylethynyl)-2,3-bis-dodecyloxy-benzene (PBP) and donor 2,6-bis(3,4,5-tris-dodecyloxy-phenyl)dithieno[3,2-b:2′,3′-d]thiophene (DTT) compounds on highly oriented pyrolytic graphite (HOPG) surfaces and their structures and molecular conductance are characterized by scanning tunneling microscopy/spectroscopy (STM/STS). Stable, one-component adlayers of PBP and DTT are also investigated. The coadsorption of two-component mixtures of PBP and DTT results in a variety of hybrid nanopattern architectures that differ from those of their respective one-component surface assemblies. Adjusting the acceptor/donor molar ratio in mixed adlayer assemblies results in dramatic changes in the structure of the hybrid nanopatterns. STS measurements indicate that the HOMO and LUMO energy levels of PBP and DTT on an HOPG surface are relatively insensitive to changes in the hybrid supramolecular architectures. These results provide important insight into the design and fabrication of two-dimensional hybrid supramolecular architectures. PMID:18783221

  17. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes.

    PubMed

    de Wit, Heidi; Walter, Alexander M; Milosevic, Ira; Gulyás-Kovács, Attila; Riedel, Dietmar; Sørensen, Jakob B; Verhage, Matthijs

    2009-09-04

    Docking, the initial association of secretory vesicles with the plasma membrane, precedes formation of the SNARE complex, which drives membrane fusion. For many years, the molecular identity of the docked state, and especially the vesicular docking protein, has been unknown, as has the link to SNARE complex assembly. Here, using adrenal chromaffin cells, we identify the vesicular docking partner as synaptotagmin-1, the calcium sensor for exocytosis, and SNAP-25 as an essential plasma membrane docking factor, which, together with the previously known docking factors Munc18-1 and syntaxin, form the minimal docking machinery. Moreover, we show that the requirement for Munc18-1 in docking, but not fusion, can be overcome by stabilizing syntaxin/SNAP-25 acceptor complexes. These findings, together with cross-rescue, double-knockout, and electrophysiological data, lead us to propose that vesicles dock when synaptotagmin-1 binds to syntaxin/SNAP-25 acceptor complexes, whereas Munc18-1 is required for the downstream association of synaptobrevin to form fusogenic SNARE complexes.

  18. Synthesis and characterization of donor-acceptor copolymers carrying triphenylamine units for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Neumann, Katharina; Thelakkat, Mukundan

    2012-09-01

    The synthesis and analysis of solution processable polymers for organic solar cells is crucial for innovative solar cell technologies such as printing processes. In the field of donor materials for photovoltaic applications, polymers based on tetraphenylamine (TPA) are well known hole conducting materials. Here, we synthesized two conjugated TPA containing copolymers via Suzuki polycondensation. We investigated the tuning of the energy levels of the TPA based polymers by two different concepts. Firstly, we introduced an acceptor unit in the side chain. The main-chain of this copolymer was built from TPA units. The resulting copolymer 2-(4-((4'-((4-(2-ethylhexyloxy)phenyl)(paratolyl) amino)biphenyl-4-yl)(para-tolyl)amino)benzylidene) malononitrile P1 showed a broader absorption up to 550 nm. Secondly, we used a donor-acceptor concept by synthesizing a copolymer with alternating electron donating TPA and electron withdrawing Thieno[3,4-b]thiophene ester units. Consequently, the absorption maximum in the copolymer octyl-6-(4-((4-(2-ethylhexyloxy)phenyl)(p-tolyl)amino)phenyl)-4-methylthieno[3,4-b]thiophene-2-carboxylate P2 was red shifted to 580 nm. All three polymers showed high thermal stability. By UV-vis and Cyclic voltammetry measurements the optical and electrochemical properties of the polymers were analyzed.

  19. Construction of Light-Harvesting Polymeric Vesicles in Aqueous Solution with Spatially Separated Donors and Acceptors.

    PubMed

    Li, Huimei; Liu, Yannan; Huang, Tong; Qi, Meiwei; Ni, Yunzhou; Wang, Jie; Zheng, Yongli; Zhou, Yongfeng; Yan, Deyue

    2017-02-24

    This communication describes polymer vesicles self-assembled from hyperbranched polymers (branched polymersomes (BPs)) as scaffolds, conceptually mimicking the natural light-harvesting system in aqueous solution. The system is constructed with hydrophobic 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) as donors encapsulated in the hydrophobic hyperbranched cores of the vesicles and the hydrophilic Rhodamine B (RB) as acceptors incorporated on the surface of the vesicles through the cyclodextrin (CD)/RB host-guest interactions, through which the donors and acceptors are spatially separated to effectively avoid the self-quenching between donors. This vesicular light harvesting system has presented good energy transfer efficiency of about 80% in water, and can be used as the ink to write multiclolor letters. In addition, due to the giant dimension of BPs, the real-time fluorescent images of the vesicles under an optical microscope can be observed to prove the light-harvesting process. It is supposed that such a vesicular light-harvesting antenna can be used to construct artificial photosynthesis systems in the future.

  20. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián A.; Gillanders, Florencia; Jares-Erijman, Elizabeth A.; Jovin, Thomas M.

    2015-01-01

    Photoswitchable molecules and nanoparticles constitute superior biosensors for a wide range of industrial, research and biomedical applications. Rendered reversible by spontaneous or deterministic means, such probes facilitate many of the techniques in fluorescence microscopy that surpass the optical resolution dictated by diffraction. Here we have devised a family of photoswitchable quantum dots (psQDs) in which the semiconductor core functions as a fluorescence donor in Förster resonance energy transfer (FRET), and multiple photochromic diheteroarylethene groups function as acceptors upon activation by ultraviolet light. The QDs were coated with a polymer bearing photochromic groups attached via linkers of different length. Despite the resulting nominal differences in donor-acceptor separation and anticipated FRET efficiencies, the maximum quenching of all psQD preparations was 38±2%. This result was attributable to the large ultraviolet absorption cross-section of the QDs, leading to preferential cycloreversion of photochromic groups situated closer to the nanoparticle surface and/or with a more favourable orientation.

  1. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors.

    PubMed

    Díaz, Sebastián A; Gillanders, Florencia; Jares-Erijman, Elizabeth A; Jovin, Thomas M

    2015-01-16

    Photoswitchable molecules and nanoparticles constitute superior biosensors for a wide range of industrial, research and biomedical applications. Rendered reversible by spontaneous or deterministic means, such probes facilitate many of the techniques in fluorescence microscopy that surpass the optical resolution dictated by diffraction. Here we have devised a family of photoswitchable quantum dots (psQDs) in which the semiconductor core functions as a fluorescence donor in Förster resonance energy transfer (FRET), and multiple photochromic diheteroarylethene groups function as acceptors upon activation by ultraviolet light. The QDs were coated with a polymer bearing photochromic groups attached via linkers of different length. Despite the resulting nominal differences in donor-acceptor separation and anticipated FRET efficiencies, the maximum quenching of all psQD preparations was 38±2%. This result was attributable to the large ultraviolet absorption cross-section of the QDs, leading to preferential cycloreversion of photochromic groups situated closer to the nanoparticle surface and/or with a more favourable orientation.

  2. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

    NASA Astrophysics Data System (ADS)

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-08-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and ‑0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration.

  3. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity

    NASA Astrophysics Data System (ADS)

    Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

    2007-11-01

    Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

  4. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic

    PubMed Central

    Luo, Chaosheng; Wang, Zhen; Huang, Yong

    2015-01-01

    Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194

  5. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    PubMed

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively.

  6. Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Small-Bandgap Electron Acceptor.

    PubMed

    Liu, Feng; Zhou, Zichun; Zhang, Cheng; Zhang, Jianyun; Hu, Qin; Vergote, Thomas; Liu, Feng; Russell, Thomas P; Zhu, Xiaozhang

    2017-03-21

    Inspired by the remarkable promotion of power conversion efficiency (PCE), commercial applications of organic photovoltaics (OPVs) can be foreseen in near future. One of the most promising applications is semitransparent (ST) solar cells that can be utilized in value-added applications such as energy-harvesting windows. However, the single-junction STOPVs utilizing fullerene acceptors show relatively low PCEs of 4%-6% due to the limited sunlight absorption because it is a dilemma that more photons need to be harvested in UV-vis-near-infrared (NIR) region to generate high photocurrent, which leads to the significant reduction of device transparency. This study describes the development of a new small-bandgap electron-acceptor material ATT-2, which shows a strong NIR absorption between 600 and 940 nm with an Eg(opt) of 1.32 eV. By combining with PTB7-Th, the as-cast OPVs yield PCEs of up to 9.58% with a fill factor of 0.63, an open-circuit voltage of 0.73 V, and a very high short-circuit current of 20.75 mA cm(-2) . Owing to the favorable complementary absorption of low-bangap PTB7-Th and small-bandgap ATT-2 in NIR region, the proof-of-concept STOPVs show the highest PCE of 7.7% so far reported for single-junction STOPVs with a high transparency of 37%.

  7. Cholesterol acceptor capacity is preserved by different mechanisms in preterm and term fetuses.

    PubMed

    Pecks, Ulrich; Mohaupt, Markus G; Hütten, Matthias C; Maass, Nicolai; Rath, Werner; Escher, Geneviève

    2014-02-01

    Fetal serum cholesterol and lipoprotein concentrations differ between preterm and term born neonates. An imbalance of the flow of cholesterol from the sites of synthesis or efflux from cells of peripheral organs to the liver, the reverse cholesterol transport (RCT), is linked to atherosclerosis and cardiovascular disease (CVD). Preterm delivery is a risk factor for the development of CVD. Thus, we hypothesized that RCT is affected by a diminished cholesterol acceptor capacity in preterm as compared to term fetuses. Cholesterol efflux assays were performed in RAW264.7, HepG2, and HUVEC cell lines. In the presence and absence of ABC transporter overexpression by TO-901317, umbilical cord sera of preterm and term born neonates (n = 28 in both groups) were added. Lipid components including high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoprotein A1, and apolipoprotein E were measured and related to fractional cholesterol efflux values. We found overall, fractional cholesterol efflux to remain constant between the study groups, and over gestational ages at delivery, respectively. However, correlation analysis revealed cholesterol efflux values to be predominantly related to HDL concentration at term, while in preterm neonates, cholesterol efflux was mainly associated with LDL In conclusion cholesterol acceptor capacity during fetal development is kept in a steady state with different mechanisms and lipid fractions involved at distinct stages during the second half of fetal development. However, RCT mechanisms in preterm neonates seem not to be involved in the development of CVD later in life suggesting rather changes in the lipoprotein pattern causative.

  8. Modulation of quantum dot photoemission based on fluorescence resonance energy transfer to a photochromic dye acceptor

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Clapp, Aaron R.; Trammel, Scott A.; Mattoussi, Hedi M.

    2004-12-01

    We demonstrate the use of a photochromic dye to achieve fluorescence resonance energy transfer (FRET) modulation between a QD donor and the dye acceptor brought in close proximity in a selfassembled QD-protein-dye conjugate. The E. coli maltose binding protein (MBP) appended on its C-terminal with an oligohistidine attachment domain, immobilized onto CdSe-ZnS core-shell QDs was labeled with a sulfo-N-hydroxysuccinimide activated photochromic BIPS molecule (1',3-dihydro-1'-(2-carboxyethyl)-3,3-dimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indoline]). Two different dye-to-MBP-protein ratios of 1:1 and 5:1 were used. The ability of MBP-BIPS to modulate QD photoluminescence was tested by switching BIPS from the colorless spiropyran (SP) to the colored merocyanine (MC) using irradiation with white light (>500 nm) or with UV light (~365 nm), respectively. QDs surrounded by ~20 MBP-BIPS with a dye to protein ratio of 1 showed ~25% loss in their photoemission with consecutive repeated switches, while QDs surrounded by ~20 MBP-BIPS with BIPS to MBP ratio of 5 produced a substantially more pronounced rate of FRET where the QD emission was quenched by ~60%. This result suggests the possibility of using QD-protein conjugates to assemble reversible FRET nanoassemblies where the QD emission can be controlled by changing the properties of the acceptors dyes bound to the protein.

  9. Radiative donor-acceptor pair recombination in TlInS2 single crystals

    NASA Astrophysics Data System (ADS)

    Aydinli, A.; Gasanly, N. M.; Yilmaz, I.; Serpengüzel, A.

    1999-07-01

    Photoluminescence (PL) spectra of TlInS2 layered single crystals were investigated in the 500-860 nm wavelength region and in the 11.5-100 K temperature range. We observed two PL bands centred at 515 nm (2.41 eV, A band) and 816 nm (1.52 eV, B band) at T = 11.5 K and an excitation intensity of 7.24 W cm-2. A detailed study of the A band was carried out as a function of temperature and excitation laser intensity. A red shift of the A band position was observed for both increasing temperature and decreasing excitation laser intensity in the range from 0.12 to 7.24 W cm-2. Analysis of the data indicates that the A band is due to radiative transitions from the moderately deep donor level located at 0.25 eV below the bottom of the conduction band to the shallow acceptor level located at 0.02 eV above the top of the valence band. An energy-level diagram for radiative donor-acceptor pair transitions in TlInS2 layered single crystals is proposed.

  10. Sulfide removal from industrial wastewaters by lithotrophic denitrification using nitrate as an electron acceptor.

    PubMed

    Can-Dogan, Esra; Turker, Mustafa; Dagasan, Levent; Arslan, Ayla

    2010-01-01

    Sulfide is present in wastewaters as well as in biogas and can be removed by several physicochemical and biotechnological processes. Nitrate is a potential electron acceptor, readily available in most wastewater treatment plants and it can replace oxygen under anoxic conditions. A lab-scale reactor was operated for treatment of sulfide containing wastewater with nitrate as an electron acceptor and is used to evaluate the effects of volumetric loading rates, hydraulic retention time (HRT) and substrate concentrations on the performance of the lithotrophic denitrification process for treating industrial fermentation wastewaters. Sulfide is removed more than 90% at the loading rates between 0.055 and 2.004 kg S(-2)/m(3) d, when the influent sulfide concentration is kept around 0.163 kg/m(3) and the HRT decreased from 86.4 to 2 h. Nitrogen removal differed between 23 and 99% with different influent NO(3)(-)-N concentration and loading rates of NO(3)(-)/S(-2) ratio. The stoichiometry of sulfide oxidation with nitrate is calculated assuming different end-products based on thermodynamic approach and compared with experimental yield values. The calculated maximum volumetric and specific sulfide oxidation rates reached 0.076 kg S(-2)/m(3) h and 0.11 kg S(-2)/kg VSS h, respectively. The results are obtained at industrially relevant conditions and can be easily adapted to either biogas cleaning process or to sulfide containing effluent streams.

  11. [Hydrolysis of peptides by immobilized bacterial peptide hydrolases].

    PubMed

    Nekliudov, A D; Deniakina, E K

    2004-01-01

    The feasibility of hydrolysis of a mixture of peptides with an enzyme from the bacterium Xanthomonas rubrilineans, displaying a peptidase activity and immobilized on aluminum oxide, was studied. Kinetic schemes and equations allowing for approaching quantitative description of peptide hydrolysis in complex mixtures containing free amino acids and peptides were obtained. It was demonstrated that as a result of hydrolysis, the content of free amino acids in hydrolysates decreased 2.5- to 3-fold and the molecular weight of the constituent peptides, 2-fold.

  12. Theoretical characterization on photoelectric properties of benzothiadiazole- and fluorene-based small molecule acceptor materials for the organic photovoltaics.

    PubMed

    Sui, Mingyue; Li, Shuangbao; Pan, Qingqing; Sun, Guangyan; Geng, Yun

    2017-01-01

    The upper efficiency of heterojunction organic photovoltaics depends on the increased open-circuit voltage (V oc) and short-circuit current (J sc). So, a higher lowest unoccupied molecular orbital (LUMO) level is necessary for organic acceptor material to possess higher V oc and more photons absorbsorption in the solar spectrum is needed for larger J sc. In this article, we theoretically designed some small molecule acceptors (2∼5) based on fluorene (F), benzothiadiazole, and cyano group (CN) referring to the reported acceptor material 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile (1), the crucial parameters affecting photoelectrical properties of compounds 2∼5 were evaluated by the density functional theory (DFT) and time dependent density functional theory (TDDFT) methods. The results reveal that compared with 1, 3 and 4 could have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, and the decreased electronic organization energy (λ e). From the simulation of transition density matrix, it is very clear that the excitons of molecules 3 and 4 are easier to separate in the material surface. Therefore, 3 and 4 may become potential acceptor candidates for organic photovoltaic cells. In addition, with the increased number of CN, the optoelectronic properties of the molecules show a regular change, mainly improve the LUMO level, energy gap, V oc, and absorption intensity. In summary, reasonably adjusting CN can effectively improve the photovoltaic properties of small molecule acceptors. Graphical Abstract Structure-property relationship of small molecule acceptors could be rationally evaluated in the article. The changes of conjugate length and CN are important strategies to alter the photovoltaic properties of small molecule acceptors. Therefore, taking the K12/1 as a reference, we have theoretically designed a series of small molecule acceptors (2-4). The calculated

  13. Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells.

    PubMed

    Kan, Bin; Feng, Huanran; Wan, Xiangjian; Liu, Feng; Ke, Xin; Wang, Yanbo; Wang, Yunchuang; Zhang, Hongtao; Li, Chenxi; Hou, Jianhui; Chen, Yongsheng

    2017-03-24

    A new nonfullerene small molecule with acceptor-donor-acceptor (A-D-A) structure, namely, NFBDT, based on a heptacyclic benzodi(cyclopentadithiophene) (FBDT) unit using benzo[1,2-b:4,5-b']dithiophene as the core unit, was designed and synthesized. Its absorption ability, energy levels, thermal stability, as well as photovoltaic performances were fully investigated. NFBDT exhibits a low optical bandgap of 1.56 eV resulting in wide and efficient absorption that covered the range from 600 to 800 nm, and suitable energy levels as an electron acceptor. With the widely used and successful wide bandgap polymer PBDB-T selected as the electron donor material, an optimized PCE of 10.42% was obtained for the PBDB-T:NFBDT-based device with an outstanding short-circuit current density of 17.85 mA cm(-2) under AM 1.5G irradiation (100 mW cm(-2)), which is so far among the highest performance of NF-OSC devices. These results demonstrate that the BDT unit could also be applied for designing NF-acceptors, and the fused-ring benzodi(cyclopentadithiophene) unit is a prospective block for designing new NF-acceptors with excellent performance.

  14. Macrocyclization of Unprotected Peptide Isocyanates.

    PubMed

    Vinogradov, Alexander A; Choo, Zi-Ning; Totaro, Kyle A; Pentelute, Bradley L

    2016-03-18

    A chemistry for the facile two-component macrocyclization of unprotected peptide isocyanates is described. Starting from peptides containing two glutamic acid γ-hydrazide residues, isocyanates can be readily accessed and cyclized with hydrazides of dicarboxylic acids. The choice of a nucleophilic linker allows for the facile modulation of biochemical properties of a macrocyclic peptide. Four cyclic NYAD-1 analogues were synthesized using the described method and displayed a range of biological activities.

  15. Biodiscovery of Aluminum Binding Peptides

    DTIC Science & Technology

    2013-08-01

    display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high...scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the self- sustaining peptide libraries to be rapidly screened for high...removal. An eCPX peptide display library was grown and induced as described in the paragraph above. After rinsing samples briefly in PBS, the aluminum

  16. Animal studies and prediction of human tumors can be aided by graphical sorting of animal data: neoplastic risk from B(a)P, benzene, benzidine, and chromium

    SciTech Connect

    Jones, T.D.; Walsh, P.J.

    1985-01-01

    This work is a graphical study of all known dose-response data for neoplasia induced by B(a)P, benzene, benzidine, and chromium administered to test animals. Doses are put in units of lifetime intake given in micromoles of chemical per kilogram body weight, and responses are in percent increased effect per unit dose. Space limitations do not permit experiment-by-experiment critiques; however, computer graphics have been used to compare the relationship of any individual dose-response point estimate to other such point estimates for the chemical of interest. Graphics are also used to study variability resulting from different experimental parameters such as species, route of intake, number of treatment, pathological classification of neoplasia, etc. Graphical sorting, according to various physical and biological classification parameters, permits one to judge, from visual inspection, such questions as whether mice as a species are more sensitive than rats as a species, whether intravenous injection is generally more effective than inhalation, whether a single well-defined dose-response function which ignores these classification parameters, can be evaluated numerically from the composite data base deriving from all oncogenic studies with a given chemical, etc. 25 references, 1 figure, 1 table.

  17. The long non-coding RNA lncFOXO1 suppresses growth of human breast cancer cells through association with BAP1.

    PubMed

    Xi, Jie; Feng, Jing; Li, Qian; Li, Xia; Zeng, Saitian

    2017-05-01

    Breast cancer, one of the common cancers of women, is the leading cause of death among women below the age of 50 years in western countries. Long non-coding RNAs (lncRNAs) have been shown to be involved in diverse biological processes, both physical and pathological. However, to date, only a few lncRNAs have been functionally identified in breast cancer, and the overall pathophysiological contributions of lncRNAs to breast cancer remain largely unknown. In the present study, we identified a novel lncRNA termed lncFOXO1 through microarray screening. lncFOXO1 is significantly decreased in breast cancer tissues and cell lines and downregulation of lncFOXO1 expression associates with poorer overall survival. Functional assays demonstrated its suppressive role in breast cancer in vivo and in vitro. Mechanistically, lncFOXO1 suppressed the growth of breast cancer by increasing FOXO1 transcription. Moreover, we found that lncFOXO1 associated with BRCA-1-associated protein 1 (BAP1) and regulates its binding and the level of mono-ubiquitinated H2A at K119 (ubH2AK119) at FOXO1 promoter.

  18. Improving Peptide Applications Using Nanotechnology.

    PubMed

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  19. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  20. Peptides that influence membrane topology

    NASA Astrophysics Data System (ADS)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)