Science.gov

Sample records for acceptor radical anion

  1. ENDOR studies of the intermediate electron acceptor radical anion I-. in Photosystem II reaction centers.

    PubMed

    Lubitz, W; Isaacson, R A; Okamura, M Y; Abresch, E C; Plato, M; Feher, G

    1989-11-23

    The EPR and ENDOR characteristics of the intermediate electron acceptor radical anion I-. in Photosystem II (PS II) are shown to be identical in membrane particles and in the D1D2 cytochrome b-559 complex (Nanba, O. and Satoh, K. (1987) Proc. Natl. Acad. Sci. USA 84, 109-112). These findings provide further evidence that the D1D2 complex is the reaction center of PS II and show that the pheophytin binding site is intact. A hydrogen bond between I-. and the protein (GLU D1-130) is postulated on the basis of D2O exchange experiments. The ENDOR data of I-. and of the pheophytin a radical anion in different organic solvents are compared and the observed differences are related to structural changes of the molecule on the basis of molecular orbital calculations (RHF-INDO/SP). The importance of the orientation of the vinyl group (attached to ring I) on electron transfer is discussed. PMID:2553112

  2. EPR studies of the vitamin K 1 semiquinone radical anion. Comparison to the electron acceptor A 1 in green plant photosystem I

    NASA Astrophysics Data System (ADS)

    Thurnauer, Marion C.; Brown, James W.; Gast, P.; Feezel, Laura L.

    Suggestions that the electron acceptor, A 1, in Photosystem I is a quinone have come from both optical and epr experiments. Vitamin K 1 (phylloquinone) is present in the PSI complex with a stoichiometry of two molecules per reaction center. In order to determine if A 1 can be identified with vitamin K 1, X-band and Q-band epr properties of the vitamin K 1 radical anion in frozen alcohol solutions are examined. The results are compared to the epr properties that have been observed for the reduced A 1 acceptor in vivo. The g-values obtained for the vitamin K 1 radical anion are consistent with identifying A 1 with vitamin K 1.

  3. Anion photoelectron spectroscopy of radicals and clusters

    SciTech Connect

    Travis, Taylor R.

    1999-12-16

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying {sup 2}{Sigma} and {sup 2}{Pi} states of C{sub 2n}H (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C{sub 2}H and C{sub 4}H. Other radicals studied include NCN and I{sub 3}. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I{sub 3} revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  4. Superoxide anion radical scavenging property of catecholamines.

    PubMed

    Kładna, Aleksandra; Berczyński, Paweł; Kruk, Irena; Michalska, Teresa; Aboul-Enein, Hassan Y

    2013-01-01

    The direct effect of the four catecholamines (adrenaline, noradrenaline, dopamine and isoproterenol) on superoxide anion radicals (O2•) was investigated. The reaction between 18-crown-6-ether and potassium superoxide in dimethylsulfoxide was used as a source of O2•. The reactivity of catecholamines with O2• was examined using chemiluminescence, reduction of nitroblue tetrazolium and electron paramagnetic resonance spin-trapping techniques. 5,5-Dimethyl-1-pyrroline-N-oxide was included as the spin trap. The results showed that the four catecholamines were effective and efficient in inhibiting chemiluminescence accompanying the potassium superoxide/18-crown-6-ether system in a dose-dependent manner over the range 0.05-2 mM in the following order: adrenaline > noradrenaline > dopamine > isoproterenol, with, IC50 = 0.15 ± 0.02 mM 0.21 ± 0.03 mM, 0.27 ± 0.03 mM and 0.50 ± 0.04 mM, respectively. The catecholamines examined also exhibited a strong scavenging effect towards O2• when evaluated this property by the inhibition of nitroblue tetrazolium reduction (56-73% at 1 M concentration). A very similar capacity of O2• scavenging was monitored in the 5,5-dimethyl-1-pyrroline-N-oxide spin-trapping assay. The results suggest that catecholamines tested may involve a direct effect on scavenging O2- radicals. PMID:23319391

  5. Energy and Entropy Effects in Dissociation of Peptide Radical Anions

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Lam, Corey; Chu, Ivan K.

    2012-04-15

    Time- and collision energy-resolved surface-induced dissociation (SID) of peptide radical anions was studied for the first time using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for SID experiments. Peptide radical cations and anions were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes. The effect of the charge, radical, and the presence of a basic residue on the energetics and dynamics of dissociation of peptide ions was examined using RVYIHPF (1) and HVYIHPF (2) as model systems. Comparison of the survival curves for of [M+H]{sup +}, [M-H]{sup -}, M{sup +{sm_bullet}}, and [M-2H]{sup -{sm_bullet}} ions of these precursors demonstrated that even-electron ions are more stable towards fragmentation than their odd-electron counterparts. RRKM modeling of the experimental data demonstrated that the lower stability of the positive radicals is mainly attributed to lower dissociation thresholds while entropy effects are responsible the relative instability of the negative radicals. Substitution of arginine with less basic histidine residue has a strong destabilizing effect on the [M+H]{sup +} ions and a measurable stabilizing effect on the odd-electron ions. Lower threshold energies for dissociation of both positive and negative radicals of 1 are attributed to the presence of lower-energy dissociation pathways that are most likely promoted by the presence of the basic residue.

  6. Methylglyoxal as a scavenger for superoxide anion-radical.

    PubMed

    Shumaev, K B; Lankin, V Z; Konovalova, G G; Grechnikova, M A; Tikhaze, A K

    2016-07-01

    Methylglyoxal at a concentration of 5 mM caused a significant inhibition of superoxide anion radical (O2 (·-)) comparable to the effect of Tirone. In the process of O2 (·-) generation in the system of egg phosphatidylcholine liposome peroxidation induced by the azo-initiator AIBN, a marked inhibition of chemiluminescence in the presence of 100 mM methylglyoxal was found. At the same time, methylglyoxal did not inhibit free radical peroxidation of low-density lipoprotein particles, which indicates the absence of interaction with methylglyoxal alkoxyl and peroxyl polyenoic lipid radicals. These findings deepen information about the role of methylglyoxal in the regulation of free radical processes. PMID:27599518

  7. Cobalt(II) Complex of a Diazoalkane Radical Anion.

    PubMed

    Bonyhady, Simon J; Goldberg, Jonathan M; Wedgwood, Nicole; Dugan, Thomas R; Eklund, Andrew G; Brennessel, William W; Holland, Patrick L

    2015-06-01

    β-Diketiminate cobalt(I) precursors react with diphenyldiazomethane to give a compound that is shown by computational studies to be a diazoalkane radical anion antiferromagnetically coupled to a high-spin cobalt(II) ion. Thermolysis of this complex results in formal N-N cleavage to give a cobalt(II) ketimide complex. Experimental evaluation of the potential steps in the mechanism suggests that free azine is a likely intermediate in this reaction. PMID:25986783

  8. Some reactions and properties of nitro radical-anions important in biology and medicine.

    PubMed Central

    Wardman, P

    1985-01-01

    Nitroaromatic compounds, ArNO2 have widespread actual or potential use in medicine and cancer therapy. There is direct proof that free-radical metabolites are involved in many applications, and an appreciation of the conceptual basis for their therapeutic differential; however, an understanding of the detailed mechanisms involved is lacking. Redox properties control most biological responses of nitro compounds, and the characteristics of the one-electron couple: ArNO2/ArNO2- are detailed. The "futile metabolism" of nitroaryl compounds characteristic of most aerobic nitroreductase systems reflects competition between natural radical-decay pathways and a one-electron transfer reaction to yield superoxide ion, O2-. Prototropic properties control the rate of radical decay, and redox properties control the rate of electron transfer to O2 or other acceptors. There are clear parallels in the chemistry of ArNO2- and O2-. While nitro radicals have frequently been invoked as damaging species, they are very unreactive (except as simple reductants). It seems likely that reductive metabolism of nitroaryl compounds, although generally involving nitro radical-anions as obligate intermediates (and this is required for therapeutic selectivity towards anaerobes), results in biological damage via reductive metabolites of higher reduction order than the one-electron product. PMID:3830700

  9. The benzene radical anion: A computationally demanding prototype for aromatic anions

    SciTech Connect

    Bazante, Alexandre P. Bartlett, Rodney J.; Davidson, E. R.

    2015-05-28

    The benzene radical anion is studied with ab initio coupled-cluster theory in large basis sets. Unlike the usual assumption, we find that, at the level of theory investigated, the minimum energy geometry is non-planar with tetrahedral distortion at two opposite carbon atoms. The anion is well known for its instability to auto-ionization which poses computational challenges to determine its properties. Despite the importance of the benzene radical anion, the considerable attention it has received in the literature so far has failed to address the details of its structure and shape-resonance character at a high level of theory. Here, we examine the dynamic Jahn-Teller effect and its impact on the anion potential energy surface. We find that a minimum energy geometry of C{sub 2} symmetry is located below one D{sub 2h} stationary point on a C{sub 2h} pseudo-rotation surface. The applicability of standard wave function methods to an unbound anion is assessed with the stabilization method. The isotropic hyperfine splitting constants (A{sub iso}) are computed and compared to data obtained from experimental electron spin resonance experiments. Satisfactory agreement with experiment is obtained with coupled-cluster theory and large basis sets such as cc-pCVQZ.

  10. The benzene radical anion: A computationally demanding prototype for aromatic anions.

    PubMed

    Bazante, Alexandre P; Davidson, E R; Bartlett, Rodney J

    2015-05-28

    The benzene radical anion is studied with ab initio coupled-cluster theory in large basis sets. Unlike the usual assumption, we find that, at the level of theory investigated, the minimum energy geometry is non-planar with tetrahedral distortion at two opposite carbon atoms. The anion is well known for its instability to auto-ionization which poses computational challenges to determine its properties. Despite the importance of the benzene radical anion, the considerable attention it has received in the literature so far has failed to address the details of its structure and shape-resonance character at a high level of theory. Here, we examine the dynamic Jahn-Teller effect and its impact on the anion potential energy surface. We find that a minimum energy geometry of C2 symmetry is located below one D2h stationary point on a C2h pseudo-rotation surface. The applicability of standard wave function methods to an unbound anion is assessed with the stabilization method. The isotropic hyperfine splitting constants (Aiso) are computed and compared to data obtained from experimental electron spin resonance experiments. Satisfactory agreement with experiment is obtained with coupled-cluster theory and large basis sets such as cc-pCVQZ. PMID:26026444

  11. Solvation of benzophenone anion radical in ethanol and ethanol/2-methyltetrahydrofuran mixture

    SciTech Connect

    Ichikawa, T.; Ishikawa, Y.; Yoshida, H.

    1988-01-28

    The electron spin-echo modulations and the absoprtion spectra of benzophenone anion radicals generated by ..gamma..-irradiation in the glassy matrices of ethanol and ethanol2-methyltetrahydrofuran mixtures have been measured for elucidating the mechanism of spectral shift observed during the solvation of the anion radicals in alcohols. The anion radical generated at 4.2 K in the ethanol matrix maintains the same solvation structure as that of neutral benzophenone. At 77 K ethanol molecules solvate the anion radical by orienting the O-H dipoles toward the anion radical. The anion radical is hydrogen-bonded by two ethanol molecules through the p/sub z/ orbital on the benzophenone oxygen which composes the ..pi.. orbitals of anion radical. Three kinds of anion radicals are observed in the mixed matrix at 77 K. Two of them are essentially the same as those observed in the ethanol matrix at 4.2 and 77 K. The third has the absorption maximum at 700 nm and is attributed to the anion radical hydrogen-bonded by one ethanol molecule through the p/sub z/ orbital. It is concluded that the spectral shift observed in alcohols is caused by the stabilization of a SOMO ..pi..* orbital induced by the hydrogen bonding with the (RO)H--O--H(OR) angle perpendicular to the molecular plane of the anion radical

  12. Carotenoids can act as antioxidants by oxidizing the superoxide radical anion.

    PubMed

    Galano, Annia; Vargas, Rubicelia; Martínez, Ana

    2010-01-01

    The electron transfer (ET) reaction between carotenoids and the superoxide radical anion is found to be not only a viable process but also a very unique one. The nature of the O(2) (-) inverts the direction of the transfer, with respect to ET involving other ROS: the O(2) (-) becomes the electron donor and carotenoids (CAR) the electron acceptor. Therefore the "antioxidant" activity of CAR when reacting with O(2) (-) lies in their capacity to prevent the formation of oxidant ROS. This peculiar charge transfer is energetically feasible in non-polar environments but not in polar media. In addition the relative reactivity of CAR towards O(2) (-) is drastically different from their reactivity to other ROS. Asthaxanthin (ASTA) is predicted to be a better O(2) (-) quencher than LYC and the other CAR. The CAR + O(2) (-) reactions were found to be diffusion controlled. The agreement with available experimental data supports the density functional theory results from the present work. PMID:20024459

  13. Electron paramagnetic resonance examination of aqueous anthrasemiquinone radical anion

    NASA Astrophysics Data System (ADS)

    Hocking, M. B.; Mattar, S. M.

    Anthrasemiquinone radical anion (AQ -·) was prepared in strictly aqueous alkaline solutions using reducing sugars. It was found to be stable in this medium at room temperature in the absence of air for periods exceeding 1 year. Reduction using an equivalent of sodium dithionite required brief exposure of the solution of dianion to air to obtain AQ -. EPR observations are reported for these solutions over the temperature range -50 to +90°C in basic ethanol, aqueous ethanol, and water and are related to redox potential measurements and electron exchange processes operating under these conditions.

  14. The Vitamin E Radical Probed by Anion Photoelectron Imaging.

    PubMed

    Anstöter, Cate S; West, Christopher W; Bull, James N; Verlet, Jan R R

    2016-07-28

    The biological antioxidant activity of vitamin E has been related to the stability of the tocopheroxyl radical. Using anion photoelectron imaging and electronic structure calculations, the four tocopheroxyl components of vitamin E have been studied in the gas phase and have yielded the adiabatic electron affinity of the α-, β/γ-, and δ-tocopheroxyl radicals. Using these values, the bond dissociation enthalpy of the O-H bond of tocopherol has been estimated and is consistent with previous studies and with the trends in biological activity. Differences in the photoelectron angular distributions have been interpreted to result from changes in the symmetry of the molecular orbitals from which the electron was detached. PMID:27367260

  15. The electronic structure and optical properties of organic mixed valence anion radicals

    SciTech Connect

    Liberko, C.A.

    1992-01-01

    The electronic structure of planar and helical organic mixed valence anion radicals was studied. Cyanoimine derivatives of planar diquinones were synthesized and studied by electrochemical methods. Their anion radicals were generated electrochemically and found to be stable in air. These species had electronic absorptions in the near infrared region. The Visible and near infrared spectra as well as IR vibrational data are consistent with delocalized anion radicals. The molecular orbital energy level coefficients obtained from PPP semi-empirical molecular orbital calculations on neutral quinones, imides and cyanoimine derivatives of quinones, were used to correlate experimental data of their anion radicals. The calculation correlated the long wavelength absorptions of the anion radicals confirming that the absorptions arise from electronic transitions in delocalized species. The calculation was also valuable for assigning ESR hyperfine splittings. Including minor geometric perturbations in the calculation provides a method of predicting localization in mixed valence ion radicals. Helicene diquinones were studied by cyclic voltammetry. Their anion radicals, generated electrochemically, were studied by visible, near infrared, and ESR spectroscopies. The anion radicals were found to have electronic absorptions in the near infrared region tailing into the infrared. PPP calculations were consistent with the experimental data only if transannular interaction between the ends of the helix was included. The calculations and experimental observations are consistent with an electronic structure in which the anion radical is not only delocalized around the helix but also between the ends of the helix bonding them together in a Mobius fashion.

  16. Spectroscopy of free-base N-confused tetraphenylporphyrin radical anion and radical cation.

    PubMed

    Alemán, Elvin A; Manríquez Rocha, Juan; Wongwitwichote, Wongwit; Godínez Mora-Tovar, Luis Arturo; Modarelli, David A

    2011-06-23

    The radical anions and radical cations of the two tautomers (1e and 1i) of 5,10,15,20-tetraphenyl N-confused free-base porphyrin have been studied using a combination of cyclic voltammetry, steady state absorption spectroscopy, and computational chemistry. N-Confused porphyrins (NCPs), alternatively called 2-aza-21-carba-5,10,15,20-tetraphenylporphyrins or inverted porphyrins, are of great interest for their potential as building blocks in assemblies designed for artificial photosynthesis, and understanding the absorption spectra of the corresponding radical ions is paramount to future studies in multicomponent arrays where electron-transfer reactions are involved. NCP 1e was shown to oxidize at a potential of E(ox) 0.65 V vs Fc(+)|Fc in DMF and reduce at E(red) -1.42 V, while the corresponding values for 1i in toluene were E(ox) 0.60 V and E(red) -1.64 V. The geometries of these radical ions were computed at the B3LYP/6-31+G(d)//B3LYP/6-31G(d) level in the gas phase and in solution using the polarizable continuum model (PCM). From these structures and that of H(2)TPP and its corresponding radical ions, the computed redox potentials for 1e and 1i were calculated using the Born-Haber cycle. While the computed reduction potentials and electron affinities were in excellent agreement with the experimental reduction potentials, the calculated oxidation potentials displayed a somewhat less ideal relationship with experiment. The absorption spectra of the four radical ions were also measured experimentally, with radical cations 1e(•+) and 1i(•+) displaying significant changes in the Soret and Q-band regions as well as new low energy absorption bands in the near-IR region. The changes in the absorption spectra of radical anions 1e(•-) and 1i(•-) were not as dramatic, with the changes occurring only in the Soret and Q-band regions. These results were favorably modeled using time-dependent density functional calculations at the TD-B3LYP/6-31+G(d)//B3LYP/6-31G

  17. Thermal-induced conversion of maleic and fumaric acid anion radicals in poly(methyl methacrylate)

    SciTech Connect

    Torikai, A.; Fukumoto, M.

    1980-04-01

    Thermal-induced conversion of maleic and fumaric acid anion radicals produced by ..gamma.. irradiation at 77/sup 0/K in poly(methyl methacrylate) (PMMA) was studied by electron spin resonance (ESR) and optical absorption spectroscopic measurements. The ESR spectra of these acid anion radicals change into two-line spectra with a line separation of ca. 10 G by thermal annealing. This spectrum is assigned to a protonated radical of each acid anion radical. Anion radicals of the solutes are relatively stable below the ..gamma.. transition point of PMMA and the conversion reaction takes place near this point. This means that the molecular motion of matrix molecule affects the radical conversion reaction.

  18. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NASA Astrophysics Data System (ADS)

    Osburn, Sandra; Berden, Giel; Oomens, Jos; O'Hair, Richard A. J.; Ryzhov, Victor

    2011-10-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-acetyl-cysteine followed by the homolytic cleavage of the S-NO bond in the gas phase. IRMPD spectroscopy coupled with DFT calculations revealed that for the radical cation the radical migrates from its initial position on the sulfur atom to the α-carbon position, which is 2.5 kJ mol-1 lower in energy. The radical migration was confirmed by time-resolved ion-molecule reactions. These results are in contrast with our previous study on cysteine methyl ester radical cation (Osburn et al., Chem. Eur. J. 2011, 17, 873-879) and the study by Sinha et al. for cysteine radical cation ( Phys. Chem. Chem. Phys. 2010, 12, 9794-9800) where the radical was found to stay on the sulfur atom as formed. A similar approach allowed us to form a hydrogen-deficient radical anion of N-acetyl-cysteine, (M - 2H) •- . IRMPD studies and ion-molecule reactions performed on the radical anion showed that the radical remains on the sulfur, which is the initial and more stable (by 63.6 kJ mol-1) position, and does not rearrange.

  19. The nature of the CO2 (-) radical anion in water.

    PubMed

    Janik, Ireneusz; Tripathi, G N R

    2016-04-21

    The reductive conversion of CO2 into industrial products (e.g., oxalic acid, formic acid, methanol) can occur via aqueous CO2 (-) as a transient intermediate. While the formation, structure, and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 cm(-1), attributed to the symmetric CO stretch, which is at ∼45 cm(-1) higher frequency than in inert matrices. Isotopic substitution at C ((13)CO2 (-)) shifts the frequency downwards by 22 cm(-1), which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 cm(-1) band also appears at 742 cm(-1) and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO2 (-)(C2v/Cs) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (Cs) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO2 (-) moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28 ± 0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical, which has been in contention for decades, as reflected in a wide variation in the reported pKa (-0.2 to 3.9), has been resolved. A value of 3.4 ± 0.2 measured in this work is consistent with the vibrational

  20. The nature of the CO2- radical anion in water

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2016-04-01

    The reductive conversion of CO2 into industrial products (e.g., oxalic acid, formic acid, methanol) can occur via aqueous CO2- as a transient intermediate. While the formation, structure, and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 cm-1, attributed to the symmetric CO stretch, which is at ˜45 cm-1 higher frequency than in inert matrices. Isotopic substitution at C (13CO2-) shifts the frequency downwards by 22 cm-1, which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 cm-1 band also appears at 742 cm-1 and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO2-(C2v/Cs) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (Cs) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO2- moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28 ± 0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical, which has been in contention for decades, as reflected in a wide variation in the reported pKa (-0.2 to 3.9), has been resolved. A value of 3.4 ± 0.2 measured in this work is consistent with the vibrational properties, bond structure

  1. Simultaneous micro-electromembrane extractions of anions and cations using multiple free liquid membranes and acceptor solutions.

    PubMed

    Kubáň, Pavel; Boček, Petr

    2016-02-18

    Micro-electromembrane extractions (μ-EMEs) across free liquid membranes (FLMs) were applied to simultaneous extractions of anions and cations. A transparent narrow-bore polymeric tubing was filled with adjacent plugs of μL volumes of aqueous and organic solutions, which formed a stable five-phase μ-EME system. For the simultaneous μ-EMEs of anions and cations, aqueous donor solution was the central phase, which was sandwiched between two organic FLMs and two aqueous acceptor solutions. On application of electric potential, anions and cations in the donor solution migrated across the two FLMs and into the two peripheral acceptor solutions in the direction of anode and cathode, respectively. Visual monitoring of anionic (tartrazine) and cationic (phenosafranine) dye confirmed their simultaneous μ-EMEs and their rapid (in less than 5 min) transfers into anolyte and catholyte, respectively. The concept of simultaneous μ-EMEs was further examined with selected model analytes; KClO4 was used for μ-EMEs of inorganic anions and cations and ibuprofen and procaine for μ-EMEs of acidic and basic drugs. Quantitative analyses of the resulting acceptor solutions were carried out by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D). Good extraction recoveries (91-94%) and repeatability of peak areas (≤6.3%) were achieved for 5 min μ-EMEs of K(+) and ClO4(-). Extraction recoveries and repeatability of peak areas for 5 min μ-EMEs of ibuprofen and procaine were also satisfactory and ranged from 35 to 63% and 7.6 to 11.3%, respectively. Suitability of the presented micro-extraction procedure was further demonstrated on simultaneous μ-EMEs with subsequent CE-C(4)D of ibuprofen and procaine from undiluted human urine samples. PMID:26826693

  2. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.

    SciTech Connect

    Delnick, Frank M.

    2014-10-01

    A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

  3. Structure and reactivity of benzoylnitrene radical anion in the gas phase.

    PubMed

    Wijeratne, Neloni R; Wenthold, Paul G

    2007-12-01

    The open-shell benzoylnitrene radical anion, readily generated by electron ionization of benzoylazide, undergoes unique chemical reactivity with radical reagents and Lewis acids in the gas phase. Reaction with nitric oxide, NO, proceeds by loss of N2 and formation of benzoate ion. This novel reaction is also observed to occur with phenylnitrene anion, forming phenoxide. Similar reactivity was observed in the reaction between benzoylnitrene radical anion and NO2, forming benzoate ion and nitrous oxide. Electronic structure calculations indicate that the reaction has a high-energy barrier that is overcome by the energy released by bond formation. Benzoylnitrene radical anion also transfers oxygen anion to NO and NO2 as well as to CS2 and SO2. In contrast, phenylnitrene anion reacts with carbon disulfide by C+ or CS+ abstraction, forming S- or S2-. Electronic structure calculations indicate that benzoylnitrene in the ground state resembles a slightly polarized benzoate anion, but with a free radical localized on the nitrogen. PMID:18001090

  4. Electrochromism of a fused acceptor-donor-acceptor triad covering entire UV-vis and near-infrared regions.

    PubMed

    Yao, Bin; Ye, Xichong; Zhang, Jie; Wan, Xinhua

    2014-10-17

    A novel fused acceptor-donor-acceptor (A-D-A) type panchromatically electrochromic compound was synthesized. It exhibited intensive absorption bands covering entire UV-vis and near-infrared regions upon reduction to the radical anionic state, owing to the simultaneous presence of π*-π* transitions and intervalence charge transfer. PMID:25268224

  5. Discovery of the K4 Structure Formed by a Triangular π Radical Anion.

    PubMed

    Mizuno, Asato; Shuku, Yoshiaki; Suizu, Rie; Matsushita, Michio M; Tsuchiizu, Masahisa; Reta Mañeru, Daniel; Illas, Francesc; Robert, Vincent; Awaga, Kunio

    2015-06-24

    The K4 structure was theoretically predicted for trivalent chemical species, such as sp(2) carbon. However, since attempts to synthesize the K4 carbon have not succeeded, this allotrope has been regarded as a crystal form that might not exist in nature. In the present work, we carried out electrochemical crystallization of the radical anion salts of a triangular molecule, naphthalene diimide (NDI)-Δ, using various electrolytes. X-ray crystal analysis of the obtained crystals revealed the K4 structure, which was formed by the unique intermolecular π overlap directed toward three directions from the triangular-shape NDI-Δ radical anions. Electron paramagnetic resonance and static magnetic measurements confirmed the radical anion state of NDI-Δ and indicated an antiferromagnetic intermolecular interaction with the Weiss constant of θ = -10 K. The band structure calculation suggested characteristic features of the present material, such as a metallic ground state, Dirac cones, and flat bands. PMID:26062073

  6. Electrochromic and spectroelectrochemical properties of novel 4,4‧-bipyridilium-TCNQ anion radical complexes

    NASA Astrophysics Data System (ADS)

    Wang, Guoming; Fu, Xiangkai; Deng, Jun; Huang, Xuemei; Miao, Qiang

    2013-07-01

    Three novel electrochromic materials 7,7,8,8-tetracyanoquinodimethane (TCNQ) anion radical salts with substituted 4,4'-bipyridilium derivatives (monosubstituent-4,4'-bipyridilium) were prepared. The structure of the complexes was characterized by Elemental analyses, Solid IR spectra and UV-vis spectroscopy. The electrochromic behaviors and electrooptical properties of the complexes were investigated by cyclic voltammetry and UV-vis absorption spectra. Electrochromic devices based on monosubstituent 4,4'-bipyridilium-TCNQ anion radical salts (abbreviated as MBTS) were fabricated which exhibited green-magenta color change. Their color reversibility was excellent with high color-change efficiency after 1000 cycles of the transmittance and transmittance change.

  7. Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate.

    PubMed

    Bonini, Marcelo G; Miyamoto, Sayuri; Di Mascio, Paolo; Augusto, Ohara

    2004-12-10

    Xanthine oxidase is generally recognized as a key enzyme in purine catabolism, but its structural complexity, low substrate specificity, and specialized tissue distribution suggest other functions that remain to be fully identified. The potential of xanthine oxidase to generate superoxide radical anion, hydrogen peroxide, and peroxynitrite has been extensively explored in pathophysiological contexts. Here we demonstrate that xanthine oxidase turnover at physiological pH produces a strong one-electron oxidant, the carbonate radical anion. The radical was shown to be produced from acetaldehyde oxidation by xanthine oxidase in the presence of catalase and bicarbonate on the basis of several lines of evidence such as oxidation of both dihydrorhodamine 123 and 5,5-dimethyl-1-pyrroline-N-oxide and chemiluminescence and isotope labeling/mass spectrometry studies. In the case of xanthine oxidase acting upon xanthine and hypoxanthine as substrates, carbonate radical anion production was also evidenced by the oxidation of 5,5-dimethyl-1-pyrroline-N-oxide and of dihydrorhodamine 123 in the presence of uricase. The results indicated that Fenton chemistry occurring in the bulk solution is not necessary for carbonate radical anion production. Under the conditions employed, the radical was likely to be produced at the enzyme active site by reduction of a peroxymonocarbonate intermediate whose formation and reduction is facilitated by the many xanthine oxidase redox centers. In addition to indicating that the carbonate radical anion may be an important mediator of the pathophysiological effects of xanthine oxidase, the results emphasize the potential of the bicarbonate-carbon dioxide pair as a source of biological oxidants. PMID:15448145

  8. 213 nm Ultraviolet Photodissociation on Peptide Anions: Radical-Directed Fragmentation Patterns

    NASA Astrophysics Data System (ADS)

    Halim, Mohammad A.; Girod, Marion; MacAleese, Luke; Lemoine, Jérôme; Antoine, Rodolphe; Dugourd, Philippe

    2016-03-01

    Characterization of acidic peptides and proteins is greatly hindered due to lack of suitable analytical techniques. Here we present the implementation of 213 nm ultraviolet photodissociation (UVPD) in high-resolution quadrupole-Orbitrap mass spectrometer in negative polarity for peptide anions. Radical-driven backbone fragmentation provides 22 distinctive fragment ion types, achieving the complete sequence coverage for all reported peptides. Hydrogen-deficient radical anion not only promotes the cleavage of Cα-C bond but also stimulates the breaking of N-Cα and C-N bonds. Radical-directed loss of small molecules and specific side chain of amino acids are detected in these experiments. Radical containing side chain of amino acids (Tyr, Ser, Thr, and Asp) may possibly support the N-Cα backbone fragmentation. Proline comprising peptides exhibit the unusual fragment ions similar to reported earlier. Interestingly, basic amino acids such as Arg and Lys also stimulated the formation of abundant b and y ions of the related peptide anions. Loss of hydrogen atom from the charge-reduced radical anion and fragment ions are rationalized by time-dependent density functional theory (TDDFT) calculation, locating the potential energy surface (PES) of ππ* and repulsive πσ* excited states of a model amide system.

  9. 213 nm Ultraviolet Photodissociation on Peptide Anions: Radical-Directed Fragmentation Patterns.

    PubMed

    Halim, Mohammad A; Girod, Marion; MacAleese, Luke; Lemoine, Jérôme; Antoine, Rodolphe; Dugourd, Philippe

    2016-03-01

    Characterization of acidic peptides and proteins is greatly hindered due to lack of suitable analytical techniques. Here we present the implementation of 213 nm ultraviolet photodissociation (UVPD) in high-resolution quadrupole-Orbitrap mass spectrometer in negative polarity for peptide anions. Radical-driven backbone fragmentation provides 22 distinctive fragment ion types, achieving the complete sequence coverage for all reported peptides. Hydrogen-deficient radical anion not only promotes the cleavage of Cα-C bond but also stimulates the breaking of N-Cα and C-N bonds. Radical-directed loss of small molecules and specific side chain of amino acids are detected in these experiments. Radical containing side chain of amino acids (Tyr, Ser, Thr, and Asp) may possibly support the N-Cα backbone fragmentation. Proline comprising peptides exhibit the unusual fragment ions similar to reported earlier. Interestingly, basic amino acids such as Arg and Lys also stimulated the formation of abundant b and y ions of the related peptide anions. Loss of hydrogen atom from the charge-reduced radical anion and fragment ions are rationalized by time-dependent density functional theory (TDDFT) calculation, locating the potential energy surface (PES) of ππ* and repulsive πσ* excited states of a model amide system. PMID:26545767

  10. Some aspects of the chemistry and biology of the superoxide radical anion

    NASA Astrophysics Data System (ADS)

    Faraggi, M.; Houée-Levin, C.

    1999-01-01

    There is increasing evidence that the superoxide radical anion is produced in many biological reactions and especially in respiration. Also, there are many indications that the participation of this radical in certain biological reactions can ultimately have deleterious effects on the health and well being of certain individuals. Based on pulse radiolytic method of generating superoxide its physical and chemical properties are described. This review gives the present state of research on the formation and reactivity of the superoxide radical anion in biological systems, the physiological function of superoxide dismutase, as well as several enzymatic reactions for which the participation of the radical has not yet been conclusively established. Les signes de la production du radical anion superoxyde lors de nombreuses réactions biologiques et surtout lors de la respiration sont maintenant bien établis. De nombreux résultats montrent que la participation de ce radical dans certaines réactions biologiques peut conduire a des effets délétères préjudiciables à la santé. Bases sur la génération du radical superoxyde par la méthode de radiolyse pulsée, ses propriétés physiques et chimiques seront analysées. La présentation inclura l'état actuel de la recherche sur la formation et la réactivité de l'anion superoxyde dans les systèmes biologiques, la fonction physiologiques de la superoxyde dismutase aussi bien que celles de plusieurs autres réactions enzymatiques, pour lesquelles la participation de ce radical n'a pas encore été clairement établie.

  11. Formation of radical-anions and radicals in the reaction of sodium sulfide with aromatic halogen compounds

    SciTech Connect

    Annenkova, V.Z.; Antonik, L.M.; Vakul'skaya, T.I.; Voronkov, M.G.

    1986-03-20

    The ESR and UV spectroscopic methods were used to establish the mechanism of the substitution of a chlorine atom by sulfide sulfur in the reactions of 2,5-dichloro-nitrobenzene (i) and p-dichlorobenzene (II) with sodium sulfide in N-methyl-2-pyrrolidone. The S/sub 2//sup -./ and S/sub 3//sup -./ radical-anions were detected and identified. The former corresponds to a narrow singlet with a g factor of 2.005 (lambdamax 440 nm), while the latter corresponds to a broad ESR signal with a g value of 2.028 (lambdamax 618 nm) (1-3). The formation of the radical-anion of the reagent gave grounds for supposing that the reaction of (I) and (II) with sodium sulfide takes place through a one-electron transfer stage. Thus, a stable radical-anion characterized by hyperfine structure (hfs) (3/sub N/ x 2/sub H/ x 3/sub H/ x 3/sub H/ with constants of 11.6, 3.7, 3.5, and 0.7 Oe respectively) is formed in the nitrobenzene-sodium sulfide system.

  12. A comparative study of triplet and radical-anion photoionization of propiophenone

    NASA Astrophysics Data System (ADS)

    Goez, Martin; Zubarev, Valentin

    2004-12-01

    The photoionization of propiophenone via two different routes was investigated by single-pulse and two-pulse laser-flash photolysis with observation of the hydrated electron and the respective photoionizable intermediate, the triplet or the radical anion. From the dependences of the absolute concentrations on the excitation intensity, kinetic constants and quantum yields were obtained. In the presence of a large surplus of a sacrificial electron donor (triethylamine or DABCO), the reaction is cyclic, with the radical anion of the ketone first formed by photoinduced electron transfer, and then ionized by another photon to regenerate the starting material, all within the same laser flash. The quantum yield of photoionization of the radical anion is 0.25 at 308 nm. In the absence of a donor, the ketone triplet is ionized. The intensity dependences indicate a more complex mechanism than a consecutive reaction and provide evidence for an additional photoreaction of the triplet, presumably regeneration of the starting material by reverse intersystem crossing via a chemical pathway. The quantum yield of photoionization of the triplet is 0.05 at 308 nm and 0.02 at 355 nm. As the electronic configurations of the autoionizing upper excited states are very similar, it is proposed that the lower quantum yield in the case of the triplet might be due to competing deactivation channels, which are not open to the upper excited radical anion.

  13. Supercarborane radical anions with 2n + 3 electron counts: a combined experimental and theoretical study.

    PubMed

    Zhang, Jiji; Fu, Xiaodu; Lin, Zhenyang; Xie, Zuowei

    2015-02-16

    The synthesis, structure, spectroscopic characterization, and density functional theory (DFT) calculations of several 13-vertex carborane radical anions were described. Reactions of 13-vertex closo-carboranes with 1 equiv of finely cut sodium metal in tetrahydrofuran at room temperature afforded the corresponding sodium salts of carborane radical anions as dark-red crystals in very good yield. They represent a rare class of clusters having 2n + 3 framework electrons, which lie between the two well-established and abundant closed 2n + 2 (closo) and open 2n + 4 (nido) skeleton systems. However, attempts to prepare the 12- or 14-vertex analogues failed. DFT calculations indicate that the ΔGsol,1 - ΔGsol,2 values, the difference in the solvation-corrected free-energy changes between the first and second one-electron-reduction processes, can be used as a measure for the stability of carborane radical anions. The relatively high stability of 13-vertex carborane radical anions is related to the unique structures of 13-vertex carboranes, which give rise to minimal structure disruption upon the first one-electron reduction. PMID:25622110

  14. ESR Studies and HMO Calculations on Benzosemiquinone Radical Anions: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Beck, Rainer; Nibler, Joseph W.

    1989-01-01

    Discusses electron spin resonance, a form of magnetic resonance spectroscopy, used to study electronic structure of molecules with unpaired electrons. Studies benzosemiquinone radical anions which are long-lived and inexpensive. Uses a Project SERAPHIM computer program to perform a Huckel molecular orbital calculation. (MVL)

  15. Characterization of the hyperline of D1/D0 conical intersections between the maleic acid and fumaric acid anion radicals

    NASA Astrophysics Data System (ADS)

    Takahashi, Ohgi; Sumita, Masato

    2004-10-01

    The cation and anion radicals of symmetrical 1,2-disubstituted ethylenes are expected to have a symmetry-allowed conical intersection (CI) between the ground doublet state (D0) and the lowest excited doublet state (D1) near a 90°-twisted geometry. By the complete active space self-consistent field method, we characterized the hyperline formed by D1/D0 CIs between the anion radicals of maleic acid (cis) and fumaric acid (trans). An implication of the results for the known one-way cis→trans photoisomerization of the maleic acid anion radical and other related ion radicals is presented.

  16. Time-resolved resonance Raman observation of tetrafluoro-p-benzosemiquinone anion radical. [Pulse radiolysis

    SciTech Connect

    Tripathi, G.N.R.; Schuler, R.H.

    1983-08-04

    Time-resolved resonance Raman spectroscopy has been used to examine tetrafluoro-p-benzosemiquinone radical anion produced in the pulse radiolytic oxidation of tetrafluorohydroquinone in aqueous solution. This radical is much more reactive than p-benzosemiquinone and is observed to decay on the millisecond time scale in both Raman and pulse radiolytic experiments. For the Raman experiments excitation was on the red edge of the moderately strong absorption band of this radical at 430 nm. Two resonance-enhanced Raman bands are exhibited at 1556 and 1677 cm/sup -1/ and are assigned to the in-phase CO and symmetrical CC stretch vibrations. These frequencies are considerably higher than the corresponding values of 1435 and 1620 cm/sup -1/ observed in this radical's protonated counterpart. The relatively large increase in the CO stretch frequency, in particular, indicates that fluorination induces a substantial increase in the quinoid character of this radical. 3 figures, 1 table.

  17. Iodinated (Perfluoro)alkyl Quinoxalines by Atom Transfer Radical Addition Using ortho-Diisocyanoarenes as Radical Acceptors.

    PubMed

    Leifert, Dirk; Studer, Armido

    2016-09-12

    A simple method for the preparation of functionalized quinoxalines is reported. Starting from readily accessible ortho-diisocyanoarenes and (perfluoro)alkyl iodides, the quinoxaline core is constructed during (perfluoro)alkylation by atom transfer radical addition (ATRA), resulting in 2-iodo-3-(perfluoro)alkylquinoxalines. The radical cascades are readily initiated either with visible light or by using α,α'-azobisisobutyronitrile (AIBN). The heteroarene products are obtained in high yields (up to 94 %), and the method can be readily scaled up. Useful follow-up chemistry documents the value of the novel radical quinoxaline synthesis. PMID:27510610

  18. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries

    SciTech Connect

    Zheng, Jianming; Xiao, Jie; Gu, Meng; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

    2014-03-15

    Li-rich, Mn-rich (LMR) layered composite, for example, Li[Li0.2Ni0.2Mn0.6]O2, has attracted extensive interests because of its highest energy density among all cathode candidates for lithium ion batteries (LIB). However, capacity degradation and voltage fading are the major challenges associated with this series of layered composite, which plagues its practical application. Herein, we demonstrate that anion receptor, tris(pentafluorophenyl)borane ((C6F5)3B, TPFPB), substantially enhances the cycling stability and alleviates the voltage degradation of LMR. In the presence of 0.2 M TPFPB, Li[Li0.2Ni0.2Mn0.6]O2 shows capacity retention of 81% after 300 cycles. It is proposed that TPFPB effectively confines the highly active oxygen species released from structural lattice through its strong coordination ability and high oxygen solubility. The electrolyte decomposition caused by the oxygen species attack is therefore largely mitigated, forming reduced amount of byproducts on the cathode surface. Additionally, other salts such as insulating LiF derived from electrolyte decomposition are also soluble in the presence of TPFPB. The collective effects of TPFPB mitigate the accumulation of parasitic reaction products and stabilize the interfacial resistances between cathode and electrolyte during extended cycling, thus significantly improving the cycling performance of Li[Li0.2Ni0.2Mn0.6]O2.

  19. Photoelectron spectroscopic and density functional theoretical studies of the 2'-deoxycytidine homodimer radical anion.

    PubMed

    Storoniak, Piotr; Rak, Janusz; Ko, Yeon Jae; Wang, Haopeng; Bowen, Kit H

    2013-08-21

    The intact (parent) 2'-deoxycytidine homodimer anion, (dC)2 (●-), was generated in the gas phase (in vacuo) using an infrared desorption∕photoemission source and its photoelectron spectrum was recorded using a pulsed, magnetic bottle photoelectron spectrometer. The photoelectron spectrum (PES) revealed a broad peak with the maximum at an electron binding energy between 1.6 and 1.9 eV and with a threshold at ∼1.2 eV. The relative energies and vertical detachment energies of possible anion radicals were calculated at the B3LYP/6-31++G(∗∗) level of theory. The most stable anion radicals are the complexes involving combinations of the sugar[middle dot][middle dot][middle dot]base and base[middle dot][middle dot][middle dot]base interactions. The calculated adiabatic electron affinities and vertical detachment energies of the most stable (dC)2 (●-) anions agree with the experimental values. In contrast with previous experimental-computational studies on the anionic complexes involving nucleobases with various proton-donors, the electron-induced proton transferred structures of (dC)2 (●-) are not responsible for the shape of PES. PMID:23968113

  20. Photoelectron spectroscopic and density functional theoretical studies of the 2'-deoxycytidine homodimer radical anion

    NASA Astrophysics Data System (ADS)

    Storoniak, Piotr; Rak, Janusz; Ko, Yeon Jae; Wang, Haopeng; Bowen, Kit H.

    2013-08-01

    The intact (parent) 2'-deoxycytidine homodimer anion, (dC)2•-, was generated in the gas phase (in vacuo) using an infrared desorption/photoemission source and its photoelectron spectrum was recorded using a pulsed, magnetic bottle photoelectron spectrometer. The photoelectron spectrum (PES) revealed a broad peak with the maximum at an electron binding energy between 1.6 and 1.9 eV and with a threshold at ˜1.2 eV. The relative energies and vertical detachment energies of possible anion radicals were calculated at the B3LYP/6-31++G** level of theory. The most stable anion radicals are the complexes involving combinations of the sugar...base and base...base interactions. The calculated adiabatic electron affinities and vertical detachment energies of the most stable (dC)2•- anions agree with the experimental values. In contrast with previous experimental-computational studies on the anionic complexes involving nucleobases with various proton-donors, the electron-induced proton transferred structures of (dC)2•- are not responsible for the shape of PES.

  1. New Insights into the Detection of Sulfur Trioxide Anion Radical by Spin Trapping: Radical Trapping versus Nucleophilic Addition

    PubMed Central

    Ranguelova, Kalina; Mason, Ronald P.

    2009-01-01

    It has recently been proposed that (bi)sulfite (hydrated sulfur dioxide) reacts with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in biological systems via a nonradical, nucleophilic reaction, implying that the radical adduct (DMPO/•SO3−) formation in these systems is an artifact and not the result of spin trapping of sulfur trioxide anion radical (•SO3−). Here, the one-electron oxidation of (bi)sulfite catalyzed by horseradish peroxidase/H2O2 has been re-investigated by ESR spin trapping with DMPO and oxygen uptake studies in order to obtain further evidence for the radical reaction mechanism. In the case of ESR experiments, the signal of DMPO/•SO3− radical adduct was detected, and the initial rate of its formation was calculated. Support for the radical pathway via •SO3− was obtained from the stoichiometry between the amount of consumed molecular oxygen and the amount of (bi)sulfite oxidized to sulfate (SO42−). When DMPO was incubated with (bi)sulfite, oxygen consumption was completely inhibited due to the efficiency of DMPO trapping. In the absence of DMPO, the initial rate of oxygen and H2O2 consumption was determined to be half of the initial rate of DMPO/•SO3− radical adduct formation as determined by ESR, demonstrating that DMPO forms the radical adduct by trapping the •SO3− exclusively. We conclude that DMPO is not susceptible to artifacts arising from nonradical chemistry (nucleophilic addition) except when both (bi)sulfite and DMPO concentrations are at nonphysiological levels of at least 0.1 M and the incubations are for longer time periods. PMID:19362142

  2. A bryozoan species may offer novel antioxidants with anti-carbon-dioxide anion radical activity.

    PubMed

    Pejin, Boris; Savic, Aleksandar G; Hegedis, Aleksandar; Karaman, Ivo; Horvatovic, Mladen; Mojovic, Milos

    2014-01-01

    The antiradical activity of the freshwater bryozoan Hyalinella punctata water extracts (two samples, seasonal collection) was evaluated by using electron paramagnetic resonance spectroscopy against hydroxyl (√OH), superoxide anion (√O2(- )), methoxy (√CH2OH), carbon-dioxide anion (√CO2(- )), nitric-oxide (√NO) and 2,2-diphenyl-1-picrylhydrazyl (√DPPH) radicals. The extracts reduced the production of all tested radicals but to a varying degree. The better activity was observed against √CO2(- ) and √CH2OH radicals (54 ± 5% and 44 ± 4%, and 58 ± 6% and 22 ± 2%, respectively) than towards √DPPH, √NO, √OH and √O2(- ) radicals (59 ± 6% and 1.0 ± 0.1%, 46 ± 5% and 14 ± 1%, 7.0 ± 0.5% and 34 ± 3%, and 33 ± 3% and 0%, respectively). FTIR spectra of the both extracts indicate the presence of cyclic peptides and polypeptides which might be responsible for the observed activity. According to the experimental data obtained, H. punctata water extract may be considered as a novel promising resource of natural products with anti √CO2(- ) radical activity. PMID:24897340

  3. Liquid-phase ESR, ENDOR, and TRIPLE resonance of porphycene anion radicals

    SciTech Connect

    Schluepmann, J.; Huber, M.; Plato, M.; Moebius, K. ); Toporowicz, M.; Levanon, H. ); Koecher, M.; Vogel, E. )

    1990-08-29

    Porphycenes are novel structural isomers of porphyrins. The radical anions of several porphycenes were studied by ESR, ENDOR, and TRIPLE resonance in liquid solution yielding the isotropic hyperfine coupling constants including signs. For the unsubstituted free-base porphycene, the 2,7,12,17-tetra-n-propylporphycene, and the 9,10,19,20-tetra-n-propylporphycene, the experimental findings are compared with results of all-valence-electrons self-consistent field molecular orbital calculations (RHF-INDO/SP).

  4. [Role of superoxide anion radicals in the bacterial corrosion of metals].

    PubMed

    Belov, D V; Kalinina, A A; Sokolova, T N; Smirnov, V F; Chelnokova, M V; Kartashov, V R

    2012-01-01

    It was found that seven strains of bacteria can cause corrosion damage to aluminum, its alloys, and zinc. With respect to the studied metals, the most active bacteria were Proteus vulgaris 1212 and Pseudomonas aeruginosa 969. Superoxide anion radicals were demonstrated to play a role in the initiation of corrosive damage to aluminum and zinc, while bacterial exometabolites participate in the later stages of this process. PMID:22834301

  5. The electronic absorption study of imide anion radicals in terms of time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Andrzejak, Marcin; Sterzel, Mariusz; Pawlikowski, Marek T.

    2005-07-01

    The absorption spectra of the N-(2,5-di- tert-butylphenyl) phthalimide ( 1-), N-(2,5-di- tert-butylphenyl)-1,8-naphthalimide ( 2-) and N-(2,5-di- tert-butylphenyl)-perylene-3,4-dicarboximide ( 3-) anion radicals are studied in terms of time dependent density functional theory (TDDFT). For these anion radicals a large number electronic states (from 30 to 60) was found in the visible and near-IR regions (5000-45000 cm -1). In these regions the TD/B3LYP treatment at the 6-1+G* level is shown to reproduce satisfactorily the empirical absorption spectra of all three anion radicals studied. The most apparent discrepancies between purely electronic theory and the experiment could be found in the excitation region corresponding to D0→ D1 transitions in the 2- and 3- molecules. For these species we argue that the structures seen in the lowest energy part of the absorptions of the 2- and 3- species are very likely due to Franck-Condon (FC) activity of the totally symmetric vibrations not studied in this Letter.

  6. Metal-Catalyzed β-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions.

    PubMed

    Streuff, Jan; Gansäuer, Andreas

    2015-11-23

    Transition-metal-catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β-unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today's developments. PMID:26471460

  7. Vibrational Spectroscopy of Transient Dipolar Radicals via Autodetachment of Dipole-Bound States of Cold Anions

    NASA Astrophysics Data System (ADS)

    Huang, Dao-Ling; Liu, Hong-Tao; Dau, Phuong Diem; Wang, Lai-Sheng

    2014-06-01

    High-resolution vibrational spectroscopy of transient species is important for determining their molecular structures and understanding their chemical reactivity. However, the low abundance and high reactivity of molecular radicals pose major challenges to conventional absorption spectroscopic methods. The observation of dipole-bound states (DBS) in anions extend autodetachment spectroscopy to molecular anions whose corresponding neutral radicals possess a large enough dipole moment (>2.5 D).1,2 However, due to the difficulty of assigning the congested spectra at room temperature, there have been only a limited number of autodetachment spectra via DBS reported. Recently, we have built an improved version of a cold trap3 coupled with high-resolution photoelectron imaging.4 The first observation of mode-specific auotodetachment of DBS of cold phenoxide have shown that not only vibrational hot bands were completely suppressed, but also rotational profile was observed.5 The vibrational frequencies of the DBS were found to be the same as those of the neutral radical, suggesting that vibrational structures of dipolar radicals can be probed via DBS.5 More significantly, the DBS resonances allowed a number of vibrational modes with very weak Frank-Condon factors to be "lightened" up via vibrational autodetachment.5 Recently, our first high-resolution vibrational spectroscopy of the dehydrogenated uracil radical, with partial rotational resolution, via autodetachment from DBS of cold deprotonated uracil anions have been reported.6 Rich vibrational information is obtained for this important radical species. The resolved rotational profiles also allow us to characterize the rotational temperature of the trapped anions for the first time.6 1 K. R. Lykke, D. M. Neumark, T. Andersen, V. J. Trapa, and W. C. Lineberger, J. Chem. Phys. 87, 6842 (1987). 2 D. M. Wetzel, and J. I. Brauman, J. Chem. Phys. 90, 68 (1989). 3 P. D. Dau, H. T. Liu, D. L. Huang, and L. S. Wang, J. Chem. Phys

  8. Time-resolved CIDEP study of the photogenerated camphorquinone radical anion: a case of dual singlet and triplet precursors

    SciTech Connect

    Depew, M.C.; Wan, J.K.S.

    1986-12-04

    Photoreduction of camphorquinone in 2-propanol produced electron spin polarized camphorquinone radical anions. The time-resolved electron spin resonance spectra of the spin-polarized radical anions provided the first evidence of dual singlet and triplet precursors in the CIDEP phenomenon. With the results from fluorescence quenching experiments, the time dependence of the CIDEP spectra can be accounted for qualitatively by the changes of the relative contributions to the polarization among the singlet pair, F and triplet pairs, and the triplet mechanisms.

  9. Anion-radical oxygen centers in small (AgO)n clusters: Density functional theory predictions

    NASA Astrophysics Data System (ADS)

    Trushin, Egor V.; Zilberberg, Igor L.

    2013-02-01

    Anion-radical form of the oxygen centers O- is predicted at the DFT level for small silver oxide particles having the AgO stoichiometry. Model clusters (AgO)n appear to be ferromagnetic with appreciable spin density at the oxygen centers. In contrast to these clusters, the Ag2O model cluster have no unpaired electrons in the ground state. The increased O/Ag ratio in the oxide particles is proved to be responsible for the spin density at oxygen centers.

  10. Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion

    NASA Astrophysics Data System (ADS)

    Yancheva, D.; Velcheva, E.; Glavcheva, Z.; Stamboliyska, B.; Smelcerovic, A.

    2016-03-01

    The ability of syringaldehyde, a naturally occurring phenolic antioxidant and medicinally important compound, to scavenge free radicals according different mechanisms was elucidated by computing the respective reaction enthalpies at DFT B3LYP/6-311++G** level. Bond dissociation enthalpy, ionization potentials and proton affinities were calculated in gas phase, benzene, water and DMSO in order to account for different environment (nonpolar lipid membranes and polar physiological liquids) where the antioxidant action in the living organism could take place and various experimental in vitro conditions. Molecular and electronic properties influencing the reactivity of syringaldehyde according to the different mechanisms were discussed in the light of the reported radical scavenging activities in crocin bleaching, oxidation potential of the first anodic peak and DPPH test. According to the calculated reaction enthalpies, in polar environment the syringaldehyde reacts preferably by sequential proton loss electron transfer which is related to the formation of a phenoxy anion. Such phenoxy anion was generated in DMSO solution and the changes in the force field, steric and electronic structure, resulting from the conversion, were described in detail based on the IR spectral data and DFT computations.

  11. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    SciTech Connect

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O{sub 3}{sup {minus}}. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO{sub 2}, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO{sub 2} molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO{sub 2} reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C{sub 2}{sup {minus}} {minus} C{sub 11}{sup {minus}}), and van der Waals clusters (X{sup {minus}}(CO{sub 2}){sub n}, X = I, Br, Cl; n {le} 13 and I{sup {minus}} (N{sub 2}O){sub n=1--11}). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X{sup {minus}}(CO{sub 2})n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  12. Nitro radical anion formation from nitrofuryl substituted 1,4-dihydropyridine derivatives in mixed and non-aqueous media.

    PubMed

    Argüello, J; Núñez-Vergara, L J; Bollo, S; Squella, J A

    2006-09-01

    Three new nitrofuryl substituted 1,4-dihydropyridine derivatives were electrochemically tested in the scope of newly found compounds useful as chemotherapeutic alternative to the Chagas' disease. All the compounds were capable to produce nitro radical anions sufficiently stabilized in the time window of the cyclic voltammetric experiment. In order to quantify the stability of the nitro radical anion we have calculated the decay constant, k2. Furthermore, from the voltammetric results, some parameters of biological significance as E7(1) (indicative of in vivo nitro radical anion formation) and KO2 (thermodynamic indicator of oxygen redox cycling) have been calculated. From the comparison of E7(1), KO2 and k2 values between the studied nitrofuryl 1,4-DHP derivatives and well-known current drugs an auspicious activity for one of the studied compounds i.e. FDHP2, can be expected. PMID:16473565

  13. Redox cycling of radical anion metabolites of toxic chemicals and drugs and the Marcus theory of electron transfer.

    PubMed Central

    Mason, R P

    1990-01-01

    A wide variety of aromatic compounds are enzymatically reduced to form anion free radicals that generally contain one more electron than their parent compounds. In general, the electron donor is any of a wide variety of flavoenzymes. Once formed, these anion free radicals reduce molecular oxygen to superoxide and regenerate the parent compound unchanged. The net reaction is the oxidation of the flavoenzyme's coenzymes and the reduction of molecular oxygen. This catalytic behavior has been described as futile metabolism or redox cycling. Electron transfer theory is being applied to these reactions and, in some cases, has successfully correlated Vmax and Km with the reduction potentials of the aromatic compounds. PMID:2176587

  14. 1,1-Diphenyl-2-picrylhydrazyl radical and superoxide anion scavenging activity of Rhizophora mangle (L.) bark

    PubMed Central

    Sánchez, Janet Calero; García, Roberto Faure; Cors, Ma. Teresa Mitjavila

    2010-01-01

    Background: Rhizophora mangle (L.) produce a variety of substances that possesses pharmacological actions. Although it shown antioxidant properties in some assays, there is no available information about its effect on some free radical species. So the objective of the present research is to evaluate the DPPH radical and superoxide anion scavenging properties of R. mangle extract and its polyphenol fraction. Methods: Rhizophora mangle (L.) bark aqueous extract and its major constituent, polyphenols fraction, were investigated for their antioxidant activities employing 2 in vitro assay systems: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion radicals scavenging. Results: IC50 for DPPH radical-scavenging activity was 6.7 µg tannins/mL for extract and 7.6 µg tannins/mL for polyphenolic fraction. The extract showed better activity than its fraction (P < 0.05) in the DPPH radicals reducing power. Polyphenolic fraction exhibited better superoxide anion scavenging ability (IC50 = 21.6 µg tannins/mL) than the extract (IC50 = 31.9 µg tannins/mL). Antioxidant activities of both samples increased with the rise of tannins concentration. The comparison of regression lines showed significant differences (P < 0.05) between extract and its polyphenolic fraction in both assays, indicating that extract was more effective in DPPH radical scavenging than its fraction at tannin concentrations below the crossing point of both lines, while that fraction was more effective than extract inhibiting the superoxide anions generation. Conclusions: R. mangle aqueous extract showed a potent antioxidant activity, achieved by the scavenging ability observed against DPPH radicals and superoxide anions. Regarding its polyphenolic composition, the antioxidant effects observed in this study are due, most probably, to the presence of polyphenolic compounds. PMID:21589751

  15. Interaction of 1,2,5-chalcogenadiazole derivatives with thiophenolate: hypercoordination with formation of interchalcogen bond versus reduction to radical anion.

    PubMed

    Suturina, Elizaveta A; Semenov, Nikolay A; Lonchakov, Anton V; Bagryanskaya, Irina Yu; Gatilov, Yuri V; Irtegova, Irina G; Vasilieva, Nadezhda V; Lork, Enno; Mews, Rüdiger; Gritsan, Nina P; Zibarev, Andrey V

    2011-05-12

    According to the DFT calculations, [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (4), [1,2,5]selenadiazolo[3,4-c][1,2,5]thiadiazole (5), 3,4-dicyano-1,2,5-thiadiazole (6), and 3,4-dicyano-1,2,5-selenadiazole (7) have nearly the same positive electron affinity (EA). Under the CV conditions they readily produce long-lived π-delocalized radical anions (π-RAs) characterized by EPR. Whereas 4 and 5 were chemically reduced into the π-RAs with thiophenolate (PhS(-)), 6 did not react and 7 formed a product of hypercoordination at the Se center (9) isolated in the form of the thermally stable salt [K(18-crown-6)][9] (10). The latter type of reactivity has never been observed previously for any 1,2,5-chalcogenadiazole derivatives. The X-ray structure of salt 10 revealed that the Se-S distance in the anion 9 (2.722 Å) is ca. 0.5 Å longer than the sum of the covalent radii of these atoms but ca. 1 Å shorter than the sum of their van der Waals radii. According to the QTAIM and NBO analysis, the Se-S bond in 9 can be considered a donor-acceptor bond whose formation leads to transfer of ca. 40% of negative charge from PhS(-) onto the heterocycle. For various PhS(-)/1,2,5-chalcogenadiazole reaction systems, thermodynamics and kinetics were theoretically studied to rationalize the interchalcogen hypercoordination vs reduction to π-RA dichotomy. It is predicted that interaction between PhS(-) and 3,4-dicyano-1,2,5-telluradiazole (12), whose EA slightly exceeds that of 6 and 7, will lead to hypercoordinate anion (17) with the interchalcogen Te-S bond being stronger than the Se-S bond observed in anion 9. PMID:21500829

  16. Exploring diradical chemistry: a carbon-centered radical may act as either an anion or electrophile through an orbital isomer.

    PubMed

    Gonçalves, Théo P; Mohamed, Mubina; Whitby, Richard J; Sneddon, Helen F; Harrowven, David C

    2015-04-01

    Diradical intermediates, formed by thermolysis of alkynylcyclobutenones, can display radical, anion, or electrophilic character because of the existence of an orbital isomer with zwitterionic and cyclohexatrienone character. Our realization that water, alcohols, and certain substituents can induce the switch provides new opportunities in synthesis. For example, it can be used to shut down radical pathways and to give access to aryl carbonates and tetrasubstituted quinones. PMID:25694299

  17. Production and removal of superoxide anion radical by artificial metalloenzymes and redox-active metals

    PubMed Central

    Kawano, Tomonori; Kagenishi, Tomoko; Kadono, Takashi; Bouteau, François; Hiramatsu, Takuya; Lin, Cun; Tanaka, Kenichiro; Tanaka, Licca; Mancuso, Stefano; Uezu, Kazuya; Okobira, Tadashi; Furukawa, Hiroka; Iwase, Junichiro; Inokuchi, Reina; Baluška, Frantisek; Yokawa, Ken

    2015-01-01

    Generation of reactive oxygen species is useful for various medical, engineering and agricultural purposes. These include clinical modulation of immunological mechanism, enhanced degradation of organic compounds released to the environments, removal of microorganisms for the hygienic purpose, and agricultural pest control; both directly acting against pathogenic microorganisms and indirectly via stimulation of plant defense mechanism represented by systemic acquired resistance and hypersensitive response. By aiming to develop a novel classes of artificial redox-active biocatalysts involved in production and/or removal of superoxide anion radicals, recent attempts for understanding and modification of natural catalytic proteins and functional DNA sequences of mammalian and plant origins are covered in this review article. PMID:27066179

  18. A study on scavenging effects of Chinese medicine on superoxide anion radicals by pulse radiolysis

    NASA Astrophysics Data System (ADS)

    Fengmei, Li; Andong, Liu; Hongchun, Gu; Shaojie, Di

    1993-10-01

    A study on scavenging and dismutation effects on superoxide anion radical (·O -2) by using two Chinese antiaging medicine-Salvia Miltiorrhiza injection (S.M.) and Sulekang capsule (S.C.) were performed by pulse radiolysis. The absorption spectra of ·O -2 have been redetermined in radiolysis of aqueous solution of sodium format. The absorption maximum is at about 250nm. The results suggested that S.M. and S.C. can dismutate and scavenge ·O -2. The experimental scavenging rate of S.M. (150μg/ml) and S.C. (250μg/ml) were 89.6% and 69.5% respectively.

  19. Production and removal of superoxide anion radical by artificial metalloenzymes and redox-active metals.

    PubMed

    Kawano, Tomonori; Kagenishi, Tomoko; Kadono, Takashi; Bouteau, François; Hiramatsu, Takuya; Lin, Cun; Tanaka, Kenichiro; Tanaka, Licca; Mancuso, Stefano; Uezu, Kazuya; Okobira, Tadashi; Furukawa, Hiroka; Iwase, Junichiro; Inokuchi, Reina; Baluška, Frantisek; Yokawa, Ken

    2015-01-01

    Generation of reactive oxygen species is useful for various medical, engineering and agricultural purposes. These include clinical modulation of immunological mechanism, enhanced degradation of organic compounds released to the environments, removal of microorganisms for the hygienic purpose, and agricultural pest control; both directly acting against pathogenic microorganisms and indirectly via stimulation of plant defense mechanism represented by systemic acquired resistance and hypersensitive response. By aiming to develop a novel classes of artificial redox-active biocatalysts involved in production and/or removal of superoxide anion radicals, recent attempts for understanding and modification of natural catalytic proteins and functional DNA sequences of mammalian and plant origins are covered in this review article. PMID:27066179

  20. Resonance Raman spectra of some radiolytically prepared halogen derivatives of para-benzosemiquinone radical anion

    SciTech Connect

    Tripathi, G.N.R.; Schuler, R.H.

    1982-03-01

    The resonance Raman spectra have been obtained on radiolytically and chemically prepared halogen derivatives (chloro-, bromo-, 2.5 dichloro-, tetra chloro-, and tetra bromo-) of p-benzosemiquinone radical anion. Excitation is in the moderately intense absorption band at 430--460 nm. All Raman spectra show a strongly resonance enhanced and polarized line corresponding to a vibrational frequency of 1590--1620 cm/sup -1/ which is assigned to the Wilson phenyl mode 8a (CC stretch). A number of weaker lines are also observed and their assignment discussed. The electronic transitions in resonance are identified as /sup 2/B/sub 3g/--/sup 2/B/sub 1u/ (in D/sub 2h/ point group) in view of the resonance Raman band intensities. This supports the assignment by Harada based on ASMO CI calculations which has recently been in dispute.

  1. [Acidity and interaction with superoxide anion radical of echinochrome and its structural analogs].

    PubMed

    Lebedev, A V; Ivanova, M V; Krasnovid, N I; Kol'tsova, E A

    1999-01-01

    Weak acid properties, autoxidation and interaction of natural polyhydroxy1,4-naphthoquinones (PHNQ) with superoxide anion-radical (O2-.) were studied by methods of potentiometric titration, polarography, and UV- and visible spectrophotometry. Sea urchin pigments 3-acetyl-2,6,7-trihydroxynaphthazarin (spinochrome C), 2,3,6,7-trihydroxynaphthazarin (spinochrome D), 2,3,6,7-trihydroxynaphthazarin (spinochrome E), 6-ethyl-2,3,7-trihydroxynaphthazarin (echinochrome A), synthetic 2,3-dihydroxy-6,7-dimethylnaphthazarin and 6-ethyl-2,3,7-trimethoxynaphthazarin (trimethoxyechinochrome A) were tested. Determined dissociation constants (pKi) were in the range of pH 5.3-8.5 (40% ethanol solvent). PHNQ autoxidation observrd in basic pH were inhibited by superoxide dismutase. Xanthine and xanthine oxidase was applied for O2-. generation. Interaction with O2-. led to sufficient time-dependent changing in spectra of echinochrome A, spinochromes D and E. There was weak O2-. influence on spinochrome C spectrum and no changing in trimethoxyechinochrome A spectrum. The spectra, that were transforming during time of reaction, contained pronounced isobestic point. It means formation the single reaction product. We proposed formation of 1,2,3,4-tetraketones from 2,3,5,8-tetrahydroxy-1,4-naphthoquinones (echinochrome A, spinochromes D and E) due to O2-.-induced oxidation of their OH-groups in 2 and 3 positions. Reaction constants were determined by competition method using nitro blue tetrazolium (NBT). The reaction constants were about 10(4)-10(5) M-1s-1. They were decreased in the order: echinochrome A > spinochrome D > spinochrome C > NBT > trimethoxyechinochrome A. Thus, we concluded that some of the natural PGNQ, containing hydroxyl groups in 2nd and 3rd positions, could operate as powerful superoxide anion-radical scavengers. PMID:10378300

  2. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers.

    PubMed

    Hwang, Sangchul; Huling, Scott G; Ko, Saebom

    2010-01-01

    Fenton-driven oxidation of methyl tert-butyl ether (MTBE) (0.11-0.16mM) in batch reactors containing ferric iron (5mM) and hydrogen peroxide (H(2)O(2)) (6mM) (pH=3) was performed to investigate MTBE transformation mechanisms. Independent variables included the forms of iron (Fe) (Fe(2)(SO(4))(3).9H(2)O and Fe(NO(3))(3).9H(2)O), H(2)O(2) (6, 60mM), chloroform (CF) (0.2-2.4mM), isopropyl alcohol (IPA) (25, 50mM), and sulfate (7.5mM). MTBE, tert-butyl alcohol and acetone transformation were significantly greater when oxidation was carried out with Fe(NO(3))(3).9H(2)O than with Fe(2)(SO(4))(3).9H(2)O. Sulfate interfered in the formation of the ferro-peroxy intermediate species, inhibited H(2)O(2) reaction, hydroxyl radical (()OH) formation, and MTBE transformation. Transformation was faster and more complete at a higher [H(2)O(2)] (60mM), but resulted in lower oxidation efficiency which was attributed to ()OH scavenging by H(2)O(2). CF scavenging of the superoxide radical (()O(2)(-)) in the ferric nitrate system resulted in lower rates of ()O(2)(-) reduction of Fe(III) to Fe(II), ()OH production, and consequently lower rates of MTBE transformation. IPA, an excellent scavenger of ()OH, completely inhibited MTBE transformation in the ferric nitrate system indicating oxidation was predominantly by ()OH. ()OH scavenging by HSO(4)(-), formation of the sulfate radical (()SO(4)(-)), and oxidation of MTBE by ()SO(4)(-) was estimated to be negligible. The form of Fe (i.e., counter anion) selected for use in Fenton treatment systems impacts oxidative mechanisms, treatment efficiency, and post-oxidation treatment of residuals which may require additional handling and cost. PMID:19959205

  3. Three Redox States of a Diradical Acceptor-Donor-Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization.

    PubMed

    Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume

    2016-06-16

    The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations. PMID:27231856

  4. Ultrafast Photoinduced Charge Separation Leading to High-Energy Radical Ion-Pairs in Directly Linked Corrole-C60 and Triphenylamine-Corrole-C60 Donor-Acceptor Conjugates.

    PubMed

    Sudhakar, Kolanu; Gokulnath, Sabapathi; Giribabu, Lingamallu; Lim, Gary N; Trâm, Tạ; D'Souza, Francis

    2015-12-01

    Closely positioned donor-acceptor pairs facilitate electron- and energy-transfer events, relevant to light energy conversion. Here, a triad system TPACor-C60 , possessing a free-base corrole as central unit that linked the energy donor triphenylamine (TPA) at the meso position and an electron acceptor fullerene (C60) at the β-pyrrole position was newly synthesized, as were the component dyads TPA-Cor and Cor-C60. Spectroscopic, electrochemical, and DFT studies confirmed the molecular integrity and existence of a moderate level of intramolecular interactions between the components. Steady-state fluorescence studies showed efficient energy transfer from (1) TPA* to the corrole and subsequent electron transfer from (1) corrole* to fullerene. Further studies involving femtosecond and nanosecond laser flash photolysis confirmed electron transfer to be the quenching mechanism of corrole emission, in which the electron-transfer products, the corrole radical cation (Cor(⋅+) in Cor-C60 and TPA-Cor(⋅+) in TPACor-C60) and fullerene radical anion (C60(⋅-)), could be spectrally characterized. Owing to the close proximity of the donor and acceptor entities in the dyad and triad, the rate of charge separation, kCS , was found to be about 10(11)  s(-1), suggesting the occurrence of an ultrafast charge-separation process. Interestingly, although an order of magnitude slower than kCS , the rate of charge recombination, kCR , was also found to be rapid (kCR ≈10(10)  s(-1)), and both processes followed the solvent polarity trend DMF>benzonitrile>THF>toluene. The charge-separated species relaxed directly to the ground state in polar solvents while in toluene, formation of (3) corrole* was observed, thus implying that the energy of the charge-separated state in a nonpolar solvent is higher than the energy of (3) corrole* being about 1.52 eV. That is, ultrafast formation of a high-energy charge-separated state in toluene has been achieved in these closely spaced corrole

  5. Characterization of the superoxide anion radical scavenging activity by tetracycline antibiotics in aprotic media.

    PubMed

    Kładna, Aleksandra; Kruk, Irena; Michalska, Teresa; Berczyński, Paweł; Aboul-Enein, Hassan Y

    2011-01-01

    The tetracycline family antibiotics are widely used as human and veterinary treatments. The drugs are effective as antibiotics and also show antimicrobial and non-microbial action. However, the antioxidant properties of tetracyclines have not been characterized in aprotic media. To better understand their biological functions, the in vitro superoxide anion radical (O2•¯) scavenging activities of tetracycline, chlortetracycline, oxytetracycline, doxycycline and methacycline were characterized, along with a very efficient O2•¯ scavenger, tiron, in dimethyl sulphoxide (DMSO), using ultra-weak chemiluminescence (CL). We found that tetracycline, chlortetracycline and doxycycline efficiently inhibited CL from the O2•¯-generating system at concentration levels of 0.02-1.0 mmol/L. Methacycline and oxytetracycline were the O2•¯ scavengers at concentration levels of 0.01-0.1 mmol/L, whereas when their concentration was lowered the drugs were capable of generating O2•¯, leading to CL enhancement. For all the data obtained in this study, the scavenging activity for the compounds tested decreased in the following order: tetracycline > doxycycline > chlortetracycline > tiron methacycline > oxytetracycline. These results indicate that the tetracycline drugs directly alter O2•¯ redox chemistry in aprotic media. PMID:21413138

  6. Chemiluminescence investigations of antioxidative activities of some antibiotics against superoxide anion radical.

    PubMed

    Kruk, Irena; Michalska, Teresa; Kładna, Aleksandra; Berczyński, Paweł; Aboul-Enein, Hassan Y

    2011-01-01

    A chemiluminescent technique was applied to determine antioxidative activities of adriamycin, farmorubicin, mitomycin C and bleomycin against superoxide anion radical (O(2)(•)) in aprotic medium. The antioxidant capacity was expressed as the decrease in light emission from the O(2)(•) solution by and antibiotic. A KO(2) solution in dimethyl sulphoxide (DMSO) and 18-crown-6 ether were used for the generation of O(2)(•). The results showed that the examined compounds decreased the chemiluminescence (CL) sum from the O(2)(•)-generating system in a dose-dependent manner. Among the antibiotics examined, adriamycin, farmorubicin and bleomycin exhibited antioxidant activity almost comparable to that of 1,2-dihydroxy benzene-3,5-disulphonic acid (tiron), an efficient of the O(2)(•) inhibitor. Mitomycin C was two-times less effective as tiron in decreasing the initial CL intensity. The proposed assay with usage of ultraweak CL technique and the KO(2)-DMSO-crown ether system was useful for the evaluation of antioxidant activity in aprotic solvents. PMID:21370385

  7. Synthetic and Predictive Approach to Unsymmetrical Biphenols by Iron-Catalyzed Chelated Radical-Anion Oxidative Coupling.

    PubMed

    Libman, Anna; Shalit, Hadas; Vainer, Yulia; Narute, Sachin; Kozuch, Sebastian; Pappo, Doron

    2015-09-01

    An iron-catalyzed oxidative unsymmetrical biphenol coupling in 1,1,1,3,3,3-hexafluoropropan-2-ol that proceeds via a chelated radical-anion coupling mechanism was developed. Based on mechanistic studies, electrochemical methods, and density functional theory calculations, we suggest a general model that enables prediction of the feasibility of cross-coupling for a given pair of phenols. PMID:26287435

  8. Radical salts of TTF derivatives with the metal-metal bonded [Re 2Cl 8] 2- anion

    NASA Astrophysics Data System (ADS)

    Reinheimer, Eric W.; Galán-Mascarós, José R.; Gómez-García, Carlos J.; Zhao, Hanhua; Fourmigué, Marc; Dunbar, Kim R.

    2008-11-01

    Four new salts of the radical cations of TMTSF (tetramethyltetraselenafulvalene), TMTTF (tetramethyltetrathiafulvalene), BEDT-TTF (bisethylenedithiotetrathia-fulvalene) (ET) and o-Me 2TTF ( o-4,4'-dimethyltetrathiafulvalene) with the metal-metal bonded dianion [Re 2Cl 8] 2- were synthesized, and their structures and physical properties investigated. The structures of these semiconducting salts feature one-dimensional stacking of the donor molecules interleaved with [Re 2Cl 8] 2- anions and interstitial solvent molecules.

  9. Geometrical and electronic structure of fluoro-substituted benzene radical anions based on quantum chemical analysis of hyperfine interactions

    NASA Astrophysics Data System (ADS)

    Shchegoleva, L. N.; Bilkis, I. I.; Schastnev, P. V.

    1983-12-01

    The INDO method has been employed to calculate the isotropic and anisotropic hyperfine interactions for some geometrical structures of the C 6F 6-, C 6HF 5-, 1,2,4,5-F 4C 6H 2- radical anions. The π and σ states of planar radical anions have been considered together with three types of non-planar structures: (a) with out-of-plane distortions of the benzene ring following the "chair" pattern: (b) with neighbouring fluorine atoms displaced in opposite directions from the ring plane due to their electrostatic repulsion: (c) with symmetric (of type) displacement of CF bonds due to the interaction between the ground and lowest excited σ-electron states within the pseudo-Jahn-Teller effect. It is the last model that describes all experimental data on magnetic resonance parameters. This model is also preferable for energy reasons. Most likely, this type of non-planar structures reflects the basic features of the real geometry of the above radical anions whose ground state may be termed as pseudo-π-electronic since the unpaired electron occupies an orbital that is a linear combination of the π and σ orbitals of the corresponding planar structure with a prevailing π component.

  10. Inhalation of ozone produces a decrease in superoxide anion radical production in mouse alveolar macrophages

    SciTech Connect

    Ryer-Powder, J.E.; Amoruso, M.A.; Czerniecki, B.; Witz, G.; Goldstein, B.D.

    1988-11-01

    The potentiation of fatal bacterial pneumonia in mice by prior inhalation of ozone occurs at levels of this oxidant pollutant that are frequently present in ambient air. A likely mechanism for this effect is an ozone-induced inhibition in the ability of pulmonary alveolar macrophages (PAM) to produce superoxide anion radical (O2-) demonstrated in the present study. A 25% decrease in PAM O2- production, as measured by nitroblue tetrazolium reduction, occurred after exposure of Swiss-Webster mice to 0.11 ppm ozone for 3 h (p less than 0.05). After 1 ppm there was almost complete inhibition of O2- release. In contrast, the rat, which is highly resistant to the potentiation of bacterial infections by ozone, was less sensitive to inhibition of PAM O2- production, as measured by cytochrome c reduction (mouse IC50, 0.41 ppm; rat IC50, 3.0 ppm ozone for 3 h). The observed decrement in mouse PAM O2- production was not associated with any change in phagocytic ability, as measured by both latex bead ingestion and 51Cr-labeled sheep red blood cell ingestion. This decrease in O2- production in the presence of normal phagocytic activity is analogous to certain of the findings in the neutrophils of children with chronic granulomatous disease. A decrease in rat PAM membrane cytochrome b558 levels was observed after ozone exposure of 3 ppm for 3 h, preliminarily suggesting that the mechanism by which ozone interferes with PAM O2- production may be through interaction with this heme-containing electron carrier.

  11. Evidence for the Involvement of Loosely Bound Plastosemiquinones in Superoxide Anion Radical Production in Photosystem II

    PubMed Central

    Yadav, Deepak Kumar; Prasad, Ankush; Kruk, Jerzy; Pospíšil, Pavel

    2014-01-01

    Recent evidence has indicated the presence of novel plastoquinone-binding sites, QC and QD, in photosystem II (PSII). Here, we investigated the potential involvement of loosely bound plastosemiquinones in superoxide anion radical (O2•−) formation in spinach PSII membranes using electron paramagnetic resonance (EPR) spin-trapping spectroscopy. Illumination of PSII membranes in the presence of the spin trap EMPO (5-(ethoxycarbonyl)-5-methyl-1-pyrroline N-oxide) resulted in the formation of O2•−, which was monitored by the appearance of EMPO-OOH adduct EPR signal. Addition of exogenous short-chain plastoquinone to PSII membranes markedly enhanced the EMPO-OOH adduct EPR signal. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, the EMPO-OOH adduct EPR signal was suppressed by 50% when the urea-type herbicide DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) was bound at the QB site. However, the EMPO-OOH adduct EPR signal was enhanced by binding of the phenolic-type herbicide dinoseb (2,4-dinitro-6-sec-butylphenol) at the QD site. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, DCMU and dinoseb inhibited photoreduction of the high-potential form of cytochrome b559 (cyt b559). Based on these results, we propose that O2•− is formed via the reduction of molecular oxygen by plastosemiquinones formed through one-electron reduction of plastoquinone at the QB site and one-electron oxidation of plastoquinol by cyt b559 at the QC site. On the contrary, the involvement of a plastosemiquinone formed via the one-electron oxidation of plastoquinol by cyt b559 at the QD site seems to be ambiguous. In spite of the fact that the existence of QC and QD sites is not generally accepted yet, the present study provided more spectroscopic data on the potential functional role of these new plastoquinone-binding sites. PMID:25541694

  12. Evidence for the involvement of loosely bound plastosemiquinones in superoxide anion radical production in photosystem II.

    PubMed

    Yadav, Deepak Kumar; Prasad, Ankush; Kruk, Jerzy; Pospíšil, Pavel

    2014-01-01

    Recent evidence has indicated the presence of novel plastoquinone-binding sites, QC and QD, in photosystem II (PSII). Here, we investigated the potential involvement of loosely bound plastosemiquinones in superoxide anion radical (O2-) formation in spinach PSII membranes using electron paramagnetic resonance (EPR) spin-trapping spectroscopy. Illumination of PSII membranes in the presence of the spin trap EMPO (5-(ethoxycarbonyl)-5-methyl-1-pyrroline N-oxide) resulted in the formation of O2-, which was monitored by the appearance of EMPO-OOH adduct EPR signal. Addition of exogenous short-chain plastoquinone to PSII membranes markedly enhanced the EMPO-OOH adduct EPR signal. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, the EMPO-OOH adduct EPR signal was suppressed by 50% when the urea-type herbicide DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) was bound at the QB site. However, the EMPO-OOH adduct EPR signal was enhanced by binding of the phenolic-type herbicide dinoseb (2,4-dinitro-6-sec-butylphenol) at the QD site. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, DCMU and dinoseb inhibited photoreduction of the high-potential form of cytochrome b559 (cyt b559). Based on these results, we propose that O2- is formed via the reduction of molecular oxygen by plastosemiquinones formed through one-electron reduction of plastoquinone at the QB site and one-electron oxidation of plastoquinol by cyt b559 at the QC site. On the contrary, the involvement of a plastosemiquinone formed via the one-electron oxidation of plastoquinol by cyt b559 at the QD site seems to be ambiguous. In spite of the fact that the existence of QC and QD sites is not generally accepted yet, the present study provided more spectroscopic data on the potential functional role of these new plastoquinone-binding sites. PMID:25541694

  13. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    PubMed

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled. PMID:26020652

  14. A Gaussian-3 theoretical study of the alkylthio radicals and their anions: structures, thermochemistry, and electron affinities.

    PubMed

    Gao, Aifang; Liang, Xuli; Li, Luhua; Cui, Jinghua

    2013-08-01

    The optimized geometries, electron affinities, and dissociation energies of the alkylthio radicals have been determined with the higher level of the Gaussian-3(G3) theory. The geometries are fully optimized and discussed. The reliable adiabatic electron affinities with ZPVE correction have been predicted to be 1.860 eV for the methylthio radical, 1.960 eV for the ethylthio radical, 1.980 and 2.074 eV for the two isomers (n-C3H7S and i-C3H7S) of the propylthio radical, 1.991, 2.133 and 2.013 eV for the three isomers (n-C4H9S, t-C4H9S, and i-C4H9S) of the butylthio radical, and 1.999, 2.147, 2.164, and 2.059 eV for the four isomers (n-C5H11S, b-C5H11S, c-C5H11S, and d-C5H11S) of the pentylthio radical, respectively. These corrected EAad values for the alkylthio radicals are in good agreement with available experiments, and the average absolute error of the G3 method is 0.041 eV. The dissociation energies of S atom from neutral CnH2n+1S (n = 1-5) and S(-) from corresponding anions CnH2n+1S(-) species have also been estimated respectively to examine their relative stabilities. PMID:23636642

  15. Structure of expanded porphyrins: electron-nuclear multiple resonance and molecular orbital studies of texaphyrin anion radicals in solution

    NASA Astrophysics Data System (ADS)

    Endeward, B.; Regev, A.; Plato, M.; Levanon, H.; Sessler, J. L.; Möbius, K.

    1994-08-01

    Liquid solution ENDOR and TRIPLE resonance experiments have been performed on texaphyrin radical anions generated by sodium reduction in tetrahydrofuran. Six proton and two nitrogen hyperfine couplings could be determined, including their signs. The results were compared with theoretical isotropic hyperfine couplings. They were calculated for energy-minimized texaphyrin structures, including the sodium metallo-derivative, by state-of-the-art SCF-MO methods (RHF-INDO/SP). This comparison suggests that in the course of the alkali metal reduction of texaphyrin the acidic hydrogen in the macrocycle is replaced by sodium.

  16. Characterization of the hyperline of D{sub 1}/D{sub 0} conical intersections between the maleic acid and fumaric acid anion radicals

    SciTech Connect

    Takahashi, Ohgi; Sumita, Masato

    2004-10-08

    The cation and anion radicals of symmetrical 1,2-disubstituted ethylenes are expected to have a symmetry-allowed conical intersection (CI) between the ground doublet state (D{sub 0}) and the lowest excited doublet state (D{sub 1}) near a 90 deg.-twisted geometry. By the complete active space self-consistent field method, we characterized the hyperline formed by D{sub 1}/D{sub 0} CIs between the anion radicals of maleic acid (cis) and fumaric acid (trans). An implication of the results for the known one-way cis{yields}trans photoisomerization of the maleic acid anion radical and other related ion radicals is presented.

  17. Taming hot CF3 radicals: incrementally tuned families of polyarene acceptors for air-stable molecular optoelectronics

    SciTech Connect

    Kuvychko, Igor V.; Castro, Karlee P.; Deng, Shihu; Wang, Xue B.; Strauss, Steven H.; Boltalina, Olga V.

    2013-04-26

    Breakthroughs in molecular optoelectronics await the availability of new families of air-stable polyaromatic hydrocarbon (PAH) acceptors with incrementally- and predictably-tunable electron affinities and structures capable of inducing desirable solid-state morphologies in hybrid materials. Although the addition of electron withdrawing groups to PAHs has been studied for decades, producing new compounds from time to time, a generic one-step synthetic methodology applicable to potentially all PAH substrates has been, until now, an impossible dream. We herein report that at least seventeen common PAHs and polyheterocyclics can be trifluoromethylated by a new procedure to yield families of PAH(CF3)n acceptors with (i) n = 4-8, (ii) multiple isomers for particular n values, (iii) gas-phase experimental electron affinities as high as 3.32 eV and shifted from the respective PAH precursor as a linear function of n, and (iv) various solid-state morphologies, including the ability to form alternating π stacked hybrid crystals with aromatic donors.

  18. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  19. Radical anionic versus neutral 2,2'-bipyridyl coordination in uranium complexes supported by amide and ketimide ligands.

    PubMed

    Diaconescu, Paula L; Cummins, Christopher C

    2015-02-14

    The synthesis and characterization of (bipy)(2)U(N[t-Bu]Ar)(2) (1-(bipy)(2), bipy = 2,2'-bipyridyl, Ar = 3,5-C(6)H(3)Me(2)), (bipy)U(N[(1)Ad]Ar)(3) (2-bipy), (bipy)(2)U(NC[t-Bu]Mes)(3) (3-(bipy)(2), Mes = 2,4,6-C(6)H(2)Me(3)), and IU(bipy)(NC[t-Bu]Mes)(3) (3-I-bipy) are reported. X-ray crystallography studies indicate that bipy coordinates as a radical anion in 1-(bipy)(2) and 2-bipy, and as a neutral ligand in 3-I-bipy. In 3-(bipy)(2), one of the bipy ligands is best viewed as a radical anion, the other as a neutral ligand. The electronic structure assignments are supported by NMR spectroscopy studies of exchange experiments with 4,4'-dimethyl-2,2'-bipyridyl and also by optical spectroscopy. In all complexes, uranium was assigned a +4 formal oxidation state. PMID:25510329

  20. Electron-transfer catalysis of ligand substitution in triiron clusters. The role of the bridging ligand in anion radical intermediates

    SciTech Connect

    Ohst, H.H.; Kochi, J.K.

    1986-05-28

    The polynuclear cluster Fe/sub 3/(CO)/sub 9/(..mu../sub 3/-PPh)/sub 2/ (I) undergoes rapid ligand substitution by electron-transfer catalysis (ETC) under conditions in which the thermal process is nonexistent. X-ray crystallography and /sup 31/P NMR spectroscopy establish the stepwise substitution of the CO ligands by trimethyl phosphite to take place selectively at three separate iron centers. The high selectivity to the mono-substitution product II is achieved by tuning the reduction potential specifically to generate catalytic amounts of the anion radical Fe/sub 3/(CO)/sub 9/(PPh)/sub 2//sup -/ (I/sup -/) in either acetonitrile or tetrahydrofuran. Transient ESR spectroscopy of I/sup -/ and three related paramagnetic intermediates establish the sequential transformation of anion radicals as they evolve in the ETC mechanism. The rate-limiting rearrangement of I/sup -/ by the slippage of a phosphinidene cap from ..mu../sub 3/ ..-->.. ..mu../sub 2/ coordination underscores the key role of the bridging ligand in the substitution process. The importance of this critical transformation related to the formation of a 17-electron, coordinatively unsaturated iron center in the otherwise intact cluster. As such, it emphasizes the key role that the bridging ligand can play in cluster activation.

  1. Semiquinone anion radicals of catechol(amine)s, catechol estrogens, and their metal ion complexes.

    PubMed Central

    Kalyanaraman, B; Felix, C C; Sealy, R C

    1985-01-01

    The characterization and identification of semiquinone radicals from catechol(amine)s and catechol estrogens by electron spin resonance spectroscopy is addressed. The use of diamagnetic metal ions, especially Mg2+ and Zn2+ ions, to detect transient semiquinone radicals in biological systems and to monitor their reactions, is discussed. A brief account of the identification and reactions of quinones is also presented. PMID:3007089

  2. Infrared measurements of organic radical anions in solution using mid-infrared optical fibers and spectral analyses based on density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Sakamoto, Akira; Kuroda, Masahito; Harada, Tomohisa; Tasumi, Mitsuo

    2005-02-01

    By using ATR and transmission probes combined with bundles of mid-infrared optical fibers, high-quality infrared spectra are observed for the radical anions of biphenyl and naphthalene in deuterated tetrahydrofuran solutions. The ATR and transmission probes can be inserted into a glass-tube cell with O-rings under vacuum. Organic radical anions prepared separately in a vacuum system are transferred into the cell for infrared absorption measurements. Observed infrared spectra are in good agreement with those calculated by density functional theory. The origin of the strong infrared absorption intensities characteristic of the radical anions are discussed in terms of changes in electronic structures induced by specific normal vibrations (electron-molecular vibration interaction).

  3. DNA-strand breaks induced by dimethylarsinic acid, a metabolite of inorganic arsenics, are strongly enhanced by superoxide anion radicals.

    PubMed

    Rin, K; Kawaguchi, K; Yamanaka, K; Tezuka, M; Oku, N; Okada, S

    1995-01-01

    We previously reported that dimethylarsinic acid (DMAA), a major metabolite of inorganic arsenics, induced DNA single-strand breaks (ssb) both in vivo and in cultured alveolar type II (L-132) cells in vitro, possibly via the production of dimethylarsenic peroxyl radicals. Here, the interaction of superoxide anion radicals (O2-) in the induction of ssb in L-132 cells was investigated using paraquat, an O2(-)-producing agent. A significant enhancement of ssb formation was observed in the DMAA-exposed cells when coexposed to paraquat. This enhancement occurred even when post-exposed to DMAA after washing, suggesting that the DMAA exposure caused some modification of DNA such as DNA-adducts, which was recognized by active oxygens to form ssb. An experiment with UV-irradiation, which was likely to induce ssb at the modified region, supported the possibility of DNA modification by DMAA exposure. An ESR study indicated that O2- produced by paraquat in DMAA-exposed cells was more consumed than in non-exposed cells, assumingly through the reaction with the dimethylarsenic-modified region of DNA. The species of active oxygens were estimated by using diethyldithiocarbamate, aminotriazole, diethylmaleate, hydrogen peroxide (H2O2), gamma-irradiation and ethanol. O2- but neither H2O2 nor hydroxyl radicals was very likely to contribute to the ssb-enhancing action of paraquat. PMID:7735248

  4. Decarboxylative 1,4-Addition of α-Oxocarboxylic Acids with Michael Acceptors Enabled by Photoredox Catalysis.

    PubMed

    Wang, Guang-Zu; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-10-01

    Enabled by iridium photoredox catalysis, 2-oxo-2-(hetero)arylacetic acids were decarboxylatively added to various Michael acceptors including α,β-unsaturated ester, ketone, amide, aldehyde, nitrile, and sulfone at room temperature. The reaction presents a new type of acyl Michael addition using stable and easily accessible carboxylic acid to formally generate acyl anion through photoredox-catalyzed radical decarboxylation. PMID:26366608

  5. Explosion and Ion Association Chemistry of the Anion Radicals of 2,4,6-Trinitrotoluene, 2,6-Dinitrotoluene, and Trinitrobenzene.

    PubMed

    Batz, Matthew L.; Garland, Paul M.; Reiter, Richard C.; Sanborn, Michael D.; Stevenson, Cheryl D.

    1997-04-01

    EPR analysis shows that the anion radical of 2,6-dinitrotoluene (DNT) in liquid ammonia exists with the counterion (either K(+) or Na(+)) associated with one of the two nitro groups. This tight association (-NO(2)(*-)M(+)) persists after solvent removal, and it renders the anion radical very susceptible to loss of metal nitrite. The slightest agitation of the solid potassium salt of DNT(*-) leads to detonation, and formation of KNO(2) and polymer (in the solid phase) and CH(4), HCN, H(2), and N(2)O (in the gas phase). Trapping experiments suggest that the methane comes from carbenes, and it is suggested that the HCN comes from an anthranil radical intermediate. The potassium anion radical salts of 1,3-dinitrobenzene, 2,6-dinitrotoluene, 1,3,5-trinitrobenzene, and 2,4,6-trinitrotoluene all readily lose KNO(2), and the ease of C-NO(2)(*-)M(+) bond rupture increases with the degree of nitration. In the cases of the two trinitrated systems dissociation takes place immediately upon anion radical formation in liquid ammonia. This observation is consistent with the fact that only the systems with two nitro groups vicinal to a methyl group yield HCN upon detonation. PMID:11671508

  6. Umbrella motion of the methyl cation, radical, and anion molecules. I. Potentials, energy levels and partition functions

    NASA Astrophysics Data System (ADS)

    Ragni, Mirco; Bitencourt, Ana Carla P.; Prudente, Frederico V.; Barreto, Patricia R. P.; Posati, Tamara

    2016-03-01

    A study of the umbrella motion of the methyl cation, radical, and anion molecules is presented. This is the floppiest mode of vibration of all three species and its characterization is of fundamental importance for understanding their reactivity. Minimum Energy Paths of the umbrella motions according to the hyperspherical treatment were obtained, by single point calculations, at the CCSD(T)/aug-cc-pVQT level of theory in the Born-Oppenheimer approximation. These energy profiles permit us to calculate the vibrational levels through the Hyperquantization algorithm, which is shown appropriated for the description of the umbrella motion of these three molecules. The adiabatic electron affinity and ionization potentials were estimated to good accuracy. Partition functions are also calculated in order to obtain information on the reaction rates involving these groups.

  7. Reactions of superoxide dismutases with HS(-)/H2S and superoxide radical anion: An in vitro EPR study.

    PubMed

    Bolić, Bojana; Mijušković, Ana; Popović-Bijelić, Ana; Nikolić-Kokić, Aleksandra; Spasić, Snežana; Blagojević, Duško; Spasić, Mihajlo B; Spasojević, Ivan

    2015-12-01

    Interactions of hydrogen sulfide (HS(-)/H2S), a reducing signaling species, with superoxide dimutases (SOD) are poorly understood. We applied low-T EPR spectroscopy to examine the effects of HS(-)/H2S and superoxide radical anion O2.- on metallocenters of FeSOD, MnSOD, and CuZnSOD. HS(-)/H2S did not affect FeSOD, whereas active centers of MnSOD and CuZnSOD were open to this agent. Cu(2+) was reduced to Cu(1+), while manganese appears to be released from MnSOD active center. Untreated and O2.- treated FeSOD and MnSOD predominantly show 5 d-electron systems, i.e. Fe(3+) and Mn(2+). Our study provides new details on the mechanisms of (patho)physiological effects of HS(-)/H2S. PMID:26436856

  8. Formation of spiroiminodihydantoin due to the reaction between 8-oxoguanine and carbonate radical anion: A quantum computational study

    NASA Astrophysics Data System (ADS)

    Yadav, Amarjeet; Mishra, P. C.

    2014-01-01

    Reaction of 8-oxoguanine (8OG) with carbonate radical anion (CO3·-) producing spiroiminodihydantoin has been investigated using density functional theory. Geometries of reactant complex, intermediate complexes, product complexes and transition states were optimized at the B3LYP/6-31G(d,p) level of theory in gas phase which was followed by single point energy calculations employing the B3LYP, M06-2X and WB97XD functionals along with the AUG-cc-pVDZ basis set in gas phase and aqueous media. Solvent effect was treated employing the integral equation formalism of the polarizable continuum model. Possible roles of aeration, stirring and photoirradiation of reaction media which are performed in experimental studies have been explained.

  9. Photodetachment spectroscopy of fluorenone radical anions microsolvated with methanol: rationalizing the anomalous solvatochromic behavior due to hydrogen bonding.

    PubMed

    Maeyama, Toshihiko; Yagi, Izumi; Yoshida, Keiji; Fujii, Asuka; Mikami, Naohiko

    2015-04-23

    The attribution of the extraordinary blue shift for the intramolecular charge-transfer absorption band of fluorenone radical anion solvated in protic media was investigated by means of photodetachment spectroscopy of the gas-phase anions microsolvated with methanol, in conjunction with quantum chemical calculations based on density functional theory. Sequential shifts of the vertical detachment energy as a function of the cluster size are consistent with theoretical predictions, where up to two methanol molecules can directly attach to the carbonyl group. In the photodetachment excitation spectra as alternatives to the photoabsorption spectra, with increasing cluster size, a new absorption band grows in the higher-energy region, which coincides with the blue-shifted band in protic media. Spectral simulations using time-dependent density functional theory with the CAM-B3LYP functional reproduced the feature of the phenomenon. Analyses on the electronic configuration elucidated that the extraordinarily blue shifts originate from energy-level repulsion due to solvation-induced resonant coupling with another electronic state. The orbital transition for the counterpart state corresponds to the first absorption band of the neutral fluorenone molecule, which has small oscillator strength from the ground state. It was found that correction of long-range electron exchange correlation is important for the spectral simulation involving the electronic-state coupling. PMID:25825951

  10. A 1,2,3-dithiazolyl-o-naphthoquinone: a neutral radical with isolable cation and anion oxidation states.

    PubMed

    Smithson, Chad S; MacDonald, Daniel J; Matt Letvenuk, T; Carello, Christian E; Jennings, Michael; Lough, Alan J; Britten, James; Decken, Andreas; Preuss, Kathryn E

    2016-06-21

    Under aprotic conditions, the reaction of 4-amino-1,2-naphthoquinone with excess S2Cl2 generates 4,5-dioxo-naphtho[1,2-d][1,2,3]dithiazol-2-ium chloride in a typical Herz condensation. By contrast, prior literature reports an imine (NH) product, 4,5-dioxo-1H-naphtho[1,2-d][1,2,3]dithiazole, for the same reaction performed in acetic acid. Herein, the cation product is isolated with four different counter-anions (Cl(-), GaCl4(-), FeCl4(-) and OTf(-)). Reduction of the cation generates a neutral radical 1,2,3-dithiazolyl-o-naphthoquinone, with potential ligand properties. Further reduction generates a closed shell anion, isolated as a water-stable Li(+) complex and exhibiting O,O-bidentate chelation. The hydroxy (OH) isomer of the original imine (NH) product is reported, and this can be readily deprotonated and acylated (OAc). All species are structurally characterized. Solution redox behaviour and EPR are discussed where appropriate. PMID:27216412

  11. Optimization of Pyrogallol Autoxidation Conditions and Its Application in Evaluation of Superoxide Anion Radical Scavenging Capacity for Four Antioxidants.

    PubMed

    Zhang, Qing-An; Wang, Xi; Song, Yun; Fan, Xue-Hui; García Martín, Juan Francisco

    2016-03-01

    In this study, some factors influencing pyrogallol autoxidation, including EDTA, temperature, and solvent, were systematically investigated to improve its feasibility in the evaluation of antioxidants for the first time. Subsequently, the improved pyrogallol autoxidation conditions were used to assess the superoxide anion scavenging activity (SASA) of four commonly used antioxidants, namely, ascorbic acid, rutin, catechin, and gallic acid, by both the reaction rate method and the terminated method. The results indicate that pyrogallol autoxidation could be successfully used to determine the antioxidant capacity of ascorbic acid and rutin, which correspondingly suggests the feasibility of its use to measure the superoxide anion radical scavenging activity of polysaccharides and flavonols, because these compounds have a similar basic structural unit as ascorbic acid and rutin, respectively. Unexpectedly, however, pyrogallol autoxidation cannot be used to evaluate the SASA of catechin and gallic acid, although their good antioxidant capacity was confirmed by the 1,1-diphenyl-2-picrylhydrazyl assay. Together, these results suggest the importance of noting the conditions used for pyrogallol autoxidation when assessing the SASA of targeted compounds. PMID:26997318

  12. Superoxide anion radical generation during the oxidation of various amines by diamine oxidase.

    PubMed

    Silva, I J; Azevedo, M S; Manso, C F

    1996-03-01

    Diamine oxidase (DAO) or histaminase is an enzyme which deaminates histamine and several aliphatic amines to their corresponding aldehydes. Hydrogen peroxide and ammonia are side products of this reaction. The purpose of the present work was to evaluate if determination of produced hydrogen peroxide reflects DAO activity or if intermediate formation of the superoxide radical could be a reason for lack of correspondence between oxygen uptake and hydrogen peroxide production at different pH. Superoxide radical formation was determined by cytochrome c reduction in the presence and absence of superoxide dismutase (SOD). Oxygen uptake was measured with an oxygen electrode and hydrogen peroxide production by a spectrophotometric method. At pH 6.6 there was no superoxide production, but at pH 7.4 there was some, and it increased markedly at pH 9.5. Oxygen uptake also increased with increasing pH, especially with histamine as substrate. These results lead us to suggest that the mechanism of action of DAO involves the intermediate generation of superoxide radicals. PMID:8728118

  13. Theoretical study on the radical anions and reductive dechlorination of selected polychlorinated dibenzo-p-dioxins.

    PubMed

    Luo, Jin; Hu, Jiwei; Zhuang, Yuan; Wei, Xionghui; Huang, Xianfei

    2013-05-01

    For the effective use of remediation technologies for PCDDs contamination, it is essential to study the reactivity and dechlorination pathways of these compounds. In this study, density functional theory (DFT) calculations (B3LYP/6-31+G(d), B3LYP/6-311+G(d,p)) were performed to investigate the neutrals and different anionic states of selected PCDD congeners. The calculated adiabatic electron affinities and frontier orbital energies of the PCDD congeners (in gas-phase and in solution) are significantly correlated with the reported dechlorination rate constants, showing that this kind of reductive cleavage reaction is kinetically controlled by the electron transfer step. The predicted major dechlorination pathways of 1,2,3,4-TeCDD and its daughter products based on the energies of the anionic states were found to be satisfactorily consistent with the reported experimental results. Simulation of the 1,2,3,4-TeCDD dechlorination process showed that not only the dechlorination regioselectivity but also the reactivity of the PCDDs played an important role in the distribution of dechlorinated products. An exponential correlation was found between the sum of the concentration of the PCDD congeners and the reaction time in the simulation, indicating that the time required for the conversion of the PCDD congeners to the fully dechlorinated product (dibenzo-p-dioxin) might not be significantly dependent on the initial concentration of 1,2,3,4-TeCDD. PMID:23499218

  14. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 2. Carbonate radical anion.

    PubMed

    Villamena, Frederick A; Locigno, Edward J; Rockenbauer, Antal; Hadad, Christopher M; Zweier, Jay L

    2007-01-18

    Previous studies have shown that the enzyme-mediated generation of carbonate radical anion (CO(3)(.-)) may play an important role in the initiation of oxidative damage in cells. This study explored the thermodynamics of CO(3)(.-) addition to 5,5-dimethyl-1-pyrroline N-oxide (DMPO) using density functional theory at the B3LYP/6-31+G(**)//B3LYP/6-31G* and B3LYP/6-311+G* levels with the polarizable continuum model to simulate the effect of the bulk dielectric effect of water on the calculated energetics. Theoretical data reveal that the addition of CO(3)(.-) to DMPO yields an O-centered radical adduct (DMPO-OCO2) as governed by the spin (density) population on the CO(3)(.-). Electron paramagnetic resonance spin trapping with the commonly used spin trap, DMPO, has been employed in the detection of CO(3)(.-). UV photolysis of H(2)O(2) and DMPO in the presence of sodium carbonate (Na(2)CO(3)) or sodium bicarbonate (NaHCO(3)) gave two species (i.e., DMPO-OCO(2) and DMPO-OH) in which the former has hyperfine splitting constant values of a(N) = 14.32 G, a(beta)-Eta = 10.68 G, and a(gamma-H) = 1.37 G and with a shorter half-life compared to DMPO-OH. The origin of the DMPO-OH formed was experimentally confirmed using isotopically enriched H(2)(17)O(2) that indicates direct addition of HO(.) to DMPO. Theoretical studies on other possible pathways for the formation of DMPO-OH from DMPO-OCO(2) in aqueous solution and in the absence of free HO(.) such as in the case of enzymatically generated CO(3)(.-), show that the preferred pathway is via nucleophilc substitution of the carbonate moiety by H(2)O or HO(-). Nitrite formation has been observed as the end product of CO(3)(.-) trapping by DMPO and is partly dependent on the basicity of solution. The thermodynamic behavior of CO(3)(.-) in the aqueous phase is predicted to be similar to that of the hydroperoxyl (HO(2)(.)) radical. PMID:17214476

  15. Sonochemiluminescence of lucigenin: Evidence of superoxide radical anion formation by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masanori; Takahashi, Fumiki; Asakura, Yoshiyuki; Jin, Jiye

    2016-07-01

    The sonochemiluminescence (SCL) behavior of lucigenin (Luc2+) has been studied in aqueous solutions irradiated with 500 kHz ultrasound. Compared with the SCL of a luminol system, a tremendously increased SCL intensity is observed from 50 µM Luc2+ aqueous solution (pH =11) when small amounts of coreactants such as 2-propanol coexist. It is shown that SCL intensity strongly depends on the presence of dissolved gases such as air, O2, N2, and Ar. The highest SCL intensity is obtained in an O2-saturated solution, indicating that molecular oxygen is required to generate SCL. Since SCL intensity is quenched completely in the presence of superoxide dismutase (SOD), an enzyme that can catalyze the disproportionation of O2 •‑, the generation of O2 •‑ in the ultrasonic reaction field is important in the SCL of Luc2+. In this work, the evidence of O2 •‑ production is examined by a spectrofluorometric method using 2-(2-pyridyl)benzothiazoline as the fluorescent probe. The results indicate that the yield of O2 •‑ is markedly increased in the O2-saturated solutions when a small amount of 2-propanol coexists, which is consistent with the results of SCL measurements. 2-Propanol in the interfacial region of a cavitation bubble reacts with a hydroxyl radical (•OH) to form a 2-propanol radical, CH3C•(OH)CH3, which can subsequently react with dissolved oxygen to generate O2 •‑. The most likely pathways for SCL as well as the spatial distribution of SCL in a microreactor are discussed in this study.

  16. Positive exchange interaction in the radical ion pair of benzophenone anion and 1,4-diazabicyclo[2,2,2]octane cation radicals studied by FT-EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Shinji; Akiyama, Kimio; Tero-Kubota, Shozo

    1996-12-01

    Electron spin polarization generated from the photoreduction of benzophenone (BP) and its derivatives in the presence of 1,4-diazabicyclo[2,2,2]octane (DABCO) was studied in various solvents. The DABCO cation radical obtained showed a CIDEP spectrum with A/E (absorption/emission) polarization by RPM, while other neutral radicals gaee an E/A pattern. Using triplet quenchers, it was confirmed that these RPM signals were generated through the triplet reaction process. The present results revealed that the radical ion pair including the BP anion and DABCO +. cation radicals has a positive J, while the neutral radical pairs generated under the same condition have a negative J. The sign of J is independent of the polarity of the organic solvents used.

  17. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN.

    PubMed

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions (O2∙-) in mitochondria, either by chemical inhibition of complex I or by genetic silencing of O2∙--dismutating mitochondrial Sod2. The O2∙--dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced O2∙- led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated O2∙--induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with O2∙-, PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  18. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN

    PubMed Central

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions () in mitochondria, either by chemical inhibition of complex I or by genetic silencing of -dismutating mitochondrial Sod2. The -dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated -induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with , PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  19. EPR characterization of ascorbyl and sulfur dioxide anion radicals trapped during the reaction of bovine Cytochrome c Oxidase with molecular oxygen

    NASA Astrophysics Data System (ADS)

    Yu, Michelle A.; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L.; Gerfen, Gary J.

    2010-04-01

    The reaction intermediates of reduced bovine Cytochrome c Oxidase (C cO) were trapped following its reaction with oxygen at 50 μs-6 ms by innovative freeze-quenching methods and studied by EPR. When the enzyme was reduced with either ascorbate or dithionite, distinct radicals were generated; X-band (9 GHz) and D-band (130 GHz) CW-EPR measurements support the assignments of these radicals to ascorbyl and sulfur dioxide anion radical ( SO2-rad ), respectively. The X-band spectra show a linewidth of 12 G for the ascorbyl radical and 11 G for the SO2-rad radical and an isotropic g-value of 2.005 for both species. The D-band spectra reveal clear distinctions in the g-tensors and powder patterns of the two species. The ascorbyl radical spectrum displays approximate axial symmetry with g-values of g x = 2.0068, g y = 2.0066, and g z = 2.0023. The SO2-rad radical has rhombic symmetry with g-values of g x = 2.0089, g y = 2.0052, and g z = 2.0017. When the contributions from the ascorbyl and SO2-rad radicals were removed, no protein-based radical on C cO could be identified in the EPR spectra.

  20. Formation of S-Cl phosphorothioate adduct radicals in dsDNA-S-oligomers: Hole transfer to guanine vs. disulfide anion radical formation

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Palmer, Brian J.; Todd, Andrew D.; Sevilla, Michael D.

    2013-01-01

    In phosphorothioate containing dsDNA-oligomers (S-oligomers), one of the two non-bridging oxygen atoms in the phosphate moiety of sugar-phosphate backbone is replaced by sulphur. In this work, electron spin resonance (ESR) studies of one-electron oxidation of several S-oligos by Cl2•− at low temperatures are investigated. Electrophilic addition of Cl2•− to phosphorothioate with elimination of Cl− leads to the formation of a 2-center three-electron σ2σ*1 bonded adduct radical (-P-S∸Cl). In AT S-oligomers with mutiple phosphorothioates, i.e., d[ATATAsTsAsT]2, -P-S∸Cl reacts with a neighboring phosphorothioate to form the σ2σ*1 bonded disulphide anion radical ([-P-S∸S-P-]−). With AT S-oligomers with a single phosphorothioate, i.e., d[ATTTAsAAT]2, reduced levels of conversion of -P-S∸Cl dsDNA [-P-S∸S-P-]− are found. For guanine containing S-oligomers containing one phosphorothioate, -P-S∸Cl results in one-electron oxidation of guanine base but not of A, C, or T thereby leading to selective hole transfer to G. The redox potential of -P-S∸Cl is thus higher than that of G but is lower than those of A, C, and T. Spectral assignments to -P-S∸Cl and [-P-S∸S-P-]− are based on reaction of Cl2•− with the model compound diisopropyl phosphorothioate. The results found for d[TGCGsCsGCGCA]2 suggest that [-P-S∸S-P-]− undergoes electron transfer to the one-electron oxidized G healing the base but producing a cyclic disulfide bonded backbone with a substantial bond strength (50 kcal/mol). Formation of -P-S∸Cl and its conversion to [-P-S∸S-P-]− is found to be unaffected by O2 and this is supported by the theoretically calculated electron affinities and reduction potentials of [-P-S-S-P-] and O2. PMID:23885974

  1. A quantum mechanics-molecular mechanics study of dissociative electron transfer: The methylchloride radical anion in aqueous solution

    NASA Astrophysics Data System (ADS)

    Soriano, Alejandro; Silla, Estanislao; Tuñón, Iñaki

    2002-04-01

    The dissociative electron transfer reaction CH3Cl+e-→CH3•+Cl- in aqueous solution is studied by using a QM/MM method. In this work the quantum subsystem (a methylchloride molecule plus an electron) is described using density functional theory while the solvent (300 water molecules) is described using the TIP3P classical potential. By means of molecular dynamics simulations and the thermodynamic integration technique we obtained the potential of mean force (PMF) for the carbon-chlorine bond dissociation of the neutral and radical anion species. Combining these two free energy curves we found a quadratic dependence of the activation free energy on the reaction free energy in agreement with Marcus' relationship, originally developed for electron transfer processes not involving bond breaking. We also investigated dynamical aspects by means of 60 dissociative trajectories started with the addition of an extra electron to different configurations of a methylchloride molecule in solution. The PMF shows the existence of a very flat region, in which the system is trapped during some finite time if the quantum subsystem quickly losses its excess kinetic energy transferring it to the solvent molecules. One of the most important factors determining the effectiveness of this energy transfer seems to be the existence of close contacts (hydrogen bonds) between the solute and the solvent.

  2. Predicting the localized/delocalized character of mixed-valence diquinone radical anions. Toward the right answer for the right reason.

    PubMed

    Renz, Manuel; Kaupp, Martin

    2012-11-01

    The Robin-Day class II/III mixed-valence character is established quantum-chemically for a series of mixed-valence diquinone radical anions. Particular emphasis is placed on the radical anion of tetrathiafulvalenedibenzoquinone, Q-TTF-Q, which has recently been used to evaluate constrained density functional approaches (CDFT) and new range hybrid functionals. Using a computational protocol based on hybrid functionals with 35-42% exact-exchange admixture and inclusion of solvent models during the structure optimization, it is demonstrated that a) Q-TTF-Q(•-), 1, and the related diquinone radical anions 2-4 are all delocalized class III species in the gas phase and in nonpolar solvents, in contrast to previous assumptions; b) 1,4,5,8-anthracenetetraone radical anion, 2, remains class III in polar aprotic solvents, c) systems 1, 3 and 4 become class II, providing excellent agreement between computed and experimental intervalence charge-transfer excitations, thermal electron-transfer (ET) barriers and ESR hyperfine couplings. The direct conductor-like screening model for real solvents (D-COSMO-RS) allows the inclusion of specific hydrogen-bonding effects without the computational effort of molecular dynamics simulations and provides increased ET barriers, as well as a predicted incipient symmetry breaking for 2, due to hydrogen bonding in alcohol solvents. For the first time D-COSMO-RS optimizations in solvent mixtures have been evaluated. As previous computational studies of Q-TTF-Q(•-) neglected solvent effects during structure optimizations and obtained charge localization in gas-phase optimizations by CDFT or by exaggerated exact-exchange admixtures, they provided at best the right answer for the wrong reason. PMID:23025699

  3. Reactivity of atomic oxygen radical anions bound to titania and zirconia nanoparticles in the gas phase: low-temperature oxidation of carbon monoxide.

    PubMed

    Ma, Jia-Bi; Xu, Bo; Meng, Jing-Heng; Wu, Xiao-Nan; Ding, Xun-Lei; Li, Xiao-Na; He, Sheng-Gui

    2013-02-27

    Titanium and zirconium oxide cluster anions with dimensions up to nanosize are prepared by laser ablation and reacted with carbon monoxide in a fast low reactor. The cluster reactions are characterized by time-of-flight mass spectrometry and density functional theory calculations. The oxygen atom transfers from (TiO(2))(n)O(-) (n = 3-25) to CO and formations of (TiO(2))(n)(-) are observed, whereas the reactions of (ZrO(2))(n)O(-) (n = 3-25) with CO generate the CO addition products (ZrO(2))(n)OCO(-), which lose CO(2) upon the collisions (studied for n = 3-9) with a crossed helium beam. The computational study indicates that the (MO(2))(n)O(-) (M = Ti, Zr; n = 3-8) clusters are atomic radical anion (O(-)) bonded systems, and the energetics for CO oxidation by the O(-) radicals to form CO(2) is strongly dependent on the metals as well as the cluster size for the titanium system. Atomic oxygen radical anions are important reactive intermediates, while it is difficult to capture and characterize them for condensed phase systems. The reactivity pattern of the O(-)-bonded (TiO(2))(n)O(-) and (ZrO(2))(n)O(-) correlates very well with different behaviors of titania and zirconia supports in the low-temperature catalytic CO oxidation. PMID:23368886

  4. DNA damage by the sulfate radical anion: hydrogen abstraction from the sugar moiety versus one-electron oxidation of guanine.

    PubMed

    Roginskaya, Marina; Mohseni, Reza; Ampadu-Boateng, Derrick; Razskazovskiy, Yuriy

    2016-07-01

    The products of oxidative damage to double-stranded (ds) DNA initiated by photolytically generated sulfate radical anions SO4(•-) were analyzed using reverse-phase (RP) high-performance liquid chromatography (HPLC). Relative efficiencies of two major pathways were compared: production of 8-oxoguanine (8oxoG) and hydrogen abstraction from the DNA 2-deoxyribose moiety (dR) at C1,' C4,' and C5' positions. The formation of 8oxoG was found to account for 87% of all quantified lesions at low illumination doses. The concentration of 8oxoG quickly reaches a steady state at about one 8oxoG per 100 base pairs due to further oxidation of its products. It was found that another guanine oxidation product identified as 2-amino-5-(2'-alkylamino)-4H-imidazol-4-one (X) was released in significant quantities from its tentative precursor 2-amino-5-[(2'-deoxy-β-d-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) upon treatment with primary amines in neutral solutions. The linear dose dependence of X release points to the formation of dIz directly from guanine and not through oxidation of 8oxoG. The damage to dR was found to account for about 13% of the total damage, with majority of lesions (33%) originating from the C4' oxidation. The contribution of C1' oxidation also turned out to be significant (17% of all dR damages) despite of the steric problems associated with the abstraction of the C1'-hydrogen. However, no evidence of base-to-sugar free valence transfer as a possible alternative to direct hydrogen abstraction at C1' was found. PMID:27043476

  5. Superoxide anion radical (O sub 2 sup sm bullet minus ) mediated base-catalyzed autoxidation of. alpha. -keto enols

    SciTech Connect

    Frimer, A.A.; Gilinsky-Sharon, P.; Aljadeff, G.; Marks, V.; Rosental, Z. )

    1989-09-29

    Eight 4,4-disubstituted 2-hydroxycyclohexa-2,5-dien-1-ones were prepared by the base-catalyzed autoxidation (BCA) of the corresponding 4,4- or 5,5-disubstituted cyclohex-2-en-1-ones. Upon reaction with superoxide anion radical (O{sub 2}{sup {sm bullet}{minus}}, generated from KO{sub 2}/18-crown-6) in inert nonpolar aprotic media at room temperature, {alpha}-keto enols 3a-g undergo initial deprotonation of the enol hydrogen followed by BCA at C{sub 3} of the resulting enolate. Aqueous acid workshop of the reaction mixture yields lactols 4, while methyl iodide quenching generated methoxy lactones 5. Lactols 4 can be readily converted to their acetoxy analogues 8, opened to aldehydo methyl esters 6, or reduced to the related lactones 7. The latter suggests a convenient one-pot synthesis of 2,3-unsaturated {delta}-valerolactones from the corresponding cyclohex-2-en-1-ones. 4,4-Diphenyl enol 3h, by contrast, resists BCA (whether mediated by O{sub 2}{sup {sm bullet}{minus}} or t-C{sub 4}H{sub 9}O{sup {minus}}) to the corresponding lactol yielding instead a variety of oxidative cleavage products 13-18. 2-Hydroxyspiro(4.5)dec-1-en-3-one (21) also underwent O{sub 2}{sup {sm bullet}{minus}}-mediated BCA, yielding diacids 22 and 26 as well as lactol 30. The synthetic applications of these results are also discussed.

  6. Peroxynitrite Mediates Active Site Tyrosine Nitration in Manganese Superoxide Dismutase. Evidence of a Role for the Carbonate Radical Anion

    PubMed Central

    Surmeli, N. Basak; Litterman, Nadia K.; Miller, Anne Frances; Groves, John T.

    2010-01-01

    Protein tyrosine nitration has been observed in a variety of human diseases associated with oxidative stress, such as inflammatory, neurodegenerative and cardiovascular conditions. However, the pathways leading to nitration of tyrosine residues are still unclear. Recent studies have shown that peroxynitrite (PN), produced by the reaction of superoxide and nitric oxide, can lead to protein nitration and inactivation. Tyrosine nitration may also be mediated by nitrogen dioxide produced by the oxidation of nitrite by peroxidases. Manganese superoxide dismutase (MnSOD), which plays a critical role in cellular defense against oxidative stress by decomposing superoxide within mitochondria, is nitrated and inactivated under pathological conditions. In this study, MnSOD is shown to catalyze PN-mediated self-nitration. Direct, spectroscopic observation of the kinetics of PN decay and nitrotyrosine formation (kcat = 9.3 × 102 M-1s-1) indicates that the mechanism involves redox cycling between Mn2+ and Mn3+, similar to that observed with superoxide. Distinctive patterns of tyrosine nitration within MnSOD by various reagents were revealed and quantified by MS/MS analysis of MnSOD trypsin digest peptides. These analyses showed that three of the seven tyrosine residues of MnSOD (Tyr34, Tyr9, and Tyr11) were most susceptible to nitration and that the relative amounts of nitration of these residues varied widely depending upon the nature of the nitrating agent. Notably, nitration mediated by PN, both in the presence and absence of CO2, resulted in nitration of the active site tyrosine, Tyr34, while nitration by freely diffusing nitrogen dioxide led to surface nitration at Tyr9 and Tyr11. Flux analysis of the nitration of Tyr34 by PN-CO2 showed that the nitration rate coincided with the kinetics of the reaction of PN with CO2. These kinetics and the 20-fold increase in the efficiency of tyrosine nitration in the presence of CO2 suggest a specific role for the carbonate radical

  7. Superoxide anion radical (O2(-)) degrades methylmercury to inorganic mercury in human astrocytoma cell line (CCF-STTG1).

    PubMed

    Mailloux, Ryan J; Yumvihoze, Emmanuel; Chan, Hing Man

    2015-09-01

    Methylmercury (MeHg) is a global pollutant that is affecting the health of millions of people worldwide. However, the mechanism of MeHg toxicity still remains somewhat elusive and there is no treatment. It has been known for some time that MeHg can be progressively converted to inorganic mercury (iHg) in various tissues including the brain. Recent work has suggested that cleavage of the carbon-metal bond in MeHg in a biological environment is facilitated by reactive oxygen species (ROS). However, the oxyradical species that actually mediates this process has not been identified. Here, we provide evidence that superoxide anion radical (O2(-)) can convert MeHg to iHg. The calculated second-order rate constant for the degradation of 1μM MeHg by O2(-) generated by xanthine/xanthine oxidase was calculated to be 2×10(5)M(-1)s(-1). We were also able to show that this bioconversion can proceed in intact CCF-STTG1 human astrocytoma cells exposed to paraquat (PQ), a O2(-) generating viologen. Notably, exposure of cells to increasing amounts of PQ led to a dose dependent increase in both MeHg and iHg. Indeed, a 24h exposure to 500μM PQ induced a ∼13-fold and ∼18-fold increase in intracellular MeHg and iHg respectively. These effects were inhibited by superoxide dismutase mimetic MnTBAP. In addition, we also observed that a 24h exposure to a biologically relevant concentration of MeHg (1μM) did not induce cell death, oxidative stress, or even changes in cellular O2(-) and H2O2. However, co-exposure to PQ enhanced MeHg toxicity which was associated with a robust increase in cell death and oxidative stress. Collectively our results show that O2(-) can bioconvert MeHg to iHg in vitro and in intact cells exposed to conditions that simulate high intracellular O2(-) production. In addition, we show for the first time that O2(-) mediated degradation of MeHg to iHg enhances the toxicity of MeHg by facilitating an accumulation of both MeHg and iHg in the intracellular

  8. Calculation of the properties of the S3- radical anion and its complexes with Cu+ in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    2012-10-01

    A species observed in aqueous sulfidic solutions at high T and P has recently been identified as the anion radical S3-, based on the Raman spectrum obtained in a hydrothermal diamond-anvil cell (Pokrovski and Dubrovinsky, 2011, Science, 331, 1052-1054). Such a species had not been expected to occur in such environments, although S3- as an component of lapis lazuli, other solids and even albite melt has been well studied (Winther et al., 1998; Reinen and Lindner, 1999; Arieli et al., 2004; Shnitko et al., 2008; Bacci et al., 2009). We have calculated the structures, energetics, vibrational and UV-visible spectra of S3- and several other similar species and confirm the species identification of Pokrovski and Dubrovinsky, although we are still somewhat concerned about the apparent lack of a third peak which we calculate to be present in the Raman spectrum of S3-. Our calculations indicate that the reaction: S6-2⇒2S3- in aqueous solution has a free energy change of +3 kcal/mol at 298 K and 1 atm pressure but -13 kcal/mol at 723 K and 1 atm pressure, consistent with the disappearance of disulfide species and the appearance of S3-at high T. Likewise, the free energy for the reaction: 2HS+SO4-2+H⇒S3-+.75O+2.5HO decreases from 44.1 to 19.0 kcal/mol between 298 and 723 K (again at 1 atm). This is consistent with the decrease in concentrations of SH- and SO4-2 and the formation of S3- observed by Pokrovski and Dubrovinski over this temperature range. The corresponding log K values are in semiquantitative agreement with those found by Pokrovski and Dubrovinsky. The main contribution to these changes in reaction free energy with temperature come from the VRT (vibrational-rotational-translational) contribution to the gas-phase free energy, while the hydration free energy difference changes little. Calculation of 34S-32S isotopic fractionations for S3- at 298 K give δ values of around +4.3% relative to H2S, a value intermediate between that of S3 and S3-2. Calculated free

  9. Fluorinated Dodecaphenylporphyrins: Synthetic and Electrochemical Studies Including the First Evidence of Intramolecular Electron Transfer Between an Fe(II) Porphyrin -Anion Radical and an Fe(I) Porphyrin

    SciTech Connect

    D'Souza, F.; Forsyth, T.P.; Fukuzumi, S.; Kadish, K.M.; Krattinger, B.; Lin, M.; Medforth, C.J.; Nakanishi, I.; Nurco, D.J.; Shelnutt, J.A.; Smith, K.M.; Van Caemelbecke, E.

    1998-10-19

    Dodecaphenylporphyrins with varying degrees of fluorination of the peripheral phenyl rings (FXDPPS) were synthesized as model compounds for studying electronic effects in nonplan~ porphyrins, and detailed electrochemical studies of the chloroiron(HI) complexes of these compounds were undertaken. The series of porphyrins, represented as FeDPPCl and as FeFXDPPCl where x = 4, 8 (two isomers), 12, 20,28 or 36, could be reversibly oxidized by two electrons in dichloromethane to give n-cation radicals and n-dications. All of the compounds investigated could also be reduced by three electrons in benzonitrile or pyridine. In benzonitrile, three reversible reductions were observed for the unfluorinated compound FeDPPC1, whereas the FeFXDPPCl complexes generally exhibited irreversible first and second reductions which were coupled to chemical reactions. The chemical reaction associated with the first reduction involved a loss of the chloride ion after generation of Fe FXDPPC1. The second chemical reaction involved a novel intramolecular electron transfer between the initially generated Fe(H) porphyrin n-anion radical and the final Fe(I) porphyrin reduction product. In pyridine, three reversible one electron reductions were observed with the second reduction affording stable Fe(II) porphyrin o - anion radicals for ail of the complexes investigated.

  10. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    NASA Astrophysics Data System (ADS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-04-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  11. Effect of nucleobase sequence on the proton-transfer reaction and stability of the guanine-cytosine base pair radical anion.

    PubMed

    Chen, Hsing-Yin; Yeh, Shu-Wen; Hsu, Sodio C N; Kao, Chai-Lin; Dong, Teng-Yuan

    2011-02-21

    The formation of base pair radical anions is closely related to many fascinating research fields in biology and chemistry such as radiation damage to DNA and electron transport in DNA. However, the relevant knowledge so far mainly comes from studies on isolated base pair radical anions, and their behavior in the DNA environment is less understood. In this study, we focus on how the nucleobase sequence affects the properties of the guanine-cytosine (GC) base pair radical anion. The energetic barrier and reaction energy for the proton transfer along the N(1)(G)-H···N(3)(C) hydrogen bond and the stability of GC˙(-) (i.e., electron affinity of GC) embedded in different sequences of base-pair trimer were evaluated using density functional theory. The computational results demonstrated that the presence of neighboring base pairs has an important influence on the behavior of GC˙(-) in the gas phase. The excess electron was found to be localized on the embedded GC and the charge leakage to neighboring base pairs was very minor in all of the investigated sequences. Accordingly, the sequence behavior of the proton-transfer reaction and the stability of GC˙(-) is chiefly governed by electrostatic interactions with adjacent base pairs. However, the effect of base stacking, due to its electrostatic nature, is severely screened upon hydration, and thus, the sequence dependence of the properties of GC˙(-) in aqueous environment becomes relatively weak and less than that observed in the gas phase. The effect of geometry relaxation associated with neighboring base pairs as well as the possibility of proton transfer along the N(2)(G)-H···O(2)(C) channel have also been investigated. The implications of the present findings to the electron transport and radiation damage of DNA are discussed. PMID:21152551

  12. Solvent Effects on the Coexistence of Localized and Delocalized 4,4′-Dinitrotolane Radical Anion by Resonance Raman Spectroscopy

    SciTech Connect

    Zink, J.I.; Wu, Q.; Hoekstra, R.M.; Telo, J.P.; Stephenson, R.M.; Nelsen, S.F.

    2010-07-07

    The resonance Raman spectrum of the simple alkyne bridge in 4,4{prime}-dinitrotolane radical anion shows two distinct bands, providing proof of the solvent-dependent coexistence of charge-localized and -delocalized species. The Raman spectra of normal modes primarily involving the charge-bearing ?PhNO{sub 2} units also support the coexistence of two solvent-dependent electronic species. The temperature dependence of the spectra of the bridging unit shows an inverse relationship between the solvent reorganization energy ({lambda}{sub s}) and the temperature.

  13. DONOR-ACCEPTOR INTERACTIONS OF NITROGEN*

    PubMed Central

    Kimura, J. E.; Szent-Györgyi, A.

    1969-01-01

    The nitrogen atoms of organic molecules readily enter into donor-acceptor interactions, giving off an electron from their lone pair. Under favorable conditions the acceptor can form free radicals. S and O atoms behave likewise but less intensely. PMID:4306047

  14. Probing the Low-lying Electronic States of Cyclobutanetetraone (C4O4) and its Radical Anion: A Low-Temperature Anion Photoelectron Spectroscopic Approach

    SciTech Connect

    Guo, Jin-Chang; Hou, Gaolei; Li, Si-Dian; Wang, Xue B.

    2012-02-02

    Despite a seemingly simple appearance, cyclobutanetetraone (C{sub 4}O{sub 4}) has four low-lying electronic states. Determining the energetic ordering of these states and the ground state of C{sub 4}O{sub 4}{sup -} theoretically has been proven to be considerably challenging and remains largely unresolved to date. Here we report a low-temperature negative ion photoelectron spectroscopic approach. A well structured spectrum with evenly spaced features was obtained at 193 nm due to excitation of the ring breathing mode of the C{sub 4}O{sub 4} neutral, whereas each 193-nm feature was observed to further split into a three-peak manifold at 266 nm assigned due to three electronic transitions from the ground state of the anion to the ground and two low-lying excited states of the neutral. Combined with recent theoretical studies and our own Franck-Condon factors simulations, the ground state of C{sub 4}O{sub 4}{sup -}, as well as the ground and two low-lying excited states of C{sub 4}O{sub 4} are determined to be {sup 2}A{sub 2u}, and {sup 3}B{sub 2u}, {sup 1}A{sub 1g} (8{pi}), {sup 1}B{sub 2u}, respectively. The frequency of the ring breathing mode (1810 {+-} 20 cm{sup -1}), the electron affinity (3.475 {+-} 0.005 eV), and the term values of {sup 1}A{sub 1g} (8{pi}) (6.27 {+-} 0.5 kJ/mol) and {sup 1}B{sub 2u} (13.50 {+-} 0.5 kJ/mol) are also directly obtained from the experiments.

  15. A combined theoretical and experimental study on the oxidation of fulvic acid by the sulfate radical anion.

    PubMed

    Gara, Pedro M David; Bosio, Gabriela N; Gonzalez, Mónica C; Russo, Nino; Del Carmen Michelini, Maria; Diez, Reinaldo Pis; Mártire, Daniel O

    2009-07-01

    The kinetics of the reaction of sulfate radicals with the IHSS Waskish peat fulvic acid in water was investigated in the temperature range from 289.2 to 305.2 K. The proposed mechanism considers the reversible binding of the sulfate radicals by the fulvic acid. The kinetic analysis of the data allows the determination of the thermodynamic parameters DeltaG degrees = -10.2 kcal mol(-1), DeltaH degrees = -16 kcal mol(-1) and DeltaS degrees = -20.3 cal K(-1) mol(-1) for the reversible association at 298.2 K. Theoretical (DFT) calculations performed with the Buffle model of the fulvic acids support the formation of H-bonded adducts between the inorganic radicals and the humic substances. The experimental enthalpy change compares well with the theoretical values found for some of the investigated adducts. PMID:19582275

  16. Aerobic Copper-Promoted Radical-Type Cleavage of Coordinated Cyanide Anion: Nitrogen Transfer to Aldehydes To Form Nitriles.

    PubMed

    Wu, Qian; Luo, Yi; Lei, Aiwen; You, Jingsong

    2016-03-01

    We have disclosed for the first time the copper-promoted C≡N triple bond cleavage of coordinated cyanide anion under a dioxygen atmosphere, which enables a nitrogen transfer to various aldehydes. Mechanistic study of this unprecedented transformation suggests that the single electron-transfer process could be involved in the overall course. This protocol provides a new cleavage pattern for the cyanide ion and would eventually lead to a more useful synthetic pathway to nitriles from aldehydes. PMID:26907853

  17. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    PubMed

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions. PMID:26545766

  18. Competitive Deprotonation and Superoxide [O2 -•] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O•) preferentially form superoxide radical-anion (O2 -•) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -•) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 -• adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O•) to generate the superoxide radical-anion ( m/z 32) or the deprotonated amide [ m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  19. Catalytic spectrofluorimetric determination of superoxide anion radical and superoxide dismutase activity using N, N-dimethylaniline as the substrate for horseradish peroxidase (HRP)

    NASA Astrophysics Data System (ADS)

    Tang, Bo; Wang, Yan; Chen, Zhen-zhen

    2002-10-01

    The coupled reaction of N, N-dimethylaniline (DMA) with 4-aminoantipyrine (4-AAP) using superoxide anion radical (O 2-) as oxidizing agent under the catalysis of horseradish peroxidase (HRP) was studied. Based on the reaction, O 2- produced by irradiating Vitamin B 2, (V B2) was spectrophotometricly determined at 554 nm. The linear range of this method was 1.8×10 -6-1.2×10 -4 mol l -1 with a detection limit of 5.3×10 -7 mol l -1. The effect of interferences on the determination of O 2- was investigated. The proposed method was successfully applied to the determination of superoxide dismutase (SOD) activity in human blood and mouse blood.

  20. Evidences of Electron Transfer of a Fullerene Anion Radical (C60(•-)) Prepared under Visible-Light Illumination at a Nitrobenzene/Water Interface.

    PubMed

    Watariguchi, Shigeru; Fujimori, Masaaki; Atsumi, Kosuke; Hinoue, Teruo

    2016-01-01

    Fullerene (C60) changes to its anion radical (C60(•-)) in the presence of tetraphenylborate (TPB(-)) under visible-light illumination. Using voltammetry at a liquid/liquid interface, we investigated the electron transfer (ET) between C60(•-), previously prepared based on this photochemical reaction, in a nitrobenzene (NB) solution and hexacyanoferrate(III) ([Fe(CN)6](3-)) or proton in an aqueous solution. We suggest that positive currents appearing in voltammograms are due to the ion transfer of decomposition products of TPB(-) and ET from C60(•-) in the NB phase to [Fe(CN)6](3-), or proton in the W phase. (11)B NMR revealed that TPB(-) decomposed to some borate anions during the photochemical reaction of fullerene. Furthermore, when the NB solution containing C60(•-) was mixed with an aqueous solution containing [Fe(CN)6](3-) or proton, absorption bands of C60(•-) in a visible/near infrared absorption spectrum disappeared. This disappearance supports the ET across the NB/W interface. This finding is significant as both an example of ET at a liquid/liquid interface including photochemical reactions and the photochemistry of C60. PMID:27063721

  1. Reliable Quantum Chemical Prediction of the Localized/Delocalized Character of Organic Mixed-Valence Radical Anions. From Continuum Solvent Models to Direct-COSMO-RS.

    PubMed

    Renz, Manuel; Kess, Martin; Diedenhofen, Michael; Klamt, Andreas; Kaupp, Martin

    2012-11-13

    A recently proposed quantum-chemical protocol for the description of the character of organic mixed-valence (MV) compounds, close from both sides to the localized/delocalized borderline, is evaluated and extended for a series of dinitroaryl radical anions 1-6. A combination of global hybrid functionals with exact-exchange admixtures of 35% (BLYP35) or 42% (BMK) with appropriate solvent modeling allows an essentially quantitative treatment of, for example, structural symmetry-breaking in Robin/Day class II systems, thermal electron transfer (ET) barriers, and intervalence charge-transfer (IV-CT) excitation energies, while covering also the delocalized class III cases. Global hybrid functionals with lower exact-exchange admixtures (e.g., B3LYP, M05, or M06) provide a too delocalized description, while functionals with higher exact-exchange admixtures (M05-2X, M06-2X) provide a too localized one. The B2PLYP double hybrid gives reasonable structures but far too small barriers in class II cases. The CAM-B3LYP range hybrid gives somewhat too high ET barriers and IV-CT energies, while the range hybrids ωB97X and LC-BLYP clearly exhibit too much exact exchange. Continuum solvent models describe the situation well in most aprotic solvents studied. The transition of 1,4-dinitrobenzene anion 1 from a class III behavior in aprotic solvents to a class II behavior in alcohols is not recovered by continuum solvent models. In contrast, it is treated faithfully by the novel direct conductor-like screening model for real solvents (D-COSMO-RS). The D-COSMO-RS approach, the TURBOMOLE implementation of which is reported, also describes accurately the increased ET barriers of class II systems 2 and 3 in alcohols as compared to aprotic solvents and can distinguish at least qualitatively between different aprotic solvents with identical or similar dielectric constants. The dominant role of the solvent environment for the ET character of these MV radical anions is emphasized, as in

  2. Structural and Mechanistic Analysis through Electronic Spectra: Aqueous Hyponitrite Radical (N2O2-) and Nitrosyl Hyponitrite Anion (N3O3-)

    SciTech Connect

    Valiev, Marat; Lymar, Sergei V.

    2011-11-03

    Aqueous hyponitrite radical (N{sub 2}O{sub 2}{sup -}) and nitrosyl hyponitrite anion (N{sub 3}O{sub 3}{sup -}) species are important intermediates in the reductive chemistry of NO. The structures and absorption spectra of various hydrated isomers of these compounds were investigated in this work using high-level quantum mechanical calculations combined with the explicit classical description of the aqueous environment. For N{sub 2}O{sub 2}{sup -}, comparison of the calculated spectra and energetics with the experimental data reveals that: (1) upon the one-electron oxidation of trans-hyponitrite (ON=NO{sub 2}{sup -}), the trans configuration of the resulting ON=NO{sup -} radical is preserved; (2) although cis- and trans-ON=NO{sup -} are energetically nearly equivalent, the barrier for the trans-cis isomerization is prohibitively high due to the partial double character of the NN bond; (3) the UV spectrum of ON=NO{sup -} was misinterpreted in the earlier pulse radiolysis work and its more recent revision has been justified. For the N{sub 3}O{sub 3}{sup -} ion, the symmetric isomer is the dominant observable species, and the asymmetric isomer contributes little to the experimental spectrum. Coherent analysis of the calculated and experimental data suggests a re-interpretation of the N{sub 2}O{sub 2}{sup -} + NO reaction mechanism, according to which the reaction evenly bifurcates to yield both the symmetric and asymmetric isomers of N{sub 3}O{sub 3}{sup -}. While the latter isomer rapidly decomposes to the final NO{sub 2}{sup -} + N{sub 2}O products, the former isomer is stable toward this decomposition but its formation is reversible with the homolysis equilibrium constant Khom = 2.2 - 10{sup -7} M. Collectively, these results demonstrate that advanced theoretical modeling can be of significant benefit in structural and mechanistic analysis of UV spectra.

  3. Azo compounds as electron acceptor or radical ligands in transition metal species: spectroelectrochemistry and high-field EPR studies of ruthenium, rhodium and copper complexes of 2,2‧-azobis(5-chloropyrimidine)

    NASA Astrophysics Data System (ADS)

    Kaim, Wolfgang; Doslik, Natasa; Frantz, Stephanie; Sixt, Torsten; Wanner, Matthias; Baumann, Frank; Denninger, Gert; Kümmerer, Hans-Jürgen; Duboc-Toia, Carole; Fiedler, Jan; Zališ, Stanislav

    2003-08-01

    Oxidative coupling of 2-aminopyrimidine with LiOCl produces 5-chloro-2,2‧-azobis(pyrimidine) and 2,2‧-azobis(5-chloropyrimidine) (abcp), both of which were structurally characterized. The symmetrical abcp was used as strongly π-accepting mono- and bis-chelate ligand in complexes with [(bpy)2Ru]2+, [(H6C6)ClRu]+, [(Ph3P)2Cu]+ and (OC)3ClRe. The π-acceptor capability of abcp results in low-energy MLCT transitions and facile reduction to isolable radical complexes of which the DFT-calculated and structurally characterized dicopper(I) species {(μ-abcp)[Cu(PPh3)2]2}(PF6) was studied by X- and W-band EPR and the complex {(μ-abcp)[Ru(bpy)2]2}(PF6)3 at 9.6, 230 and 285 GHz EPR frequency. The results indicate considerable metal-ligand orbital mixing in the singly occupied molecular orbitals.

  4. An extract from berries of Aronia melanocarpa modulates the generation of superoxide anion radicals in blood platelets from breast cancer patients.

    PubMed

    Kedzierska, Magdalena; Olas, Beata; Wachowicz, Barbara; Stochmal, Anna; Oleszek, Wieslaw; Jeziorski, Arkadiusz; Piekarski, Janusz; Glowacki, Rafal

    2009-10-01

    Plant antioxidants protect cells against oxidative stress. Because oxidative stress (measured by different biomarkers) is observed in breast cancer patients, the aim of this study was to establish the effects of a polyphenol-rich extract of Aronia melanocarpa (final concentration of 50 microg/mL, 5 min, 37 degrees C) on superoxide anion radicals (O(2)(-*)) and glutathione (GSH) in platelets from patients with breast cancer and in a healthy group in vitro. Generation of O(2)(-*) in platelets before and after incubation with the extract was measured by cytochrome C reduction. Using HPLC, we determined the level of glutathione in blood platelets. We observed a statistically significant increase of biomarkers of oxidative stress such as O(2)(-*) and a decrease in GSH in platelets from patients with breast cancer compared with the healthy group. We showed that the extract from A. melanocarpa added to blood platelets significantly reduced the production of O(2)(-*) in platelets not only from the healthy group but also from patients with breast cancer. Considering the data presented in this study, we have demonstrated the protective role of the extract from A. melanocarpa in patients with breast cancer in vitro. PMID:19444773

  5. Induction of the superoxide anion radical scavenging capacity of dried 'funori'Gloiopeltis furcata by Lactobacillus plantarum S-SU1 fermentation.

    PubMed

    Kuda, Takashi; Nemoto, Maki; Kawahara, Miho; Oshio, Satoshi; Takahashi, Hajime; Kimura, Bon

    2015-08-01

    To understand the beneficial properties of edible algae obtained from the north-eastern (Sanriku) Satoumi region of Japan, the antioxidant properties of hot aqueous extract solutions (AES) obtained from 18 dried algal products were determined. The samples included 4 Ceratophyllum demersum (matsumo), 5 Undaria pinnatifida (wakame), 5 Laminaria japonica (kombu), and 2 each of Gloiopeltis furcate (funori) and G. tenax (funori). Of these products, the total phenolic content and Fe-reducing power were highest in matsumo. On the other hand, the polysaccharide content, viscosity, and superoxide anion radical (O2˙(-))-scavenging capacity were highest in funori. Lactobacillus plantarum S-SU3, isolated from the intestine of Japanese surfperch, and Lb. plantarum S-SU1, isolated from salted squid, could ferment the AES of matsumo and funori, respectively. Although the Fe-reducing power of the matsumo solution was reduced due to fermentation, the O2˙(-)-scavenging capacity of the funori solution was increased by fermentation. Furthermore, the fermented funori suspension protected Saccharomyces cerevisiae, a live cell model, against H2O2 toxicity. These results suggest that the fermented funori is a promising functional food material that is capable of protecting against reactive oxygen species. PMID:26110834

  6. Mode of action of poly(vinylpyridine-N-oxide) in preventing silicosis: effective scavenging of carbonate anion radical.

    PubMed

    Goldstein, Sara; Czapski, Gideon; Heller, Adam

    2006-01-01

    Small particles of crystalline silicon dioxide (crystallites) are exceptionally toxic. Inhalation of quartz crystallites causes silicosis, a devastating lung disease afflicting miners, particularly coal and stone workers. Poly(vinylpyridine-N-oxide)s (PVPNOs) have been applied in the prevention and treatment of silicosis, but their mode of action has been obscure. Recently, the sites of inducible *NO synthase activation and of nitrotyrosine formation were associated anatomically with the pathological quartz particle-caused lesions in the lungs. It has been suggested that the *NO formed combines rapidly with O2*- to yield ONOO-, a potential mediator of lung injury following silica exposure. Here, we show that PVPNOs do not react with peroxynitrite but scavenge exceptionally rapidly CO3*- radicals, which are produced in the decomposition of ONOO- in bicarbonate solutions. The rate constant for the reaction of CO3*- with PVPNO was found to be independent of the type and size of PVPNO, i.e., k = (1.9 +/- 0.2) x 10(5) M(-1) s(-1) per monomer. In contrast, the rate constant for the reaction of CO3*- with the small molecule 4-methylpyridine N-oxide did not exceed 1 x 10(4) M(-1) s(-1). The underlying reason for the difference is that, in the dissolved polymeric PVPNOs, the electrostatic repulsion between the N-oxide zwitterions destabilizes them, increasing dramatically their pKa. The protonated N-oxides at physiological pH have abstractable hydrogen atoms and are expected to react rapidly with CO3*-, just as cyclic hydroxylamines do. It is also shown that PVPNO inhibits tyrosine nitration by peroxynitrite at pH 7.6 in the presence of excess of CO2 in a concentration-dependent manner. Hence, binding of PVPNO to the quartz particles and eliminating CO3*- could prevent the killing of macrophages, the associated release of macrophage-recruiting cytokines, and the amplification of the local concentration of *NO by the recruited macrophages. The latter causes necrosis of the

  7. Picosecond-nanosecond laser photolysis studies on the photochemical reaction of excited benzophenone with 1,4-diazabicyclo[2.2.2]octane in acetonitrile solution: proton abstraction of the free benzophenone anion radical from the ground state amine

    NASA Astrophysics Data System (ADS)

    Miyasaka, Hiroshi; Morita, Kazuhiro; Kamada, Kenji; Mataga, Noboru

    1991-04-01

    Picosecond and nanosecond dynamics of the ion pair produced by the electron transfer reaction between the triplet state benzophenone ( 3BP*) and 1,4-diazabicyclo[2.2.2]octane (DABCO) was investigated by means of transient absorption spectroscopy and laser-induced photoconductivity measurement. It has been revealed that the solvated free anion radical of BP, produced by the rapid ionic dissociation of the ion pair within 2 ns, abstracts proton from the neutral DABCO giving benzophenone ketyl radical, competing with the charge recombination reaction at encounter with DABCO +, decomposition and/or impurity scavenging processes.

  8. Light-Induced Charge Separation in Densely Packed Donor-Acceptor Coordination Cages.

    PubMed

    Frank, Marina; Ahrens, Jennifer; Bejenke, Isabel; Krick, Marcel; Schwarzer, Dirk; Clever, Guido H

    2016-07-01

    Photon-powered charge separation is achieved in a supramolecular architecture based on the dense packing of functional building blocks. Therefore, self-assembled dimers of interpenetrated coordination cages consisting of redoxactive chromophors were synthesized in a single assembly step starting from easily accessible ligands and Pd(II) cations. Two backbones consisting of electron rich phenothiazine (PTZ) and electron deficient anthraquinone (ANQ) were used to assemble either homo-octameric or mixed-ligand double cages. The electrochemical and spectroscopic properties of the pure cages, mixtures of donor and acceptor cages and the mixed-ligand cages were compared by steady-state UV-vis and transient absorption spectroscopy, supported by cyclic voltammetry and spectroelectrochemistry. Only the mixed-ligand cages, allowing close intra-assembly communication between the donors and acceptors, showed the evolution of characteristic PTZ radical cation and ANQ radical anion features upon excitation in the transient spectra. In contrast, excitation of the mixtures of the homo-octameric donor and acceptor cages in solution did not lead to any signs of electron transfer. Densely packed photo- and redox-functional self-assemblies promise molecular-level control over the morphology of the charge separation layer in future photovoltaic applications. PMID:27258549

  9. ESR study of the interaction of O/sub 2//sup -/ radical anions with aromatic molecules on V/SiO/sub 2/, V/ZrO/sub 2/, and V/MgO catalysts

    SciTech Connect

    Gasymov, A.M.; Shvets, V.A.; Kazanskii, V.B.

    1983-02-01

    The reactivity of O/sub 2//sup -/ radical anions adsorbed on supported V/SiO/sub 2/, V/ZrO/sub 2/, and V/MgO catalysts in reactions with benzene, toluene, and o-xylene molecules has been studied quantitatively with the aid of ESR by comparing the rate constants of the elementary steps. It has been found that the reactivity of O/sub 2//sup -/ interacting with benzene, toluene, and o-xylene molecules increases along the series C/sub 6/H/sub 6/ less than or equal to C/sub 6/H/sub 5/CH/sub 3/ less than or equal to C/sub 6/H/sub 4/ (CH/sub 3/)/sub 2/ and that the activity of the radical anions on the catalysts investigated increases along the series V/MgO less than or equal to V/ZrO/sub 2/ less than or equal to V/SiO/sub 2/. The main products of the reaction of O/sub 2//sup -/ radical anions adsorbed on V/SiO/sub 2/ and V/ZrO/sub 2/ catalysts with benzene and o-xylene molecules at 150-250/sup 0/C were the products of thorough oxidation.

  10. [Al2O4](-), a Benchmark Gas-Phase Class II Mixed-Valence Radical Anion for the Evaluation of Quantum-Chemical Methods.

    PubMed

    Kaupp, Martin; Karton, Amir; Bischoff, Florian A

    2016-08-01

    The radical anion [Al2O4](-) has been identified as a rare example of a small gas-phase mixed-valence system with partially localized, weakly coupled class II character in the Robin/Day classification. It exhibits a low-lying C2v minimum with one terminal oxyl radical ligand and a high-lying D2h minimum at about 70 kJ/mol relative energy with predominantly bridge-localized-hole character. Two identical C2v minima and the D2h minimum are connected by two C2v-symmetrical transition states, which are only ca. 6-10 kJ/mol above the D2h local minimum. The small size of the system and the absence of environmental effects has for the first time enabled the computation of accurate ab initio benchmark energies, at the CCSDT(Q)/CBS level using W3-F12 theory, for a class-II mixed-valence system. These energies have been used to evaluate wave function-based methods [CCSD(T), CCSD, SCS-MP2, MP2, UHF] and density functionals ranging from semilocal (e.g., BLYP, PBE, M06L, M11L, N12) via global hybrids (B3LYP, PBE0, BLYP35, BMK, M06, M062X, M06HF, PW6B95) and range-separated hybrids (CAM-B3LYP, ωB97, ωB97X-D, LC-BLYP, LC-ωPBE, M11, N12SX), the B2PLYP double hybrid, and some local hybrid functionals. Global hybrids with about 35-43% exact-exchange (EXX) admixture (e.g., BLYP35, BMK), several range hybrids (CAM-B3LYP, ωB97X-D, ω-B97), and a local hybrid provide good to excellent agreement with benchmark energetics. In contrast, too low EXX admixture leads to an incorrect delocalized class III picture, while too large EXX overlocalizes and gives too large energy differences. These results provide support for previous method choices for mixed-valence systems in solution and for the treatment of oxyl defect sites in alumosilicates and SiO2. Vibrational gas-phase spectra at various computational levels have been compared directly to experiment and to CCSD(T)/aug-cc-pV(T+d)Z data. PMID:27434425

  11. Structural and Mechanistic Analysis through Electronic Spectra: Aqueous Hyponitrite Radical (N(2)O(2)(-)) and Nitrosyl Hyponitrite Anion (N(3)O(3)(-))

    SciTech Connect

    Lymar S. V.; Valiev M.

    2011-11-03

    Aqueous hyponitrite radical (N{sub 2}O{sub 2}{sup -}) and nitrosyl hyponitrite anion (N{sub 3}O{sub 3}{sup -}) are important intermediates in the reductive chemistry of NO. The structures and absorption spectra of various hydrated isomers of these compounds were investigated in this work using high-level quantum mechanical calculations combined with the explicit classical description of the aqueous environment. For N{sub 2}O{sub 2}{sup -}, comparison of the calculated spectra and energetics with the experimental data reveals that (1) upon the one-electron oxidation of trans-hyponitrite (ON{double_bond}NO{sup 2-}), the trans configuration of the resulting ON{double_bond}NO{sup -} radical is preserved; (2) although cis- and trans-ON{double_bond}NO{sup -} are energetically nearly equivalent, the barrier for the trans-cis isomerization is prohibitively high because of the partial double character of the NN bond; (3) the calculations confirm that the UV spectrum of ONNO{sup -} was misinterpreted in the earlier pulse radiolysis work, and its more recent revision has been justified. For the N{sub 3}O{sub 3}{sup -} ion, the symmetric isomer the dominant observable species, and the asymmetric isomer contributes insignificantly to the experimental spectrum. Coherent analysis of the calculated and experimental data suggests a reinterpretation of the N{sub 2}O{sub 2}{sup -} + NO reaction mechanism according to which the reaction evenly bifurcates to yield both the symmetric and asymmetric isomers of N{sub 3}O{sub 3}{sup -}. While the latter isomer rapidly decomposes to the final NO{sub 2}{sup -} + N{sub 2}O products, the former isomer is stable toward this decomposition, but its formation is reversible with the homolysis equilibrium constant K{sub hom} = 2.2 x 10{sup -7} M. Collectively, these results demonstrate that advanced theoretical modeling can be of significant benefit in structural and mechanistic analysis on the basis of the electronic spectra of aqueous transients.

  12. The Negative Ion Photoelectron Spectrum of meta -Benzoquinone Radical Anion (MBQ •– ): A Joint Experimental and Computational Study

    SciTech Connect

    Chen, Bo; Hrovat, David A.; Deng, S. H. M.; Zhang, Jian; Wang, Xue-Bin; Borden, Weston Thatcher

    2014-03-05

    Negative ion photoelectron (NIPE) spectra of the radical anion of meta-benzoquinone (MBQ, m-OC6H4O) have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show well-resolved peaks and complex spectral patterns. The electron affinity of MBQ is determined from the first resolved peak to be 2.875 ±17 0.010 eV. Single-point, CASPT2/aug-cc-pVTZ//CASPT2/ aug-cc-pVDZ calculations predict accurately the positions of the 0-0 bands in the NIPE spectrum for formation of the four lowest electronic states of neutral MBQ from the 2A2 state of MBQ•-. In addition, the Franck-Condon factors that are computed from the CASPT2/aug-cc-pVDZ optimized geometries,vibrational frequencies, and normal mode vectors, successfully simulate the intensities and frequencies of the vibrational peaks in the NIPE spectrum that are associated with each of these electronic states. The successful simulation of the NIPE spectrum of MBQ•- allows the assignment of 3B2 as the ground state of MBQ, followed by the 1B2 and 1A1 electronic states, respectively 9.0 ± 0.2 and 16.6 ± 0.2 kcal/mol higher in energy than the triplet. These experimental energy differences are in good agreement with the calculated values of 9.7 and 15.7 kcal/mol. The relative energies of these two singlet states in MBQ confirm the previous prediction that their relative energies would be reversed from those in meta-benzoquinodimethane (MBQDM, m-CH2C6H4CH2).

  13. The negative ion photoelectron spectrum of cyclopropane-1,2,3-trione radical anion, (CO)3(•-)--a joint experimental and computational study.

    PubMed

    Chen, Bo; Hrovat, David A; West, Robert; Deng, Shihu H M; Wang, Xue-Bin; Borden, Weston Thatcher

    2014-09-01

    Negative ion photoelectron (NIPE) spectra of the radical anion of cyclopropane-1,2,3-trione, (CO)3(•-), have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show broadened bands, due to the short lifetimes of both the singlet and triplet states of neutral (CO)3 and, to a lesser extent, to the vibrational progressions that accompany the photodetachment process. The smaller intensity of the band with the lower electron binding energy suggests that the singlet is the ground state of (CO)3. From the NIPE spectra, the electron affinity (EA) and the singlet-triplet energy gap of (CO)3 are estimated to be, respectively, EA = 3.1 ± 0.1 eV and ΔEST = -14 ± 3 kcal/mol. High-level, (U)CCSD(T)/aug-cc-pVQZ//(U)CCSD(T)/aug-cc-pVTZ, calculations give EA = 3.04 eV for the (1)A1' ground state of (CO)3 and ΔEST = -13.8 kcal/mol for the energy gap between the (1)A1' and (3)A2 states, in excellent agreement with values from the NIPE spectra. In addition, simulations of the vibrational structures for formation of these states of (CO)3 from the (2)A2″ state of (CO)3(•-) provide a good fit to the shapes of broad bands in the 266 nm NIPE spectrum. The NIPE spectrum of (CO)3(•-) and the analysis of the spectrum by high-quality electronic structure calculations demonstrate that NIPES can not only access and provide information about transition structures but NIPES can also access and provide information about hilltops on potential energy surfaces. PMID:25148567

  14. Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase.

    PubMed

    Hung, Hui-Ming; Hoffmann, Michael R

    2015-12-01

    The oxidation of SO2(g) on the interfacial layers of microdroplet surfaces was investigated using a spray-chamber reactor coupled to an electrospray ionization mass spectrometer. Four major ions, HSO3(-), SO3(•-), SO4(•-) and HSO4(-), were observed as the SO2(g)/N2(g) gas-mixture was passed through a suspended microdroplet flow, where the residence time in the dynamic reaction zone was limited to a few hundred microseconds. The relatively high signal intensities of SO3(•-), SO4(•-), and HSO4(-) compared to those of HSO3(-) as observed at pH < 3 without addition of oxidants other than oxygen suggests an efficient oxidation pathway via sulfite and sulfate radical anions on droplets possibly via the direct interfacial electron transfer from HSO3(-) to O2. The concentrations of HSO3(-) in the aqueous aerosol as a function of pH were controlled by the deprotonation of hydrated sulfur dioxide, SO2·H2O, which is also affected by the pH dependent uptake coefficient. When H2O2(g) was introduced into the spray chamber simultaneously with SO2(g), HSO3(-) is rapidly oxidized to form bisulfate in the pH range of 3 to 5. Conversion to sulfate was less at pH < 3 due to relatively low HSO3(-) concentration caused by the fast interfacial reactions. The rapid oxidation of SO2(g) on the acidic microdroplets was estimated as 1.5 × 10(6) [S(IV)] (M s(-1)) at pH ≤ 3. In the presence of acidic aerosols, this oxidation rate is approximately 2 orders of magnitude higher than the rate of oxidation with H2O2(g) at a typical atmospheric H2O2(g) concentration of 1 ppb. This finding highlights the relative importance of the acidic surfaces for SO2 oxidation in the atmosphere. Surface chemical reactions on aquated aerosol surfaces, as observed in this study, are overlooked in most atmospheric chemistry models. These reaction pathways may contribute to the rapid production of sulfate aerosols that is often observed in regions impacted by acidic haze aerosol such as Beijing and other

  15. Anion-π Enzymes

    PubMed Central

    2016-01-01

    In this report, we introduce artificial enzymes that operate with anion-π interactions, an interaction that is essentially new to nature. The possibility to stabilize anionic intermediates and transition states on an π-acidic surface has been recently demonstrated, using the addition of malonate half thioesters to enolate acceptors as a biologically relevant example. The best chiral anion-π catalysts operate with an addition/decarboxylation ratio of 4:1, but without any stereoselectivity. To catalyze this important but intrinsically disfavored reaction stereoselectively, a series of anion-π catalysts was equipped with biotin and screened against a collection of streptavidin mutants. With the best hit, the S112Y mutant, the reaction occurred with 95% ee and complete suppression of the intrinsically favored side product from decarboxylation. This performance of anion-π enzymes rivals, if not exceeds, that of the best conventional organocatalysts. Inhibition of the S112Y mutant by nitrate but not by bulky anions supports that contributions from anion-π interactions exist and matter, also within proteins. In agreement with docking results, K121 is shown to be essential, presumably to lower the pKa of the tertiary amine catalyst to operate at the optimum pH around 3, that is below the pKa of the substrate. Most importantly, increasing enantioselectivity with different mutants always coincides with increasing rates and conversion, i.e., selective transition-state stabilization. PMID:27413782

  16. Anion-π Enzymes.

    PubMed

    Cotelle, Yoann; Lebrun, Vincent; Sakai, Naomi; Ward, Thomas R; Matile, Stefan

    2016-06-22

    In this report, we introduce artificial enzymes that operate with anion-π interactions, an interaction that is essentially new to nature. The possibility to stabilize anionic intermediates and transition states on an π-acidic surface has been recently demonstrated, using the addition of malonate half thioesters to enolate acceptors as a biologically relevant example. The best chiral anion-π catalysts operate with an addition/decarboxylation ratio of 4:1, but without any stereoselectivity. To catalyze this important but intrinsically disfavored reaction stereoselectively, a series of anion-π catalysts was equipped with biotin and screened against a collection of streptavidin mutants. With the best hit, the S112Y mutant, the reaction occurred with 95% ee and complete suppression of the intrinsically favored side product from decarboxylation. This performance of anion-π enzymes rivals, if not exceeds, that of the best conventional organocatalysts. Inhibition of the S112Y mutant by nitrate but not by bulky anions supports that contributions from anion-π interactions exist and matter, also within proteins. In agreement with docking results, K121 is shown to be essential, presumably to lower the pK a of the tertiary amine catalyst to operate at the optimum pH around 3, that is below the pK a of the substrate. Most importantly, increasing enantioselectivity with different mutants always coincides with increasing rates and conversion, i.e., selective transition-state stabilization. PMID:27413782

  17. Associative Memory Acceptors.

    ERIC Educational Resources Information Center

    Card, Roger

    The properties of an associative memory are examined in this paper from the viewpoint of automata theory. A device called an associative memory acceptor is studied under real-time operation. The family "L" of languages accepted by real-time associative memory acceptors is shown to properly contain the family of languages accepted by one-tape,…

  18. Intrinsic anion oxidation potentials.

    PubMed

    Johansson, Patrik

    2006-11-01

    Anions of lithium battery salts have been investigated by electronic structure calculations with the objective to find a computational measure to correlate with the observed (in)stability of nonaqueous lithium battery electrolytes vs oxidation often encountered in practice. Accurate prediction of intrinsic anion oxidation potentials is here made possible by computing the vertical free energy difference between anion and neutral radical (Delta Gv) and further strengthened by an empirical correction using only the anion volume as a parameter. The 6-311+G(2df,p) basis set, the VSXC functional, and the C-PCM SCRF algorithm were used. The Delta Gv calculations can be performed using any standard computational chemistry software. PMID:17078600

  19. Radical prostatectomy

    MedlinePlus

    Prostatectomy - radical; Radical retropubic prostatectomy; Radical perineal prostatectomy; Laparoscopic radical prostatectomy; LRP; Robotic-assisted laparoscopic prostatectomy; RALP; Pelvic lymphadenectomy; ...

  20. Charge transfer complexes of fullerenes containing C60˙(-) and C70˙(-) radical anions with paramagnetic Co(II)(dppe)2Cl(+) cations (dppe: 1,2-bis(diphenylphosphino)ethane).

    PubMed

    Konarev, Dmitri V; Troyanov, Sergey I; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2016-04-12

    The reduction of Co(II)(dppe)Cl2 with sodium fluorenone ketyl produces a red solution containing the Co(I) species. The dissolution of C60 in the obtained solution followed by the precipitation of crystals with hexane yields a salt {Co(I)(dppe)2(+)}(C60˙(-))·2C6H4Cl2 and a novel complex {Co(dppe)2Cl}(C60) (). With C70, only the crystals of {Co(dppe)2Cl}(C70)·0.5C6H4Cl2 () are formed. Complex contains zig-zag fullerene chains whereas closely packed double chains are formed from fullerenes in . According to the optical spectra and magnetic data charge transfer occurs in both and with the formation of the Co(II)(dppe)2Cl(+) cations and the C60˙(-) or C70˙(-) radical anions. In spite of the close packing in crystals, C60˙(-) or C70˙(-) retain their monomeric form at least down to 100 K. The effective magnetic moments of and of 1.98 and 2.27μB at 300 K, respectively, do not attain the value of 2.45μB expected for the system with two non-interacting S = 1/2 spins at full charge transfer to fullerenes. Most probably diamagnetic {Co(I)(dppe)2Cl}(0) and neutral fullerenes are partially preserved in the samples which can explain the weak magnetic coupling of spins and the absence of fullerene dimerization in both complexes. The EPR spectra of and show asymmetric signals approximated by several lines with g-factors ranging from 2.0009 to 2.3325. These signals originate from the exchange interaction between the paramagnetic Co(II)(dppe)2Cl(+) cations and the fullerene˙(-) radical anions. PMID:26956368

  1. Alternansucrase acceptor products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regioselectivity of alternansucrase (EC 2.4.1.140) differs from dextransucrase (EC 2.4.1.5) in ways that can be useful for the synthesis of novel oligosaccharide structures. For example, it has been recently shown that the major oligosaccharides produced when maltose is the acceptor include one...

  2. Interaction of 2-aminopyrimidine with σ- and π-acceptors involving chemical reactions via initial charge transfer complexation

    NASA Astrophysics Data System (ADS)

    Rabie, U. M.; Abou-El-Wafa, M. H.; Mohamed, R. A.

    2007-12-01

    Interaction of 2-aminopyrimidine (AP) with iodine as a typical σ-type acceptor and with a typical π-type acceptor, 2,3,5,6-tetrachloro-1,4-benzoquinone, p-chloranil (CHL) have been studied spectrophotometrically. Electronic absorption spectra of the system AP-I 2 in several organic solvents of different polarities have performed clear charge transfer (CT) band(s). Formation constants ( KCT) and molar absorption coefficients ( ɛCT) and thermodynamic properties, Δ H, Δ S, and Δ G, of this system in various organic solvents were determined and discussed. Interaction of AP with the π-acceptor has shown unique behaviors. Chemical reaction has occurred via prior or initial formation of the outer-sphere CT complex followed by formation of the corresponding anion radicals, CHL rad - , as intermediates. UV-vis, 1H NMR, Mass, and FT-IR spectra in addition to the elemental analysis were used to confirm the proposed occurrence of the chemical reaction and to investigate the synthesized solid products.

  3. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  4. Intramolecular electron transfer in fullerene/ferrocene based donor-bridge-acceptor dyads

    SciTech Connect

    Guldi, D.M.; Maggini, M.; Scorrano, G.; Prato, M.

    1997-02-05

    A systematic steady-state fluorescence and time-resolved flash photolytic investigation of a series of covalently linked fullerene/ferrocene based donor-bridge-acceptor dyads is reported as a function of the nature of the spacer between the donor site (ferrocene) and acceptor site (fullerene) and the dielectric constant of the medium. The fluorescence of the investigated dyads 2, 3, 4, 5, and 6 in methylcyclohexane at 77 K were substantially quenched, relative to N-methylfulleropyrrolidine 1, indicating intramolecular quenching of the fullerene excited singlet state. Excitation of N-methylfulleropyrrolidine revealed the immediate formation of the excited singlet state, with {lambda}{sub max} around 886 nm. A rapid intersystem crossing ({tau}{sub 1/2} = 1.2 ps ) to the excited triplet state was observed with characteristic absorption around 705 nm. Picosecond resolved photolysis of dyads 2-6 in toluene showed light-induced formation of the excited singlet state which undergoes rapid intramolecular quenching. Nanosecond-resolved photolysis of dyads 3 and 4 in degassed benzonitrile revealed long-lived charge separated states with characteristic fullerene radical-anion bands at {lambda}{sub max} = 1055 nm. 30 refs., 5 figs., 3 tabs.

  5. Identification of Transient Radical Anions (LiClO4)(n)(-) (n = 1-3) in THF Solutions: Experimental and Theoretical Investigation on Electron Localization in Oligomers.

    PubMed

    Ma, Jun; Archirel, Pierre; Pernot, Pascal; Schmidhammer, Uli; Le Caër, Sophie; Mostafavi, Mehran

    2016-02-01

    Picosecond pulse radiolysis measurements of tetrahydrofuran (THF) solutions containing LiClO4 over a wide range of concentration are performed to investigate the formation of transient species. The (35)Cl NMR measurements of these solutions prior to irradiation show that the salt is in the form of (LiClO4)n oligomers. Kinetics and transient absorption spectra of intermediates in each solution are obtained on the time scale from 10 to 3800 ps. A global spectro-kinetic matrix of the data is analyzed by the multicurve resolution alternated least-squares (MCR-ALS) method. It shows the presence of 3 transient species induced by electron pulse, in addition to the solvated electron. A hybrid Monte Carlo/DFT molecular simulation method is elaborated, using the MPW1K functional for the configuration sampling and B3LYP for the spectra calculations. The maximum of the absorption band of the monomer (LiClO4)(-), dimer (LiClO4)2(-), trimer (LiClO4)3(-), and tetramer (LiClO4)4(-) anions are deduced from the simulations. They enable one to label the MCR-ALS spectra (differences are below 0.1 eV) and to interpret the kinetic data. The simulations show also that Li(I) ion catalyzes the reduction of perchlorate by excess electrons. Only the dimer anion, due to its unique structure with a stable Li2(+) core and two nonbridging perchlorates, presents higher stability toward ClO4(-) reduction into ClO3(-). It corresponds to the long-lived species observed in the experiments. PMID:26741165

  6. Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions. [Gamma rays and electrons

    SciTech Connect

    Schaefer, K.; Asmus, K.D.

    1980-08-21

    Phosphite radicals HPO/sub 3/- and PO/sub 3//sup 2/-, which exist in an acid-base equilibrium with pK = 5.75, are shown to take part in various types of reactions. In the absence of scavengers, they disappear mainly by second-order disproportionation and combination; a first-order contribution to the decay is also indicated. HPO/sub 3/- and PO/sub 3//sup 2/- are good reductants toward electron acceptors such as tetranitromethane. In this reaction phosphate and C(NO/sub 2/)/sub 3/- are formed. Phosphite radicals can, however, also act as good oxidants, e.g., toward thiols and thiolate ions. These reactions lead to the formation of RS. radicals which were identified either directly, as in the case of penicillamine, through the optical absorption of PenS. or more indirectly through equilibration of RS. with RS- to the optically absorbing RSSR-. disulfide radical anion. A homolytic substitution reaction (S/sub H/2) occurs in the reaction of the phosphite radicals with aliphatic disulfides, yielding RS. radicals and phosphate thioester RSPO/sub 3//sup 2/-. Lipoic acid, as an example of a cyclic disulfide, is reduced to the corresponding RSSR-. radical anion and also undergoes the S/sub H/2 reaction with about equal probability. An addition reaction is observed between phosphite radicals and molecular oxygen. The resulting peroxo phosphate radicals establish an acid-base equilibrium HPO/sub 5//sup -/. reversible PO/sub 5//sup 2 -/. + H+ with a pK = 3.4. Absolute rate constants were determined for all reactions discussed.

  7. Contact Ion Pairs on a Protonated Azamacrocycle: the Role of the Anion Basicity

    NASA Astrophysics Data System (ADS)

    Fraschetti, Caterina; Filippi, Antonello; Crestoni, Maria Elisa; Marcantoni, Enrico; Glucini, Marco; Guarcini, Laura; Montagna, Maria; Guidoni, Leonardo; Speranza, Maurizio

    2016-04-01

    A potassium-containing hexaazamacrocyclic dication, [ M•H•K]2+, is able to add in the gas phase mono- and dicarboxylate anions as well as inorganic anions by forming the corresponding monocharged adducts, the structure of which markedly depends on the basicity of the anion. With anions, such as acetate or fluoride, the neutral hexaazamacrocycle M acts as an acceptor of monosolvated K+ ion. With less basic anions, such as trifluoroacetate or chloride, the protonated hexaazamacrocycle [ M•H]+ performs the unusual functions of an acceptor of contact K+/anion pairs.

  8. Oxygen as Acceptor.

    PubMed

    Borisov, Vitaliy B; Verkhovsky, Michael I

    2015-01-01

    Like most bacteria, Escherichia coli has a flexible and branched respiratory chain that enables the prokaryote to live under a variety of environmental conditions, from highly aerobic to completely anaerobic. In general, the bacterial respiratory chain is composed of dehydrogenases, a quinone pool, and reductases. Substrate-specific dehydrogenases transfer reducing equivalents from various donor substrates (NADH, succinate, glycerophosphate, formate, hydrogen, pyruvate, and lactate) to a quinone pool (menaquinone, ubiquinone, and dimethylmenoquinone). Then electrons from reduced quinones (quinols) are transferred by terminal reductases to different electron acceptors. Under aerobic growth conditions, the terminal electron acceptor is molecular oxygen. A transfer of electrons from quinol to O₂ is served by two major oxidoreductases (oxidases), cytochrome bo₃ encoded by cyoABCDE and cytochrome bd encoded by cydABX. Terminal oxidases of aerobic respiratory chains of bacteria, which use O₂ as the final electron acceptor, can oxidize one of two alternative electron donors, either cytochrome c or quinol. This review compares the effects of different inhibitors on the respiratory activities of cytochrome bo₃ and cytochrome bd in E. coli. It also presents a discussion on the genetics and the prosthetic groups of cytochrome bo₃ and cytochrome bd. The E. coli membrane contains three types of quinones that all have an octaprenyl side chain (C₄₀). It has been proposed that the bo₃ oxidase can have two ubiquinone-binding sites with different affinities. "WHAT'S NEW" IN THE REVISED ARTICLE: The revised article comprises additional information about subunit composition of cytochrome bd and its role in bacterial resistance to nitrosative and oxidative stresses. Also, we present the novel data on the electrogenic function of appBCX-encoded cytochrome bd-II, a second bd-type oxidase that had been thought not to contribute to generation of a proton motive force in E

  9. Photoinduced reduction of Ru(bpy)/sub 3//sup 2/+ by some dithio anions

    SciTech Connect

    Deronzier, A.; Meyer, T.J.

    1980-10-01

    The luminescing excited state Ru(bpy)/sub 3//sup 2/+* (bpy is 2,2'-bipyridine) is quenched in acetonitrile by a series of dithio anions like diethyldithiocarbamate (dtc/sup -/). The quenching reaction involves reduction of the excited state giving Ru(bpy)/sub 3/+ and the disulfide (dtc)/sub 2/, and its generality has been shown by using dtc- to quench a series of MLCT excited states. In the Ru(bpy)/sub 3//sup 2 +/*-dtc- system, complications in the quenching step exist because of static-quenching and specific-ion effects. It has not proven possible to build up Ru(bpy)/sub 3/+ or the other reduced complexes following quenching because of slow back electron transfer between the reduced forms of the complexes and the disulfide which returns the system to its initial state. However, in multicomponent systems containing Ru(bpy)/sub 3//sup 2/+, dtc/sup -/, and a weak electron acceptor like anthraquinone or a dinitrobenzene, it is possible to build up the radical anions of the added third component which provides a powerful technique for obtaining the spectroscopic properties of the radical anions. The overall pattern of reactions also provides a conceptual basis for the design of light to chemical energy conversion schemes based on an initial excited-state reduction step.

  10. Photoelectron spectroscopy of higher bromine and iodine oxide anions: Electron affinities and electronic structures of BrO2,3 and IO2-4 radicals.

    SciTech Connect

    Wen, Hui; Hou, Gaolei; Huang, Wei; Govind, Niranjan; Wang, Xue B.

    2011-11-14

    This report details a photoelectron spectroscopy (PES) investigation on electron affinities (EAs) and electronic structures of several atmospherically relevant higher bromine and iodine oxide molecules in the gas phase. PES spectra of BrO{sub 2}{sup -} and IO{sub 2}{sup -} were recorded at 12 K and four photon energies--355 nm/3.496 eV, 266 nm/4.661 eV, 193 nm/6.424 eV, and 157 nm/7.867 eV--while BrO{sub 3}{sup -}, IO{sub 3}{sup -}, and IO{sub 4}{sup -} were studied at 193 and 157 nm only due to their expected high electron binding energies. Spectral features corresponding to transitions from the anion ground state to the ground and excited states of the neutral are unraveled and resolved for each species. For the first time, EAs of these bromine and iodine oxides are experimentally determined (except for IO{sub 2}) to be 2.515 {+-} 0.010 (BrO{sub 2}), 2.575 {+-} 0.010 (IO{sub 2}), 4.60 {+-} 0.05 (BrO{sub 3}), 4.70 {+-} 0.05 (IO{sub 3}), and 6.05 {+-} 0.05 eV (IO{sub 4}). Three low-lying excited states with their respective excitation energies are obtained for BrO{sub 2} [1.69 (A {sup 2}B2), 1.79 (B {sup 2}A{sub 1}), 1.99 eV (C {sup 2}A{sub 2})], BrO{sub 3} [0.7 (A {sup 2}A{sub 2}), 1.6 (B {sup 2}E), 3.1 eV (C {sup 2}E)], and IO{sub 3} [0.60 (A {sup 2}A{sub 2}), 1.20 (B {sup 2}E), {approx}3.0 eV (C {sup 2}E)], whereas six excited states of IO{sub 2} are determined with the respective excitation energies of 1.63 (A {sup 2}B{sub 2}), 1.73 (B {sup 2}A{sub 1}), 1.83 (C {sup 2}A{sub 2}), 4.23 (D {sup 2}A{sub 1}), 4.63 (E {sup 2}B{sub 2}), and 5.23 eV (F {sup 2}B{sub 1}). Periodate possesses a very high electron binding energy. Only one excited state feature with 0.95 eV excitation energy is shown in the 157 nm spectrum. The obtained EAs and low-lying excited state information are compared with available theoretical calculations and discussed with their atmospheric implications.

  11. Synthesis of dithienosilole-based highly photoluminescent donor-acceptor type compounds.

    PubMed

    Ohshita, Joji; Tominaga, Yuta; Tanaka, Daiki; Ooyama, Yousuke; Mizumo, Tomonobu; Kobayashi, Norifumi; Higashimura, Hideyuki

    2013-03-14

    Highly photoluminescent acceptor-donor-acceptor (A-D-A) and donor-acceptor (D-A) type compounds with a dithienosilole unit as the donor and perfluorotolyl or dimesitylboryl group(s) as the acceptor were prepared by the reaction of lithiated dithienosilole derivatives with perfluorotoluene or fluorodimesitylborane, respectively. The resulting A-D-A and D-A type compounds showed red-shifted UV absorption and PL bands compared to those of simple dithienosiloles having no acceptor units, reported previously, and were highly photoluminescent in the solid state as well as in solution. Solvatochromic behaviour that would arise from the intramolecular donor-acceptor interaction were observed for the D-A type compounds with respect to the UV absorption and PL spectra. In addition, it was found that bis(dimesitylboryl)dithienosilole and (dimesitylboryl)(methylthio)dithienosilole responded to coexisting fluoride anions, leading to clear UV absorption and PL spectral changes in solutions. PMID:23295388

  12. Ambident reactivities of pyridone anions.

    PubMed

    Breugst, Martin; Mayr, Herbert

    2010-11-01

    The kinetics of the reactions of the ambident 2- and 4-pyridone anions with benzhydrylium ions (diarylcarbenium ions) and structurally related Michael acceptors have been studied in DMSO, CH(3)CN, and water. No significant changes of the rate constants were found when the counterion was varied (Li(+), K(+), NBu(4)(+)) or the solvent was changed from DMSO to CH(3)CN, whereas a large decrease of nucleophilicity was observed in aqueous solution. The second-order rate constants (log k(2)) correlated linearly with the electrophilicity parameters E of the electrophiles according to the correlation log k(2) = s(N + E) (Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957), allowing us to determine the nucleophilicity parameters N and s for the pyridone anions. The reactions of the 2- and 4-pyridone anions with stabilized amino-substituted benzhydrylium ions and Michael acceptors are reversible and yield the thermodynamically more stable N-substituted pyridones exclusively. In contrast, highly reactive benzhydrylium ions (4,4'-dimethylbenzhydrylium ion), which react with diffusion control, give mixtures arising from N- and O-attack with the 2-pyridone anion and only O-substituted products with the 4-pyridone anion. For some reactions, rate and equilibrium constants were determined in DMSO, which showed that the 2-pyridone anion is a 2-4 times stronger nucleophile, but a 100 times stronger Lewis base than the 4-pyridone anion. Quantum chemical calculations at MP2/6-311+G(2d,p) level of theory showed that N-attack is thermodynamically favored over O-attack, but the attack at oxygen is intrinsically favored. Marcus theory was employed to develop a consistent scheme which rationalizes the manifold of regioselectivities previously reported for the reactions of these anions with electrophiles. In particular, Kornblum's rationalization of the silver ion effect, one of the main pillars of the hard and soft acid/base concept of ambident reactivity, has been revised. Ag(+) does not

  13. A dinuclear [{(p-cym)Ru(II)Cl}2(μ-bpytz˙(-))](+) complex bridged by a radical anion: synthesis, spectroelectrochemical, EPR and theoretical investigation (bpytz = 3,6-bis(3,5-dimethylpyrazolyl)1,2,4,5-tetrazine; p-cym = p-cymene).

    PubMed

    Tripathy, Suman Kumar; van der Meer, Margarethe; Sahoo, Anupam; Laha, Paltan; Dehury, Niranjan; Plebst, Sebastian; Sarkar, Biprajit; Samanta, Kousik; Patra, Srikanta

    2016-08-01

    The reaction of the chloro-bridged dimeric precursor [{(p-cym)Ru(II)Cl}(μ-Cl)]2 (p-cym = p-cymene) with the bridging ligand 3,6-bis(3,5-dimethylpyrazolyl)-1,2,4,5-tetrazine (bpytz) in ethanol results in the formation of the dinuclear complex [{(p-cym)Ru(II)Cl}2(μ-bpytz˙(-))](+), [1](+). The bridging tetrazine ligand is reduced to the anion radical (bpytz˙(-)) which connects the two Ru(II) centres. Compound [1](PF6) has been characterised by an array of spectroscopic and electrochemical techniques. The radical anion character has been confirmed by magnetic moment (corresponding to one electron paramagnetism) measurement, EPR spectroscopic investigation (tetrazine radical anion based EPR spectrum) as well as density functional theory based calculations. Complex [1](+) displays two successive one electron oxidation processes at 0.66 and 1.56 V versus Ag/AgCl which can be attributed to [{(p-cym)Ru(II)C}2(μ-bpytz˙(-))](+)/[{(p-cym)Ru(II)Cl}2(μ-bpytz)](2+) and [{(p-cym)Ru(II)Cl}2(μ-bpytz)](+)/[{(p-cym)Ru(III)Cl}2(μ-bpytz)](2+) processes (couples I and II), respectively. The reduction processes (couple III-couple V), which are irreversible, likely involve the successive reduction of the bridging ligand and the metal centres together with loss of the coordinated chloride ligands. UV-Vis-NIR spectroelectrochemical investigation reveals typical tetrazine radical anion containing bands for [1](+) and a strong absorption in the visible region for the oxidized form [1](2+), which can be assigned to a Ru(II) → π* (tetrazine) MLCT transition. The assignment of spectroscopic bands was confirmed by theoretical calculations. PMID:27435992

  14. Novel pseudo-delocalized anions for lithium battery electrolytes.

    PubMed

    Jónsson, Erlendur; Armand, Michel; Johansson, Patrik

    2012-05-01

    A novel anion concept of pseudo-delocalized anions, anions with distinct positive and negative charge regions, has been studied by a computer aided synthesis using DFT calculations. With the aim to find safer and better performing lithium salts for lithium battery electrolytes two factors have been evaluated: the cation-anion interaction strength via the dissociation reaction LiAn ⇌ Li(+) + An(-) and the anion oxidative stability via a vertical ionisation from anion to radical. Based on our computational results some of these anions have shown promise to perform well as lithium salts for modern lithium batteries and should be interesting synthetic targets for future research. PMID:22441354

  15. The Negative Ion Photoelectron Spectrum of Cyclopropane-1,2,3-Trione Radical Anion, (CO) 3 •– — A Joint Experimental and Computational Study

    SciTech Connect

    Chen, Bo; Hrovat, David A.; West, Robert; Deng, Shihu H. M.; Wang, Xue-Bin; Borden, Weston Thatcher

    2014-09-03

    Negative Ion Photoelectron (NIPE) spectra of the radical anion of cyclopropane-1,2,3-trione, (CO)3•-, have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show broadened bands, due to the short lifetimes of both the singlet and triplet states of (CO)3. The smaller intensity of the band with the lower electron binding energy suggests that the singlet is the ground state of (CO)3. From the NIPE spectra, the electron affinity (EA) and the singlet-triplet energy gap of (CO)3 are estimated to be, respectively, EA = 3.1 ± 0.1 eV and ΔEST = -14 ± 3 kcal/mol. High-level, (U)CCSD(T)/aug-cc-pVQZ//(U)CCSD(T)/aug-cc-pVTZ, calcu-lations give EA = 3.04 eV for the 1A1´ ground state of (CO)3 and ΔEST = -13.8 kcal/mol for the energy gap between the 1A1´ and 3A2 states, in excellent agreement with values from the NIPE spectra. In addition, simulations of the vibrational structures for formation of these states of (CO)3 from the 2A2'' state of (CO)3•- provide a good fit to the shapes of broad bands in the 266 nm NIPE spectrum. The NIPE spectrum of (CO)3•- and the analysis of the spectrum by high-quality electronic structure calculations demonstrate that NIPES can not only access and provide information about transition structures, but NIPES can also access and provide information about hilltops on potential energy surfaces.

  16. Highly Soluble Benzo[ghi]perylenetriimide Derivatives: Stable and Air-Insensitive Electron Acceptors for Artificial Photosynthesis.

    PubMed

    Chen, Hung-Cheng; Hsu, Chao-Ping; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2015-11-01

    A series of new benzo[ghi]perylenetriimide (BPTI) derivatives has been synthesized and characterized. These remarkably soluble BPTI derivatives show strong optical absorption in the range of λ=300-500 nm and have a high triplet-state energy of 1.67 eV. A cyanophenyl substituent renders BPTI such a strong electron acceptor (Ered =-0.11 V vs. the normal hydrogen electrode) that electron-trapping reactions with O2 and H2 O do not occur. The BPTI radical anion on a fluorine-doped tin oxide|TiO2 electrode is persistent up to tens of seconds (t1/2 =39 s) in air-saturated buffer solution. As a result of favorable packing, theoretical electron mobilities (10(-2) ∼10(-1) cm(2) V(-1) s(-1)) are high and similar to the experimental values observed for perylene diimide and C60 derivatives. Our studies show the potential of the cyanophenyl-modified BPTI compounds as electron acceptors in devices for artificial photosynthesis in water splitting that are also very promising nonfullerene electron-transport materials for organic solar cells. PMID:26395847

  17. Highly Soluble Benzo[ghi]perylenetriimide Derivatives: Stable and Air-Insensitive Electron Acceptors for Artificial Photosynthesis

    PubMed Central

    Chen, Hung-Cheng; Hsu, Chao-Ping; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2015-01-01

    A series of new benzo[ghi]perylenetriimide (BPTI) derivatives has been synthesized and characterized. These remarkably soluble BPTI derivatives show strong optical absorption in the range of λ=300–500 nm and have a high triplet-state energy of 1.67 eV. A cyanophenyl substituent renders BPTI such a strong electron acceptor (Ered=−0.11 V vs. the normal hydrogen electrode) that electron-trapping reactions with O2 and H2O do not occur. The BPTI radical anion on a fluorine-doped tin oxide|TiO2 electrode is persistent up to tens of seconds (t1/2=39 s) in air-saturated buffer solution. As a result of favorable packing, theoretical electron mobilities (10−2∼10−1 cm2 V−1 s−1) are high and similar to the experimental values observed for perylene diimide and C60 derivatives. Our studies show the potential of the cyanophenyl-modified BPTI compounds as electron acceptors in devices for artificial photosynthesis in water splitting that are also very promising nonfullerene electron-transport materials for organic solar cells. PMID:26395847

  18. Theoretical study of the superoxide anion assisted firefly oxyluciferin formation

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.

    2013-12-01

    This a theoretical Letter based on density functional theory, on the role of superoxide anion in firefly chemiluminescence in DMSO. We have found that this anion can attack luciferin radical molecules, thus forming a luciferin-like trianion. This latter molecule transfers an oxygen atom, which results in the formation of oxyluciferyl radical dianion and carbon dioxide molecules. Oxyluciferin is finally formed after an electron transfer from oxyluciferyl radical dianion to tert-BuOrad radical molecules. Thus, we have found evidence that firefly oxyluciferin can be formed in a energetically favorable superoxide anion-assisted reaction, without the need for the formation of firefly dioxetanone.

  19. High-level ab initio predictions for the ionization energy, electron affinity, and heats of formation of cyclopentadienyl radical, cation, and anion, C5H5/C5H5+/C5H5-.

    PubMed

    Lo, Po-Kam; Lau, Kai-Chung

    2014-04-01

    The ionization energy (IE), electron affinity (EA), and heats of formation (ΔH°f0/ΔH°f298) for cyclopentadienyl radical, cation, and anion, C5H5/C5H5(+)/C5H5(-), have been calculated by wave function-based ab initio CCSDT/CBS approach, which involves approximation to complete basis set (CBS) limit at coupled-cluster level with up to full triple excitations (CCSDT). The zero-point vibrational energy correction, core-valence electronic correction, scalar relativistic effect, and higher-order corrections beyond the CCSD(T) wave function are included in these calculations. The allylic [C5H5((2)A2)] and dienylic [C5H5((2)B1)] forms of cyclopentadienyl radical are considered: the ground state structure exists in the dienyl form and it is about 30 meV more stable than the allylic structure. Both structures are lying closely and are interconvertible along the normal mode of b2 in-plane vibration. The CCSDT/CBS predictions (in eV) for IE[C5H5(+)((3)A1')←C5H5((2)B1)] = 8.443, IE[C5H5(+)((1)A1)←C5H5((2)B1)] = 8.634 and EA[C5H5(-)((1)A1')←C5H5((2)B1)] = 1.785 are consistent with the respective experimental values of 8.4268 ± 0.0005, 8.6170 ± 0.0005, and 1.808 ± 0.006, obtained from photoelectron spectroscopic measurements. The ΔH°f0/ΔH°f298's (in kJ/mol) for C5H5/C5H5(+)/C5H5(-) have also been predicted by the CCSDT/CBS method: ΔH°f0/ΔH°f298[C5H5((2)B1)] = 283.6/272.0, ΔH°f0/ΔH°f298[C5H5(+)((3)A1')] = 1098.2/1086.9, ΔH°f0/ΔH°f298[C5H5(+)((1)A1)] = 1116.6/1106.0, and ΔH°f0/ΔH°f298[C5H5(-)((1)A1')] = 111.4/100.0. The comparisons between the CCSDT/CBS predictions and the experimental values suggest that the CCSDT/CBS procedure is capable of predicting reliable IE(C5H5)'s and EA(C5H5) with uncertainties of ± 17 and ± 23 meV, respectively. PMID:24621131

  20. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    NASA Astrophysics Data System (ADS)

    Matasović, Brunislav; Bonifačić, Marija

    2011-06-01

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.

  1. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  2. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  3. Covalent non-fused tetrathiafulvalene-acceptor systems.

    PubMed

    Pop, Flavia; Avarvari, Narcis

    2016-06-28

    Covalent donor-acceptor (D-A) systems have significantly contributed to the development of many organic materials and to molecular electronics. Tetrathiafulvalene (TTF) represents one of the most widely studied donor precursors and has been incorporated into the structure of many D-A derivatives with the objective of obtaining redox control and modulation of the intramolecular charge transfer (ICT), in order to address switchable emissive systems and to take advantage of its propensity to form regular stacks in the solid state. In this review, we focus on the main families of non-fused TTF-acceptors, which are classified according to the nature of the acceptor: nitrogen-containing heterocycles, BODIPY, perylenes and electron poor unsaturated hydrocarbons, as well as radical acceptors. We describe herein the most representative members of each family with a brief mention of their synthesis and a special focus on their D-A characteristics. Special attention is given to ICT and its modulation, fluorescence quenching and switching, photoconductivity, bistability and spin distribution by discussing and comparing spectroscopic and electrochemical features, photophysical properties, solid-state properties and theoretical calculations. PMID:27193500

  4. Tuning the Electron Acceptor in Phthalocyanine-Based Electron Donor-Acceptor Conjugates.

    PubMed

    Sekita, Michael; Jiménez, Ángel J; Marcos, M Luisa; Caballero, Esmeralda; Rodríguez-Morgade, M Salomé; Guldi, Dirk M; Torres, Tomás

    2015-12-21

    Zinc phthalocyanines (ZnPc) have been attached to the peri-position of a perylenemonoimide (PMI) and a perylenemonoanhydride (PMA), affording electron donor-acceptor conjugates 1 and 2, respectively. In addition, a perylene-monoimide-monoanhydride (PMIMA) has been connected to a ZnPc through its imido position to yield the ZnPc-PMIMA conjugate 10. The three conjugates have been studied for photoinduced electron transfer. For ZnPc-PMIMA 10, electron transfer occurs upon both ZnPc and PMIMA excitation, giving rise to a long-lived (340 ps) charge-separated state. For ZnPc-PMI 1 and ZnPc-PMA 2, stabilization of the radical ion pair states by using polar media is necessary. In THF, photoexcitation of either ZnPc or PMI/PMA produces charge-separated states with lifetimes of 375 and 163 ps, respectively. PMID:26593778

  5. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions.

    PubMed

    Chen, Long; Furukawa, Ko; Gao, Jia; Nagai, Atsushi; Nakamura, Toshikazu; Dong, Yuping; Jiang, Donglin

    2014-07-16

    Ordered one-dimensional open channels represent the typical porous structure of two-dimensional covalent organic frameworks (COFs). Here we report a general synthetic strategy for converting these open lattice structures into ordered donor-acceptor heterojunctions. A three-component topological design scheme was explored to prepare electron-donating intermediate COFs, which upon click reaction were transformed to photoelectric COFs with segregated donor-acceptor alignments, whereas electron-accepting buckyballs were spatially confined within the nanochannels via covalent anchoring on the channel walls. The donor-acceptor heterojunctions trigger photoinduced electron transfer and allow charge separation with radical species delocalized in the π-arrays, whereas the charge separation efficiency was dependent on the buckyball content. This new donor-acceptor strategy explores both skeletons and pores of COFs for charge separation and photoenergy conversion. PMID:24963896

  6. Formation of ions and radicals from icy grains in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.

    1992-01-01

    Two theoretical models for the formation of radicals from ice grains are examined to determine if this can explain the jets in comets. It is shown that the production rates for these radicals by the photolysis of molecules in the icy grains are not high enough to explain the jets. A new mechanism is proposed involving the release of cations and anions in the gas phase as the icy mantle surrounding the grains is evaporated. Solar visible radiation can then form radicals by photodetachment of the electrons from these anions. The production rate of radicals formed in this manner is in accord with the production rates of the observed radicals.

  7. Reactions of flavosemiquinone radicals in the presence of metal ions

    NASA Astrophysics Data System (ADS)

    Porkhun, V. I.; Sivko, A. N.; Porkhun, E. V.; Rakhimov, A. I.

    2014-06-01

    The rate constants of disproportionation of flavosemiquinone radicals were obtained by pulsed spectroscopy. The yield of the flavosemiquinone radical increased when Mohr's salt was introduced in the aqueous solutions of riboflavin. The spectral kinetic characteristics of complexes of flavosemiquinone radical anions with Zn2+ and Cd2+ ions were determined.

  8. Photocatalytic Anion Oxidation and Applications in Organic Synthesis.

    PubMed

    Hering, Thea; Meyer, Andreas Uwe; König, Burkhard

    2016-08-19

    Ions and radicals of the same kind differ by one electron only. The oxidation of many stable inorganic anions yields their corresponding highly reactive radicals, and visible light excitable photocatalysts can provide the required oxidation potential for this transformation. Air oxygen serves as the terminal oxidant, or cheap sacrificial oxidants are used, providing a very practical approach for generating reactive inorganic radicals for organic synthesis. We discuss in this perspective several recently reported examples: Nitrate radicals are obtained by one-electron photooxidation of nitrate anions and are very reactive toward organic molecules. The photooxidation of sulfinate salts yields the much more stable sulfone radicals, which smoothly add to double bonds. A two-electron oxidation of chloride anions to electrophilic chlorine species reacting with arenes in aromatic substitutions extends the method beyond radical reactions. The chloride anion oxidation proceeds via photocatalytically generated peracidic acid as the oxidation reagent. Although the number of reported examples of photocatalytically generated inorganic radical intermediates for organic synthesis is still small, future extension of the concept to other inorganic ions as radical precursors is a clear perspective. PMID:27355754

  9. Effects of electron acceptors and radical scavengers on nonchain radical nucleophilic substitution reactions

    SciTech Connect

    Xianman Zhang; Dilun Yang; Youcheng Liu )

    1993-01-01

    The yields of reaction products from thermal nucleophilic substitution reactions in dimethyl sulfoxide (DMSO) of six o- and p-nitrohalobenzenes with the sodium salt of ethyl [alpha]-cyanoacetate carbanion [Na[sup +][sup [minus

  10. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  11. Glucansucrase acceptor reactions with D-mannose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main acceptor product of glucansucrases with D-mannose has not previously been identified. We used glucansucrases that form water-insoluble a-D-glucans to produce increased yields of acceptor products from D-mannose, and identified the major product as 6-O-a-D-glucopyranosyl-D-mannose. Glucansuc...

  12. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  13. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-01

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state. PMID:26822564

  14. Anions in Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  15. Radical Hysterectomy

    MedlinePlus

    ... the base of her partner’s penis during intercourse. Orgasm after radical hysterectomy Women who have had a ... the surgery will affect their ability to have orgasms. This has not been studied a great deal, ...

  16. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    SciTech Connect

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  17. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  18. Mechanically Stabilized Tetrathiafulvalene Radical Dimers

    SciTech Connect

    Coskun, Ali; Spruell, Jason M.; Barin, Gokhan; Fahrenbach, Albert C.; Forgan, Ross S.; Colvin, Michael T.; Carmieli, Raanan; Benitez, Diego; Tkatchouk, Ekaterina; Friedman, Douglas C.; Sarjeant, Amy A.; Wasielewski, Michael R.; Goddard, William A.; Stoddart, J. Fraser

    2011-01-01

    Two donor-acceptor [3]catenanes—composed of a tetracationic molecular square, cyclobis(paraquat-4,4'-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components—have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called “molecular flask” under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV-vis-NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers.

  19. Catalytic Radical Domino Reactions in Organic Synthesis

    PubMed Central

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  20. Photoinitiated electron-transfer reactions of aromatic imides with phenylcyclopropanes. Formation of radical ion pair cycloadducts. Mechanism of the reaction

    SciTech Connect

    Somich, C.; Mazzocchi, P.H.; Edwards, M.; Morgan, T.; Ammon, H.L. )

    1990-04-27

    Few investigations have addressed the cyclization of a radical anion-radical cation pair resulting from photoinitiated electron transfer. One system taht meets the criteria necessary to observe this phenomenon is the acceptor-donor pair N-methylphthalimide (NMP) and phenylcyclopropane (PC). Irradiation of NMP or N-methyl-2,3-naphthalimide (NMN) in the presence of PC in acetonitrile gave rise to two spiro tetrahydrofuranyl lactams. The regiochemistry and relative stereochemistry of these compounds were determined by NMR techniques and X-ray crystallography. The mechanism of the reaction proceeds via electron transfer from PC to the imide followed by coupling of the radical ion pair at the 1,2-position of the carbonyl to the cyclopropane ring in a stepwise fashion. Fluorescence quenching experiments, reaction efficiency, and the free energy for electron transfer using various aromatic substituted phenylcyclopropanes provided strong evidence that electron transfer occurs. The reaction of cis-2-deutero-1-phenylcyclopropane (PC-d) with NMN established that cycloaddition is stepwise rather than concerted and that both syn and anti reactive intermediates are equally accessible.

  1. Acceptor Products of Alternansucrase with Gentiobiose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the presence of suitable acceptor molecules, dextransucrase makes a homologous series of oligosaccharides in which the isomers differ by a single glucosyl unit, whereas alternansucrase synthesizes one trisaccharide, two tetrasaccharides, etc. Previously, we showed that alternansucrase only forms...

  2. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  3. Ion-radical intermediates of the radiation-chemical transformations of organic carbonates

    NASA Astrophysics Data System (ADS)

    Shiryaeva, Ekaterina S.; Sosulin, Ilya S.; Saenko, Elizaveta V.; Feldman, Vladimir I.

    2016-07-01

    The spectral features and reactions of ion-radical intermediates produced from organic carbonates in low-temperature matrices were investigated by EPR spectroscopy and quantum-chemical calculations. It was shown that radical cations of diethyl carbonate and dimethyl carbonate underwent intramolecular hydrogen transfer to yield alkyl-type species, as was suggested previously. Meanwhile, radical cation of EC demonstrates a ring cleavage even at 77 K, while radical cation of PC is probably intrinsically stable and undergo an ion-molecule reaction with a neighboring neutral molecule in dimers or associates. Radical anions were obtained in glassy matrices of diethyl ether or perdeuteroethanol. The radical anions of linear carbonates show photoinduced fragmentation to yield the corresponding alkyl radicals; such process may also occur directly under radiolysis. Radical anions of cyclic carbonates are relatively stable and yield only trace amounts of fragmentation products under similar conditions.

  4. Reactive intermediates: Radicals with multiple personalities

    NASA Astrophysics Data System (ADS)

    Forbes, Malcolm D. E.

    2013-06-01

    A combined theoretical and experimental approach has revealed that radicals can be significantly stabilized by the presence of a remote anionic site in the same molecule. This finding has implications for understanding and potentially controlling the reactivity of these important reactive intermediates.

  5. Anion solvation in alcohols

    SciTech Connect

    Jonah, C.D.; Xujia, Zhang; Lin, Yi

    1996-03-01

    Anion solvation is measured in alcohols using pump-probe pulse radiolysis and the activation energy of solvation is determined. Solvation of an anion appears to be different than excited state solvation. The continuum dielectric model does not appear to explain the results.

  6. Chloride-Anion-Templated Synthesis of a Strapped-Porphyrin-Containing Catenane Host System

    PubMed Central

    Brown, Asha; Langton, Matthew J; Kilah, Nathan L; Thompson, Amber L; Beer, Paul D

    2015-01-01

    The synthesis, structure and anion-recognition properties of a new strapped-porphyrin-containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor–acceptor and coordinative pyridine–zinc interactions. The [2]catenane incorporates a three-dimensional, hydrogen-bond-donating anion-binding pocket; solid-state structural analysis of the catenane⋅chloride complex reveals that the chloride anion is encapsulated within the catenane’s interlocked binding cavity through six convergent CH⋅⋅⋅⋅Cl and NH⋅⋅⋅Cl hydrogen-bonding interactions and solution-phase 1H NMR titration experiments demonstrate that this complementary hydrogen-bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution. PMID:26508679

  7. Chloride-Anion-Templated Synthesis of a Strapped-Porphyrin-Containing Catenane Host System.

    PubMed

    Brown, Asha; Langton, Matthew J; Kilah, Nathan L; Thompson, Amber L; Beer, Paul D

    2015-12-01

    The synthesis, structure and anion-recognition properties of a new strapped-porphyrin-containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor-acceptor and coordinative pyridine-zinc interactions. The [2]catenane incorporates a three-dimensional, hydrogen-bond-donating anion-binding pocket; solid-state structural analysis of the catenane⋅chloride complex reveals that the chloride anion is encapsulated within the catenane's interlocked binding cavity through six convergent CH⋅⋅⋅⋅Cl and NH⋅⋅⋅Cl hydrogen-bonding interactions and solution-phase (1) H NMR titration experiments demonstrate that this complementary hydrogen-bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution. PMID:26508679

  8. The copper-catalysed Suzuki-Miyaura coupling of alkylboron reagents: disproportionation of anionic (alkyl)(alkoxy)borates to anionic dialkylborates prior to transmetalation.

    PubMed

    Basnet, Prakash; Thapa, Surendra; Dickie, Diane A; Giri, Ramesh

    2016-09-25

    We report the first example of Cu(I)-catalysed coupling of alkylboron reagents with aryl and heteroaryl iodides that affords products in good to excellent yields. Preliminary mechanistic studies with alkylborates indicate that the anionic (alkoxy)(alkyl)borates, generated from alkyllithium and alkoxyboron reagents, undergo disproportionation to anionic dialkylborates and that both anionic alkylborates are active for transmetalation to a Cu(I)-catalyst. Results from a radical clock experiment and the Hammett plot imply that the reaction likely proceeds via a non-radical pathway. PMID:27540605

  9. Combination of organotrifluoroborates with photoredox catalysis marking a new phase in organic radical chemistry.

    PubMed

    Koike, Takashi; Akita, Munetaka

    2016-08-01

    Combination of organotrifluoroborates and visible-light-driven photoredox catalysis, both of which have attracted the attention of synthetic chemists, marks a new phase in the field of organic radical chemistry. We have developed photoredox-catalyzed radical reactions with organotrifluoroborates, which turn out to serve not only as a source of organic radicals but also as radical acceptors. The first part of this Perspective deals with the generation of organic radicals from organotrifluoroborates, and the latter part describes addition of the CF3 radical to alkenyltrifluoroborates. The good chemistry between organoborates and photoredox catalysis and its future will be discussed. PMID:27282517

  10. XeF(2) /fluoride acceptors as versatile one-electron oxidants.

    PubMed

    Poleschner, Helmut; Seppelt, Konrad

    2013-12-01

    No phlogiston but xenon is released when XeF2 /F(-) acceptors act as new one-electron oxidants. F(-) acceptors are Lewis acids BF3 , B(C6 F5 )3 , and Al{OC(CF3 )3 }3 , and silyl derivatives TfOSiMe3 , Tf2 NSiMe3 , Me3 Si(+)  B(C6 F5 )4 (-) , and Me3 Si(+)  CHB11 Cl11 (-) . The anions BF4 (-) , TfO(-) , Tf2 N(-) , FB(C6 F5 )3 (-) , FAl{OC(CF3 )3 }3 (-) , B(C6 F5 )4 (-) , or CHB11 Cl11 (-) can be introduced into oxidation products of R2 E2 (E=S, Se, Te), [FeCp2 ], [(FeCpS)4 ], tetrathiafulvalene, thianthrene, and (2,4-Br2 C6 H3 )3 N. PMID:24127390

  11. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  12. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  13. Roaming Radicals

    NASA Astrophysics Data System (ADS)

    Bowman, Joel M.; Shepler, Benjamin C.

    2011-05-01

    Roaming is a recently verified unusual pathway to molecular products from unimolecular dissociation of an energized molecule. Here we present the evidence for this pathway for H2CO and CH3CHO. Theoretical analysis shows that this path visits the plateau region of the potential energy surface near dissociation to radical products. It is not clear whether roaming is a distinct isolated pathway, in addition to the conventional one via the well-known molecular saddle-point transition state. Evidence is presented to suggest that the two pathways may originate from a single, but highly complicated, dividing surface. Other examples of unusual reaction dynamics are also reviewed.

  14. Electron photoejection in carbanions. Progress report, July 1, 1979-June 30, 1980. [Photomethylation of triphenylmethyl anion in DMSO

    SciTech Connect

    Tolbert, L.M.

    1980-01-01

    A systematic study was completed of the mechanism of photomethylation of triphenylmethyl anion in dimethyl sulfoxide. The mechanism includes the intervention of an electron transfer as the primary process, followed by a radical + carbanion reaction to lead to a radical anion, which ultimately restores its odd electron to the original triphenylmethyl radical formed. The photochemistry is extremely well behaved; the quantum yield for the process is concentration independent, no chain processes are initiated, and the photoproducts are concentration invariant. The quantum yield of disappearance of triphenylmethyl anion, which is constant from ca. 400 to 600 nm, shows a remarkable increase at shorter wavelengths, which may represent the onset of photoelectrons.

  15. Anion-π catalysis.

    PubMed

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-01

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  16. Isolation of Hypervalent Group-16 Radicals and Their Application in Organic-Radical Batteries.

    PubMed

    Imada, Yasuyuki; Nakano, Hideyuki; Furukawa, Ko; Kishi, Ryohei; Nakano, Masayoshi; Maruyama, Hitoshi; Nakamoto, Masaaki; Sekiguchi, Akira; Ogawa, Masahiro; Ohta, Toshiaki; Yamamoto, Yohsuke

    2016-01-20

    Using a newly prepared tridentate ligand, we isolated hypervalent sulfur and selenium radicals for the first time and characterized their structures. X-ray crystallography, electron spin resonance spectroscopy, and density functional theory calculations revealed a three-coordinate hypervalent structure. Utilizing the reversible redox reactions between hypervalent radicals and the corresponding anions bearing Li(+), we developed organic radical batteries with these compounds as cathode-active materials. Furthermore, an all-radical battery, with these compounds as the cathode and a silyl radical as the anode, was developed that exhibited a practical discharge potential of ∼ 1.8 V and stable cycle performance, demonstrating the potential of these materials for use in metal-free batteries that can replace conventional Li-ion batteries where Li is used in the metal form. PMID:26721786

  17. The Electronic Spectrum of the Fulvenallenyl Radical.

    PubMed

    Chakraborty, Arghya; Fulara, Jan; Maier, John P

    2016-01-01

    The fulvenallenyl radical was produced in 6 K neon matrices after mass-selective deposition of C7H5(-) and C7H5(+) generated from organic precursors in a hot cathode ion source. Absorption bands commencing at λ=401.3 nm were detected as a result of photodetachment of electrons from the deposited C7H5(-) and also by neutralization of C7H5(+) in the matrix. The absorption system is assigned to the 1 (2)B1 ←X (2)B1 transition of the fulvenallenyl radical on the basis of electronic excitation energies calculated with the MS-CASPT2 method. The vibrational excitation bands detected in the spectrum concur with the structure of the fulvenallenyl radical. Employing DFT calculations, it is found that the fulvenallenyl anion and its radical are the global minima on the potential energy surface among plausible structures of C7H5. PMID:26593635

  18. Accumulation and evolution of the spatial distribution of radicals in vitreous propanol in a glow discharge

    SciTech Connect

    Kurshev, V.V.; Raitsimring, A.M.

    1992-09-01

    Analysis of the dipole broadening of an EPR line is used to explain the change in the spatial distribution of radicals formed in the plasma of a high-frequency glow discharge on the surface of vitreous propanol, which contains an electron acceptor. The contributions of various mechanisms for radical formation are evaluated. A model is proposed to describe both the accumulation and the evolution of the stabilization region of radicals in the plasmolysis process. 13 refs., 4 figs.

  19. Variable temperature EPR studies of Illinois No. 6 coal treated with donor and acceptor molecules

    SciTech Connect

    Thompson, R.L.; Rothenberger, K.S.; Retcofsky, H.L.

    1996-10-01

    Variable, temperature EPR studies of Illinois No. 6 coal, its pyridine extract, and samples of each after treatment with known donor and acceptor molecules are reported. The purpose of the study was to explore the origin of the EPR signals near g = 2 and to assess the contribution of certain non-bonded interactions in coal. Curie Law behavior is exhibited for each sample indicating that the EPR signals are dominated by doublet state radicals. No evidence for thermally accessible, low-lying triplet states, such as those found in some charge-transfer complexes, was found. Infrared spectroscopy reveals, however, that some electron density is transferred from the coal after treatment with acceptors such as TCNQ and TCNE. EPR studies of chromat graphic fractions of the pyridine extract (approximately five percent of the whole coal), both untreated and treated with TTF and TCNE, indicated some minor contributions of low-lying triplet states.

  20. Halogen bonding anion recognition.

    PubMed

    Brown, Asha; Beer, Paul D

    2016-07-01

    A halogen bond is an attractive non-covalent interaction between an electrophilic region in a covalently bonded halogen atom and a Lewis base. While these interactions have long been exploited as a tool in crystal engineering their powerful ability to direct supramolecular self-assembly and molecular recognition processes in solution has, until recently, been overlooked. During the last decade however an ever-increasing number of studies on solution-phase halogen-bond-mediated anion recognition processes has emerged. This Feature Article summarises advancements which have been made thus far in this rapidly developing research area. We survey the use of iodoperfluoroarene, haloimidazolium and halotriazole/triazolium halogen-bond-donor motifs in anion receptor design, before providing an account of our research into the application of mechanically interlocked rotaxane and catenane frameworks as halogen bonding anion host systems. PMID:27273600

  1. Vanadogermanate cluster anions.

    PubMed

    Whitfield, T; Wang, X; Jacobson, A J

    2003-06-16

    Three novel vanadogermanate cluster anions have been synthesized by hydrothermal reactions. The cluster anions are derived from the (V(18)O(42)) Keggin cluster shell by substitution of V=O(2+) "caps" by Ge(2)O(OH)(2)(4+) species. In Cs(8)[Ge(4)V(16)O(42)(OH)(4)].4.7H(2)O, 1, (monoclinic, space group C2/c (No. 15), Z = 8, a = 44.513(2) A, b = 12.7632(7) A, c = 22.923(1) A, beta = 101.376(1) degrees ) and (pipH(2))(4)(pipH)(4)[Ge(8)V(14)O(50).(H(2)O)] (pip = C(4)N(2)H(10)), 2 (tetragonal, space group P4(2)/nnm (No. 134), Z = 2, a = 14.9950(7) A, c = 18.408(1) A), two and four VO(2+) caps are replaced, respectively, and each cluster anion encapsulates a water molecule. In K(5)H(8)Ge(8)V(12)SO(52).10H(2)O, 3, (tetragonal, space group I4/m (No. 87), Z = 2, a = 15.573(1) A, c = 10.963(1) A), four VO(2+) caps are replaced by Ge(2)O(OH)(2)(4+) species, and an additional two are omitted. The cluster ion in 3 contains a sulfate anion disordered over two positions. The cluster anions are analogous to the vanadoarsenate anions [V(18)(-)(n)()As(2)(n)()O(42)(X)](m)(-) (X = SO(3), SO(4), Cl; n = 3, 4) previously reported. PMID:12793808

  2. Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments.

    PubMed

    Parrondo, Javier; Wang, Zhongyang; Jung, Min-Suk J; Ramani, Vijay

    2016-07-20

    Anion exchange membranes (AEM) based on polyphenylene oxide (PPO) suffered quaternary-ammonium-cation-site degradation in alkaline environments. Surprisingly, the degradation rate was considerably faster in the presence of molecular oxygen. We postulated that the AEM cation-site catalyzes the reduction of dioxygen by hydroxide ions to yield the superoxide anion radical and the highly reactive hydroxyl free radical. We substantiated our hypothesis by using a phosphorous-containing spin trap (5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide) to detect the adducts for both free radicals in situ using (31)P-NMR spectroscopy. PMID:27381009

  3. Electro membrane extraction of biological anions with ion chromatographic analysis.

    PubMed

    Tan, Tsze Yin; Basheer, Chanbasha; Ng, Kai Perng; Lee, Hian Kee

    2012-08-20

    A simple and sensitive single step electro membrane extraction (EME) procedure was demonstrated for biological organic anions with determination by ion chromatography (IC). Nitrite, adipate, oxalate, iodide, fumarate, thiocyanate and perchlorate were extracted from aqueous donor solutions, across a supported liquid membrane (SLM) consisting of methanol impregnated in the walls of a porous polypropylene membrane bag and into an alkaline aqueous acceptor solution in the lumen of the propylene envelope by the application of potential of 12V applied across the SLM. The acceptor solution was analyzed by IC. Parameters affecting the extraction performance such as type of SLM, extraction time, pH of the donor and acceptor solution, and extraction voltage were studied. The most favorable EME conditions were methanol as the SLM, extraction time of 5min, pH of acceptor and sample solutions of 12 and 4, respectively, and a voltage of 12V. Portable 12V batteries were used in the study. Under these optimized conditions, all anions had enrichment factors ranging from 3.6 to 36.2 with relative standard deviations (n=3) of between 6.6 and 17.5%. Good linearity ranging from 0.1 to 10μgmL(-1) with coefficients of correlation (r) of between 0.9981 and 0.9996 were obtained. The limits of detection of the EME-IC method were from 0.01 to 0.14μgmL(-1). The developed methodology was applied to amniotic fluid samples to evaluate the feasibility of the method for real applications. PMID:22819047

  4. ION CHROMATOGRAPHY OF ANIONS

    EPA Science Inventory

    A Dionex Model 10 Ion Chromatograph was evaluated for the measurement of anionic species in water. The theoretical effect of hydrogen ion activity (pH) on the elution time of phosphate and arsenate was tested and empirical selectivity coefficients were determined for the major pr...

  5. Study of radical pairs generated by photoreduction of anthraquinone-2,6-disulfonic acid with thymine by Fourier transform electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Geimer, J.; Beckert, D.

    1998-05-01

    Using laser photolysis at 308 nm and FT-EPR, the triplet sensitized electron transfer from thymine to 9,10-anthraquinone-2,6-disulfonate in aqueous solution was studied. The anthraquinone radical anion and the deprotonated thymine-1-yl radical are spin-polarized by the CIDEP triplet mechanism and radical pair mechanism. The structure of the anthraquinone radical anion is strongly influenced by the pH of the solution. In weak acidic solution the radical anion dominates whereas the p K of the radical protonation was determined to be 3.2. The deprotonated thymine-1-yl radical shows two different radical pair polarization patterns which are distinguished by the phase of the polarization. This unusual behavior can be attributed to two different states in the primary radical pair.

  6. Electronically excited states of PANH anions.

    PubMed

    Theis, Mallory L; Candian, Alessandra; Tielens, Alexander G G M; Lee, Timothy J; Fortenberry, Ryan C

    2015-06-14

    The singly deprotonated anion derivatives of nitrogenated polycyclic aromatic hydrocarbons (PANHs) are investigated for their electronically excited state properties. These include single deprotonation of the two unique arrangements of quinoline producing fourteen different isomers. This same procedure is also undertaken for single deprotonation of the three nitrogenation isomers of acridine and the three of pyrenidine. It is shown quantum chemically that the quinoline-class of PANH anion derivatives can only produce a candidate dipole-bound excited state each, a state defined as the interaction of an extra electron with the dipole moment of the corresponding neutral. However, the acridine- and pyrenidine-classes possess valence excited states as well as the possible dipole-bound excited states where the latter is only possible if the dipole moment is sufficiently large to retain the extra electron; the valence excitation is independent of the radical dipolar strength. As a result, the theoretical vertically computed electronic spectra of deprotonated PANH anion derivatives is fairly rich in the 1.5 eV to 2.5 eV range significantly opening the possibilities for these molecules to be applied to longer wavelength studies of visible and near-IR spectroscopy. Lastly, the study of these systems is also enhanced by the inclusion of informed orbital arrangements in a simply constructed basis set that is shown to be more complete and efficient than standard atom-centered functions. PMID:25975430

  7. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions.

    PubMed

    Wang, Lai-Sheng

    2015-07-28

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES. PMID:26233095

  8. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    SciTech Connect

    Wang, Lai-Sheng

    2015-07-28

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.

  9. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  10. Studies of oxide anions

    NASA Astrophysics Data System (ADS)

    Castleman, A. W., Jr.

    1991-06-01

    Several metal and metal oxide anion sources were used to investigate the formation and reactivity of species of relevance to the AFGL program. A new class of reactions were identified between anions of the form H(x)M(y)O(z) for several metals including M=W, Ta, Ti, Mo, and HCl. The reactions have analogy to acid-base reactions. In another series of experiments, reactions of Al(n)(-), and these clusters bound with V and or Nb, with O2 were investigated. It was found that the Jellium model, though by no means a compendious concept, provides a good guide to the electronic structure of clusters and their general patterns of reactivity.

  11. Picosecond Control of Photogenerated Radical Pair Lifetimes Using a Stable Third Radical.

    PubMed

    Horwitz, Noah E; Phelan, Brian T; Nelson, Jordan N; Krzyaniak, Matthew D; Wasielewski, Michael R

    2016-05-12

    Photoinduced electron transfer reactions in organic donor-acceptor systems leading to long-lived radical ion pairs (RPs) have attracted broad interest for their potential applications in fields as diverse as solar energy conversion and spintronics. We present the photophysics and spin dynamics of an electron donor - electron acceptor - stable radical system consisting of a meta-phenylenediamine (mPD) donor covalently linked to a 4-aminonaphthalene-1,8-dicarboximide (ANI) electron-accepting chromophore as well as an α,γ-bisdiphenylene-β-phenylallyl (BDPA) stable radical. Selective photoexcitation of ANI produces the BDPA-mPD(+•)-ANI(-•) triradical in which the mPD(+•)-ANI(-•) RP spins are strongly exchange coupled. The presence of BDPA is found to greatly increase the RP intersystem crossing rate from the initially photogenerated BDPA-(1)(mPD(+•)-ANI(-•)) to BDPA-(3)(mPD(+•)-ANI(-•)), resulting in accelerated RP recombination via the triplet channel to produce BDPA-mPD-(3*)ANI as compared to a reference molecule lacking the BDPA radical. The RP recombination rates observed are much faster than those previously reported for weakly coupled triradical systems. Time-resolved EPR spectroscopy shows that this process is also associated with strong spin polarization of the stable radical. Overall, these results show that RP intersystem crossing rates can be strongly influenced by stable radicals nearby strongly coupled RP systems, making it possible to use a third spin to control RP lifetimes down to a picosecond time scale. PMID:27108738

  12. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-01-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  13. Anion permselective membrane

    NASA Astrophysics Data System (ADS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-07-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  14. Photoinduced Electron Transfer in DNA: Charge Shift Dynamics Between 8-Oxo-Guanine Anion and Adenine.

    PubMed

    Zhang, Yuyuan; Dood, Jordan; Beckstead, Ashley A; Li, Xi-Bo; Nguyen, Khiem V; Burrows, Cynthia J; Improta, Roberto; Kohler, Bern

    2015-06-18

    Femtosecond time-resolved IR spectroscopy is used to investigate the excited-state dynamics of a dinucleotide containing an 8-oxoguanine anion at the 5'-end and neutral adenine at the 3'-end. UV excitation of the dinucleotide transfers an electron from deprotonated 8-oxoguanine to its π-stacked neighbor adenine in less than 1 ps, generating a neutral 8-oxoguanine radical and an adenine radical anion. These species are identified by the excellent agreement between the experimental and calculated IR difference spectra. The quantum efficiency of this ultrafast charge shift reaction approaches unity. Back electron transfer from the adenine radical anion to the 8-oxguanine neutral radical occurs in 9 ps, or approximately 6 times faster than between the adenine radical anion and the 8-oxoguanine radical cation (Zhang, Y. et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 11612-11617). The large asymmetry in forward and back electron transfer rates is fully rationalized by semiclassical nonadiabatic electron transfer theory. Forward electron transfer is ultrafast because the driving force is nearly equal to the reorganization energy, which is estimated to lie between 1 and 2 eV. Back electron transfer is highly exergonic and takes place much more slowly in the Marcus inverted region. PMID:25660103

  15. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS₂ Nanosheets.

    PubMed

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-01-01

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening. PMID:27304956

  16. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS2 Nanosheets

    PubMed Central

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-01-01

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS2) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS2 is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS2 and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS2 can sense S1 nuclease with a low detection limit of 5 × 10−6 U/mL. Additionally, this method is cost-effective by using affordable WS2 as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening. PMID:27304956

  17. Antioxidant and radical scavenging properties of curcumin.

    PubMed

    Ak, Tuba; Gülçin, Ilhami

    2008-07-10

    Curcumin (diferuoyl methane) is a phenolic compound and a major component of Curcuma longa L. In the present paper, we determined the antioxidant activity of curcumin by employing various in vitro antioxidant assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH*) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by the Fe(3+)-Fe(2+) transformation method, superoxide anion radical scavenging by the riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe(2+)) chelating activities. Curcumin inhibited 97.3% lipid peroxidation of linoleic acid emulsion at 15 microg/mL concentration (20 mM). On the other hand, butylated hydroxyanisole (BHA, 123 mM), butylated hydroxytoluene (BHT, 102 mM), alpha-tocopherol (51 mM) and trolox (90 mM) as standard antioxidants indicated inhibition of 95.4, 99.7, 84.6 and 95.6% on peroxidation of linoleic acid emulsion at 45 microg/mL concentration, respectively. In addition, curcumin had an effective DPPH* scavenging, ABTS*(+) scavenging, DMPD*(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. According to the present study, curcumin can be used in the pharmacological and food industry because of these properties. PMID:18547552

  18. Electron attachment to fluorocarbon radicals

    NASA Astrophysics Data System (ADS)

    Shuman, Nicholas

    2014-10-01

    Most plasma environments contain populations of short-lived species such as radicals, the chemistry of which can have significant effects on the overall chemistry of the system. However, few experimental measurements of the kinetics of electron attachment to radicals exist due to the inherent difficulties of working with transient species. Calculations from first principles have been attempted, but are arduous and, because electron attachment is so sensitive to the specifics of the potential surface, their accuracy has not been established. Electron attachment to small fluorocarbon radicals is particularly important, as the data are needed for predictive modeling of plasma etching of semiconductor materials, a key process in the industrial fabrication of microelectronics. We have recently developed a novel flowing afterglow technique to measure several types of otherwise difficult to study plasma processes, including thermal electron attachment to radicals. Variable Electron and Neutral Density Attachment Mass Spectrometry (VENDAMS) exploits dissociative electron attachment in a weakly ionized plasma as a radical source. Here, we apply VENDAMS to a series of halofluorocarbon precursors in order to measure the kinetics of thermal electron attachment to fluorocarbon radicals. Results are presented for CF2, CF3, C2F5,C2F3,1-C3F7, 2-C3F7, and C3F5 from 300 K to 900 K. Both the magnitude and the temperature dependences of rate coefficients as well as product branching between associative and dissociative attachment are highly system specific; however, thermal attachment to all species is inefficient, never exceeding 5% of the collision rate. The data are analyzed using a recently developed kinetic modeling approach, which uses extended Vogt-Wannier theory as a starting point, accounts for dynamic effects such as coupling between the electron and nuclear motions through empirically validated functional forms, and finally uses statistical theory to determine the fate of

  19. Low-frequency fourier transform infrared spectroscopy of the oxygen-evolving and quinone acceptor complexes in photosystem II.

    PubMed

    Chu, H A; Gardner, M T; O'Brien, J P; Babcock, G T

    1999-04-01

    The low-frequency (<1000 cm-1) region of the IR spectrum has the potential to provide detailed structural and mechanistic insight into the photosystem II/oxygen evolving complex (PSII/OEC). A cluster of four manganese ions forms the core of the OEC and diagnostic manganese-ligand and manganese-substrate modes are expected to occur in the 200-900 cm-1 range. However, water also absorbs IR strongly in this region, which has limited previous Fourier transform infrared (FTIR) spectroscopic studies of the OEC to higher frequencies (>1000 cm-1). We have overcome the technical obstacles that have blocked FTIR access to low-frequency substrate, cofactor, and protein vibrational modes by using partially dehydrated samples, appropriate window materials, a wide-range MCT detector, a novel band-pass filter, and a closely regulated temperature control system. With this design, we studied PSII/OEC samples that were prepared by brief illumination of O2 evolving and Tris-washed preparations at 200 K or by a single saturating laser flash applied to O2 evolving and inhibited samples at 250 K. These protocols allowed us to isolate low-frequency modes that are specific to the QA-/QA and S2/S1 states. The high-frequency FTIR spectra recorded for these samples and parallel EPR experiments confirmed the states accessed by the trapping procedures we used. In the S2/S1 spectrum, we detect positive bands at 631 and 602 cm-1 and negative bands at 850, 679, 664, and 650 cm-1 that are specifically associated with these two S states. The possible origins of these IR bands are discussed. For the low-frequency QA-/QA difference spectrum, several modes can be assigned to ring stretching and bending modes from the neutral and anion radical states of the quinone acceptor. These results provide insight into the PSII/OEC and demonstrate the utility of FTIR techniques in accessing low-frequency modes in proteins. PMID:10194375

  20. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1980-01-01

    The efforts on the synthesis of polymer anion redox membranes were mainly concentrated in two areas, membrane development and membrane fabrication. Membrane development covered the preparation and evaluation of experimental membranes systems with improved resistance stability and/or lower permeability. Membrane fabrication covered the laboratory scale production of prime candidate membranes in quantities of up to two hundred and sizes up to 18 inches x 18 inches (46 cm x 46 cm). These small (10 in x 11 in) and medium sized membranes were mainly for assembly into multicell units. Improvements in processing procedures and techniques for preparing such membrane sets lifted yields to over 90 percent.

  1. Quantum computing with acceptor spins in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin–orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin–orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin–orbit induced dipole–dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin–orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin–orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  2. Fluorescence of excited charge-transfer complexes and absolute dynamics of radical-ion pairs in acetonitrile

    SciTech Connect

    Gould, I.R.; Farid, S.

    1992-09-17

    An analysis of the dynamics of the radical-ion pairs of a series of 2,6,9,10-tetracyanoanthracene acceptor/alkylbenzene donor systems in acetonitrile is described in this paper. This analysis is carried out by using a combination of time-resolved emission and absorption spectroscopies and measurements of {Phi} {sub ions} from the contact radical-ion pair (CRIP) and the solvent-separated radical-ion pair (SSRIP).

  3. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    PubMed

    Fiser, Béla; Jójárt, Balázs; Csizmadia, Imre G; Viskolcz, Béla

    2013-01-01

    Non-reactive, comparative (2 × 1.2 μs) molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule) and hydroxyl radical (OH(•), guest molecule). From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons) with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(•) complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels. PMID:24040010

  4. Radical scavenging ability of some compounds isolated from Piper cubeba towards free radicals.

    PubMed

    Aboul-Enein, Hassan Y; Kładna, Aleksandra; Kruk, Irena

    2011-01-01

    The purpose of this study was to identify the antioxidant activity of 16 compounds isolated from Piper cubeba (CNCs) through the extent of their capacities to scavenge free radicals, hydroxyl radical (HO(•)), superoxide anion radical O•(2)(-) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)), in different systems. Electron paramagnetic resonance (EPR) and 5,5-dimethyl-1-pyrroline-N-oxide, DMPO, as the spin trap, and chemiluminescence techniques were applied. Using the Fenton-like reaction [Fe(II) + H(2)O(2)], CNCs were found to inhibit DMPO-OH radical formation ranging from 5 to 57% at 1.25 mmol L(-1) concentration. The examined CNCs also showed a high DPPH antiradical activity (ranging from 15 to 99% at 5 mmol L(-1) concentration). Furthermore, the results indicated that seven of the 16 tested compounds may catalyse the conversion of superoxide radicals generated in the potassium superoxide/18-crown-6 ether system, thus showing superoxide dismutase-like activity. The data obtained suggest that radical scavenging properties of CNCs might have potential application in many plant medicines. PMID:21681910

  5. (Bi)sulfite Oxidation by Copper,Zinc-Superoxide Dismutase: Sulfite-Derived, Radical-Initiated Protein Radical Formation

    PubMed Central

    Ranguelova, Kalina; Bonini, Marcelo G.; Mason, Ronald P.

    2010-01-01

    Background Sulfur dioxide, formed during the combustion of fossil fuels, is a major air pollutant near large cities. Its two ionized forms in aqueous solution, sulfite and (bi)sulfite, are widely used as preservatives and antioxidants to prevent food and beverage spoilage. (Bi)sulfite can be oxidized by peroxidases to form the very reactive sulfur trioxide anion radical (•SO3−). This free radical further reacts with oxygen to form the peroxymonosulfate anion radical (−O3SOO•) and sulfate anion radical (SO4• −). Objective To explore the critical role of these radical intermediates in further oxidizing biomolecules, we examined the ability of copper,zinc-superoxide dismutase (Cu,Zn-SOD) to initiate this radical chain reaction, using human serum albumin (HSA) as a model target. Methods We used electron paramagnetic resonance, optical spectroscopy, oxygen uptake, and immuno-spin trapping to study the protein oxidations driven by sulfite-derived radicals. Results We found that when Cu,Zn-SOD reacted with (bi)sulfite, •SO3− was produced, with the concomitant reduction of SOD-Cu(II) to SOD-Cu(I). Further, we demonstrated that sulfite oxidation mediated by Cu,Zn-SOD induced the formation of radical-derived 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin-trapped HSA radicals. Conclusions The present study suggests that protein oxidative damage resulting from (bi)sulfite oxidation promoted by Cu,Zn-SOD could be involved in oxidative damage and tissue injury in (bi)sulfite-exacerbated allergic reactions. PMID:20348042

  6. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1982-01-01

    The synthesis and fabrication of polymeric anion permselective membranes for redox systems are discussed. Variations of the prime candidate anion membrane formulation to achieve better resistance and/or lower permeability were explored. Processing parameters were evaluated to lower cost and fabricate larger sizes. The processing techniques to produce more membranes per batch were successfully integrated with the fabrication of larger membranes. Membranes of about 107 cm x 51 cm were made in excellent yield. Several measurements were made on the larger sample membranes. Among the data developed were water transport and transference numbers for these prime candidate membranes at 20 C. Other work done on this system included characterization of a number of specimens of candidate membranes which had been returned after service lives of up to sixteen months. Work with new polymer constituents, with new N.P.'s, catalysts and backing fabrics is discussed. Some work was also done to evaluate other proportions of the ingredients of the prime candidate system. The adoption of a flow selectivity test at elevated temperature was explored.

  7. Pseudorotation in fullerene anions

    NASA Astrophysics Data System (ADS)

    Dunn, Janette L.; Hands, Ian D.; Bates, Colin A.

    2007-07-01

    Jahn-Teller (JT) problems are often characterised by an adiabatic potential energy surface (APES) containing either a set of isoenergetic wells or a trough of equivalent-energy points, which may be warped by higher-order coupling terms or anisotropic effects. In all three cases, the JT effect will be dynamic. Either tunnelling between the wells or rotation (of a distortion) around the trough will restore the original symmetry of the system. This motion is referred to as pseudorotation. It should be possible to observe a JT system in a distorted geometry if measurements are made on a sufficiently short timescale. In various cubic systems, this timescale has been calculated to be the order of picoseconds. Such timescales are accessible using modern methods of ultrafast spectroscopy. Measurements of pseudorotation rates can lead to important information on the strength and nature of the JT coupling present. We will present analytical calculations that allow the rate of pseudorotation to be determined in terms of the vibronic coupling parameters. We will show how these results can be applied to E ⊗ e systems and then to the more complicated system applicable to C60- anions. This is of particular interest because of the high icosahedral symmetry of fullerene ions and also because of the many potential uses of materials containing these ions. We conclude by outlining experiments that should be capable of measuring pseudorotation in C 60 anions.

  8. Photochemical generation, isomerization, and oxygenation of stilbene cation radicals

    SciTech Connect

    Lewis, F.D.; Bedell, A.M.; Dykstra, R.E.; Elbert, J.E. ); Gould, I.R.; Farid, S. )

    1990-10-24

    The cation radicals of cis- and trans-stilbene and several of their ring-substituted derivatives have been generated in solution directly by means of pulsed-laser-induced electron transfer to singlet cyanoanthracenes or indirectly via electron transfer from biphenyl to the singlet cyanoanthracene followed by secondary electron transfer from the stilbenes to the biphenyl cation radical. Transient absorption spectra of the cis- and trans-stilbene cation radicals generated by secondary electron transfer are similar to those previously obtained in 77 K matrices. Quantum yields for radical ion-pair cage escape have been measured for direct electron transfer from the stilbenes to three neutral and one charged singlet acceptor. These values increase as the ion-pair energy increases due to decreased rate constants for radical ion-pair return electron transfer, in accord with the predictions of Marcus theory for highly exergonic electron transfer. Cage-escape efficiencies are larger for trans- vs cis-stilbene cation radicals, possibly due to the greater extent of charge delocalization in the planar trans vs nonpolar cis cation radicals. Cage-escape stilbene cation radicals can initiate a concentration-dependent one way cis- {yields} trans-stilbene isomerization reaction.

  9. Reaction of alcohol radicals with cyclic disulfides. An optical and conductimetric pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Anderson, Robert F.; Vojnovic, Borivoj; Patel, Kantilal B.; Michael, Barry D.

    The disulfides lipoamide (LIPA) and oxidized dithiothreitol ( ox-DTT) react with methanol, ethanol, isopropanol and t-butanol radicals in aqueous solution at pH10.8 to form disulfide radical anions. Electron transfer rates range from ca 10 7 dm 3 mol -1s -1 for t-butanol radicals with LIPA to 3.6 × 10 8 dm 3 mol -1s -1 for methanol radicals with LIPA. The formations of the disulfide radical anions were followed by simultaneously monitoring absorption changes at 400 nm and changes in conductance with time. The electron transfer efficiencies are higher for LIPA than for ox-DTT increasing in the series t-butanol ≪isopropanol radical formation on the alcohols.

  10. Dynamic chemistry of anion recognition

    SciTech Connect

    Custelcean, Radu

    2012-01-01

    In the past 40 years, anion recognition by synthetic receptors has grown into a rich and vibrant research topic, developing into a distinct branch of Supramolecular Chemistry. Traditional anion receptors comprise organic scaffolds functionalized with complementary binding groups that are assembled by multistep organic synthesis. Recently, a new approach to anion receptors has emerged, in which the host is dynamically self-assembled in the presence of the anionic guest, via reversible bond formation between functional building units. While coordination bonds were initially employed for the self-assembly of the anion hosts, more recent studies demonstrated that reversible covalent bonds can serve the same purpose. In both cases, due to their labile connections, the molecular constituents have the ability to assemble, dissociate, and recombine continuously, thereby creating a dynamic combinatorial library (DCL) of receptors. The anionic guests, through specific molecular recognition, may then amplify (express) the formation of a particular structure among all possible combinations (real or virtual) by shifting the equilibria involved towards the most optimal receptor. This approach is not limited to solution self-assembly, but is equally applicable to crystallization, where the fittest anion-binding crystal may be selected. Finally, the pros and cons of employing dynamic combinatorial chemistry (DCC) vs molecular design for developing anion receptors, and the implications of both approaches to selective anion separations, will be discussed.

  11. Aromatic donor-acceptor interactions in non-polar environments.

    PubMed

    Prentice, Giles M; Pascu, Sofia I; Filip, Sorin V; West, Kevin R; Pantoş, G Dan

    2015-05-14

    We have evaluated the strength of aromatic donor-acceptor interactions between dialkyl naphthalenediimide and dialkoxynaphthalene in non-polar environments. (1)H NMR, UV-vis spectroscopy and isothermal titration calorimetry were used to characterise this interaction. We concluded that the strength of donor-acceptor interactions in heptane is sufficient to drive supramolecular assemblies in this and other aliphatic solvents. PMID:25875729

  12. Stable Borocyclic Radicals via Frustrated Lewis Pair Hydrogenations.

    PubMed

    Longobardi, Lauren E; Liu, Lei; Grimme, Stefan; Stephan, Douglas W

    2016-03-01

    The synthesis and isolation of stable main group radicals remains an ongoing challenge. Here we report the application of frustrated Lewis pair chemistry to the synthesis of boron-containing radicals. H2 activation with polyaromatic diones and B(C6F5)3 leads to radical formation in good yields. These radicals are robust; they do not decompose on silica gel or react with O2 and are stable at 35 °C under N2 indefinitely. The mechanism of formation is explored experimentally, with support from DFT calculations. EPR and UV/vis spectroscopy as well as cyclic voltammetry data are provided, and the radicals are shown to react with cobaltocenes in one-electron chemical reductions to their corresponding borate anions. PMID:26846796

  13. Radical prostatectomy - discharge

    MedlinePlus

    ... prostatectomy - discharge; Laparoscopic radical prostatectomy - discharge; LRP - discharge; Robotic-assisted laparoscopic prostatectomy - discharge ; RALP - discharge; Pelvic lymphadenectomy - ...

  14. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  15. Sunlight and free radicals

    NASA Astrophysics Data System (ADS)

    Tidwell, Thomas

    2013-08-01

    Thomas Tidwell reflects on the overlooked -- but prescient -- proposal by the British chemists Arthur Downes and Thomas Blunt for photochemical free-radical formation, decades before Moses Gomberg launched the field of radical chemistry by preparing triphenylmethyl, the first stable organic radical.

  16. Porating anion-responsive copolymeric gels.

    PubMed

    England, Dustin; Yan, Feng; Texter, John

    2013-09-24

    A polymerizable ionic liquid surfactant, 1-(11-acryloyloxyundecyl)-3-methylimidiazolium bromide (ILBr), was copolymerized with methyl methacrylate (MMA) in aqueous microemulsions at 30% (ILBr w/w) and various water to MMA ratios. The ternary phase diagram of the ILBr/MMA/water system was constructed at 25 and 60 °C. Homopolymers and copolymers of ILBr and MMA were produced by thermally initiated chain radical microemulsion polymerization at various compositions in bicontinuous and reverse microemulsion subdomains. Microemulsion polymerization reaction products varied from being gel-like to solid, and these materials were analyzed by thermal and scanning electron microscopy methods. Microemulsion polymerized materials were insoluble in all solvents tested, consistent with light cross-linking. Ion exchange between Br(-) and PF6(-) in these copolymeric materials resulted in the formation of open-cell porous structures in some of these materials, as was confirmed by scanning electron microscopy (SEM). Several compositions illustrate the capture of prepolymerization nanoscale structure by thermally initiated polymerization, expanding the domain of compositions exhibiting this feat and yet to be demonstrated in any other system. Regular cylindrical pores in interpenetrating ILBr-co-MMA and PMMA networks are produced by anion exchange in the absence of templates. A percolating cluster/bicontinuous transition is "captured" by SEM after using anion exchange to visualize the mixed cluster/pore morphology. Some design principles for achieving this capture and for obtaining stimuli responsive solvogels are articulated, and the importance of producing solvogels in capturing the nanoscale is highlighted. PMID:23968242

  17. Organic photoredox catalysis for the oxidation of silicates: applications in radical synthesis and dual catalysis.

    PubMed

    Lévêque, Christophe; Chenneberg, Ludwig; Corcé, Vincent; Ollivier, Cyril; Fensterbank, Louis

    2016-08-01

    Metal free photooxidation of alkyl bis(catecholato)silicates with the organic dye 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyano-benzene (4CzIPN) allows the smooth formation of alkyl radicals. The latter can be efficiently engaged either with radical acceptors to provide homolytic addition products or in photoredox/nickel dual catalysis reactions to obtain cross-coupling products. PMID:27373923

  18. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Alexander, S.; Hodgdon, R. B.

    1977-01-01

    The objective of NAS 3-20108 was the development and evaluation of improved anion selective membranes useful as efficient separators in a redox power storage cell system being constructed. The program was divided into three parts, (a) optimization of the selected candidate membrane systems, (b) investigation of alternative membrane/polymer systems, and (c) characterization of candidate membranes. The major synthesis effort was aimed at improving and optimizing as far as possible each candidate system with respect to three critical membrane properties essential for good redox cell performance. Substantial improvements were made in 5 candidate membrane systems. The critical synthesis variables of cross-link density, monomer ratio, and solvent composition were examined over a wide range. In addition, eight alternative polymer systems were investigated, two of which attained candidate status. Three other alternatives showed potential but required further research and development. Each candidate system was optimized for selectivity.

  19. Organic Anion Transporting Polypeptides

    PubMed Central

    Stieger, Bruno; Hagenbuch, Bruno

    2013-01-01

    Organic anion transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs, and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs, and finally, covers the transcriptional and posttranscriptional regulation of OATPs. PMID:24745984

  20. Free radicals and activated oxygen.

    PubMed

    Famaey, J P

    1982-01-01

    Superoxide anion (0(-2)), hydrogen peroxide (H2O2) and hydroxyl radical (OH.) are products of the biological reduction of 0(2). They are very reactive and poorly tolerated within living systems and enzymes that catalytically scavenge these products have been evolved as defense mechanisms. These include superoxide dismutases (SOD), catalase and peroxidases. Large amounts of O-2 are produced by different enzymatic and non enzymatic biological processes. Large amounts of activated oxygens are produced by phagocytosing cells such as macrophages and polymorphonuclear cells. This production is associated with the bactericidal actions of these cells but it also largely contributes to exacerbate and sustain the inflammation where these cells congregate. The arachidonic acid pathway triggered by the inflammatory stimuli is also a source for these oxidizing radicals. The production of activated oxygens has been associated with the normal aging process but also with various toxic reactions (e.g. the toxicity of the herbicide paraquat, of the ionizing radiations, of certain antibiotics such as streptonigrin, etc. . . .). O-2 induces the depolymerization of hyaluronic acid which lends viscosity and lubricating properties to synovial fluids. SOD possess antiinflammatory properties and a bovine SOD, orgotein, has now been largely investigated by intramuscular and intraarticular injections in the treatment of rheumatic diseases. Various antiinflammatory compounds (e.g. the salicylates) are able either to inhibit the production of these oxygen radicals or to scavenge them which seems of importance for their antiinflammatory properties. Singlet oxygen, another activated oxygen, might also play a role in the inflammatory process. PMID:6295769

  1. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    PubMed

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface. PMID:27355877

  2. Transition metal-free generation of the acceptor/acceptor-carbene viaα-elimination: synthesis of fluoroacetyl cyclopropanes.

    PubMed

    Wang, Yongdong; Han, Jing; Chen, Jie; Cao, Weiguo

    2016-05-21

    An efficient transition metal-free approach for the generation of acceptor/acceptor-carbene followed by trapping with alkenes to provide fluoroacetyl cyclopropanes has been described. The resulting cyclopropanes could be further converted into the fluoromethyl dihydrofurans or fluorodihydropyrroles through ring-expansion processes. PMID:27125517

  3. Theoretical study of the correlation between superoxide anion consumption and firefly luciferin chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.

    2013-07-01

    This is the first theoretical study of the relationship between superoxide anion and firefly chemiluminescence, in DMSO. Electron transfer reactions between luciferin dianionic/carbanionic/radical species and superoxide were studied in order see if an alternative explanation existed for the consumption of the latter species, without correlating it with a role on luciferin chemiluminescence. Despite the finding that luciferin may indeed inhibit the formation of the superoxide anion, no theoretical evidence was found that showed that this molecule is consumed in a non-chemiluminescence reaction. Therefore, it is concluded that the superoxide anion is indeed related to the firefly luciferin chemiluminescence.

  4. Efficient photoinduced orthogonal energy and electron transfer reactions via phospholipid membrane-bound donors and acceptors

    SciTech Connect

    Clapp, P.J.; Armitage, B.; Roosa, P.; O'Brien, D.F. )

    1994-10-05

    A three component, liposome-bound photochemical molecular device (PMD) consisting of energy and electron transfer reactions is described. Bilayer membrane surface-associated dyes, 5,10,15,20-tetrakis[4-(trimethylammonio)-phenyl]-21H,2 3H-porphine tetra-p-tosylate salt and N,N[prime]-bis[(3-trimethylammonio)propyl]thiadicarbocya nine tribromide, are the energy donor and acceptor, respectively, in a blue light stimulated energy transfer reaction along the vesicle surface. The electronically excited cyanine is quenched by electron transfer from the phospholipid membrane bound triphenylbenzyl borate anion, which is located in the lipid bilayer interior. The PMD exhibits sequential reactions following electronic excitation with the novel feature that the steps proceed with orthogonal orientation: energy transfer occurs parallel to the membrane surface, and electron transfer occurs perpendicular to the surface. Photobleaching and fluorescence quenching experiments verify the transfer reactions, and Stern-Volmer analysis was used to estimate the reaction rate constants. At the highest concentrations examined of energy and electron acceptor ca. 60% of the photoexcited porphyrins were quenched by energy transfer to the cyanine. 56 refs., 6 figs., 3 tabs.

  5. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity

    NASA Astrophysics Data System (ADS)

    Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

    2007-11-01

    Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

  6. Electronically Excited States of Anisotropically Extended Singly-Deprotonated PAH Anions.

    PubMed

    Theis, Mallory L; Candian, Alessandra; Tielens, Alexander G G M; Lee, Timothy J; Fortenberry, Ryan C

    2015-12-31

    Polycyclic aromatic hydrocarbons (PAHs) play a significant role in the chemistry of the interstellar medium (ISM) as well as in hydrocarbon combustion. These molecules can have high levels of diversity with the inclusion of heteroatoms and the addition or removal of hydrogens to form charged or radical species. There is an abundance of data on the cationic forms of these molecules, but there have been many fewer studies on the anionic species. The present study focuses on the anionic forms of deprotonated PAHs. It has been shown in previous work that PAHs containing nitrogen heteroatoms (PANHs) have the ability to form valence excited states giving anions electronic absorption features. This work analyzes how the isoelectronic pure PAHs behave under similar structural constructions. Singly deprotonated forms of benzene, naphthalene, anthracene, and tetracene classes are examined. None of the neutral-radicals possess dipole moments large enough to support dipole-bound excited states in their corresponding closed-shell anions. Even though the PANH anion derivatives support valence excited states for three-ringed structures, it is not until four-ringed structures of the pure PAH anion derivatives that valence excited states are exhibited. However, anisotropically extended PAHs larger than tetracene will likely exhibit valence excited states. The relative energies for the anion isomers are very small for all of the systems in this study. PMID:26645382

  7. Photosensitization with anticancer agents. 17. EPR studies of photodynamic action of hypericin: formation of semiquinone radical and activated oxygen species on illumination.

    PubMed

    Diwu, Z; Lown, J W

    1993-02-01

    When hypericin was illuminated with 580 nm light in aqueous solution, the semiquinone radical, singlet oxygen, and superoxide anion radical were detected. The formation of the semiquinone radical and activated oxygen species and the transformation and competition between them depend on the quinone and oxygen concentrations, irradiation time and intensity, and the nature of substrate. In anaerobic solution containing a high concentration of the quinone, the semiquinone radical was predominantly photoproduced. In contrast, in aerobic solution, singlet oxygen is the principal product in the photosensitization of hypericin. Besides singlet oxygen, superoxide anion radical is generated by the quinone on illumination in aerobic solution via the reduction of oxygen by the semiquinone radical, but to a lesser extent than singlet oxygen. The generation of superoxide anion radical is significantly enhanced by the presence of electron donors. PMID:8381107

  8. Conformational equilibrium of talin is regulated by anionic lipids.

    PubMed

    Ye, Xin; McLean, Mark A; Sligar, Stephen G

    2016-08-01

    A critical step in the activation of integrin receptors is the binding of talin to the cytoplasmic domain of the β subunits. This interaction leads to separation of the integrin α and β transmembrane domains and significant conformational changes in the extracellular domains, resulting in a dramatic increase in integrin's affinity for ligands. It has long been shown that the membrane bilayer also plays a critical role in the talin-integrin interaction. Anionic lipids are required for proper interaction, yet the specificity for specific anionic headgroups is not clear. In this report, we document talin-membrane interactions with bilayers of controlled composition using Nanodiscs and a FRET based binding and structural assay. We confirm that recruitment of the talin head domain to the membrane surface is governed by charge in the absence of other adapter proteins. In addition, measurement of the donor-acceptor distance is consistent with the hypothesis that anionic lipids promote a conformational change in the talin head domain allowing interaction of the F3 domain with the phospholipid bilayer. The magnitude of the F3 domain movement is altered by the identity of the phospholipid headgroup with phosphatidylinositides promoting the largest change. Our results suggest that phoshpatidylinositol-4,5-bisphosphate plays key a role in converting talin head domain to a conformation optimized for interactions with the bilayer and subsequently integrin cytoplasmic tails. PMID:27163494

  9. Radical additions to chiral hydrazones: stereoselectivity and functional group compatibility.

    PubMed

    Friestad, Gregory K

    2012-01-01

    Free radical additions to imino compounds offer increased synthetic accessibility of chiral amines, but lack of general methods for stereocontrol has hindered their development. This review focuses on two asymmetric amine synthesis strategies designed to address this problem, with emphasis on addition of functionalized radicals which may facilitate applications to synthesis of complex targets. First, chiral N-acylhydrazones are acceptors for intermolecular radical additions of a wide range of primary, secondary, and tertiary alkyl halides to the C=N bond, with radicals generated under manganese-, tin-, or boron-mediated conditions. A variety of aldehydes and ketones serve as viable precursors for the chiral hydrazones, and the highly stereoselective reactions tolerate electrophilic functionality in both coupling components. Second, radical precursors may be linked to chiral α-hydroxyhydrazones via a silicon tether to the hydroxyl group; conformational constraints impart stereocontrol during 5-exo radical cyclization under stannyl- or thiyl-mediated conditions. The silicon tether may later be removed to reveal the formal adducts of hydroxymethyl, vinyl, acetyl, and 2-oxoethyl radicals to the C=N bond. Methodology development and applications to biologically important targets are discussed. PMID:21842359

  10. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  11. Intramolecular charge transfer in donor-acceptor molecules

    SciTech Connect

    Slama-Schwok, A.; Blanchard-Desce, M.; Lehn, J.M. )

    1990-05-17

    The photophysical properties of donor-acceptor molecules, push-pull polyenes and carotenoids, have been studied by absorption and fluorescence spectroscopy. The compounds bear various acceptor and donor groups, linked together by chains of different length and structure. The position of the absorption and fluorescence maxima and their variation in solvents of increasing polarity are in agreement with long-distance intramolecular charge-transfer processes, the linker acting as a molecular wire. The effects of the linker length and structure and of the nature of acceptor and donor are presented.

  12. Chemical Modeling of Cometary Anions

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin; Charnley, S. B.

    2009-09-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not previously been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydrodynamical model of Rodgers & Charnley (2002), we investigate the role of the hydrocarbon and nitrile anions Cn-, CnH- and CnN- in the coma. We calculate the effects of these anions on the charge balance and examine their impact on cometary coma chemistry. References: Chaizy, P. et al. 1991, Nature, 349, 393 Rodgers, S.D. & Charnley, S.B. 2002, MNRAS, 330, 660

  13. Contemporary Radical Prostatectomy

    PubMed Central

    Fu, Qiang; Moul, Judd W.; Sun, Leon

    2011-01-01

    Purpose. Patients diagnosed with clinically localized prostate cancer have more surgical treatment options than in the past. This paper focuses on the procedures' oncological or functional outcomes and perioperative morbidities of radical retropubic prostatectomy, radical perineal prostatectomy, and robotic-assisted laparoscopic radical prostatectomy. Materials and Methods. A MEDLINE/PubMed search of the literature on radical prostatectomy and other new management options was performed. Results. Compared to the open procedures, robotic-assisted radical prostatectomy has no confirmed significant difference in most literatures besides less blood loss and blood transfusion. Nerve sparing is a safe means of preserving potency on well-selected patients undergoing radical prostatectomy. Positive surgical margin rates of radical prostatectomy affect the recurrence and survival of prostate cancer. The urinary and sexual function outcomes have been vastly improved. Neoadjuvant treatment only affects the rate of positive surgical margin. Adjuvant therapy can delay and reduce the risk of recurrence and improve the survival of the high risk prostate cancer. Conclusions. For the majority of patients with organ-confined prostate cancer, radical prostatectomy remains a most effective approach. Radical perineal prostatectomy remains a viable approach for patients with morbid obesity, prior pelvic surgery, or prior pelvic radiation. Robot-assisted laparoscopic prostatectomy (RALP) has become popular among surgeons but has not yet become the firmly established standard of care. Long-term data have confirmed the efficacy of radical retropubic prostatectomy with disease control rates and cancer-specific survival rates. PMID:22110994

  14. Spectroscopic characteristics of the cyanomethyl anion and its deuterated derivatives

    NASA Astrophysics Data System (ADS)

    Majumdar, Liton; Das, Ankan; Chakrabarti, Sandip K.

    2014-02-01

    Context. It has long been suggested that CH2CN- (cyanomethyl anion) might be a carrier of one of the many poorly characterized diffuse interstellar bands. In this paper, our aim is to study various forms (ionic, neutral, and deuterated isotopomer) of CH2CN (cyanomethyl radical) in the interstellar medium. Aims: The aim of this paper is to predict spectroscopic characteristics of various forms of CH2CN and its deuterated derivatives. Moreover, we would like to model the interstellar chemistry for predicting the column densities of such species around dark cloud conditions. Methods: We performed detailed quantum chemical simulations to present the spectral properties (infrared, electronic, and rotational) of various forms of the cyanomethyl radical. Moller-Plesset perturbation theory along with the triple-zeta, correlation-consistent basis set is used to obtain different spectroscopic constants of CH2CN-, CHDCN-, and CD2CN- in the gas phase. They are essential for predicting rotational spectra of these species. Depending on the total number of electrons, there are several allowed spin states for various forms of the cyanomethyl radical. We performed quantum chemical calculations to find out, energetically, the stablest spin states for these species. We computed IR and electronic absorption spectra for different forms of CH2CN. Moreover, we have also implemented a large gas-grain chemical network to predict the column densities of various forms of the cyanomethyl radical and its related species. To mimic physical conditions around a dense cloud region, the variation in the visual extinction parameters were considered with respect to the hydrogen number density of the simulated cloud. Results: Our quantum chemical calculation reveals that the singlet spin state is the stablest form of cyanomethyl anion and its deuterated forms. For confirming the detection of the cyanomethyl anion and its two deuterated forms, namely CHDCN- and CD2CN-, we present the rotational

  15. Nitrogen is a deep acceptor in ZnO

    DOE PAGESBeta

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  16. Nitrogen is a deep acceptor in ZnO

    SciTech Connect

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence band relative to the vacuum level.

  17. Donor-acceptor electron transport mediated by solitons.

    PubMed

    Brizhik, L S; Piette, B M A G; Zakrzewski, W J

    2014-11-01

    We study the long-range electron and energy transfer mediated by solitons in a quasi-one-dimensional molecular chain (conjugated polymer, alpha-helical macromolecule, etc.) weakly bound to a donor and an acceptor. We show that for certain sets of parameter values in such systems an electron, initially located at the donor molecule, can tunnel to the molecular chain, where it becomes self-trapped in a soliton state, and propagates to the opposite end of the chain practically without energy dissipation. Upon reaching the end, the electron can either bounce back and move in the opposite direction or, for suitable parameter values of the system, tunnel to the acceptor. We estimate the energy efficiency of the donor-acceptor electron transport depending on the parameter values. Our calculations show that the soliton mechanism works for the parameter values of polypeptide macromolecules and conjugated polymers. We also investigate the donor-acceptor electron transport in thermalized molecular chains. PMID:25493866

  18. Donor-acceptor electron transport mediated by solitons

    NASA Astrophysics Data System (ADS)

    Brizhik, L. S.; Piette, B. M. A. G.; Zakrzewski, W. J.

    2014-11-01

    We study the long-range electron and energy transfer mediated by solitons in a quasi-one-dimensional molecular chain (conjugated polymer, alpha-helical macromolecule, etc.) weakly bound to a donor and an acceptor. We show that for certain sets of parameter values in such systems an electron, initially located at the donor molecule, can tunnel to the molecular chain, where it becomes self-trapped in a soliton state, and propagates to the opposite end of the chain practically without energy dissipation. Upon reaching the end, the electron can either bounce back and move in the opposite direction or, for suitable parameter values of the system, tunnel to the acceptor. We estimate the energy efficiency of the donor-acceptor electron transport depending on the parameter values. Our calculations show that the soliton mechanism works for the parameter values of polypeptide macromolecules and conjugated polymers. We also investigate the donor-acceptor electron transport in thermalized molecular chains.

  19. Structure of cyano-anion ionic liquids: X-ray scattering and simulations

    NASA Astrophysics Data System (ADS)

    Dhungana, Kamal B.; Faria, Luiz F. O.; Wu, Boning; Liang, Min; Ribeiro, Mauro C. C.; Margulis, Claudio J.; Castner, Edward W.

    2016-07-01

    Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790-14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN-, SCN-, N(CN) 2 -, C(CN) 3 -, and B(CN) 4 -. By combining molecular dynamics simulations, high-energy X-ray scattering measurements, and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN) 4 - anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im2,1 +/B(CN) 4 - is cationic.

  20. Design, synthesis and study of supramolecular donor-acceptor systems mimicking natural photosynthesis processes

    NASA Astrophysics Data System (ADS)

    Bikram, Chandra

    This dissertation investigates the chemical ingenuity into the development of various photoactive supramolecular donor -- acceptor systems to produce clean and carbon free energy for the next generation. The process is inspired by the principles learned from nature's approach where the solar energy is converted into the chemical energy through the natural photosynthesis process. Owing to the importance and complexity of natural photosynthesis process, we have designed ideal donor-acceptor systems to investigate their light energy harvesting properties. This process involves two major steps: the first step is the absorption of light energy by antenna or donor systems to promote them to an excited electronic state. The second step involves, the transfer of excitation energy to the reaction center, which triggers an electron transfer process within the system. Based on this principle, the research is focused into the development of artificial photosynthesis systems to investigate dynamics of photo induced energy and electron transfer events. The derivatives of Porphyrins, Phthalocyanines, BODIPY, and SubPhthalocyanines etc have been widely used as the primary building blocks for designing photoactive and electroactive ensembles in this area because of their excellent and unique photophysical and photochemical properties. Meanwhile, the fullerene, mainly its readily available version C60 is typically used as an electron acceptor component because of its unique redox potential, symmetrical shape and low reorganization energy appropriate for improved charge separation behavior. The primary research motivation of the study is to achieve fast charge separation and slow charge recombination of the system by stabilizing the radical ion pairs which are formed from photo excitation, for maximum utility of solar energy. Besides Fullerene C60, this dissertation has also investigated the potential application of carbon nanomaterials (Carbon nanotubes and graphene) as primary

  1. Synthesis, Properties, and Design Principles of Donor–Acceptor Nanohoops

    PubMed Central

    2015-01-01

    We have synthesized a series of aza[8]cycloparaphenylenes containing one, two, and three nitrogens to probe the impact of nitrogen doping on optoelectronic properties and solid state packing. Alkylation of these azananohoops afforded the first donor–acceptor nanohoops where the phenylene backbone acts as the donor and the pyridinium units act as the acceptor. The impact on the optoelectronic properties was then studied experimentally and computationally to provide new insight into the effect of functionalization on nanohoops properties. PMID:27162989

  2. Low-energy electron-induced ''oxygen fixation'' to DNA SAMs studied by stimulated anion desorption

    NASA Astrophysics Data System (ADS)

    Massey, Sylvain; Mirsaleh-Kohan, Nasrin; Zheng, Yi; Bass, Andrew D.; Sanche, Léon

    2014-04-01

    Reactions of 18O2 with self-assembled monolayer films of thiolated DNA oligomers are studied by the electron stimulated desorption of anions. Electrons with energies < 20 eV initiate dehydrogenation of the DNA by resonant and non-resonant processes, to form radical sites for oxygenation. This damage mechanism may underlie the ''oxygen fixation'' process of radiobiology.

  3. Preparation of the Cyclopentazole Anion in the Bulk: A Computational Study.

    PubMed

    Geiger, Uzi; Haas, Yehuda

    2016-07-01

    The cyclopentazole anion (cyclo-N5(-)), calculated to be a stable species, was prepared in the gas phase but attempts to synthesize it in the bulk have so far been futile. An aryl pentazole radical anion was suggested as a promising precursor in the gas phase. It is shown computationally that the radical anion (which may be prepared by reduction of the phenyl pentazole neutral) may indeed be used to form the cyclopetazolate anion in the gas phase and in liquid solution, alongside and in competition with the extrusion of N2 to produce the corresponding azide. In the gas phase, the C-N dissociation yields are very low due to much more efficient detachment of an electron. In polar solvents, ionization is suppressed and the primary yields of the two competing reactions are similar. The reaction must be carried out at low temperatures and special measures have to be taken to avoid recombination of the nascent cyclo-N5(-) with the geminate phenyl radical. A possible remedy is to use a solvent that reacts efficiently with the phenyl radical by H atom transfer. PMID:27028051

  4. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic

    PubMed Central

    Luo, Chaosheng; Wang, Zhen; Huang, Yong

    2015-01-01

    Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194

  5. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic.

    PubMed

    Luo, Chaosheng; Wang, Zhen; Huang, Yong

    2015-01-01

    Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194

  6. Anion Transport with Chalcogen Bonds.

    PubMed

    Benz, Sebastian; Macchione, Mariano; Verolet, Quentin; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-07-27

    In this report, we introduce synthetic anion transporters that operate with chalcogen bonds. Electron-deficient dithieno[3,2-b;2',3'-d]thiophenes (DTTs) are identified as ideal to bind anions in the focal point of the σ holes on the cofacial endocyclic sulfur atoms. Anion binding in solution and anion transport across lipid bilayers are found to increase with the depth of the σ holes of the DTT anionophores. These results introduce DTTs and related architectures as a privileged motif to engineer chalcogen bonds into functional systems, complementary in scope to classics such as 2,2'-bipyrroles or 2,2'-bipyridines that operate with hydrogen bonds and lone pairs, respectively. PMID:27433964

  7. Interplay of ortho- with spiro-cyclisation during iminyl radical closures onto arenes and heteroarenes

    PubMed Central

    2013-01-01

    Summary Sensitised photolyses of ethoxycarbonyl oximes of aromatic and heteroaromatic ketones yielded iminyl radicals, which were characterised by EPR spectroscopy. Iminyls with suitably placed arene or heteroarene acceptors underwent cyclisations yielding phenanthridine-type products from ortho-additions. For benzofuran and benzothiophene acceptors, spiro-cyclisation predominated at low temperatures, but thermodynamic control ensured ortho-products, benzofuro- or benzothieno-isoquinolines, formed at higher temperatures. Estimates by steady-state kinetic EPR established that iminyl radical cyclisations onto aromatics took place about an order of magnitude more slowly than prototypical C-centred radicals. The cyclisation energetics were investigated by DFT computations, which gave insights into factors influencing the two cyclisation modes. PMID:23766822

  8. Formation of Reactive Sulfite-Derived Free Radicals by the Activation of Human Neutrophils: An ESR Study

    PubMed Central

    Ranguelova, Kalina; Rice, Annette B.; Khajo, Abdelahad; Triquigneaux, Mathilde; Garantziotis, Stavros; Magliozzo, Richard S.; Mason, Ronald P.

    2012-01-01

    The objective of the present study is to determine the effect of (bi)sulfite (hydrated sulfur dioxide) on human neutrophils and the ability of these immune cells to produce reactive free radicals due to (bi)sulfite oxidation. Myeloperoxidase (MPO) is an abundant heme protein in neutrophils that catalyzes the formation of cytotoxic oxidants implicated in asthma and inflammatory disorders. In the present study sulfite (•SO3−) and sulfate (SO4•−) anion radicals are characterized with the ESR spin-trapping technique using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the reaction of (bi)sulfite oxidation by human MPO and human neutrophils via sulfite radical chain reaction chemistry. After treatment with (bi)sulfite, PMA-stimulated neutrophils produced DMPO-sulfite anion radical, -superoxide, and -hydroxyl radical adducts. The latter adduct probably resulted, in part, from the conversion of DMPO-sulfate to DMPO-hydroxyl radical adduct via a nucleophilic substitution reaction of the radical adduct. This anion radical (SO4•−) is highly reactive and, presumably, can oxidize target proteins to protein radicals, thereby initiating protein oxidation. Therefore, we propose that the potential toxicity of (bi)sulfite during pulmonary inflammation or lung-associated diseases such as asthma may be related to free radical formation. PMID:22326772

  9. The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors

    PubMed Central

    Vogel, Steven S.; Nguyen, Tuan A.; van der Meer, B. Wieb; Blank, Paul S.

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states. PMID:23152925

  10. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  11. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  12. Reassessing Radical Pedagogy.

    ERIC Educational Resources Information Center

    Sweet, Stephen

    1998-01-01

    Responds to comments about, and critiques of, his own article on radical pedagogy. Outlines major points of contention raised by other commentators and responds to them, including matters of definition, power relations in the classroom, and tempering radical theory with pragmatism. (DSK)

  13. [Alchemists' humid radical].

    PubMed

    Lafont, Olivier

    2007-01-01

    The term radical has been used by chemists since the beginnings and even when they still were alchemists. The term "humid radical" is present in numerous alchemists' texts. It was used to represent a kind of "humid", which was considered as different from what is nowadays called "humid", but was a sort of principle necessary for life. PMID:17575839

  14. Photochemical reaction cycle transitions during anion channelrhodopsin gating.

    PubMed

    Sineshchekov, Oleg A; Li, Hai; Govorunova, Elena G; Spudich, John L

    2016-04-01

    A recently discovered family of natural anion channelrhodopsins (ACRs) have the highest conductance among channelrhodopsins and exhibit exclusive anion selectivity, which make them efficient inhibitory tools for optogenetics. We report analysis of flash-induced absorption changes in purified wild-type and mutant ACRs, and of photocurrents they generate in HEK293 cells. Contrary to cation channelrhodopsins (CCRs), the ion conducting state of ACRs develops in an L-like intermediate that precedes the deprotonation of the retinylidene Schiff base (i.e., formation of an M intermediate). Channel closing involves two mechanisms leading to depletion of the conducting L-like state: (i) Fast closing is caused by a reversible L⇔M conversion. Glu-68 in Guillardia theta ACR1 plays an important role in this transition, likely serving as a counterion and proton acceptor at least at high and neutral pH. Incomplete suppression of M formation in the GtACR1_E68Q mutant indicates the existence of an alternative proton acceptor. (ii) Slow closing of the channel parallels irreversible depletion of the M-like and, hence, L-like state. Mutation of Cys-102 that strongly affected slow channel closing slowed the photocycle to the same extent. The L and M intermediates were in equilibrium in C102A as in the WT. In the position of Glu-123 in channelrhodopsin-2, ACRs contain a noncarboxylate residue, the mutation of which to Glu produced early Schiff base proton transfer and strongly inhibited channel activity. The data reveal fundamental differences between natural ACR and CCR conductance mechanisms and their underlying photochemistry, further confirming that these proteins form distinct families of rhodopsin channels. PMID:27001860

  15. Accelerated crystallization of zeolites via hydroxyl free radicals.

    PubMed

    Feng, Guodong; Cheng, Peng; Yan, Wenfu; Boronat, Mercedes; Li, Xu; Su, Ji-Hu; Wang, Jianyu; Li, Yi; Corma, Avelino; Xu, Ruren; Yu, Jihong

    2016-03-11

    In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent. PMID:26965626

  16. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  17. Hydrogen in anion vacancies of semiconductors

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2009-01-01

    Density functional calculations show that, depending on the anion size, hydrogen in anion vacancies of various II-VI semiconductors can be either two-fold or four-fold coordinated, and has either amphoteric or shallow donor character. In general, the multi-coordination of hydrogen in an anion vacancy is the indication of an anionic H, H { ion, in the relatively ionic environment. In more covalent semiconductors, H would form a single cation-H bond in the anion vacancy.

  18. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates.

    PubMed

    Cheng, Hong; Liang, Ran; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H

    2014-02-01

    The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k2 = 3.2 × 10(9) L mol(-1) s(-1) in 9 : 1 v/v chloroform-methanol at 23 °C, less efficiently by the anion of salicylic acid with 2.2 × 10(8) L mol(-1) s(-1), but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations. PMID:24336797

  19. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase.

    PubMed

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Maeta, Ayami; Yamagiwa, Yoshiro; Kubo, Isao

    2015-01-01

    5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C₁₅:₃), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C₁₀:₀) also inhibited superoxide anion generation, but resorcinol and cardol (C₅:₀) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain. PMID:25053055

  20. Electron acceptor-dependent respiratory and physiological stratifications in biofilms.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Sun, Guoping; Wu, Wei-Min; Xu, Meiying

    2015-01-01

    Bacterial respiration is an essential driving force in biogeochemical cycling and bioremediation processes. Electron acceptors respired by bacteria often have solid and soluble forms that typically coexist in the environment. It is important to understand how sessile bacteria attached to solid electron acceptors respond to ambient soluble alternative electron acceptors. Microbial fuel cells (MFCs) provide a useful tool to investigate this interaction. In MFCs with Shewanella decolorationis, azo dye was used as an alternative electron acceptor in the anode chamber. Different respiration patterns were observed for biofilm and planktonic cells, with planktonic cells preferred to respire with azo dye while biofilm cells respired with both the anode and azo dye. The additional azo respiration dissipated the proton accumulation within the anode biofilm. There was a large redox potential gap between the biofilms and anode surface. Changing cathodic conditions caused immediate effects on the anode potential but not on the biofilm potential. Biofilm viability showed an inverse and respiration-dependent profile when respiring with only the anode or azo dye and was enhanced when respiring with both simultaneously. These results provide new insights into the bacterial respiration strategies in environments containing multiple electron acceptors and support an electron-hopping mechanism within Shewanella electrode-respiring biofilms. PMID:25495895

  1. Chlorophyll-quinone photochemistry in liposomes: mechanisms of radical formation and decay

    SciTech Connect

    Hurley, J.K.; Tollin, G.

    1980-01-01

    Laser flash photolysis has been used to investigate the mechanism of formation and decay of the radical species generated by light induced electron transfer from chlorophyll a triplet to quinone in egg phosphatidyl choline bilayer vesicles. Chlorophyll triplet quenching by quinone is controlled by diffusion occurring within the bilayer membrane and reflects bilayer viscosity. Radical formation via separation of the intermediate ion pair is also inhibited by increased bilayer viscosity. Cooperativity is observed in this process due to an enhancement of radical separation by electron transfer from semiquinone anion radical to a neighboring quinone molecule. Two modes of radical decay are observed, a rapid recombination occurring within the bilayer and a much slower recombination occurring across the bilayer. The slow decay is only observed with quinones which are not tightly anchored into the bilayer, and is probably the result of electron transfer from semiquinone anion radical formed within the bilayer to a quinone molecule residing at the bilayer-water interface. With benzoquinone, approximately 60% of the radical decay occurs via the slow mode. Triplet to radical conversion efficiencies in the bilayer systems are comparable to those obtained in fluid solution (approx. 60%). However, radical recombination, at least for the slow decay mechanism, is considerably retarded.

  2. Mineral dust exposure and free radical-mediated lung damage

    SciTech Connect

    Doelman, C.J.; Leurs, R.; Oosterom, W.C.; Bast, A. )

    1990-01-01

    Chronic exposure to several types of mineral dust particles induces an inflammatory reaction in the lung. Dust particles activate alveolar macrophages and prime leukocytes (neutrophils, eosinophils, and basophils), leading to an enhanced release of reactive oxygen species. Sometimes mineral dust particles also contain radicals. Reactive oxygen species (superoxide anion radical, hydrogen peroxide, hydroxyl radical, and singlet oxygen) may lead to tissue damage. These are able to break DNA strands, to destroy proteins, and to induce the process of lipid peroxidation. The effects of oxygen radicals on the beta-adrenergic and muscarinic receptor response of the guinea pig and rat tracheal strip are described. The beta-adrenergic receptor response appeared to be more susceptible to oxidative stress than the muscarinic receptor response. This may lead to an autonomic imbalance on exposure to oxygen radicals. The lipid peroxidation product 4-hydroxy-2,3-trans-nonenal diminished the beta-adrenergic responsiveness in guinea pig tracheal preparations. Histologic examinations indicated that at low concentrations of cumene hydroperoxide (10(-4) M) the epithelial layer of rat trachea was already destroyed, whereas no effect on the muscarinic response was found. Oxygen radical-mediated damage in lung tissue may lead to lung emphysema, hyperresponsiveness, and hypersensitivity. Pharmacotherapeutic interventions that prevent initiation or propagation of these free radical reactions may have a beneficial effect in mineral dust-associated lung disease. 70 references.

  3. Radical attached aluminum nanoclusters: an alternative way of cluster stabilization.

    PubMed

    Sengupta, Turbasu; Pal, Sourav

    2016-08-21

    The stability and electronic structure of radical attached aluminum nanoclusters are investigated using density functional theory (DFT). A detailed investigation shows good correlation between the thermodynamic stability of radical attached clusters and the stability of the attached radical anions. All other calculated parameters like HOMO-LUMO gap and charge transfer are also found to be consistent with the observed thermodynamic stabilities of the complexes. Investigation of the electronic structure of radical attached complexes further shows the presence of jellium structures within the core similar to the ligated clusters. Comparison with available experimental and theoretical data also proves the validity of superatomic complex theory for the radical attached clusters as well. Based on the evaluated thermodynamic parameters, selected radical attached clusters are observed to be more thermodynamically stable in comparison with experimentally synthesized ligated clusters. Stabilization of small metal clusters is one of the greatest challenges in current cluster science and the present investigation confirms the fact that radical attached clusters can provide a viable alternative to ligated clusters in the future. PMID:27435912

  4. Radical chemistry of artemisinin

    NASA Astrophysics Data System (ADS)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  5. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  6. Site-Specific Description of the Enhanced Recognition Between Electrogenerated Nitrobenzene Anions and Dihomooxacalix[4]arene Bidentate Ureas.

    PubMed

    Martínez-González, Eduardo; Armendáriz-Vidales, Georgina; Ascenso, José R; Marcos, Paula M; Frontana, Carlos

    2015-05-01

    Electron transfer controlled hydrogen bonding was studied for a series of nitrobenzene derivative radical anions, working as large guest anions, and substituted ureas, including dihomooxacalix[4]arene bidentate urea derivatives, in order to estimate binding constants (Kb) for the hydrogen-bonding process. Results showed enhanced Kb values for the interaction with phenyl-substituted bidentate urea, which is significantly larger than for the remaining compounds, e.g., in the case of 4-methoxynitrobenzene a 28-fold larger Kb value was obtained for the urea bearing a phenyl (Kb ∼ 6888) vs tert-butyl (Kb ∼ 247) moieties. The respective nucleophilic and electrophilic characters of the participant anion radical and urea hosts were parametrized with global and local electrodonating (ω(-)) and electroaccepting (ω(+)) powers, derived from DFT calculations. ω(-) data were useful for describing trends in structure–activity relationships when comparing nitrobenzene radical anions. However, ω(+) for the host urea structures lead to unreliable explanations of the experimental data. For the latter case, local descriptors ωk(+)(r) were estimated for the atoms within the urea region in the hosts [∑kωk(+)(r)]. By compiling all the theoretical and experimental data, a Kb-predictive contour plot was built considering ω(-) for the studied anion radicals and ∑kωk(+)(r) which affords good estimations. PMID:25843693

  7. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G.; Duan, Xue

    2015-07-01

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm2 at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting.

  8. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting

    PubMed Central

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G.; Duan, Xue

    2015-01-01

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm2 at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting. PMID:26174201

  9. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    NASA Astrophysics Data System (ADS)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  10. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers.

    PubMed

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N V; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-31

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally. PMID:26765027

  11. An overview of molecular acceptors for organic solar cells

    NASA Astrophysics Data System (ADS)

    Hudhomme, Piétrick

    2013-07-01

    Organic solar cells (OSCs) have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  12. Solvation of [alpha]-hydroxydiphenylmethyl radical in room temperature ionic liquids studied by transient FT-EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawai, Akio; Hidemori, Takehiro; Shibuya, Kazuhiko

    2005-10-01

    To understand solvation in room temperature ionic liquids (RTILs), an FT-EPR spectrum of α-hydroxydiphenylmethyl (HDPM) radical was measured in several RTILs of tert-alkylammonium or alkylimidazolium salts with anions of PF6-, BF4-, (CF 3SO 2) 2N -, CF3SO3-,WO42-, Cl - and Br -. The hyperfine coupling constant of the hydroxyl proton depends on Gutmann's donor number of the anions, while the constants of phenyl α-protons are essentially the same for these RTILs. This result suggests the electron donor character of anions is important in HDPM solvation in RTILs through the anion-OH group hydrogen-bond.

  13. Photoinitiated Charge Transport through π-Stacked Electron Conduits in Supramolecular Ordered Assemblies of Donor−Acceptor Triads

    SciTech Connect

    Bullock, Joseph E.; Carmieli, Raanan; Mickley, Sarah M.; Vura-Weis, Josh; Wasielewski, Michael R.

    2009-09-25

    Photochemical electron donor-acceptor triads having an aminopyrene primary donor (APy) and a p-diaminobenzene secondary donor (DAB) attached to either one or both imide nitrogen atoms of a perylene-3,4:9,10-bis(dicarboximide) (PDI) electron acceptor were prepared to give DAB-APy-PDI and DAB-APy-PDI-APy-DAB. In toluene, both triads are monomeric, but in methylcyclohexane, they self-assemble into ordered helical heptamers and hexamers, respectively, in which the PDI molecules are {pi}-stacked in a columnar fashion, as evidenced by small- and wide-angle X-ray scattering. Photoexcitation of these supramolecular assemblies results in rapid formation of DAB{sup +}-PDI{sup -} spin-polarized radical ion pairs having spin-spin dipolar interactions, which show that the average distance between the two radical ions is much larger in the assemblies (31 {angstrom}) than it is in their monomeric building blocks (23 {angstrom}). This work demonstrates that electron hopping through the {pi}-stacked PDI molecules is fast enough to compete effectively with charge recombination (40 ns) in these systems, making these materials of interest as photoactive assemblies for artificial photosynthesis and organic photovoltaics.

  14. Microsolvation of anions by molecules forming CH··X- hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Nepal, Binod; Scheiner, Steve

    2015-12-01

    Various anions were surrounded by n molecules of CF3H, which was used as a prototype CH donor solvent, and the structures and energies studied by M06-2X calculations with a 6-31+G∗∗ basis set. Anions considered included the halides F-, Cl-, Br- and I-, as well as those with multiple proton acceptor sites: CN-, NO3-, HCOO-, CH3COO-, HSO4-, H2PO4-, and anions with higher charges SO42-, HPO42- and PO43-. Well structured cages were formed and the average H-bond energy decreases steadily as the number of surrounding solvent molecules rises, even when n exceeds 6 and the CF3H molecules begin to interact with one another rather than with the central anion. Total binding energies are very nearly proportional to the magnitude of the negative charge on the anion. The free energy of complexation becomes more negative for larger n initially, but then reaches a minimum and begins to rise for larger values of n.

  15. Donor-acceptor chemistry in the main group.

    PubMed

    Rivard, Eric

    2014-06-21

    This Perspective article summarizes recent progress from our laboratory in the isolation of reactive main group species using a general donor-acceptor protocol. A highlight of this program is the use of carbon-based donors in combination with suitable Lewis acidic acceptors to yield stable complexes of parent Group 14 element hydrides (e.g. GeH2 and H2SiGeH2). It is anticipated that this strategy could be extended to include new synthetic targets from throughout the Periodic Table with possible applications in bottom-up materials synthesis and main group element catalysis envisioned. PMID:24788390

  16. Acceptors in bulk and nanoscale ZnO

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.

    2012-02-01

    Zinc oxide (ZnO) is a semiconductor that emits bright UV light, with little wasted heat. This intrinsic feature makes it a promising material for energy-efficient white lighting, nano-lasers, and other optical applications. For devices to be competitive, however, it is necessary to develop reliable p-type doping. Although substitutional nitrogen has been considered as a potential p-type dopant for ZnO, theoretical and experimental work indicates that nitrogen is a deep acceptor and will not lead to p-type conductivity. This talk will highlight recent experiments on ZnO:N at low temperatures. A red/near-IR photoluminescence (PL) band is correlated with the presence of deep nitrogen acceptors. PL excitation (PLE) measurements show an absorption threshold of 2.26 eV, in good agreement with theory. Magnetic resonance experiments provide further evidence for this assignment. The results of these studies seem to rule out group-V elements as shallow acceptors in ZnO, contradicting numerous reports in the literature. If these acceptors do not work as advertised, is there a viable alternative? Optical studies on ZnO nanocrystals show some intriguing leads. At liquid-helium temperatures, a series of sharp IR absorption peaks arise from an unknown acceptor impurity. The data are consistent with a hydrogenic acceptor 0.46 eV above the valence band edge. While this binding energy is still too deep for many practical applications, it represents a significant improvement over the ˜ 1.3 eV binding energy for nitrogen acceptors. Nanocrystals present another twist. Due to their high surface-to-volume ratio, surface states are especially important. Specifically, electron-hole recombination at the surface give rises to a red luminescence band. From our PL and IR experiments, we have developed a ``unified'' model that attempts to explain acceptor and surface states in ZnO nanocrystals. This model could provide a useful framework for designing future nanoscale ZnO devices.

  17. Sodium acceptor doping of ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra S.; Joni, I. Made; Lynn, Kelvin G.

    2016-02-01

    ZnO bulk single crystals were doped with sodium by thermal diffusion using sodium dispensers. Secondary-ion mass spectrometry measurement shows the diffusion of sodium with concentration ˜1×1018 cm-3 in near surface region. Photoluminescence (PL) measurements show donor acceptor pair (DAP) emission at 408 nm at room temperature which exhibits a blue-shift to 404 nm at 9 K. DC Hall measurements show the mixed conduction due to low Hall voltage in these samples. PL measurements and variable temperature resistivity measurements suggest that the sodium acceptor activation energy is ˜0.300 eV.

  18. Photoinduced Charge Transfer and Electrochemical Properties of Triphenylamine Ih-Sc3N@C80 Donor-Acceptor Conjugates

    PubMed Central

    Pinzón, Julio R.; Gasca, Diana C.; Shankara, Gayathri. S; Bottari, Giovanni; Torres, Tomás; Guldi, Dirk M.; Echegoyen, Luis

    2009-01-01

    Two isomeric [5,6]-pyrrolidine-Ih-Sc3N@C80 electron donor acceptor conjugates containing triphenylamine (TPA) as the donor system were synthesized. Electrochemical and photophysical studies of the novel conjugates were made and compared with those of their C60 analogues, in order to determine i) the effect of the linkage position (N-substituted versus 2-substituted pyrrolidine) of the donor system in the formation of photoinduced charge separated states, ii) the thermal stability towards the retro-cycloaddition reaction and iii) the effect of changing C60 for Ih-Sc3N@C80 as the electron acceptor. It was found that when the donor is connected to the pyrrolidine nitrogen atom, the resulting dyad produces a significantly longer lived radical pair than the corresponding 2-substituted isomer for both the C60 and Ih-Sc3N@C80 dyads. In addition to that, the N-substituted TPA-Ih-Sc3N@C80 dyad has much better thermal stability than the 2-subtituted one. Finally, the Ih-Sc3N@C80 dyads have considerably longer lived charge separated states than their C60 analogues, thus approving the advantage of using Ih-Sc3N@C80 instead of C60 as the acceptor for the construction of fullerene based donor acceptor conjugates. These findings are important for the design and future application of Ih-Sc3N@C80 dyads as materials for the construction of plastic organic solar cells. PMID:19445462

  19. Hydroxyl radicals in indoor environments

    NASA Astrophysics Data System (ADS)

    Sarwar, Golam; Corsi, Richard; Kimura, Yosuke; Allen, David; Weschler, Charles J.

    Indoor hydroxyl radical concentrations were estimated using a new indoor air quality model which employs the SAPRC-99 atmospheric chemistry model to simulate indoor homogenous reactions. Model results indicate that typical indoor hydroxyl radical concentrations are lower than typical outdoor summertime urban hydroxyl radical levels of 5-10×10 6 molecules cm -3; however, indoor levels can be similar to or greater than typical nighttime outdoor hydroxyl radical levels of approximately 5×10 4 molecules cm -3. Effects of selected parameters on indoor hydroxyl radical concentrations are presented herein. Indoor hydroxyl radical concentrations are predicted to increase non-linearly with increasing outdoor ozone concentrations, indoor alkene emission rates, and air exchange rates. Indoor hydroxyl radical concentrations decrease with increasing outdoor nitric oxide concentrations. Indoor temperature and indoor light intensity have moderate impacts on indoor hydroxyl radical concentrations. Outdoor hydroxyl radical concentrations, outdoor nitrate (NO 3rad ) radical concentrations, outdoor hydroperoxy radical concentrations, and hydroxyl radical removal by indoor surfaces are predicted to have no appreciable impact on indoor hydroxyl radical concentrations. Production of hydroxyl radicals in indoor environments appears to be controlled primarily by reactions of alkenes with ozone, and nitric oxide with hydroperoxy radical. Estimated indoor hydroxyl radical levels may potentially affect indoor air quality. Two examples are presented in which reactions of d-limonene and α-pinene with indoor hydroxyl radicals produce aldehydes, which may be of greater concern than the original compounds.

  20. Reductive Umpolung of Carbonyl Derivatives with Visible-Light Photoredox Catalysis: Direct Access to Vicinal Diamines and Amino Alcohols via α-Amino Radicals and Ketyl Radicals.

    PubMed

    Fava, Eleonora; Millet, Anthony; Nakajima, Masaki; Loescher, Sebastian; Rueping, Magnus

    2016-06-01

    Visible-light-mediated photoredox-catalyzed aldimine-aniline and aldehyde-aniline couplings have been realized. The reductive single electron transfer (SET) umpolung of various carbonyl derivatives enabled the generation of intermediary ketyl and α-amino radical anions, which were utilized for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols. PMID:27136443

  1. Catalytic, Enantioselective Addition of Alkyl Radicals to Alkenes via Visible-Light-Activated Photoredox Catalysis with a Chiral Rhodium Complex.

    PubMed

    Huo, Haohua; Harms, Klaus; Meggers, Eric

    2016-06-01

    An efficient enantioselective addition of alkyl radicals, oxidatively generated from organotrifluoroborates, to acceptor-substituted alkenes is catalyzed by a bis-cyclometalated rhodium catalyst (4 mol %) under photoredox conditions. The practical method provides yields up to 97% with excellent enantioselectivities up to 99% ee and can be classified as a redox neutral, electron-transfer-catalyzed reaction. PMID:27218134

  2. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  3. The formation of a novel free radical metabolite from CCl4 in the perfused rat liver and in vivo.

    PubMed

    Connor, H D; Thurman, R G; Galizi, M D; Mason, R P

    1986-04-01

    Electron spin resonance spectroscopy has been used to monitor free radicals formed during CCl4 metabolism by perfused livers from phenobarbital-treated rats. Livers were perfused simultaneously with the spin trap phenyl N-t-butylnitrone and with either 12CCl4 or 13CCl4. Perfusate samples and CHCl3:CH3OH extracts of perfusate and liver samples were analyzed for phenyl N-t-butylnitrone radical adducts of reactive free radicals. In the organic extracts, hyperfine coupling constants and 13C isotope effects observed in the ESR spectra indicated the presence of the radical adduct of the trichloromethyl radical. Surprisingly, an additional free radical signal about two orders of magnitude more intense than that of the phenyl N-t-butylnitrone/CCl.3 radical adduct was observed in the aqueous liver perfusate. This adduct was also detected by ESR in rat urine 2 h after intragastric addition of spin trap and CCl4. This radical adduct had hyperfine coupling constants and 13C isotope effects identical with the radical adduct of the carbon dioxide anion radical (CO2-.). Analysis of the pH dependence of the coupling constants yielded a pK alpha of 2.8 for the CO2-. radical adduct formed either in the perfused liver or chemically. Carbon tetrachloride is converted into CCl.3 by cytochrome P-450 through a reductive dehalogenation. The trichloromethyl free radical reacts with oxygen to form the trichloromethyl peroxyl radical, CCl3OO., which may be converted into .COCl and then trapped. This radical adduct would hydrolyze to the carboxylic acid form, which is detected spectroscopically. Alternatively, the carbon dioxide anion free radical could form through complete dechlorination and then react with the spin trap to give the CO2-. radical adduct directly. PMID:3007463

  4. Study on the free radical scavenging activity of sea cucumber (Paracaudina chinens var.) gelatin hydrolysate

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Xiao, Feng; Zhao, Yuanhui; Liu, Zunying; Li, Bafang; Dong, Shiyuan

    2007-07-01

    Gelatin from the sea cucumber (Paracaudina chinens var.) was hydrolyzed by bromelain and the hydrolysate was found to have a high free radical scavenging activity. The hydrolysate was fractionated through an ultrafiltration membrane with 5 kDa molecular weight cutoff (MWCO). The portion (less than 5 kDa) was further separated by Sephadex G-25. The active peak was collected and assayed for free radical scavenging activity. The scavenging rates for superoxide anion radicals (O2·-) and hydroxyl radicals (·OH) of the fraction with the highest activity were 29.02% and 75.41%, respectively. A rabbit liver mitochondrial free radical damage model was adopted to study the free radical scavenging activity of the fraction. The results showed that the sea cucumber gelatin hydrolysate can prevent the damage of rabbit liver and mitochondria.

  5. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  6. Fine structure of the Mn acceptor in GaAs

    NASA Astrophysics Data System (ADS)

    Krainov, I. V.; Debus, J.; Averkiev, N. S.; Dimitriev, G. S.; Sapega, V. F.; Lähderanta, E.

    2016-06-01

    We reveal the electronic level structure of the Mn acceptor, which consists of a valence-band hole bound to an Mn2 + ion, in presence of applied uniaxial stress and an external magnetic field in bulk GaAs. Resonant spin-flip Raman scattering is used to measure the g factor of the AMn0 center in the ground and excited states with the total angular momenta F =1 and F =2 and characterize the optical selection rules of the spin-flip transitions between these Mn-acceptor states. We determine the random stress fields near the Mn acceptor, the constant of the antiferromagnetic exchange interaction between the valence-band holes and the electrons of the inner Mn2 + shell as well as the deformation potential for the exchange energy. The p -d exchange energy, in particular, decreases significantly with increasing compressive stress. By combining the experimental Raman study with the developed theoretical model on the scattering efficiency, in which also the random local and external uniaxial stresses and magnetic field are considered, the fine structure of the Mn acceptor is determined in full detail.

  7. Development of imide- and imidazole-containing electron acceptors for use in donor-acceptor conjugated compounds and polymers

    NASA Astrophysics Data System (ADS)

    Li, Duo

    Conjugated organic compounds and polymers have attracted significant attention due to their potential application in electronic devices as semiconducting materials, such as organic solar cells (OSCs). In order to tune band gaps, donor-acceptor (D-A) structure is widely used, which has been proved to be one of the most effective strategies. This thesis consists of three parts: 1) design, syntheses and characterization of new weak acceptors based on imides and the systematic study of the structure-property relationship; (2) introduction of weak and strong acceptors in one polymer to achieve a broad coverage of light absorption and improve the power conversion efficiency (PCE); (3) modification of benzothiadiazole (BT) acceptor in order to increase the electron withdrawing ability. Imide-based electron acceptors, 4-(5-bromothiophen-2-y1)-2-(2-ethylhexyl)-9- phenyl- 1H-benzo[f]isoindole-1,3(2H)-dione (BIDO-1) and 4,9-bis(5-bromothiophen-2-yl)-2-(2-ethylhexyl)-benzo[f]isoindole-1,3-dione (BIDO-2), were designed and synthesized. In this design, naphthalene is selected as its main core to maintain a planar structure, and thienyl groups are able to facilitate the bromination reaction and lower the band gap. BIDO-1 and BIDO-2 were successfully coupled with different donors by both Suzuki cross-coupling and Stille cross-coupling reactions. Based on the energy levels and band gaps of the BIDO-containing compounds and polymers, BIDO-1 and BIDO-2 are proved to be weak electron acceptors. Pyromellitic diimide (PMDI) was also studied and found to be a stronger electron acceptor than BIDO . In order to obtain broad absorption coverage, both weak acceptor ( BIDO-2) and strong acceptor diketopyrrolopyrrole (DPP) were introduced in the same polymer. The resulting polymers show two absorption bands at 400 and 600 nm and two emission peaks at 500 and 680 nm. The band gaps of the polymers are around 1.6 eV, which is ideal for OSC application. The PCE of 1.17% was achieved. Finally

  8. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  9. Chemistry of carotenoid neutral radicals.

    PubMed

    Ligia Focsan, A; Magyar, Adam; Kispert, Lowell D

    2015-04-15

    Proton loss from the carotenoid radical cations (Car(+)) to form neutral radicals (#Car) was investigated by numerous electrochemical, EPR, ENDOR and DFT studies described herein. The radical cation and neutral radicals were formed in solution electrochemically and stabilized on solid silica-alumina and MCM-41 matrices. Carotenoid neutral radicals were recently identified in Arabidopsis thaliana plant and photosystem II samples. Deprotonation at the terminal ends of a zeaxanthin radical cation could provide a secondary photoprotection pathway which involves quenching excited state chlorophyll by the long-lived zeaxanthin neutral radicals formed. PMID:25687648

  10. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  11. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  12. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  13. Anion Solvation in Carbonate Electrolytes

    SciTech Connect

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  14. Aza compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  15. Aza compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

  16. Transient Anion States of Biomolecules

    NASA Astrophysics Data System (ADS)

    Varella, Marcio

    2012-10-01

    Much of the interest on electron interactions with biomolecules is related to radiation damage [Gohlke and Illenberger, Europhys. News 33, 207 (2002)]. The high energy photons employed in radiology and radiotherapy generate a large number of fast electrons in living cells. These electrons thermalize in a picosecond scale, eventually forming dissociative matestable anions with water and biomolecules. In this work, we employ the parallel version of Schwinger Multichannel Method with Pseudopotentials [Bettega et al., Phys. Rev. A 47, 1111 (1993); Santos et al., J. Phys. Chem. 136, 084307 (2012)] to investigate transient anion states of protein and nucleic acid precursors. We address glycine in both neutral and zwitterionic forms, as well as glycine-water clusters and disulfide bonds. The interest on the two forms of glycine (and other amino acids) relies on the fact that only the neutral form is stable in the gas phase, while the zwitterion is more stable in solution, pointing out limitations of standard gas-phase studies. Electron attachment to disulfide bonds also has potential impact on protein stability. Finally we address transient anion states of substituted uracil molecules in the gas phase. [4pt] In collaboration with M. H. F. Bettega, S. d'A. Sanchez, R. F. da Costa, M. A. P. Lima, J. S. dos Santos, and F. Kossoski.

  17. Mechanisms of electron acceptor utilization: Implications for simulating anaerobic biodegradation

    USGS Publications Warehouse

    Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr, J.M.

    2004-01-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum- contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  18. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation.

    PubMed

    Schreiber, M E; Carey, G R; Feinstein, D T; Bahr, J M

    2004-09-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum-contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  19. Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones.

    PubMed

    Frébortová, Jitka; Novák, Ondrej; Frébort, Ivo; Jorda, Radek

    2010-02-01

    Hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-one (DIMBOA) was isolated from maize phloem sap as a compound enhancing the degradation of isopentenyl adenine by maize cytokinin dehydrogenase (CKX), after oxidative conversion by either laccase or peroxidase. Laccase and peroxidase catalyze oxidative cleavage of DIMBOA to 4-nitrosoresorcinol-1-monomethyl ether (coniferron), which serves as a weak electron acceptor of CKX. The oxidation of DIMBOA and coniferron generates transitional free radicals that are used by CKX as effective electron acceptors. The function of free radicals in the CKX-catalyzed reaction was also verified with a stable free radical of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid. Application of exogenous cytokinin to maize seedlings resulted in an enhanced benzoxazinoid content in maize phloem sap. The results indicate a new function for DIMBOA in the metabolism of the cytokinin group of plant hormones. PMID:19912568

  20. Control of asymmetry in the radical addition approach to chiral amine synthesis.

    PubMed

    Friestad, Gregory K

    2014-01-01

    The state-of-the-science in asymmetric free radical additions to imino compounds is presented, beginning with an overview of methods involving stereocontrol by various chiral auxiliary approaches. Chiral N-acylhydrazones are discussed with respect to their use as radical acceptors for Mn-mediated intermolecular additions, from design to scope surveys to applications to biologically active targets. A variety of aldehydes and ketones serve as viable precursors for the chiral hydrazones, and a variety of alkyl iodides may be employed as radical precursors, as discussed in a critical review of the functional group compatibility of the reaction. Applications to amino acid and alkaloid synthesis are presented to illustrate the synthetic potential of these versatile stereocontrolled carbon-carbon bond construction reactions. Asymmetric catalysis is discussed, from seminal work on the stereocontrol of radical addition to imino compounds by non-covalent interactions with stoichiometric amounts of catalysts, to more recent examples demonstrating catalyst turnover. PMID:24085561

  1. Control of Asymmetry in the Radical Addition Approach to Chiral Amine Synthesis

    PubMed Central

    Friestad, Gregory K.

    2014-01-01

    The state-of-the-science in asymmetric free radical additions to imino compounds is presented, beginning with an overview of methods involving stereocontrol by various chiral auxiliary approaches. Chiral N-acylhydrazones are discussed with respect to their use as radical acceptors for Mn-mediated intermolecular additions, from design to scope surveys to applications to biologically active targets. A variety of aldehydes and ketones serve as viable precursors for the chiral hydrazones, and a variety of alkyl iodides may be employed as radical precursors, as discussed in a critical review of the functional group compatibility of the reaction. Applications to amino acid and alkaloid synthesis are presented to illustrate the synthetic potential of these versatile stereocontrolled carbon–carbon bond construction reactions. Asymmetric catalysis is discussed, from seminal work on the stereocontrol of radical addition to imino compounds by non-covalent interactions with stoichiometric amounts of catalysts, to more recent examples demonstrating catalyst turnover. PMID:24085561

  2. [Aging and free radicals].

    PubMed

    Manso, C

    1992-02-01

    Several theories on aging are presented. All of them give important contributions but none explains all the aspects of the problem. Oxygen radicals produced during cellular combustion contribute to aging through multiple cumulative microlesions throughout life. The importance of glucose is emphasized; it forms early and late Maillard compounds. Other causes of aging are discussed. PMID:1595373

  3. Radical School Reform.

    ERIC Educational Resources Information Center

    Gross, Beatrice, Ed.; Gross, Ronald, Ed.

    This book provides a comprehensive examination of the nature of the school crisis and the ways in which radical thinkers and educators are dealing with it. Excerpts from the writings of Jonathan Kozol, John Holt, Kenneth Clark, and others are concerned with the realities of education in ghettos and suburbs. Paul Goodman, Marshall McLuhan, Sylvia…

  4. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.

    PubMed

    Flühe, Leif; Marahiel, Mohamed A

    2013-08-01

    Sactipeptides represent a new emerging class of ribosomally assembled and posttranslationally modified peptides that show diverse bioactivities. Their common hallmark is an intramolecular thioether bond that crosslink the sulfur atom of a cysteine residue with the α-carbon of an acceptor amino acid. This review summarizes recent achievements concerning the biosynthesis of sactipeptides in general and with special focus on the common enzymatic radical SAM mechanism leading to the thioether linkage formation. In addition this mechanism is compared to the mechanism of thioether bond formation during lanthipeptide biosynthesis and to other radical based thioether bond forming reactions. PMID:23891473

  5. Fluorescence sensing of anions based on inhibition of excited-state intramolecular proton transfer.

    PubMed

    Wu, Yunkou; Peng, Xiaojun; Fan, Jiangli; Gao, Shang; Tian, Maozhong; Zhao, Jianzhang; Sun, Shiguo

    2007-01-01

    Condensation of 2-(2'-aminophenyl)benzoxazole with p-toluenesulfonyl chloride and phenyl isocyanate yields two new anion sensors (TABO and PUBO), which can undergo excited-state intramolecular proton transfer (ESIPT) upon excitation. For the acid receptor TABO, the ESIPT process can be readily disturbed by basic anions such as F-, CH3COO-, and H2PO4- by deprotonating the sulfonamide unit, whereas in the case of PUBO, a good hydrogen-bonding donor, the ESIPT process is inhibited either by the fluoride-induced deprotonation of the urea unit or by the formation of a strong CH3COO--urea intermolecular hydrogen bond complex, and these two types of inhibition mechanisms consequently result in different ratiometric responses. But other anions with less hydrogen-bonding acceptor abilities cannot inhibit the ESIPT. Interestingly, the different inhibition abilities of F-, CH3COO-, and H2PO4- produce different spectral behaviors in PUBO, so this new sensor successfully distinguishes the subtle difference in these three anionic substrates of similar basicity and surface charge density. PMID:17194082

  6. Rigid Conjugated Twisted Truxene Dimers and Trimers as Electron Acceptors.

    PubMed

    Zhang, Gang; Lami, Vincent; Rominger, Frank; Vaynzof, Yana; Mastalerz, Michael

    2016-03-14

    A new class of rigid twisted truxenone oligomers with an enlarged π backbone has been established by oxidative dimerization reactions. The resulting extended conjugated systems have large extinction coefficients and low-lying LUMO levels and show good solubility in common organic solvents, thus making them attractive compounds as new electron acceptors in organic electronics. Their suitability as electron acceptors has been demonstrated in bulk-heterojunction organic solar cells with poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7) as the donor material. PMID:26891096

  7. Probing the spin states of a single acceptor atom.

    PubMed

    van der Heijden, Joost; Salfi, Joe; Mol, Jan A; Verduijn, Jan; Tettamanzi, Giuseppe C; Hamilton, Alex R; Collaert, Nadine; Rogge, Sven

    2014-03-12

    We demonstrate a single-hole transistor using an individual acceptor dopant embedded in a silicon channel. Magneto-transport spectroscopy reveals that the ground state splits as a function of magnetic field into four states, which is unique for a single hole bound to an acceptor in a bulk semiconductor. The two lowest spin states are heavy (|m(j)| = 3/2) and light (|m(j)| = 1/2) hole-like, a two-level system that can be electrically driven and is characterized by a magnetic field dependent and long relaxation time, which are properties of interest for qubits. Although the bulklike spin splitting of a boron atom is preserved in our nanotransistor, the measured Landé g-factors, |g(hh)| = 0.81 ± 0.06 and |g(lh)| = 0.85 ± 0.21 for heavy and light holes respectively, are lower than the bulk value. PMID:24571637

  8. Interface effects on acceptor qubits in silicon and germanium.

    PubMed

    Abadillo-Uriel, J C; Calderón, M J

    2016-01-15

    Dopant-based quantum computing implementations often require the dopants to be situated close to an interface to facilitate qubit manipulation with local gates. Interfaces not only modify the energies of the bound states but also affect their symmetry. Making use of the successful effective mass theory we study the energy spectra of acceptors in Si or Ge taking into account the quantum confinement, the dielectric mismatch and the central cell effects. The presence of an interface puts constraints to the allowed symmetries and leads to the splitting of the ground state in two Kramers doublets (Mol et al 2015 Appl. Phys. Lett. 106 203110). Inversion symmetry breaking also implies parity mixing which affects the allowed optical transitions. Consequences for acceptor qubits are discussed. PMID:26618443

  9. Defect Donor and Acceptor in GaN

    SciTech Connect

    Look, D.C.; Reynolds, D.C.; Hemsky, J.W.; Sizelove, J.R.; Jones, R.L.

    1997-09-01

    High-energy (0.7{endash}1MeV) electron irradiation in GaN grown on sapphire produces shallow donors and deep or shallow acceptors at equal rates, 1{plus_minus}0.2 cm{sup {minus}1}. The data, in conjunction with theory, are consistent only with the shallow donor being the N vacancy, and the acceptor the N interstitial. The N-vacancy donor energy is 64{plus_minus}10 meV, much larger than the value of 18meV found for the residual donor (probably Si) in this material. The Hall-effect measurements also reveal a degenerate n -type layer at the GaN/sapphire interface which must be accounted for to get the proper donor activation energy. {copyright} {ital 1997} {ital The American Physical Society}

  10. Tyrosyl Radicals in Dehaloperoxidase

    PubMed Central

    Dumarieh, Rania; D'Antonio, Jennifer; Deliz-Liang, Alexandria; Smirnova, Tatyana; Svistunenko, Dimitri A.; Ghiladi, Reza A.

    2013-01-01

    Dehaloperoxidase (DHP) from Amphitrite ornata, having been shown to catalyze the hydrogen peroxide-dependent oxidation of trihalophenols to dihaloquinones, is the first oxygen binding globin that possesses a biologically relevant peroxidase activity. The catalytically competent species in DHP appears to be Compound ES, a reactive intermediate that contains both a ferryl heme and a tyrosyl radical. By simulating the EPR spectra of DHP activated by H2O2, Thompson et al. (Thompson, M. K., Franzen, S., Ghiladi, R. A., Reeder, B. J., and Svistunenko, D. A. (2010) J. Am. Chem. Soc. 132, 17501–17510) proposed that two different radicals, depending on the pH, are formed, one located on either Tyr-34 or Tyr-28 and the other on Tyr-38. To provide additional support for these simulation-based assignments and to deduce the role(s) that tyrosyl radicals play in DHP, stopped-flow UV-visible and rapid-freeze-quench EPR spectroscopic methods were employed to study radical formation in DHP when three tyrosine residues, Tyr-28, Tyr-34, and Tyr-38, were replaced either individually or in combination with phenylalanines. The results indicate that radicals form on all three tyrosines in DHP. Evidence for the formation of DHP Compound I in several tyrosine mutants was obtained. Variants that formed Compound I showed an increase in the catalytic rate for substrate oxidation but also an increase in heme bleaching, suggesting that the tyrosines are necessary for protecting the enzyme from oxidizing itself. This protective role of tyrosines is likely an evolutionary adaptation allowing DHP to avoid self-inflicted damage in the oxidative environment. PMID:24100039

  11. 2012 ELECTRON DONOR-ACCEPTOR INTERACTIONS GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect

    McCusker, James

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  12. An extended Foerster-Dexter model for correlated donor-acceptor placement in solid state materials

    NASA Astrophysics Data System (ADS)

    Rotman, S. R.; Hartmann, F. X.

    1987-09-01

    The current theory of donor-acceptor interactions in solid-state materials is based on a random distribution of donors and acceptors through the crystal. In this paper, we present a model to calculate the observable transfer rates for the correlated positioning of donors and acceptors in laser materials. Chemical effects leading to such correlations are discussed.

  13. Free-Radical Polymer Science Structural Cancer Model: A Review

    PubMed Central

    Petersen, Richard C.

    2013-01-01

    Polymer free-radical lipid alkene chain-growth biological models particularly for hypoxic cellular mitochondrial metabolic waste can be used to better understand abnormal cancer cell morphology and invasive metastasis. Without oxygen as the final electron acceptor for mitochondrial energy synthesis, protons cannot combine to form water and instead mitochondria produce free radicals and acid during hypoxia. Nonuniform bond-length shrinkage of membranes related to erratic free-radical covalent crosslinking can explain cancer-cell pleomorphism with epithelial-mesenchymal transition for irregular membrane borders that “ruffle” and warp over stiff underlying actin fibers. Further, mitochondrial hypoxic conditions produce acid that can cause molecular degradation. Subsequent low pH-activated enzymes then provide paths for invasive cell movement through tissue and eventually blood-born metastasis. Although free-radical crosslinking creates irregularly shaped membranes with structural actin-polymerized fiber extensions as filopodia and lamellipodia, due to rapid cell division the overall cell modulus (approximately stiffness) is lower than normal cells. When combined with low pH-activated enzymes and lower modulus cells, smaller cancer stem cells subsequently have a large advantage to follow molecular destructive pathways and leave the central tumor. In addition, forward structural spike-like lamellipodia protrusions can leverage to force lower-modulus cancer cells through narrow openings. By squeezing and deforming even smaller to allow for easier movement through difficult passageways, cancer cells can travel into adjacent tissues or possibly metastasize through the blood to new tissue. PMID:24278767

  14. Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors

    SciTech Connect

    Nardes, Alexandre M.; Ferguson, Andrew J.; Wolfer, Pascal; Gui, Kurt; Burn, Paul L.; Meredith, Paul; Kopidakis, Nikos

    2014-03-05

    We present a comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85 % of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. Here, we propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub

  15. Quantum confined acceptors and donors in InSe nanosheets

    SciTech Connect

    Mudd, G. W.; Patanè, A. Makarovsky, O.; Eaves, L.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Fay, M. W.; Zólyomi, V.; Falko, V.

    2014-12-01

    We report on the radiative recombination of photo-excited carriers bound at native donors and acceptors in exfoliated nanoflakes of nominally undoped rhombohedral γ-polytype InSe. The binding energies of these states are found to increase with the decrease in flake thickness, L. We model their dependence on L using a two-dimensional hydrogenic model for impurities and show that they are strongly sensitive to the position of the impurities within the nanolayer.

  16. Structures of Fluoranthene Reagent Anions Used in Electron Transfer Dissociation and Proton Transfer Reaction Tandem Mass Spectrometry.

    PubMed

    Martens, Jonathan; Berden, Giel; Oomens, Jos

    2016-06-21

    Ion/ion reactions have in recent years seen widespread use in ion activation methods such as electron transfer dissociation (ETD) tandem mass spectrometry (MS/MS) as well as in charge manipulation of highly charged peptides/proteins and their fragments by proton transfer reaction (PTR). These techniques have, in combination, enabled top-down proteomics on limited-resolution benchtop mass spectrometry platforms such as quadrupole ion traps. Anions generated by chemical ionization of fluoranthene are often used for both ETD and PTR reactions; the radical anion of fluoranthene (m/z 202) for ETD and the closed-shell anion resulting from H atom attachment to the radical anion (m/z 203) for PTR. Here we use infrared ion spectroscopy in combination with density functional theory calculations to identify the structures of these reagent anions. We establish that the m/z 203 PTR reagent anion possesses a structure that deviates from what has been suggested previously and provides some insight into the reaction mechanism involved in PTR. PMID:27228406

  17. Design directed self-assembly of donor-acceptor polymers.

    PubMed

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements. PMID:27440174

  18. Virtual screening of electron acceptor materials for organic photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Halls, Mathew D.; Djurovich, Peter J.; Giesen, David J.; Goldberg, Alexander; Sommer, Jonathan; McAnally, Eric; Thompson, Mark E.

    2013-10-01

    Virtual screening involves the generation of structure libraries, automated analysis to predict properties related to application performance and subsequent screening to identify lead systems and estimate critical structure-property limits across a targeted chemical design space. This approach holds great promise for informing experimental discovery and development efforts for next-generation materials, such as organic semiconductors. In this work, the virtual screening approach is illustrated for nitrogen-substituted pentacene molecules to identify systems for development as electron acceptor materials for use in organic photovoltaic (OPV) devices. A structure library of tetra-azapentacenes (TAPs) was generated by substituting four nitrogens for CH at 12 sites on the pentacene molecular framework. Molecular properties (e.g. ELUMO, Eg and μ) were computed for each candidate structure using hybrid DFT at the B3LYP/6-311G** level of theory. The resulting TAPs library was then analyzed with respect to intrinsic properties associated with OPV acceptor performance. Marcus reorganization energies for charge transport for the most favorable TAP candidates were then calculated to further determine suitability as OPV electron acceptors. The synthesis, characterization and OPV device testing of TAP materials is underway, guided by these results.

  19. Engineered oligosaccharyltransferases with greatly relaxed acceptor site specificity

    PubMed Central

    Ollis, Anne A.; Zhang, Sheng; Fisher, Adam C.; DeLisa, Matthew P.

    2015-01-01

    The Campylobacter jejuni protein glycosylation locus (pgl) encodes machinery for asparagine-linked (N-linked) glycosylation and serves as the archetype for bacterial N-glycosylation. This machinery has been functionally transferred into Escherichia coli, thereby enabling convenient mechanistic dissection of the N-glycosylation process in this genetically tractable host. Here, we sought to identify sequence determinants in the oligosaccharyltransferase PglB that restrict its specificity to only those glycan acceptor sites containing a negatively charged residue at the −2 position relative to asparagine. This involved creation of a genetic assay named glycoSNAP (glycosylation of secreted N-linked acceptor proteins) that facilitates high-throughput screening of glycophenotypes in E. coli. Using this assay, we isolated several C. jejuni PglB variants that were capable of glycosylating an array of noncanonical acceptor sequences including one in a eukaryotic N-glycoprotein. Collectively, these results underscore the utility of glycoSNAP for shedding light on poorly understood aspects of N-glycosylation and for engineering designer N-glycosylation biocatalysts. PMID:25129029

  20. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity.

    PubMed

    Ollis, Anne A; Zhang, Sheng; Fisher, Adam C; DeLisa, Matthew P

    2014-10-01

    The Campylobacter jejuni protein glycosylation locus (pgl) encodes machinery for asparagine-linked (N-linked) glycosylation and serves as the archetype for bacterial N-linked glycosylation. This machinery has been functionally transferred into Escherichia coli, enabling convenient mechanistic dissection of the N-linked glycosylation process in this genetically tractable host. Here we sought to identify sequence determinants in the oligosaccharyltransferase PglB that restrict its specificity to only those glycan acceptor sites containing a negatively charged residue at the -2 position relative to asparagine. This involved creation of a genetic assay, glycosylation of secreted N-linked acceptor proteins (glycoSNAP), that facilitates high-throughput screening of glycophenotypes in E. coli. Using this assay, we isolated several C. jejuni PglB variants that could glycosylate an array of noncanonical acceptor sequences, including one in a eukaryotic N-glycoprotein. These results underscore the utility of glycoSNAP for shedding light on poorly understood aspects of N-linked glycosylation and for engineering designer N-linked glycosylation biocatalysts. PMID:25129029

  1. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    PubMed

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells. PMID:24749413

  2. Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions.

    PubMed

    Geiger, William E; Barrière, Frédéric

    2010-07-20

    -deficient organometallic compounds are subject to nucleophilic attack by the traditional family of electrolyte anions. With a view to testing the scope of the much less nucleophililic WCAs in providing a benign electrolyte anion for the generation of organometallic cation radicals, we carried out a series of studies on transition metal sandwich and half-sandwich compounds. The model compounds were chosen both for their fundamental importance and because their radical cations had been neither isolated nor spectrally characterized, despite many previous electrochemical investigations with traditional anions. The oxidation of prototypical organometallic compounds, such as the sandwich-structured ruthenocene and the piano-stool structured Cr(eta(6)-C(6)H(6))(CO)(3), Mn(eta(5)-C(5)H(5))(CO)(3), Re(eta(5)-C(5)H(5))(CO)(3), and Co(eta(5)-C(5)H(5))(CO)(2), gave the first definitive in situ characterization of their radical cations. In several cases, the kinetic stabilization of the anodic products allowed the identification of dimers or unique dimer radicals having weak metal-metal bonds and provided new preparative options for organometallic systems. In terms of thermodynamic effects, the lower ion-pairing abilities of WCAs and their good solubility in a broad range of solvents, including those of lower polarity, permitted a systematic study that yielded an integrated model of how to use solvent-electrolyte combinations to manipulate the E(1/2) differences of compounds undergoing multiple electron-transfer reactions. Although the efficacy of WCA-based electrolytes in organometallic anodic chemistry is now established, WCAs might further expand applications of organic redox chemistry. Other WCAs, including those derived from carboranes and fluorinated alkoxyaluminates, merit additional studies. PMID:20345126

  3. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors.

    PubMed

    Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A

    2015-04-15

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, (1)H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor. PMID:25677533

  4. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2015-04-01

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  5. Free radical scavenging actions of hippocampal metallothionein isoforms and of antimetallothioneins: an electron spin resonance spectroscopic study.

    PubMed

    Kumari, M V; Hiramatsu, M; Ebadi, M

    2000-05-01

    The high concentration of zinc in the hippocampal mossy fiber axon boutons is localized in the vesicles and is mobilized by exocytosis of the zinc-laden vesicles. Furthermore, the mammalian hippocampi contain metallothionein (MT) isoforms which regulate the steady state concentration of zinc, an important antioxidant. Indeed, zinc deprivation leads to an increased lipid peroxidation, reduces the activity of Cu++-Zn++ superoxide dismutase, and protect against oxidative stress such as exposure to ultraviolet A irradiation. By employing electron spin resonance (ESR) spectroscopy, we have demonstrated that rat hippocampal MT isoforms 1 and 2 were able to scavenge 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), hydroxyl radicals (*OH) generated in a Fenton reaction, and superoxide anions (O2*-) generated by the hypoxanthine and xanthine oxidase system. In addition, MT-1 isoform protected the isolated hepatocytes from lipid peroxidation as determined by thiobarbituric acid bound malondialdehyde. MT antibodies scavenged DPPH radicals, hydroxyl radicals and reactive oxygen species but not superoxide anions. The results of these studies suggest that although both isoforms of MT are able to scavenge free radicals, the MT-1 appears to be a superior scavenger of superoxide anions and 1,1-diphenyl-2-picrylhydrazyl radicals. Moreover, antibodies formed against MT isoform retain some, but not all, free radical scavenging actions exhibited by MT-1 and MT-2. PMID:10872749

  6. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation.

    PubMed

    Fang, Guodong; Zhu, Changyin; Dionysiou, Dionysios D; Gao, Juan; Zhou, Dongmei

    2015-01-01

    This paper investigated hydroxyl radical (OH) generation from biochar suspensions for diethyl phthalate (DEP) degradation in the presence of oxygen. Electron paramagnetic resonance (EPR) coupled with a salicylic acid trapping method were used to detect free radicals in biochar and verify OH generation from biochar suspensions. Free radicals (FRs) in biochar could induce OH generation, and ≈12 spins of FRs were consumed to produce one trapped [OH] molecule. The proposed mechanism of OH generation was that FRs in biochar transferred electrons to O2 to produce the superoxide radical anion and hydrogen peroxide, which reacted further with FRs to produce OH. Free radical-quenching studies utilizing superoxide dismutase, catalase, and deferoxamine as scavengers were used to testify this mechanism. Furthermore, OH generated from biochar suspensions could degrade DEP efficiently. These findings of this study provide new insights into the physicochemical properties and environmental implications of biochar. PMID:25461005

  7. Mutual Lewis acid-base interactions of cations and anions in ionic liquids.

    PubMed

    Holzweber, Markus; Lungwitz, Ralf; Doerfler, Denise; Spange, Stefan; Koel, Mihkel; Hutter, Herbert; Linert, Wolfgang

    2013-01-01

    Solute properties are known to be strongly influenced by solvent molecules due to solvation. This is due to mutual interaction as both the properties of the solute and of the solvent strongly depend on each other. The present paper is based on the idea that ionic liquids are cations solvated by anions and anions solvated by cations. To show this (in this system strongly pronounced) interaction the long time established donor-acceptor concept for solvents and ions in solution by Viktor Gutmann is extended to ionic liquids. A number of solvent parameters, such as the Kamlet-Abboud-Taft and the Dimroth-Reichardt E(T) scale for ionic liquids neglect this mutual influence, which, however, seems to be in fact necessary to get a proper description of ionic liquid properties. It is shown how strong such parameters vary when the influence of the counter ion is taken into account. Furthermore, acceptor and donor numbers for ionic liquids are presented. PMID:23180598

  8. Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

    PubMed Central

    So, Mi Jung; Cho, Eun Ju

    2014-01-01

    The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions (O2−), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, O2−, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide (H2O2)-induced SIPS. Phloroglucinol treatment attenuated H2O2-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS. PMID:25320709

  9. Antioxidant and free-radical-scavenging effects of fruits of Dregea volubilis

    PubMed Central

    Biswas, Moulisha; Haldar, Pallab Kanti; Ghosh, Ashoke Kumar

    2010-01-01

    This study evaluated the in vitro antioxidant potential of petroleum ether (60–80°C), chloroform, and methanol extract of the fruits of Dregea volubilis Benth (Asclepiadaceae). The different antioxidant assays, including total antioxidant activity, reducing power, free radical, super oxide anion radical, nitric oxide scavenging, lipid peroxidation, and total phenolic content were studied. The extracts exhibited potent total antioxidant activity that increased with increasing amount of extract concentration, which was compared with standard drug vitamin C at different concentrations as extracts. The different concentrations of all the extracts and vitamin C showed inhibition on lipid peroxidation. In addition, all the extracts had effective reducing power, free radical scavenging, super oxide anion scavenging, nitric oxide scavenging, lipid peroxidation, and total phenolic content depending on concentration. These various antioxidant activities were compared with standard antioxidant such as vitamin C at different concentration as different extracts. PMID:22096333

  10. [Riboflavin-radical formation by mechanochemical solid-state reaction using stainless steel vessel].

    PubMed

    Kondo, Shin-ichi; Furuta, Youji; Okita, Shintarou; Sasai, Yasushi; Aramaki, Hideki; Kuzuya, Masayuki

    2004-03-01

    The mechanochemical reaction of free riboflavin (FR) due to vibratory ball milling was carried out in a stainless steel vessel at room temperature under anaerobic conditions. The ESR of the fractured sample showed a broad single-line spectrum. It is suggested that the solid-state single-electron transfer (SSET) reaction from the surface of the stainless steel vessel to FR proceeded during the vibratory milling, resulting in the formation of the corresponding anion radicals. When the mechanochemical reaction of FR in the presence of calcium pantothenate (PC) was carried out, the radical concentration increased with the increasing PC content. It was shown that the anion radical in the metal complex was stable for a lengthy period of time even in highly humid air. PMID:15049132

  11. Toward Radicalizing Community Service Learning

    ERIC Educational Resources Information Center

    Sheffield, Eric C.

    2015-01-01

    This article advocates a radicalized theoretical construction of community service learning. To accomplish this radicalization, I initially take up a discussion of traditional understandings of CSL rooted in pragmatic/progressive thought. I then suggest that this traditional structural foundation can be radicalized by incorporating Deborah…

  12. Method for producing and regenerating a synthetic CO[sub 2] acceptor

    DOEpatents

    Lancet, M. S.; Curran, G. P.; Gorin, E.

    1982-05-18

    A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

  13. Method for producing and regenerating a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

    1982-01-01

    A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

  14. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  15. Free radical explosive composition

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  16. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    The concept of a free radical propulsion system, utilizing the recombination energy of dissociated low molecular weight gases to produce thrust, is analyzed. The system, operating at a theoretical impulse with hydrogen, as high as 2200 seconds at high thrust to power ratio, is hypothesized to bridge the gap between chemical and electrostatic propulsion capabilities. A comparative methodology is outlined by which characteristics of chemical and electric propulsion for orbit raising mission can be investigated. It is noted that free radicals proposed in rockets previously met with difficulty and complexity in terms of storage requirements; the present study proposes to eliminate the storage requirements by using electric energy to achieve a continuous-flow product of free radicals which are recombined to produce a high velocity propellant. Microwave energy used to dissociate a continuously flowing gas is transferred to the propellant via three-body-recombination for conversion to propellant kinetic energy. Microwave plasma discharge was found in excess of 90 percent over a broad range of pressure in preliminary experiments, and microwave heating compared to electrothermal heating showed much higher temperatures in gasdynamic equations.

  17. Laparoscopic radical cystectomy

    PubMed Central

    Fergany, Amr

    2012-01-01

    Objective Laparoscopic radical cystectomy (LRC) has emerged as a minimally invasive alternative to open radical cystectomy (ORC). This review focuses on patient selection criteria, technical aspects and postoperative outcomes of LRC. Methods Material for the review was obtained by a PubMed search over the last 10 years, using the keywords ‘laparoscopic radical cystectomy’ and ‘laparoscopic bladder cancer’ in human subjects. Results Twenty-two publications selected for relevance and content were used for this review from the total search yield. The level of evidence was IIb and III. LRC results in comparable short- and intermediate-range oncological outcomes to ORC, with generally longer operative times but decreased blood loss, postoperative pain and hospital stay. Overall operative and postoperative morbidity are equivalent. Conclusion In experienced hands, LRC is an acceptable minimally invasive alternative to ORC in selected patients, with the main advantage of decreased blood loss and postoperative pain, as well as a shorter hospital stay and recovery. PMID:26558003

  18. Temperature dependent electron spin echo studies of polarons in donor- and acceptor-doped poly(p-phenylene): Structural studies

    SciTech Connect

    Kispert, L.D.; Joseph, J.; Tang, J.; Bowman, M.K.; Van Brakel, G.H.; Norris, J.R.

    1986-06-06

    Electron spin echo (ESE) measurements of donor-doped (Li, Na, K and Cs) and acceptor-doped (AsF/sub 5/) poly(p-phenylene), PPP, and fully deuterated PPP samples predict a temperature independent EPR linewidth equal to less than 0.65 gauss that decreases with increasing conductivity. In contrast, EPR linewidths either decrease or increase with decreasing temperature, are dependent on dopant and always exhibit a linewidth either equal to or larger than that predicted from ESE measurements. Deuteration studies indicate that rapid spin exchange is present. Analysis of these results suggest that an exchange exists between isolated radicals in equilibrium with polarons and bipolarons with the equilibrium in favor of bipolarons at 4 K.

  19. Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Rauch, C.; Gehlhoff, W.; Wagner, M. R.; Malguth, E.; Callsen, G.; Kirste, R.; Salameh, B.; Hoffmann, A.; Polarz, S.; Aksu, Y.; Driess, M.

    2010-01-01

    We study the existence of Li-related shallow and deep acceptor levels in Li-doped ZnO nanocrystals using electron paramagnetic resonance (EPR) and photoluminescence (PL) spectroscopy. ZnO nanocrystals with adjustable Li concentrations between 0% and 12% have been prepared using organometallic precursors and show a significant lowering of the Fermi energy upon doping. The deep Li acceptor with an acceptor energy of 800 meV could be identified in both EPR and PL measurements and is responsible for the yellow luminescence at 2.2 eV. Additionally, a shallow acceptor state at 150 meV above the valence band maximum is made responsible for the observed donor-acceptor pair and free electron-acceptor transitions at 3.235 and 3.301 eV, possibly stemming from the formation of Li-related defect complexes acting as acceptors.

  20. Electronic structure of the acetonitrile and acetonitrile dimer anions: a topological investigation.

    PubMed

    Timerghazin, Qadir K; Peslherbe, Gilles H

    2008-01-17

    . We also report the first multireference electronic structure calculations of the valence-bound-electron acetonitrile monomer and dimer anions, the highest-level calculations of these species to date. The acetonitrile radical anion is unstable in the gas phase and is topologically characterized by a radical-like nonbonded charge concentration located at the cyanide carbon atom. Based on the results of the AIM analysis, the previously proposed resonance description of the valence-bound-electron acetonitrile anion is refined, and a new resonance description of the dimer anion is proposed. Overall, this work demonstrates the rich topological variety of the excess electron interacting with acetonitrile molecules, which manifests itself as charge concentrations, pseudo-atoms, and covalent bonds. PMID:18154288

  1. Adsorption affinity of anions on metal oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  2. Free radical scavenging reactions of sulfasalazine, 5-aminosalicylic acid and sulfapyridine: mechanistic aspects and antioxidant activity.

    PubMed

    Joshi, Ravi; Kumar, Sudheer; Unnikrishnan, M; Mukherjee, T

    2005-11-01

    Reactions of sulfasalazine (SAZ) and its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), with various oxidizing and reducing free radicals (hydroxyl, haloperoxyl, one-electron oxidizing, lipid peroxyl, glutathiyl, superoxide, tryptophanyl, etc.) have been studied to understand the mechanistic aspects of its action against free radicals produced during inflammation. Nanosecond pulse radiolysis technique coupled with transient spectrophotometry has been used for in situ generation of free radicals and to follow their reaction pathways. The transients produced in these reactions have been assigned and radical scavenging rate constants have been measured. In addition to scavenging of various primary and secondary free radicals by SAZ, 5-ASA and SP, 5-ASA has also been observed to efficiently scavenge radicals of biomolecules. 5-ASA has been found to be the active moiety of SAZ involved in the scavenging of oxidizing free radicals whereas reduction of SAZ produced molecular radical anion. The study suggests that free radical scavenging activity of 5-ASA may be a major path of pharmacological action of SAZ against inflammatory bowel diseases (IBD). PMID:16298742

  3. Electron-Donor-Acceptor (EDA) Complexes Of Aromatic Hydrocarbons With Organic Acceptors In Solution And In The Solid State. A Quantitative FT-IR Investigation.

    NASA Astrophysics Data System (ADS)

    Bruni, Paolo; Giorgini, Elisabetta; Tosi, Giorgio; Zampini, Angela

    1989-12-01

    Liquid phase FT-IR investigation on π-π Electron-Donor-Acceptor (EDA) complexes between arenes and organic acceptors leads to values of formation constants that are in good agreement with the ones from other techniques (UV-Vis and NMR). In addition solid state FT-IR and UV-Vis determinations on the complexes are also reported and discussed.

  4. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    PubMed Central

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  5. Nanostructured donor-acceptor self assembly with improved photoconductivity.

    PubMed

    Saibal, B; Ashar, A Z; Devi, R Nandini; Narayan, K S; Asha, S K

    2014-11-12

    Nanostructured supramolecular donor-acceptor assemblies were formed when an unsymmetrical N-substituted pyridine functionalized perylenebisimide (UPBI-Py) was complexed with oligo(p-phenylenevinylene) (OPVM-OH) complementarily functionalized with hydroxyl unit and polymerizable methacrylamide unit at the two termini. The resulting supramolecular complex [UPBI-Py (OPVM-OH)]1.0 upon polymerization by irradiation in the presence of photoinitiator formed well-defined supramolecular polymeric nanostructures. Self-assembly studies using fluorescence emission from thin film samples showed that subtle structural changes occurred on the OPV donor moiety following polymerization. The 1:1 supramolecular complex showed red-shifted aggregate emission from both OPV (∼500 nm) and PBI (∼640 nm) units, whereas the OPV aggregate emission was replaced by intense monomeric emission (∼430 nm) upon polymerizing the methacrylamide units on the OPVM-OH. The bulk structure was studied using wide-angle X-ray diffraction (WXRD). Complex formation resulted in distinct changes in the cell parameters of OPVM-OH. In contrast, a physical mixture of 1 mol each of OPVM-OH and UPBI-Py prepared by mixing the powdered solid samples together showed only a combination of reflections from both parent molecules. Thin film morphology of the 1:1 molecular complex as well as the supramolecular polymer complex showed uniform lamellar structures in the domain range <10 nm. The donor-acceptor supramolecular complex [UPBI-Py (OPVM-OH)]1.0 exhibited space charge limited current (SCLC) with a bulk mobility estimate of an order of magnitude higher accompanied by a higher photoconductivity yield compared to the pristine UPBI-Py. This is a very versatile method to obtain spatially defined organization of n and p-type semiconductor materials based on suitably functionalized donor and acceptor molecules resulting in improved photocurrent response using self-assembly. PMID:25283356

  6. Carbon and group II acceptor coimplantation in GaAs

    SciTech Connect

    Morton, R.; Lau, S.S.; Poker, D.B.; Chu, P.K.; Fung, K.K.; Wang, N.

    1998-11-01

    Coimplantations of carbon and one of the group II acceptors, Mg, Zn, or Cd, were performed and compared to implantations involving only a single element (Mg, Zn, or Cd) or Ga and C coimplanted into GaAs substrates. The group II and C (II/C) coimplantations act to balance the crystal stoichiometry since group II atoms prefer to reside in the Ga sublattice and C prefers to reside in the As sublattice. The electrical characteristics of the various implantations were obtained from sheet and differential Hall measurements. Rutherford backscattering spectrometry was employed to determine the amount of implantation-induced damage which was then correlated to the amount of C activation in the group II/C coimplanted samples. It was found that coimplantation of the heavier group II acceptors, Zn and Cd, resulted in layers with larger peak hole concentrations. This is a result of the large amount of lattice damage created by these elements which is thought to provide the necessary abundance of As vacancies for C activation. Secondary ion mass spectroscopy measurements of the samples after implant activation indicate that C coimplantation significantly reduces the diffusivity of the group II acceptors. Cross-sectional transmission electron microscopy indicated a unique defect structure (extrinsic dislocation loops) for the cases of group II/C coimplantation. These dislocation loops are located at the diffusion front of the group II element in the samples and therefore have a rather profound influence on the diffusion of the group II elements. A rationalization of the defect structure and the effect it has on the diffusion of group II elements is given. {copyright} {ital 1998 American Institute of Physics.}

  7. Assembly and Comparison of Plasma Membrane SNARE Acceptor Complexes.

    PubMed

    Kreutzberger, Alex J B; Liang, Binyong; Kiessling, Volker; Tamm, Lukas K

    2016-05-24

    Neuronal exocytotic membrane fusion occurs on a fast timescale and is dependent on interactions between the vesicle SNARE synaptobrevin-2 and the plasma membrane SNAREs syntaxin-1a and SNAP-25 with a 1:1:1 stoichiometry. Reproducing fast fusion rates as observed in cells by reconstitution in vitro has been hindered by the spontaneous assembly of a 2:1 syntaxin-1a:SNAP-25 complex on target membranes that kinetically alters the binding of synaptobrevin-2. Previously, an artificial SNARE acceptor complex consisting of 1:1:1 syntaxin-1a(residues 183-288):SNAP-25:syb(residues 49-96) was found to greatly accelerate the rates of lipid mixing of reconstituted target and vesicle SNARE proteoliposomes. Here we present two (to our knowledge) new procedures to assemble membrane-bound 1:1 SNARE acceptor complexes that produce fast and efficient fusion without the need of the syb(49-96) peptide. In the first procedure, syntaxin-1a is purified in a strictly monomeric form and subsequently assembled with SNAP-25 in detergent with the correct 1:1 stoichiometry. In the second procedure, monomeric syntaxin-1a and dodecylated (d-)SNAP-25 are separately reconstituted into proteoliposomes and subsequently assembled in the plane of merged target lipid bilayers. Examining single particle fusion between synaptobrevin-2 proteoliposomes and planar-supported bilayers containing the two different SNARE acceptor complexes revealed similar fast rates of fusion. Changing the stoichiometry of syntaxin-1a and d-SNAP-25 in the target bilayer had significant effects on docking, but little effect on the rates of synaptobrevin-2 proteoliposome fusion. PMID:27178662

  8. Unraveling the Photoswitching Mechanism in Donor-Acceptor Stenhouse Adducts.

    PubMed

    Lerch, Michael M; Wezenberg, Sander J; Szymanski, Wiktor; Feringa, Ben L

    2016-05-25

    Molecular photoswitches have opened up a myriad of opportunities in applications ranging from responsive materials and control of biological function to molecular logics. Here, we show that the photoswitching mechanism of donor-acceptor Stenhouse adducts (DASA), a recently reported class of photoswitches, proceeds by photoinduced Z-E isomerization, followed by a thermal, conrotatory 4π-electrocyclization. The photogenerated intermediate is manifested by a bathochromically shifted band in the visible absorption spectrum of the DASA. The identification of the role of this intermediate reveals a key step in the photoswitching mechanism that is essential to the rational design of switching properties via structural modification. PMID:27152878

  9. Incorporation of Cu Acceptors in ZnO Nanocrystals

    SciTech Connect

    Oo, W.M.H.; Mccluskey, Matthew D.; Huso, Jesse; Morrison, J.; Bergman, Leah; Engelhard, Mark H.; Saraf, Laxmikant V.

    2010-09-16

    Doping of semiconductor nanocrystals is an important problem in nanomaterials research. Using infrared (IR) and x-ray photoelectron spectroscopy (XPS), we have observed Cu acceptor dopants that were intentionally introduced into ZnO nanocrystals. The incorporation of Cu2+ dopants increased as the diameter of the nanocrystals was increased from ~3 to 5 nm. Etching the nanocrystals with acetic acid revealed a core-shell structure, where a 2-nm lightly doped core is surrounded by a heavily doped shell. These observations are consistent with the trapped dopant model, in which dopant atoms stick to the surface of the core and are overgrown by the nanocrystal material.

  10. Heavy atom nitroxyl radicals. I: An ab initio study of the ground and lower electronic excited states of the H2As=O free radical

    NASA Astrophysics Data System (ADS)

    Tarroni, Riccardo; Clouthier, Dennis J.

    2009-09-01

    A series of ab initio calculations have been undertaken to predict the spectroscopic properties of the ground and first two excited states of the recently discovered arsenyl (H2AsO) free radical. This 13 valence electron species can be viewed as similar to the formaldehyde radical anion with a ground state electron configuration of ⋯(π)2(n)2(π∗)1. The arsenyl radical is nonplanar (pyramidal) in the ground state with a 59° out-of-plane angle and a 1.67 Å AsO bond length. It has a low-lying n-π ∗(Ã A2″) excited state (Te˜5000 cm-1) which has a much larger out-of-plane angle (86°) and longer AsO bond length (1.81 Å). The π-π ∗(B˜ A2') excited state at ˜20 500 cm-1 is less pyramidal (out-of-plane angle=70°) and has a somewhat shorter AsO bond (1.77 Å). Similar trends are found for the H2PO and H2NO free radicals, although the latter has a planar ground state, due to sp2 hybridization of the N atom, and a very long B˜ state AsO bond length. The geometric variations of the ground and excited states of the H2EO (E=N, P, As) radicals, as well as the ground states of the corresponding anions and cations, can be readily rationalized from the Walsh diagram of the anion. The variations in the E-O bond length are a result of changes in both the orbital occupancy and pyramidalization of the molecule. The results of the present work have been employed in the analysis of the B˜ A2'-X˜ A2' electronic band system of the H2AsO free radical as reported in the companion paper.

  11. Constructing Quaternary Carbons from (N-Acyloxy)phthalimide Precursors of Tertiary Radicals Using Visible-Light Photocatalysis

    PubMed Central

    Pratsch, Gerald; Lackner, Gregory L.

    2015-01-01

    Tertiary carbon radicals have notable utility for uniting complex carbon fragments with concomitant formation of new quaternary carbons. This article explores the scope, limitations and certain mechanistic aspects of Okada’s method for forming tertiary carbon radicals from (N-acyloxy)phthalimides by visible-light photocatalysis. Optimized conditions for generating tertiary radicals from (N-acyloxy)phthalimide derivatives of tertiary carboxylic acids by visible-light irradiation in the presence of 1 mol% of commercially available Ru(bpy)3(PF6)2, diethyl 1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate (8) and i-Pr2NEt, and their coupling in dichloromethane at room temperature with alkene acceptors were developed. Four representative tertiary (N-acyloxy)phthalimides and 15 alkene radical acceptors were examined. Both reductive couplings with electron-deficient alkenes and radical substitution reactions with allylic and vinylic bromides and chlorides were examined with many such reactions occurring in good yield using only a slight excess (typically 1.5 equiv) of the alkene. In general, the yields of these photocatalytic reactions were higher than the analogous transformations of the corresponding N-phthalimidoyl oxalates. Deuterium labeling and competition experiments reveal that the reductive radical coupling of tertiary (N-acyloxy)phthalimides with electron-deficient alkenes can be terminated by both hydrogen-atom transfer and single-electron reduction followed by protonation, and that this mechanistic duality is controlled by the presence or absence of i-Pr2NEt. PMID:26030520

  12. Energetics, structure, and rovibrational spectroscopic properties of the sulfurous anions SNO{sup −} and OSN{sup −}

    SciTech Connect

    Fortenberry, Ryan C.; Francisco, Joseph S.

    2015-11-14

    The SNO{sup −} and OSN{sup −} anions are shown in this work to be very stable negatively charged species in line with other recent work [T. Trabelsi et al., J. Chem. Phys. 143, 164301 (2015)]. Utilizing established quartic force field techniques, the structural and rovibrational data for these anions are produced. The SNO{sup −} anion is less linear and has weaker bonds than the corresponding neutral radical giving much smaller rotational constants. OSN{sup −} is largely unchanged in these regards with inclusion of the additional electron. The S–N bond is actually stronger, and the rotational constants of OSN{sup −} versus OSN are similar. The vibrational frequencies of SNO{sup −} are red-shifted from the radical while those in OSN{sup −} are mixed. OSN{sup −} has mixing of the stretching modes while the S–N and N–S stretches of SNO{sup −} are largely independent of one another. The ω{sub 3} stretches are much brighter in these anions than they are in the radicals, but the ω{sub 1} stretches are still the brightest.

  13. Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice.

    PubMed

    Serafim, Karla G G; Navarro, Suelen A; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Cunha, Thiago M; Alves-Filho, Jose C; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A

    2015-11-01

    Bosentan is a mixed endothelin receptor antagonist widely used to treat patients with pulmonary arterial hypertension, and the emerging literature suggests bosentan as a potent anti-inflammatory drug. Superoxide anion is produced in large amounts during inflammation, stimulates cytokine production, and thus contributes to inflammation and pain. However, it remains to be determined whether endothelin contributes to the inflammatory response triggered by the superoxide anion. The present study investigated the effects of bosentan in a mouse model of inflammation and pain induced by potassium superoxide, a superoxide anion donor. Male Swiss mice were treated with bosentan (10-100 mg/kg) by oral gavage, 1 h before potassium superoxide injection, and the inflammatory response was evaluated locally and at spinal cord (L4-L6) levels. Bosentan (100 mg/kg) inhibited superoxide anion-induced mechanical and thermal hyperalgesia, overt pain-like behavior (abdominal writhings, paw flinching, and licking), paw edema, myeloperoxidase activity (neutrophil marker) in the paw skin, and leukocyte recruitment in the peritoneal cavity. Bosentan also inhibited superoxide anion-induced interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) production, while it enhanced IL-10 production in the paw skin and spinal cord. Bosentan inhibited the reduction of antioxidant capacity (reduced glutathione, ferric reducing antioxidant power, and ABTS radical scavenging ability) induced by the superoxide anion. Finally, we demonstrated that intraplantar injection of potassium superoxide induces the mRNA expression of prepro-endothelin-1 in the paw skin and spinal cord. In conclusion, our results demonstrated that superoxide anion-induced inflammation, pain, cytokine production, and oxidative stress depend on endothelin; therefore, these responses are amenable to bosentan treatment. PMID:26246053

  14. Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods.

    PubMed

    Scholz, Reinhard; Luschtinetz, Regina; Seifert, Gotthard; Jägeler-Hoheisel, Till; Körner, Christian; Leo, Karl; Rapacioli, Mathias

    2013-11-27

    Charge transfer states around the donor-acceptor interface in an organic solar cell determine the device performance in terms of the open circuit voltage. In the present work, we propose a computational scheme based on constrained density functional tight binding theory (c-DFTB) to assess the energy of the lowest charge transfer (CT) state in such systems. A comparison of the c-DFTB scheme with Hartree-Fock based configuration interaction of singles (CIS) and with time-dependent density functional theory (TD-DFT) using the hybrid functional B3LYP reveals that CIS and c-DFTB reproduce the correct Coulomb asymptotics between cationic donor and anionic acceptor configurations, whereas TD-DFT gives a qualitatively wrong excitation energy. Together with an embedding scheme accounting for the polarizable medium, this c-DFTB scheme is applied to several donor-acceptor combinations used in molecular solar cells. The external quantum efficiency of photovoltaic cells based on zinc phthalocyanine-C60 blends reveals a CT band remaining much narrower than the density of states of acceptor HOMO and donor LUMO, an observation which can be interpreted in a natural way in terms of Marcus transfer theory. A detailed comparison with c-DFTB calculations reveals an energy difference of 0.32 eV between calculated and observed absorption from the electronic ground state into the CT state. In a blend of a functionalized thiophene and C60, the photoluminescence spectra differ significantly from neat films, allowing again an assignment to CT states. The proposed computational scheme reproduces the observed trends of the observed open circuit voltages in photovoltaic devices relying on several donor-acceptor blends, finding an offset of 1.16 eV on average. This value is similar as in polymer-fullerene photovoltaic systems where it amounts to about 0.9 eV, indicating that the photophysics of CT states in molecular donor-acceptor blends and in polymer-fullerene blends are governed by the

  15. Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Scholz, Reinhard; Luschtinetz, Regina; Seifert, Gotthard; Jägeler-Hoheisel, Till; Körner, Christian; Leo, Karl; Rapacioli, Mathias

    2013-11-01

    Charge transfer states around the donor-acceptor interface in an organic solar cell determine the device performance in terms of the open circuit voltage. In the present work, we propose a computational scheme based on constrained density functional tight binding theory (c-DFTB) to assess the energy of the lowest charge transfer (CT) state in such systems. A comparison of the c-DFTB scheme with Hartree-Fock based configuration interaction of singles (CIS) and with time-dependent density functional theory (TD-DFT) using the hybrid functional B3LYP reveals that CIS and c-DFTB reproduce the correct Coulomb asymptotics between cationic donor and anionic acceptor configurations, whereas TD-DFT gives a qualitatively wrong excitation energy. Together with an embedding scheme accounting for the polarizable medium, this c-DFTB scheme is applied to several donor-acceptor combinations used in molecular solar cells. The external quantum efficiency of photovoltaic cells based on zinc phthalocyanine-C60 blends reveals a CT band remaining much narrower than the density of states of acceptor HOMO and donor LUMO, an observation which can be interpreted in a natural way in terms of Marcus transfer theory. A detailed comparison with c-DFTB calculations reveals an energy difference of 0.32 eV between calculated and observed absorption from the electronic ground state into the CT state. In a blend of a functionalized thiophene and C60, the photoluminescence spectra differ significantly from neat films, allowing again an assignment to CT states. The proposed computational scheme reproduces the observed trends of the observed open circuit voltages in photovoltaic devices relying on several donor-acceptor blends, finding an offset of 1.16 eV on average. This value is similar as in polymer-fullerene photovoltaic systems where it amounts to about 0.9 eV, indicating that the photophysics of CT states in molecular donor-acceptor blends and in polymer-fullerene blends are governed by the same

  16. Tuning of Stepwise Neutral-Ionic Transitions by Acceptor Site Doping in Alternating Donor/Acceptor Chains.

    PubMed

    Nakabayashi, Keita; Nishio, Masaki; Miyasaka, Hitoshi

    2016-03-01

    The stepwise neutral-ionic (N-I) phase transition found in the alternating donor/acceptor (DA) chain [Ru2(2,3,5,6-F4PhCO2)4(DMDCNQI)]·2(p-xylene) (0; 2,3,5,6-F4PhCO2(-) = 2,3,5,6-tetrafluorobenzoate; DMDCNQI = 2,5-dimethyl-N,N'-dicyanoquinonediimine) was tuned by partly substituting the acceptor DMDCNQI with 2,5-dimethoxy-N,N'-dicyanoquinonediimine (DMeODCNQI), which displays a poorer electron affinity in an isostructural series. The site-doped series comprised [Ru2(2,3,5,6-F4PhCO2)4(DMDCNQI)1-x(DMeODCNQI)x]·2(p-xylene) for doping rates (x) = 0.05 (0.05-MeO), 0.10 (0.10-MeO), 0.15 (0.15-MeO), and 0.20 (0.20-MeO). The neutral chain [Ru2(2,3,5,6-F4PhCO2)4(DMeODCNQI)]·4(p-xylene) (1), which only contained DMeODCNQI, was also characterized. All site-doped compounds were isostructural to 0 except 1 despite their identical DA chain motif. Except at an x value of 0.20, they displayed a two-step N-I transition involving an intermediate phase. This transition occurred at high temperatures in 0 but shifted to lower temperatures in a parallel manner with increasing doping rate. Simultaneously, each transition broadened with increasing doping rate, leading to a convergence of two transitions at an x value approximating 0.2. Donor/acceptor-site-doping techniques present somewhat different impacts in terms of interchain Coulomb effects. PMID:26878151

  17. Tripodal Receptors for Cation and Anion Sensors

    PubMed Central

    Kuswandi, Bambang; Nuriman; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selective recognition and sensing of cations and anions. Examples on the relationship between structure and selectivity towards cations and anions are described. Furthermore, their applications as potentiometric ion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  18. Glycosylation of closely spaced acceptor sites in human glycoproteins

    PubMed Central

    Shrimal, Shiteshu; Gilmore, Reid

    2013-01-01

    Summary Asparagine-linked glycosylation of proteins by the oligosaccharyltransferase (OST) occurs when acceptor sites or sequons (N-x≠P-T/S) on nascent polypeptides enter the lumen of the rough endoplasmic reticulum. Metazoan organisms assemble two isoforms of the OST that have different catalytic subunits (STT3A or STT3B) and partially non-overlapping cellular roles. Potential glycosylation sites move past the STT3A complex, which is associated with the translocation channel, at the protein synthesis elongation rate. Here, we investigated whether close spacing between acceptor sites in a nascent protein promotes site skipping by the STT3A complex. Biosynthetic analysis of four human glycoproteins revealed that closely spaced sites are efficiently glycosylated by an STT3B-independent process unless the sequons contain non-optimal sequence features, including extreme close spacing between sequons (e.g. NxTNxT) or the presence of paired NxS sequons (e.g. NxSANxS). Many, but not all, glycosylation sites that are skipped by the STT3A complex can be glycosylated by the STT3B complex. Analysis of a murine glycoprotein database revealed that closely spaced sequons are surprisingly common, and are enriched for paired NxT sites when the gap between sequons is less than three residues. PMID:24105266

  19. Donor and acceptor concentrations in degenerate InN

    SciTech Connect

    Look, D.C.; Lu, H.; Schaff, W.J.; Jasinski, J.; Liliental-Weber, Z.

    2002-01-28

    A formalism is presented to determine donor (N{sub D}) and acceptor (N{sub A}) concentrations in wurtzitic InN characterized by degenerate carrier concentration (n) and mobility ({mu}). The theory includes scattering not only by charged point defects and impurities, but also by charged threading dislocations, of concentration N{sub dis}. For an 0.45-{micro}m-thick InN layer grown on Al{sub 2}O{sub 3} by molecular beam epitaxy, having N{sub dis} = 5 x 10{sup 10} cm{sup -2}, determined by transmission electron microscopy, n(20 K) = 3.5 x 10{sup 18} cm{sup -3}, and {mu}(20 K) = 1055 cm{sup 2}/V-s, determined by Hall-effect measurements, the fitted values are N{sub D} = 4.7 x 10{sup 18} cm{sup -3} and N{sub A} = 1.2 x 10{sup 18} cm{sup -3}. The identities of the donors and acceptors are not known, although a comparison of N{sub D} with analytical data, and also with calculations of defect formation energies, suggests that a potential candidate for the dominant donor is H.

  20. Nitrite and nitrate as electron acceptors for biological sulphide oxidation.

    PubMed

    Munz, G; Mannucci, A; Arreola-Vargas, J; Alatriste-Mondragon, F; Giaccherini, F; Mori, G

    2015-01-01

    Autotrophic denitrification with sulphide using nitrate (R1) and nitrite (R2) as electron acceptor was investigated at bench scale. Different solids retention times (SRT) (5 and 20 d) have been tested in R1 while R2 was operated at SRT=13 d. The results indicated that the process allows complete sulphide removal to be achieved in all tested conditions. Tested sulphide loads were estimated from the H2S produced in a pilot-scale anaerobic digester treating vegetable tannery primary sludge; nitrogen loads originated from the nitrification of the supernatant. Average nitrogen removal efficiencies higher than 80% were observed in all the tested conditions once steady state was reached. A maximum specific nitrate removal rate equal to 0.35 g N-NO3- g VSS(-1) d(-1) was reached in R1. Due to sulphide limitation, incomplete denitrification was observed and nitrite and thiosulphate tend to accumulate especially in the presence of variable environmental conditions in both R1 and R2. Lower SRT caused higher NO2accumulated/NO3reduced ratios (0.22 and 0.24, with SRT of 5 d and 20 d, respectively) using nitrate as electron acceptor in steady-state condition. Temperature decrease caused sudden NO2accumulated/NO3reduced ratio increase in R1 and NO2- removal decrease in R2. PMID:26247758

  1. Mercury removal from waste gases by manganese oxide acceptors

    SciTech Connect

    Cavallaro, S.; Bertuccio, N.; Antonucci, P.; Giordano, N.

    1982-02-01

    Removal of mercury vapor from a waste gas has been investigated at atmospheric pressure and at ambient temperature using a series of manganese-based reagents supported on an inert medium. The effect of catalyst composition on activity and the influence of relative humidity of the air stream have been studied. Whereas ..gamma..-Al/sub 2/O/sub 3/ has a very low mercury sorption capacity, sorption occurs copiously on impregnated silver- and copper-doped MnO/sub 2/ acceptors but the much higher activity is reduced by the presence of water vapour in the carrier gas. The morphological and microstructural characterization of the (MnO/sub 2/, AgNO/sub 3/) ..gamma..-Al/sub 2/O/sub 3/ reagents has shown selective deposition of AgNO/sub 3/ particles on ..beta..-MnO/sub 2/ crystallites which are dispersed on the ..gamma..-Al/sub 2/O/sub 3/ matrix. As the adsorption is associated with a sequence of specific colour changes a chemical oxidation mechanism is proposed. Acceptor deactivation is discussed. 9 figures, 3 tables.

  2. Donor-acceptor complexation and dehydrogenation chemistry of aminoboranes.

    PubMed

    Malcolm, Adam C; Sabourin, Kyle J; McDonald, Robert; Ferguson, Michael J; Rivard, Eric

    2012-12-01

    A series of formal donor-acceptor adducts of aminoborane (H(2)BNH(2)) and its N-substituted analogues (H(2)BNRR') were prepared: LB-H(2)BNRR'(2)-BH(3) (LB = DMAP, IPr, IPrCH(2) and PCy(3); R and R' = H, Me or tBu; IPr = [(HCNDipp)(2)C:] and Dipp = 2,6-iPr(2)C(6)H(3)). To potentially access complexes of molecular boron nitride, LB-BN-LA (LA = Lewis acid), preliminary dehydrogenation chemistry involving the parent aminoborane adducts LB-H(2)BNH(2)-BH(3) was investigated using [Rh(COD)Cl](2), CuBr, and NiBr(2) as dehydrogenation catalysts. In place of isolating the intended dehydrogenated BN donor-acceptor complexes, the formation of borazine was noted as a major product. Attempts to prepare the fluoroarylborane-capped aminoborane complexes, LB-H(2)BNH(2)-B(C(6)F(5))(3), are also described. PMID:23153209

  3. Gels based on anion recognition between triurea receptor and phosphate anion.

    PubMed

    Yang, Cuiling; Wu, Biao; Chen, Yongming; Zhang, Ke

    2015-04-01

    Anion recognition between the triurea receptor and phosphate anion is demonstrated as the cross-linkage to build supramolecular polymer gels for the first time. A novel multi-block copolymer (3) is designed to have functional triurea groups as cross-linking units along the polymer main chain. By virtue of anion coordination between the triurea receptor and phosphate anion with a binding mode of 2:1, supramolecular polymer gels are then prepared based on anion recognition using 3 as the building block. PMID:25694389

  4. Counterintuitive interaction of anions with benzene derivatives

    NASA Astrophysics Data System (ADS)

    Quiñonero, David; Garau, Carolina; Frontera, Antonio; Ballester, Pau; Costa, Antonio; Deyà, Pere M.

    2002-06-01

    Ab initio calculations were carried out on complexes between 1,3,5-trinitrobenzene (TNB) and anions, where the anion is positioned over the ring along the C3 axis. This study combines crystallographic and computational evidences to demonstrate an attractive interaction between the anion and the π-cloud of TNB. This interaction is rationalized based on the important role of the quadrupole moment of TNB and the anion-induced polarization. In addition, this study has been extended to 1,3,5-trifluorobenzene (TFB), which possesses a very small quadrupole moment. As a result, minimum energy complexes have been found between TFB and both anions and cations due to the stabilization obtained from the ion-induced polarization.

  5. Covalent Polymers Containing Discrete Heterocyclic Anion Receptors

    PubMed Central

    Rambo, Brett M.; Silver, Eric S.; Bielawski, Christopher W.; Sessler, Jonathan L.

    2010-01-01

    This chapter covers recent advances in the development of polymeric materials containing discrete heterocyclic anion receptors, and focuses on advances in anion binding and chemosensor chemistry. The development of polymers specific for anionic species is a relatively new and flourishing area of materials chemistry. The incorporation of heterocyclic receptors capable of complexing anions through non-covalent interactions (e.g., hydrogen bonding and electrostatic interactions) provides a route to not only sensitive but also selective polymer materials. Furthermore, these systems have been utilized in the development of polymers capable of extracting anionic species from aqueous environments. These latter materials may lead to advances in water purification and treatment of diseases resulting from surplus ions. PMID:20871791

  6. Creating molecular macrocycles for anion recognition

    PubMed Central

    2016-01-01

    Summary The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures. PMID:27340452

  7. Picosecond dynamics of benzophenone anion solvation

    SciTech Connect

    Lin, Y.; Jonah, C.D. )

    1993-01-14

    The dynamics of benzophenone anion solvation in alcohols are studied by pulse-radiolysis techniques. The solvation process is characterized by the blue shift of the transient absorption spectrum of the anion and is faster for the smaller alcohols. The anion is solvated more slowly than the electron in the same solvent, but the solvation times of both are similar to [tau][sub 2], the solvent dielectric relaxation time. The familiar phenomenological two-state model of solvation was found to be inappropriate for describing the anion solvation process. A multistate process appears to be a more appropriate description. The authors modeled the kinetics of the spectral relaxation. In most cases, nearly quantitative agreement between the calculated and observed spectra is achieved. The characteristic relaxation times for the alcohol solvents around the anions were also reproduced. 50 refs., 8 figs., 3 tabs.

  8. Oligorotaxane Radicals under Orders.

    PubMed

    Wang, Yuping; Frasconi, Marco; Liu, Wei-Guang; Sun, Junling; Wu, Yilei; Nassar, Majed S; Botros, Youssry Y; Goddard, William A; Wasielewski, Michael R; Stoddart, J Fraser

    2016-02-24

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components-namely oligoviologens-in which different numbers of 4,4'-bipyridinium (BIPY(2+)) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT(4+)) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY(•+) radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne-azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  9. Oligorotaxane Radicals under Orders

    PubMed Central

    2016-01-01

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components—namely oligoviologens—in which different numbers of 4,4′-bipyridinium (BIPY2+) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT4+) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY•+ radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne–azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  10. Radically innovative steelmaking technologies

    NASA Astrophysics Data System (ADS)

    Szekely, Julian

    1980-09-01

    The steel industry is faced with serious problems caused by the increasing cost of energy, labor and capital and by tough overseas competition, employing new highly efficient process plants. The very high cost of capital and of capital equipment renders the construction of new green field site plants, exemplifying the best available technology economically unattractive. For this reason, over the long term the development radically innovative steelmaking technologies appears to be the only satisfactory resolution of this dilemma. The purpose of this article is to present a critical review of some of the radically innovative steelmaking technologies that have been proposed during the past few years and to develop the argument that these indeed do deserve serious consideration at the present time. It should be stressed, however, that these innovative technologies can be implemented only as part of a carefully conceived long range plan, which contains as a subset short term solutions, such as trigger prices improved investment credits, and so forth and intermediate term solutions, such as more extensive use of continuous casting, external desulfurization and selective modernization in general.

  11. A new understanding towards the reactivity of DNA peroxy radicals.

    PubMed

    Zhao, Shuang; Zhang, Ru-Bo; Li, Ze-Sheng

    2016-09-14

    The reactivity of thymine peroxy radicals in DNA and their fate are studied using the reliable DFT methods. The most accessible H1' abstraction by the C6-peroxyl once reported experimentally is effectively competitive to the crosslinking reaction between the C6-peroxyl and the C5 or C6 on the 5'-adjacent thymine base. The rare transfer of the ObH1' group to the C1' radical from the formed hydroperoxide happens with a very strong heat release. Afterwards, the parallel reactions including the H1' and H2' abstractions by the C6-alkoxyl in an inter-nucleotidyl manner lead to direct formation of thymine glycol. After the H1' abstraction by the C6-alkoxyl, the apyrimidinic site can be formed on C1' through effective N1-glycosidic bond rupture. The geometric rearrangements and the orbital interaction between the H donor and the σ-type H acceptor are used to explain the difference of the H2' abstraction barriers by C6-alkoxyl. Hence, new radical reaction paths for the formation of DNA oxidation products are suggested, which are strongly different from the previously suggested paths with the tetraoxide intermediate. PMID:27523025

  12. Radical-radical interactions among oxidized guanine bases including guanine radical cation and dehydrogenated guanine radicals.

    PubMed

    Zhao, Jing; Wang, Mei; Yang, Hongfang; Zhang, Meng; Liu, Ping; Bu, Yuxiang

    2013-09-19

    We present here a theoretical investigation of the structural and electronic properties of di-ionized GG base pairs (G(•+)G(•+),G(-H1)(•)G(•+), and G(-H1)(•)G(-H1)(•)) consisting of the guanine cation radical (G(•+)) and/or dehydrogenated guanine radical (G(-H1)(•)) using density functional theory calculations. Different coupling modes (Watson-Crick/WC, Hoogsteen/Hoog, and minor groove/min hydrogen bonding, and π-π stacking modes) are considered. We infer that a series of G(•+)G(•+) complexes can be formed by the high-energy radiation. On the basis of density functional theory and complete active space self-consistent (CASSCF) calculations, we reveal that in the H-bonded and N-N cross-linked modes, (G(•+)G(•+))WC, (G(-H1)(•)G(-H1)(•))WC, (G(-H1)(•)G(-H1)(•))minI, and (G(-H1)(•)G(-H1)(•))minIII have the triplet ground states; (G(•+)G(•+))HoogI, (G(-H1)(•)G(•+))WC, (G(-H1)(•)G(•+))HoogI, (G(-H1)(•)G(•+))minI, (G(-H1)(•)G(•+))minII, and (G(-H1)(•)G(-H1)(•))minII possess open-shell broken-symmetry diradical-characterized singlet ground states; and (G(•+)G(•+))HoogII, (G(•+)G(•+))minI, (G(•+)G(•+))minII, (G(•+)G(•+))minIII, (G(•+)G(•+))HoHo, (G(-H1)(•)G(•+))minIII, (G(-H1)(•)G(•+))HoHo, and (G(-H1)(•)G(-H1)(•))HoHo are the closed-shell systems. For these H-bonded diradical complexes, the magnetic interactions are weak, especially in the diradical G(•+)G(•+) series and G(-H1)(•)G(-H1)(•) series. The magnetic coupling interactions of the diradical systems are controlled by intermolecular interactions (H-bond, electrostatic repulsion, and radical coupling). The radical-radical interaction in the π-π stacked di-ionized GG base pairs ((G(•+)G(•+))ππ, (G(-H1)(•)G(•+))ππ, and (G(-H1)(•)G(-H1)(•))ππ) are also considered, and the magnetic coupling interactions in these π-π stacked base pairs are large. This is the first theoretical prediction that some di

  13. Peroxymonosulfate activation by phosphate anion for organics degradation in water.

    PubMed

    Lou, Xiaoyi; Wu, Liuxi; Guo, Yaoguang; Chen, Chuncheng; Wang, Zhaohui; Xiao, Dongxue; Fang, Changling; Liu, Jianshe; Zhao, Jincai; Lu, Shuyu

    2014-12-01

    Activation of peroxygens is a critical method to generate oxidative species, but often consumes additional chemical reagents and/or energy. Here we report a novel and efficient activation reaction for peroxymonosulfate (PMS) by phosphate anions (PBS). The PBS/PMS coupled system, at neutral pH, is able to decompose efficiently even mineralize a variety of organic pollutants, such as Acid Orange 7, Rhodamine B and 2,4,6-trichlorophenol. In contrast, no measurable degradation was observed when the PMS was replaced by other peroxygens (i.e. hydrogen peroxide and peroxydisulfate). Both PMS and PBS are indispensable for the oxidative degradation of pollutants. Increasing pH and concentrations of PMS and PBS significantly accelerate the degradation of organics. It is proposed that OH would be the major radical for contamination degradation at pH 7.0 through the radical quenching experiments. This work provides a new way of PMS activation for decontamination at neutral pH, in particular for phosphate-rich wastewater treatment. PMID:25303463

  14. Oxygen radicals and renal diseases.

    PubMed

    Klahr, S

    1997-01-01

    Reactive oxygen metabolites (superoxide, hydrogen peroxide, hydroxyl radical, and hypochlorous acid) are important mediators of renal damage in acute renal failure and glomerular and tubulointerstitial diseases. The role of these oxygen metabolites in the above entities is discussed, and the effects of antioxidants and scavengers of O2 radicals are considered. The role of oxygen radicals in the regulation of gene transcription is also considered. PMID:9387104

  15. Catalytic water oxidation by mononuclear Ru complexes with an anionic ancillary ligand.

    PubMed

    Tong, Lianpeng; Inge, A Ken; Duan, Lele; Wang, Lei; Zou, Xiaodong; Sun, Licheng

    2013-03-01

    Mononuclear Ru-based water oxidation catalysts containing anionic ancillary ligands have shown promising catalytic efficiency and intriguing properties. However, their insolubility in water restricts a detailed mechanism investigation. In order to overcome this disadvantage, complexes [Ru(II)(bpc)(bpy)OH2](+) (1(+), bpc = 2,2'-bipyridine-6-carboxylate, bpy = 2,2'-bipyridine) and [Ru(II)(bpc)(pic)3](+) (2(+), pic = 4-picoline) were prepared and fully characterized, which features an anionic tridentate ligand and has enough solubility for spectroscopic study in water. Using Ce(IV) as an electron acceptor, both complexes are able to catalyze O2-evolving reaction with an impressive rate constant. On the basis of the electrochemical and kinetic studies, a water nucleophilic attack pathway was proposed as the dominant catalytic cycle of the catalytic water oxidation by 1(+), within which several intermediates were detected by MS. Meanwhile, an auxiliary pathway that is related to the concentration of Ce(IV) was also revealed. The effect of anionic ligand regarding catalytic water oxidation was discussed explicitly in comparison with previously reported mononuclear Ru catalysts carrying neutral tridentate ligands, for example, 2,2':6',2″-terpyridine (tpy). When 2(+) was oxidized to the trivalent state, one of its picoline ligands dissociated from the Ru center. The rate constant of picoline dissociation was evaluated from time-resolved UV-vis spectra. PMID:23409776

  16. Controlling the spatial arrangement of organic magnetic anions adsorbed on epitaxial graphene on Ru(0001).

    PubMed

    Stradi, Daniele; Garnica, Manuela; Díaz, Cristina; Calleja, Fabián; Barja, Sara; Martín, Nazario; Alcamí, Manuel; Vazquez de Parga, Amadeo L; Miranda, Rodolfo; Martín, Fernando

    2014-12-21

    Achieving control over the self-organization of functional molecules on graphene is critical for the development of graphene technology in organic electronic and spintronic. Here, by using a scanning tunneling microscope (STM), we show that the electron acceptor molecule 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) and its fluorinated derivative 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyano-p-quinodimethane (F4-TCNQ), co-deposited on the surface of epitaxial graphene on Ru(0001), transform spontaneously into their corresponding magnetic anions and self-organize in two remarkably different structures. TCNQ forms densely packed linear magnetic arrays, while F4-TCNQ molecules remain as isolated non interacting magnets. With the help of density functional theory (DFT) calculations, we trace back the origin of this behavior in the competition between the intermolecular repulsion experienced by the individual charged anions, which tends to separate the molecules, and the delocalization of the electrons transferred from the surface to the molecules, which promotes the formation of molecular oligomers. Our results demonstrate that it is possible to control the spatial arrangement of organic magnetic anions co-adsorbed on a surface by means of chemical substitution, paving the way for the design of two-dimensional fully organic magnetic structures on graphene and on other surfaces. PMID:25382549

  17. The structure and bonding of iron-acceptor pairs in silicon

    SciTech Connect

    Zhao, S.; Assali, L.V.C.; Kimerling, L.C.

    1995-08-01

    The highly mobile interstitial iron and Group III impurities (B, Al, Ga, In) form iron-acceptor pairs in silicon. Based on the migration kinetics and taking host silicon as a dielectric medium, we have simulated the pairing process in a static silicon lattice. Different from the conventional point charge ionic model, our phenomenological calculations include (1) a correction that takes into account valence electron cloud polarization which adds a short range, attractive interaction in the iron-acceptor pair bonding; and (2) silicon lattice relaxation due to the atomic size difference which causes a local strain field. Our model explains qualitatively (1) trends among the iron-acceptor pairs revealing an increase of the electronic state hole emission energy with increasing principal quantum number of acceptor and decreasing pair separation distance; and (2) the stable and metastable sites and configurational symmetries of the iron-acceptor pairs. The iron-acceptor pairing and bonding mechanism is also discussed.

  18. Nickel(ii) radical complexes of thiosemicarbazone ligands appended by salicylidene, aminophenol and aminothiophenol moieties.

    PubMed

    Kochem, Amélie; Gellon, Gisèle; Jarjayes, Olivier; Philouze, Christian; du Moulinet d'Hardemare, Amaury; van Gastel, Maurice; Thomas, Fabrice

    2015-07-28

    The nickel(ii) complexes of three unsymmetrical thiosemicarbazone-based ligands featuring a sterically hindered salicylidene (1), aminophenol (2) or thiophenol (3) moiety were synthesized and structurally characterized. The metal ion lies in an almost square planar geometry in all the complexes. The cyclic voltammetry (CV) curve of 1 shows an irreversible oxidation wave at E = 0.49 V, which is assigned to the phenoxyl/phenolate redox couple. The CV curves of 2 and 3 display a reversible one-electron oxidation wave (E1/2 = 0.26 and 0.22 V vs. Fc(+)/Fc, respectively) and an one-electron reduction wave (E1/2 = -1.55 and -1.46 V, respectively). The cations 2(+) and 3(+) as well as the anions 2(-) and 3(-) were generated. The EPR spectra of the cations in THF show a rhombic signal at g1 = 2.034, g2 = 2.010 and g3 = 1.992 (2(+)) and g1 = 2.069, g2 = 2.018, g3 = 1.986 (3(+)) that is consistent with a main radical character of the complexes. The difference in anisotropy is assigned to the different nature of the radical, iminosemiquinonate vs. iminothiosemiquinonate. The anions display an isotropic EPR signal at giso = 2.003 (2(+)) and 2.006 (3(+)), which is indicative of a main α-diimine radical character of the compounds. Both the anions and cations exhibit charge transfer transitions of low to moderate intensity in their visible spectrum. Quantum chemical calculations (B3LYP) reproduce both the g-values and Vis-NIR spectra of the complexes. The radical anions readily react with dioxygen to give the radical cations. 2(+) catalyzes the aerobic oxidation of benzyl alcohol into benzaldehyde. PMID:26086684

  19. Electron attachment and positive ion chemistry of monohydrogenated fluorocarbon radicals

    NASA Astrophysics Data System (ADS)

    Wiens, Justin P.; Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A.

    2015-08-01

    Rate coefficients and product branching fractions for electron attachment and for reaction with Ar+ are measured over the temperature range 300-585 K for three monohydrogenated fluorocarbon (HFC) radicals (CF3CHF, CHF2CF2, and CF3CHFCF2), as well as their five closed-shell precursors (1-HC2F4I, 2-HC2F4I, 2-HC2F4Br, 1-HC3F6I, 2-HC3F6Br). Attachment to the HFC radicals is always fairly inefficient (between 0.1% and 10% of the Vogt-Wannier capture rate), but generally faster than attachment to analogous perfluorinated carbon radicals. The primary products in all cases are HF-loss to yield CnFm-1- anions, with only a minor branching to F- product. In all cases the temperature dependences are weak. Attachment to the precursor halocarbons is near the capture rate with a slight negative temperature dependence in all cases except for 2-HC2F4Br, which is ˜10% efficient at 300 K and becomes more efficient, approaching the capture rate at higher temperatures. All attachment kinetics are successfully reproduced using a kinetic modeling approach. Reaction of the HFC radicals with Ar+ proceeds at or near the calculated collisional rate coefficient in all cases, yielding a wide variety of product ions.

  20. Structural Characterization of Hydroxyl Radical Adducts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2015-06-01

    The oxidation by the hydroxyl (OH) radical is one of the most widely studied reactions because of its central role in chemistry, biology, organic synthesis, and photocatalysis in aqueous environments, wastewater treatment, and numerous other chemical processes. Although the redox potential of OH is very high, direct electron transfer (ET) is rarely observed. If it happens, it mostly proceeds through the formation of elusive OH adduct intermediate which facilitates ET and formation of hydroxide anion. Using time resolved resonance Raman technique we structurally characterized variety of OH adducts to sulfur containing organic compounds, halide ions as well as some metal cations. The bond between oxygen of OH radical and the atom of oxidized molecule differs depending on the nature of solute that OH radical reacts with. For most of sulfur containing organics, as well as halide and pseudo-halide ions, our observation suggested that this bond has two-center three-electron character. For several metal aqua ions studied, the nature of the bond depends on type of the cation being oxidized. Discussion on spectral parameters of all studied hydroxyl radical adducts as well as the role solvent plays in their stabilization will be presented.

  1. Competition between photodetachment and autodetachment of the {2^1π π ^*} state of the green fluorescent protein chromophore anion

    NASA Astrophysics Data System (ADS)

    Mooney, Ciarán R. S.; Parkes, Michael A.; Zhang, Lijuan; Hailes, Helen C.; Simperler, Alexandra; Bearpark, Michael J.; Fielding, Helen H.

    2014-05-01

    Using a combination of photoelectron spectroscopy measurements and quantum chemistry calculations, we have identified competing electron emission processes that contribute to the 350-315 nm photoelectron spectra of the deprotonated green fluorescent protein chromophore anion, p-hydroxybenzylidene-2,3-dimethylimidazolinone. As well as direct electron detachment from S0, we observe resonant excitation of the 21ππ* state of the anion followed by autodetachment. The experimental photoelectron spectra are found to be significantly broader than photoelectron spectrum calculated using the Franck-Condon method and we attribute this to rapid (˜10 fs) vibrational decoherence, or intramolecular vibrational energy redistribution, within the neutral radical.

  2. Stepwise charge transfer complexation of some pyrimidines with σ-acceptor iodine involving a new unconventional acceptor

    NASA Astrophysics Data System (ADS)

    Rabie, Usama. M.; Mohamed, Ramadan. A.; Abou-El-Wafa, Moustafa. H.

    2007-11-01

    Interactions of some pyrimidine derivatives, 4-amino-2,6-dimethylpyrimidine, kyanmethin, (4AP), 2-amino-4,6-dimethylpyrimidine (2AP), 2-aminopyrimidine (AP), 2-amino-4-methylpyrimidine (AMP), 2-amino-4-methoxy-6-methylpyrimidine (AMMP), and 4-amino-5-chloro-2,6-dimethylpyrimidine (ACDP) as electron donors, with iodine (I 2), as a typical σ-electron acceptor, have been studied. Electronic absorption spectra of these interactions in several organic solvents of different polarities have performed instant appearance of clear charge transfer (CT) bands. Formation constants ( KCT), molar absorption coefficients ( ɛCT) and thermodynamic properties, Δ H, Δ S, and Δ G, of these interactions have been determined and discussed. Electronic absorption spectra of the solutions of the synthesized pyrimidines-iodine, P-I 2, CT complexes have shown the characteristic bands of the triiodide ion, I 3-. UV/vis spectral tracking of these interactions have shown that by lapse of time the first formed CT complex, P-I 2, is transformed to the corresponding triiodide complex, P +I.I 3-, then, the later interacts as a new unconventional acceptor and it forms a CT complex of the form (P).(P +I.I 3-). Elemental analyses of these solid complexes have indicated the stoichiometric ratio 2:2, or formally 1:1, P:I 2.

  3. Stepwise charge transfer complexation of some pyrimidines with sigma-acceptor iodine involving a new unconventional acceptor.

    PubMed

    Rabie, Usama M; Mohamed, Ramadan A; Abou-El-Wafa, Moustafa H

    2007-11-01

    Interactions of some pyrimidine derivatives, 4-amino-2,6-dimethylpyrimidine, kyanmethin, (4AP), 2-amino-4,6-dimethylpyrimidine (2AP), 2-aminopyrimidine (AP), 2-amino-4-methylpyrimidine (AMP), 2-amino-4-methoxy-6-methylpyrimidine (AMMP), and 4-amino-5-chloro-2,6-dimethylpyrimidine (ACDP) as electron donors, with iodine (I(2)), as a typical sigma-electron acceptor, have been studied. Electronic absorption spectra of these interactions in several organic solvents of different polarities have performed instant appearance of clear charge transfer (CT) bands. Formation constants (KCT), molar absorption coefficients (epsilonCT) and thermodynamic properties, DeltaH, DeltaS, and DeltaG, of these interactions have been determined and discussed. Electronic absorption spectra of the solutions of the synthesized pyrimidines-iodine, P-I2, CT complexes have shown the characteristic bands of the triiodide ion, I3*. UV/vis spectral tracking of these interactions have shown that by lapse of time the first formed CT complex, P-I2, is transformed to the corresponding triiodide complex, P(+)I.I3*, then, the later interacts as a new unconventional acceptor and it forms a CT complex of the form (P).(P+I.I3*). Elemental analyses of these solid complexes have indicated the stoichiometric ratio 2:2, or formally 1:1, P:I2. PMID:17317281

  4. Donor-Acceptor-Type Semiconducting Polymers Consisting of Benzothiadiazole Derivatives as Electron-Acceptor Units for Organic Photovoltaic Cells.

    PubMed

    Kim, Hee Su; Park, Jong Baek; Kim, Ji-Hoon; Hwang, Do-Hoon

    2015-11-01

    We synthesized two fused pentacyclic donor-acceptor structures, where the two different outer electron rich thiophene (DTPBT) and electron poor benzene (ICTh) moieties are covalently bonded to the central electron-deficient benzothiadiazole core by two nitrogen bridges. These new electron-acceptor DTPBT and ICTh building blocks were copolymerized with fluorene, as the electron donor group, via Suzuki coupling polymerization, to produce two new alternating copolymers, PFDTPBT and PFICTh, respectively. The average molecular weights of the synthesized polymers were determined by GPC. The number-average molecular weights of PFDTPBT and PFICTh were 19,000 (PDI = 2.5) and 20,000 (PDI = 4.0), respectively. The optical bandgap energies of the polymers were measured from their absorption onsets to be 2.15 and 2.55 eV, depending on the polymer structure. The HOMO energy levels of the polymers were determined, by measuring the oxidation onsets of the polymer films by cyclic voltammetry. The measured HOMO energy levels of PFDTPBT and PFICTh were -5.10 and -5.57 eV, respectively. When the polymers were blended with PC71BM, as the active layer for bulk-heterojunction photovoltaic devices, power conversion efficiencies were 2.08% and 0.34%, respectively, under AM 1.5 G (100 mW cm(-2)) conditions. PMID:26726610

  5. Generation of Nitrogen Acceptors in ZnO using Pulse Thermal Processing

    SciTech Connect

    Xu, Jun; Ott, Ronald D; Sabau, Adrian S; Pan, Zhengwei; Xiu, Faxian; Liu, Jilin; Erie, Jean-Marie; Norton, David P

    2008-01-01

    Bipolar doping in wide bandgap semiconductors is difficult to achieve under equilibrium conditions because of the spontaneous formation of compensating defects and unfavorable energetics for dopant substitution. In this work, we explored the use of rapid pulse thermal processing for activating nitrogen dopants into acceptor states in ZnO. Low-temperature photoluminescence spectra revealed both acceptor-bound exciton (A{sup 0}X) and donor-acceptor pair emissions, which present direct evidence for acceptors generated after pulse thermal processing of nitrogen-doped ZnO. This work suggests that pulse thermal processing is potentially an effective method for p-type doping of ZnO.

  6. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.

  7. Radicals in Berkeley?

    PubMed Central

    Linn, Stuart

    2015-01-01

    In a previous autobiographical sketch for DNA Repair (Linn, S. (2012) Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair 11, 595–605), I wrote about my involvement in research on mechanisms of DNA repair. In this Reflections, I look back at how I became interested in free radical chemistry and biology and outline some of our bizarre (at the time) observations. Of course, these studies could never have succeeded without the exceptional aid of my mentors: my teachers; the undergraduate and graduate students, postdoctoral fellows, and senior lab visitors in my laboratory; and my faculty and staff colleagues here at Berkeley. I am so indebted to each and every one of these individuals for their efforts to overcome my ignorance and set me on the straight and narrow path to success in research. I regret that I cannot mention and thank each of these mentors individually. PMID:25713083

  8. Radical-based destruction of nitramines in water: kinetics and efficiencies of hydroxyl radical and hydrated electron reactions.

    PubMed

    Mezyk, Stephen P; Razavi, Behnaz; Swancutt, Katy L; Cox, Casandra R; Kiddle, James J

    2012-08-01

    In support of the potential use of advanced oxidation and reduction process technologies for the removal of carcinogenic nitro-containing compounds in water reaction rate constants for the hydroxyl radical and hydrated electron with a series of low molecular weight nitramines (R(1)R(2)-NNO(2)) have been determined using a combination of electron pulse radiolysis and transient absorption spectroscopy. The hydroxyl radical reaction rate constant was fast, ranging from 0.54-4.35 × 10(9) M(-1) s(-1), and seen to increase with increasing complexity of the nitramine alkyl substituents suggesting that oxidation primarily occurs by hydrogen atom abstraction from the alkyl chains. In contrast, the rate constant for hydrated electron reaction was effectively independent of compound structure, (k(av) = (1.87 ± 0.25) × 10(10) M(-1) s(-1)) indicating that the reduction predominately occurred at the common nitramine moiety. Concomitant steady-state irradiation and product measurements under aerated conditions also showed a radical reaction efficiency dependence on compound structure, with the overall radical-based degradation becoming constant for nitramines containing more than four methylene groups. The quantitative evaluation of these efficiency data suggest that some (~40%) hydrated electron reduction also results in quantitative nitramine destruction, in contrast to previously reported electron paramagnetic measurements on these compounds that proposed that this reduction only produced a transient anion adduct that would transfer its excess electron to regenerate the parent molecule. PMID:22788844

  9. Synthesis of dimeric phenol derivatives and determination of in vitro antioxidant and radical scavenging activities.

    PubMed

    Güllçin, Ilhami; Daştan, Arif

    2007-12-01

    In this study, di(2,6-dimethylphenol) (Di-DMP), di(2,6-diisopropylphenol) (Di-DIP, dipropofol) and di(2,6-di-t-butylphenol) (Di-DTP) were synthesized by the reaction of monomeric phenol derivatives with catalytic CuCl(OH). TMEDA and Na2S2O4. Their antioxidant capacity and radical scavenging activity were examined using different in vitro methodologies such as 1,1-diphenyl-2-picryl-hydrazyl (DPPH*) free radical scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity by ferric thiocyanate, total reducing power by potassium ferricyanide reduction method, superoxide anion radical scavenging, hydrogen peroxide scavenging and ferrous ions chelating activities. PMID:18237020

  10. Anion conductance selectivity mechanism of the CFTR chloride channel.

    PubMed

    Linsdell, Paul

    2016-04-01

    All ion channels are able to discriminate between substrate ions to some extent, a process that involves specific interactions between permeant anions and the so-called selectivity filter within the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) anion-selective channel, both anion relative permeability and anion relative conductance are dependent on anion free energy of hydration--anions that are relatively easily dehydrated tend to show both high permeability and low conductance. In the present work, patch clamp recording was used to investigate the relative conductance of different anions in CFTR, and the effect of mutations within the channel pore. In constitutively-active E1371Q-CFTR channels, the anion conductance sequence was Cl(-) > NO3(-) > Br(-) > formate > SCN(-) > I(-). A mutation that disrupts anion binding in the inner vestibule of the pore (K95Q) disrupted anion conductance selectivity, such that anions with different permeabilities showed almost indistinguishable conductances. Conversely, a mutation at the putative narrowest pore region that is known to disrupt anion permeability selectivity (F337A) had minimal effects on anion relative conductance. Ion competition experiments confirmed that relatively tight binding of permeant anions resulted in relatively low conductance. These results suggest that the relative affinity of ion binding in the inner vestibule of the pore controls the relative conductance of different permeant anions in CFTR, and that the pore has two physically distinct anion selectivity filters that act in series to control anion conductance selectivity and anion permeability selectivity respectively. PMID:26779604

  11. Fermi Surface of Donor and Acceptor Graphite Intercalation Compounds.

    NASA Astrophysics Data System (ADS)

    Wang, Guonan

    The Fermi surfaces and the electronic properties of the donor-type stage-1 C_8K and stage-2 C_{24}K, as well as the acceptor-type stage-2 BiCl_3, stage-3 HgCl_2 and stage-3 SbF _5 graphite intercalation compounds were investigated by means of the de Haas-van Alphen effect. The dHvA spectra of the stage-1 C_8 K exhibit two dHvA frequencies, 3126 T and 4250 T. The corresponding effective masses were 0.86 m _0 and 0.92 m_0, respectively. The angular dependence of the dHvA frequencies for a direction within +/-18^circ of the c-axis showed that there are both three-dimensional and two dimensional parts of the Fermi surfaces in C _8K. The three-dimensional Fermi surface has a cross-sectional area corresponding to the dHvA frequency of 3126 T. The charge transfer per potassium atom measured from the dHvA effect is 0.97. This implies that the potassium is ionized completely. These dHvA experimental results support both the Tatar and Rabii model and the revised Ohno, Nakao and Kamimura model for C_8K. Two dominant dHvA frequencies were obtained in stage-2 C_{24}K. They are 286 T and 2570 T, respectively. The predictions of Blinowski's model are in agreement with the experimental data. The charge transfer per potassium is found to be 0.88. This suggests that the potassium s-band is above the Fermi level in C_{24}K. The dHvA measurements for the acceptor compounds show that the stage-2 BiCl_3 GIC had two dHvA frequencies, 327T and 1012T, and each stage -3 compound had three dominant frequencies. They are 121T, 523T and 664T for HgCl_2, and 172T, 656T and 852T for SbF_5. The cyclotron masses corresponding to the dHvA frequencies for these compounds were measured from the temperature dependence of the dHvA amplitudes. The theoretical predictions of the dHvA frequencies and the cyclotron masses from the Blinowski's band models for stage-2 and stage-3 compounds are in agreement with the experimental results. The angular dependence of the dHvA frequencies show that the Fermi

  12. Verification of the structural alerts for Michael acceptors.

    PubMed

    Schultz, T Wayne; Yarbrough, Jason W; Hunter, Robert S; Aptula, Aynur O

    2007-09-01

    A diverse series of polarized alpha,beta-unsaturated and related compounds were evaluated for reactivity with a spectrophotometric assay using the sulfhydryl group in the form of the cysteine residue of the tripeptide GSH as a model nucleophile. The reactive end point (RC 50) calculations were compared to previously described structural alerts based on conventional organic chemistry. This comparison focused on polarized alpha,beta-unsaturates, including ones containing an aldehyde, ketone, ester, sulfoxide, sulfone, sulfonate, nitro, or cyano moiety as well as ortho- and para-pyridino compounds and ortho- and para-quinones. The alerts were coded by substructure and are available in open-source software ( http://sourceforge.net/projects/chemeval). Comparisons of reactivity between selected analogues revealed that only the polarized alpha,beta-unsaturates were reactive. These results verified the coded structural alerts that define the applicability domain for Michael acceptor electrophiles. PMID:17672510

  13. Mapping Nanomagnetic Fields Using a Radical Pair Reaction

    NASA Astrophysics Data System (ADS)

    Lee, Hohjai; Yang, Nan; Cohen, Adam

    2012-02-01

    We visualized the magnetic field around ferromagnetic nanostructures using a combination of a standard epifluorescence microscope and a fluorescence chemical indicator of magnetic field (H. Lee et al., Nano Lett. DOI: 10.1021/nl202950h). The indicator was a chain-linked electron donor-acceptor molecule, phenanthrene-(CH2)12-O-(CH2)2-dimethylaniline, that forms spin-correlated radical pairs upon photoexcitation. The magnetic field altered the coherence spin dynamics, yielding an 80% increase in exciplex fluorescence in a 0.1 T magnetic field. The magnetic field distributions were quantified to precision of 1.8 x 10-4 T by image analysis and agreed with finite-element nonmagnetic simulations.

  14. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  15. Ketoprofen as a photoinitiator for anionic polymerization.

    PubMed

    Wang, Yu-Hsuan; Wan, Peter

    2015-06-01

    A new photoinitiating system for anionic polymerization of acrylates based on the efficient photodecarboxylation of Ketoprofen (1) and the related derivatives 3 and 4 that generate the corresponding carbanion intermediates is presented. Carbanion intermediates are confirmed by deuterium incorporation in the trapped Michael adducts and by spectroscopic detection using laser flash photolysis (LFP). This novel anionic initiating system features excitation in the near UV and visible regions, potential characteristics of photocontrolled living polymerization, and metal-free photoinitiators generated from photoexcitation, different from typical anionic polymerization where the polymerizations are initiated by heat and strong base containing alkali metals. PMID:25917384

  16. Mass transfer of electron acceptor aross the capillary fringe

    NASA Astrophysics Data System (ADS)

    Liu, S.; Piepenbrink, M.; Grathwohl, P.

    2005-12-01

    Transverse dispersion has been identified as a potentially limiting parameter controlling the mixing of electron donors and electron acceptors for natural attenuation of plumes originating from continuously emitting sources, however determining reactive transverse dispersion coefficients is not a simple task. The objective of this work is to elaborate the mass transfer of electron acceptor across the capillary fringe. A two-dimensional numerical reactive transport model and a fully controlled tank experiment are set up to investigate the mass transfer across the capillary and reactive fringe, where the oxygen supply is the limiting factor. The tank (77.9 times 14 times 0.8 cm) is made from acrylic-glass and filled with glass beads (0.5-0.75mm). Sodium dithionite, an easily oxidizable compound, is used as a surrogate for contaminants and is continuously injected from the inlets of the tank and reaches a steady state flow. Air circulates on the top of the glass beads. The oxygen concentrations as well as the reactive products (sulfate) are measured at the outlets of the tank with an oxygen sensor and via IC. In addition to that, resazurine, a redox indicator, is added to visualize the redox zones. These two-dimensional experimental results show quantitatively and qualitatively how the oxygen concentrations decrease at the plume fringe. Two dimensional numerical simulations with Min3P predicted oxygen distributions are compared with the experimental results. Acknowledgements: This work was funded by Helmholtz Association and Helmholtz Research Center UFZ; Project: `Virtual Institute for isotope biogeochemistry-biologically mediated processes at geochemical gradients and interfaces in soil - aquifer systems', Contract VH-VI-155.

  17. Structure reactivity relationship in the reaction of DNA guanyl radicals with hydroxybenzoates

    NASA Astrophysics Data System (ADS)

    Do, Trinh T.; Tang, Vicky J.; Aguilera, Joseph A.; Milligan, Jamie R.

    2010-11-01

    In DNA, guanine bases are the sites from which electrons are most easily removed. As a result of hole migration to this stable location on guanine, guanyl radicals are major intermediates in DNA damage produced by the direct effect of ionizing radiation (ionization of the DNA itself and not through the intermediacy of water radicals). We have modeled this process by employing gamma irradiation in the presence of thiocyanate ions, a method which also produces single electron oxidized guanyl radicals in plasmid DNA in aqueous solution. The stable products formed in DNA from these radicals are detected as strand breaks after incubation with the FPG protein. When a phenolic compound is present in the solution during gamma irradiation, the formation of guanyl radical species is decreased by electron donation from the phenol to the guanyl radical. We have quantified the rate of this reaction for four different phenolic compounds bearing carboxylate substituents as proton acceptors. A comparison of the rates of these reactions with the redox strengths of the phenolic compounds reveals that salicylate reacts ca. 10-fold faster than its structural analogs. This observation is consistent with a reaction mechanism involving a proton coupled electron transfer, because intra-molecular transfer of a proton from the phenolic hydroxyl group to the carboxylate group is possible only in salicylate, and is favored by the strong 6-membered ring intra-molecular hydrogen bond in this compound.

  18. Radical Chemistry and Cytotoxicity of Bioreductive 3-Substituted Quinoxaline Di-N-Oxides.

    PubMed

    Anderson, Robert F; Yadav, Pooja; Shinde, Sujata S; Hong, Cho R; Pullen, Susan M; Reynisson, Jóhannes; Wilson, William R; Hay, Michael P

    2016-08-15

    The radical chemistry and cytotoxicity of a series of quinoxaline di-N-oxide (QDO) compounds has been investigated to explore the mechanism of action of this class of bioreductive drugs. A series of water-soluble 3-trifluoromethyl (4-10), 3-phenyl (11-19), and 3-methyl (20-21) substituted QDO compounds were designed to span a range of electron affinities consistent with bioreduction. The stoichiometry of loss of QDOs by steady-state radiolysis of anaerobic aqueous formate buffer indicated that one-electron reduction of QDOs generates radicals able to initiate chain reactions by oxidation of formate. The 3-trifluoromethyl analogues exhibited long chain reactions consistent with the release of the HO(•), as identified in EPR spin trapping experiments. Several carbon-centered radical intermediates, produced by anaerobic incubation of the QDO compounds with N-terminal truncated cytochrome P450 reductase (POR), were characterized using N-tert-butyl-α-phenylnitrone (PBN) and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps and were observed by EPR. Experimental data were well simulated for the production of strongly oxidizing radicals, capable of H atom abstraction from methyl groups. The kinetics of formation and decay of the radicals produced following one-electron reduction of the parent compounds, both in oxic and anoxic solutions, were determined using pulse radiolysis. Back oxidation of the initially formed radical anions by molecular oxygen did not compete effectively with the breakdown of the radical anions to form oxidizing radicals. The QDO compounds displayed low hypoxic selectivity when tested against oxic and hypoxic cancer cell lines in vitro. The results from this study form a kinetic description and explanation of the low hypoxia-selective cytotoxicity of QDOs against cancer cells compared to the related benzotriazine 1,4-dioxide (BTO) class of compounds. PMID:27380897

  19. Dynamics of radical cations of poly(4-hydroxystyrene) in the presence and absence of triphenylsulfonium triflate as determined by pulse radiolysis of its highly concentrated solution

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazumasa; Ishida, Takuya; Yamamoto, Hiroki; Kozawa, Takahiro; Fujiyoshi, Ryoko; Umegaki, Kikuo

    2016-07-01

    Pulse radiolysis of highly concentrated poly(4-hydroxystyrene) (PHS) solutions in cyclohexanone and p-dioxane was performed both with and without an onium-type photoacid generator (PAG). With increasing PHS concentration, the rate constant of deprotonation of PHS radical cations was found to decrease. In the presence of PAG, the yield of the multimer radical cation of PHS was shown to decrease. We found that pairing between the anions produced by the attachment of dissociative electrons of PAGs and the monomer PHS radical cations restrict local molecular motions, leading to the formation of the multimer PHS radical cations.

  20. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    SciTech Connect

    Mardis, Kristy L.; Webb, J.; Holloway, Tarita; Niklas, Jens; Poluektov, Oleg G.

    2015-11-16

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.

  1. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions: A Combined EPR and DFT Study.

    PubMed

    Mardis, Kristy L; Webb, Jeremy N; Holloway, Tarita; Niklas, Jens; Poluektov, Oleg G

    2015-12-01

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM. PMID:26569578

  2. Acceptor-donor-acceptor-based small molecules with varied crystallinity: processing additive-induced nanofibril in blend film for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Li, Chao; Chen, Yujin; Zhao, Yue; Wang, Huifang; Zhang, Wei; Li, Yaowen; Yang, Xiaoming; Ma, Changqi; Chen, Liwei; Zhu, Xiulin; Tu, Yingfeng

    2013-09-01

    A series of acceptor-donor-acceptor-based small molecules (SMs) with varied crystallinity were successfully synthesized. The processing additive can induce the SMs to self-organize as nanofibrils with higher crystallinity and controlled scales of nanofibrils, which have significant influence on the photovoltaic performance.A series of acceptor-donor-acceptor-based small molecules (SMs) with varied crystallinity were successfully synthesized. The processing additive can induce the SMs to self-organize as nanofibrils with higher crystallinity and controlled scales of nanofibrils, which have significant influence on the photovoltaic performance. Electronic supplementary information (ESI) available: Synthetic process and characterizations of SMs; TGA, electrochemical properties, molecular orbital surfaces of SMs; AFM images of SM:PC71BM blend films; EQE curves; optical, electrochemical properties and photovoltaic parameters. See DOI: 10.1039/c3nr03048b

  3. Probing the donor and acceptor substrate specificity of the γ-glutamyl transpeptidase.

    PubMed

    Hu, Xin; Legler, Patricia M; Khavrutskii, Ilja; Scorpio, Angelo; Compton, Jaimee R; Robertson, Kelly L; Friedlander, Arthur M; Wallqvist, Anders

    2012-02-14

    γ-Glutamyl transpeptidase (GGT) is a two-substrate enzyme that plays a central role in glutathione metabolism and is a potential target for drug design. GGT catalyzes the cleavage of γ-glutamyl donor substrates and the transfer of the γ-glutamyl moiety to an amine of an acceptor substrate or water. Although structures of bacterial GGT have revealed details of the protein-ligand interactions at the donor site, the acceptor substrate site is relatively undefined. The recent identification of a species-specific acceptor site inhibitor, OU749, suggests that these inhibitors may be less toxic than glutamine analogues. Here we investigated the donor and acceptor substrate preferences of Bacillus anthracis GGT (CapD) and applied computational approaches in combination with kinetics to probe the structural basis of the enzyme's substrate and inhibitor binding specificities and compare them with human GGT. Site-directed mutagenesis studies showed that the R432A and R520S variants exhibited 6- and 95-fold decreases in hydrolase activity, respectively, and that their activity was not stimulated by the addition of the l-Cys acceptor substrate, suggesting an additional role in acceptor binding and/or catalysis of transpeptidation. Rat GGT (and presumably HuGGT) has strict stereospecificity for L-amino acid acceptor substrates, while CapD can utilize both L- and D-acceptor substrates comparably. Modeling and kinetic analysis suggest that R520 and R432 allow two alternate acceptor substrate binding modes for L- and D-acceptors. R432 is conserved in Francisella tularensis, Yersinia pestis, Burkholderia mallei, Helicobacter pylori and Escherichia coli, but not in human GGT. Docking and MD simulations point toward key residues that contribute to inhibitor and acceptor substrate binding, providing a guide to designing novel and specific GGT inhibitors. PMID:22257032

  4. Electrochemical reduction of aromatic ketones in 1-butyl-3-methylimidazolium-based ionic liquids in the presence of carbon dioxide: the influence of the ketone substituent and the ionic liquid anion on bulk electrolysis product distribution.

    PubMed

    Zhao, Shu-Feng; Horne, Mike; Bond, Alan M; Zhang, Jie

    2015-07-15

    Electrochemical reduction of aromatic ketones, including acetophenone, benzophenone and 4-phenylbenzophenone, has been undertaken in 1-butyl-3-methylimidazolium-based ionic liquids containing tetrafluoroborate ([BF4](-)), trifluoromethanesulfonate ([TfO](-)) and tris(pentafluoroethyl)trifluorophosphate ([FAP](-)) anions in the presence of carbon dioxide in order to investigate the ketone substituent effect and the influence of the acidic proton on the imidazolium cation (C2-H) on bulk electrolysis product distribution. For acetophenone, the minor products were dimers (<10%) in all ionic liquids, which are the result of acetophenone radical anion coupling. For benzophenone and 4-phenylbenzophenone, no dimers were formed due to steric hindrance. In these cases, even though carboxylic acids were obtained, the main products generated were alcohols (>50%) derived from proton coupled electron transfer reactions involving the electrogenerated radical anions and C2-H. In the cases of both acetophenone and benzophenone, the product distribution is essentially independent of the ionic liquid anion. By contrast, 4-phenylbenzophenone shows a product distribution that is dependent on the ionic liquid anion. Higher yields of carboxylic acids (∼40%) are obtained with [TfO](-) and [FAP](-) anions because in these ionic liquids the C2-H is less acidic, making the formation of alcohol less favourable. In comparison with benzophenone, a higher yield of carboxylic acid (>30% versus ∼15%) was obtained with 4-phenylbenzophenone in all ionic liquids due to the weaker basicity of 4-phenylbenzophenone radical anion. PMID:26136079

  5. Study of compounds suppressing free radical generation from UV-exposed ketoprofen.

    PubMed

    Nakajima, Ayako; Tahara, Maiko; Yoshimura, Yoshihiro; Nakazawa, Hiroyuki

    2007-10-01

    Ketoprofen [(RS)-2-(3-benzoylphenyl)propanoic acid] is widely used for the treatment of inflammatory diseases and musculoskeletal injury. However, there is concern regarding its potential for photosensitization as a side effect. Free radicals and active oxygen species generated from ketoprofen on exposure to ultraviolet (UV) light have been implicated in phototoxicity and photosensitization. In this study, we examined the suppressing ability of some compounds for the free radicals and active oxygen species generated by the photodynamic reaction of ketoprofen, to determine a new resist of photosensitization by ketoprofen. Eight compounds, including six known free radical scavengers were individually mixed with ketoprofen, and the mixtures were exposed to UV. Then, the free radicals and the active oxygen species were determined by the electron spin resonance spectrometry to estimate suppressing and scavenging ability of compounds. The compounds that show promise in suppressing superoxide anion generation from UV-exposed ketoprofen were further evaluated using the on-line photo-irradiated superoxide anion detection system. It was confirmed that quercetin, a flavonoid, strongly suppresses the generation of free radicals and active oxygen species from UV-exposed ketoprofen. The experiments using the experimental formulation of an adhesive skin patch of ketoprofen containing quercetine and the Chemiluminescence analyzer (CLA) indicated that quercetin has high potential for use as an excipient in ketoprofen ointments to suppress phototoxicity and photosensitization by ketoprofen. PMID:17917284

  6. Anionic charge concentration of rat kidney glomeruli and glomerular basement membrane.

    PubMed Central

    Comper, W D; Lee, A S; Tay, M; Adal, Y

    1993-01-01

    Estimates of levels of glomerular and glomerular-basement-membrane anion charge should serve as useful quantitative markers for the integrity of the tissues in health and disease. We have developed a simple, rapid, technique to measure this charge through the use of ion exchange with radioisotopes 22Na+ and 36Cl- at low ionic strengths in phosphate buffer. When this technique is used, normal glomeruli isolated from rat have a measured net anion charge concentration of 17.4 +/- 3.7 p-equiv. per glomerulus (n = 20). Perfused rat kidneys that lose approximately half of their glomerular heparan [35S]sulphate content (owing to oxygen-radical damage) exhibited a lower anion charge, of 7.5 +/- 1.6 p-equiv. per glomerulus (n = 5). Glomerular basement membranes prepared from rat glomeruli by a sonication-centrifugation procedure in the presence of enzyme inhibitors had a charge concentration of 6.3 +/- 0.7 mu-equiv./g wet wt. of tissue (n = 4), whereas membranes prepared by sonication, centrifugation, DNAse and detergent treatment had a charge concentration of 7.1 +/- 1.6 mu-equiv./g wet wt. (n = 4). Isotope-dilution experiments with 3H2O on these detergent-prepared glomerular basement membranes demonstrated that they had a water content of approx. 93%, which would then give a net anion charge concentration of 7.6 +/- 1.7 m-equiv./l (n = 4). These values are in good agreement with those obtained by others using titration techniques [Bray and Robinson (1984) Kidney Int. 25, 527-533]. The relatively low magnitude of glomerular anion charge in normal kidneys is consistent with other recent findings that glomerular anion charge is too low to affect the glomerular transport of charged molecules in a direct, passive, biophysical manner through electrostatic interactions. PMID:8435064

  7. Kinetics and mechanism of exogenous anion exchange in FeFbpA-NTA: significance of periplasmic anion lability and anion binding activity of ferric binding protein A.

    PubMed

    Heymann, Jared J; Gabricević, Mario; Mietzner, Timothy A; Crumbliss, Alvin L

    2010-02-01

    The bacterial transferrin ferric binding protein A (FbpA) requires an exogenous anion to facilitate iron sequestration, and subsequently to shuttle the metal across the periplasm to the cytoplasmic membrane. In the diverse conditions of the periplasm, numerous anions are known to be present. Prior in vitro experiments have demonstrated the ability of multiple anions to fulfill the synergistic iron-binding requirement, and the identity of the bound anion has been shown to modulate important physicochemical properties of iron-bound FbpA (FeFbpA). Here we address the kinetics and mechanism of anion exchange for the FeFbpA-nitrilotriacetate (NTA) assembly with several biologically relevant anions (citrate, oxalate, phosphate, and pyrophosphate), with nonphysiologic NTA serving as a representative synergistic anion/chelator. The kinetic data are consistent with an anion-exchange process that occurs in multiple steps, dependent on the identity of both the entering anion and the leaving anion. The exchange mechanism may proceed either as a direct substitution or through an intermediate FeFbpA-X* assembly based on anion (X) identity. Our kinetic results further develop an understanding of exogenous anion lability in the periplasm, as well as address the final step of the iron-free FbpA (apo-FbpA)/Fe(3+) sequestration mechanism. Our results highlight the kinetic significance of the FbpA anion binding site, demonstrating a correlation between apo-FbpA/anion affinity and the FeFbpA rate of anion exchange, further supporting the requirement of an exogenous anion to complete tight sequestration of iron by FbpA, and developing a mechanism for anion exchange within FeFbpA that is dependent on the identity of both the entering anion and the leaving anion. PMID:19813031

  8. Molecular physiology of EAAT anion channels.

    PubMed

    Fahlke, Christoph; Kortzak, Daniel; Machtens, Jan-Philipp

    2016-03-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1-5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein. PMID:26687113

  9. A new class of organocatalysts: sulfenate anions.

    PubMed

    Zhang, Mengnan; Jia, Tiezheng; Yin, Haolin; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2014-09-26

    Sulfenate anions are known to act as highly reactive species in the organic arena. Now they premiere as organocatalysts. Proof of concept is offered by the sulfoxide/sulfenate-catalyzed (1-10 mol%) coupling of benzyl halides in the presence of base to generate trans-stilbenes in good to excellent yields (up to 99%). Mechanistic studies support the intermediacy of sulfenate anions, and the deprotonated sulfoxide was determined to be the resting state of the catalyst. PMID:25111259

  10. An amphoteric switch to aromatic and antiaromatic states of a neutral air-stable 25π radical.

    PubMed

    Gopalakrishna, Tullimilli Y; Reddy, J Sreedhar; Anand, Venkataramanarao G

    2014-10-01

    Ever since the discovery of the trityl radical, isolation of a stable and neutral organic radical has been a synthetic challenge. A (4n+1)π open-shell configuration is one such possible neutral radical but an unusual state between aromatic (4n+2)π and antiaromatic (4n)π electronic circuits. The synthesis and characterization of an air- and water-stable neutral 25π pentathiophene macrocyclic radical is now described. It undergoes reversible one-electron oxidation to a 24π antiaromatic cation and reduction to a 26π aromatic anion, thus confirming its amphoteric behavior. Structural determination by single-crystal X-ray diffraction studies revealed a planar configuration for the neutral radical, antiaromatic cation, and aromatic anion. In the solution state, the cation shows the highest upfield chemical shift ever observed for a 4nπ system, while the anion adhered to aromatic nature. Computational studies revealed the delocalized nature of the unpaired electron as confirmed by EPR spectroscopy. PMID:25156296

  11. Free Radical Polymerization of Styrene and Methyl Methacrylate in Various Room Temperature Ionic Liquids

    SciTech Connect

    Zhang, Hongwei; Hong, Kunlun; Mays, Jimmy

    2005-01-01

    Conventional free radical polymerization of styrene and methyl methacrylate was carried out in various room temperature ionic liquids (RTILs). The RTILs used in this research encompass a wide range of cations and anions. Typical cations include imidazolium, phosphonium, pyridinium, and pyrrolidinium; typical anions include amide, borate, chloride, imide, phosphate, and phosphinate. Reactions are faster and polymers obtained usually have higher molecular weights when compared to polymerizations carried out in volatile organic solvents under the same conditions. This shows that rapid rates of polymerization and high molecular weights are general features of conventional radical polymerizations in RTILs. Attempts to correlate the polarities and viscosities of the RTILs with the polymerization behavior fail to yield discernible trends.

  12. Dichotomous Role of Exciting the Donor or the Acceptor on Charge Generation in Organic Solar Cells.

    PubMed

    Hendriks, Koen H; Wijpkema, Alexandra S G; van Franeker, Jacobus J; Wienk, Martijn M; Janssen, René A J

    2016-08-10

    In organic solar cells, photoexcitation of the donor or acceptor phase can result in different efficiencies for charge generation. We investigate this difference for four different 2-pyridyl diketopyrrolopyrrole (DPP) polymer-fullerene solar cells. By comparing the external quantum efficiency spectra of the polymer solar cells fabricated with either [60]PCBM or [70]PCBM fullerene derivatives as acceptor, the efficiency of charge generation via donor excitation and acceptor excitation can both be quantified. Surprisingly, we find that to make charge transfer efficient, the offset in energy between the HOMO levels of donor and acceptor that govern charge transfer after excitation of the acceptor must be larger by ∼0.3 eV than the offset between the corresponding two LUMO levels when the donor is excited. As a consequence, the driving force required for efficient charge generation is significantly higher for excitation of the acceptor than for excitation of the donor. By comparing charge generation for a total of 16 different DPP polymers, we confirm that the minimal driving force, expressed as the photon energy loss, differs by about 0.3 eV for exciting the donor and exciting the acceptor. Marcus theory may explain the dichotomous role of exciting the donor or the acceptor on charge generation in these solar cells. PMID:27452683

  13. Optical activation behavior of ion implanted acceptor species in GaN

    SciTech Connect

    Skromme, B.J.; Martinez, G.L.

    2000-07-01

    Ion implantation is used to investigate the spectroscopic properties of Mg, Be, and C acceptors in GaN. Activation of these species is studied using low temperature photoluminescence (PL). Low dose implants into high quality undoped hydride vapor phase epitaxial (HVPE) material are used in conjunction with high temperature (1300 C) rapid thermal anneals to obtain high quality spectra. Dramatic, dose-dependent evidence of Mg acceptor activation is observed without any co-implants, including a strong, sharp neutral Mg acceptor-bound exciton and strong donor-acceptor pair peaks. Variable temperature measurements reveal a band-to-acceptor transition, whose energy yields an optical binding energy of 224 meV. Be and C implants yield only slight evidence of shallow acceptor-related features and produce dose-correlated 2.2 eV PL, attributed to residual implantation damage. Their poor optical activation is tentatively attributed to insufficient vacancy production by these lighter ions. Clear evidence is obtained for donor-Zn acceptor pair and acceptor-bound exciton peaks in Zn-doped HVPE material.

  14. Urea-Functionalized M4L6 Cage Receptors: Self-Assembly, Dynamics, and Anion Recognition in Aqueous Solutions

    SciTech Connect

    Custelcean, Radu; Bonnesen, Peter V; Duncan, Nathan C; Van Berkel, Gary J; Hay, Benjamin

    2012-01-01

    We present an extensive study of a novel class of de novo designed tetrahedral M{sub 4}L{sub 6} (M = Ni, Zn) cage receptors, wherein internal decoration of the cage cavities with urea anion-binding groups, via functionalization of the organic components L, led to selective encapsulation of tetrahedral oxoanions EO{sub 4}{sup -} (E = S, Se, Cr, Mo, W, n = 2; E = P, n = 3) from aqueous solutions, based on shape, size, and charge recognition. External functionalization with tBu groups led to enhanced solubility of the cages in aqueous methanol solutions, thereby allowing for their thorough characterization by multinuclear ({sup 1}H, {sup 13}C, {sup 77}Se) and diffusion NMR spectroscopies. Additional experimental characterization by electrospray ionization mass spectrometry, UV-vis spectroscopy, and single-crystal X-ray diffraction, as well as theoretical calculations, led to a detailed understanding of the cage structures, self-assembly, and anion encapsulation. We found that the cage self-assembly is templated by EO{sub 4}{sup -} oxoanions (n {ge} 2), and upon removal of the templating anion the tetrahedral M{sub 4}L{sub 6} cages rearrange into different coordination assemblies. The exchange selectivity among EO{sub 4}{sup -} oxoanions has been investigated with {sup 77}Se NMR spectroscopy using {sup 77}SeO{sub 4}{sup 2-} as an anionic probe, which found the following selectivity trend: PO{sub 4}{sup 3-} CrO{sub 4}{sup 2-} > SO{sub 4}{sup 2-} > SeO{sub 4}{sup 2-} > MoO{sub 4}{sup 2-} > WO{sub 4}{sup 2-}. In addition to the complementarity and flexibility of the cage receptor, a combination of factors have been found to contribute to the observed anion selectivity, including the anions charge, size, hydration, basicity, and hydrogen-bond acceptor abilities.

  15. Fenton-like Degradation of MTBE: Effects of Iron Counter Anion and Radical Scavengers

    EPA Science Inventory

    Fenton-driven oxidation of Methyl tert-butyl ether (MTBE) (0.11-0.16 mM) in batch reactors containing ferric iron (5 mM), hydrogen peroxide (H2O2) (6 mM) (pH=3) was performed to investigate MTBE transformation mechanisms. Independent variables included the form of iron (Fe) (Fe2(...

  16. Monomeric Chini-Type Triplatinum Clusters Featuring Dianionic and Radical-Anionic π*-Systems.

    PubMed

    Barnett, Brandon R; Rheingold, Arnold L; Figueroa, Joshua S

    2016-08-01

    Owing to their unique topologies and abilities to self-assemble into a variety of extended and aggregated structures, the binary platinum carbonyl clusters [Pt3 (CO)6 ]n (2-) ("Chini clusters") continue to draw significant interest. Herein, we report the isolation and structural characterization of the trinuclear electron-transfer series [Pt3 (μ-CO)3 (CNAr(Dipp2) )3 ](n-) (n=0, 1, 2), which represents a unique set of monomeric Pt3 clusters supported by π-acidic ligands. Spectroscopic, computational, and synthetic investigations demonstrate that the highest-occupied molecular orbitals of the mono- and dianionic clusters consist of a combined π*-framework of the CO and CNAr(Dipp2) ligands, with negligible Pt character. Accordingly, this study provides precedent for an ensemble of carbonyl and isocyanide ligands to function in a redox non-innocent manner. PMID:27346691

  17. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xia, Chunyu; Wu, Wei-Min; Sun, Guoping; Xu, Meiying

    2014-07-01

    To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors. PMID:24862003

  18. Identification of acceptor states in Li-doped p-type ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zeng, Y. J.; Ye, Z. Z.; Lu, J. G.; Xu, W. Z.; Zhu, L. P.; Zhao, B. H.; Limpijumnong, Sukit

    2006-07-01

    We investigate photoluminescence from reproducible Li-doped p-type ZnO thin films prepared by dc reactive magnetron sputtering. The LiZn acceptor state, with an energy level located at 150meV above the valence band maximum, is identified from free-to-neutral-acceptor transitions. Another deeper acceptor state located at 250meV emerges with the increased Li concentration. A broad emission centered at 2.96eV is attributed to a donor-acceptor pair recombination involving zinc vacancy. In addition, two chemical bonding states of Li, evident in x-ray photoelectron spectroscopy, are probably associated with the two acceptor states observed.

  19. Purification and characterization of a carbohydrate: acceptor oxidoreductase from Paraconiothyrium sp. that produces lactobionic acid efficiently.

    PubMed

    Kiryu, Takaaki; Nakano, Hirofumi; Kiso, Taro; Murakami, Hiromi

    2008-03-01

    A carbohydrate:acceptor oxidoreductase from Paraconiothyrium sp. was purified and characterized. The enzyme efficiently oxidized beta-(1-->4) linked sugars, such as lactose, xylobiose, and cellooligosaccharides. The enzyme also oxidized maltooligosaccharides, D-glucose, D-xylose, D-galactose, L-arabinose, and 6-deoxy-D-glucose. It specifically oxidized the beta-anomer of lactose. Molecular oxygen and 2,6-dichlorophenol indophenol were reduced by the enzyme as electron acceptors. The Paraconiothyrium enzyme was identified as a carbohydrate:acceptor oxidoreductase according to its specificity for electron donors and acceptors, and its molecular properties, as well as the N-terminal amino acid sequence. Further comparison of the amino acid sequences of lactose oxidizing enzymes indicated that carbohydrate:acceptor oxidoreductases belong to the same group as glucooligosaccharide oxidase, while they differ from cellobiose dehydrogenases and cellobiose:quinone oxidoreductases. PMID:18323642

  20. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2012-01-01

    The A 1B1 <-1A0 excitation into the dipole-bound state of the cyanomethyl anion (CH2CN??) has been hypothesized as the carrier for one di use interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study we are employing the use of proven quartic force elds and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X 1A0 CH2CN?? in order to assist in laboratory studies and astronomical observations. Keywords: Astrochemistry, ISM: molecular anions, Quartic force elds, Rotational constants, Vibrational frequencies

  1. Free radical scavenging activity of novel thiazolidine-2,4-dione derivatives.

    PubMed

    Berczyński, Paweł; Kruk, Irena; Piechowska, Teresa; Ceylan-Unlusoy, Meltem; Bozdağ-Dündar, Oya; Aboul-Enein, Hassan Y

    2013-01-01

    Free radical activity towards superoxide anion radical (O2•¯), hydroxyl radical (HO(•)) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) of a series of novel thiazolidine-2,4-dione derivatives (TSs) was examined using chemiluminescence, electron paramagnetic resonance (EPR) and EPR spin trapping techniques. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was applied as the spin trap. Superoxide radical was produced in the potassium superoxide/18-crown-6 ether dissolved in dimethyl sulfoxide. Hydroxyl radical was generated in the Fenton reaction (Fe(II) + H2O2. It was found that TSs showed a slight scavenging effect (15-38% reduction at 2.5 mmol/L concentration) of the DPPH radical and a high scavenging effect of O2•¯ (41-88%). The tested compounds showed inhibition of HO(•)-dependent DMPO-OH spin adduct formation (the amplitude of EPR signal decrease ranged from 20 to 76% at 2.5 mmol/L concentration. Our findings present new group compounds of relatively high reactivity towards free radicals. PMID:23225772

  2. Photochemical synthesis of simple organic free radicals on simulated planetary surfaces - An ESR study

    NASA Technical Reports Server (NTRS)

    Tseng, S.-S.; Chang, S.

    1975-01-01

    Electron spin resonance (ESR) spectroscopy provided evidence for formation of hydroxyl radicals during ultraviolet photolysis (254 nm) at -170 C of H2O adsorbed on silica gel or of silica gel alone. The carboxyl radical was observed when CO or CO2 or a mixture of CO and CO2 adsorbed on silica gel at -170 C was irradiated. The ESR signals of these radicals slowly disappeared when the irradiated samples were warmed to room temperature. However, reirradiation of CO or CO2, or the mixture CO and CO2 on silica gel at room temperature then produced a new species, the carbon dioxide anion radical, which slowly decayed and was identical with that produced by direct photolysis of formic acid adsorbed on silica gel. The primary photochemical process may involve formation of hydrogen and hydroxyl radicals. Subsequent reactions of these radicals with adsorbed CO or CO2 or both yield carboxyl radicals, CO2H, the precursors of formic acid. These results confirm the formation of formic acid under simulated Martian conditions and provide a mechanistic basis for gauging the potential importance of gas-solid photochemistry for chemical evolution on other extraterrestrial bodies, on the primitive earth, and on dust grains in the interstellar medium.

  3. EPR Spin Trapping of an Oxalate-Derived Free Radical in the Oxalate Decarboxylase Reaction

    PubMed Central

    Imaram, Witcha; Saylor, Benjamin T.; Centonze, Christopher P.; Richards, Nigel G. J.; Angerhofer, Alexander

    2011-01-01

    EPR spin trapping experiments on bacterial oxalate decarboxylase from Bacillus subtilis under turn-over conditions are described. The use of doubly 13C-labeled oxalate leads to a characteristic splitting of the observed radical adducts using the spin trap N-tert-butyl-α-phenylnitrone linking them directly to the substrate. The radical was identified as the carbon dioxide radical anion which is a key intermediate in the hypothetical reaction mechanism of both decarboxylase and oxidase activities. X-ray crystallography had identified a flexible loop, SENS161-4, which acts as a lid to the putative active site. Site directed mutagenesis of the hinge amino acids, S161 and T165 was explored and showed increased radical trapping yields compared to the wild type. In particular, T165V shows approximately ten times higher radical yields while at the same time its decarboxylase activity was reduced by about a factor of ten. This mutant lacks a critical H-bond between T165 and R92 resulting in compromised control over its radical chemistry allowing the radical intermediate to leak into the surrounding solution. PMID:21277974

  4. Recent developments in copper-catalyzed radical alkylations of electron-rich π-systems

    PubMed Central

    2015-01-01

    Summary Recently, a number of papers have emerged demonstrating copper-catalyzed alkylation reactions of electron-rich small molecules. The processes are generally thought to be related to long established atom-transfer radical reactions. However, unlike classical reactions, these new transformations lead to simple alkylation products. This short review will highlight recent advances in alkylations of nitronate anions, alkenes and alkynes, as well as discuss current mechanistic understanding of these novel reactions. PMID:26734076

  5. Single-site copper(II) water oxidation electrocatalysis: rate enhancements with HPO₄²⁻ as a proton acceptor at pH 8.

    PubMed

    Coggins, Michael K; Zhang, Ming-Tian; Chen, Zuofeng; Song, Na; Meyer, Thomas J

    2014-11-01

    The complex Cu(II)(Py3P) (1) is an electrocatalyst for water oxidation to dioxygen in H2PO4(-)/HPO4(2-) buffered aqueous solutions. Controlled potential electrolysis experiments with 1 at pH 8.0 at an applied potential of 1.40 V versus the normal hydrogen electrode resulted in the formation of dioxygen (84% Faradaic yield) through multiple catalyst turnovers with minimal catalyst deactivation. The results of an electrochemical kinetics study point to a single-site mechanism for water oxidation catalysis with involvement of phosphate buffer anions either through atom-proton transfer in a rate-limiting O-O bond-forming step with HPO4(2-) as the acceptor base or by concerted electron-proton transfer with electron transfer to the electrode and proton transfer to the HPO4(2-) base. PMID:25243584

  6. Regulation of human dihydrodiol dehydrogenase by Michael acceptor xenobiotics.

    PubMed

    Ciaccio, P J; Jaiswal, A K; Tew, K D

    1994-06-01

    A human oxidoreductase (H-37) that is overexpressed in ethacrynic acid-resistant HT29 colon cells (Ciaccio, P. J., Stuart, J.E., and Tew, K.D. (1993) Mol. Pharmacol. 43, 845-853) has been identified as a dihydrodiol dehydrogenase. Translated protein from a dihydrodiol dehydrogenase cDNA isolated from a library prepared from ethacrynic acid-resistant HT29 cell poly(A+) RNA was recognized by anti-H-37 IgG and was identical in molecular weight with H-37. The isolated cDNA was identical in both nucleotide and amino acid sequences with the recently cloned liver dihydrodiol dehydrogenase (Stolz, A., Hammond, L., Lou, H., Takikawa, H., Ronk, M., and Shively, J.E. (1993) J. Biol. Chem. 268, 10448-10457). Using this cDNA as probe, we have examined its induction by Michael acceptors. The steady state dihydrodiol dehydrogenase mRNA level in the ethacrynic acid-resistant line was increased 30-fold relative to that of wild-type cells. Twenty-four hour treatment of wild-type cells with ethacrynic acid or dimethyl maleate increased mRNA 10-fold and 5-fold, respectively. These changes are accompanied by both increased protein expression and increased NADP-dependent 1-acenaphthenol oxidative activity in cell cytosol. In gel shift assays, compared to wild type controls, increased binding of NAD(P)H quinone oxidoreductase human antioxidant response element (hARE) DNA to redox labile protein complexes present in treated and resistant cell nuclear extract was observed. Ethacrynic acid induced CAT activity 2-fold in Hepa1 cells stably transfected with NAD(P)H quinone oxidoreductase hARE-tk-CAT chimeric gene construct. Thus, dihydrodiol dehydrogenase protein is inducible by de novo synthesis from mRNA by structurally related monofunctional inducer Michael acceptors. Altered in vitro binding of nuclear protein to the hARE is indirect evidence for the involvement of an element similar to hARE in the regulation of dihydrodiol dehydrogenase by these agents. PMID:7515059

  7. Photoinactivation of PS2 secondary donors by PS2 cation radicals and superoxide radicals

    SciTech Connect

    Chen, G.X.; Cheniae, G.M.; Blubaugh, D.J.; Golbeck, J.H.

    1991-12-31

    Illumination of Mn- and Cl-depleted PS2 causes rapid irreversible inactivation of specific redox-active components on the donor side of the PS2 Reaction Center (RC). Under aerobic conditions, weak light preillumination of NH{sub 2}OH-PS2 causes rapid loss of Y{sub Z}{sup {plus_minus}} formation, Y{sub Z} {yields} P{sub 680}{sup +}, the A{sub T}-band thermoluminescence emission, the Y{sub Z}{sup +}-dependent (Site 1) photooxidation of exogenous e{sup {minus}} donors, and the capability to photoligate Mn{sup 2+} into the water oxidizing enzyme (photoactivation), all without significantly affecting P{sub 680}{sup +}/Q{sub A}{sup {minus}} charge separation. In contrast, aerobic high light preillumination of Mn-depleted PS2 promotes very rapid and parallel loss of photoactivation and A{sub T}-band emission capabilities significantly than loss of either Y{sub Z}{sup +}-formation or P{sub 680}{sup +}/Q{sub A}{sup {minus}} charge separation capabilities. These photodamages and those to Cl-depleted thylakoids (4,5) generally are believed to be caused by reactions between the highly oxidizing cation radicals (P{sub 680}{sup +}/Chl{sup +}) and nearby amino acid residues of D{sub 1}>D{sub 2}. The reported promotion of the photodamages by e{sup {minus}} acceptors of Q{sub A}{sup {minus}}/Q{sub B}{sup {minus}} their inhibition by e{sup {minus}} donors to Y{sub Z}{sup +} and their occurrence under strict anaerobic conditions all tend to support the idea of direct damage by P{sub 680}{sup +}/Chl{sup +}. Our studies lead us to conclude that the photodamages to the donor side components are caused minimally by a rapid mechanism requiring both superoxide and PS2 cation radicals; and by a slower mechanism driven by the PS2 cation radicals only.

  8. Peroxy radical partitioning during the AMMA radical intercomparison exercise

    NASA Astrophysics Data System (ADS)

    Andrés-Hernández, M. D.; Stone, D.; Brookes, D. M.; Commane, R.; Reeves, C. E.; Huntrieser, H.; Heard, D. E.; Monks, P. S.; Burrows, J. P.; Schlager, H.; Kartal, D.; Evans, M. J.; Floquet, C. F. A.; Ingham, T.; Methven, J.; Parker, A. E.

    2010-11-01

    Peroxy radicals were measured onboard two scientific aircrafts during the AMMA (African Monsoon Multidisciplinary Analysis) campaign in summer 2006. This paper reports results from the flight on 16 August 2006 during which measurements of HO2 by laser induced fluorescence spectroscopy at low pressure (LIF-FAGE) and total peroxy radicals (RO2* = HO2+ΣRO2, R = organic chain) by two similar instruments based on the peroxy radical chemical amplification (PeRCA) technique were subject of a blind intercomparison. The German DLR-Falcon and the British FAAM-BAe-146 flew wing tip to wing tip for about 30 min making concurrent measurements on 2 horizontal level runs at 697 and 485 hPa over the same geographical area in Burkina Faso. A full set of supporting measurements comprising photolysis frequencies, and relevant trace gases like CO, NO, NO2, NOy, O3 and a wider range of VOCs were collected simultaneously. Results are discussed on the basis of the characteristics and limitations of the different instruments used. Generally, no data bias are identified and the RO2* data available agree quite reasonably within the instrumental errors. The [RO2*]/[HO2] ratios, which vary between 1:1 and 3:1, as well as the peroxy radical variability, concur with variations in photolysis rates and in other potential radical precursors. Model results provide additional information about dominant radical formation and loss processes.

  9. Peroxy radical partitioning during the AMMA radical intercomparison exercise

    NASA Astrophysics Data System (ADS)

    Andrés-Hernández, M. D.; Stone, D.; Brookes, D. M.; Commane, R.; Reeves, C. E.; Huntrieser, H.; Heard, D. E.; Monks, P. S.; Burrows, J. P.; Schlager, H.; Kartal, D.; Evans, M. J.; Floquet, C. F. A.; Ingham, T.; Methven, J.; Parker, A. E.

    2010-04-01

    Peroxy radicals were measured onboard two scientific aircrafts during the AMMA (African Monsoon Multidisciplinary Analysis) campaign in summer 2006. This paper reports results from the flight on 16 August 2006 during which measurements of HO2 by laser induced fluorescence spectroscopy at low pressure (LIF-FAGE) and total peroxy radicals (RO2*=HO2+ΣRO2, R= organic chain) by two similar instruments based on the peroxy radical chemical amplification (PerCA) technique were subject of a blind intercomparison. The German DLR-Falcon and the British FAAM-BAe-146 flew wing tip to wing tip for about 30 min making concurrent measurements on 2 horizontal level runs at 697 and 485 hPa over the same geographical area in Burkina Faso. A full set of supporting measurements comprising photolysis frequencies, and relevant trace gases like CO, NO, NO2, NOy, O3 and a wider range of VOCs were collected simultaneously. Results are discussed on the basis of the characteristics and limitations of the different instruments used. Generally, no data bias are identified and the RO2* data available agree quite reasonably within the instrumental errors. The [RO2*]/[HO2] ratios, which vary between 1:1 and 3:1, as well as the peroxy radical variability, concur with variations in photolysis rates and in other potential radical precursors. Model results provide additional information about dominant radical formation and loss processes.

  10. Communication: Vibrationally resolved photoelectron spectroscopy of the tetracyanoquinodimethane (TCNQ) anion and accurate determination of the electron affinity of TCNQ

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Wang, Lai-Sheng

    2015-12-01

    Tetracyanoquinodimethane (TCNQ) is widely used as an electron acceptor to form highly conducting organic charge-transfer solids. Surprisingly, the electron affinity (EA) of TCNQ is not well known and has never been directly measured. Here, we report vibrationally resolved photoelectron spectroscopy (PES) of the TCNQ- anion produced using electrospray and cooled in a cryogenic ion trap. Photoelectron spectrum taken at 354.7 nm represents the detachment transition from the ground state of TCNQ- to that of neutral TCNQ with a short vibrational progression. The EA of TCNQ is measured accurately to be 3.383 ± 0.001 eV (27 289 ± 8 cm-1), compared to the 2.8 ± 0.1 eV value known in the literature and measured previously using collisional ionization technique. In addition, six vibrational peaks are observed in the photoelectron spectrum, yielding vibrational frequencies for three totally symmetric modes of TCNQ. Two-photon PES via a bound electronic excited state of TCNQ- at 3.100 eV yields a broad low kinetic energy peak due to fast internal conversion to vibrationally excited levels of the anion ground electronic state. The high EA measured for TCNQ underlies its ability as a good electron acceptor.

  11. Communication: Vibrationally resolved photoelectron spectroscopy of the tetracyanoquinodimethane (TCNQ) anion and accurate determination of the electron affinity of TCNQ

    SciTech Connect

    Zhu, Guo-Zhu; Wang, Lai-Sheng

    2015-12-14

    Tetracyanoquinodimethane (TCNQ) is widely used as an electron acceptor to form highly conducting organic charge-transfer solids. Surprisingly, the electron affinity (EA) of TCNQ is not well known and has never been directly measured. Here, we report vibrationally resolved photoelectron spectroscopy (PES) of the TCNQ{sup −} anion produced using electrospray and cooled in a cryogenic ion trap. Photoelectron spectrum taken at 354.7 nm represents the detachment transition from the ground state of TCNQ{sup −} to that of neutral TCNQ with a short vibrational progression. The EA of TCNQ is measured accurately to be 3.383 ± 0.001 eV (27 289 ± 8 cm{sup −1}), compared to the 2.8 ± 0.1 eV value known in the literature and measured previously using collisional ionization technique. In addition, six vibrational peaks are observed in the photoelectron spectrum, yielding vibrational frequencies for three totally symmetric modes of TCNQ. Two-photon PES via a bound electronic excited state of TCNQ{sup −} at 3.100 eV yields a broad low kinetic energy peak due to fast internal conversion to vibrationally excited levels of the anion ground electronic state. The high EA measured for TCNQ underlies its ability as a good electron acceptor.

  12. Bipyridinium Polymers That Dock Tetrathiafulvalene Guests in Water Driven by Donor-Acceptor and Ion Pair Interactions.

    PubMed

    Zhang, Yun-Chang; Qin, Ying; Wang, Hui; Zhang, Dan-Wei; Yang, Guanyu; Li, Zhan-Ting

    2016-04-01

    Two water-soluble para-xylylene-connected 4,4'-bipyridinium (BIPY(2+) ) polymers have been prepared. UV-Vis absorption, (1) H NMR spectroscopy, and cyclic voltammetry experiments support that in water the BIPY(2+) units in the polymers form stable 1:1 charge-transfer complexes with tetrathiafulvalene (TTF) guests that bear two or four carboxylate groups. These charge-transfer complexes are stabilized by the donor-acceptor interaction between electron-rich TTF and electron-deficient BIPY(2+) units and electrostatic attraction between the dicationic BIPY(2+) units and the anionic carboxylate groups attached to the TTF core. On the basis of UV-Vis experiments, a lower limit to the apparent association constant of the TTF⋅BIPY(2+) complexes of the mixtures, 1.8×10(6)  m(-1) , has been estimated in water. Control experiments reveal substantially reduced binding ability of the neutral TTF di- and tetracarboxylic acids to the BIPY(2+) molecules and polymers. Moreover, the stability of the charge-transfer complexes formed by the BIPY(2+) units of the polymers are considerably higher than that of the complexes formed between two monomeric BIPY(2+) controls and the dicarboxylate-TTF donor; this has been attributed to the mutually strengthened electron-deficient nature of the BIPY(2+) units of the polymers due to the electron-withdrawing effect of the BIPY(2+) units. PMID:26833904

  13. HOCCO versus OCCO: Comparative spectroscopy of the radical and diradical reactive intermediates

    NASA Astrophysics Data System (ADS)

    Dixon, Andrew R.; Xue, Tian; Sanov, Andrei

    2016-06-01

    We present a photoelectron imaging study of three glyoxal derivatives: the ethylenedione anion (OCCO-), ethynediolide (HOCCO-), and glyoxalide (OHCCO-). These anions provide access to the corresponding neutral reactive intermediates: the OCCO diradical and the HOCCO and OHCCO radicals. Contrasting the straightforward deprotonation pathway in the reaction of O- with glyoxal (OHCCHO), which is expected to yield glyoxalide (OHCCO-), OHCCO- is shown to be a minor product, with HOCCO- being the dominant observed isomer of the m/z = 57 anion. In the HOCCO/OHCCO anion photoelectron spectrum, we identify several electronic states of this radical system and determine the adiabatic electron affinity of HOCCO as 1.763(6) eV. This result is compared to the corresponding 1.936(8) eV value for ethylenedione (OCCO), reported in our recent study of this transient diradical [A. R. Dixon, T. Xue, and A. Sanov, Angew. Chem., Int. Ed. 54, 8764-8767 (2015)]. Based on the comparison of the HOCCO-/OHCCO- and OCCO- photoelectron spectra, we discuss the contrasting effects of the hydrogen connected to the carbon framework or the terminal oxygen in OCCO.

  14. HOCCO versus OCCO: Comparative spectroscopy of the radical and diradical reactive intermediates.

    PubMed

    Dixon, Andrew R; Xue, Tian; Sanov, Andrei

    2016-06-21

    We present a photoelectron imaging study of three glyoxal derivatives: the ethylenedione anion (OCCO(-)), ethynediolide (HOCCO(-)), and glyoxalide (OHCCO(-)). These anions provide access to the corresponding neutral reactive intermediates: the OCCO diradical and the HOCCO and OHCCO radicals. Contrasting the straightforward deprotonation pathway in the reaction of O(-) with glyoxal (OHCCHO), which is expected to yield glyoxalide (OHCCO(-)), OHCCO(-) is shown to be a minor product, with HOCCO(-) being the dominant observed isomer of the m/z = 57 anion. In the HOCCO/OHCCO anion photoelectron spectrum, we identify several electronic states of this radical system and determine the adiabatic electron affinity of HOCCO as 1.763(6) eV. This result is compared to the corresponding 1.936(8) eV value for ethylenedione (OCCO), reported in our recent study of this transient diradical [A. R. Dixon, T. Xue, and A. Sanov, Angew. Chem., Int. Ed. 54, 8764-8767 (2015)]. Based on the comparison of the HOCCO(-)/OHCCO(-) and OCCO(-) photoelectron spectra, we discuss the contrasting effects of the hydrogen connected to the carbon framework or the terminal oxygen in OCCO. PMID:27334160

  15. Molecular pharmacology of renal organic anion transporters.

    PubMed

    Van Aubel, R A; Masereeuw, R; Russel, F G

    2000-08-01

    Renal organic anion transport systems play an important role in the elimination of drugs, toxic compounds, and their metabolites, many of which are potentially harmful to the body. The renal proximal tubule is the primary site of carrier-mediated transport from blood to urine of a wide variety of anionic substrates. Recent studies have shown that organic anion secretion in renal proximal tubule is mediated by distinct sodium-dependent and sodium-independent transport systems. Knowledge of the molecular identity of these transporters and their substrate specificity has increased considerably in the past few years by cloning of various carrier proteins. However, a number of fundamental questions still have to be answered to elucidate the participation of the cloned transporters in the overall tubular secretion of anionic xenobiotics. This review summarizes the latest knowledge on molecular and pharmacological properties of renal organic anion transporters and homologs, with special reference to their nephron and plasma membrane localization, transport characteristics, and substrate and inhibitor specificity. A number of the recently cloned transporters, such as the p-aminohippurate/dicarboxylate exchanger OAT1, the anion/sulfate exchanger SAT1, the peptide transporters PEPT1 and PEPT2, and the nucleoside transporters CNT1 and CNT2, are key proteins in organic anion handling that possess the same characteristics as has been predicted from previous physiological studies. The role of other cloned transporters, such as MRP1, MRP2, OATP1, OAT-K1, and OAT-K2, is still poorly characterized, whereas the only information that is available on the homologs OAT2, OAT3, OATP3, and MRP3-6 is that they are expressed in the kidney, but their localization, not to mention their function, remains to be elucidated. PMID:10919840

  16. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

  17. Excess electron reactivity in amino acid aqueous solution revealed by ab initio molecular dynamics simulation: anion-centered localization and anion-relayed electron transfer dissociation.

    PubMed

    Wu, Xiuxiu; Gao, Liang; Liu, Jinxiang; Yang, Hongfang; Wang, Shoushan; Bu, Yuxiang

    2015-10-28

    Studies on the structure, states, and reactivity of excess electrons (EEs) in biological media are of great significance. Although there is information about EE interaction with desolvated biological molecules, solution effects are hardly explored. In this work, we present an ab initio molecular dynamics simulation study on the interaction and reactivity of an EE with glycine in solution. Our simulations reveal two striking results. Firstly, a pre-solvated EE partially localizes on the negatively charged -COO(-) group of the zwitterionic glycine and the remaining part delocalizes over solvent water molecules, forming an anion-centered quasi-localized structure, due to relative alignment of the lowest unoccupied molecular orbital energy levels of potential sites for EE residence in the aqueous solution. Secondly, after a period of anion-centered localization of an EE, the zwitterionic glycine is induced to spontaneously fragment through the cleavage of the N-Cα bond, losing ammonia (deamination), and leaving a ˙CH2-COO(-) anion radical, in good agreement with experimental observations. Introduction of the same groups (-COO(-) or -NH3(+)) in the side chain (taking lysine and aspartic acid as examples) can affect EE localization, with the fragmentation of the backbone part of these amino acids dependent on the properties of the side chain groups. These findings provide insights into EE interaction mechanisms with the backbone parts of amino acids and low energy EE induced fragmentation of amino acids and even peptides and proteins. PMID:26399512

  18. School Finance-Radical Departure.

    ERIC Educational Resources Information Center

    Kimple, James

    1983-01-01

    It is proposed that New Jersey assume approximately 70 percent of the cost of its public schools. Several other proposals are presented, all a radical departure from current school funding practices. (BW)

  19. Free radical inactivation of pepsin

    NASA Astrophysics Data System (ADS)

    Josimović, Lj; Ruvarac, I.; Janković, I.; Jovanović, S. V.

    1994-06-01

    Alkylperoxy radicals containing one, two or three chlorine atoms, CO -2, O 2 - were reacted with pepsin in aqueous solutions. It was found that only Cl 3COO and CO -2 inactive pepsin, attacking preferentially the disulfide bridge. Transient spectra obtained upon completion of the Cl 3COO + pepsin reaction at pH 5 indicate that 20% of initially produced Cl 3COO radicals oxidizes tryptophan residues, and 40% disulfide bridges. The inactivation induced by the Cl 3COO radical increases at lower pH, and the maximal inactivation, Gin = 5.8, was observed at pH 1.5. The inactivation of pepsin by CO -2 radicals depends on the absorbed dose. The maximal inactivation, Gin = 4.5, was determined in the dose range from 38 to 53 Gy.

  20. Redox Properties of Free Radicals.

    ERIC Educational Resources Information Center

    Neta, P.

    1981-01-01

    Describes pulse radiolysis as a useful means in studing one-electron redox potentials. This method allows the production of radicals and the determination of their concentration and rates of reaction. (CS)

  1. Swift Electrofluorochromism of Donor-Acceptor Conjugated Polytriphenylamines.

    PubMed

    Sun, Jingwei; Liang, Ziqi

    2016-07-20

    Electrofluorochromic (EFC) materials, which exhibit electrochemically controllable fluorescence, hold great promise in optoelectronic devices and biological analysis. Here we design such donor-acceptor (D-A) conjugated polymers-P(TPACO) and P(TCEC)-that contain the same electron-rich and oxidizable polytriphenylamine (PTPA) as π-backbone, yet with different electron-deficient ketone and cyano units as pendant groups, respectively. They both exhibit solvatochromic effects due to intrinsic characteristics of intramolecular charge transfer (ICT). Compared to P(TPACO), P(TCEC) shows stronger ICT, which leads to higher electrochemical oxidation potential and lower ion diffusion coefficient. Moreover, both polymers present simultaneous electrochromic (EC) and EFC behaviors with multistate display and remarkably rapid fluorescence response. The response time of P(TPACO) is as short as 0.19 s, nearly 4-fold faster than that of P(TCEC) (0.92 s). Such rapid response is found to be determined by the ion diffusion coefficient which is associated with the ICT nature. Finally, the EFC display device based on P(TPACO) is successfully demonstrated, which shows green fluorescence ON/OFF switching upon applied potentials. This work has successfully demonstrated that swift EFCs can be achieved by rational modulation of the ICT effect in such D-A conjugated polymers. PMID:27347724

  2. Ultrafast Energy Transfer in Ultrathin Organic Donor/Acceptor Blend

    PubMed Central

    Kandada, Ajay Ram Srimath; Grancini, Giulia; Petrozza, Annamaria; Perissinotto, Stefano; Fazzi, Daniele; Raavi, Sai Santosh Kumar; Lanzani, Guglielmo

    2013-01-01

    It is common knowledge that poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend, a prototype system for bulk heterojunction (BHJ) solar cells, consists of a network of tens of nanometers-large donor-rich and acceptor-rich phases separated by extended finely intermixed border regions where PCBM diffuse into P3HT. Here we specifically address the photo-induced dynamics in a 10 nm thin P3HT/PCBM blend that consists of the intermixed region only. Using the multi-pass transient absorption technique (TrAMP) that enables us to perform ultra high sensitive measurements, we find that the primary process upon photoexcitation is ultrafast energy transfer from P3HT to PCBM. The expected charge separation due to hole transfer from PCBM to P3HT occurs in the 100 ps timescale. The derived picture is much different from the accepted view of ultra-fast electron transfer at the polymer/PCBM interface and provides new directions for the development of efficient devices. PMID:23797845

  3. Poly(trifluoromethyl)azulenes: structures and acceptor properties

    SciTech Connect

    Clikeman, Tyler T.; Bukovsky, Eric V.; Kuvychko, Igor V.; San, Long K.; Deng, Shihu; Wang, Xue B.; Chen, Yu-Sheng; Strauss, Steven H.; Boltalina, Olga V.

    2014-07-10

    Azulene is a non-alternant, non-benzenoid aromatic hydrocarbon with an intense blue colour, a dipole moment of 1.0 D,1 positive electron affinity, and an “anomalous” emission from the second excited state in violation of Kasha’s rule.2,3 Azulene’s unique properties have potential uses in molecular switches,4,5 molecular diodes,6 organic photovoltaics,7 and charge transfer complexes.8-12 Introduction of electron-withdrawing groups to the azulenic core, such as CN,8,13,14 halogens,15-19 and CF3,20,21 can enhance certain electrical and photophysical properties. In this work, we report six new trifluoromethyl derivatives of azulene (AZUL), three isomers of AZUL(CF3)3 and three isomers of AZUL(CF3)4, and the first X-ray structure of a π-stacked donor-acceptor complex of a trifluoromethyl azulene with donor pyrene.

  4. Potassium acceptor doping of ZnO crystals

    SciTech Connect

    Parmar, Narendra S. Lynn, K. G.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  5. Molecular insights into the terminal energy acceptor in cyanobacterial phycobilisome.

    PubMed

    Gao, Xiang; Wei, Tian-Di; Zhang, Nan; Xie, Bin-Bin; Su, Hai-Nan; Zhang, Xi-Ying; Chen, Xiu-Lan; Zhou, Bai-Cheng; Wang, Zhi-Xin; Wu, Jia-Wei; Zhang, Yu-Zhong

    2012-09-01

    The linker protein L(CM) (ApcE) is postulated as the major component of the phycobilisome terminal energy acceptor (TEA) transferring excitation energy from the phycobilisome to photosystem II. L(CM) is the only phycobilin-attached linker protein in the cyanobacterial phycobilisome through auto-chromophorylation. However, the underlying mechanism for the auto-chromophorylation of L(CM) and the detailed molecular architecture of TEA is still unclear. Here, we demonstrate that the N-terminal phycobiliprotein-like domain of L(CM) (Pfam00502, LP502) can specifically recognize phycocyanobilin (PCB) by itself. Biochemical assays indicated that PCB binds into the same pocket in LP502 as that in the allophycocyanin α-subunit and that Ser152 and Asp155 play a vital role in LP502 auto-chromophorylation. By carefully conducting computational simulations, we arrived at a rational model of the PCB-LP502 complex structure that was supported by extensive mutational studies. In the PCB-LP502 complex, PCB binds into a deep pocket of LP502 with a distorted conformation, and Ser152 and Asp155 form several hydrogen bonds to PCB fixing the PCB Ring A and Ring D. Finally, based on our results, the dipoles and dipole-dipole interactions in TEA are analysed and a molecular structure for TEA is proposed, which gives new insights into the energy transformation mechanism of cyanobacterial phycobilisome. PMID:22758351

  6. Analysis of nonlinear optical properties in donor–acceptor materials

    SciTech Connect

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  7. Potassium acceptor doping of ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra S.; Corolewski, Caleb D.; McCluskey, Matthew D.; Lynn, K. G.

    2015-05-01

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ˜1 × 1016 cm-3. IR measurements show a local vibrational mode (LVM) at 3226 cm-1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O-H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm-1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  8. Ultrafast Energy Transfer in Ultrathin Organic Donor/Acceptor Blend

    NASA Astrophysics Data System (ADS)

    Kandada, Ajay Ram Srimath; Grancini, Giulia; Petrozza, Annamaria; Perissinotto, Stefano; Fazzi, Daniele; Raavi, Sai Santosh Kumar; Lanzani, Guglielmo

    2013-06-01

    It is common knowledge that poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend, a prototype system for bulk heterojunction (BHJ) solar cells, consists of a network of tens of nanometers-large donor-rich and acceptor-rich phases separated by extended finely intermixed border regions where PCBM diffuse into P3HT. Here we specifically address the photo-induced dynamics in a 10 nm thin P3HT/PCBM blend that consists of the intermixed region only. Using the multi-pass transient absorption technique (TrAMP) that enables us to perform ultra high sensitive measurements, we find that the primary process upon photoexcitation is ultrafast energy transfer from P3HT to PCBM. The expected charge separation due to hole transfer from PCBM to P3HT occurs in the 100 ps timescale. The derived picture is much different from the accepted view of ultra-fast electron transfer at the polymer/PCBM interface and provides new directions for the development of efficient devices.

  9. Effects of the addition of alcohols, cryoprotective agents, and salts on the photoionization yield of chlorophyll a in frozen vesicle solutions with and without electron acceptors

    SciTech Connect

    Hiff, T.; Kevan, L. )

    1989-04-20

    The photoionization yield of chlorophyll a (Chla) in rapidly frozen vesicles with and without potassium ferricyanide (FC) or tetrachloro-p-benzoquinone (TCBQ) has been studied versus several structural variations of phospholipid vesicles, including the addition of medium chain length alcohols, the effect of added salts (metal chlorides), the presence of a double bond in the alkyl tail of the surfactant, and the addition of dimethyl sulfoxide or glycerol which tend to enhance vesicular structure retention upon freezing. Variations in the photoionization yield versus these structural parameters are discussed in terms of distance variations between Chla and electron acceptors, loss of integrity of the vesicle structure, and differences in the degree of hydration of the headgroups of the surfactant molecules. Electron spin echo (ESE) deuterium modulation associated with a 5-doxylstearic acid spin probe interacting with deuterated water probes the degree of water interaction at the vesicle interface. The ESE data support a correlation between the degree of interface hydration and the photoionization yield for vesicles containing Chla and FC as an electron acceptor. Parallel ESE studies of 5-doxylstearic acid spin probes in anionic and cationic surfactant vesicles reveal changes in the interface hydration if the surfactant counterion is changed; this can be roughly correlated to the Chla photoionization yields.

  10. Anionic surfactant with hydrophobic and hydrophilic chains for nanoparticle dispersion and shape memory polymer nanocomposites.

    PubMed

    Iijima, Motoyuki; Kobayakawa, Murino; Yamazaki, Miwa; Ohta, Yasuhiro; Kamiya, Hidehiro

    2009-11-18

    An anionic surfactant comprising a hydrophilic poly(ethylene glycol) (PEG) chain, hydrophobic alkyl chain, and polymerizable vinyl group was synthesized as a capping agent of nanoparticles. TiO(2) nanoparticles modified by this surfactant were completely dispersible in various organic solvents with a wide range of polarities, such as nitriles, alcohols, ketones, and acetates. Furthermore, these particles were found to be dispersible in various polymers with different properties, such as thermosetting epoxy resins and radical polymerized poly(methylmethacrylate) (PMMA). A polymer composite of surface-modified TiO(2) nanoparticles in epoxy resins prepared by using the developed surfactant also possessed temperature-induced shape memory properties. PMID:19852463

  11. ANNUAL REPORT. SUPRAMOLECULAR CHEMISTRY OF SELECTIVE ANION RECOGNITION FOR ANIONS OF ENVIRONMENTAL RELEVANCE

    EPA Science Inventory

    This project involves the design and synthesis of receptors for anions of environmental importance, including emphasis on high level and low activity waste. Polyammonium macrocycles as receptors and nitrate as target anion were the focus of the first phase of this project. A seco...

  12. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-12-11

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  13. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, Kristen

    2004-12-01

    This project have focuses on the basic chemical aspects of anion receptor design of functional pH independent systems, with the ultimate goal of targeting the selective binding of sulfate, as well as design of separations strategies for selective and efficient removal of targeted anions. Key findings include: (1) the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate anion from acidic, nitrate-containing aqueous media. Areas probed during the last funding period include: the design, synthesis, and physical and structural characterization of receptors and investigation of anion and dual ion pair extraction using lipophilic amide receptors for anion binding. A new collaboration has been added to the project in addition to the one with Dr. Bruce Moyer at Oak Ridge National Laboratory, with Professor Jonathan Sessler at the University of Texas at Austin.

  14. [Alcohol and free oxygen radicals].

    PubMed

    Mira, M L; Manso, C F

    1993-05-01

    Oxygen free radicals may be generated during ethanol metabolization by cytochrome P450, or due to the formation of xanthine oxidase by ethanol effect on xanthine dehydrogenase. After transformation into acetaldehyde, the metabolism of this compound by xanthine oxidase or by aldehyde oxidase also generates oxygen radicals. We present the hypothesis of a vicious cycle during ethanol metabolization by aldehyde oxidase, which would amplify the process and be responsible for an increased degree of lipid peroxidation. PMID:8393265

  15. 13 ENDOR studies of organic radicals in natural isotopic abundance

    NASA Astrophysics Data System (ADS)

    Kirste, Burkhard

    13C ENDOR studies of phenoxyls, galvinoxyls, triphenylmethyl radicals, nitroxides, and cyclosilane and semiquinone radical anions with natural isotopic distribution are reported. The method is described, and it is shown that 13C coupling constants can be measured precisely; in favorable cases even the determination of signs is possible by general TRIPLE resonance. Studies of the relaxation behavior of 13C ENDOR signals or measurements of hyperfine shifts in liquid-crystalline solutions yield information about dipolar hyperfine interactions and hence π spin populations which is of aid in assignments to molecular positions. Complete sets of 13C coupling constants have been determined for 2,4,6-tri- tert-butylphenoxyl and Coppinger's radical. For the central carbon atoms of tert-butyl groups, a Q parameter of Qτ-Bu C = -34 MHz is proposed, and for a 29Si atom in trimethylsilyl groups, QTMSSi = +49 MHz. Favorable conditions for natural-abundance 13C ENDOR experiments, e.g., small hyperfine anisotropies and use of deuterated compounds, and limitations of the method are discussed.

  16. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor

    SciTech Connect

    Kumazaki, Shigeichi; Kandori, Hideki; Yoshihara, Keitaro ); Iwaki, Masayo; Itoh, Shigeru ); Ikegamu, Isamu )

    1994-10-27

    Rates of sequential electron transfer reactions from the primary electron donor chlorophyll dimer (P700) to the electron acceptor chlorophyll a-686 (A[sub 0]) and to the secondary acceptor quinone (Q[sub [phi

  17. Tuning the Ground State Symmetry of Acetylenyl Radicals.

    PubMed

    Zeng, Tao; Danovich, David; Shaik, Sason; Ananth, Nandini; Hoffmann, Roald

    2015-08-26

    The lowest excited state of the acetylenyl radical, HCC, is a (2)Π state, only 0.46 eV above the ground state, (2)Σ(+). The promotion of an electron from a π bond pair to a singly occupied σ hybrid orbital is all that is involved, and so we set out to tune those orbital energies, and with them the relative energetics of (2)Π and (2)Σ(+) states. A strategy of varying ligand electronegativity, employed in a previous study on substituted carbynes, RC, was useful, but proved more difficult to apply for substituted acetylenyl radicals, RCC. However, π-donor/acceptor substitution is effective in modifying the state energies. We are able to design molecules with (2)Π ground states (NaOCC, H2NCC ((2)A″), HCSi, FCSi, etc.) and vary the (2)Σ(+)-(2)Π energy gap over a 4 eV range. We find an inconsistency between bond order and bond dissociation energy measures of the bond strength in the Si-containing molecules; we provide an explanation through an analysis of the relevant potential energy curves. PMID:27162981

  18. Tuning the Ground State Symmetry of Acetylenyl Radicals

    PubMed Central

    2015-01-01

    The lowest excited state of the acetylenyl radical, HCC, is a 2Π state, only 0.46 eV above the ground state, 2Σ+. The promotion of an electron from a π bond pair to a singly occupied σ hybrid orbital is all that is involved, and so we set out to tune those orbital energies, and with them the relative energetics of 2Π and 2Σ+ states. A strategy of varying ligand electronegativity, employed in a previous study on substituted carbynes, RC, was useful, but proved more difficult to apply for substituted acetylenyl radicals, RCC. However, π-donor/acceptor substitution is effective in modifying the state energies. We are able to design molecules with 2Π ground states (NaOCC, H2NCC (2A″), HCSi, FCSi, etc.) and vary the 2Σ+–2Π energy gap over a 4 eV range. We find an inconsistency between bond order and bond dissociation energy measures of the bond strength in the Si-containing molecules; we provide an explanation through an analysis of the relevant potential energy curves. PMID:27162981

  19. Correction of the anion gap for albumin in order to detect occult tissue anions in shock

    PubMed Central

    Hatherill, M; Waggie, Z; Purves, L; Reynolds, L; Argent, A

    2002-01-01

    Background: It is believed that hypoalbuminaemia confounds interpretation of the anion gap (AG) unless corrected for serum albumin in critically ill children with shock. Aim: To compare the ability of the AG and the albumin corrected anion gap (CAG) to detect the presence of occult tissue anions. Methods: Prospective observational study in children with shock in a 22 bed multidisciplinary paediatric intensive care unit of a university childrenrsquo;s hospital. Blood was sampled at admission and at 24 hours, for acid-base parameters, serum albumin, and electrolytes. Occult tissue anions (lactate + truly "unmeasured" anions) were calculated from the strong ion gap. The anion gap ((Na + K) - (Cl + bicarbonate)) was corrected for serum albumin using the equation of Figge: AG + (0.25 x (44 - albumin)). Occult tissue anions (TA) predicted by the anion gap were calculated by (anion gap - 15 mEq/l). Optimal cut off values of anion gap were compared by means of receiver operating characteristic (ROC) curves. Ninety three sets of data from 55 children (median age 7 months, median weight 4.9 kg) were analysed. Data are expressed as mean (SD), and mean bias (limits of agreement). Results: The incidence of hypoalbuminaemia was 76% (n = 42/55). Mean serum albumin was 25 g/l (SD 8). Mean AG was 15.0 mEq/l (SD 6.1), compared to the CAG of 19.9 mEq/l (SD 6.6). Mean TA was 10.2 mmol/l (SD 6.3). The AG underestimated TA with mean bias 10.2 mmol/l (4.1–16.1), compared to the CAG, mean bias 5.3 mmol/l (0.4–10.2). A clinically significant increase of TA >5 mmol/l was present in 83% (n = 77/93) of samples, of which the AG detected 48% (n = 36/77), and the CAG 87% (n = 67/77). Post hoc ROC analysis revealed optimal cut off values for detection of TA >5 mmol/l to be AG >10 mEq/l, and CAG >15.5 mEq/l. Conclusion: Hypoalbuminaemia is common in critically ill children with shock, and is associated with a low observed anion gap that may fail to detect clinically significant amounts of

  20. Electron impact induced anion production in acetylene.

    PubMed

    Szymańska, Ewelina; Čadež, Iztok; Krishnakumar, E; Mason, Nigel J

    2014-02-28

    A detailed experimental investigation of electron induced anion production in acetylene, C2H2, in the energy range between 1 and 90 eV is presented. The anions are formed by two processes in this energy range: dissociative electron attachment (DEA) and dipolar dissociation (DD). DEA in C2H2 is found to lead to the formation of H(-) and C2(-)/C2H(-) through excitation of resonances in the electron energy range 1-15 eV. These anionic fragments are formed with super thermal kinetic energy and reveal no anisotropy in the angular distributions. DD in C2H2 leads to the formation of H(-), C(-)/CH(-) and C2(-)/C2H(-) with threshold energies of 15.7, 20.0 and 16.5 eV respectively. The measured anion yields have been used to calculate anion production rates for H(-), C(-)/CH(-) and C2(-)/C2H(-) in Titan's ionosphere. PMID:24343432

  1. Infrared spectroscopy of anionic hydrated fluorobenzenes

    SciTech Connect

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-09-21

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C{sub 6}F{sub 6}{sup -}{center_dot}H{sub 2}O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules.

  2. Electroosmotic Flow Hysteresis for Dissimilar Anionic Solutions.

    PubMed

    Lim, An Eng; Lim, Chun Yee; Lam, Yee Cheong

    2016-08-16

    Electroosmotic flow (EOF) with two or more fluids is often encountered in various microfluidic applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during displacement flow of solutions with dissimilar anion species. In this investigation, EOF of dissimilar anionic solutions was studied experimentally through the current monitoring method and numerically through finite element simulations. As opposed to other conventional displacement flows, EOF involving dissimilar anionic solutions exhibits counterintuitive behavior, whereby the current-time curve does not reach the steady-state value of the displacing electrolyte. Two distinct mechanics have been identified as the causes for this observation: (a) ion concentration adjustment when the displacing anions migrate upstream against EOF due to competition between the gradients of electromigrative and convective fluxes and (b) ion concentration readjustment induced by the static diffusive interfacial region between the dissimilar fluids which can only be propagated throughout the entire microchannel with the presence of EOF. The resultant ion distributions lead to the flow rate to be directional-dependent, indicating that the flow conditions are asymmetric between these two different flow directions. The outcomes of this investigation contribute to the in-depth understanding of flow behavior in microfluidic systems involving inhomogeneous fluids, particularly dissimilar anionic solutions. The understanding of EOF hysteresis is fundamentally important for the accurate prediction of analytes transport in microfluidic devices under EOF. PMID:27426052

  3. New organic donor-acceptor-π-acceptor sensitizers for efficient dye-sensitized solar cells and photocatalytic hydrogen evolution under visible-light irradiation.

    PubMed

    Li, Xing; Cui, Shicong; Wang, Dan; Zhou, Ying; Zhou, Hao; Hu, Yue; Liu, Jin-Gang; Long, Yitao; Wu, Wenjun; Hua, Jianli; Tian, He

    2014-10-01

    Two organic donor-acceptor-π-acceptor (D-A-π-A) sensitizers (AQ and AP), containing quinoxaline/pyrido[3,4-b]pyrazine as the auxiliary acceptor, have been. Through fine-tuning of the auxiliary acceptor, a higher designed and synthesized photoelectric conversion efficiency of 6.02% for the AQ-based dye-sensitized solar cells under standard global AM1.5 solar conditions was achieved. Also, it was found that AQ-Pt/TiO2 photocatalysts displayed a better rate of H2 evolution under visible-light irradiation (420 nm<λ<780 nm) because of the stability of the oxidized states and the lower rates of electron recombination. Importantly, sensitizers AQ and AP-Pt/TiO2 showed strong photocatalytic activity during continuous light soaking for 10 h with methanol as the sacrificial electron donor. Additionally, the processes of their intermolecular electron transfer were further investigated theoretically by using time-dependent DFT. The calculated results indicate that the auxiliary acceptor plays the role of an electron trap and results in broad spectral responses. PMID:25154958

  4. Analysis of Shewanella oneidensis Membrane Protein Expression in Response to Electron Acceptor Availability

    SciTech Connect

    Giometti, Carol S.; Khare, Tripti; Verberkmoes, Nathan; O'Loughlin, Ed; Lindberg, Carl; Thompson, Melissa; Hettich, Robert

    2006-04-05

    Shewanella oneidensis MR-1, a gram negative metal-reducing bacterium, can utilize a large number of electron acceptors. In the natural environment, S. oneidensis utilizes insoluble metal oxides as well as soluble terminal electron acceptors. The purpose of this ERSP project is to identify differentially expressed proteins associated with the membranes of S. oneidensis MR-1 cells grown with different electron acceptors, including insoluble metal oxides. We hypothesize that through the use of surface labeling, subcellular fractionation, and a combination of proteome analysis tools, proteins involved in the reduction of different terminal electron acceptors will be elucidated. We are comparing the protein profiles from cells grown with the soluble electron acceptors oxygen and fumarate and with those from cells grown with the insoluble iron oxides goethite, ferrihydrite and lepidocrocite. Comparison of the cell surface proteins isolated from cells grown with oxygen or anaerobically with fumarate revealed an increase in the abundance of over 25 proteins in anaerobic cells, including agglutination protein and flagellin proteins along with the several hypothetical proteins. In addition, the surface protein composition of cells grown with the insoluble iron oxides varies considerably from the protein composition observed with either soluble electron acceptor as well as between the different insoluble acceptors.

  5. Diversity of sugar acceptor of glycosyltransferase 1 from Bacillus cereus and its application for glucoside synthesis.

    PubMed

    Chiu, Hsi-Ho; Shen, Mo-Yuan; Liu, Yuan-Ting; Fu, Yu-Lieh; Chiu, Yu-An; Chen, Ya-Huei; Huang, Chin-Ping; Li, Yaw-Kuen

    2016-05-01

    Glycosyltransferase 1 from Bacillus cereus (BcGT1) catalyzes the transfer of a glucosyl moiety from uridine diphosphate glucose (UDP-glucose) to various acceptors; it was expressed and characterized. The specificity of acceptors was found to be broad: more than 20 compounds classified into O-, S-, and N-linkage glucosides can be prepared with BcGT1 catalysis. Based on this work, we conclude that the corresponding acceptors of these compounds must possess the following features: (1) the acceptors must contain at least one aromatic or fused-aromatic or heteroaromatic ring; (2) the reactive hydroxyl or sulfhydryl or amino group can attach either on the aromatic ring or on its aliphatic side chain; and (3) the acceptors can be a primary, secondary, or even a tertiary amine. Four representative acceptors-fluorescein methyl ester, 17-β-estradiol, 7-mercapto-4-methylcoumarin, and 6-benzylaminopurine-were chosen as a candidate acceptor for O-, S-, and N-glucosidation, respectively. These enzymatic products were purified and the structures were confirmed with mass and NMR spectra. As all isolated glucosides are β-anomers, BcGT1 is confirmed to be an inverting enzyme. This study not only demonstrates the substrate promiscuity of BcGT1 but also showed the great application prospect of this enzyme in bioconversion of valuable bioactive molecules. PMID:26795959

  6. Infrared Spectroscopy of Hydrated Nitromethane Anions

    NASA Astrophysics Data System (ADS)

    Marcum, Jesse C.; Weber, J. Mathias

    2009-06-01

    The hydration of molecular anions is still not as thoroughly explored as for atomic anions. We present IR spectra and quantum chemical calculations of hydrated nitromethane anions. In the monohydrate, the nitro group of the ion interacts with the water molecule via two hydrogen bonds, one from each O atom. This motif is partially conserved in the dihydrate. Adding the third water molecule results in a ring-like structure of the water ligands, each of which forms one H bond to one of the O atoms of the nitro group and another to a neighboring water ligand, reminiscent of the hydration motif of the heavier halides. Interestingly, while the methyl group is not directly involved in the interaction with the water ligands, its infrared signature is strongly affected by the changes in the intramolecular charge distribution through hydration.

  7. An anionic surfactant for EOR applications

    NASA Astrophysics Data System (ADS)

    Sagir, Muhammad; Tan, Isa M.; Mushtaq, Muhammad

    2014-10-01

    This work is to investigate the new anionic surfactants for the Enhanced Oil Recovery (EOR) application. Sulfonated anionic surfactant was produced by attaching SO3 to an ethoxylated alcohol to increase the performance of the surfactant. Methallyl chloride and ethoxylated alcohol was reacted followed by the reaction with sodium bisulfite to produce anionic sulfonated surfactant in 80.3 % yield. The sulfonation reaction parameters such as reactants mole ratio, reaction temperature and catalyst amount were optimized. The generation and stability of foam from the synthesized surfactant is also tested and results are reported. The synthesized novel surfactant was further investigated for the effect on the CO2 mobility in porous media and the findings are presented here. This in house developed surfactant has a great potential for CO2- EOR applications.

  8. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  9. Determination of Na acceptor level in Na+ ion-implanted ZnO single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Liu, Huibin; He, Haiping; Huang, Jingyun; Chen, Lingxiang; Ye, Zhizhen

    2015-03-01

    Ion implantation was used to dope Na acceptor into ZnO single crystals. With three mixed implantation energies, uniform depth distribution of Na ion in the surface region (~300 nm) of ZnO bulk crystals is achieved. Via post-implantation annealing, a donor-acceptor pair recombination band is identified in the low-temperature photoluminescence spectra, from which the energy level of Na-related acceptor in single crystalline ZnO is estimated to be 300 meV. A p-n junction based on this ZnO-Na layer shows rectifying characteristics, confirming the p-type conductivity.

  10. Transformation of [M + 2H](2+) Peptide Cations to [M - H](+), [M + H + O](+), and M(+•) Cations via Ion/Ion Reactions: Reagent Anions Derived from Persulfate.

    PubMed

    Pilo, Alice L; Bu, Jiexun; McLuckey, Scott A

    2015-07-01

    The gas-phase oxidation of doubly protonated peptides is demonstrated here using ion/ion reactions with a suite of reagents derived from persulfate. Intact persulfate anion (HS2O8(-)), peroxymonosulfate anion (HSO5(-)), and sulfate radical anion (SO4(-•)) are all either observed directly upon negative nanoelectrospray ionization (nESI) or easily obtained via beam-type collisional activation of persulfate into the mass spectrometer. Ion/ion reactions between each of these reagents and doubly protonated peptides result in the formation of a long-lived complex. Collisional activation of the complex containing a peroxymonosulfate anion results in oxygen transfer from the reagent to the peptide to generate the [M + H + O](+) species. Activation of the complex containing intact persulfate anion either results in oxygen transfer to generate the [M + H + O](+) species or abstraction of two hydrogen atoms and a proton to generate the [M - H](+) species. Activation of the complex containing sulfate radical anion results in abstraction of one hydrogen atom and a proton to form the peptide radical cation, [M](+•). This suite of reagents allows for the facile transformation of the multiply protonated peptides obtained via nESI into a variety of oxidized species capable of providing complementary information about the sequence and structure of the peptide. PMID:25944366

  11. Transformation of [M+2H]2+ Peptide Cations to [M - H]+, [M+H+O]+, and M+• Cations via Ion/Ion Reactions: Reagent Anions Derived from Persulfate

    NASA Astrophysics Data System (ADS)

    Pilo, Alice L.; Bu, Jiexun; McLuckey, Scott A.

    2015-07-01

    The gas-phase oxidation of doubly protonated peptides is demonstrated here using ion/ion reactions with a suite of reagents derived from persulfate. Intact persulfate anion (HS2O8 -), peroxymonosulfate anion (HSO5 -), and sulfate radical anion (SO4 -•) are all either observed directly upon negative nanoelectrospray ionization (nESI) or easily obtained via beam-type collisional activation of persulfate into the mass spectrometer. Ion/ion reactions between each of these reagents and doubly protonated peptides result in the formation of a long-lived complex. Collisional activation of the complex containing a peroxymonosulfate anion results in oxygen transfer from the reagent to the peptide to generate the [M+H+O]+ species. Activation of the complex containing intact persulfate anion either results in oxygen transfer to generate the [M+H+O]+ species or abstraction of two hydrogen atoms and a proton to generate the [M - H]+ species. Activation of the complex containing sulfate radical anion results in abstraction of one hydrogen atom and a proton to form the peptide radical cation, [M]+•. This suite of reagents allows for the facile transformation of the multiply protonated peptides obtained via nESI into a variety of oxidized species capable of providing complementary information about the sequence and structure of the peptide.

  12. Crystalline bipyridinium radical complexes and uses thereof

    DOEpatents

    Fahrenbach, Albert C.; Barnes, Jonathan C.; Li, Hao; Stoddart, J. Fraser; Basuray, Ashish Neil; Sampath, Srinivasan

    2015-09-01

    Described herein are methods of generating 4,4'-bipyridinium radical cations (BIPY.sup..cndot.+), and methods for utilizing the radical-radical interactions between two or more BIPY.sup..cndot.+ radical cations that ensue for the creation of novel materials for applications in nanotechnology. Synthetic methodologies, crystallographic engineering techniques, methods of physical characterization, and end uses are described.

  13. High performance weak donor-acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability.

    PubMed

    Yuen, Jonathan D; Fan, Jian; Seifter, Jason; Lim, Bogyu; Hufschmid, Ryan; Heeger, Alan J; Wudl, Fred

    2011-12-28

    We have studied the electronic, physical, and transistor properties of a family of donor-acceptor polymers consisting of diketopyrrolopyrrole (DPP) coupled with different accepting companion units in order to determine the effects of donor-acceptor interaction. Using the electronically neutral benzene (B), the weakly accepting benzothiadiazole (BT), and the strongly accepting benzobisthiadiazole (BBT), the accepting strength of the companion unit was systematically modulated. All polymers exhibited excellent transistor performance, with mobilities above 0.1 cm(2)V(-1)s(-1), even exceeding 1 cm(2)V(-1)s(-1) for one of the BBT-containing polymers. We find that the BBT is the strongest acceptor, enabling the BBT-containing polymers to be strongly ambipolar. The BBT moiety also strengthens interchain interactions, which provides higher thermal stability and performance for transistors with BBT-containing polymers as the active layer. PMID:22043809

  14. Identification and characterization of anion binding sites in RNA

    SciTech Connect

    Kieft, Jeffrey S.; Chase, Elaine; Costantino, David A.; Golden, Barbara L.

    2010-05-24

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions.

  15. Electron anions and the glass transition temperature.

    PubMed

    Johnson, Lewis E; Sushko, Peter V; Tomota, Yudai; Hosono, Hideo

    2016-09-01

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32](2+) ⋅ (e(-))2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design. PMID:27559083

  16. Anionic polymerization of azo substituted methacrylates

    SciTech Connect

    Dimov, D.K.; Dalton, L.R.; Hogen-Esch, T.E.

    1993-12-31

    The anionic polymerization of 4-phenylazophenyl methacrylate (PAM) and 6-(4-phenylazophenoxy)-hexyl methacrylate (PAHM) initiated by {open_quotes}living{close_quotes} PMMA with lithium counterion was studied in THF at {minus}78{degrees}C. The polymerization of PAM was prevented by a side termination reaction. The polymerization of PAHM proceeded smoothly to furnish PMMA/azopolymer block copolymers. The process showed features typical of {open_quotes}living{close_quotes} anionic polymerization. No phase transitions could be detected by DSC to prove liquid crystalline mesophase formation by the block copolymers.

  17. Tris-ureas as transmembrane anion transporters.

    PubMed

    Olivari, Martina; Montis, Riccardo; Berry, Stuart N; Karagiannidis, Louise E; Coles, Simon J; Horton, Peter N; Mapp, Lucy K; Gale, Philip A; Caltagirone, Claudia

    2016-08-01

    Nine tris-urea receptors (L(1)-L(9)) have been synthesised and shown to coordinate to a range of anionic guests both by (1)H NMR titration techniques and single crystal X-ray structural analysis. The compounds have been shown to be capable of mediating the exchange of chloride and nitrate and also chloride and bicarbonate across POPC or POPC : cholesterol 7 : 3 vesicle bilayer membranes at low transporter loadings. An interesting dependency of anion transport on the nature of the cation is evidence to suggest that a M(+)/Cl(-) cotransport process may also contribute to the release of chloride from the vesicles. PMID:27383134

  18. Negative Ion Photoelectron Spectra of Halomethyl Anions

    NASA Astrophysics Data System (ADS)

    Vogelhuber, Kristen M.; Wren, Scott W.; McCoy, Anne B.; Ervin, Kent M.; Lineberger, W. Carl

    2009-06-01

    Halomethyl anions undergo a significant geometry change upon electron photodetachment, resulting in multiple extended vibrational progressions in the photoelectron spectra. The normal mode analysis that successfully models photoelectron spectra when geometry changes are modest is unable to reproduce the experimental data using physically reasonable parameters. A three-dimensional anharmonic coupled-mode analysis was employed to accurately reproduce the observed vibrational structure. We present the 364 nm negative ion photoelectron spectra of the halomethyl anions CHX_2^- and CDX_2^- (X = Cl, Br, I) and report electron affinities, vibrational frequencies, and geometries.

  19. Molecular Engineering of Pyrido[3,4-b]pyrazine-Based Donor-Acceptor-π-Acceptor Organic Sensitizers: Effect of Auxiliary Acceptor in Cobalt- and Iodine-Based Electrolytes.

    PubMed

    Liu, Bo; Giordano, Fabrizio; Pei, Kai; Decoppet, Jean-David; Zhu, Wei-Hong; Zakeeruddin, Shaik M; Grätzel, Michael

    2015-12-14

    Due to the ease of tuning its redox potential, the cobalt-based redox couple has been extensively applied for highly efficient dye-sensitized solar cells (DSSCs) with extraordinarily high photovoltages. However, a cobalt electrolyte needs particular structural changes in the organic dye components to obtain such high photovoltages. To achieve high device performance, specific requirements in the molecular tailoring of organic sensitizers still need to be met. Besides the need for large electron donors, studies of the auxiliary acceptor segment of donor-acceptor-π-acceptor (D-A-π-A) organic sensitizers are still rare in molecular optimization in the context of cobalt electrolytes. In this work, two novel organic D-A-π-A-type sensitizers (IQ13 and IQ17) have been developed and exploited in cobalt- and iodine-based redox electrolyte DSSCs, specifically to provide insight into the effect of π-bridge modification in different electrolytes. The investigation has been focused on the additional electron-withdrawing acceptor capability with grafted long alkoxy chains. Optoelectronic transient measurements have indicated that IQ17 containing a pyrido[3,4-b]pyrazine moiety bearing long alkoxyphenyl chains is more suitable for application in cobalt-based DSSCs. PMID:26548926

  20. Ion radical cycloadditions and the synthesis of novel, electron-rich polymer structures

    NASA Astrophysics Data System (ADS)

    Roh, Yeonsuk

    photorefractive performances are compared with the performance of the standard composites based upon poly(N-vinyl carbazole). Finally, some studies of anion radical chain cycloadditions of tethered enones by cathodic reduction, which involve intramolecular anion radical cyclobutanation and unprecedented Diels-Alder cycloaddition, are reported. Evidence for stepwise cycloaddition involving distonic anion radical intermediates has been illustrated.