Science.gov

Sample records for acceptor radical anion

  1. Quantum beats in the recombination fluorescence of radical ion pairs caused by the hyperfine coupling in radical anions

    NASA Astrophysics Data System (ADS)

    Bagryansky, V. A.; Borovkov, V. I.; Molin, Yu. N.; Egorov, M. P.; Nefedov, O. M.

    1998-10-01

    The ratios of the radiofluorescence decay curves for n-decane solutions of 1,2,3,4-tetraphenylcyclopenta-1,3-diene and its silicon and germanium analogs (siloles and germoles) in high and zero magnetic fields have an oscillating component caused by singlet-triplet evolution of the pair S +/A -, where S + is the solvent hole and A - is the radical anion of the acceptor (a compound added). It is shown that the beats are due to the hyperfine couplings (hfc) with either the protons of CH 2, SiH 2 and GeH 2 moieties or chlorine atoms in the GeCl 2 and GeClMe moieties of radical anions. The hfc constants in the anions and spin relaxation times of radical ion pairs were obtained by fitting the experimental curves.

  2. Globins Scavenge Sulfur Trioxide Anion Radical*

    PubMed Central

    Gardner, Paul R.; Gardner, Daniel P.; Gardner, Alexander P.

    2015-01-01

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 106 m−1 s−1, respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 106 m−1 s−1, respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP+-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408

  3. Globins Scavenge Sulfur Trioxide Anion Radical.

    PubMed

    Gardner, Paul R; Gardner, Daniel P; Gardner, Alexander P

    2015-11-06

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 10(6) m(-1) s(-1), respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 10(6) m(-1) s(-1), respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP(+)-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested.

  4. Anion photoelectron spectroscopy of radicals and clusters

    SciTech Connect

    Travis, Taylor R.

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  5. Hemibonding of hydroxyl radical and halide anion in aqueous solution.

    PubMed

    Yamaguchi, Makoto

    2011-12-29

    Molecular geometries and properties of the possible reaction products between the hydroxyl radical and the halide anions in aqueous solution were investigated. The formation of two-center three-electron bonding (hemibonding) between the hydroxyl radical and halide anions (Cl, Br, I) was examined by density functional theory (DFT) calculation with a range-separated hybrid (RSH) exchange-correlation functional. The long-range corrected hybrid functional (LC-ωPBE), which have given quantitatively satisfactory results for odd electron systems and excited states, was examined by test calculations for dihalogen radical anions (X(2)(-); X = Cl, Br, I) and hydroxyl radical-water clusters. Equilibrium geometries with hemibonding between the hydroxyl radical and halide anions were located by including four hydrogen-bonded water molecules. Excitation energies and oscillator strengths of σ-σ* transitions calculated by the time-dependent DFT method showed good agreement with observed values. Calculated values of the free energy of reaction on the formation of hydroxyl halide radical anion from the hydroxyl radical and halide anion were endothermic for chloride but exothermic for bromide and iodide, which is consistent with experimental values of equilibrium constants.

  6. Methylglyoxal as a scavenger for superoxide anion-radical.

    PubMed

    Shumaev, K B; Lankin, V Z; Konovalova, G G; Grechnikova, M A; Tikhaze, A K

    2016-07-01

    Methylglyoxal at a concentration of 5 mM caused a significant inhibition of superoxide anion radical (O2 (·-)) comparable to the effect of Tirone. In the process of O2 (·-) generation in the system of egg phosphatidylcholine liposome peroxidation induced by the azo-initiator AIBN, a marked inhibition of chemiluminescence in the presence of 100 mM methylglyoxal was found. At the same time, methylglyoxal did not inhibit free radical peroxidation of low-density lipoprotein particles, which indicates the absence of interaction with methylglyoxal alkoxyl and peroxyl polyenoic lipid radicals. These findings deepen information about the role of methylglyoxal in the regulation of free radical processes.

  7. Energy and Entropy Effects in Dissociation of Peptide Radical Anions

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Lam, Corey; Chu, Ivan K.

    2012-04-15

    Time- and collision energy-resolved surface-induced dissociation (SID) of peptide radical anions was studied for the first time using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for SID experiments. Peptide radical cations and anions were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes. The effect of the charge, radical, and the presence of a basic residue on the energetics and dynamics of dissociation of peptide ions was examined using RVYIHPF (1) and HVYIHPF (2) as model systems. Comparison of the survival curves for of [M+H]{sup +}, [M-H]{sup -}, M{sup +{sm_bullet}}, and [M-2H]{sup -{sm_bullet}} ions of these precursors demonstrated that even-electron ions are more stable towards fragmentation than their odd-electron counterparts. RRKM modeling of the experimental data demonstrated that the lower stability of the positive radicals is mainly attributed to lower dissociation thresholds while entropy effects are responsible the relative instability of the negative radicals. Substitution of arginine with less basic histidine residue has a strong destabilizing effect on the [M+H]{sup +} ions and a measurable stabilizing effect on the odd-electron ions. Lower threshold energies for dissociation of both positive and negative radicals of 1 are attributed to the presence of lower-energy dissociation pathways that are most likely promoted by the presence of the basic residue.

  8. Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibition of photosystem II.

    PubMed

    Song, Yu Guang; Liu, Bin; Wang, Lan Fen; Li, Mai He; Liu, Yang

    2006-10-01

    Under strong illumination of a photosystem II (PSII) membrane, endogenous superoxide anion, hydrogen peroxide, and hydroxyl radical were successively produced. These compounds then cooperatively resulted in a release of manganese from the oxygen-evolving complex (OEC) and an inhibition of oxygen evolution activity. The OEC inactivation was initiated by an acceptor-side generated superoxide anion, and hydrogen peroxide was most probably responsible for the transportation of reactive oxygen species (ROS) across the PSII membrane from the acceptor-side to the donor-side. Besides ROS being generated in the acceptor-side induced manganese loss; there may also be a ROS-independent manganese loss in the OEC of PSII. Both superoxide anion and hydroxyl radical located inside the PSII membrane were directly identified by a spin trapping-electron spin resonance (ESR) method in combination with a lipophilic spin trap, 5-(diethoxyphosphoryl)-5-phenethyl-1-pyrroline N-oxide (DEPPEPO). The endogenous hydrogen peroxide production was examined by oxidation of thiobenzamide.

  9. The benzene radical anion: A computationally demanding prototype for aromatic anions

    SciTech Connect

    Bazante, Alexandre P. Bartlett, Rodney J.; Davidson, E. R.

    2015-05-28

    The benzene radical anion is studied with ab initio coupled-cluster theory in large basis sets. Unlike the usual assumption, we find that, at the level of theory investigated, the minimum energy geometry is non-planar with tetrahedral distortion at two opposite carbon atoms. The anion is well known for its instability to auto-ionization which poses computational challenges to determine its properties. Despite the importance of the benzene radical anion, the considerable attention it has received in the literature so far has failed to address the details of its structure and shape-resonance character at a high level of theory. Here, we examine the dynamic Jahn-Teller effect and its impact on the anion potential energy surface. We find that a minimum energy geometry of C{sub 2} symmetry is located below one D{sub 2h} stationary point on a C{sub 2h} pseudo-rotation surface. The applicability of standard wave function methods to an unbound anion is assessed with the stabilization method. The isotropic hyperfine splitting constants (A{sub iso}) are computed and compared to data obtained from experimental electron spin resonance experiments. Satisfactory agreement with experiment is obtained with coupled-cluster theory and large basis sets such as cc-pCVQZ.

  10. Resonance Raman spectra of the anion and cation radicals of bacterial photosynthetic pigments

    SciTech Connect

    Diers, J.R.; Bocian, D.F. )

    1994-12-08

    Resonance Raman (RR) spectra are reported for the radical ions of the bacterial photosynthetic pigments bacteriochlorophyll a (BCh) and its metal-free analog bacteriopheophytin a (BPh). The radical anions, BCh[sup [minus

  11. Generation of naphthoquinone radical anions by electrospray ionization: solution, gas-phase, and computational chemistry studies.

    PubMed

    Vessecchi, Ricardo; Naal, Zeki; Lopes, José N C; Galembeck, Sérgio E; Lopes, Norberto P

    2011-06-02

    Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(•-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q+15](-) was described as being a reaction between the solvent system and the radical anion, Q(•-). The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.

  12. Simultaneous micro-electromembrane extractions of anions and cations using multiple free liquid membranes and acceptor solutions.

    PubMed

    Kubáň, Pavel; Boček, Petr

    2016-02-18

    Micro-electromembrane extractions (μ-EMEs) across free liquid membranes (FLMs) were applied to simultaneous extractions of anions and cations. A transparent narrow-bore polymeric tubing was filled with adjacent plugs of μL volumes of aqueous and organic solutions, which formed a stable five-phase μ-EME system. For the simultaneous μ-EMEs of anions and cations, aqueous donor solution was the central phase, which was sandwiched between two organic FLMs and two aqueous acceptor solutions. On application of electric potential, anions and cations in the donor solution migrated across the two FLMs and into the two peripheral acceptor solutions in the direction of anode and cathode, respectively. Visual monitoring of anionic (tartrazine) and cationic (phenosafranine) dye confirmed their simultaneous μ-EMEs and their rapid (in less than 5 min) transfers into anolyte and catholyte, respectively. The concept of simultaneous μ-EMEs was further examined with selected model analytes; KClO4 was used for μ-EMEs of inorganic anions and cations and ibuprofen and procaine for μ-EMEs of acidic and basic drugs. Quantitative analyses of the resulting acceptor solutions were carried out by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D). Good extraction recoveries (91-94%) and repeatability of peak areas (≤6.3%) were achieved for 5 min μ-EMEs of K(+) and ClO4(-). Extraction recoveries and repeatability of peak areas for 5 min μ-EMEs of ibuprofen and procaine were also satisfactory and ranged from 35 to 63% and 7.6 to 11.3%, respectively. Suitability of the presented micro-extraction procedure was further demonstrated on simultaneous μ-EMEs with subsequent CE-C(4)D of ibuprofen and procaine from undiluted human urine samples.

  13. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NASA Astrophysics Data System (ADS)

    Osburn, Sandra; Berden, Giel; Oomens, Jos; O'Hair, Richard A. J.; Ryzhov, Victor

    2011-10-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-acetyl-cysteine followed by the homolytic cleavage of the S-NO bond in the gas phase. IRMPD spectroscopy coupled with DFT calculations revealed that for the radical cation the radical migrates from its initial position on the sulfur atom to the α-carbon position, which is 2.5 kJ mol-1 lower in energy. The radical migration was confirmed by time-resolved ion-molecule reactions. These results are in contrast with our previous study on cysteine methyl ester radical cation (Osburn et al., Chem. Eur. J. 2011, 17, 873-879) and the study by Sinha et al. for cysteine radical cation ( Phys. Chem. Chem. Phys. 2010, 12, 9794-9800) where the radical was found to stay on the sulfur atom as formed. A similar approach allowed us to form a hydrogen-deficient radical anion of N-acetyl-cysteine, (M - 2H) •- . IRMPD studies and ion-molecule reactions performed on the radical anion showed that the radical remains on the sulfur, which is the initial and more stable (by 63.6 kJ mol-1) position, and does not rearrange.

  14. The nature of the CO2- radical anion in water

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2016-04-01

    The reductive conversion of CO2 into industrial products (e.g., oxalic acid, formic acid, methanol) can occur via aqueous CO2- as a transient intermediate. While the formation, structure, and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 cm-1, attributed to the symmetric CO stretch, which is at ˜45 cm-1 higher frequency than in inert matrices. Isotopic substitution at C (13CO2-) shifts the frequency downwards by 22 cm-1, which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 cm-1 band also appears at 742 cm-1 and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO2-(C2v/Cs) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (Cs) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO2- moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28 ± 0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical, which has been in contention for decades, as reflected in a wide variation in the reported pKa (-0.2 to 3.9), has been resolved. A value of 3.4 ± 0.2 measured in this work is consistent with the vibrational properties, bond structure

  15. Vibrational Spectroscopy of CO2- Radical Anion in Water

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2016-06-01

    The reductive conversion of CO2 into industrial products (e.g., oxalic acid, formic acid, and methanol) can occur via aqueous CO2- as a transient intermediate. While the formation, structure and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 wn, attributed to the symmetric CO stretch, which is at 45 wn higher frequency than in inert matrices. Isotopic substitution at C (13CO2-) shifts the frequency downwards by 22 wn which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 wn band also appears at 742 wn, and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO2-(C2v/Cs) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (Cs) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO2- moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28+/-0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical which has been in contention for decades, as reflected in a wide variation in the reported pKa (-0.2 to 3.9), has been resolved. A value of 3.4+/-0.2 measured in this work is consistent with the vibrational properties, bond structure and charge

  16. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.

    SciTech Connect

    Delnick, Frank M.

    2014-10-01

    A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

  17. Tetrabutylammonium Salts of Aluminum(III) and Gallium(III) Phthalocyanine Radical Anions Bonded with Fluoren-9-olato(-) Anions and Indium(III) Phthalocyanine Bromide Radical Anions.

    PubMed

    Konarev, Dmitri V; Khasanov, Salavat S; Ishikawa, Manabu; Nakano, Yoshiaki; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2017-02-15

    Reduction of aluminum(III), gallium(III), and indium(III) phthalocyanine chlorides by sodium fluorenone ketyl in the presence of tetrabutylammonium cations yielded crystalline salts of the type (Bu4 N(+) )2 [M(III) (HFl-O(-) )(Pc(.3-) )](.-) (Br(-) )⋅1.5 C6 H4 Cl2 [M=Al (1), Ga (2); HFl-O(-) =fluoren-9-olato(-) anion; Pc=phthalocyanine] and (Bu4 N(+) ) [In(III) Br(Pc(.3-) )](.-) ⋅0.875 C6 H4 Cl2 ⋅0.125 C6 H14 (3). The salts were found to contain Pc(.3-) radical anions with negatively charged phthalocyanine macrocycles, as evidenced by the presence of intense bands of Pc(.3-) in the near-IR region and a noticeable blueshift in both the Q and Soret bands of phthalocyanine. The metal(III) atoms coordinate HFl-O(-) anions in 1 and 2 with short Al-O and Ga-O bond lengths of 1.749(2) and 1.836(6) Å, respectively. The C-O bonds [1.402(3) and 1.391(11) Å in 1 and 2, respectively] in the HFl-O(-) anions are longer than the same bond in the fluorenone ketyl (1.27-1.31 Å). Salts 1-3 show effective magnetic moments of 1.72, 1.66, and 1.79 μB at 300 K, respectively, owing to the presence of unpaired S=1/2 spins on Pc(.3-) . These spins are coupled antiferromagnetically with Weiss temperatures of -22, -14, and -30 K for 1-3, respectively. Coupling can occur in the corrugated two-dimensional phthalocyanine layers of 1 and 2 with an exchange interaction of J/kB =-0.9 and -1.1 K, respectively, and in the π-stacking {[In(III) Br(Pc(.3-) )](.-) }2 dimers of 3 with an exchange interaction of J/kB =-10.8 K. The salts show intense electron paramagnetic resonance (EPR) signals attributed to Pc(.3-) . It was found that increasing the size of the central metal atom strongly broadened these EPR signals.

  18. Fast repair of TMP radical anions by phenylpropanoid glycosides (PPGs) and their analogs

    NASA Astrophysics Data System (ADS)

    Shi, Yimin; Lin, Weizheng; Fan, Potao; Jia, Zhongjian; Yao, Side; Kang, Jiuhong; Wang, Wengfeng; Zheng, Rongliang

    2000-04-01

    Repair effect on TMP radical anions by phenylpropanoid glycosides (PPGs) and their analogs, isolated from Chinese folk medicinal herbs, were studied using a pulse radiolysis technique. The radical anion of TMP was formed by the reaction of hydrated electron with TMP. On pulse irradiation of a nitrogen saturated TMP aqueous solution containing 0.2 mol/l t-BuOH and one of the PPGs or their analogs, the transient absorption spectrum of the radical anion of TMP decayed with the formation of that of the radical anion of PPGs or their analogs within several decades of microseconds after electron pulse irradiation. The results indicated that TMP radical anions can be repaired by PPGs or their analogs. The rate constants of the repair reactions were deduced to be 1.64-2.75×10 9 M -1 s -1. A deeper understanding of this new repair mechanism will undoubtedly help researchers design strategies to prevent and/or intervene more effectively in free radical related diseases.

  19. Diagnosis of superoxide anion radical induced in liquids by atmospheric-pressure plasma using superoxide dismutase

    NASA Astrophysics Data System (ADS)

    Tani, Atsushi; Fukui, Satoshi; Ikawa, Satoshi; Kitano, Katsuhisa

    2015-01-01

    To confirm the formation of the superoxide anion radical (O2-•) in liquids by atmospheric-pressure plasma, we investigated plasma-induced radical species in water using the electron spin resonance (ESR) spin-trapping technique combined with two proteins: superoxide dismutase (SOD), which has enzymatic activity to quench the superoxide anion radical, and bovine serum albumin (BSA), which does not have this enzymatic activity. Different setups of contact and non-contact atmospheric-pressure helium plasma were tested with an additional supply of oxygen gas. For each setup of plasma, no superoxide anion adduct ESR signal was observed in the aqueous solution with SOD, whereas the ESR signal appears in the samples with BSA and without any additive proteins. This means that a superoxide anion radical in the solution is sufficiently quenched by SOD before the formation of the spin adduct. The superoxide anion radical is actually induced in an aqueous solution by atmospheric-pressure plasma when ambient gases contain oxygen.

  20. Discovery of the K4 Structure Formed by a Triangular π Radical Anion.

    PubMed

    Mizuno, Asato; Shuku, Yoshiaki; Suizu, Rie; Matsushita, Michio M; Tsuchiizu, Masahisa; Reta Mañeru, Daniel; Illas, Francesc; Robert, Vincent; Awaga, Kunio

    2015-06-24

    The K4 structure was theoretically predicted for trivalent chemical species, such as sp(2) carbon. However, since attempts to synthesize the K4 carbon have not succeeded, this allotrope has been regarded as a crystal form that might not exist in nature. In the present work, we carried out electrochemical crystallization of the radical anion salts of a triangular molecule, naphthalene diimide (NDI)-Δ, using various electrolytes. X-ray crystal analysis of the obtained crystals revealed the K4 structure, which was formed by the unique intermolecular π overlap directed toward three directions from the triangular-shape NDI-Δ radical anions. Electron paramagnetic resonance and static magnetic measurements confirmed the radical anion state of NDI-Δ and indicated an antiferromagnetic intermolecular interaction with the Weiss constant of θ = -10 K. The band structure calculation suggested characteristic features of the present material, such as a metallic ground state, Dirac cones, and flat bands.

  1. Electrochromic and spectroelectrochemical properties of novel 4,4‧-bipyridilium-TCNQ anion radical complexes

    NASA Astrophysics Data System (ADS)

    Wang, Guoming; Fu, Xiangkai; Deng, Jun; Huang, Xuemei; Miao, Qiang

    2013-07-01

    Three novel electrochromic materials 7,7,8,8-tetracyanoquinodimethane (TCNQ) anion radical salts with substituted 4,4'-bipyridilium derivatives (monosubstituent-4,4'-bipyridilium) were prepared. The structure of the complexes was characterized by Elemental analyses, Solid IR spectra and UV-vis spectroscopy. The electrochromic behaviors and electrooptical properties of the complexes were investigated by cyclic voltammetry and UV-vis absorption spectra. Electrochromic devices based on monosubstituent 4,4'-bipyridilium-TCNQ anion radical salts (abbreviated as MBTS) were fabricated which exhibited green-magenta color change. Their color reversibility was excellent with high color-change efficiency after 1000 cycles of the transmittance and transmittance change.

  2. 213 nm Ultraviolet Photodissociation on Peptide Anions: Radical-Directed Fragmentation Patterns

    NASA Astrophysics Data System (ADS)

    Halim, Mohammad A.; Girod, Marion; MacAleese, Luke; Lemoine, Jérôme; Antoine, Rodolphe; Dugourd, Philippe

    2016-03-01

    Characterization of acidic peptides and proteins is greatly hindered due to lack of suitable analytical techniques. Here we present the implementation of 213 nm ultraviolet photodissociation (UVPD) in high-resolution quadrupole-Orbitrap mass spectrometer in negative polarity for peptide anions. Radical-driven backbone fragmentation provides 22 distinctive fragment ion types, achieving the complete sequence coverage for all reported peptides. Hydrogen-deficient radical anion not only promotes the cleavage of Cα-C bond but also stimulates the breaking of N-Cα and C-N bonds. Radical-directed loss of small molecules and specific side chain of amino acids are detected in these experiments. Radical containing side chain of amino acids (Tyr, Ser, Thr, and Asp) may possibly support the N-Cα backbone fragmentation. Proline comprising peptides exhibit the unusual fragment ions similar to reported earlier. Interestingly, basic amino acids such as Arg and Lys also stimulated the formation of abundant b and y ions of the related peptide anions. Loss of hydrogen atom from the charge-reduced radical anion and fragment ions are rationalized by time-dependent density functional theory (TDDFT) calculation, locating the potential energy surface (PES) of ππ* and repulsive πσ* excited states of a model amide system.

  3. Sulfite-radical anions in isolated soy proteins.

    PubMed

    Lei, Q; Boatright, W L

    2007-06-01

    Aqueous mixtures of manganese and sulfite, at levels found in isolated soy proteins (ISP) and defatted soy flakes, spontaneously react in the presence of oxygen to produce methanethiol from the 1-electron oxidation of methionine. The carbon and sulfur of methanethiol originate from the methyl-carbon and sulfur of methionine. Similar aqueous mixtures of sulfite, manganese, and oxygen also produce sufficient levels of free radicals to degrade fluorescein. The degradation of methionine by free radicals generated in the sulfite, manganese, and oxygen reaction mixture is inhibited by the free radical spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide. Processing ISP with either L-cystine or potassium iodate reduces the free sulfite content of ISP and reduces the headspace methanethiol from aqueous ISP slurries to nondetectable levels. ISP processed without additives contained sufficient levels of free radicals to generate methanethiol from the oxidation of added methionine. There were no detectable levels of methanethiol produced when methionine was added to ISP processed with iodate.

  4. ESR Studies and HMO Calculations on Benzosemiquinone Radical Anions: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Beck, Rainer; Nibler, Joseph W.

    1989-01-01

    Discusses electron spin resonance, a form of magnetic resonance spectroscopy, used to study electronic structure of molecules with unpaired electrons. Studies benzosemiquinone radical anions which are long-lived and inexpensive. Uses a Project SERAPHIM computer program to perform a Huckel molecular orbital calculation. (MVL)

  5. EPR and AM1 study of the structure of the radical anion of {beta}-ionone

    SciTech Connect

    Kruppa, A.I. Leshina, T.V.; Konovalov, V.V.; Kispert, L.D.

    1999-03-11

    The structure of the radical anion of {beta}-ionone has been investigated by EPR and AM1 molecular modeling methods as a part of a study to determine the structure and magnetic properties of intermediates of one-electron transfer reactions of carotenoids. Analysis of the temperature dependence of the EPR spectrum of the radical anion shows that the largest hyperfine coupling of 16 G previously assigned to the 7-H proton should be assigned to the 4-H proton in the axial orientation. The previous assignment failed to account for rate of the cyclohexene ring inversion. Comparing the resolved EPR spectra at various temperatures indicates that the coupling of 7-H proton equals {approx}9.5 G. The structure of the radical anion predicted by AM1 molecular modeling is in agreement with this analysis. From the temperature dependence the rate of the cyclohexene ring inversion in the radical anion at room temperatures is approximately 6 {times} 10{sup 7} s{sup {minus}1} with an activation energy of about 7 kcal/mol.

  6. Successive attachment of electrons to protonated Guanine: (G+H)* radicals and (G+H)- anions.

    PubMed

    Zhang, Jun D; Xie, Yaoming; Schaefer, Henry F

    2006-11-02

    The structures, energetics, and vibrational frequencies of nine hydrogenated 9H-keto-guanine radicals (G+H)(*) and closed-shell anions (G+H)(-) are predicted using the carefully calibrated (Chem. Rev. 2002, 102, 231) B3LYP density functional method in conjunction with a DZP++ basis set. These radical and anionic species come from consecutive electron attachment to the corresponding protonated (G+H)(+) cations in low pH environments. The (G+H)(+) cations are studied using the same level of theory. The proton affinity (PA) of guanine computed in this research (228.1 kcal/mol) is within 0.7 kcal/mol of the latest experiment value. The radicals range over 41 kcal/mol in relative energy, with radical r1, in which H is attached at the C8 site of guanine, having the lowest energy. The lowest energy anion is a2, derived by hydride ion attachment at the C2 site of guanine. No stable N2-site hydride should exist in the gas phase. Structure a9 was predicted to be dissociative in this research. The theoretical adiabatic electron affinities (AEA), vertical electron affinities, and vertical detachment energies were computed, with AEAs ranging from 0.07 to 3.12 eV for the nine radicals.

  7. Characterization of the hyperline of D1/D0 conical intersections between the maleic acid and fumaric acid anion radicals

    NASA Astrophysics Data System (ADS)

    Takahashi, Ohgi; Sumita, Masato

    2004-10-01

    The cation and anion radicals of symmetrical 1,2-disubstituted ethylenes are expected to have a symmetry-allowed conical intersection (CI) between the ground doublet state (D0) and the lowest excited doublet state (D1) near a 90°-twisted geometry. By the complete active space self-consistent field method, we characterized the hyperline formed by D1/D0 CIs between the anion radicals of maleic acid (cis) and fumaric acid (trans). An implication of the results for the known one-way cis→trans photoisomerization of the maleic acid anion radical and other related ion radicals is presented.

  8. Visible light photoredox catalysis: generation and addition of N-aryltetrahydroisoquinoline-derived α-amino radicals to Michael acceptors.

    PubMed

    Kohls, Paul; Jadhav, Deepak; Pandey, Ganesh; Reiser, Oliver

    2012-02-03

    The photoredox-catalyzed coupling of N-aryltetrahydroisoquinoline and Michael acceptors was achieved using Ru(bpy)(3)Cl(2) or [Ir(ppy)(2)(dtb-bpy)]PF(6) in combination with irradiation at 455 nm generated by a blue LED, demonstrating the trapping of visible light generated α-amino radicals. While intermolecular reactions lead to products formed by a conjugate addition, in intramolecular variants further dehydrogenation occurs, leading directly to 5,6-dihydroindolo[2,1-a]tetrahydroisoquinolines, which are relevant as potential immunosuppressive agents.

  9. Stable and highly persistent quinoxaline-centered metalloorganic radical anions: preparation, structural, spectroscopic, and computational investigations.

    PubMed

    Choua, Sylvie; Djukic, Jean-Pierre; Dalléry, Jérôme; Bieber, André; Welter, Richard; Gisselbrecht, Jean-Paul; Turek, Philippe; Ricard, Louis

    2009-01-05

    Coordination of diazines such as quinoxaline to transition metals stabilizes radical anions generated by chemical or electrochemical cathodic reduction. However, even though various sorts of radical anionic diazines have been subjected to spectroscopic investigations in the recent past, reports combining structural, solid-state electron paramagnetic resonance (EPR) and computational investigations of kinetically stable species are still missing. In this study, four radical anions derived from tricarbonylmanganese- and tricarbonylrhenium-bound quinoxaline chelates, embedded within a triple-decker architecture, have been prepared from neutral substrates by chemical reduction over alkaline metals (K, Rb); the electronic structure of the latter metalloorganic paramagnetic salts was investigated by the means of structural X-ray diffraction analysis, electrochemistry, solution and crystal EPR spectroscopy, and density functional theory (DFT). Unprecedented structures of three manganese-bound and one rhenium-bound quinoxaline-derived paramagnetic salts were obtained from solutions of the corresponding radical anions crystallized in the presence of cryptand 222. It is inferred from a comparative study of the structures of anionic and neutral quinoxaline complexes that reduction does not have any significant impact over the coordination mode of the metal centers and over the overall geometry of the triple-decker architecture. The most notable changes in the radical-anionic metalloorganic species, as compared to the neutral parent molecules, comprise a slight hapticity shift of the metal-bound benzyl moiety and a weak intraannular distortion of the quinoxalyl core. Single-crystal EPR experiments carried out with the rhenium and manganese compounds produced the respective anisotropic g tensor, which was found in each case to be essentially located at the quinoxalyl fragment. Computations, carried out using DFT methods (B3LYP-LANL2DZ and Becke-Perdew-TZP), corroborated the

  10. Calculation of electron affinities of polycyclic aromatic hydrocarbons and solvation energies of their radical anion.

    PubMed

    Betowski, Leon D; Enlow, Mark; Riddick, Lee; Aue, Donald H

    2006-11-30

    Electron affinities (EAs) and free energies for electron attachment (DeltaGo(a,298K)) have been directly calculated for 45 polynuclear aromatic hydrocarbons (PAHs) and related molecules by a variety of theoretical methods, with standard regression errors of about 0.07 eV (mean unsigned error = 0.05 eV) at the B3LYP/6-31 + G(d,p) level and larger errors with HF or MP2 methods or using Koopmans' Theorem. Comparison of gas-phase free energies with solution-phase reduction potentials provides a measure of solvation energy differences between the radical anion and neutral PAH. A simple Born-charging model approximates the solvation effects on the radical anions, leading to a good correlation with experimental solvation energy differences. This is used to estimate unknown or questionable EAs from reduction potentials. Two independent methods are used to predict DeltaGo(a,298K) values: (1) based upon DFT methods, or (2) based upon reduction potentials and the Born model. They suggest reassignments or a resolution of conflicting experimental EAs for nearly one-half (17 of 38) of the PAH molecules for which experimental EAs have been reported. For the antiaromatic molecules, 1,3,5-tri-tert-butylpentalene and the dithia-substituted cyclobutadiene 1, the reduction potentials lead to estimated EAs close to those expected from DFT calculations and provide a basis for the prediction of the EAs and reduction potentials of pentalene and cyclobutadiene. The Born model has been used to relate the electrostatic solvation energies of PAH and hydrocarbon radical anions, and spherical halide anions, alkali metal cations, and ammonium ions to effective ionic radii from DFT electron-density envelopes. The Born model used for PAHs has been successfully extended here to quantitatively explain the solvation energy of the C60 radical anion.

  11. Metal-Catalyzed β-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions.

    PubMed

    Streuff, Jan; Gansäuer, Andreas

    2015-11-23

    Transition-metal-catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β-unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today's developments.

  12. DNA lesions derived from the site selective oxidation of Guanine by carbonate radical anions.

    PubMed

    Joffe, Avrum; Geacintov, Nicholas E; Shafirovich, Vladimir

    2003-12-01

    Carbonate radical anions are potentially important oxidants of nucleic acids in physiological environments. However, the mechanisms of action are poorly understood, and the end products of oxidation of DNA by carbonate radicals have not been characterized. These oxidation pathways were explored in this work, starting from the laser pulse-induced generation of the primary radical species to the identification of the stable oxidative modifications (lesions). The cascade of events was initiated by utilizing 308 nm XeCl excimer laser pulses to generate carbonate radical anions on submicrosecond time scales. This laser flash photolysis method involved the photodissociation of persulfate to sulfate radical anions and the one electron oxidation of bicarbonate anions by the sulfate radicals to yield the carbonate radical anions. The latter were monitored by their characteristic transient absorption band at 600 nm. The rate constants of reactions of carbonate radicals with oligonucleotides increase in the ascending order: 5'-d(CCATCCTACC) [(5.7 +/- 0.6) x 10(6) M(-)(1) s(-)(1)] < 5'-d(TATAACGTTATA), self-complementary duplex [(1.4 +/- 0.2) x 10(7) M(-)(1) s(-)(1)] < 5'-d(CCATCGCTACC [(2.4 +/- 0.3) x 10(7) M(-)(1) s(-)(1)] < 5'-d(CCATC[8-oxo-G]CTACC) [(3.2 +/- 0.4) x 10(8) M(-)(1) s(-)(1)], where 8-oxo-G is 8-oxo-7,8-dihydroguanine, the product of a two electron oxidation of guanine. This remarkable enhancement of the rate constants is correlated with the presence of either G or 8-oxo-G bases in the oligonucleotides. The rate constant for the oxidation of G in a single-stranded oligonuclotide is faster by a factor of approximately 2 than in the double-stranded form. The site selective oxidation of G and 8-oxo-G residues by carbonate radicals results in the formation of unique end products, the diastereomeric spiroiminodihydantoin (Sp) lesions, the products of a four electron oxidation of guanine. These lesions, formed in high yields (40-60%), were isolated by reversed phase

  13. Super-pnicogen bonding in the radical anion of the fluorophosphine dimer

    NASA Astrophysics Data System (ADS)

    Setiawan, Dani; Cremer, Dieter

    2016-10-01

    The LUMO of the pnicogen-bonded fluoro-phosphine dimer has PP bonding character. Radical anion and dianion form relatively strong pnicogen bonds with some covalent character where however the dianion turns out to be a second order transition state. The binding energy of (FPH 2)2- is 30.4 kcal/mol (CCSD(T)/aug-cc-pVTZ; CASPT2(5,8): 30.7 kcal/mol) and the bond strength order measured with the local PP bond stretching force constant increases from 0.055 for the neutral dimer to 0.187 thus revealing that the stabilization of the radical anion is to a large extend a result of one-electron six-center delocalization. Pnicogen-bonded complexes have a stabilizing electron affinity.

  14. Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion.

    PubMed

    Vásquez-Vivar, J; Denicola, A; Radi, R; Augusto, O

    1997-07-01

    There has been a recent renewal of interest in the antioxidant properties of pyruvate which are usually attributed to its capacity to undergo oxidative decarboxylation in the presence of hydrogen peroxide. The interaction of pyruvate with other oxidizing biological intermediates, however, has been scarcely considered in the literature. Here we report that peroxynitrite, the oxidant produced by the reaction between superoxide anion and nitric oxide, reacts with pyruvate with an apparent second-order rate constant of 88 +/- 7 M-1 s-1 at pH 7.4 and 37 degrees C. Kinetic studies indicated that pyruvate reacts with peroxynitrite anion (k = 100 +/- 7 M-1 s-1, peroxynitrous acid (k = 49 +/- 7 M-1 s-1, and a highly oxidizing species derived from peroxynitrous acid. Pyruvate decarboxylation was proved by anion exchange chromatography detection of acetate in incubations of peroxynitrite and pyruvate at pH 7.4 and 5.5. Formation of carbon dioxide radical anion was ascertained by EPR spin-trapping studies in the presence of GSH and the spin-trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The use of pyruvate labeled with 13C at the 1-position led to the detection of the labeled DMPO carbon dioxide radical anion adduct. In the absence of GSH, oxygen consumption studies confirmed that peroxynitrite mediates the decarboxylation of pyruvate to free radical intermediates. Comparing the yields of acetate and free radicals estimated from the oxygen uptake studies, it is concluded that pyruvate is oxidized by both one- and two-electron oxidation pathways, the latter being preponderant. Hydrogen peroxide-mediated pyruvate oxidation does not produce detectable levels of carbon dioxide radical anion except in the presence of iron(II)-ethylenediamine-N,N,N',N'-tetraacetate (EDTA). The apparent second-order rate constant of the reaction between pyruvate and hydrogen peroxide was determined to be 1 order of magnitude lower than that of the reaction between pyruvate and peroxynitrite. The

  15. [Role of superoxide anion radicals in the bacterial corrosion of metals].

    PubMed

    Belov, D V; Kalinina, A A; Sokolova, T N; Smirnov, V F; Chelnokova, M V; Kartashov, V R

    2012-01-01

    It was found that seven strains of bacteria can cause corrosion damage to aluminum, its alloys, and zinc. With respect to the studied metals, the most active bacteria were Proteus vulgaris 1212 and Pseudomonas aeruginosa 969. Superoxide anion radicals were demonstrated to play a role in the initiation of corrosive damage to aluminum and zinc, while bacterial exometabolites participate in the later stages of this process.

  16. Liquid-phase ESR, ENDOR, and TRIPLE resonance of porphycene anion radicals

    SciTech Connect

    Schluepmann, J.; Huber, M.; Plato, M.; Moebius, K. ); Toporowicz, M.; Levanon, H. ); Koecher, M.; Vogel, E. )

    1990-08-29

    Porphycenes are novel structural isomers of porphyrins. The radical anions of several porphycenes were studied by ESR, ENDOR, and TRIPLE resonance in liquid solution yielding the isotropic hyperfine coupling constants including signs. For the unsubstituted free-base porphycene, the 2,7,12,17-tetra-n-propylporphycene, and the 9,10,19,20-tetra-n-propylporphycene, the experimental findings are compared with results of all-valence-electrons self-consistent field molecular orbital calculations (RHF-INDO/SP).

  17. Discriminative protection against hydroxyl and superoxide anion radicals by quercetin in human leucocytes in vitro.

    PubMed

    Wilms, Lonneke C; Kleinjans, Jos C S; Moonen, Edwin J C; Briedé, Jacob J

    2008-03-01

    Antioxidants play a vital role in the cellular protection against oxidative damage. Quercetin is a well-investigated antioxidant and known to be able to protect against cellular oxidative DNA damage. In this study, we tried to relate the protection by quercetin pre-treatment against oxidative DNA damage in human leucocytes in vitro to the interaction of quercetin in solution with hydroxyl and superoxide anion radicals as measured by electron spin resonance (ESR) spectrometry, using DMPO as a spin trap. Further, scavenging capacity of quercetin-treated leucocytes in vitro was evaluated by ESR spectrometry. Quercetin appears capable of protecting human leucocytes against oxidative DNA damage caused by hydrogen peroxide in a dose-dependent manner. The protection of leucocytes against superoxides is ambiguous. Incubation concentrations of quercetin (1, 10, and 50 microM) reduced levels of superoxide-induced oxidative DNA damage, while at 100 microM the amount of damage was increased. These results are supported by ESR-findings on quercetin in solution, also showing a prooxidant effect at 100 microM. ESR spectroscopy showed rate constant values for the reaction kinetics of quercetin in lowering iron-dependent hydroxyl radical formation and NADH-dependent superoxide anion formation of respectively 3.2 x 10(12)M(-1)s(-1) and 1.1 x 10(4)M(-1)s(-1). This shows that quercetin is a more potent inhibitor of hydroxyl radical formation than a scavenger of superoxide anions.

  18. The electronic absorption study of imide anion radicals in terms of time dependent density functional theory.

    PubMed

    Andrzejak, Marcin; Sterzel, Mariusz; Pawlikowski, Marek T

    2005-07-01

    The absorption spectra of the N-(2,5-di-tert-butylphenyl) phthalimide (1-), N-(2,5-di-tert-butylphenyl)-1,8-naphthalimide (2-) and N-(2,5-di-tert-butylphenyl)-perylene-3,4-dicarboximide (3-) anion radicals are studied in terms of time dependent density functional theory (TDDFT). For these anion radicals a large number electronic states (from 30 to 60) was found in the visible and near-IR regions (5000-45,000 cm(-1)). In these regions the TD/B3LYP treatment at the 6-1+G* level is shown to reproduce satisfactorily the empirical absorption spectra of all three anion radicals studied. The most apparent discrepancies between purely electronic theory and the experiment could be found in the excitation region corresponding to D0-->D1 transitions in the 2- and 3- molecules. For these species we argue that the structures seen in the lowest energy part of the absorptions of the 2- and 3- species are very likely due to Franck-Condon (FC) activity of the totally symmetric vibrations not studied in this Letter.

  19. The electronic absorption study of imide anion radicals in terms of time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Andrzejak, Marcin; Sterzel, Mariusz; Pawlikowski, Marek T.

    2005-07-01

    The absorption spectra of the N-(2,5-di- tert-butylphenyl) phthalimide ( 1-), N-(2,5-di- tert-butylphenyl)-1,8-naphthalimide ( 2-) and N-(2,5-di- tert-butylphenyl)-perylene-3,4-dicarboximide ( 3-) anion radicals are studied in terms of time dependent density functional theory (TDDFT). For these anion radicals a large number electronic states (from 30 to 60) was found in the visible and near-IR regions (5000-45000 cm -1). In these regions the TD/B3LYP treatment at the 6-1+G* level is shown to reproduce satisfactorily the empirical absorption spectra of all three anion radicals studied. The most apparent discrepancies between purely electronic theory and the experiment could be found in the excitation region corresponding to D0→ D1 transitions in the 2- and 3- molecules. For these species we argue that the structures seen in the lowest energy part of the absorptions of the 2- and 3- species are very likely due to Franck-Condon (FC) activity of the totally symmetric vibrations not studied in this Letter.

  20. A Computational Study of Structure and Reactivity of N-Substitued-4-Piperidones Curcumin Analogues and Their Radical Anions.

    PubMed

    Martínez-Cifuentes, Maximiliano; Weiss-López, Boris; Araya-Maturana, Ramiro

    2016-12-02

    In this work, a computational study of a series of N-substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N-substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO) energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA) and vertical electron affinities (VEA), as well as vertical detachment energy (VDE). To study electrophilic properties of these structures, local reactivity indices, such as Fukui (f⁺) and Parr (P⁺) functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity.

  1. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors.

    PubMed

    Zhang, Bo; Studer, Armido

    2015-06-07

    Nitrogen heterocycles belong to a highly important class of compounds which are found in various natural products, biologically active structures, and medicinally relevant compounds. Therefore, there is continuing interest in the development of novel synthetic methods for the construction of nitrogen containing heterocycles. Recently, radical insertion reactions into isonitriles have emerged as an efficient and powerful strategy for the construction of nitrogen heterocycles, such as phenanthridines, indoles, quinolines, quinoxalines, and isoquinolines. This review highlights recent advances in this fast growing research area and also includes important pioneering studies in this area.

  2. Vibrational Spectroscopy of Transient Dipolar Radicals via Autodetachment of Dipole-Bound States of Cold Anions

    NASA Astrophysics Data System (ADS)

    Huang, Dao-Ling; Liu, Hong-Tao; Dau, Phuong Diem; Wang, Lai-Sheng

    2014-06-01

    High-resolution vibrational spectroscopy of transient species is important for determining their molecular structures and understanding their chemical reactivity. However, the low abundance and high reactivity of molecular radicals pose major challenges to conventional absorption spectroscopic methods. The observation of dipole-bound states (DBS) in anions extend autodetachment spectroscopy to molecular anions whose corresponding neutral radicals possess a large enough dipole moment (>2.5 D).1,2 However, due to the difficulty of assigning the congested spectra at room temperature, there have been only a limited number of autodetachment spectra via DBS reported. Recently, we have built an improved version of a cold trap3 coupled with high-resolution photoelectron imaging.4 The first observation of mode-specific auotodetachment of DBS of cold phenoxide have shown that not only vibrational hot bands were completely suppressed, but also rotational profile was observed.5 The vibrational frequencies of the DBS were found to be the same as those of the neutral radical, suggesting that vibrational structures of dipolar radicals can be probed via DBS.5 More significantly, the DBS resonances allowed a number of vibrational modes with very weak Frank-Condon factors to be "lightened" up via vibrational autodetachment.5 Recently, our first high-resolution vibrational spectroscopy of the dehydrogenated uracil radical, with partial rotational resolution, via autodetachment from DBS of cold deprotonated uracil anions have been reported.6 Rich vibrational information is obtained for this important radical species. The resolved rotational profiles also allow us to characterize the rotational temperature of the trapped anions for the first time.6 1 K. R. Lykke, D. M. Neumark, T. Andersen, V. J. Trapa, and W. C. Lineberger, J. Chem. Phys. 87, 6842 (1987). 2 D. M. Wetzel, and J. I. Brauman, J. Chem. Phys. 90, 68 (1989). 3 P. D. Dau, H. T. Liu, D. L. Huang, and L. S. Wang, J. Chem. Phys

  3. Superoxide Anion Radical Production in the Tardigrade Paramacrobiotus richtersi, the First Electron Paramagnetic Resonance Spin-Trapping Study.

    PubMed

    Savic, Aleksandar G; Guidetti, Roberto; Turi, Ana; Pavicevic, Aleksandra; Giovannini, Ilaria; Rebecchi, Lorena; Mojovic, Milos

    2015-01-01

    Anhydrobiosis is an adaptive strategy that allows withstanding almost complete body water loss. It has been developed independently by many organisms belonging to different evolutionary lines, including tardigrades. The loss of water during anhydrobiotic processes leads to oxidative stress. To date, the metabolism of free radicals in tardigrades remained unclear. We present a method for in vivo monitoring of free radical production in tardigrades, based on electron paramagnetic resonance and spin-trap DEPMPO, which provides simultaneous identification of various spin adducts (i.e., different types of free radicals). The spin trap can be easily absorbed in animals, and tardigrades stay alive during the measurements and during 24-h monitoring after the treatment. The results show that hydrated specimens of the tardigrade Paramacrobiotus richtersi produce the pure superoxide anion radical ((•)O2(-)). This is an unexpected result, as all previously examined animals and plants produce both superoxide anion radical and hydroxyl radical ((•)OH) or exclusively hydroxyl radical.

  4. Homoleptic 2,2'-bipyridine metalates(-I) of iron and cobalt, one cocrystallized with an anthracene radical anion and the other with neutral anthracene.

    PubMed

    Brennessel, William W; Ellis, John E

    2014-08-01

    Homoleptic 2,2'-bipyridine (bipy) metalates of iron and cobalt have been synthesized directly from the corresponding homoleptic anthracene metalates. In the iron structure, bis[([2.2.2]cryptand)potassium(I)] tris(2,2'-bipyridine)ferrate(-I) anthracene(-I), [K(C18H36N2O6)]2[Fe(C10H8N2)3](C14H10), the asymmetric unit contains one potassium complex cation in a general position, the Fe center and one and a half bipy ligands of the ferrate complex on a crystallographic twofold axis that includes the Fe atom, and one half of an anthracene radical anion whose other half is generated by a crystallographic inversion center. The cations and anions are well separated and the geometry about the Fe center is essentially octahedral. In the cobalt structure, ([2.2.2]cryptand)potassium(I) bis(2,2'-bipyridine)cobaltate(-I) anthracene hemisolvate tetrahydrofuran (THF) disolvate, [K(C18H36N2O6)][Co(C10H8N2)2]·0.5C14H10·2C4H8O, the asymmetric unit contains the cation, anion, and both cocrystallized THF solvent molecules in general positions, and one half of a cocrystallized anthracene molecule whose other half is generated by a crystallographic inversion center. The cation and anion are well separated and the ligand planes in the cobaltate anion are periplanar. Each anthracene molecule is midway between and is oriented perpendicular to a pair of symmetry-related bipy ligands such that aromatic donor-acceptor interactions may play a role in the packing arrangement. The lengths of the bonds that connect the bipy rings support the assertion that the ligands are bipy radical anions in the iron structure. However, in the case of cobalt, these lengths are between the known ranges for a bipy radical anion and a bipy dianion, and therefore no conclusion can be made from the crystallography alone. One cocrystallized THF solvent molecule in the cobalt structure was modeled as disordered over three positions with appropriate geometric and thermal restraints, which resulted in a refined

  5. Reactions of the cumyloxyl and benzyloxyl radicals with strong hydrogen bond acceptors. Large enhancements in hydrogen abstraction reactivity determined by substrate/radical hydrogen bonding.

    PubMed

    Salamone, Michela; DiLabio, Gino A; Bietti, Massimo

    2012-12-07

    A kinetic study on hydrogen abstraction from strong hydrogen bond acceptors such as DMSO, HMPA, and tributylphosphine oxide (TBPO) by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out in acetonitrile. The reactions with CumO(•) were described in terms of a direct hydrogen abstraction mechanism, in line with the kinetic deuterium isotope effects, k(H)/k(D), of 2.0 and 3.1 measured for reaction of this radical with DMSO/DMSO-d(6) and HMPA/HMPA-d(18). Very large increases in reactivity were observed on going from CumO(•) to BnO(•), as evidenced by k(H)(BnO(•))/k(H)(CumO(•)) ratios of 86, 4.8 × 10(3), and 1.6 × 10(4) for the reactions with HMPA, TBPO, and DMSO, respectively. The k(H)/k(D) of 0.91 and 1.0 measured for the reactions of BnO(•) with DMSO/DMSO-d(6) and HMPA/HMPA-d(18), together with the k(H)(BnO(•))/k(H)(CumO(•)) ratios, were explained on the basis of the formation of a hydrogen-bonded prereaction complex between the benzyloxyl α-C-H and the oxygen atom of the substrates followed by hydrogen abstraction. This is supported by theoretical calculations that show the formation of relatively strong prereaction complexes. These observations confirm that in alkoxyl radical reactions specific hydrogen bond interactions can dramatically influence the hydrogen abstraction reactivity, pointing toward the important role played by structural and electronic effects.

  6. Hyperfine coupling tensors of the benzosemiquinone radical anion from Car-Parrinello molecular dynamics.

    PubMed

    Asher, James R; Kaupp, Martin

    2007-01-08

    Based on Car-Parrinello ab initio molecular dynamics simulations of the benzosemiquinone radical anion in both aqueous solution and the gas phase, density functional calculations provide the currently most refined EPR hyperfine coupling (HFC) tensors of semiquinone nuclei and solvent protons. For snapshots taken at regular intervals from the molecular dynamics trajectories, cluster models with different criteria for inclusion of water molecules and an additional continuum solvent model are used to analyse the HFCs. These models provide a detailed picture of the effects of dynamics and of different intermolecular interactions on the spin-density distribution and HFC tensors. Comparison with static calculations allows an assessment of the importance of dynamical effects, and of error compensation in static DFT calculations. Solvent proton HFCs depend characteristically on the position relative to the semiquinone radical anion. A point-dipolar model works well for in-plane hydrogen-bonded protons but deviates from the quantum chemical values for out-of-plane hydrogen bonding.

  7. Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion

    NASA Astrophysics Data System (ADS)

    Yancheva, D.; Velcheva, E.; Glavcheva, Z.; Stamboliyska, B.; Smelcerovic, A.

    2016-03-01

    The ability of syringaldehyde, a naturally occurring phenolic antioxidant and medicinally important compound, to scavenge free radicals according different mechanisms was elucidated by computing the respective reaction enthalpies at DFT B3LYP/6-311++G** level. Bond dissociation enthalpy, ionization potentials and proton affinities were calculated in gas phase, benzene, water and DMSO in order to account for different environment (nonpolar lipid membranes and polar physiological liquids) where the antioxidant action in the living organism could take place and various experimental in vitro conditions. Molecular and electronic properties influencing the reactivity of syringaldehyde according to the different mechanisms were discussed in the light of the reported radical scavenging activities in crocin bleaching, oxidation potential of the first anodic peak and DPPH test. According to the calculated reaction enthalpies, in polar environment the syringaldehyde reacts preferably by sequential proton loss electron transfer which is related to the formation of a phenoxy anion. Such phenoxy anion was generated in DMSO solution and the changes in the force field, steric and electronic structure, resulting from the conversion, were described in detail based on the IR spectral data and DFT computations.

  8. Theoretical insights into the adsorption of neutral, radical and anionic thiophenols on gold(111).

    PubMed

    Miranda-Rojas, S; Muñoz-Castro, Alvaro; Arratia-Pérez, Ramiro; Mendizábal, Fernando

    2013-12-14

    The interaction of thiol and thiolate containing molecules with gold (S-Au) has gained increasing interest because of its applications in molecular electronic devices and catalysis. In this context, the enhanced conductivity of thiophenol compared to alkanethiol represents an opportunity to develop more sensitive and selective gold-based devices by incorporating molecules with the aryl-thiol moiety into their structures. As has been proposed earlier, the thiol moiety is deprotonated after binding to gold, hence, we present here a comparative study of the S-Au bond strength between several neutral and deprotonated aromatic-sulfur systems in their anionic and radical forms with a detailed description of the nature of this interaction. The study was performed by means of computational chemistry methods, using a cluster of 42 Au atoms as a model of the Au(111) surface that allowed us to provide new chemical insights to control the S-Au interface interaction strength. Our results revealed that the thiophenols-gold interaction is mainly dispersive where the interaction energies range between 31 and 43 kcal mol(-1). The radical and anionic thiophenolates-gold interaction increases due to a strong charge transfer character, depicting interaction energies in the range of 50 to 55 kcal mol(-1) and 62 to 92 kcal mol(-1), respectively. These results suggest that for the anionic thiophenolate the binding strength can be tailored according to the electron-donor capabilities of the ligand which in turn can be finely tuned by several substituents. Our results are of possible impact for the design of new devices.

  9. Formation and fragmentation of radical peptide anions: insights from vacuum ultra violet spectroscopy.

    PubMed

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Giuliani, Alexandre; Nahon, Laurent

    2012-02-01

    We have studied the photodissociation of gas-phase deprotonated caerulein anions by vacuum ultraviolet (VUV) photons in the 4.5 to 20 eV range, as provided by the DESIRS beamline at the synchrotron radiation facility SOLEIL (France). Caerulein is a sulphated peptide with three aromatic residues and nine amide bonds. Electron loss is found to be the major relaxation channel at every photon energy. However, an increase in the fragmentation efficiency (neutral losses and peptide backbone cleavages) as a function of the energy is also observed. The oxidized ions, generated by electron photodetachment were further isolated and activated by collision (CID) in a MS(3) scheme. The branching ratios of the different fragments observed by CID as a function of the initial VUV photon energy are found to be independent of the initial photon energy. Thus, there is no memory effect of the initial excitation energy on the fragmentation channels of the oxidized species on the time scale of our tandem MS experiment. We also report photofragment yields as a function of photon energy for doubly deprotonated caerulein ions, for both closed-shell ([M-2H](2-)) non-radical ions and open-shell ([M-3H](2-•)) radical ions. These latter ions are generated by electron photodetachment from [M-3H](3-) precursor ions. The detachment yield increases monotonically with the energy with the appearance of several absorption bands. Spectra for radical and non-radical ions are quite similar in terms of observed bands; however, the VUV fragmentation yield is enhanced by the presence of a radical in caerulein peptides.

  10. Formation and Fragmentation of Radical Peptide Anions: Insights from Vacuum Ultra Violet Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Giuliani, Alexandre; Nahon, Laurent

    2012-02-01

    We have studied the photodissociation of gas-phase deprotonated caerulein anions by vacuum ultraviolet (VUV) photons in the 4.5 to 20 eV range, as provided by the DESIRS beamline at the synchrotron radiation facility SOLEIL (France). Caerulein is a sulphated peptide with three aromatic residues and nine amide bonds. Electron loss is found to be the major relaxation channel at every photon energy. However, an increase in the fragmentation efficiency (neutral losses and peptide backbone cleavages) as a function of the energy is also observed. The oxidized ions, generated by electron photodetachment were further isolated and activated by collision (CID) in a MS3 scheme. The branching ratios of the different fragments observed by CID as a function of the initial VUV photon energy are found to be independent of the initial photon energy. Thus, there is no memory effect of the initial excitation energy on the fragmentation channels of the oxidized species on the time scale of our tandem MS experiment. We also report photofragment yields as a function of photon energy for doubly deprotonated caerulein ions, for both closed-shell ([M-2H]2-) non-radical ions and open-shell ([M-3H]2-•) radical ions. These latter ions are generated by electron photodetachment from [M-3H]3- precursor ions. The detachment yield increases monotonically with the energy with the appearance of several absorption bands. Spectra for radical and non-radical ions are quite similar in terms of observed bands; however, the VUV fragmentation yield is enhanced by the presence of a radical in caerulein peptides.

  11. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    SciTech Connect

    Arnold, Don Wesley

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  12. Nitro radical anion formation from nitrofuryl substituted 1,4-dihydropyridine derivatives in mixed and non-aqueous media.

    PubMed

    Argüello, J; Núñez-Vergara, L J; Bollo, S; Squella, J A

    2006-09-01

    Three new nitrofuryl substituted 1,4-dihydropyridine derivatives were electrochemically tested in the scope of newly found compounds useful as chemotherapeutic alternative to the Chagas' disease. All the compounds were capable to produce nitro radical anions sufficiently stabilized in the time window of the cyclic voltammetric experiment. In order to quantify the stability of the nitro radical anion we have calculated the decay constant, k2. Furthermore, from the voltammetric results, some parameters of biological significance as E7(1) (indicative of in vivo nitro radical anion formation) and KO2 (thermodynamic indicator of oxygen redox cycling) have been calculated. From the comparison of E7(1), KO2 and k2 values between the studied nitrofuryl 1,4-DHP derivatives and well-known current drugs an auspicious activity for one of the studied compounds i.e. FDHP2, can be expected.

  13. Study of organic radicals through anion photoelectron velocity-map imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Dixon, Andrew Robert

    We report preliminary results on the photoelectron imaging of phenylcarbene, cyanophenylcarbene, and chlorophenylcarbene anions. Triplet phenylcarbene is observed to have an EA of ≤ 0.83 eV, considerably lower than the previously indirectly-determined value. Transitions to the singlet and triplet ground state of both cyanophenylcarbene and chlorophenylcarbene are observable, though unidentified bands make full assignment difficult. Cyanophenylcarbene is found to have a triplet ground-state, with a tentative EA of 2.04 eV. Chlorophenylcarbene is found to have a singlet ground-state. The phenyl-group is found to favor the singlet state slightly. The cyanofluoromethyl radical, FC(H)CN, was estimated to have an EA of 1.53 +/- 0.08 eV, by a combination of experimental and theoretical results.. With similar methodology, we report the adiabatic electron affinity of the cyanobenzyl radical, EA(PhCHCN) = 1.90 +/- 0.01 eV, and assign an upper limit of the EA for the chlorobenzyl radical, EA(PhCHCl) ≤ 1.12 eV. These values were used to estimate the C-H bond dissociation energy (BDE)s for these substituted methanes. Fluoroacetonitrile was found to have a BDE of D H198 = 90.7 +/- 2.8 kcal mol□1. The C-H bond dissociation energies at the benzyl-alpha sites of the phenylmethanes are determined as 80.9 +/- 2.3 kcal mol-1 for benzyl nitrile and an upper limit of 84.2 kcal mol-1 for benzyl chloride. These results are discussed in terms of substituent interactions in a simple MO framework and in relation to other similar molecules, including recently reported results for chloroacetonitrile. The 532 nm photoelectron spectrum of glyoxal provides the first direct spectroscopic determination of the adiabatic electron affinity, EA = 1.10(2) eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy (VDE) of the glyoxal radical anion is determined as VDE = 1

  14. Ab initio ro-vibronic spectroscopy of the 2Π PCS radical and +1ΣPCS- anion

    NASA Astrophysics Data System (ADS)

    Finney, Brian; Mitrushchenkov, Alexander O.; Francisco, Joseph S.; Peterson, Kirk A.

    2016-12-01

    Near-equilibrium potential energy surfaces have been calculated for both the PCS radical and its anion using a composite coupled cluster approach based on explicitly correlated F12 methods in order to provide accurate structures and spectroscopic properties. These transient species are still unknown and the present study provides theoretical predictions of the radical and its anion for the first time. Since these species are strongly suggested to play an important role as intermediates in the interstellar medium, the rotational and vibrational spectroscopic parameters are presented to help aid in the identification and assignment of these spectra. The rotational constants produced will aid in ground-based observation. Both the PCS radical and the PCS- anion are linear. In the PCS- anion, which has a predicted adiabatic electron binding energy (adiabatic electron affinity of PCS) of 65.6 kcal/mol, the P-C bond is stronger than the corresponding neutral radical showing almost triple bond character, while the C-S bond is weaker, showing almost single bond character in the anion. The PCS anion shows a smaller rotational constant than that of the neutral. The ω3 stretching vibrational frequencies of PCS- are red-shifted from the radical, while the ω1 and ω2 vibrations are blue-shifted with ω1 demonstrating the largest blue shift. The ro-vibronic spectrum of the PCS radical has been accurately calculated in variational nuclear motion calculations including both Renner-Teller (RT) and spin-orbit (SO) coupling effects using the composite potential energy near-equilibrium potential energy and coupled cluster dipole moment surfaces. The spectrum is predicted to be very complicated even at low energies due to the presence of a strong Fermi resonance between the bending mode and symmetric stretch, but also due to similar values of the bending frequency, RT, and SO splittings.

  15. Mulliken Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    NASA Astrophysics Data System (ADS)

    Rosokha, S. V.; Newton, M. D.; Head-Gordon, M.; Kochi, J. K.

    2006-05-01

    The paramagnetic [1:1] encounter complex (TCNE)2-rad is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor ( TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE)2-rad by its intervalence absorption band at the solvent-dependent wavelength of λIV ˜ 1500 nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of HDA = 1000 cm -1. The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of HDA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy ( λ) and the electronic coupling element ( HDA) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes.

  16. Synthesis, structures, and properties of crystalline salts with radical anions of metal-containing and metal-free phthalocyanines.

    PubMed

    Konarev, Dmitri V; Kuzmin, Alexey V; Faraonov, Maxim A; Ishikawa, Manabu; Khasanov, Salavat S; Nakano, Yoshiaki; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2015-01-12

    Radical anion salts of metal-containing and metal-free phthalocyanines [MPc(3-)](·-), where M = Cu(II), Ni(II), H2, Sn(II), Pb(II), Ti(IV)O, and V(IV)O (1-10) with tetraalkylammonium cations have been obtained as single crystals by phthalocyanine reduction with sodium fluorenone ketyl. Their formation is accompanied by the Pc ligand reduction and affects the molecular structure of metal phthalocyanine radical anions as well as their optical and magnetic properties. Radical anions are characterized by the alternation of short and long C-Nimine bonds in the Pc ligand owing to the disruption of its aromaticity. Salts 1-10 show new bands at 833-1041 nm in the NIR range, whereas the Q- and Soret bands are blue-shifted by 0.13-0.25 eV (38-92 nm) and 0.04-0.07 eV (4-13 nm), respectively. Radical anions with Ni(II), Sn(II), Pb(II), and Ti(IV)O have S = 1/2 spin state, whereas [Cu(II)Pc(3-)](·-) and [V(IV)OPc(3-)](·-) containing paramagnetic Cu(II) and V(IV)O have two S = 1/2 spins per radical anion. Central metal atoms strongly affect EPR spectra of phthalocyanine radical anions. Instead of narrow EPR signals characteristic of metal-free phthalocyanine radical anions [H2Pc(3-)](·-) (linewidth of 0.08-0.24 mT), broad EPR signals are manifested (linewidth of 2-70 mT) with g-factors and linewidths that are strongly temperature-dependent. Salt 11 containing the [Na(I)Pc(2-)](-) anions as well as previously studied [Fe(I)Pc(2-)](-) and [Co(I)Pc(2-)](-) anions that are formed without reduction of the Pc ligand do not show changes in molecular structure or optical and magnetic properties characteristic of [MPc(3-)](·-) in 1-10.

  17. Observation of an aromatic radical anion dimer: (C{sub 10}F{sub 8}){sub 2}{sm_bullet}{sub {minus}}

    SciTech Connect

    Werst, D.W.

    1994-03-01

    Radical cation dimers are observed for many alkenes and aromatic hydrocarbons as products of the reaction between monomer radical cation and neutral molecule. In most cases, the dimer radical anions, formed via reaction of the monomer radical anion with a neutral molecule, have not been observed. Here we report the observation of the dimer radical anion of octafluoronaphthalene, formed by reaction of C{sub 10}F{sub 8}{sup {center_dot}{minus}} with the neutral parent molecules in nonpolar solvents following pulse radiolysis. Both monomer and dimer ions have been characterized by EPR spectra obtained by the time-resolved fluorescence-detected magnetic resonance.

  18. 1,1-Diphenyl-2-picrylhydrazyl radical and superoxide anion scavenging activity of Rhizophora mangle (L.) bark

    PubMed Central

    Sánchez, Janet Calero; García, Roberto Faure; Cors, Ma. Teresa Mitjavila

    2010-01-01

    Background: Rhizophora mangle (L.) produce a variety of substances that possesses pharmacological actions. Although it shown antioxidant properties in some assays, there is no available information about its effect on some free radical species. So the objective of the present research is to evaluate the DPPH radical and superoxide anion scavenging properties of R. mangle extract and its polyphenol fraction. Methods: Rhizophora mangle (L.) bark aqueous extract and its major constituent, polyphenols fraction, were investigated for their antioxidant activities employing 2 in vitro assay systems: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion radicals scavenging. Results: IC50 for DPPH radical-scavenging activity was 6.7 µg tannins/mL for extract and 7.6 µg tannins/mL for polyphenolic fraction. The extract showed better activity than its fraction (P < 0.05) in the DPPH radicals reducing power. Polyphenolic fraction exhibited better superoxide anion scavenging ability (IC50 = 21.6 µg tannins/mL) than the extract (IC50 = 31.9 µg tannins/mL). Antioxidant activities of both samples increased with the rise of tannins concentration. The comparison of regression lines showed significant differences (P < 0.05) between extract and its polyphenolic fraction in both assays, indicating that extract was more effective in DPPH radical scavenging than its fraction at tannin concentrations below the crossing point of both lines, while that fraction was more effective than extract inhibiting the superoxide anions generation. Conclusions: R. mangle aqueous extract showed a potent antioxidant activity, achieved by the scavenging ability observed against DPPH radicals and superoxide anions. Regarding its polyphenolic composition, the antioxidant effects observed in this study are due, most probably, to the presence of polyphenolic compounds. PMID:21589751

  19. Production and removal of superoxide anion radical by artificial metalloenzymes and redox-active metals

    PubMed Central

    Kawano, Tomonori; Kagenishi, Tomoko; Kadono, Takashi; Bouteau, François; Hiramatsu, Takuya; Lin, Cun; Tanaka, Kenichiro; Tanaka, Licca; Mancuso, Stefano; Uezu, Kazuya; Okobira, Tadashi; Furukawa, Hiroka; Iwase, Junichiro; Inokuchi, Reina; Baluška, Frantisek; Yokawa, Ken

    2015-01-01

    Generation of reactive oxygen species is useful for various medical, engineering and agricultural purposes. These include clinical modulation of immunological mechanism, enhanced degradation of organic compounds released to the environments, removal of microorganisms for the hygienic purpose, and agricultural pest control; both directly acting against pathogenic microorganisms and indirectly via stimulation of plant defense mechanism represented by systemic acquired resistance and hypersensitive response. By aiming to develop a novel classes of artificial redox-active biocatalysts involved in production and/or removal of superoxide anion radicals, recent attempts for understanding and modification of natural catalytic proteins and functional DNA sequences of mammalian and plant origins are covered in this review article. PMID:27066179

  20. Direct rate constant measurement of radical disulphide anion formation for cysteine and cysteamine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Mezyk, Stephen P.

    1995-03-01

    The techniques of pulse radiolysis, laser photolysis and absorption spectroscopy have been used to directly determine rate constants for radical disulphide anion formation for cysteine and cysteamine in aqueous solution. The measured values for cysteine, over the pH range 7-12, allowed calculation of individual rate constants for the constituent reactions RS . + RSH → RSSR -. + H + and RS . + RS - → RSSR -. as (3.39 ± 0.31) × 10 8 and (1.21 ± 0.04) × 10 9 dm 3 mol -1 s -1, respectively. Analogous values for cysteamine were also determined by this technique as (3.06 ± 0.16) × 10 8 and (3.65 ± 0.07) × 10 9 dm 3 mol -1 s -1.

  1. Ubiquitous trisulfur radical anion: fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry.

    PubMed

    Chivers, Tristram; Elder, Philip J W

    2013-07-21

    The trisulfur radical anion [S3]˙(-) is well-known from inorganic chemistry textbooks as the blue chromophore in ultramarine blues in which this highly reactive species is trapped in a zeolitic framework. Recent findings have revealed that [S3]˙(-) has a multi-faceted role in a variety of media, including alkali metal-sulfur batteries, aqueous solutions at high temperatures and pressures, and ionic liquids; it has also been used to detect trace amounts of water in organic solvents. This tutorial review illustrates how various physical techniques are used to identify a reactive species in solution and shows how elucidation of electronic structures can be used to explain spectroscopic and structural properties. Examples of the function of [S3]˙(-) in materials science, electrochemistry, analytical chemistry and geochemistry are used to illustrate the widespread influence of this fundamentally important triatomic sulfur species.

  2. Three Redox States of a Diradical Acceptor-Donor-Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization.

    PubMed

    Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume

    2016-06-16

    The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations.

  3. The first BETS radical cation salts with dicyanamide anion: Crystal growth, structure and conductivity study

    SciTech Connect

    Kushch, N.D.; Buravov, L.I.; Chekhlov, A.N.; Spitsina, N.G.; Kushch, P.P.; Yagubskii, E.B.; Herdtweck, E.; Kobayashi, A.

    2011-11-15

    Electrochemical oxidation of bis(ethylenedithio)tetraselenafulvalene (BETS) has been investigated. Simple and complex dicyanamides of transition metals (Mn{sup 2+}, Ni{sup 2+} and Fe{sup 2+}) were used as electrolytes. The correlation between composition of prepared radical cation salts and metal nature in electrolytes was established. Manganese dicyanamides provide the formation of BETS salts with the {l_brace}Mn[N(CN){sub 2}]{sub 3}{r_brace}- and [N(CN){sub 2}]-XH{sub 2}O anions. When Ni- or Fe-containing electrolytes were used only metalless BETS salts, {alpha}''-BETS{sub 2}[N(CN){sub 2}].2H{sub 2}O (I) and {theta}-BETS{sub 2}[N(CN){sub 2}].3.6H{sub 2}O (II), formed. Structures and conducting properties of these salts were analyzed. Both salts exhibit layered structure. Conducting radical cation layers have {alpha}'' (I)- or {theta}-type (II). Anion sheets appear as two-dimensional polymer networks of different types. These networks are formed by [N(CN)]{sub 2}{sup -} anions and water molecules interlinked by hydrogen bonds. Salt I is a semiconductor and II demonstrates resistance drop down to150 K at normal pressure and down to 72 K at {approx}0.4 kbar pressure. - Graphical abstract: We studied electrochemical oxidation of BETS donor in the presence of simple and/or complex dicyanamides of transition metals (Ni, Fe, Mn) as electrolytes. New conducting salts {alpha}''-BETS{sub 2}[N(CN){sub 2}].2H{sub 2}O and {theta}-BETS{sub 2}[N(CN){sub 2}].3.8H{sub 2}O have been synthesized and characterized. Highlights: > We studied electrochemical oxidation of BETS donor. > Dicyanamides of transition metals (Ni, Fe, Mn) were used as electrolytes. > We found a well-reproducible synthesis of magnetic superconductor BETS{sub 2}Mn[N(CN){sub 2}]{sub 3}. > Two new metalless BETS salts form when Ni and Fe electrolytes were used. > Their structure and conductivity were investigated.

  4. Electron interaction with phosphate cytidine oligomer dCpdC: base-centered radical anions and their electronic spectra.

    PubMed

    Gu, Jiande; Wang, Jing; Leszczynski, Jerzy

    2014-01-30

    Computational chemistry approach was applied to explore the nature of electron attachment to cytosine-rich DNA single strands. An oligomer dinucleoside phosphate deoxycytidylyl-3',5'-deoxycytidine (dCpdC) was selected as a model system for investigations by density functional theory. Electron distribution patterns for the radical anions of dCpdC in aqueous solution were explored. The excess electron may reside on the nucleobase at the 5' position (dC(•-)pdC) or at the 3' position (dCpdC(•-)). From comparison with electron attachment to the cytosine related DNA fragments, the electron affinity for the formation of the cytosine-centered radical anion in DNA is estimated to be around 2.2 eV. Electron attachment to cytosine sites in DNA single strands might cause perturbations of local structural characteristics. Visible absorption spectroscopy may be applied to validate computational results and determine experimentally the existence of the base-centered radical anion. The time-dependent DFT study shows the absorption around 550-600 nm for the cytosine-centered radical anions of DNA oligomers. This indicates that if such species are detected experimentally they would be characterized by a distinctive color.

  5. The differential effects of superoxide anion, hydrogen peroxide and hydroxyl radical on cardiac mitochondrial oxidative phosphorylation.

    PubMed

    Zini, Roland; Berdeaux, Alain; Morin, Didier

    2007-10-01

    The involvement of reactive oxygen species (ROS) in cardiac ischemia-reperfusion injuries is well-established, but the deleterious effects of hydrogen peroxide (H(2)O(2)), hydroxyl radical (HO*) or superoxide anion (O(2)*(-) ) on mitochondrial function are poorly understood. Here, we report that incubation of rat heart mitochondria with each of these three species resulted in a decline of the ADP-stimulated respiratory rate but not substrate-dependent respiration. These three species reduced oxygen consumption induced by an uncoupler without alteration of the respiratory chain complexes, but did not modify mitochondrial membrane permeability. HO* slightly decreased F1F0-ATPase activity and HO* and O(2)*(-) partially inhibited the activity of adenine nucleotide translocase; H(2)O(2) failed to alter these targets. They inhibited NADH production by acting specifically on aconitase for O(2)*(-) and alpha-ketoglutarate dehydrogenase for H(2)O(2) and HO*. Our results show that O(2)*(-), H(2)O(2) and HO* act on different mitochondrial targets to alter ATP synthesis, mostly through inhibition of NADH production.

  6. Trapping of anionic organic radicals by (TpMe2)2Ln (Ln = Sm, Eu).

    PubMed

    Domingos, Angela; Lopes, Irene; Waerenborgh, João C; Marques, Noémia; Lin, G Y; Zhang, X W; Takats, Josef; McDonald, Robert; Hillier, Anna C; Sella, Andrea; Elsegood, Mark R J; Day, Victor W

    2007-10-29

    Stoichiometric reaction of [ Sm(Tp(Me2))2 ], 1, with a variety of reducible ketone- and quinone-type substrates gave thermally stable, isolable radical anions/ketyls in moderate to good yields. Thus reaction with benzophenone gave [Sm(Tp(Me2))2(OCPh2)], 2, with fluorenone [Sm(Tp(Me2))2(eta1-OC13H8)], 3, and di-tert-butylparaquinone [Sm(Tp(Me2))2(eta1-OC6H2(tBu)2O)], 4, each of which was structurally characterized. In the case of the less-hindered benzoquinone, an unimetallic semiquinone [Sm(Tp(Me2))2(OC6H4O)], 5, could be isolated, although it was unstable with respect to formation of the dimetallic complex [Sm(Tp(Me2))2]2(mu-OC6H4O), 6. Compound 6 was structurally characterized, as was its anthraquinone analogue [Sm(Tp(Me2))2]2(mu-OC14H8O), 7. When the analogous reaction was carried out between the less-reducing [Eu(Tp(Me2))2] and benzoquinone, only the europium analogue of the semiquinone 5, [Eu(Tp(Me2))2(OC6H4O)], 8, could be isolated. The use of the sterically hindered 3,5-di-tert-butyl-o-benzoquinone allowed isolation of [Sm(Tp(Me2))2(DTBSQ)], 9.

  7. Reactivity of oxygen radical anions bound to scandia nanoparticles in the gas phase: C-H bond activation.

    PubMed

    Tian, Li-Hua; Meng, Jing-Heng; Wu, Xiao-Nan; Zhao, Yan-Xia; Ding, Xun-Lei; He, Sheng-Gui; Ma, Tong-Mei

    2014-01-20

    The activation of C-H bonds in alkanes is currently a hot research topic in chemistry. The atomic oxygen radical anion (O(-·)) is an important species in C-H activation. The mechanistic details of C-H activation by O(-·) radicals can be well understood by studying the reactions between O(-·) containing transition metal oxide clusters and alkanes. Here the reactivity of scandium oxide cluster anions toward n-butane was studied by using a high-resolution time-of-flight mass spectrometer coupled with a fast flow reactor. Hydrogen atom abstraction (HAA) from n-butane by (Sc2O3)(N)O(-) (N=1-18) clusters was observed. The reactivity of (Sc2O3)(N)O(-) (N=1-18) clusters is significantly sizedependent and the highest reactivity was observed for N=4 (Sc8O13(-)) and 12 (Sc24O37(-)). Larger (Sc2O3)(N)O(-) clusters generally have higher reactivity than the smaller ones. Density functional theory calculations were performed to interpret the reactivity of (Sc2O3)(N)O(-) (N=1-5) clusters, which were found to contain the O(-·) radicals as the active sites. The local charge environment around the O(-·) radicals was demonstrated to control the experimentally observed size-dependent reactivity. This work is among the first to report HAA reactivity of cluster anions with dimensions up to nanosize toward alkane molecules. The anionic O(-·) containing scandium oxide clusters are found to be more reactive than the corresponding cationic ones in the C-H bond activation.

  8. Exposure of beta H-crystallin to hydroxyl radicals enhances the transglutaminase-susceptibility of its existing amine-donor and amine-acceptor sites.

    PubMed Central

    Groenen, P J; Seccia, M; Smulders, R H; Gravela, E; Cheeseman, K H; Bloemendal, H; de Jong, W W

    1993-01-01

    beta H-crystallin was exposed to radiolytically generated hydroxyl radicals at defined radical concentrations, and its capacity to act as an amine-acceptor substrate and as an amine-donor substrate for transglutaminase were investigated. [14C]Methylamine was used as a probe for labelling amine-acceptor sites; a novel biotinylated hexapeptide was used to label amine-donor sites. The results demonstrate that both primary amine incorporation and hexapeptide incorporation by transglutaminase are considerably increased after oxidative attack on the crystallin. The identity of the labelled subunits was established, and it is shown that, in both cases, this increased incorporation is not due to the production of new substrates, but that the existing incorporation sites become more susceptible. Moreover, using the newly developed probe, we could identify, for the first time, the major crystallin subunits active as amine-donor substrates (both before and after treatment) to be beta B1-, beta A3- and beta A4-crystallin. These data support the proposal that oxidative stress and transglutaminase activity may be jointly involved in the changes found in lens crystallins with age and in the development of cataract. Images Figure 1 Figure 2 Figure 3 PMID:7902086

  9. An electronic spectroscopic study of micellisation of surfactants and solvation of homomicelles formed by cationic or anionic surfactants using a solvatochromic electron donor acceptor dye.

    PubMed

    Kedia, Niraja; Sarkar, Amrita; Purkayastha, Pradipta; Bagchi, Sanjib

    2014-10-15

    Solvatochromic absorption and fluorescence bands of a donor-acceptor dye have been utilised for following the micellisation and for probing the polarity of the aqueous homomicellar phase provided separately by cationic (cetyltrimethylammonimum bromide, CTAB and dodecyltrimethylammonimum bromide, DTAB) and anionic (sodium dodecyl sulphate, SDS) surfactant. Results indicate that for a low concentration of surfactant (below cmc) the dye forms a dimer in aqueous solution. In a micellar media, however, the dye exists as monomers. A strong dye-micelle interaction, as indicated by the shift of the solvatochromic intramolecular charge transfer band of the dye, has also been indicated. The absorption and fluorescence parameters of the dye have been utilised for studying the onset of aggregation of the surfactants. An iterative procedure has been developed for the estimation of cmc and the distribution coefficient (KD) of the dye between the aqueous and the micellar phase. All the parameters provide convergent values of cmc. A high value of KD indicates that the dye exists predominantly in the micellar phase. The solvatochromic parameters characterising the dipolarity-polarisability (π(*)) and H-bond donation ability (α) of modes of solvation interaction in different micellar media have been estimated. The dye is found to distribute itself between two regions in a catanionic vesicle formed by surfactants SDS and DTAB, one being relatively polar than other. The distribution coefficients have been found out using the fluorescence data.

  10. Anion size control of the packing in the metallic versus semiconducting chiral radical cation salts (DM-EDT-TTF)2XF6 (X = P, As, Sb).

    PubMed

    Pop, Flavia; Auban-Senzier, Pascale; Canadell, Enric; Avarvari, Narcis

    2016-10-13

    Control of the structural type in metallic enantiopure and racemic radical cation salts is achieved through hydrogen bonding interactions between the chiral donor DM-EDT-TTF and the XF6 anions (X = P, As, Sb), determined by the anion size and the chiral information.

  11. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    PubMed

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled.

  12. Hydration Leads to Efficient Reactions of the Carbonate Radical Anion with Hydrogen Chloride in the Gas Phase.

    PubMed

    Tang, Wai Kit; van der Linde, Christian; Siu, Chi-Kit; Beyer, Martin K

    2017-01-12

    The carbonate radical anion CO3(•-) is a key intermediate in tropospheric anion chemistry. Despite its radical character, only a small number of reactions have been reported in the literature. Here we investigate the gas-phase reactions of CO3(•-) and CO3(•-)(H2O) with HCl under ultrahigh vacuum conditions. Bare CO3(•-) forms OHCl(•-) with a rate constant of 4.2 × 10(-12) cm(3) s(-1), which corresponds to an efficiency of only 0.4%. Hydration accelerates the reaction, and ligand exchange of H2O against HCl proceeds with a rate of 2.7 × 10(-10) cm(3) s(-1). Quantum chemical calculations reveal that OHCl(•-) is best described as an OH(•) hydrogen bonded to Cl(-), while the ligand exchange product is Cl(-)(HCO3(•)). Under tropospheric conditions, where CO3(•-)(H2O) is the dominant species, Cl(-)(HCO3(•)) is efficiently formed. These reactions must be included in models of tropospheric anion chemistry.

  13. Proton transfer in guanine-cytosine radical anion embedded in B-form DNA.

    PubMed

    Chen, Hsing-Yin; Kao, Chai-Lin; Hsu, Sodio C N

    2009-11-04

    The electron-attachment-induced proton transfer in the guanine-cytosine (G:C) base pair is thought to be relevant to the issues of charge transport and radiation damage in DNA. However, our understanding on the reaction mainly comes from the data of isolated bases and base pairs, and the behavior of the reaction in the DNA duplex is not clear. In the present study, the proton-transfer reaction in reduced G:C stacks is investigated by quantum mechanical calculations with the aim to clarify how each environmental factor affects the proton transfer in G:C(*-). The calculations show that while the proton transfer in isolated G:C(*-) is exothermic with a small energetic barrier, it becomes endothermic with a considerably enhanced energetic barrier in G:C stacks. The substantial effect of G:C stacking is proved to originate from the electrostatic interactions between the dipole moments of outer G:C base pairs and the middle G:C(*-) base-pair radical anion; the extent of charge delocalization is very small and plays little role in affecting the proton transfer in G:C(*-). On the basis of the electrostatic model, the sequence dependence of the proton transfer in the ionized G:C base pair is predicted. In addition, the water molecules in the first hydration shell around G:C(*-) display a pronounced effect that facilitates the proton-transfer reaction; further consideration of bulk hydration only slightly lowers the energetic barrier and reaction energy. We also notice that the water arrangement around an embedded G:C(*-) is different from that around an isolated G:C(*-), which could result in a very different solvent effect on the energetics of the proton transfer. In contrast to the important influences of base stacking and hydration, the effects of sugar-phosphate backbone and counterions are found to be minor. Our calculations also reveal that a G:C base pair embedded in DNA is capable of accommodating two excess electrons only in bulk hydration; the resultant G(N1-H

  14. Superoxide anion radical scavenging activities of herbs and pastures in northern Japan determined using electron spin resonance spectrometry.

    PubMed

    Al-Mamun, Mohammad; Yamaki, Koji; Masumizu, Toshiki; Nakai, Yumi; Saito, Katsumi; Sano, Hiroaki; Tamura, Yoshifumi

    2007-07-30

    Free radicals are not only destructive to the living cells but also reduce the quality of animal products through oxidation. As a result the superoxide anion radical (O2-), one of the most destructive reactive oxygen species, is a matter of concern for the animal scientists as well as feed manufacturers to ensure the quality of product to reach consumers demand. The superoxide anion radical scavenging activities (SOSA) of water and MeOH extracts of 2 herbs and 9 pasture samples collected from lowland and highland swards were determined against a 5,5-dimethyl-1-pyroline-N-oxide-O2-spin adduct based on a hypoxanthine-xanthine oxidase reaction using electron spin resonance spectrometry. Both the water and MeOH extracted SOSA differed among the herbs and pastures. Species and altitudinal variations were observed between extraction methods. The herbs were higher in both water and MeOH extracted SOSA than the pastures except for water extracts of one pasture, white clover (Trifolium repens L.). Among the pastures, quackgrass (Agrophyron repens L.) showed higher SOSA in both the MeOH and water extracts, and timothy (Phleum pretense L.) showed higher MeOH extracted SOSA. It is apparent that the kind and amount of antioxidants differ among herbs and pastures. Animal health and quality of animal products could be improved by adequate selection and combining of herbs and pastures having higher SOSA.

  15. Taming hot CF3 radicals: incrementally tuned families of polyarene acceptors for air-stable molecular optoelectronics

    SciTech Connect

    Kuvychko, Igor V.; Castro, Karlee P.; Deng, Shihu; Wang, Xue B.; Strauss, Steven H.; Boltalina, Olga V.

    2013-04-26

    Breakthroughs in molecular optoelectronics await the availability of new families of air-stable polyaromatic hydrocarbon (PAH) acceptors with incrementally- and predictably-tunable electron affinities and structures capable of inducing desirable solid-state morphologies in hybrid materials. Although the addition of electron withdrawing groups to PAHs has been studied for decades, producing new compounds from time to time, a generic one-step synthetic methodology applicable to potentially all PAH substrates has been, until now, an impossible dream. We herein report that at least seventeen common PAHs and polyheterocyclics can be trifluoromethylated by a new procedure to yield families of PAH(CF3)n acceptors with (i) n = 4-8, (ii) multiple isomers for particular n values, (iii) gas-phase experimental electron affinities as high as 3.32 eV and shifted from the respective PAH precursor as a linear function of n, and (iv) various solid-state morphologies, including the ability to form alternating π stacked hybrid crystals with aromatic donors.

  16. Chloride anion effect on the advanced oxidation processes of methidathion and dimethoate: role of Cl2(·-) radical.

    PubMed

    Caregnato, Paula; Rosso, Janina A; Soler, Juán M; Arques, Antonio; Mártire, Daniel O; Gonzalez, Mónica C

    2013-01-01

    The reaction of phosphor-containing pesticides such as methidathion (MT) and dimethoate (DM) with dichloride radical anions (Cl(2)(·-)) was investigated. The second order rate constants (1.3 ± 0.4) × 10(8) and (1.1 ± 0.4) × 10(8) M(-1) s(-1) were determined for the reaction of Cl(2)(·-) with MT and DM, respectively. A reaction mechanism involving an initial charge transfer from the sulfide groups of the insecticides to Cl(2)(·-) is proposed and supported by the identified transient intermediates and reaction products. The formation of chlorinated byproducts was determined. The unexpected consequences of an efficient Cl(2)(·-) reactivity towards MT and DM on the degradation capacity by Advanced Oxidation Procedures applied to polluted waters containing the insecticides and Cl(-) anions is discussed.

  17. Formation and decay of fluorobenzene radical anions affected by their isomeric structures and the number of fluorine atoms.

    PubMed

    Higashino, Saki; Saeki, Akinori; Okamoto, Kazumasa; Tagawa, Seiichi; Kozawa, Takahiro

    2010-08-12

    Aryl fluoride has attracted much attention as a resist component for extreme ultraviolet (EUV) lithography, because of the high absorption cross section of fluorine for EUV photons; however, less is known about electron attachment to fluorobenzene (FBz) and the stability of the reduced state. Picosecond and nanosecond pulse radiolysis of tetrahydrofuran solutions of FBz from mono-, di-, tri-, tetra-, penta-, and hexafluorobenzene was performed, and the effects of isomeric structure and number of fluorine atoms were examined. Scavenging of solvated electrons was found to correlate with the electron affinity obtained by density functional theory in the gas phase, whereas the decay of FBz radical anions was dominated by the activation energy of fluorine anion dissociation calculated using a polarized continuum model (PCM). A sharp contrast in the lifetimes of ortho-, meta-, and para-position difluorobenzene was observed, which could provide information on the molecular design of functional materials.

  18. Organic conductors and superconductors based on bis(ethylenedithio)tetrathiafulvalene radical cation salts with supramolecular tris(oxalato)metallate anions

    NASA Astrophysics Data System (ADS)

    Prokhorova, T. G.; Yagubskii, E. B.

    2017-02-01

    The results of studies of a family of conductors and superconductors based on bis(ethylenedithio)tetrathiafulvalene radical cation salts with paramagnetic and diamagnetic supramolecular tris(oxalato)metallate anions are collated and analyzed. Methods for the preparation of these salts and various types of packing of conducting layers within the salt structures are considered. The transport properties of crystals of the salts of this family and the effect of guest solvent molecules on these properties are discussed. The contribution of scientists from the Institute of Problems of Chemical Physics, RAS, to the research into organic conductors and superconductors is noted. The bibliography includes 70 references.

  19. Reduction potential of the sup sm bullet CO sub 2 sup minus radical anion in aqueous solutions

    SciTech Connect

    Surdhar, P.S.; Mezyk, S.P.; Armstrong, D.A. )

    1989-04-20

    The reduction potential for the {sup {sm bullet}}CO{sub 2}{sup {minus}} radical anion has been determined by equilibration of formate with sulfhydryl radicals of {beta}-mercaptoethanol, penicillamine, and lipoamide in aqueous solutions at pH 3-6. The reaction {sup {sm bullet}}CO{sub 2}{sup {minus}} + e{sup {minus}} + H{sup +} = HCO{sub 2}{sup {minus}} yields the value E{degree}{sub 9} = 1.49 V with an uncertainty of {plus minus}0.06 V. On the basis of this value and the known free energies of CO{sub 2}(aq) and HCO{sub 2}{sup {minus}}(aq), E{degree}{sub 19} for CO{sub 2} + e{sup {minus}} = {sup {sm bullet}}CO{sub 2}{sup {minus}} was found to be -1.85 V.

  20. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  1. Thiocyanate potentiates antimicrobial photodynamic therapy: In situ generation of the sulfur trioxide radical anion by singlet oxygen

    PubMed Central

    St Denis, Tyler G.; Vecchio, Daniela; Zadlo, Andrzej; Rineh, Ardeshir; Sadasivam, Magesh; Avci, Pinar; Huang, Liyi; Kozinska, Anna; Chandran, Rakkiyappan; Sarna, Tadeusz; Hamblin, Michael R.

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) is used for the eradication of pathogenic microbial cells and involves the light excitation of dyes in the presence of O2, yielding reactive oxygen species including the hydroxyl radical (•OH) and singlet oxygen (1O2). In order to chemically enhance PDT by the formation of longer-lived radical species, we asked whether thiocyanate (SCN−) could potentiate the methylene blue (MB) and light-mediated killing of the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli. SCN− enhanced PDT (10 μM MB, 5J/cm2 660 nm hv) killing in a concentration-dependent manner of S. aureus by 2.5 log10 to a maximum of 4.2 log10 at 10 mM (P < 0.001) and increased killing of E. coli by 3.6 log10 to a maximum of 5.0 log10 at 10 mM (P < 0.01). We determined that SCN− rapidly depleted O2 from an irradiated MB system, reacting exclusively with 1O2, without quenching the MB excited triplet state. SCN− reacted with 1O2, producing a sulfur trioxide radical anion (a sulfur-centered radical demonstrated by EPR spin trapping). We found that MB-PDT of SCN− in solution produced both sulfite and cyanide anions, and that addition of each of these salts separately enhanced MB-PDT killing of bacteria. We were unable to detect EPR signals of •OH, which, together with kinetic data, strongly suggests that MB, known to produce •OH and 1O2, may, under the conditions used, preferentially form 1O2. PMID:23969112

  2. Photoinduced electron donor/acceptor processes in colloidal II-VI semiconductor quantum dots and nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Dutta, Poulami

    Electron transfer (ET) processes are one of the most researched topics for applications ranging from energy conversion to catalysis. An exciting variation is utilizing colloidal semiconductor nanostructures to explore such processes. Semiconductor quantum dots (QDs) are emerging as a novel class of light harvesting, emitting and charge-separation materials for applications such as solar energy conversion. Detailed knowledge of the quantitative dissociation of the photogenerated excitons and the interfacial charge- (electron/hole) transfer is essential for optimization of the overall efficiency of many such applications. Organic free radicals are the attractive counterparts for studying ET to/from QDs because these undergo single-electron transfer steps in reversible fashion. Nitroxides are an exciting class of stable organic free radicals, which have recently been demonstrated to be efficient as redox mediators in dye-sensitized solar cells, making them even more interesting for the aforementioned studies. This dissertation investigates the interaction between nitroxide free radicals TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 4-amino-TEMPO (4-amino- 2,2,6,6-tetramethylpiperidine-1-oxyl) and II-VI semiconductor (CdSe and CdTe) QDs. The nature of interaction in these hybrids has been examined through ground-state UV-Vis absorbance, steady state and time-resolved photoluminescence (PL) spectroscopy, transient absorbance, upconversion photoluminescence spectroscopy and electron paramagnetic resonance (EPR). The detailed analysis of the PL quenching indicates that the intrinsic charge transfer is ultrafast however, the overall quenching is still limited by the lower binding capacities and slower diffusion related kinetics. Careful analysis of the time resolved PL decay kinetics reveal that the decay rate constants are distributed and that the trap states are involved in the overall quenching process. The ultrafast hole transfer from CdSe QDs to 4-Amino TEMPO observed

  3. Decarboxylative 1,4-Addition of α-Oxocarboxylic Acids with Michael Acceptors Enabled by Photoredox Catalysis.

    PubMed

    Wang, Guang-Zu; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-10-02

    Enabled by iridium photoredox catalysis, 2-oxo-2-(hetero)arylacetic acids were decarboxylatively added to various Michael acceptors including α,β-unsaturated ester, ketone, amide, aldehyde, nitrile, and sulfone at room temperature. The reaction presents a new type of acyl Michael addition using stable and easily accessible carboxylic acid to formally generate acyl anion through photoredox-catalyzed radical decarboxylation.

  4. Modulation of primary radical pair kinetics and energetics in photosystem II by the redox state of the quinone electron acceptor Q(A).

    PubMed Central

    Gibasiewicz, K; Dobek, A; Breton, J; Leibl, W

    2001-01-01

    Time-resolved photovoltage measurements on destacked photosystem II membranes from spinach with the primary quinone electron acceptor Q(A) either singly or doubly reduced have been performed to monitor the time evolution of the primary radical pair P680(+)Pheo(-). The maximum transient concentration of the primary radical pair is about five times larger and its decay is about seven times slower with doubly reduced compared with singly reduced Q(A). The possible biological significance of these differences is discussed. On the basis of a simple reversible reaction scheme, the measured apparent rate constants and relative amplitudes allow determination of sets of molecular rate constants and energetic parameters for primary reactions in the reaction centers with doubly reduced Q(A) as well as with oxidized or singly reduced Q(A). The standard free energy difference DeltaG degrees between the charge-separated state P680(+)Pheo(-) and the equilibrated excited state (Chl(N)P680)* was found to be similar when Q(A) was oxidized or doubly reduced before the flash (approximately -50 meV). In contrast, single reduction of Q(A) led to a large change in DeltaG degrees (approximately +40 meV), demonstrating the importance of electrostatic interaction between the charge on Q(A) and the primary radical pair, and providing direct evidence that the doubly reduced Q(A) is an electrically neutral species, i.e., is doubly protonated. A comparison of the molecular rate constants shows that the rate of charge recombination is much more sensitive to the change in DeltaG degrees than the rate of primary charge separation. PMID:11259277

  5. Radical-chain oxidative addition mechanism for the reaction of an [Re(CO)5]- anion with α-bromostilbene.

    PubMed

    Sazonov, Petr K; Ptushkin, Dmitry S; Khrustalev, Victor N; Kolotyrkina, Natal'ya G; Beletskaya, Irina P

    2013-03-28

    E-α-Bromostilbene spontaneously reacts with Na[Re(CO)(5)] at 22 °C in THF to give Na[ReBr(CO)(4){Z-C(Ph)=CHPh}] and Na[Re(2)(CO)(9){Z-C(Ph)=CHPh}] as the main products. Z-α-Bromostilbene is less reactive, but gives the same products. The reaction is stimulated by visible light or a source of solvated electrons (NaK(2.8)) and can be inhibited by a quinomethide radical trap. With an excess of Na[Re(CO)(5)] one can observe the initial formation of Na[ReBr(CO)(4){Z-C(Ph)=CHPh}] and its complete transformation into Na[Re(2)(CO)(9){Z-C(Ph)=CHPh}]. Treatment of Na[ReBr(CO)(4){Z-C(Ph)=CHPh}] with CO almost quantitatively converts it to [Re(CO)(5){Z-C(Ph)=CHPh}], the structure of which is established by a single-crystal X-ray diffraction study. A radical-chain mechanism is proposed for the reaction comprising the following steps: (a) coupling of a Vin˙ radical with Na[Re(CO)(5)], (b) CO-dissociation from the formed 19-electron radical-anion and (c) bromine atom abstraction by [Re(CO)(4){Z-C(Ph)=CHPh}]˙(-) from α-bromostilbene. The mechanism is confirmed by the formation of the same Na[ReBr(CO)(4){Z-C(Ph)=CHPh}] product in the presence of NaI. When the radical-chain process is inhibited, a slow halogenophilic reaction is observed, mainly giving the Z and E-isomers of the acylrhenate Na[Re(2)(CO)(9){C(O)C(Ph)=CHPh}].

  6. Viral infection correlated with superoxide anion radicals production and natural and synthetic copper complexes.

    PubMed

    Tomas, E; Popescu, A; Titire, A; Cajal, N; Cristescu, C; Tomas, S

    1989-01-01

    Studies conducted on asymmetric triazine derivatives synthetized at the Chemical and Pharmaceutical Research Institute showed that products S1, S16, S17, S19, S20 and S22 have a remarkable O2- radical scavenger activity. Among these derivatives, the product S1 is the most efficient as an antiviral agent.

  7. Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions: experimental and theoretical studies.

    PubMed

    Minakata, Daisuke; Song, Weihua; Crittenden, John

    2011-07-15

    With concerns about emerging contaminants increasing, advanced oxidation processes have become attractive technologies because of potential mineralization of these contaminants via radical involved reactions that are induced by highly reactive hydroxyl radical. Considering the expensive and time-consuming experimental studies of degradation intermediates and byproduct, there is a need to develop a first-principles computer-based kinetic model that predict reaction pathways and associated reaction rate constants. In this study, we measured temperature-dependent hydroxyl radical reaction rate constants for a series of haloacetate ions and obtained their Arrhenius kinetic parameters. We found a linear correlation between these reaction rate constants and theoretically calculated aqueous-phase free energies of activation. To understand the quantitative effects on entropy of solvation due to solvent water molecules, we calculate each portion of the entropic energies that contribute to the overall aqueous phase entropy of activation; cavity formation is a dominant portion. For the series of reactions of hydroxyl radical with carboxylate ions, the increase in the entropy of activation during the solvation process is approximately 10-15 cal mol(-1)K(-1) because of interactions with solvent water molecules and the transition state. Finally, charge distribution analysis for the aqueous-phase reactions of hydroxyl radical with acetate/haloacetate ions reveals that in the aqueous phase, the degree of polarizability at the transition state is less substantial than those that are in the gaseous phase resulting in a high charge density. In the presence of electronegative halogenated functional groups, the transition state is less polarized and hydrogen bonding interactions are expected to be weaker.

  8. Reactions of superoxide dismutases with HS(-)/H2S and superoxide radical anion: An in vitro EPR study.

    PubMed

    Bolić, Bojana; Mijušković, Ana; Popović-Bijelić, Ana; Nikolić-Kokić, Aleksandra; Spasić, Snežana; Blagojević, Duško; Spasić, Mihajlo B; Spasojević, Ivan

    2015-12-01

    Interactions of hydrogen sulfide (HS(-)/H2S), a reducing signaling species, with superoxide dimutases (SOD) are poorly understood. We applied low-T EPR spectroscopy to examine the effects of HS(-)/H2S and superoxide radical anion O2.- on metallocenters of FeSOD, MnSOD, and CuZnSOD. HS(-)/H2S did not affect FeSOD, whereas active centers of MnSOD and CuZnSOD were open to this agent. Cu(2+) was reduced to Cu(1+), while manganese appears to be released from MnSOD active center. Untreated and O2.- treated FeSOD and MnSOD predominantly show 5 d-electron systems, i.e. Fe(3+) and Mn(2+). Our study provides new details on the mechanisms of (patho)physiological effects of HS(-)/H2S.

  9. Mechanisms of oxidation of guanine in DNA by carbonate radical anion, a decomposition product of nitrosoperoxycarbonate.

    PubMed

    Lee, Young Ae; Yun, Byeong Hwa; Kim, Seog K; Margolin, Yelena; Dedon, Peter C; Geacintov, Nicholas E; Shafirovich, Vladimir

    2007-01-01

    Peroxynitrite is produced during inflammation and combines rapidly with carbon dioxide to yield the unstable nitrosoperoxycarbonate, which decomposes (in part) to CO(3) (.-) and (.)NO(2) radicals. The CO(3) (.-) radicals oxidize guanine bases in DNA through a one-electron transfer reaction process that ultimately results in the formation of stable guanine oxidation products. Here we have explored these mechanisms, starting with a spectroscopic study of the kinetics of electron transfer from 20-22mer double-stranded oligonucleotides to CO(3) (.-) radicals, together with the effects of base sequence on the formation of the end-products in runs of one, two, or three contiguous guanines. The distributions of these alkali-labile lesions were determined by gel electrophoresis methods. The cascade of events was initiated through the use of 308 nm XeCl excimer laser pulses to generate CO(3) (.-) radicals by an established method based on the photodissociation of persulfate to sulfate radicals and the oxidation of bicarbonate. Although the Saito model (Saito et al., J. Am. Chem. Soc. 1995, 117, 6406-6407) predicts relative ease of one-electron oxidations in DNA, following the trend 5'-GGG > 5'-GG > 5'-G, we found that the rate constants for CO(3) (.-)-mediated oxidation of guanines in these sequence contexts (k(5)) showed only small variation within a narrow range [(1.5-3.0)x10(7) M(-1) s(-1)]. In contrast, the distributions of the end-products are dependent on the base sequence context and are higher at the 5'-G in 5'-GG sequences and at the first two 5'-guanines in the 5'-GGG sequences. These effects are attributed to a combination of initial hole distributions among the contiguous guanines and the subsequent differences in chemical reaction yields at each guanine. The lack of dependence of k(5) on sequence context indicates that the one-electron oxidation of guanine in DNA by CO(3) (.-) radicals occurs by an inner-sphere mechanism.

  10. Operative Mechanism of Hole-Assisted Negative Charge Motion in Ground States of Radical-Anion Molecular Wires.

    PubMed

    Franco, Carlos; Burrezo, Paula Mayorga; Lloveras, Vega; Caballero, Rubén; Alcón, Isaac; Bromley, Stefan T; Mas-Torrent, Marta; Langa, Fernando; López Navarrete, Juan T; Rovira, Concepciò; Casado, Juan; Veciana, Jaume

    2017-01-18

    Charge transfer/transport in molecular wires over varying distances is a subject of great interest. The feasible transport mechanisms have been generally accounted for on the basis of tunneling or superexchange charge transfer operating over small distances which progressively gives way to hopping transport over larger distances. The underlying molecular sequential steps that likely take place during hopping and the operative mechanism occurring at intermediate distances have received much less attention given the difficulty in assessing detailed molecular-level information. We describe here the operating mechanisms for unimolecular electron transfer/transport in the ground state of radical-anion mixed-valence derivatives occurring between their terminal perchlorotriphenylmethyl/ide groups through thiophene-vinylene oligomers that act as conjugated wires of increasing length up to 53 Å. The unique finding here is that the net transport of the electron in the larger molecular wires is initiated by an electron-hole dissociation intermediated by hole delocalization (conformationally assisted and thermally dependent) forming transient mobile polaronic states in the bridge that terminate by an electron-hole recombination at the other wire extreme. On the contrary, for the shorter radical-anions our results suggest that a flickering resonance mechanism which is intermediate between hopping and superexchange is the operative one. We support these mechanistic interpretations by applying the pertinent biased kinetic models of the charge/spin exchange rates determined by electron paramagnetic resonance and by molecular structural level information obtained from UV-vis and Raman spectroscopies and by quantum chemical modeling.

  11. New type of borophosphate anionic radical in the crystal structure of CsAl2BP6O20

    NASA Astrophysics Data System (ADS)

    Shvanskaya, L. V.; Yakubovich, O. V.; Belik, V. I.

    2016-09-01

    The crystal structure of a new borophosphate CsAl2BP6O20 obtained by spontaneous crystallization in a multicomponent Cs-Cu-B-P-O system is determined by X-ray diffraction ( a = 11.815(2), b = 10.042(2), and c = 26.630(4) Å; space group Pbca, Z = 8, V = 3159.5(10) Å3; R 1 = 0.043). A new type of borophosphate anionic 2D radical characterized by the lowest B: P = 1: 6 ratio and containing P3O10 phosphate groups is found in the compound. A mixed-type anionic framework consisting of vertex-sharing BO4 and PO4 tetrahedra and AlO6 octahedra is distinguished in the structure. Large cesium atoms are located in the channels of the framework. Topological relationships are revealed between the structures of the CsAl3(P3O10)2 and CsAl2BP6O20 phases having different cationic compositions. These compounds can be considered quasi-polytypic phases.

  12. Generation of superoxide anion radical by alpha-terthienyl in the anal gills of mosquito larvae Aedes aegypti: a new aspect in alpha-terthienyl phototoxicity.

    PubMed

    Nivsarkar, M; Kumar, G P; Laloraya, M; Laloraya, M M

    1992-01-01

    The present study documents that the secondary plant metabolites, especially alpha-terthienyl, exert phototoxic action through inhibition of certain enzymes and generation of singlet oxygen. Some of the reports have emerged exhibiting involvement of free radical generation in vitro by alpha-terthienyl. We provide evidence for the generation of a free radical viz., superoxide anion radical, by alpha-terthienyl employing spin-trapping techniques, probably due to the extension of the latter reaction. On the basis of this observation the phototoxic action of alpha-terthienyl on Aedes aegypti larvae is explained.

  13. Anion radicals of di-trans-[12]annulene and heptalene in a one-pot synthesis from a common fire retardant.

    PubMed

    Gard, Matthew N; Reiter, Richard C; Stevenson, Cheryl D

    2004-02-05

    [reaction: see text] Low temperature (-100 degrees C) dehydrohalogenation of 1,2,5,6,9,10-hexabromocyclododecane (a common fire retardant) with potassium tert-butoxide in THF followed by one-electron reduction yields the anion radical of the di-trans form of [12]annulene. This system yields a well-resolved EPR signal that reveals that most of the spin density resides on one side (the planar side) of the anion radical. Five of the carbons in this [12]annulene system are twisted from the plane of the remaining seven carbons, and the rate of rearrangement between the degenerate conformations is on the EPR time scale (k = 10(6)-10(7) s(-1)). Warming of the solution results in the formation of a sigma-bond between the two internal carbons, loss of molecular hydrogen, and consequent generation of the anion radical of heptalene. Tractable quantities of neutral heptalene can be obtained via the reoxidation of this anion radical with iodine.

  14. Electron attachment to solvated dGpdG: effects of stacking on base-centered and phosphate-centered valence-bound radical anions.

    PubMed

    Gu, Jiande; Liang, Guoming; Xie, Yaoming; Schaefer, Henry F

    2012-04-23

    To explore the nature of electron attachment to guanine-centered DNA single strands in the presence of a polarizable medium, a theoretical investigation of the DNA oligomer dinucleoside phosphate deoxyguanylyl-3',5'-deoxyguanosine (dGpdG) was performed by using density functional theory. Four different electron-distribution patterns for the radical anions of dGpdG in aqueous solution have been located as local minima on the potential energy surface. The excess electron is found to reside on the proton of the phosphate group (dGp(H-)dG), or on the phosphate group (dGp(.-)dG), or on the nucleobase at the 5' position (dG(.-)pdG), or on the nucleobase at the 3' position (dGpdG(.-)), respectively. These four radical anions are all expected to be electronically viable species under the influence of the polarizable medium. The predicted energetics of the radical anions follows the order dGp(.-)dG>dG(.-)pdG>dGpdG(.-)>dGp(H-)dG. The base-base stacking pattern in DNA single strands seems unaffected by electron attachment. On the contrary, intrastrand H-bonding is greatly influenced by electron attachment, especially in the formation of base-centered radical anions. The intrastrand H-bonding patterns revealed in this study also suggest that intrastrand proton transfer might be possible between successive guanines due to electron attachment to DNA single strands.

  15. Sonochemiluminescence of lucigenin: Evidence of superoxide radical anion formation by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masanori; Takahashi, Fumiki; Asakura, Yoshiyuki; Jin, Jiye

    2016-07-01

    The sonochemiluminescence (SCL) behavior of lucigenin (Luc2+) has been studied in aqueous solutions irradiated with 500 kHz ultrasound. Compared with the SCL of a luminol system, a tremendously increased SCL intensity is observed from 50 µM Luc2+ aqueous solution (pH =11) when small amounts of coreactants such as 2-propanol coexist. It is shown that SCL intensity strongly depends on the presence of dissolved gases such as air, O2, N2, and Ar. The highest SCL intensity is obtained in an O2-saturated solution, indicating that molecular oxygen is required to generate SCL. Since SCL intensity is quenched completely in the presence of superoxide dismutase (SOD), an enzyme that can catalyze the disproportionation of O2 •-, the generation of O2 •- in the ultrasonic reaction field is important in the SCL of Luc2+. In this work, the evidence of O2 •- production is examined by a spectrofluorometric method using 2-(2-pyridyl)benzothiazoline as the fluorescent probe. The results indicate that the yield of O2 •- is markedly increased in the O2-saturated solutions when a small amount of 2-propanol coexists, which is consistent with the results of SCL measurements. 2-Propanol in the interfacial region of a cavitation bubble reacts with a hydroxyl radical (•OH) to form a 2-propanol radical, CH3C•(OH)CH3, which can subsequently react with dissolved oxygen to generate O2 •-. The most likely pathways for SCL as well as the spatial distribution of SCL in a microreactor are discussed in this study.

  16. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN.

    PubMed

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions (O2∙-) in mitochondria, either by chemical inhibition of complex I or by genetic silencing of O2∙--dismutating mitochondrial Sod2. The O2∙--dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced O2∙- led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated O2∙--induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with O2∙-, PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies.

  17. In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor.

    PubMed

    Fujita, Motoki; Tsuruta, Ryosuke; Kasaoka, Shunji; Fujimoto, Kenji; Tanaka, Ryo; Oda, Yasutaka; Nanba, Masahiro; Igarashi, Masatsugu; Yuasa, Makoto; Yoshikawa, Toshikazu; Maekawa, Tsuyoshi

    2009-10-01

    The dynamics of superoxide anion (O(2)(-)) in vivo remain to be clarified because no appropriate method exists to directly and continuously monitor and evaluate O(2)(-) in vivo. Here, we establish an in vivo method using a novel electrochemical O(2)(-) sensor. O(2)(-) generated is measured as a current and evaluated as a quantified partial value of electricity (Q(part)), which is calculated by integration of the difference between the baseline and the actual reacted current. The accuracy and efficacy of this method were confirmed by dose-dependent O(2)(-) generation in xanthine-xanthine oxidase in vitro in phosphate-buffered saline and human blood. It was then applied to endotoxemic rats in vivo. O(2)(-) current began to increase 1 h after lipopolysaccharide, and Q(part) increased significantly for 6 h in endotoxemic rats, in comparison to sham-treated rats. These values were attenuated by superoxide dismutase. The generation and attenuation of O(2)(-) were indirectly confirmed by plasma lipid peroxidation with malondialdehyde, endothelial injury with soluble intercellular adhesion molecule-1, and microcirculatory dysfunction. This is a novel method for measuring O(2)(-) in vivo and could be used to monitor and treat the pathophysiology caused by excessive O(2)(-) generation in animals and humans.

  18. EPR characterization of ascorbyl and sulfur dioxide anion radicals trapped during the reaction of bovine Cytochrome c Oxidase with molecular oxygen

    NASA Astrophysics Data System (ADS)

    Yu, Michelle A.; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L.; Gerfen, Gary J.

    2010-04-01

    The reaction intermediates of reduced bovine Cytochrome c Oxidase (CcO) were trapped following its reaction with oxygen at 50 μs-6 ms by innovative freeze-quenching methods and studied by EPR. When the enzyme was reduced with either ascorbate or dithionite, distinct radicals were generated; X-band (9 GHz) and D-band (130 GHz) CW-EPR measurements support the assignments of these radicals to ascorbyl and sulfur dioxide anion radical (SO2-rad), respectively. The X-band spectra show a linewidth of 12 G for the ascorbyl radical and 11 G for the SO2-rad radical and an isotropic g-value of 2.005 for both species. The D-band spectra reveal clear distinctions in the g-tensors and powder patterns of the two species. The ascorbyl radical spectrum displays approximate axial symmetry with g-values of gx = 2.0068, gy = 2.0066, and gz = 2.0023. The SO2-rad>/SUP> radical has rhombic symmetry with g-values of gx = 2.0089, gy = 2.0052, and gz = 2.0017. When the contributions from the ascorbyl and SO2-rad radicals were removed, no protein-based radical on CcO could be identified in the EPR spectra.

  19. Hyperglycemia enhances excessive superoxide anion radical generation, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats.

    PubMed

    Tsuruta, Ryosuke; Fujita, Motoki; Ono, Takeru; Koda, Yoichi; Koga, Yasutaka; Yamamoto, Takahiro; Nanba, Masahiro; Shitara, Masaki; Kasaoka, Shunji; Maruyama, Ikuro; Yuasa, Makoto; Maekawa, Tsuyoshi

    2010-01-14

    The aim of this study was to confirm the effect of acute hyperglycemia on the superoxide anion radical (O(2)(-)) generation, using a novel electrochemical O(2)(-) sensor in forebrain ischemia/reperfusion rats. Fourteen male Wistar rats were allocated to a normoglycemia group (n= 7) and a hyperglycemia group (n=7). Hyperglycemia was induced by intravenous infusion of glucose solution. Forebrain ischemia was induced by bilateral common carotid arteries occlusion with hemorrhagic hypotension for 10 min and then was reperfused. The generated O(2)(-) was measured as the current produced, which was integrated as a quantified partial value of electricity (Q), in the jugular vein using the O(2)(-) sensor. The reacted O(2)(-) current and the Q began to increase gradually during the forebrain ischemia in both groups. These values increased remarkably just after reperfusion in the normoglycemia group and were further increased significantly in the hyperglycemia group after the reperfusion. Concentrations of malondialdehyde (MDA) and high-mobility group box 1 (HMGB1) in the brain and plasma, and soluble intercellular adhesion molecule-1 (ICAM-1) in the plasma in the hyperglycemia group were significantly higher than those in the normoglycemia group. Brain and plasma MDA, HMGB1, and ICAM-1 were correlated with a sum of Q during ischemia and after reperfusion. In conclusion, acute transient hyperglycemia enhanced the O(2)(-) generation in blood and exacerbated oxidative stress, early inflammation, and endothelial injury after the forebrain ischemia/reperfusion in the rats.

  20. Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly.

    PubMed

    Song, Sang-Hun; Oztürk, Nuri; Denaro, Tracy R; Arat, N Ozlem; Kao, Ya-Ting; Zhu, Haisun; Zhong, Dongping; Reppert, Steven M; Sancar, Aziz

    2007-06-15

    The monarch butterfly (Danaus plexippus) cryptochrome 1 (DpCry1) belongs in the class of photosensitive insect cryptochromes. Here we purified DpCry1 expressed in a bacterial host and obtained the protein with a stoichiometric amount of the flavin cofactor in the two-electron oxidized, FAD(ox), form. Exposure of the purified protein to light converts the FAD(ox) to the FAD*(-) flavin anion radical by intraprotein electron transfer from a Trp residue in the apoenzyme. To test whether this novel photoreduction reaction is part of the DpCry1 physiological photocycle, we mutated the Trp residue that acts as the ultimate electron donor in flavin photoreduction. The mutation, W328F, blocked the photoreduction entirely but had no measurable effect on the light-induced degradation of DpCry1 in vivo. In light of this finding and the recently published action spectrum of this class of Crys, we conclude that DpCry1 and similar insect cryptochromes do not contain flavin in the FAD(ox) form in vivo and that, most likely, the [see text] photoreduction reaction is not part of the insect cryptochrome photoreaction that results in proteolytic degradation of the photopigment.

  1. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    PubMed

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  2. Electrochemistry in Near-Critical and Supercritical Fluids. 5. The Dimerization of Quinoline and Acridine Radical Anions and Dianions in Ammonia from -70C to 150C.

    DTIC Science & Technology

    1987-07-01

    electrons and a homologous series of diaza-aromatics (pyrazine, quinoxaline and phenazine ) in ammonia from 25 to 1500 C at vapor pressures of 0 to...and the anion radicals, and the dianion in the case of phenazine , were stable on the cyclic voltammetric time scale. The purpose of the current...found for the uncocpli catec second electron transfers of phenazine and quinoxaline is manifested in the oin-ammetry of :. "f a line Irawn between the

  3. DNA damage by the sulfate radical anion: hydrogen abstraction from the sugar moiety versus one-electron oxidation of guanine.

    PubMed

    Roginskaya, Marina; Mohseni, Reza; Ampadu-Boateng, Derrick; Razskazovskiy, Yuriy

    2016-07-01

    The products of oxidative damage to double-stranded (ds) DNA initiated by photolytically generated sulfate radical anions SO4(•-) were analyzed using reverse-phase (RP) high-performance liquid chromatography (HPLC). Relative efficiencies of two major pathways were compared: production of 8-oxoguanine (8oxoG) and hydrogen abstraction from the DNA 2-deoxyribose moiety (dR) at C1,' C4,' and C5' positions. The formation of 8oxoG was found to account for 87% of all quantified lesions at low illumination doses. The concentration of 8oxoG quickly reaches a steady state at about one 8oxoG per 100 base pairs due to further oxidation of its products. It was found that another guanine oxidation product identified as 2-amino-5-(2'-alkylamino)-4H-imidazol-4-one (X) was released in significant quantities from its tentative precursor 2-amino-5-[(2'-deoxy-β-d-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) upon treatment with primary amines in neutral solutions. The linear dose dependence of X release points to the formation of dIz directly from guanine and not through oxidation of 8oxoG. The damage to dR was found to account for about 13% of the total damage, with majority of lesions (33%) originating from the C4' oxidation. The contribution of C1' oxidation also turned out to be significant (17% of all dR damages) despite of the steric problems associated with the abstraction of the C1'-hydrogen. However, no evidence of base-to-sugar free valence transfer as a possible alternative to direct hydrogen abstraction at C1' was found.

  4. Substituent effect on electron affinity, gas-phase basicity, and structure of monosubstituted propynyl radicals and their anions: a theoretical study.

    PubMed

    Lee, Gab-Yong

    2009-11-15

    The substituent effect of electron-withdrawing groups on electron affinity and gas-phase basicity has been investigated for substituted propynl radicals and their corresponding anions. It is shown that when a hydrogen of the alpha-CH(3) group in the propynyl system is substituted by an electron-withdrawing substituent, electron affinity increases, whereas gas-phase basicity decreases. These results can be explained in terms of the natural atomic charge of the terminal acetylene carbon of the systems. The calculated electron affinities are 3.28 eV (*C=C-CH(2)F), 3.59 eV (*C[triple bond]C-CH(2)Cl) and 3.73 eV (*C[triple bond]C-CH(2)Br), and the gas-phase basicities of their anions are 359.5 kcal/mol ((-):C[triple bond]C-CH(2)F), 354.8 kcal/mol (:C[triple bond]C-CH(2)Cl) and 351.3 kcal/mol ((-):C[triple bond]C-CH(2)Br). It is concluded that the larger the magnitude of electron-withdrawing, the greater is the electron affinity of radical and the smaller is the gas-phase basicity of its anion.

  5. Calculation of the properties of the S3- radical anion and its complexes with Cu+ in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    2012-10-01

    A species observed in aqueous sulfidic solutions at high T and P has recently been identified as the anion radical S3-, based on the Raman spectrum obtained in a hydrothermal diamond-anvil cell (Pokrovski and Dubrovinsky, 2011, Science, 331, 1052-1054). Such a species had not been expected to occur in such environments, although S3- as an component of lapis lazuli, other solids and even albite melt has been well studied (Winther et al., 1998; Reinen and Lindner, 1999; Arieli et al., 2004; Shnitko et al., 2008; Bacci et al., 2009). We have calculated the structures, energetics, vibrational and UV-visible spectra of S3- and several other similar species and confirm the species identification of Pokrovski and Dubrovinsky, although we are still somewhat concerned about the apparent lack of a third peak which we calculate to be present in the Raman spectrum of S3-. Our calculations indicate that the reaction: S6-2⇒2S3- in aqueous solution has a free energy change of +3 kcal/mol at 298 K and 1 atm pressure but -13 kcal/mol at 723 K and 1 atm pressure, consistent with the disappearance of disulfide species and the appearance of S3-at high T. Likewise, the free energy for the reaction: 2HS+SO4-2+H⇒S3-+.75O+2.5HO decreases from 44.1 to 19.0 kcal/mol between 298 and 723 K (again at 1 atm). This is consistent with the decrease in concentrations of SH- and SO4-2 and the formation of S3- observed by Pokrovski and Dubrovinski over this temperature range. The corresponding log K values are in semiquantitative agreement with those found by Pokrovski and Dubrovinsky. The main contribution to these changes in reaction free energy with temperature come from the VRT (vibrational-rotational-translational) contribution to the gas-phase free energy, while the hydration free energy difference changes little. Calculation of 34S-32S isotopic fractionations for S3- at 298 K give δ values of around +4.3% relative to H2S, a value intermediate between that of S3 and S3-2. Calculated free

  6. Superoxide anion radical (O2(-)) degrades methylmercury to inorganic mercury in human astrocytoma cell line (CCF-STTG1).

    PubMed

    Mailloux, Ryan J; Yumvihoze, Emmanuel; Chan, Hing Man

    2015-09-05

    Methylmercury (MeHg) is a global pollutant that is affecting the health of millions of people worldwide. However, the mechanism of MeHg toxicity still remains somewhat elusive and there is no treatment. It has been known for some time that MeHg can be progressively converted to inorganic mercury (iHg) in various tissues including the brain. Recent work has suggested that cleavage of the carbon-metal bond in MeHg in a biological environment is facilitated by reactive oxygen species (ROS). However, the oxyradical species that actually mediates this process has not been identified. Here, we provide evidence that superoxide anion radical (O2(-)) can convert MeHg to iHg. The calculated second-order rate constant for the degradation of 1μM MeHg by O2(-) generated by xanthine/xanthine oxidase was calculated to be 2×10(5)M(-1)s(-1). We were also able to show that this bioconversion can proceed in intact CCF-STTG1 human astrocytoma cells exposed to paraquat (PQ), a O2(-) generating viologen. Notably, exposure of cells to increasing amounts of PQ led to a dose dependent increase in both MeHg and iHg. Indeed, a 24h exposure to 500μM PQ induced a ∼13-fold and ∼18-fold increase in intracellular MeHg and iHg respectively. These effects were inhibited by superoxide dismutase mimetic MnTBAP. In addition, we also observed that a 24h exposure to a biologically relevant concentration of MeHg (1μM) did not induce cell death, oxidative stress, or even changes in cellular O2(-) and H2O2. However, co-exposure to PQ enhanced MeHg toxicity which was associated with a robust increase in cell death and oxidative stress. Collectively our results show that O2(-) can bioconvert MeHg to iHg in vitro and in intact cells exposed to conditions that simulate high intracellular O2(-) production. In addition, we show for the first time that O2(-) mediated degradation of MeHg to iHg enhances the toxicity of MeHg by facilitating an accumulation of both MeHg and iHg in the intracellular

  7. Fluorinated Dodecaphenylporphyrins: Synthetic and Electrochemical Studies Including the First Evidence of Intramolecular Electron Transfer Between an Fe(II) Porphyrin -Anion Radical and an Fe(I) Porphyrin

    SciTech Connect

    D'Souza, F.; Forsyth, T.P.; Fukuzumi, S.; Kadish, K.M.; Krattinger, B.; Lin, M.; Medforth, C.J.; Nakanishi, I.; Nurco, D.J.; Shelnutt, J.A.; Smith, K.M.; Van Caemelbecke, E.

    1998-10-19

    Dodecaphenylporphyrins with varying degrees of fluorination of the peripheral phenyl rings (FXDPPS) were synthesized as model compounds for studying electronic effects in nonplan~ porphyrins, and detailed electrochemical studies of the chloroiron(HI) complexes of these compounds were undertaken. The series of porphyrins, represented as FeDPPCl and as FeFXDPPCl where x = 4, 8 (two isomers), 12, 20,28 or 36, could be reversibly oxidized by two electrons in dichloromethane to give n-cation radicals and n-dications. All of the compounds investigated could also be reduced by three electrons in benzonitrile or pyridine. In benzonitrile, three reversible reductions were observed for the unfluorinated compound FeDPPC1, whereas the FeFXDPPCl complexes generally exhibited irreversible first and second reductions which were coupled to chemical reactions. The chemical reaction associated with the first reduction involved a loss of the chloride ion after generation of Fe FXDPPC1. The second chemical reaction involved a novel intramolecular electron transfer between the initially generated Fe(H) porphyrin n-anion radical and the final Fe(I) porphyrin reduction product. In pyridine, three reversible one electron reductions were observed with the second reduction affording stable Fe(II) porphyrin o - anion radicals for ail of the complexes investigated.

  8. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    NASA Astrophysics Data System (ADS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-04-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  9. Photoionization in micelles: Addition of charged electron acceptors

    NASA Astrophysics Data System (ADS)

    Stenland, Chris; Kevan, Larry

    The relative photoyield of the electron donor N, N, N', N'-tetramethylbenzidine (TMB), solubilized in sodium and lithium dodecyl sulfate micelles with added charged electron acceptors was investigated. It was attempted to control the acceptor distance from a charged micellar interface by differently charged acceptors, cationic dimethyl viologen and anionic ferricyanide. However, back electron transfer from both cationic and anionic acceptors was found to be efficient. Thus simple electrostatic arguments for control of the photoyield do not seem applicable. Salt effects associated with the added ionic acceptors which partially neutralize the ionic micellar interface are suggested to be an important factor.

  10. Probing the Low-lying Electronic States of Cyclobutanetetraone (C4O4) and its Radical Anion: A Low-Temperature Anion Photoelectron Spectroscopic Approach

    SciTech Connect

    Guo, Jin-Chang; Hou, Gaolei; Li, Si-Dian; Wang, Xue B.

    2012-02-02

    Despite a seemingly simple appearance, cyclobutanetetraone (C{sub 4}O{sub 4}) has four low-lying electronic states. Determining the energetic ordering of these states and the ground state of C{sub 4}O{sub 4}{sup -} theoretically has been proven to be considerably challenging and remains largely unresolved to date. Here we report a low-temperature negative ion photoelectron spectroscopic approach. A well structured spectrum with evenly spaced features was obtained at 193 nm due to excitation of the ring breathing mode of the C{sub 4}O{sub 4} neutral, whereas each 193-nm feature was observed to further split into a three-peak manifold at 266 nm assigned due to three electronic transitions from the ground state of the anion to the ground and two low-lying excited states of the neutral. Combined with recent theoretical studies and our own Franck-Condon factors simulations, the ground state of C{sub 4}O{sub 4}{sup -}, as well as the ground and two low-lying excited states of C{sub 4}O{sub 4} are determined to be {sup 2}A{sub 2u}, and {sup 3}B{sub 2u}, {sup 1}A{sub 1g} (8{pi}), {sup 1}B{sub 2u}, respectively. The frequency of the ring breathing mode (1810 {+-} 20 cm{sup -1}), the electron affinity (3.475 {+-} 0.005 eV), and the term values of {sup 1}A{sub 1g} (8{pi}) (6.27 {+-} 0.5 kJ/mol) and {sup 1}B{sub 2u} (13.50 {+-} 0.5 kJ/mol) are also directly obtained from the experiments.

  11. [Reliability of electron-transport membranes and the role of oxygen anion-radicals in aging: stochastic modulation of the genetic program].

    PubMed

    Kol'tover, V K

    2010-01-01

    All biomolecular constructions and nanorecators are designed to perform preset functions. All of them operate with limited reliability, namely, for each and every device or bionanoreactor normal operation alternates with accidental malfunctions (failures). Timely preventive maintenance replacement (prophylaxis) of functional elements in cells and tissues, the so-called turnover, is the main line of assuring high system reliability of organism as a whole. There is a finite number of special groups of genes (reliability assuring structures, RAS) that perform supervisory functions over the preventive maintenance. In a hierarchic pluricellular organism, RAS are genetic regulatory networks of a special group of cells, like hypothalamic neurons in the suprachiasmatic nucleus of mammals. Of the primary importance is limited reliability of mitochondrial nanoreactors, since the random malfunctions of electron transport chains produce reactive anion-radicals of oxygen (superoxide radical, O2*(-)). With time, O2*(-) radicals initiate accumulation of irreparable damages in RAS. When these damages accumulate up to preset threshold level, a fatal decrease in reliability of RAS occurs. Thus, aging is the stochastic consequence of programmed deficiency in reliability of biomolecular constructions and nanoreactors including the genetically preset limit of the system reliability. This reliability approach provides the realistic explanation of the data on prolongation of life of experimental animals with antioxidants as well as the explanation of similar "hormetic" effects of ionizing radiation in low doses.

  12. Competitive Deprotonation and Superoxide [O2 -•] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O•) preferentially form superoxide radical-anion (O2 -•) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -•) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 -• adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O•) to generate the superoxide radical-anion ( m/z 32) or the deprotonated amide [ m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  13. Theoretical and spectroscopic study of ethyl 1,4-dihydro-4-oxoquinoline-3-carboxylate and its 6-fluoro and 8-nitro derivatives in neutral and radical anion forms

    NASA Astrophysics Data System (ADS)

    Rimarčík, Ján; Punyain, Kraiwan; Lukeš, Vladimír; Klein, Erik; Dvoranová, Dana; Kelterer, Anne-Marie; Milata, Viktor; Lietava, Jozef; Brezová, Vlasta

    2011-05-01

    A systematic comparative theoretical and spectroscopic study has been performed on a series of four recently prepared ethyl 4-oxoquinoline-3-carboxylate derivatives possessing a variety of biological activities. The most probable oxo- and hydroxy-tautomeric neutral molecular forms were identified using density functional theory (DFT). Vertical optical transitions were calculated for global minima using time-dependent version of DFT. Calculated spectra were compared with the experimental electronic spectra of quinolones measured in various aprotic solvents (toluene, acetonitrile, dimethylsulfoxide). Finally, the structures and spin density distributions of radical anions obtained upon photoinduced reduction of two nitro-substituted derivatives in titania suspension were deduced from the comparison of calculated isotropic hyperfine coupling constants with experimental data determined from EPR spectra.

  14. Oxidation of guanine in G, GG, and GGG sequence contexts by aromatic pyrenyl radical cations and carbonate radical anions: relationship between kinetics and distribution of alkali-labile lesions.

    PubMed

    Lee, Young Ae; Durandin, Alexander; Dedon, Peter C; Geacintov, Nicholas E; Shafirovich, Vladimir

    2008-02-14

    Oxidatively generated DNA damage induced by the aromatic radical cation of the pyrene derivative 7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene (BPT), and by carbonate radicals anions, was monitored from the initial one-electron transfer, or hole injection step, to the formation of hot alkali-labile chemical end-products monitored by gel electrophoresis. The fractions of BPT molecules bound to double-stranded 20-35-mer oligonucleotides with noncontiguous guanines G and grouped as contiguous GG and GGG sequences were determined by a fluorescence quenching method. Utilizing intense nanosecond 355 nm Nd:YAG laser pulses, the DNA-bound BPT molecules were photoionized to BPT*+ radicals by a consecutive two-photon ionization mechanism. The BPT*+ radicals thus generated within the duplexes selectively oxidize guanine by intraduplex electron-transfer reactions, and the rate constants of these reactions follow the trend 5'-..GGG.. > 5'-..GG.. > 5'-..G... In the case of CO3*- radicals, the oxidation of guanine occurs by intermolecular collision pathways, and the bimolecular rate constants are independent of base sequence context. However, the distributions of the end-products generated by CO3*- radicals, as well as by BPT*+, are base sequence context-dependent and are greater than those in isolated guanines at the 5'-G in 5'-...GG... sequences, and the first two 5'- guanines in the 5'-..GGG sequences. These results help to clarify the conditions that lead to a similar or different base sequence dependence of the initial hole injection step and the final distribution of oxidized, alkali-labile guanine products. In the case of the intermolecular one-electron oxidant CO3*-, the rate constant of hole injection is similar for contiguous and isolated guanines, but the subsequent equilibration of holes by hopping favors trapping and product formation at contiguous guanines, and the sequence dependence of these two phenomena are not correlated. In contrast, in the case of the DNA

  15. Construction of a highly sensitive non-enzymatic sensor for superoxide anion radical detection from living cells.

    PubMed

    Liu, Yuelin; Liu, Xiuhui; Liu, Yidan; Liu, Guoan; Ding, Lan; Lu, Xiaoquan

    2017-04-15

    A novel non-enzymatic superoxide anion (O2•(-)) sensor was fabricated based on Ag nanoparticles (NPs)/L-cysteine functioned carbon nanotubes (Cys-MWCNTs) nanocomposites and used to measure the release of O2•(-) from living cells. In this strategy, AgNPs could be uniformly electrodeposited on the MWCNTs surface with average diameter of about 20nm as exhibited by scanning electronmicroscopy (SEM). Electrochemical study demonstrated that the AgNPs/Cys-MWCNTs modified glassy carbon electrode exhibited excellent catalytic activity toward the reduction of O2•(-) with a super wide linear range from 7.00×10(-11) to 7.41×10(-5)M and a low detection limit (LOD) of 2.33×10(-11)M (S/N=3). Meanwhile, the mechanism for O2•(-) reduction was also proposed for the first time. Importantly, this novel non-enzymatic O2•(-) sensor can detect O2•(-) release from cancer cells under both the external stimulation and the normal condition, which has the great potential application in clinical diagnostics to assess oxidative stress of living cells.

  16. Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)).

    PubMed

    Bryantsev, Vyacheslav S; Giordani, Vincent; Walker, Wesley; Blanco, Mario; Zecevic, Strahinja; Sasaki, Kenji; Uddin, Jasim; Addison, Dan; Chase, Gregory V

    2011-11-10

    There is increasing evidence that cyclic and linear carbonates, commonly used solvents in Li ion battery electrolytes, are unstable in the presence of superoxide and thus are not suitable for use in rechargeable Li-air batteries employing aprotic electrolytes. A detailed understanding of related decomposition mechanisms provides an important basis for the selection and design of stable electrolyte materials. In this article, we use density functional theory calculations with a Poisson-Boltzmann continuum solvent model to investigate the reactivity of several classes of aprotic solvents in nucleophilic substitution reactions with superoxide. We find that nucleophilic attack by O(2)(•-) at the O-alkyl carbon is a common mechanism of decomposition of organic carbonates, sulfonates, aliphatic carboxylic esters, lactones, phosphinates, phosphonates, phosphates, and sulfones. In contrast, nucleophilic reactions of O(2)(•-) with phenol esters of carboxylic acids and O-alkyl fluorinated aliphatic lactones proceed via attack at the carbonyl carbon. Chemical functionalities stable against nucleophilic substitution by superoxide include N-alkyl substituted amides, lactams, nitriles, and ethers. The results establish that solvent reactivity is strongly related to the basicity of the organic anion displaced in the reaction with superoxide. Theoretical calculations are complemented by cyclic voltammetry to study the electrochemical reversibility of the O(2)/O(2)(•-) couple containing tetrabutylammonium salt and GCMS measurements to monitor solvent stability in the presence of KO(2)(•) and a Li salt. These experimental methods provide efficient means for qualitatively screening solvent stability in Li-air batteries. A clear correlation between the computational and experimental results is established. The combination of theoretical and experimental techniques provides a powerful means for identifying and designing stable solvents for rechargeable Li-air batteries.

  17. Structural and Mechanistic Analysis through Electronic Spectra: Aqueous Hyponitrite Radical (N2O2-) and Nitrosyl Hyponitrite Anion (N3O3-)

    SciTech Connect

    Valiev, Marat; Lymar, Sergei V.

    2011-11-03

    Aqueous hyponitrite radical (N{sub 2}O{sub 2}{sup -}) and nitrosyl hyponitrite anion (N{sub 3}O{sub 3}{sup -}) species are important intermediates in the reductive chemistry of NO. The structures and absorption spectra of various hydrated isomers of these compounds were investigated in this work using high-level quantum mechanical calculations combined with the explicit classical description of the aqueous environment. For N{sub 2}O{sub 2}{sup -}, comparison of the calculated spectra and energetics with the experimental data reveals that: (1) upon the one-electron oxidation of trans-hyponitrite (ON=NO{sub 2}{sup -}), the trans configuration of the resulting ON=NO{sup -} radical is preserved; (2) although cis- and trans-ON=NO{sup -} are energetically nearly equivalent, the barrier for the trans-cis isomerization is prohibitively high due to the partial double character of the NN bond; (3) the UV spectrum of ON=NO{sup -} was misinterpreted in the earlier pulse radiolysis work and its more recent revision has been justified. For the N{sub 3}O{sub 3}{sup -} ion, the symmetric isomer is the dominant observable species, and the asymmetric isomer contributes little to the experimental spectrum. Coherent analysis of the calculated and experimental data suggests a re-interpretation of the N{sub 2}O{sub 2}{sup -} + NO reaction mechanism, according to which the reaction evenly bifurcates to yield both the symmetric and asymmetric isomers of N{sub 3}O{sub 3}{sup -}. While the latter isomer rapidly decomposes to the final NO{sub 2}{sup -} + N{sub 2}O products, the former isomer is stable toward this decomposition but its formation is reversible with the homolysis equilibrium constant Khom = 2.2 - 10{sup -7} M. Collectively, these results demonstrate that advanced theoretical modeling can be of significant benefit in structural and mechanistic analysis of UV spectra.

  18. Induction of the superoxide anion radical scavenging capacity of dried 'funori'Gloiopeltis furcata by Lactobacillus plantarum S-SU1 fermentation.

    PubMed

    Kuda, Takashi; Nemoto, Maki; Kawahara, Miho; Oshio, Satoshi; Takahashi, Hajime; Kimura, Bon

    2015-08-01

    To understand the beneficial properties of edible algae obtained from the north-eastern (Sanriku) Satoumi region of Japan, the antioxidant properties of hot aqueous extract solutions (AES) obtained from 18 dried algal products were determined. The samples included 4 Ceratophyllum demersum (matsumo), 5 Undaria pinnatifida (wakame), 5 Laminaria japonica (kombu), and 2 each of Gloiopeltis furcate (funori) and G. tenax (funori). Of these products, the total phenolic content and Fe-reducing power were highest in matsumo. On the other hand, the polysaccharide content, viscosity, and superoxide anion radical (O2˙(-))-scavenging capacity were highest in funori. Lactobacillus plantarum S-SU3, isolated from the intestine of Japanese surfperch, and Lb. plantarum S-SU1, isolated from salted squid, could ferment the AES of matsumo and funori, respectively. Although the Fe-reducing power of the matsumo solution was reduced due to fermentation, the O2˙(-)-scavenging capacity of the funori solution was increased by fermentation. Furthermore, the fermented funori suspension protected Saccharomyces cerevisiae, a live cell model, against H2O2 toxicity. These results suggest that the fermented funori is a promising functional food material that is capable of protecting against reactive oxygen species.

  19. Xanthine oxidase is one of the major sources of superoxide anion radicals in blood after reperfusion in rats with forebrain ischemia/reperfusion.

    PubMed

    Ono, Takeru; Tsuruta, Ryosuke; Fujita, Motoki; Aki, Hiromi Shinagawa; Kutsuna, Satoshi; Kawamura, Yoshikatsu; Wakatsuki, Jun; Aoki, Tetsuya; Kobayashi, Chihiro; Kasaoka, Shunji; Maruyama, Ikuro; Yuasa, Makoto; Maekawa, Tsuyoshi

    2009-12-11

    We recently reported that excessive superoxide anion radical (O(2)(-)) was generated in the jugular vein during reperfusion in rats with forebrain ischemia/reperfusion using a novel electrochemical sensor and excessive O(2)(-) generation was associated with oxidative stress, early inflammation, and endothelial injury. However, the source of O(2)(-) was still unclear. Therefore, we used allopurinol, a potent inhibitor of xanthine oxidase (XO), to clarify the source of O(2)(-) generated in rats with forebrain ischemia/reperfusion. The increased O(2)(-) current and the quantified partial value of electricity (Q), which was calculated by the integration of the current, were significantly attenuated after reperfusion by pretreatment with allopurinol. Malondialdehyde (MDA) in the brain and plasma, high-mobility group box 1 (HMGB1) in plasma, and intercellular adhesion molecule-1 (ICAM-1) in the brain and plasma were significantly attenuated in rats pretreated with allopurinol with dose-dependency in comparison to those in control rats. There were significant correlations between total Q and MDA, HMGB, or ICAM-1 in the brain and plasma. Allopurinol pretreatment suppressed O(2)(-) generation in the brain-perfused blood in the jugular vein, and oxidative stress, early inflammation, and endothelial injury in the acute phase of forebrain ischemia/reperfusion. Thus, XO is one of the major sources of O(2)(-)- in blood after reperfusion in rats with forebrain ischemia/reperfusion.

  20. An extract from berries of Aronia melanocarpa modulates the generation of superoxide anion radicals in blood platelets from breast cancer patients.

    PubMed

    Kedzierska, Magdalena; Olas, Beata; Wachowicz, Barbara; Stochmal, Anna; Oleszek, Wieslaw; Jeziorski, Arkadiusz; Piekarski, Janusz; Glowacki, Rafal

    2009-10-01

    Plant antioxidants protect cells against oxidative stress. Because oxidative stress (measured by different biomarkers) is observed in breast cancer patients, the aim of this study was to establish the effects of a polyphenol-rich extract of Aronia melanocarpa (final concentration of 50 microg/mL, 5 min, 37 degrees C) on superoxide anion radicals (O(2)(-*)) and glutathione (GSH) in platelets from patients with breast cancer and in a healthy group in vitro. Generation of O(2)(-*) in platelets before and after incubation with the extract was measured by cytochrome C reduction. Using HPLC, we determined the level of glutathione in blood platelets. We observed a statistically significant increase of biomarkers of oxidative stress such as O(2)(-*) and a decrease in GSH in platelets from patients with breast cancer compared with the healthy group. We showed that the extract from A. melanocarpa added to blood platelets significantly reduced the production of O(2)(-*) in platelets not only from the healthy group but also from patients with breast cancer. Considering the data presented in this study, we have demonstrated the protective role of the extract from A. melanocarpa in patients with breast cancer in vitro.

  1. Structural and Mechanistic Analysis through Electronic Spectra: Aqueous Hyponitrite Radical (N(2)O(2)(-)) and Nitrosyl Hyponitrite Anion (N(3)O(3)(-))

    SciTech Connect

    Lymar S. V.; Valiev M.

    2011-11-03

    Aqueous hyponitrite radical (N{sub 2}O{sub 2}{sup -}) and nitrosyl hyponitrite anion (N{sub 3}O{sub 3}{sup -}) are important intermediates in the reductive chemistry of NO. The structures and absorption spectra of various hydrated isomers of these compounds were investigated in this work using high-level quantum mechanical calculations combined with the explicit classical description of the aqueous environment. For N{sub 2}O{sub 2}{sup -}, comparison of the calculated spectra and energetics with the experimental data reveals that (1) upon the one-electron oxidation of trans-hyponitrite (ON{double_bond}NO{sup 2-}), the trans configuration of the resulting ON{double_bond}NO{sup -} radical is preserved; (2) although cis- and trans-ON{double_bond}NO{sup -} are energetically nearly equivalent, the barrier for the trans-cis isomerization is prohibitively high because of the partial double character of the NN bond; (3) the calculations confirm that the UV spectrum of ONNO{sup -} was misinterpreted in the earlier pulse radiolysis work, and its more recent revision has been justified. For the N{sub 3}O{sub 3}{sup -} ion, the symmetric isomer the dominant observable species, and the asymmetric isomer contributes insignificantly to the experimental spectrum. Coherent analysis of the calculated and experimental data suggests a reinterpretation of the N{sub 2}O{sub 2}{sup -} + NO reaction mechanism according to which the reaction evenly bifurcates to yield both the symmetric and asymmetric isomers of N{sub 3}O{sub 3}{sup -}. While the latter isomer rapidly decomposes to the final NO{sub 2}{sup -} + N{sub 2}O products, the former isomer is stable toward this decomposition, but its formation is reversible with the homolysis equilibrium constant K{sub hom} = 2.2 x 10{sup -7} M. Collectively, these results demonstrate that advanced theoretical modeling can be of significant benefit in structural and mechanistic analysis on the basis of the electronic spectra of aqueous transients.

  2. Water-Network Mediated, Electron Induced Proton Transfer in Anionic [C5H5N\\cdot(H2O)n]- Clusters: Size Dependent Formation of the Pyridinium Radical for n ≥ 3

    NASA Astrophysics Data System (ADS)

    DeBlase, Andrew F.; Weddle, Gary H.; Archer, Kaye A.; Jordan, Kenneth D.; Johnson, Mark

    2015-06-01

    As an isolated species, the radical anion of pyridine (Py-) exists as an unstable transient negative ion, while in aqueous environments it is known to undergo rapid protonation to form the neutral pyridinium radical [PyH(0)] along with hydroxide. Furthermore, the negative adiabatic electron affinity (AEA) of Py- can become diminished by the solvation energy associated with cluster formation. In this work, we focus on the hydrates [Py\\cdot(H2O)n]- with n = 3-5 and elucidate the structures of these water clusters using a combination of vibrational predissociation and photoelectron spectroscopies. We show that H-trasfer to form PyH(0) occurs in these clusters by the infrared signature of the nascent hydroxide ion and by the sharp bending vibrations of aromatic ring CH bending.

  3. Superoxide generated by pyrogallol reduces highly water-soluble tetrazolium salt to produce a soluble formazan: a simple assay for measuring superoxide anion radical scavenging activities of biological and abiological samples.

    PubMed

    Xu, Chen; Liu, Shu; Liu, Zhiqiang; Song, Fengrui; Liu, Shuying

    2013-09-02

    Superoxide anion radical (O2(˙-)) plays an important role in several human diseases. The xanthine/xanthine oxidase system is frequently utilized to produce O2(˙-). However, false positive results are easily got by using this system. The common spectrophotometric probes for O2(˙-) are nitroblue tetrazolium (NBT) and cytochrome c. Nevertheless, the application of NBT method is limited because of the water-insolubility of NBT formazan and the assay using cytochrome c lacks sensitivity and is not suitable for microplate measurement. We overcome these problems by using 1,2,3-trihydroxybenzene (pyrogallol) as O2(˙-)-generating system and a highly water-soluble tetrazolium salt, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium sodium salt (WST-1) which can be reduced by superoxide anion radical to a stable water-soluble formazan with a high absorbance at 450 nm. The method is simple, rapid and sensitive. Moreover, it can be adapted to microplate format. In this study, the O2(˙-) scavenging activities of superoxide dismutase (SOD), L-ascorbic acid, N-acetyl-L-cysteine (NAC), albumin from human serum, flavonoids and herbal extracts were assessed by using this method. Meanwhile, the activities of tissue homogenates and serum were determined by using this validated method. This method, applicable to tissue homogenates, serum and herbal extracts, proved to be efficient for measuring O2(˙-) scavenging activities of biological and abiological samples.

  4. Oxidative catalysis using the stoichiometric oxidant as a reagent: an efficient strategy for single-electron-transfer-induced tandem anion-radical reactions.

    PubMed

    Kafka, František; Holan, Martin; Hidasová, Denisa; Pohl, Radek; Císařová, Ivana; Klepetářová, Blanka; Jahn, Ullrich

    2014-09-08

    Oxidative single-electron transfer-catalyzed tandem reactions consisting of a conjugate addition and a radical cyclization are reported, which incorporate the mandatory terminal oxidant as a functionality into the product.

  5. Disassembly of micelles to impart donor and acceptor gradation to enhance organic solar cell efficiency.

    PubMed

    Arulkashmir, Arulraj; Krishnamoorthy, Kothandam

    2016-02-28

    A transparent, conducting and low surface energy surface was prepared by disassembly of anionic micelles, which altered the orientation of the donor polymer and imparted gradation between the donor and acceptor. This configuration increased the solar cell device efficiency.

  6. Designer Metallic Acceptor-Containing Halogen Bonding: General Strategies.

    PubMed

    Zhang, Xinxing; Bowen, Kit H

    2017-03-13

    Being electrostatic interactions in nature, hydrogen bonding (HB) and halogen bonding (XB) are considered to be two parallel worlds. In principle, all the applications that HB has could also be applied to XB. However, there has been no report on a metallic XB acceptor but metal anions have been observed to be good HB acceptors. This missing mosaic piece of XB is because common metal anions are reactive for XB donors. In view of this, we propose two strategies for designing metallic acceptor-containing XB using ab initio calculations. The first one is to utilize a metal cluster anion with a high electron detachment energy, such as the superatom, Al13- as the XB acceptor. The second strategy is to design a ligand passivated/protected metal core while it still can maintain the negative charge; several exotic clusters, such as PtH5-, PtZnH5- and PtMgH5-, are utilized as examples. Based on these two strategies, we anticipate that more metallic acceptor-containing XB will be discovered.

  7. Near-IR and ESR studies of the radical anions of C60 and C70 in the system fullerene-primary amine

    NASA Astrophysics Data System (ADS)

    Lobach, A. S.; Goldshleger, N. F.; Kaplunov, M. G.; Kulikov, A. V.

    1995-09-01

    The excited state proton transfer rate of 4-hydroxy-1-naphthalenesulphonate has been studied in methanol-water and ethanol-water mixtures. The lifetimes of the probe are measured at six different temperatures between 5 and 60°C. The decay is single exponential in the long time regime and proton transfer rates have been found to increase with the square of the concentration of water in alcohol-water mixtures. The decay has been explained by a new model proposing a water dimer to be the effective proton acceptor in the proton transfer process.

  8. Alternansucrase acceptor products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regioselectivity of alternansucrase (EC 2.4.1.140) differs from dextransucrase (EC 2.4.1.5) in ways that can be useful for the synthesis of novel oligosaccharide structures. For example, it has been recently shown that the major oligosaccharides produced when maltose is the acceptor include one...

  9. Chemistry of ascorbic acid radicals

    SciTech Connect

    Bielski, B.H.J.

    1982-01-01

    The chemistry of ascorbic acid free radicals is reviewed. Particular emphasis is placed on identification and characterization of ascorbate radicals by spectrophotometric and electron paramagnetic resonance techniques, the kinetics of formation and disappearance of ascorbate free radicals in enzymatic and nonenzymatic reactions, the effect of pH upon the spectral and kinetic properties of ascorbate anion radical, and chemical reactivity of ascorbate free radicals.

  10. Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions.

    PubMed

    Holan, Martin; Pohl, Radek; Císařová, Ivana; Klepetářová, Blanka; Jones, Peter G; Jahn, Ullrich

    2015-06-26

    Densely functionalized cyclopentane derivatives with up to four consecutive stereocenters are assembled by a tandem Michael addition/single-electron transfer oxidation/radical cyclization/oxygenation strategy mediated by ferrocenium hexafluorophosphate, a recyclable, less toxic single-electron transfer oxidant. Ester enolates were coupled with α-benzylidene and α-alkylidene β-dicarbonyl compounds with switchable diastereoselectivity. This pivotal steering element subsequently controls the diastereoselectivity of the radical cyclization step. The substitution pattern of the radical cyclization acceptor enables a switch of the cyclization mode from a 5-exo pattern for terminally substituted olefin units to a 6-endo mode for internally substituted acceptors. The oxidative anionic/radical strategy also allows efficient termination by oxygenation with the free radical 2,2,6,6-tetramethyl-1-piperidinoxyl, and two C-C bonds and one C-O bond are thus formed in the sequence. A stereochemical model is proposed that accounts for all of the experimental results and allows the prediction of the stereochemical outcome. Further transformations of the synthesized cyclopentanes are reported.

  11. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  12. Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions. [Gamma rays and electrons

    SciTech Connect

    Schaefer, K.; Asmus, K.D.

    1980-08-21

    Phosphite radicals HPO/sub 3/- and PO/sub 3//sup 2/-, which exist in an acid-base equilibrium with pK = 5.75, are shown to take part in various types of reactions. In the absence of scavengers, they disappear mainly by second-order disproportionation and combination; a first-order contribution to the decay is also indicated. HPO/sub 3/- and PO/sub 3//sup 2/- are good reductants toward electron acceptors such as tetranitromethane. In this reaction phosphate and C(NO/sub 2/)/sub 3/- are formed. Phosphite radicals can, however, also act as good oxidants, e.g., toward thiols and thiolate ions. These reactions lead to the formation of RS. radicals which were identified either directly, as in the case of penicillamine, through the optical absorption of PenS. or more indirectly through equilibration of RS. with RS- to the optically absorbing RSSR-. disulfide radical anion. A homolytic substitution reaction (S/sub H/2) occurs in the reaction of the phosphite radicals with aliphatic disulfides, yielding RS. radicals and phosphate thioester RSPO/sub 3//sup 2/-. Lipoic acid, as an example of a cyclic disulfide, is reduced to the corresponding RSSR-. radical anion and also undergoes the S/sub H/2 reaction with about equal probability. An addition reaction is observed between phosphite radicals and molecular oxygen. The resulting peroxo phosphate radicals establish an acid-base equilibrium HPO/sub 5//sup -/. reversible PO/sub 5//sup 2 -/. + H+ with a pK = 3.4. Absolute rate constants were determined for all reactions discussed.

  13. Neutral, cationic, and anionic low-spin iron(III) complexes stabilized by amidophenolate and iminobenzosemiquinonate radical in N,N,O ligands.

    PubMed

    Rajput, Amit; Sharma, Anuj K; Barman, Suman K; Koley, Debasis; Steinert, Markus; Mukherjee, Rabindranath

    2014-01-06

    A brownish-black complex [Fe(III)(L)2] (1) (S = 0), supported by two tridentate redox-active azo-appended o-amidophenolates [H2L = 2-(2-phenylazo)-anilino-4,6-di-tert-butylphenol], has been synthesized and structurally characterized. In CH2Cl2 1 displays two oxidative and two reductive 1e(-) redox processes at E1/2 values of 0.48 and 1.06 V and -0.42 and -1.48 V vs SCE, respectively. The one-electron oxidized form [1](+) isolated as a green solid [Fe(III)(L)2][BF4] (2) (S = 1/2) has been structurally characterized. Isolation of a dark ink-blue one-electron reduced form [1](-) has also been achieved [Co(III)(η(5)-C10H15)2][Fe(III)(L)2] (3) (S = 1/2). Mössbauer spectral parameters unequivocally establish that 1 is a low-spin (LS) Fe(III) complex. Careful analysis of Mössbauer spectral data of 2 and 3 at 200 and 80 K reveal that each complex has a major LS Fe(III) and a minor LS Fe(II) component (redox isomers): [Fe(III){(L(ISQ))(-•)}2](+) and [Fe(II){(L(IBQ))(0)}{(L(ISQ))(-•)}](+) (2) and [Fe(III){(L(AP))(2-)}2](-) and [Fe(II){(L(ISQ))(-•)}{(L(AP))(2-)}](-) (3). Notably, for both at 8 K mainly the major component exists. Broken-Symmetry (BS) Density Functional Theory (DFT) calculations at the B3LYP level reveals that in 1 the unpaired electron of LS Fe(III) is strongly antiferromagnetically coupled with a π-radical of o-iminobenzosemiquinonate(1-) (L(ISQ))(-•) form of the ligand, delocalized over two ligands providing 3- charge (X-ray structure). DFT calculations reveal that the unpaired electron in 2 is due to (L(ISQ))(-•) [LS Fe(III) (SFe = 1/2) is strongly antiferromagnetically coupled to one of the (L(ISQ))(-•) radicals (Srad = 1/2)] and 3 is primarily a LS Fe(III) complex, supported by two o-amidophenolate(2-) ligands. Time-Dependent-DFT calculations shed light on the origin of UV-vis-NIR spectral absorptions for 1-3. The collective consideration of Mössbauer, variable-temperature (77-298 K) electron paramagnetic resonance (EPR), and absorption

  14. Photoelectron spectroscopy of higher bromine and iodine oxide anions: electron affinities and electronic structures of BrO(2,3) and IO(2-4) radicals.

    PubMed

    Wen, Hui; Hou, Gao-Lei; Huang, Wei; Govind, Niranjan; Wang, Xue-Bin

    2011-11-14

    This report details a photoelectron spectroscopy (PES) and theoretical investigation of electron affinities (EAs) and electronic structures of several atmospherically relevant higher bromine and iodine oxide molecules in the gas phase. PES spectra of BrO(2)(-) and IO(2)(-) were recorded at 12 K and four photon energies--355 nm/3.496 eV, 266 nm/4.661 eV, 193 nm/6.424 eV, and 157 nm/7.867 eV--while BrO(3)(-), IO(3)(-), and IO(4)(-) were only studied at 193 and 157 nm due to their expected high electron binding energies. Spectral features corresponding to transitions from the anionic ground state to the ground and excited states of the neutral are unraveled and resolved for each species. The EAs of these bromine and iodine oxides are experimentally determined for the first time (except for IO(2)) to be 2.515 ± 0.010 (BrO(2)), 2.575 ± 0.010 (IO(2)), 4.60 ± 0.05 (BrO(3)), 4.70 ± 0.05 (IO(3)), and 6.05 ± 0.05 eV (IO(4)). Three low-lying excited states along with their respective excitation energies are obtained for BrO(2) [1.69 (A (2)B(2)), 1.79 (B (2)A(1)), 1.99 eV (C (2)A(2))], BrO(3) [0.7 (A (2)A(2)), 1.6 (B (2)E), 3.1 eV (C (2)E)], and IO(3) [0.60 (A (2)A(2)), 1.20 (B (2)E), ∼3.0 eV (C (2)E)], whereas six excited states of IO(2) are determined along with their respective excitation energies of 1.63 (A (2)B(2)), 1.73 (B (2)A(1)), 1.83 (C (2)A(2)), 4.23 (D (2)A(1)), 4.63 (E (2)B(2)), and 5.23 eV (F (2)B(1)). Periodate (IO(4)(-)) possesses a very high electron binding energy. Only one excited state feature with 0.95 eV excitation energy is shown in the 157 nm spectrum. Accompanying theoretical calculations reveal structural changes from the anions to the neutrals, and the calculated EAs are in good agreement with experimentally determined values. Franck-Condon factors simulations nicely reproduce the observed vibrational progressions for BrO(2) and IO(2). The low-lying excited state information is compared with theoretical calculations and discussed with their

  15. Moderate hypothermia suppresses jugular venous superoxide anion radical, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats.

    PubMed

    Koda, Yoichi; Tsuruta, Ryosuke; Fujita, Motoki; Miyauchi, Takashi; Kaneda, Kotaro; Todani, Masaki; Aoki, Tetsuya; Shitara, Masaki; Izumi, Tomonori; Kasaoka, Shunji; Yuasa, Makoto; Maekawa, Tsuyoshi

    2010-01-22

    The aim of this study was to assess the effect of moderate hypothermia (MH) on generation of jugular venous superoxide radical (O2-.), oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion (FBI/R) rats. Twenty-one Wistar rats were allocated to a control group (n=7, 37 degrees C), a pre-MH group (n=7, 32 degrees C before ischemia), and a post-MH group (n=7, 32 degrees C after reperfusion). MH was induced before induction of ischemia in the pre-MH group and just after reperfusion in the post-MH group. Forebrain ischemia was induced by occlusion of bilateral common carotid arteries with hemorrhagic hypotension for 10 min, followed by reperfusion. O(2)(-)(.) in the jugular vein was measured from the produced current using a novel O2-. sensor. The O2-. current showed a gradual increase during forebrain ischemia in the control and post-MH groups but was attenuated in the pre-MH group. Following reperfusion, the current showed a marked increase in the control group but was strongly attenuated in the pre- and post-MH groups. Concentrations of malondialdehyde, high-mobility group box 1 (HMGB1) protein, and intercellular adhesion molecule-1 (ICAM-1) in the brain and plasma 120 min after reperfusion in the pre- and post-MH groups were significantly lower than those in the control group, except for plasma HMGB1 in the post-MH group. In conclusion, MH suppressed O2-. measured in the jugular vein, oxidative stress, early inflammation, and endothelial injury in FBI/R rats.

  16. Photoelectron spectroscopy of higher bromine and iodine oxide anions: Electron affinities and electronic structures of BrO2,3 and IO2-4 radicals.

    SciTech Connect

    Wen, Hui; Hou, Gaolei; Huang, Wei; Govind, Niranjan; Wang, Xue B.

    2011-11-14

    This report details a photoelectron spectroscopy (PES) investigation on electron affinities (EAs) and electronic structures of several atmospherically relevant higher bromine and iodine oxide molecules in the gas phase. PES spectra of BrO{sub 2}{sup -} and IO{sub 2}{sup -} were recorded at 12 K and four photon energies--355 nm/3.496 eV, 266 nm/4.661 eV, 193 nm/6.424 eV, and 157 nm/7.867 eV--while BrO{sub 3}{sup -}, IO{sub 3}{sup -}, and IO{sub 4}{sup -} were studied at 193 and 157 nm only due to their expected high electron binding energies. Spectral features corresponding to transitions from the anion ground state to the ground and excited states of the neutral are unraveled and resolved for each species. For the first time, EAs of these bromine and iodine oxides are experimentally determined (except for IO{sub 2}) to be 2.515 {+-} 0.010 (BrO{sub 2}), 2.575 {+-} 0.010 (IO{sub 2}), 4.60 {+-} 0.05 (BrO{sub 3}), 4.70 {+-} 0.05 (IO{sub 3}), and 6.05 {+-} 0.05 eV (IO{sub 4}). Three low-lying excited states with their respective excitation energies are obtained for BrO{sub 2} [1.69 (A {sup 2}B2), 1.79 (B {sup 2}A{sub 1}), 1.99 eV (C {sup 2}A{sub 2})], BrO{sub 3} [0.7 (A {sup 2}A{sub 2}), 1.6 (B {sup 2}E), 3.1 eV (C {sup 2}E)], and IO{sub 3} [0.60 (A {sup 2}A{sub 2}), 1.20 (B {sup 2}E), {approx}3.0 eV (C {sup 2}E)], whereas six excited states of IO{sub 2} are determined with the respective excitation energies of 1.63 (A {sup 2}B{sub 2}), 1.73 (B {sup 2}A{sub 1}), 1.83 (C {sup 2}A{sub 2}), 4.23 (D {sup 2}A{sub 1}), 4.63 (E {sup 2}B{sub 2}), and 5.23 eV (F {sup 2}B{sub 1}). Periodate possesses a very high electron binding energy. Only one excited state feature with 0.95 eV excitation energy is shown in the 157 nm spectrum. The obtained EAs and low-lying excited state information are compared with available theoretical calculations and discussed with their atmospheric implications.

  17. Forgotten Radicals in Biology

    PubMed Central

    Luc, Rochette; Vergely, Catherine

    2008-01-01

    Redox reactions play key roles in intra- and inter-cellular signaling, and in adaptative processes of tissues towards stress. Among the major free radicals with essential functions in cells are reactive oxygen species (ROS) including superoxide anion (O2•-), hydroxyl radical (•OH) and reactive nitrogen species (RNS) such as nitric oxide (•NO). In this article, we review the forgotten and new radicals with potential relevance to cardiovascular pathophysiology. Approximately 0.3% of O2•- present in cytosol exists in its protonated form: hydroperoxyl radical (HO2•). Water (H2O) can be split into two free radicals: •OH and hydrogen radical (H•). Several free radicals, including thiyl radicals (RS•) and nitrogen dioxide (NO2•) are known to isomerize double bonds. In the omega-6 series of poly-unsaturated fatty acids (PUFAs), cis-trans isomerization of γ-linolenate and arachidonate catalyzed by RS• has been investigated. Evidence is emerging that hydrogen disulphide (H2S) is a signaling molecule in vivo which can be a source of free radicals. The Cu-Zn superoxide dismutase (SOD) enzyme can oxidize the ionized form of H2S to hydro-sulphide radical: HS•. Recent studies suggest that H2S plays an important function in cardiovascular functions. Carbonate radical, which can be formed when •OH reacts with carbonate or bicarbonate ions, is also involved in the activity of Cu-Zn-SOD. Recently, it has been reported that carbonate anion were potentially relevant oxidants of nucleic acids in physiological environments. In conclusion, there is solid evidence supporting the formation of many free radicals by cells leading which may play an important role in their homeostasis. PMID:23675099

  18. Highly Soluble Benzo[ghi]perylenetriimide Derivatives: Stable and Air-Insensitive Electron Acceptors for Artificial Photosynthesis

    PubMed Central

    Chen, Hung-Cheng; Hsu, Chao-Ping; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2015-01-01

    A series of new benzo[ghi]perylenetriimide (BPTI) derivatives has been synthesized and characterized. These remarkably soluble BPTI derivatives show strong optical absorption in the range of λ=300–500 nm and have a high triplet-state energy of 1.67 eV. A cyanophenyl substituent renders BPTI such a strong electron acceptor (Ered=−0.11 V vs. the normal hydrogen electrode) that electron-trapping reactions with O2 and H2O do not occur. The BPTI radical anion on a fluorine-doped tin oxide|TiO2 electrode is persistent up to tens of seconds (t1/2=39 s) in air-saturated buffer solution. As a result of favorable packing, theoretical electron mobilities (10−2∼10−1 cm2 V−1 s−1) are high and similar to the experimental values observed for perylene diimide and C60 derivatives. Our studies show the potential of the cyanophenyl-modified BPTI compounds as electron acceptors in devices for artificial photosynthesis in water splitting that are also very promising nonfullerene electron-transport materials for organic solar cells. PMID:26395847

  19. Anion photoelectron imaging spectroscopy of glyoxal

    NASA Astrophysics Data System (ADS)

    Xue, Tian; Dixon, Andrew R.; Sanov, Andrei

    2016-09-01

    We report a photoelectron imaging study of the radical-anion of glyoxal. The 532 nm photoelectron spectrum provides the first direct spectroscopic determination of the adiabatic electron affinity of glyoxal, EA = 1.10 ± 0.02 eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy of the radical-anion is determined as VDE = 1.30 ± 0.04 eV. The reported EA and VDE values are attributed to the most stable (C2h symmetry) isomers of the neutral and the anion.

  20. Asymmetric Anion-π Catalysis on Perylenediimides.

    PubMed

    Wang, Chao; Miros, François N; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-11-07

    Anion-π catalysis, that is the stabilization of anionic transition states on π-acidic aromatic surfaces, has so far been developed with naphthalenediimides (NDIs). This report introduces perylenediimides (PDIs) to anion-π catalysis. The quadrupole moment of PDIs (+23.2 B) is found to exceed that of NDIs and reach new records with acceptors in the core (+70.9 B), and their larger surface provides space to better accommodate chemical transformations. Unlike NDIs, the activity of PDI catalysts for enolate and enamine addition is determined by the twist of their π surface rather than their reducibility. These results, further strengthened by nitrate inhibition and circular dichroism spectroscopy, support an understanding of anion-π interactions centered around quadrupole moments, i.e., electrostatic contributions, rather than redox potentials and charge transfer. The large PDI surfaces provide access to the highest enantioselectivities observed so far in anion-π catalysis (96 % ee).

  1. The Negative Ion Photoelectron Spectrum of Cyclopropane-1,2,3-Trione Radical Anion, (CO) 3 •– — A Joint Experimental and Computational Study

    SciTech Connect

    Chen, Bo; Hrovat, David A.; West, Robert; Deng, Shihu H. M.; Wang, Xue-Bin; Borden, Weston Thatcher

    2014-09-03

    Negative Ion Photoelectron (NIPE) spectra of the radical anion of cyclopropane-1,2,3-trione, (CO)3•-, have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show broadened bands, due to the short lifetimes of both the singlet and triplet states of (CO)3. The smaller intensity of the band with the lower electron binding energy suggests that the singlet is the ground state of (CO)3. From the NIPE spectra, the electron affinity (EA) and the singlet-triplet energy gap of (CO)3 are estimated to be, respectively, EA = 3.1 ± 0.1 eV and ΔEST = -14 ± 3 kcal/mol. High-level, (U)CCSD(T)/aug-cc-pVQZ//(U)CCSD(T)/aug-cc-pVTZ, calcu-lations give EA = 3.04 eV for the 1A1´ ground state of (CO)3 and ΔEST = -13.8 kcal/mol for the energy gap between the 1A1´ and 3A2 states, in excellent agreement with values from the NIPE spectra. In addition, simulations of the vibrational structures for formation of these states of (CO)3 from the 2A2'' state of (CO)3•- provide a good fit to the shapes of broad bands in the 266 nm NIPE spectrum. The NIPE spectrum of (CO)3•- and the analysis of the spectrum by high-quality electronic structure calculations demonstrate that NIPES can not only access and provide information about transition structures, but NIPES can also access and provide information about hilltops on potential energy surfaces.

  2. Iridium(III) Mediated Reductive Transformation of Closed-Shell Azo-Oxime to Open-Shell Azo-Imine Radical Anion: Molecular and Electronic Structure, Electron Transfer, and Optoelectronic Properties.

    PubMed

    Pramanik, Shuvam; Roy, Sima; Ghorui, Tapas; Ganguly, Sanjib; Pramanik, Kausikisankar

    2016-02-15

    The hydrogen bonded bis azo-oximato [IrCl2(L(NOH))(L(NO))] 2 and its deprotonated form (Et3NH)[IrCl2(L(NO))2] (Et3NH)(+)3(-) have been isolated in the crystalline state by a facile synthetic method. The azo-oxime frameworks in 3(-) have been conveniently transformed to the azo-imine by reduction with NaBH4 or ascorbic acid. Notably, the coordinated azo-imines accept an extra electron thereby furnishing the azo-imine radical anion complex 4. The underlying reductive transformation can be best described by proton-coupled electron transfer (PCET) process. Both the coordinated ligands (azo-oxime) in 3(-) are typically closed-shell monoanion (L(NO-)), but their reduced form (azo-imine) can behave as open-shell monoanion (L(NH•-)) owing to the presence of highly stabilized virtual orbitals. Remarkable enhancement of the π-acidity in azo-imine relative to the precursor azo-oxime has also been reflected from the electrochemical study. The irido complexes display rich optoelectronic properties, and the origin of the transitions has been scrutinized by the TD-DFT method. The molecular geometries of the complexes 2 and 3(-) reveal that the syn orientation of the azo-oximes frameworks is favored because of strong noncovalent H-bonding and π-π stacking interactions. In the course of the reduction of 3(-), the sterically encumbered disposition of the azo-oximes is converted to the relaxed anti form in the transformed azo-imines. Diffraction study reveals the electronic structure of 4 as [Ir(III)Cl2{(L(NH))2(•-)}]. The superior stabilization of the unpaired spin on the ligand array rather than metal has also been substantiated from EPR and DFT studies. Theoretical analysis reveals that the odd electron delocalizes primarily over both the azo-imine moieties ([IrCl2(L(NH•-))(L(NH))] ↔ ([IrCl2(L(NH))(L(NH•-))]) with no apparent contribution from metal, and this type of ligand-centered mixed valency (LCMV) can be best expressed as Robin-Day class III (fully delocalized

  3. High-level ab initio predictions for the ionization energy, electron affinity, and heats of formation of cyclopentadienyl radical, cation, and anion, C5H5/C5H5+/C5H5-.

    PubMed

    Lo, Po-Kam; Lau, Kai-Chung

    2014-04-03

    The ionization energy (IE), electron affinity (EA), and heats of formation (ΔH°f0/ΔH°f298) for cyclopentadienyl radical, cation, and anion, C5H5/C5H5(+)/C5H5(-), have been calculated by wave function-based ab initio CCSDT/CBS approach, which involves approximation to complete basis set (CBS) limit at coupled-cluster level with up to full triple excitations (CCSDT). The zero-point vibrational energy correction, core-valence electronic correction, scalar relativistic effect, and higher-order corrections beyond the CCSD(T) wave function are included in these calculations. The allylic [C5H5((2)A2)] and dienylic [C5H5((2)B1)] forms of cyclopentadienyl radical are considered: the ground state structure exists in the dienyl form and it is about 30 meV more stable than the allylic structure. Both structures are lying closely and are interconvertible along the normal mode of b2 in-plane vibration. The CCSDT/CBS predictions (in eV) for IE[C5H5(+)((3)A1')←C5H5((2)B1)] = 8.443, IE[C5H5(+)((1)A1)←C5H5((2)B1)] = 8.634 and EA[C5H5(-)((1)A1')←C5H5((2)B1)] = 1.785 are consistent with the respective experimental values of 8.4268 ± 0.0005, 8.6170 ± 0.0005, and 1.808 ± 0.006, obtained from photoelectron spectroscopic measurements. The ΔH°f0/ΔH°f298's (in kJ/mol) for C5H5/C5H5(+)/C5H5(-) have also been predicted by the CCSDT/CBS method: ΔH°f0/ΔH°f298[C5H5((2)B1)] = 283.6/272.0, ΔH°f0/ΔH°f298[C5H5(+)((3)A1')] = 1098.2/1086.9, ΔH°f0/ΔH°f298[C5H5(+)((1)A1)] = 1116.6/1106.0, and ΔH°f0/ΔH°f298[C5H5(-)((1)A1')] = 111.4/100.0. The comparisons between the CCSDT/CBS predictions and the experimental values suggest that the CCSDT/CBS procedure is capable of predicting reliable IE(C5H5)'s and EA(C5H5) with uncertainties of ± 17 and ± 23 meV, respectively.

  4. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  5. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  6. Polarized absorption spectra of aromatic radicals in stretched polymer film. 3. Radical ions of acridine and phenazine

    SciTech Connect

    Sekigucki, K.; Hiratsuka, H.; Tanizaki, Y.; Hatano, Y.

    1980-02-21

    Radical anions and cations of acridine and phenazine have been prepared in polymer film by ..gamma..-ray irradiation at 77 K. For the preparation of radical anions the sample was incorporated into polyethylene film by sec-butylamine, while for radical cations poly(vinyl chloride) film and sec-butyl chloride were used. Polarized absorption spectra of these radical ions have been measured in stretched polymer film and analyzed qualitatively in terms of molecular orbital calculations.

  7. Acceptor conductivity in bulk zinc oxide (0001) crystals

    NASA Astrophysics Data System (ADS)

    Adekore, Bababunmi Tolu

    ZnO is a promising wide bandgap semiconductor. Its renowned and prominent properties as its bandgap of 3.37eV at 4.2K; its very high excitonic binding energy, 60meV; its high melting temperature, 2248K constitute the basis for the recently renewed and sustained scientific interests in the material. In addition to the foregoing, the availability of bulk substrates of industrially relevant sizes provides important opportunities such as homoepitaxial deposition of the material which is a technological asset in the production of efficient optoelectronic and electronic devices. The nemesis of wide bandgap materials cannot be more exemplified than in ZnO. The notorious limitation of asymmetric doping and the haunting plague of electrically active point defects dim the bright future of the material. In this case, the search for reliable and consistent acceptor conductivity in bulk substrates has been hitherto, unsuccessful. In the dissertation that now follows, our efforts have been concerted in the search for a reliable acceptor. We have carefully investigated the science of point defects in the material, especially those responsible for the high donor conductivity. We also investigated and herein report variety of techniques of introducing acceptors into the material. We employ the most relevant and informative characterization techniques in verifying both the intended conductivity and the response of intrinsic crystals to variation in temperature and strain. And finally we explain deviations, where they exist, from ideal acceptor characteristics. Our work on reliable acceptor has been articulated in four papers. The first establishing capacitance based methods of monitoring electrically active donor defects. The second investigates the nature of anion acceptors on the oxygen sublattice. A study similar to the preceding study was conducted for cation acceptors on the zinc sublattice and reported in the third paper. Finally, an analysis of the response of the crystal to

  8. Photoinduced Bimolecular Electron Transfer from Cyano Anions in Ionic Liquids.

    PubMed

    Wu, Boning; Liang, Min; Maroncelli, Mark; Castner, Edward W

    2015-11-19

    Ionic liquids with electron-donating anions are used to investigate rates and mechanisms of photoinduced bimolecular electron transfer to the photoexcited acceptor 9,10-dicyanoanthracene (9,10-DCNA). The set of five cyano anion ILs studied comprises the 1-ethyl-3-methylimidazolium cation paired with each of these five anions: selenocyanate, thiocyanate, dicyanamide, tricyanomethanide, and tetracyanoborate. Measurements with these anions dilute in acetonitrile and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide show that the selenocyanate and tricyanomethanide anions are strong quenchers of the 9,10-DCNA fluorescence, thiocyanate is a moderately strong quencher, dicyanamide is a weak quencher, and no quenching is observed for tetracyanoborate. Quenching rates are obtained from both time-resolved fluorescence transients and time-integrated spectra. Application of a Smoluchowski diffusion-and-reaction model showed that the complex kinetics observed can be fit using only two adjustable parameters, D and V0, where D is the relative diffusion coefficient between donor and acceptor and V0 is the value of the electronic coupling at donor-acceptor contact.

  9. Radicals in ionic liquids.

    PubMed

    Strehmel, Veronika

    2012-05-14

    Stable radicals and recombination of photogenerated lophyl radicals are investigated in ionic liquids. The 2,2,6,6-tetramethylpiperidine-1-yloxyl derivatives contain various substituents at the 4-position to the nitroxyl group, including hydrogen-bond-forming or ionic substituents that undergo additional interactions with the individual ions of the ionic liquids. Some of these spin probes contain similar ions to ionic liquids to avoid counter-ion exchange with the ionic liquid. Depending on the ionic liquid anion, the Stokes-Einstein theory or the Spernol-Gierer-Wirtz theory can be applied to describe the temperature dependence of the average rotational correlation time of the spin probe in the ionic liquids. Furthermore, the spin probes give information about the micropolarity of the ionic liquids. In this context the substituent at the 4-position to the nitroxyl group plays a significant role. Covalent bonding of a spin probe to the imidazolium ion results in bulky spin probes that are strongly immobilized in the ionic liquid. Furthermore, lophyl radical recombination in the dark, which is chosen to understand the dynamics of bimolecular reactions in ionic liquids, shows a slow process at longer timescale and a rise time at a shorter timescale. Although various reactions may contribute to the slower process during lophyl radical recombination, it follows a second-order kinetics that does not clearly show solvent viscosity dependence. However, the rise time, which may be attributed to radical pair formation, increases with increasing solvent viscosity.

  10. Spectral properties and reactivity of diarylmethanol radical cations in aqueous solution. Evidence for intramolecular charge resonance.

    PubMed

    Bietti, Massimo; Lanzalunga, Osvaldo

    2002-04-19

    Spectral properties and reactivities of ring-methoxylated diarylmethane and diarylmethanol radical cations, generated in aqueous solution by pulse and gamma-radiolysis and by the one-electron chemical oxidant potassium 12-tungstocobalt(III)ate, have been studied. The radical cations display three bands in the UV, visible, and vis-NIR regions of the spectrum. The vis-NIR band is assigned to an intramolecular charge resonance interaction (CR) between the neutral donor and charged acceptor rings, as indicated by the observation that the relative intensity of the vis-NIR band compared to that of the UV and visible bands does not increase with increasing substrate concentration and that the position and intensity of this band is influenced by the ring-substitution pattern. In acidic solution (pH = 4), monomethoxylated diarylmethanol radical cations 1a.(+ -)1e.(+) decay by C(alpha)-H deprotonation [k = (1.7-1.9) x 10(4)s(-1)] through the intermediacy of a ketyl radical, which is further oxidized in the reaction medium to give the corresponding benzophenones, as evidenced by both time-resolved spectroscopic and product studies. With the dimethoxylated radical cation 2.(+), C(alpha)-H deprotonation is instead significantly slower (k = 6.7 x 10(2)s(-1)). In basic solution, 1a.(+)-1e.(+) undergo (-)OH-induced deprotonation from the alpha-OH group with k(OH.)approximately equal to 1.4 x 10(10)M(-1)s(-1), leading to a ketyl radical anion, which is oxidized in the reaction medium to the corresponding benzophenone.

  11. Photocatalytic Anion Oxidation and Applications in Organic Synthesis.

    PubMed

    Hering, Thea; Meyer, Andreas Uwe; König, Burkhard

    2016-08-19

    Ions and radicals of the same kind differ by one electron only. The oxidation of many stable inorganic anions yields their corresponding highly reactive radicals, and visible light excitable photocatalysts can provide the required oxidation potential for this transformation. Air oxygen serves as the terminal oxidant, or cheap sacrificial oxidants are used, providing a very practical approach for generating reactive inorganic radicals for organic synthesis. We discuss in this perspective several recently reported examples: Nitrate radicals are obtained by one-electron photooxidation of nitrate anions and are very reactive toward organic molecules. The photooxidation of sulfinate salts yields the much more stable sulfone radicals, which smoothly add to double bonds. A two-electron oxidation of chloride anions to electrophilic chlorine species reacting with arenes in aromatic substitutions extends the method beyond radical reactions. The chloride anion oxidation proceeds via photocatalytically generated peracidic acid as the oxidation reagent. Although the number of reported examples of photocatalytically generated inorganic radical intermediates for organic synthesis is still small, future extension of the concept to other inorganic ions as radical precursors is a clear perspective.

  12. FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: photoreduction of the bacteriopheophytin electron acceptor.

    PubMed

    Zabelin, Alexej A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2011-09-01

    Mid-infrared spectral changes associated with the photoreduction of the bacteriopheophytin electron acceptor H(A) in reaction centers (RCs) of the filamentous anoxygenic phototrophic bacterium Chloroflexus (Cfl.) aurantiacus are examined by light-induced Fourier transform infrared (FTIR) spectroscopy. The light-induced H(A)(-)/H(A) FTIR (1800-1200cm(-1)) difference spectrum of Cfl. aurantiacus RCs is compared to that of the previously well characterized purple bacterium Rhodobacter (Rba.) sphaeroides RCs. The most notable feature is that the large negative IR band at 1674cm(-1) in Rba. sphaeroides R-26, attributable to the loss of the absorption of the 13(1)-keto carbonyl of H(A) upon the radical anion H(A)(-) formation, exhibits only a very minor upshift to 1675cm(-1) in Cfl. aurantiacus. In contrast, the absorption band of the 13¹-keto C=O of H(A)(-) is strongly upshifted in the spectrum of Cfl. aurantiacus compared to that of Rba. sphaeroides (from 1588 to 1623cm(-1)). The data are discussed in terms of: (i) replacing the glutamic acid at L104 in Rba. sphaeroides R-26 RCs by a weaker hydrogen bond donor, a glutamine, at the equivalent position L143 in Cfl. aurantiacus RCs; (ii) a strengthening of the hydrogen-bonding interaction of the 13¹-keto C=O of H(A) with Glu L104 and Gln L143 upon H(A)(-) formation and (iii) a possible influence of the protein dielectric environment on the 13¹-keto C=O stretching frequency of neutral H(A). A conformational heterogeneity of the 13³-ester C=O group of H(A) is detected for Cfl. aurantiacus RCs similar to what has been previously described for purple bacterial RCs.

  13. Molecular structure, optical and magnetic properties of metal-free phthalocyanine radical anions in crystalline salts (H2Pc˙-)(cryptand[2,2,2][Na(+)])·1.5C6H4Cl2 and (H2Pc˙-)(TOA+)·C6H4Cl2 (TOA+ is tetraoctylammonium cation).

    PubMed

    Konarev, Dmitri V; Zorina, Leokadiya V; Khasanov, Salavat S; Litvinov, Aleksey L; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2013-05-21

    Ionic compounds containing radical anions of metal-free phthalocyanine (H2Pc˙(-)): (H2Pc˙(-))(cryptand[2,2,2][Na(+)])·1.5C6H4Cl2 (1) and (H2Pc˙(-))(TOA(+))·C6H4Cl2 (2) have been obtained as single crystals for the first time. Their crystal structures have been determined, and optical and magnetic properties have been investigated. The H2Pc˙(-) radical anions have a slightly bowl-like shape with four pyrrole nitrogen atoms located below the molecular plane, while four phenylene substituents are located above this plane. Changes in the average length of N-C and C-C bonds in H2Pc˙(-) in comparison with those in neutral H2Pc indicate that negative charge is mainly delocalized over the 24-atom phthalocyanine ring rather than the phenylene substituents. The H2Pc˙(-) formation is accompanied by a shift of up to 10 cm(-1) and disappearance of some intense IR-active bands whereas the band of the N-H stretching mode is shifted by 21-27 cm(-1) to larger wavenumbers. New bands attributed to H2Pc˙(-) appear in the NIR spectra of the salts with maxima at 1033 and 1028 nm for 1 and 2, respectively. The formation of H2Pc˙(-) is accompanied by the splitting of the Soret and Q-bands of H2Pc into several bands and their blue-shift up to 32 nm. Narrow EPR signals with g = 2.0033 and linewidth of 0.16-0.24 mT at room temperature in the spectra of the salts were attributed to the H2Pc˙(-) radical anions. According to SQUID measurements they have S = 1/2 spin states with effective magnetic moments of 1.73 (1) and 1.78 (2) μB at 300 K. Magnetic behavior of 1 and 2 follows the Curie-Weiss law with negative Weiss temperatures of -0.9 and -0.5 K, respectively, indicating weak antiferromagnetic interactions of spins. The EPR signal splits into two lines below 120 and 80 K for 1 and 2, respectively and these lines are noticeably broadened below 25 K.

  14. Formation of ions and radicals from icy grains in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.

    1992-01-01

    Two theoretical models for the formation of radicals from ice grains are examined to determine if this can explain the jets in comets. It is shown that the production rates for these radicals by the photolysis of molecules in the icy grains are not high enough to explain the jets. A new mechanism is proposed involving the release of cations and anions in the gas phase as the icy mantle surrounding the grains is evaporated. Solar visible radiation can then form radicals by photodetachment of the electrons from these anions. The production rate of radicals formed in this manner is in accord with the production rates of the observed radicals.

  15. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.

    PubMed

    Nealson, K H; Moser, D P; Saffarini, D A

    1995-04-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  16. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  17. Effects of electron acceptors and radical scavengers on nonchain radical nucleophilic substitution reactions

    SciTech Connect

    Xianman Zhang; Dilun Yang; Youcheng Liu )

    1993-01-01

    The yields of reaction products from thermal nucleophilic substitution reactions in dimethyl sulfoxide (DMSO) of six o- and p-nitrohalobenzenes with the sodium salt of ethyl [alpha]-cyanoacetate carbanion [Na[sup +][sup [minus

  18. Carotenoid cation radicals produced by the interaction of carotenoids with iodine

    SciTech Connect

    Ding, R.; Grant, J.L.; Metzger, R.M.; Kispert, L.D.

    1988-08-11

    Electron paramagnetic resonance (EPR) and optical absorption spectra of 1,2-dichloroethane and dichloromethane solutions of ..beta..-carotene (C/sub 40/H/sub 56/) and iodine have been studied. EPR studies showed that ..beta..-carotene cation radicals are formed. These radicals form complexes at 77 K, in highly concentrated (0.1 M) iodine solutions, with higher order polyiodide anions, I/sub 5//sup -/, I/sub 7//sup -/, I/sub 9//sup -/ (as evidenced by g value shifts and line-width increases), while at room temperature and in dilute (10/sup -4/-10/sup -5/ M) solutions of iodine only I/sub 3//sup -/ counterions are involved. In dilute solutions (total molar concentratino = 2 x 10/sup -4/ M), a Job plot showed the stoichiometry to be 2:3, indicating the reaction 2C/sub 40/H/sub 56/ + 31/sub 2/ /r equilibrium/ 2C/sub 40/H/sub 56//sup .+/ + 2I/sub 3//sup -/. The radical fraction (EPR) is /approximately/ 2% at 77 K and 0.4% at 300 K (for a 2 mM ..beta..-carotene/0.1 M I/sub 2/ solution); it increases at lower ..beta..-carotene concentrations. Dimers and trimers of ..beta..-carotene cation radicals are formed in dilute solution (I/sub 2/ < 10/sup -4/ M) if (I/sub 2/)/(..beta..-carotene) < 1, and an intense absorption band occurs at lambda/sub max/ /approximately/ 1030 nm. Canthaxanthin and ..beta..-apo-8'-carotenal with I/sub 2/ produce new absorption bands with lambda/sub max/ < 1000 nm; the g values are independent of iodine concentration, suggesting a poorer ability to form complexes with the polyiodide anions. All three carotenoids react with other electron acceptors (7,7,8,8-tetracyanoquinodimethane (TCNQ), tetrachloro-1,4-benzoquinone (chloranil), and Br/sub 2/) according to the electron affinity of the acceptor used.

  19. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-24

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state.

  20. Influence of π-conjugation structural changes on intramolecular charge transfer and photoinduced electron transfer in donor-π-acceptor dyads.

    PubMed

    Kim, So-Yoen; Cho, Yang-Jin; Lee, Ah-Rang; Son, Ho-Jin; Han, Won-Sik; Cho, Dae Won; Kang, Sang Ook

    2016-12-21

    The influence of π-conjugation structural changes on photoinduced electron transfer (PET) and intramolecular charge transfer (ICT) processes in π-conjugated donor (D)-acceptor (A) dyads (D-π-A) was investigated. Three types of D-π-A dyads were prepared through the modification of the structure of their π-conjugated linker, including D-π-A (1) and D-πtw-A (2) having a twisted π-conjugation, and D-π-Si-π-A (3) with a π-conjugation severed by a Si-atom. In these dyads, carbazole (Cz) and oxadiazole (Oz) moieties act as an electron donor and acceptor, respectively. The emission maxima of dyads 1 and 3 red-shifted with the increase in polarity, which could be attributed to the ICT process. The fluorescence lifetimes of dyads 1 and 3 were 2.64 and 4.29 ns in CH2Cl2, respectively. In contrast, dyad 2 showed dual emission at 350 and 470 nm in CH2Cl2. The emission of dyad 2 at 380 nm corresponded to the monomer fluorescence in the locally excited state. Moreover, the emission at 470 nm increased simultaneously with the diminishing of the fluorescence at 380 nm. This emission band can be assigned as the intramolecular exciplex emission, and showed a strong solvatochromic shift. The low emission quantum yield (<3%) of dyad 2 is due to the PET process. In dyad 2, the cationic and anionic radical species generated by the PET process were confirmed by femtosecond transient absorption (fs-TA) spectroscopy. Upon photoexcitation at 290 or 340 nm, the A or D moieties can be selectively excited. Upon excitation at 290 nm, the acceptor moiety can be excited to the (1)A* state, thus the photoinduced hole transfer (PHT) takes place from (1)A* to D through the HOMO levels within a few picoseconds. On the other hand, when the donor moiety is excited at 340 nm, the PET process occurs from (1)D* to A. Based on the fs-TA studies, it was found that the dynamics and mechanisms for the electron (or charge) transfer were strongly affected by the variation of the π-conjugation of the

  1. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  2. Electron-transfer and acid-base properties of a two-electron oxidized form of quaterpyrrole that acts as both an electron donor and an acceptor.

    PubMed

    Zhang, Min; E, Wenbo; Ohkubo, Kei; Sanchez-Garcia, David; Yoon, Dae-Wi; Sessler, Jonathan L; Fukuzumi, Shunichi; Kadish, Karl M

    2008-02-21

    Electron-transfer interconversion between the four-electron oxidized form of a quaterpyrrole (abbreviated as P4 for four pyrroles) and the two-electron oxidized form (P4H2) as well as between P4H2 and its fully reduced form (P4H4) bearing analogous substituents in the alpha- and beta-pyrrolic positions was studied by means of cyclic voltammetry and UV-visible spectroelectrochemistry combined with ESR and laser flash photolysis measurements. The two-electron oxidized form, P4H2, acts as both an electron donor and an electron acceptor. The radical cation (P4H2*+) and radical anion (P4H2*-) are both produced by photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide to P4H2, whereas the cation radical form of the compound is also produced by electron-transfer oxidation of P4H2 with [Ru(bpy)3]3+. The ESR spectra of P4H2*+ and P4H2*- were recorded at low temperature and exhibit spin delocalization over all four pyrrole units. Thus, the two-electron oxidized form of the quaterpyrrole (P4H2) displays redox and electronic features analogous to those seen in the case of porphyrins and may be considered as a simple, open-chain model of this well-studied tetrapyrrolic macrocycle. The dynamics of deprotonation from P4H2*+ and disproportionation of P4H2 were examined by laser flash photolysis measurements of photoinduced electron-transfer oxidation and reduction of P4H2, respectively.

  3. Anions in Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  4. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  5. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  6. Recent advances in photoinduced donor/acceptor copolymerization

    NASA Astrophysics Data System (ADS)

    Jönsson, S.; Viswanathan, K.; Hoyle, C. E.; Clark, S. C.; Miller, C.; Morel, F.; Decker, C.

    1999-05-01

    Photoinitiated free radical polymerization of donor (D)/acceptor (A) type monomers has gained considerable interest due to the possibility to efficiently photopolymerize non-acrylate based systems. Furthermore, this photoinduced alternating copolymerization can be accomplished without the presence of a conventional free radical generating photoinitiator. In the past, we have shown that the structural influences in the direct photolysis of N-Alkyl and N-Arylmaleimides as well as their corresponding ground state charge transfer complexes (CTC) with suitable donors have carefully been investigated. For certain combinations of A and D type monomers, a direct photolysis of the ground state complex or the excitation of the acceptor, followed by the formation of an exciplex, has been shown to initiate the copolymerization. Herein, we show that the main route of initiation is based on inter or intra molecular H-abstraction from an excited state maleimide, whereby no exciplex formation takes place. H-abstraction will predominantly take place in systems where easily abstractable hydrogens are present. Our laser flash photolysis investigation, ESR [1] (A. Hiroshi, I. Takasi, T. Nosi, Macromol. Chem. 190 (1989) 2821) and phosphorescence emissions [2,3] (K.S. Chen, T. Foster, J.K.S. Wan, J. Phys. Chem. 84 (1980) 2473; C.J. Seliskar, S.P. McGlynn, J. Chem. Phys. 55 (1971) 4337) studies show that triplet excited states of N-alkyl substituted maleimides (RMI), which are well known strong precursors for direct H-abstractions from aliphatic ethers and secondary alcohols, are formed upon excitation. Rates of copolymerization and degrees of conversion for copolymerization of maleimide/vinyl ether pairs in air and nitrogen have been measured as a function of hydrogen abstractability of the excited triplet state MI as well as the influence of concentration and hydrogen donating effect of the hydrogen donor.

  7. Kinetics and Thermodynamics of Reversible Thiol Additions to Mono- and Diactivated Michael Acceptors: Implications for the Design of Drugs That Bind Covalently to Cysteines.

    PubMed

    Krenske, Elizabeth H; Petter, Russell C; Houk, K N

    2016-12-02

    Additions of cysteine thiols to Michael acceptors underpin the mechanism of action of several covalent drugs (e.g., afatinib, osimertinib, ibrutinib, neratinib, and CC-292). Reversible Michael acceptors have been reported in which an additional electron-withdrawing group was added at the α-carbon of a Michael acceptor. We have performed density functional theory calculations to determine why thiol additions to these Michael acceptors are reversible. The α-EWG group stabilizes the anionic transition state and intermediate of the Michael addition, but less intuitively, it destabilizes the neutral adduct. This makes the reverse reaction (elimination) both faster and more thermodynamically favorable. For thiol addition to be reversible, the Michael acceptor must also contain a suitable substituent on the β-carbon, such as an aryl or branched alkyl group. Computations explain how these structural elements contribute to reversibility and the ability to tune the binding affinities and the residence times of covalent inhibitors.

  8. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    SciTech Connect

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  9. Osteoclast radicals.

    PubMed

    Silverton, S

    1994-11-01

    In biological research, new ideas arise and quickly spread to encompass the entire field. Thus, the evolution of molecular biology has significantly changed our methods of approaching our research. A similar far-reaching finding has been the advent of radical reactions into biology. Although radical chemistry has been utilized for many technological advances that affect our daily lives, the appreciation of this same process within our cells has opened an unexplored arena for research enquiry. As cellular messengers, radical molecules seem whimsically designed: they are evanescent, rapidly and apparently indiscriminately reactive, and barely detectable by most biological methods. Yet, our initial probing of these reactive agents in cells and organisms has led us to postulate a virtually undescribed system of communication within and among cells which may have significant effects in multiple organs. In bone, radical reactants have been attributed with an important role in the control of bone resorption.

  10. A bidentate Lewis acid with a telluronium ion as an anion-binding site

    NASA Astrophysics Data System (ADS)

    Zhao, Haiyan; Gabbaï, François P.

    2010-11-01

    The search for receptors that can selectively capture small and potentially toxic anions in protic media has sparked a renewed interest in the synthesis and anion-binding properties of polydentate Lewis acids. Seeking new paradigms to enhance the anion affinities of such systems, we synthesized a bidentate Lewis acid that contains a boryl and a telluronium moiety as Lewis acidic sites. Anion-complexation studies indicate that this telluronium borane displays a high affinity for fluoride in methanol. Structural and computational studies show that the unusual fluoride affinity of this bidentate telluronium borane can be correlated with the formation of a B-F --> Te chelate motif supported by a strong lone-pair(F) --> σ*(Te-C) donor-acceptor interaction. These results, which illustrate the viability of heavier chalcogenium centres as anion-binding sites, allow us to introduce a novel strategy for the design of polydentate Lewis acids with enhanced anion affinities.

  11. A bidentate Lewis acid with a telluronium ion as an anion-binding site.

    PubMed

    Zhao, Haiyan; Gabbaï, François P

    2010-11-01

    The search for receptors that can selectively capture small and potentially toxic anions in protic media has sparked a renewed interest in the synthesis and anion-binding properties of polydentate Lewis acids. Seeking new paradigms to enhance the anion affinities of such systems, we synthesized a bidentate Lewis acid that contains a boryl and a telluronium moiety as Lewis acidic sites. Anion-complexation studies indicate that this telluronium borane displays a high affinity for fluoride in methanol. Structural and computational studies show that the unusual fluoride affinity of this bidentate telluronium borane can be correlated with the formation of a B-F → Te chelate motif supported by a strong lone-pair(F) → σ*(Te-C) donor-acceptor interaction. These results, which illustrate the viability of heavier chalcogenium centres as anion-binding sites, allow us to introduce a novel strategy for the design of polydentate Lewis acids with enhanced anion affinities.

  12. Structure of free radicals in irradiated acetyl-L-leucine single crystals at 77 K

    SciTech Connect

    Almanov, G.A.; Bogdanchikov, G.A.; Usov, O.M.

    1988-09-01

    By using the EPR method, two types of radicals are observed, which are formed in acetyl-L-leucine single crystals irradiated at 77K. These are alkyl type radicals (CH/sub 3/)/sub 2/CCH/sub 2/CH(NHCOCH/sub 3/)COOH and peptide group radicals. When the crystals are defrozen to room temperatures, the radicals of the second type disappear without formation of paramagnetic particles. Two possible structures of the peptide group radicals were studied by the INDO method. On defreezing to room temperature, the alkyl group radical is retained, while the peptide radical disappears without formation of paramagnetic particles. For the protonated form of the anion-radical, a better agreement is observed between the theoretically calculated and the experimentally obtained HFI constants. The quantum chemical analysis of the possible structures of the peptide group radicals indicates that the formation of the protonated form of the anion-radical is energetically favorable.

  13. Hispidin analogs from the mushroom Inonotus xeranticus and their free radical scavenging activity.

    PubMed

    Lee, In-Kyoung; Yun, Bong-Sik

    2006-05-01

    Three new free radical scavengers were isolated from the methanolic extract of the fruiting bodies of Inonotus xeranticus (Hymenochaetaceae), along with the known compound davallialactone. Their structures were established as hispidin analogs by extensive NMR spectral data. Compounds 3 and 4 displayed significant scavenging activity against the superoxide radical anion, ABTS radical cation, and DPPH radical, while 1 and 2 exhibited potent antioxidative activity only against ABTS radical cation.

  14. The copper-catalysed Suzuki-Miyaura coupling of alkylboron reagents: disproportionation of anionic (alkyl)(alkoxy)borates to anionic dialkylborates prior to transmetalation.

    PubMed

    Basnet, Prakash; Thapa, Surendra; Dickie, Diane A; Giri, Ramesh

    2016-09-25

    We report the first example of Cu(I)-catalysed coupling of alkylboron reagents with aryl and heteroaryl iodides that affords products in good to excellent yields. Preliminary mechanistic studies with alkylborates indicate that the anionic (alkoxy)(alkyl)borates, generated from alkyllithium and alkoxyboron reagents, undergo disproportionation to anionic dialkylborates and that both anionic alkylborates are active for transmetalation to a Cu(I)-catalyst. Results from a radical clock experiment and the Hammett plot imply that the reaction likely proceeds via a non-radical pathway.

  15. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  16. Anions coordinating anions: analysis of the interaction between anionic Keplerate nanocapsules and their anionic ligands.

    PubMed

    Melgar, Dolores; Bandeira, Nuno A G; Bonet Avalos, Josep; Bo, Carles

    2017-02-15

    Keplerates are a family of anionic metal oxide spherical capsules containing up to 132 metal atoms and some hundreds of oxygen atoms. These capsules holding a high negative charge of -12 coordinate both mono-anionic and di-anionic ligands thus increasing their charge up to -42, even up to -72, which is compensated by the corresponding counter-cations in the X-ray structures. We present an analysis of the relative importance of several energy terms of the coordinate bond between the capsule and ligands like carbonate, sulphate, sulphite, phosphinate, selenate, and a variety of carboxylates, of which the overriding component is contributed by solvation/de-solvation effects.

  17. R type anion channel

    PubMed Central

    Diatloff, Eugene; Peyronnet, Rémi; Colcombet, Jean; Thomine, Sébastien; Barbier-Brygoo, Hélène

    2010-01-01

    Plant genomes code for channels involved in the transport of cations, anions and uncharged molecules through membranes. Although the molecular identity of channels for cations and uncharged molecules has progressed rapidly in the recent years, the molecular identity of anion channels has lagged behind. Electrophysiological studies have identified S-type (slow) and R-type (rapid) anion channels. In this brief review, we summarize the proposed functions of the R-type anion channels which, like the S-type, were first characterized by electrophysiology over 20 years ago, but unlike the S-type, have still yet to be cloned. We show that the R-type channel can play multiple roles. PMID:21051946

  18. Donator acceptor map of psittacofulvins and anthocyanins: are they good antioxidant substances?

    PubMed

    Martínez, Ana

    2009-04-09

    Psittacofulvins represent an unusual class of pigments (noncarotenoid lipochromes), which are found only in the red, orange, and yellow plumage of parrots. Anthocyanins are flavonoids, and they are one of the primary types of colorants found in plants. Blue butterflies acquire blue and UV hues on their wings, owing to the presence of flavonoids. It is assumed that these natural pigments are valuable antioxidants because they are able to scavenge free radicals. The aim of this investigation is to rationalize the scavenging activity of psittacofulvins and anthocyanins, in terms of the one electron transfer mechanism, taking into account that to prevent oxidative stress, substances must either donate or accept electrons. Density functional approximation calculations are used to obtain ionization potentials, electron affinities, electrodonating, and electroaccepting power indexes. Taking these values, a donator acceptor map (DAM) was constructed, indicating that anthocyanins are good electron donors, whereas psittacofulvins are good electron acceptors. Anthocyanins and vitamins are antioxidants, whereas psittacofulvins and carotenoids are antireductants (oxidants). In terms of solvent effects, animal pigments (carotenoids, psittacofulvins, and anthocyanins) are much better electron acceptors in water than in either the gas phase or benzene. Solvent effects do not alter the electron donor capacity of vitamins, but anthocyanins become effective electron acceptors in water, rather than effective electron donors. The information presented here may also be valuable for the design and analysis of further experiments.

  19. Pathways of arachidonic acid peroxyl radical reactions and product formation with guanine radicals.

    PubMed

    Crean, Conor; Geacintov, Nicholas E; Shafirovich, Vladimir

    2008-02-01

    Peroxyl radicals were derived from the one-electron oxidation of polyunsaturated fatty acids by sulfate radicals that were generated by the photodissociation of peroxodisulfate anions in air-equilibrated aqueous solutions. Reactions of these peroxyl and neutral guanine radicals, also generated by oxidation with sulfate radicals, were investigated by laser kinetic spectroscopy, and the guanine oxidation products were identified by HPLC and mass spectrometry methods. Sulfate radicals rapidly oxidize arachidonic (ArAc), linoleic (LnAc), and palmitoleic (PmAc) acids with similar rate constants, (2-4) x 10 (9) M (-1) s (-1). The C-centered radicals derived from the oxidation of ArAc and LnAc include nonconjugated Rn(.) ( approximately 80%) and conjugated bis-allylic Rba(.) ( approximately 20%) radicals. The latter were detectable in the absence of oxygen by their prominent, narrow absorption band at 280 nm. The Rn(.) radicals of ArAc (containing three bis-allylic sites) transform to the Rba(.) radicals via an intramolecular H-atom abstraction [rate constant (7.5 +/- 0.7) x 10 (4) s (-1)]. In contrast, the Rn(.) radicals of LnAc that contain only one bis-allylic site do not transform intramolecularly to the Rba(.) radicals. In the case of PmAc, which contains only one double bond, the Rba(.) radicals are not observed. The Rn(.) radicals of PmAc rapidly combine with oxygen with a rate constant of (3.8 +/- 0.4) x 10(9) M(-1) s(-1). The Rba(.) radicals of ArAc are less reactive and react with oxygen with a rate constant of (2.2 +/- 0.2) x 10 (8) M (-1) s (-1). The ArAc peroxyl radicals formed spontaneously eliminate superoxide radical anions [rate constant = (3.4 +/- 0.3) x 10 (4) M (-1) s (-1)]. The stable oxidative lesions derived from the 2',3',5'-tri- O-acetylguanosine or 2',3',5'-tri- O-acetyl-8-oxo-7,8-dihydroguanosine radicals and their subsequent reactions with ArAc peroxyl radicals were also investigated. The major products found were the 2,5-diamino-4 H

  20. High Performance Magazine Acceptor Threshold Criteria

    DTIC Science & Technology

    1994-08-01

    detonation transition (DDT). To account for unknown mechanisms the term XDT is also used. Development of a design procedure to prevent SD requires...propagation walls are used to prevent sympathetic detonation between munitions stored in adjacent cells. Design of the walls, and their mitigation...effects, requires sympathetic detonation threshold criteria for acceptor munitions. This paper outlines the procedures being used to develop SD threshold

  1. Formation of Carotenoid Neutral Radicals in Photosystem II

    PubMed Central

    Gao, Yunlong; Shinopoulos, Katherine E.; Tracewell, Cara A.; Focsan, A. Ligia; Brudvig, Gary W.; Kispert, Lowell D.

    2010-01-01

    β-carotene radicals produced in the hexagonal pores of the molecular sieve Cu(II)-MCM-41 were studied by ENDOR and visible/near IR spectroscopies. ENDOR studies showed that neutral radicals of β-carotene were produced in humid air under ambient fluorescent light. The maximum absorption wavelengths of the neutral radicals were measured and were additionally predicted by using time-dependent density functional theory (TD-DFT) calculations. An absorption peak at 750 nm, assigned to the neutral radical with a proton loss from the 4(4') position of the β-carotene radical cation in Cu(II)-MCM-41, was also observed in photosystem II (PS II) samples using near-IR spectroscopy after illumination at 20 K. This peak was previously unassigned in PS II samples. The intensity of the absorption peak at 750 nm relative to the absorption of chlorophyll radical cations and β-carotene radical cations increased with increasing pH of the PS II sample, providing further evidence that the absorption peak is due to the deprotonation of the β-carotene radical cation. Based on a consideration of possible proton acceptors that are adjacent to β-carotene molecules in photosystem II, as modeled in the X-ray crystal structure of Guskov et al. Nat. Struct. Mol. Biol. 2009, 16, 334-342, an electron-transfer pathway from a β-carotene molecule with an adjacent proton acceptor to P680•+ is proposed. PMID:19552399

  2. Anion-π catalysis.

    PubMed

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-05

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  3. Spin dynamics of photogenerated triradicals in fixed distance electron donor-chromophore-acceptor-TEMPO molecules.

    PubMed

    Mi, Qixi; Chernick, Erin T; McCamant, David W; Weiss, Emily A; Ratner, Mark A; Wasielewski, Michael R

    2006-06-15

    The stable free radical 2,2,6,6-tetramethylpiperidinoxyl (TEMPO, T*) was covalently attached to the electron acceptor in a donor-chromophore-acceptor (D-C-A) system, MeOAn-6ANI-Phn-A-T*, having well-defined distances between each component, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-l,8-dicarboximide, Ph = 2,5-dimethylphenyl (n = 0,1), and A = naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI). Using both time-resolved optical and EPR spectroscopy, we show that T* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Phn-A-*-T*), resulting in modulation of the charge recombination rate within the triradical compared with the corresponding biradical lacking T*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and A-* is not altered by the presence of T*, which interacts most strongly with A-* and accelerates radical pair intersystem crossing. Charge recombination within the triradicals results in the formation of 2,4(MeOAn-6ANI-Phn-3*NI-T*) or 2,4(MeOAn-3*6ANI-Phn-PI-T*) in which T* is strongly spin polarized in emission. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, the rate at which the net spin polarization appears on T* closely follows the photogenerated radical ion pair decay rate. This effect is attributed to antiferromagnetic coupling between T* and the local triplet state 3NI, which is populated following charge recombination. These results are explained using a switch in the spin basis set between the triradical and the three-spin charge recombination product having both T* and 3*NI or 3*6ANI present.

  4. Binomial distribution-based quantitative measurement of multiple-acceptors fluorescence resonance energy transfer by partially photobleaching acceptor

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yu, Huaina; Zhang, Jianwei; Chen, Tongsheng

    2014-06-01

    We report that binomial distribution depending on acceptor photobleaching degree can be used to characterize the proportions of various kinds of FRET (Fluorescence Resonance Energy Transfer) constructs resulted from partial acceptor photobleaching of multiple-acceptors FRET system. On this basis, we set up a rigorous quantitation theory for multiple-acceptors FRET construct named as Mb-PbFRET which is not affected by the imaging conditions and fluorophore properties. We experimentally validate Mb-PbFRET with FRET constructs consisted of one donor and two or three acceptors inside living cells on confocal and wide-field microscopes.

  5. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  6. Complex anion inclusion compounds: flexible anion-exchange materials.

    PubMed

    Williams, Edward R; Leithall, Rebecca M; Raja, Robert; Weller, Mark T

    2013-01-11

    Copper chloropyrophosphate frameworks have been synthesised with a wide variety of complex inorganic anions trapped in a large, flexible, one-dimensional pore, with anions including chloride, bromide, phosphate and the complex metal halo-anions PtCl(4)(2-), PdBr(4)(2-), CuCl(4)(2-) and AuCl(4)(-).

  7. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    NASA Astrophysics Data System (ADS)

    Wang, Lai-Sheng

    2015-07-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.

  8. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    SciTech Connect

    Wang, Lai-Sheng

    2015-07-28

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.

  9. Photodetachment of Lanthanide Oxide Anions

    NASA Astrophysics Data System (ADS)

    Covington, A. M.; Emmons, E. D.; Kraus, R. G.; Thompson, J. S.; Calabrese, D.; Davis, V. T.

    2007-06-01

    Laser photodetached electron spectroscopy (LPES) has been used to study the structure and collision properties of lanthanide oxide anions including LaOn^- and CeOn^-. Preliminary photoelectron spectra from these anions will be presented along with ion beam production data from these and other lanthanide oxide anions.

  10. [Relations between the retinoic acid acceptor and teratogenesis of retinoids].

    PubMed

    Li, Zeng-Gang; Sun, Kai-Lai

    2004-09-01

    Retinoic acid can induce teratogenesis of the fetus of many animals including human, and its biological activities are induced by a serious of different retinoic acid accepters and their ligands. The retinoic acid acceptor RAR plays key roles in the teratogenesis, and the ligands of RAR are strong teratogens. The intensity sequence of the relative teratogenesis is ligandalpha, ligandbeta and ligandgamma. The ligands of the retinoic acid acceptor RXR cannot induce teratogenesis, but they can enhance the teratogenesis of the RAR stimulus. The retinoic acid acceptors can also affect the development of the fetus by adjusting the expression of the other genes. The relations between the gene mutation of the retinoic acid acceptor, various retinoic acid acceptors and their ligands and teratogenesis of retinoic acid are summarized in this article. In addition, the regulations of the retinoic acid acceptors to the other genes are also discussed.

  11. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed Central

    Barrett, M C; Dawson, A P

    1975-01-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme. PMID:1218095

  12. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  13. Anion permselective membrane

    NASA Astrophysics Data System (ADS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-07-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  14. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-01-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  15. Probing reactivity of PQQ-dependent carbohydrate dehydrogenases using artificial electron acceptor.

    PubMed

    Tetianec, Lidija; Bratkovskaja, Irina; Kulys, Juozas; Casaite, Vida; Meskys, Rolandas

    2011-02-01

    The kinetic parameters of carbohydrate oxidation catalyzed by Acinetobacter calcoaceticus pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) and Escherichia coli PQQ-dependent aldose sugar dehydrogenase (ASDH) were determined using various electron acceptors. The radical cations of organic compounds and 2,6-dichlorophenolindophenol are the most reactive with both enzymes in presence of glucose. The reactivity of dioxygen with ASDH is low; the bimolecular constant k (ox) = 660 M(-1) s(-1), while GDH reactivity with dioxygen is even less. The radical cation of 3-(10H-phenoxazin-10-yl)propionic acid was used as electron acceptor for reduced enzyme in the study of dehydrogenases carbohydrates specificity. Mono- and disaccharide reactivity with GDH is higher than the reactivity of oligosaccharides. For ASDH, the reactivity increased with the carbohydrate monomer number increase. The specificity of quinoproteins was compared with specificity of flavoprotein Microdochium nivale carbohydrate oxidase due to potential enzymes application for lactose oxidation.

  16. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-03-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  17. Quantum computing with acceptor spins in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  18. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  19. Photoinduced Electron Transfer in DNA: Charge Shift Dynamics Between 8-Oxo-Guanine Anion and Adenine.

    PubMed

    Zhang, Yuyuan; Dood, Jordan; Beckstead, Ashley A; Li, Xi-Bo; Nguyen, Khiem V; Burrows, Cynthia J; Improta, Roberto; Kohler, Bern

    2015-06-18

    Femtosecond time-resolved IR spectroscopy is used to investigate the excited-state dynamics of a dinucleotide containing an 8-oxoguanine anion at the 5'-end and neutral adenine at the 3'-end. UV excitation of the dinucleotide transfers an electron from deprotonated 8-oxoguanine to its π-stacked neighbor adenine in less than 1 ps, generating a neutral 8-oxoguanine radical and an adenine radical anion. These species are identified by the excellent agreement between the experimental and calculated IR difference spectra. The quantum efficiency of this ultrafast charge shift reaction approaches unity. Back electron transfer from the adenine radical anion to the 8-oxguanine neutral radical occurs in 9 ps, or approximately 6 times faster than between the adenine radical anion and the 8-oxoguanine radical cation (Zhang, Y. et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 11612-11617). The large asymmetry in forward and back electron transfer rates is fully rationalized by semiclassical nonadiabatic electron transfer theory. Forward electron transfer is ultrafast because the driving force is nearly equal to the reorganization energy, which is estimated to lie between 1 and 2 eV. Back electron transfer is highly exergonic and takes place much more slowly in the Marcus inverted region.

  20. The separation distance distribution in electron-donor-acceptor systems and the wavelength dependence of free ion yields

    NASA Astrophysics Data System (ADS)

    Zhou, Jinwei; Findley, Bret R.; Braun, Charles L.; Sutin, Norman

    2001-06-01

    We recently reported that free radical ion quantum yields for electron-donor-acceptor (EDA) systems of alkylbenzenes-tetracyanoethylene (TCNE) exhibit a remarkable wavelength dependence in dichloromethane, a medium polarity solvent. We proposed that weak absorption by long-distance, unassociated or "random" D⋯A pairs is mainly responsible for the free radical ion yield. Here a model for the wavelength dependence of the free ion yield is developed for four systems in which differing degrees of EDA complex formation are present: 1,3,5-tri-tert-butylbenzene-TCNE in which only random pairs exist due to the bulky groups on the electron donor, and toluene—TCNE, 1,3,5-triethylbenzene-TCNE and 1,3,5-trimethylbenzene-TCNE. Mulliken-Hush theory is used to determine the excitation distance distribution of unassociated, random pairs at different wavelengths. For each absorption distribution, free radical ion yields at different wavelengths are then calculated using Onsager's result for the ion separation probability. Encouraging agreement between the calculated yields and our experimental results is obtained. As far as we are aware, this is the first time that photoexcitation of unassociated donor/acceptor pairs has been invoked as the source of separated radical ion pairs.

  1. New acceptor-donor-acceptor (A-D-A) type copolymers for efficient organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Ayachi, S.; Alimi, K.

    2015-01-01

    Three new conjugated systems alternating acceptor-donor-acceptor (A-D-A) type copolymers have been investigated by means of Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) at the 6-31g (d) level of theory. 4,4‧-Dimethoxy-chalcone, also called the 1,3-bis(4-methoxyphenyl)prop-2-en-1-one (BMP), has been used as a common acceptor moiety. It forced intra-molecular S⋯O interactions through alternating oligo-thiophene derivatives: 4-AlkylThiophenes (4-ATP), 4-AlkylBithiophenes (4-ABTP) and 4-Thienylene Vinylene (4-TEV) as donor moieties. The band gap, HOMO and LUMO electron distributions as well as optical properties were analyzed for each molecule. The fully optimized resulting copolymers showed low band gaps (2.2-2.8 eV) and deep HOMO energy levels ranging from -4.66 to -4.86 eV. A broad absorption [300-900 nm] covering the solar spectrum and absorption maxima ranges from 486 to 604 nm. In addition, organic photovoltaic cells (OPCs) based on alternating copolymers in bulk heterojunction (BHJ) composites with the 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6]-C61 (PCBM), as an acceptor, have been optimized. Thus, the band gap decreased to 1.62 eV, the power conversion efficiencies (PCEs) were about 3-5% and the open circuit voltage Voc of the resulting molecules decreased from 1.50 to 1.27 eV.

  2. Effect of anions on the electrochemistry of zinc tetraphenylporphyrin

    SciTech Connect

    Seely, G.R.; Gust, D.; Moore, T.A.; Moore, A.L. )

    1994-10-13

    Accurate measurements of porphyrin redox potentials are essential for the prediction and rationalization of the rates of electron transfer reactions involving these biologically important electron-donating and accepting chromophores. The present work describes a survey of redox potentials of zinc tetraphenylporphyrin obtained by cyclic voltammetry in dichloromethane, with tetrabutylammonium salts containing a variety of anions as electrolytes. Of the anions tested, hexafluorophosphate appears to have the least ability to ligate the metal, so that potentials measured in its presence as electrolyte should most closely approach those of the unligated porphyrin. With perchlorate electrolyte, the potential for one-electron oxidation is approximately 80 mV lower, enough to affect the interpretation of photochemical electron transfer rates. In general, anions bind much more strongly to the cation radical than to zinc tetraphenylporphyrin itself. The use of reference redox systems based on thymoquinone and ferrocene carboxylate enabled comparison of potentials measured with different electrolytes. 30 refs., 2 tabs.

  3. Efficient organic dye-sensitized solar cells: molecular engineering of donor-acceptor-acceptor cationic dyes.

    PubMed

    Cheng, Ming; Yang, Xichuan; Zhao, Jianghua; Chen, Cheng; Tan, Qin; Zhang, Fuguo; Sun, Licheng

    2013-12-01

    Three metal-free donor-acceptor-acceptor sensitizers with ionized pyridine and a reference dye were synthesized, and a detailed investigation of the relationship between the dye structure and the photophysical and photoelectrochemical properties and the performance of dye-sensitized solar cells (DSSCs) is described. The ionization of pyridine results in a red shift of the absorption spectrum in comparison to that of the reference dye. This is mainly attributable to the ionization of pyridine increasing the electron-withdrawing ability of the total acceptor part. Incorporation of the strong electron-withdrawing units of pyridinium and cyano acrylic acid gives rise to optimized energy levels, resulting in a large response range of wavelengths. When attached to TiO2 film, the conduction band of TiO2 is negatively shifted to a different extent depending on the dye. This is attributed to the electron recombination rate between the TiO2 film and the electrolyte being efficiently suppressed by the introduction of long alkyl chains and thiophene units. DSSCs assembled using these dyes show efficiencies as high as 8.8 %.

  4. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS2 Nanosheets

    PubMed Central

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-01-01

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS2) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS2 is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS2 and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS2 can sense S1 nuclease with a low detection limit of 5 × 10−6 U/mL. Additionally, this method is cost-effective by using affordable WS2 as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening. PMID:27304956

  5. HCB11(CF3)(n)F(11-n)-: inert anions with high anodic oxidation potentials.

    PubMed

    Fete, Matthew G; Havlas, Zdeněk; Michl, Josef

    2011-03-23

    Cs salts of four of the title anions were prepared by fluorination of salts of partly methylated (n = 11, 10) or partly methylated and partly iodinated (n = 6, 5) CB(11)H(12)(-) anions. The CH vertex is acidic, and in the unhindered anion with n = 6 it has been alkylated. Neat Cs(+)[1-H-CB(11)(CF(3))(11)](-) is as treacherously explosive as Cs(+)[CB(11)(CF(3))(12)](-), but no explosions occurred with the salts of the other three anions. BL3YP/6-31G* gas-phase electron detachment energies of the title anions are remarkably high, 5-8 eV. Treated with NiF(3)(+) in anhydrous liquid HF at -60 °C, anions with n = 11 or 10 resist oxidation, whereas anions with n = 6 or 5 are converted to colored EPR-active species, presumably the neutral radicals [HCB(11)(CF(3))(n)F(11-n)](•). These are stable for hours at -60 °C after extraction into cold perfluorohexane or perfluorotri-n-butylamine solutions. On warming to -20 °C in a Teflon or quartz tube, the color and EPR activity disappear, and the original anions are recovered nearly quantitatively, suggesting that the radicals oxidize the solvent.

  6. Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin-Copper Corrole Donor-Acceptor Conjugates.

    PubMed

    Ngo, Thien H; Zieba, David; Webre, Whitney A; Lim, Gary N; Karr, Paul A; Kord, Scheghajegh; Jin, Shangbin; Ariga, Katsuhiko; Galli, Marzia; Goldup, Steve; Hill, Jonathan P; D'Souza, Francis

    2016-01-22

    An electron-deficient copper(III) corrole was utilized for the construction of donor-acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump-probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge-separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron-deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 10(10)  s(-1) and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.

  7. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1980-01-01

    The efforts on the synthesis of polymer anion redox membranes were mainly concentrated in two areas, membrane development and membrane fabrication. Membrane development covered the preparation and evaluation of experimental membranes systems with improved resistance stability and/or lower permeability. Membrane fabrication covered the laboratory scale production of prime candidate membranes in quantities of up to two hundred and sizes up to 18 inches x 18 inches (46 cm x 46 cm). These small (10 in x 11 in) and medium sized membranes were mainly for assembly into multicell units. Improvements in processing procedures and techniques for preparing such membrane sets lifted yields to over 90 percent.

  8. Mixed Anion Heterostructure Materials

    DTIC Science & Technology

    2004-10-01

    data presented Sb(g) Sb(ads) Sb(s) Kads D (1) (2)Very low + GaAs no reaction ( 3 ) kexch 33 for As2 which indicates that the...Kads D (1) (2) ( 3 ) Anion Exchange kexch (4) Isoelectronic AsSb formation Favoured by As4 +As GaAsySb1-y + Sby(s) GaSb1-y + AsSby(s) +As kiso (5...experiment implemented for this investigation provided a basis for modeling the P(g) P(ads) P(s) + GaAs Kads D (1) (2) ( 3 ) kexch (4) +P GaPyAs1-y

  9. Mutual Lewis acid-base interactions of cations and anions in ionic liquids.

    PubMed

    Holzweber, Markus; Lungwitz, Ralf; Doerfler, Denise; Spange, Stefan; Koel, Mihkel; Hutter, Herbert; Linert, Wolfgang

    2013-01-02

    Solute properties are known to be strongly influenced by solvent molecules due to solvation. This is due to mutual interaction as both the properties of the solute and of the solvent strongly depend on each other. The present paper is based on the idea that ionic liquids are cations solvated by anions and anions solvated by cations. To show this (in this system strongly pronounced) interaction the long time established donor-acceptor concept for solvents and ions in solution by Viktor Gutmann is extended to ionic liquids. A number of solvent parameters, such as the Kamlet-Abboud-Taft and the Dimroth-Reichardt E(T) scale for ionic liquids neglect this mutual influence, which, however, seems to be in fact necessary to get a proper description of ionic liquid properties. It is shown how strong such parameters vary when the influence of the counter ion is taken into account. Furthermore, acceptor and donor numbers for ionic liquids are presented.

  10. π-Extended rigid triptycene-trisaroylenimidazoles as electron acceptors.

    PubMed

    Menke, Elisabeth H; Lami, Vincent; Vaynzof, Yana; Mastalerz, Michael

    2016-01-18

    Two soluble isomeric acceptor molecules based on a triptycene core, which is connected to three aroylenimidazole units are described. Due to the inherent threefold axis, the molecules are soluble and thus could be fully photophysically characterized in solution and film. Additionally, the preliminary results of these acceptors in organic photovoltaic devices with two different donor materials are reported.

  11. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO3

    NASA Astrophysics Data System (ADS)

    Putilov, L. P.; Tsidilkovski, V. I.

    2017-03-01

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔHox of oxide is determined by the energy εA of acceptor-bound states along with the formation energy EV of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of εA and EV values corresponding to the positive or negative ΔHox are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth εA: it becomes negligible at εA less than a certain value (at which the acceptor levels are still deep). With increasing εA, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO3 as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the εA magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.

  12. Antioxidant and radical scavenging properties of curcumin.

    PubMed

    Ak, Tuba; Gülçin, Ilhami

    2008-07-10

    Curcumin (diferuoyl methane) is a phenolic compound and a major component of Curcuma longa L. In the present paper, we determined the antioxidant activity of curcumin by employing various in vitro antioxidant assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH*) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by the Fe(3+)-Fe(2+) transformation method, superoxide anion radical scavenging by the riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe(2+)) chelating activities. Curcumin inhibited 97.3% lipid peroxidation of linoleic acid emulsion at 15 microg/mL concentration (20 mM). On the other hand, butylated hydroxyanisole (BHA, 123 mM), butylated hydroxytoluene (BHT, 102 mM), alpha-tocopherol (51 mM) and trolox (90 mM) as standard antioxidants indicated inhibition of 95.4, 99.7, 84.6 and 95.6% on peroxidation of linoleic acid emulsion at 45 microg/mL concentration, respectively. In addition, curcumin had an effective DPPH* scavenging, ABTS*(+) scavenging, DMPD*(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. According to the present study, curcumin can be used in the pharmacological and food industry because of these properties.

  13. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  14. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1982-01-01

    The synthesis and fabrication of polymeric anion permselective membranes for redox systems are discussed. Variations of the prime candidate anion membrane formulation to achieve better resistance and/or lower permeability were explored. Processing parameters were evaluated to lower cost and fabricate larger sizes. The processing techniques to produce more membranes per batch were successfully integrated with the fabrication of larger membranes. Membranes of about 107 cm x 51 cm were made in excellent yield. Several measurements were made on the larger sample membranes. Among the data developed were water transport and transference numbers for these prime candidate membranes at 20 C. Other work done on this system included characterization of a number of specimens of candidate membranes which had been returned after service lives of up to sixteen months. Work with new polymer constituents, with new N.P.'s, catalysts and backing fabrics is discussed. Some work was also done to evaluate other proportions of the ingredients of the prime candidate system. The adoption of a flow selectivity test at elevated temperature was explored.

  15. Pseudorotation in fullerene anions

    NASA Astrophysics Data System (ADS)

    Dunn, Janette L.; Hands, Ian D.; Bates, Colin A.

    2007-07-01

    Jahn-Teller (JT) problems are often characterised by an adiabatic potential energy surface (APES) containing either a set of isoenergetic wells or a trough of equivalent-energy points, which may be warped by higher-order coupling terms or anisotropic effects. In all three cases, the JT effect will be dynamic. Either tunnelling between the wells or rotation (of a distortion) around the trough will restore the original symmetry of the system. This motion is referred to as pseudorotation. It should be possible to observe a JT system in a distorted geometry if measurements are made on a sufficiently short timescale. In various cubic systems, this timescale has been calculated to be the order of picoseconds. Such timescales are accessible using modern methods of ultrafast spectroscopy. Measurements of pseudorotation rates can lead to important information on the strength and nature of the JT coupling present. We will present analytical calculations that allow the rate of pseudorotation to be determined in terms of the vibronic coupling parameters. We will show how these results can be applied to E ⊗ e systems and then to the more complicated system applicable to C60- anions. This is of particular interest because of the high icosahedral symmetry of fullerene ions and also because of the many potential uses of materials containing these ions. We conclude by outlining experiments that should be capable of measuring pseudorotation in C 60 anions.

  16. Tropospheric aqueous-phase free-radical chemistry: radical sources, spectra, reaction kinetics and prediction tools.

    PubMed

    Herrmann, Hartmut; Hoffmann, Dirk; Schaefer, Thomas; Bräuer, Peter; Tilgner, Andreas

    2010-12-17

    The most important radicals which need to be considered for the description of chemical conversion processes in tropospheric aqueous systems are the hydroxyl radical (OH), the nitrate radical (NO(3)) and sulphur-containing radicals such as the sulphate radical (SO(4)(-)). For each of the three radicals their generation and their properties are discussed first in the corresponding sections. The main focus herein is to summarize newly published aqueous-phase kinetic data on OH, NO(3) and SO(4)(-) radical reactions relevant for the description of multiphase tropospheric chemistry. The data compilation builds up on earlier datasets published in the literature. Since the last review in 2003 (H. Herrmann, Chem. Rev. 2003, 103, 4691-4716) more than hundred new rate constants are available from literature. In case of larger discrepancies between novel and already published rate constants the available kinetic data for these reactions are discussed and recommendations are provided when possible. As many OH kinetic data are obtained by means of the thiocyanate (SCN(-)) system in competition kinetic measurements of OH radical reactions this system is reviewed in a subchapter of this review. Available rate constants for the reaction sequence following the reaction of OH+SCN(-) are summarized. Newly published data since 2003 have been considered and averaged rate constants are calculated. Applying competition kinetics measurements usually the formation of the radical anion (SCN)(2)(-) is monitored directly by absorption measurements. Within this subchapter available absorption spectra of the (SCN)(2)(-) radical anion from the last five decades are presented. Based on these spectra an averaged (SCN)(2)(-) spectrum was calculated. In the last years different estimation methods for aqueous phase kinetic data of radical reactions have been developed and published. Such methods are often essential to estimate kinetic data which are not accessible from the literature. Approaches for

  17. Charge transfer complexes of metal-free phthalocyanine radical anions with decamethylmetallocenium cations: (Cp*2Co(+))(H2Pc˙(-))·solvent and (Cp*2Cr(+))(H2Pc˙(-))·4C6H4Cl2.

    PubMed

    Konarev, Dmitri V; Khasanov, Salavat S; Ishikawa, Manabu; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2017-03-14

    Charge transfer complexes (Cp*2Co(+))(H2Pc˙(-))·0.5C6H4Cl2·0.7C6H5CN·0.3C6H14 (1) and (Cp*2Cr(+))(H2Pc˙(-))·4C6H4Cl2 (2) have been obtained as single crystals. Both complexes contain metal-free phthalocyanine (Pc) radical anions and decamethylmetallocenium cations. Reduction of the Pc macrocycle leads to the appearance of new bands at 1026-1030 nm in the NIR range and blue shifts of both Soret and Q-bands of H2Pc in the spectra of 1 and 2. The geometry of the Pc macrocycles supports the formation of H2Pc˙(-) by the alternation of shorter and longer C-N(imine) bonds in the macrocycles in 2. Complex 1 contains pairs of H2Pc˙(-) having effective π-π interactions with two sandwiched Cp*2Co(+) cations, whereas complex 2 contains stacks composed of alternating Cp*2Cr(+) and H2Pc˙(-) ions. The magnetic moment of 1 is 1.64 μB at 300 K due to the contribution of the H2Pc˙(-) spins with the S = 1/2 state and diamagnetism of Cp*2Co(+). This is supported by the observation of a narrow EPR signal of 1 with g = 2.0032-2.0036 characteristic of H2Pc˙(-). Strong antiferromagnetic coupling of spins with a Weiss temperature of -23 K is observed between H2Pc˙(-) in 1. This coupling is probably mediated by the Cp*2Co(+) cations. The magnetic moment of 2 is 4.18 μB at 300 K indicating the contribution of both paramagnetic H2Pc˙(-) (S = 1/2) and Cp*2Cr(+) (S = 3/2) species. In spite of the presence of stacks of alternating ions in 2, only weak magnetic coupling is observed with a Weiss temperature of -4 K most probably due to ineffective π-π interactions between Cp*2Cr(+) and H2Pc˙(-). The EPR spectrum of 2 contains an asymmetric signal attributed to Cr(III) (g1 = 3.9059-3.9220) and a narrow Lorentzian signal from H2Pc˙(-) with g2 = 1.9943-1.9961. In addition to these signals, a broad EPR signal grows in intensity below 80 K with g4 = 2.1085-2.2438 which can be attributed to both paramagnetic Cp*2Cr(+) and H2Pc˙(-) species having exchange interactions.

  18. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    PubMed

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  19. Dynamic chemistry of anion recognition

    SciTech Connect

    Custelcean, Radu

    2012-01-01

    In the past 40 years, anion recognition by synthetic receptors has grown into a rich and vibrant research topic, developing into a distinct branch of Supramolecular Chemistry. Traditional anion receptors comprise organic scaffolds functionalized with complementary binding groups that are assembled by multistep organic synthesis. Recently, a new approach to anion receptors has emerged, in which the host is dynamically self-assembled in the presence of the anionic guest, via reversible bond formation between functional building units. While coordination bonds were initially employed for the self-assembly of the anion hosts, more recent studies demonstrated that reversible covalent bonds can serve the same purpose. In both cases, due to their labile connections, the molecular constituents have the ability to assemble, dissociate, and recombine continuously, thereby creating a dynamic combinatorial library (DCL) of receptors. The anionic guests, through specific molecular recognition, may then amplify (express) the formation of a particular structure among all possible combinations (real or virtual) by shifting the equilibria involved towards the most optimal receptor. This approach is not limited to solution self-assembly, but is equally applicable to crystallization, where the fittest anion-binding crystal may be selected. Finally, the pros and cons of employing dynamic combinatorial chemistry (DCC) vs molecular design for developing anion receptors, and the implications of both approaches to selective anion separations, will be discussed.

  20. (Bi)sulfite Oxidation by Copper,Zinc-Superoxide Dismutase: Sulfite-Derived, Radical-Initiated Protein Radical Formation

    PubMed Central

    Ranguelova, Kalina; Bonini, Marcelo G.; Mason, Ronald P.

    2010-01-01

    Background Sulfur dioxide, formed during the combustion of fossil fuels, is a major air pollutant near large cities. Its two ionized forms in aqueous solution, sulfite and (bi)sulfite, are widely used as preservatives and antioxidants to prevent food and beverage spoilage. (Bi)sulfite can be oxidized by peroxidases to form the very reactive sulfur trioxide anion radical (•SO3−). This free radical further reacts with oxygen to form the peroxymonosulfate anion radical (−O3SOO•) and sulfate anion radical (SO4• −). Objective To explore the critical role of these radical intermediates in further oxidizing biomolecules, we examined the ability of copper,zinc-superoxide dismutase (Cu,Zn-SOD) to initiate this radical chain reaction, using human serum albumin (HSA) as a model target. Methods We used electron paramagnetic resonance, optical spectroscopy, oxygen uptake, and immuno-spin trapping to study the protein oxidations driven by sulfite-derived radicals. Results We found that when Cu,Zn-SOD reacted with (bi)sulfite, •SO3− was produced, with the concomitant reduction of SOD-Cu(II) to SOD-Cu(I). Further, we demonstrated that sulfite oxidation mediated by Cu,Zn-SOD induced the formation of radical-derived 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin-trapped HSA radicals. Conclusions The present study suggests that protein oxidative damage resulting from (bi)sulfite oxidation promoted by Cu,Zn-SOD could be involved in oxidative damage and tissue injury in (bi)sulfite-exacerbated allergic reactions. PMID:20348042

  1. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    PubMed

    Fiser, Béla; Jójárt, Balázs; Csizmadia, Imre G; Viskolcz, Béla

    2013-01-01

    Non-reactive, comparative (2 × 1.2 μs) molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule) and hydroxyl radical (OH(•), guest molecule). From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons) with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(•) complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels.

  2. Glutathione – Hydroxyl Radical Interaction: A Theoretical Study on Radical Recognition Process

    PubMed Central

    Fiser, Béla; Jójárt, Balázs; Csizmadia, Imre G.; Viskolcz, Béla

    2013-01-01

    Non-reactive, comparative (2×1.2 μs) molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule) and hydroxyl radical (OH•, guest molecule). From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons) with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH• complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from −42.4 to −27.8 kJ/mol and from −21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels. PMID:24040010

  3. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity

    NASA Astrophysics Data System (ADS)

    Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

    2007-11-01

    Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

  4. Free Radical Scavenging Activity of Leaves of Alocasia indica (Linn).

    PubMed

    Mulla, W A; Salunkhe, V R; Kuchekar, S B; Qureshi, M N

    2009-05-01

    The free radical scavenging potential of the plant Alocasia indica(Linn.) was studied by using different antioxidant models of screening like scavenging of 1,1-diphenyl-2-picryl hydrazyl radical, nitric oxide radical, superoxide anion radical, hydroxyl radical, iron chelating activity, total antioxidant capacity, non-enzymatic glycosylation of haemoglobin, rapid screening for antioxidant compounds by thin layer chromatography. The hydroalcoholic extract at 1000 mug/ml showed maximum scavenging of superoxide radical (87.17) by riboflavin-NBT-system, followed by scavenging of stable radical 1,1-diphenyl-2-picryl hydrazyl radical (83.48%), nitric oxide radical (74.09%) hydroxyl radical (60.96%) at the same concentration. However the extract showed only moderate activity by iron chelation (68.26%). That could be due to higher phenolic content in the extract. This finding suggests that hydro alcoholic extract of A. indica possess potent in vitro antioxidant activity as compared to the standard ascorbic acid. The results justify the therapeutic applications of the plant in the indigenous system of medicine, augmenting its therapeutic value.

  5. Hydroxyl radical generation by red tide algae.

    PubMed

    Oda, T; Akaike, T; Sato, K; Ishimatsu, A; Takeshita, S; Muramatsu, T; Maeda, H

    1992-04-01

    The unicellular marine phytoplankton Chattonella marina is known to have toxic effects against various living marine organisms, especially fishes. However, details of the mechanism of the toxicity of this plankton remain obscure. Here we demonstrate the generation of superoxide and hydroxyl radicals from a red tide unicellular organism, C. marina, by using ESR spectroscopy with the spin traps 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and N-t-butyl-alpha-phenylnitrone (PBN), and by using the luminol-enhanced chemiluminescence response. The spin-trapping assay revealed productions of spin adduct of superoxide anion (O2-) (DMPO-OOH) and that of hydroxyl radical (.OH) (DMPO-OH) in the algal suspension, which was not observed in the ultrasonic-ruptured suspension. The addition of superoxide dismutase (500 U/ml) almost completely inhibited the formation of both DMPO-OOH and DMPO-OH, and carbon-centered radicals were generated with the disappearance of DMPO-OH after addition of 5% dimethyl sulfoxide (Me2SO) and 5% ethanol. Furthermore, the generation of methyl and methoxyl radicals, which are thought to be produced by the reaction of hydroxyl radical and Me2SO under aerobic condition, was identified using spin trapping with a combination of PBN and Me2SO. Luminol-enhanced chemiluminescence assay also supported the above observations. These results clearly indicate that C. marina generates and releases the superoxide radical followed by the production of hydroxyl radical to the surrounding environment. The velocity of superoxide generation by C. marina was about 100 times faster than that by mammalian phagocytes per cell basis. The generation of oxygen radical is suggested to be a pathogenic principle in the toxication of red tide to susceptible aquaculture fishes and may be directly correlated with the coastal pollution by red tide.

  6. Porating anion-responsive copolymeric gels.

    PubMed

    England, Dustin; Yan, Feng; Texter, John

    2013-09-24

    A polymerizable ionic liquid surfactant, 1-(11-acryloyloxyundecyl)-3-methylimidiazolium bromide (ILBr), was copolymerized with methyl methacrylate (MMA) in aqueous microemulsions at 30% (ILBr w/w) and various water to MMA ratios. The ternary phase diagram of the ILBr/MMA/water system was constructed at 25 and 60 °C. Homopolymers and copolymers of ILBr and MMA were produced by thermally initiated chain radical microemulsion polymerization at various compositions in bicontinuous and reverse microemulsion subdomains. Microemulsion polymerization reaction products varied from being gel-like to solid, and these materials were analyzed by thermal and scanning electron microscopy methods. Microemulsion polymerized materials were insoluble in all solvents tested, consistent with light cross-linking. Ion exchange between Br(-) and PF6(-) in these copolymeric materials resulted in the formation of open-cell porous structures in some of these materials, as was confirmed by scanning electron microscopy (SEM). Several compositions illustrate the capture of prepolymerization nanoscale structure by thermally initiated polymerization, expanding the domain of compositions exhibiting this feat and yet to be demonstrated in any other system. Regular cylindrical pores in interpenetrating ILBr-co-MMA and PMMA networks are produced by anion exchange in the absence of templates. A percolating cluster/bicontinuous transition is "captured" by SEM after using anion exchange to visualize the mixed cluster/pore morphology. Some design principles for achieving this capture and for obtaining stimuli responsive solvogels are articulated, and the importance of producing solvogels in capturing the nanoscale is highlighted.

  7. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Alexander, S.; Hodgdon, R. B.

    1977-01-01

    The objective of NAS 3-20108 was the development and evaluation of improved anion selective membranes useful as efficient separators in a redox power storage cell system being constructed. The program was divided into three parts, (a) optimization of the selected candidate membrane systems, (b) investigation of alternative membrane/polymer systems, and (c) characterization of candidate membranes. The major synthesis effort was aimed at improving and optimizing as far as possible each candidate system with respect to three critical membrane properties essential for good redox cell performance. Substantial improvements were made in 5 candidate membrane systems. The critical synthesis variables of cross-link density, monomer ratio, and solvent composition were examined over a wide range. In addition, eight alternative polymer systems were investigated, two of which attained candidate status. Three other alternatives showed potential but required further research and development. Each candidate system was optimized for selectivity.

  8. Organic Anion Transporting Polypeptides

    PubMed Central

    Stieger, Bruno; Hagenbuch, Bruno

    2013-01-01

    Organic anion transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs, and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs, and finally, covers the transcriptional and posttranscriptional regulation of OATPs. PMID:24745984

  9. Anion transport and supramolecular medicinal chemistry.

    PubMed

    Gale, Philip A; Davis, Jeffery T; Quesada, Roberto

    2017-04-05

    New approaches to the transmembrane transport of anions are discussed in this review. Advances in the design of small molecule anion carriers are reviewed in addition to advances in the design of synthetic anion channels. The application of anion transporters to the potential future treatment of disease is discussed in the context of recent findings on the selectivity of anion transporters.

  10. Donor–Acceptor Oligorotaxanes Made to Order

    SciTech Connect

    Basu, Subhadeep; Coskun, Ali; Friedman, Douglas C.; Olson, Mark A.; Benitez, Diego; Tkatchouk, Ekaterina; Barin, Gokhan; Yang, Jeffrey; Fahrenbach, Albert C.; Goddard, William A.; Stoddart, J. Fraser

    2011-01-01

    Five donor–acceptor oligorotaxanes made up of dumbbells composed of tetraethylene glycol chains, interspersed with three and five 1,5-dioxynaphthalene units, and terminated by 2,6-diisopropylphenoxy stoppers, have been prepared by the threading of discrete numbers of cyclobis(paraquat-p-phenylene) rings, followed by a kinetically controlled stoppering protocol that relies on click chemistry. The well-known copper(I)-catalyzed alkyne–azide cycloaddition between azide functions placed at the ends of the polyether chains and alkyne-bearing stopper precursors was employed during the final kinetically controlled template-directed synthesis of the five oligorotaxanes, which were characterized subsequently by ¹H NMR spectroscopy at low temperature (233 K) in deuterated acetonitrile. The secondary structures, as well as the conformations, of the five oligorotaxanes were unraveled by spectroscopic comparison with the dumbbell and ring components. By focusing attention on the changes in chemical shifts of some key probe protons, obtained from a wide range of low-temperature spectra, a picture emerges of a high degree of folding within the thread protons of the dumbbells of four of the five oligorotaxanes—the fifth oligorotaxane represents a control compound in effect—brought about by a combination of C[BOND]H···O and π–π stacking interactions between the π-electron-deficient bipyridinium units in the rings and the π-electron-rich 1,5-dioxynaphthalene units and polyether chains in the dumbbells. The secondary structures of a foldamer-like nature have received further support from a solid-state superstructure of a related [3]pseudorotaxane and density functional calculations performed thereon.

  11. Resonant spectra of quadrupolar anions

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Mao, Xingze; Nazarewicz, W.; Michel, N.; Garrett, W. R.; Płoszajczak, M.

    2016-09-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-rotor problem using a nonadiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. The rotor is treated as a linear triad of point charges with zero monopole and dipole moments and nonzero quadrupole moment. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational bands could be identified above the detachment threshold. We study the evolution of a bound state of an anion as it dives into the continuum at a critical quadrupole moment and we show that the associated critical exponent is α =2 . Everything considered, quadrupolar anions represent a perfect laboratory for the studies of marginally bound open quantum systems.

  12. Intramolecular charge transfer in donor-acceptor molecules

    SciTech Connect

    Slama-Schwok, A.; Blanchard-Desce, M.; Lehn, J.M. )

    1990-05-17

    The photophysical properties of donor-acceptor molecules, push-pull polyenes and carotenoids, have been studied by absorption and fluorescence spectroscopy. The compounds bear various acceptor and donor groups, linked together by chains of different length and structure. The position of the absorption and fluorescence maxima and their variation in solvents of increasing polarity are in agreement with long-distance intramolecular charge-transfer processes, the linker acting as a molecular wire. The effects of the linker length and structure and of the nature of acceptor and donor are presented.

  13. Alteration of cartilage glycosaminoglycan protein acceptor by somatomedin and cortisol.

    PubMed

    Kilgore, B S; McNatt, M L; Meador, S; Lee, J A; Hughes, E R; Elders, M J

    1979-02-01

    The effect of somatomedin and cortisol on embryonic chick cartilage in vitro indicates that somatomedin stimulates 35SO4 uptake while cortisol decreases it with no effect on glycosaminoglycan turnover. Xylosyltransferase activity is increased in crude fractions of somatomedin-treated cartilage but decreased in cortisol-treated cartilage. By using a Smith-degraded proteoglycan as an exogenous acceptor, xylosyltransferase activities from both treatments were equivalent, suggesting that the enzyme was not rate limiting. The results of xylosyltransferase assays conducted by mixing enzyme and endogenous acceptor from control, cortisol-treated and somatomedin-treated cartilage, suggest both effects to be at the level of the acceptor protein.

  14. Efficient organic solar cells with helical perylene diimide electron acceptors.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Wang, Wei; Khlyabich, Petr P; Kumar, Bharat; Xu, Qizhi; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles; Steigerwald, Michael L; Loo, Yueh-Lin; Xiao, Shengxiong; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2014-10-29

    We report an efficiency of 6.1% for a solution-processed non-fullerene solar cell using a helical perylene diimide (PDI) dimer as the electron acceptor. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces, indicating that charge carriers are created from photogenerated excitons in both the electron donor and acceptor phases. Light-intensity-dependent current-voltage measurements suggested different recombination rates under short-circuit and open-circuit conditions.

  15. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  16. Contemporary Radical Economics.

    ERIC Educational Resources Information Center

    Sherman, Howard J.

    1984-01-01

    The origins of contemporary radical economics are examined. Applications of radical economics to price and value theory, labor segmentation theory, business cycles, industrial organization, government and business, imperialism and development, and comparative systems are reviewed. (Author/RM)

  17. Bound Anionic States of Aadenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation,wehave demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the newfound anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The new valence states observed here, unlike the dipole-bound state, could exist in condensed phases and might be relevant to radiobiological damage. The discovery of these valence anionic states of adenine was facilitated by the development of (i) an experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a combinatorial/quantum chemical approach for identification of the most stable tautomers of organic molecules.

  18. Bound Anionic States of Adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the newfound anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The new valence states observed here, unlike the dipole-bound state, could exist in condensed phases and might be relevant to radiobiological damage. The discovery of these valence anionic states of adenine was facilitated by the development of (i) an experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (it) a combinatorial/quantum chemical approach for identification of the most stable tautomers of organic molecules.

  19. Anion-exchange nanospheres as titration reagents for anionic analytes.

    PubMed

    Zhai, Jingying; Xie, Xiaojiang; Bakker, Eric

    2015-08-18

    We present here anion-exchange nanospheres as novel titration reagents for anions. The nanospheres contain a lipophilic cation for which the counterion is initially Cl(-). Ion exchange takes place between Cl(-) in the nanospheres and a more lipophilic anion in the sample, such as ClO4(-) and NO3(-). Consecutive titration in the same sample solution for ClO4(-) and NO3(-) were demonstrated. As an application, the concentration of NO3(-) in spinach was successfully determined using this method.

  20. The radical amplifier

    NASA Technical Reports Server (NTRS)

    Hastie, D. R.

    1994-01-01

    The radical amplifier as a method for measuring radical concentrations in the atmosphere has received renewed attention lately. In principle, it can measure the total concentration of HO(x) and RO(x) radicals by reacting ambient air with high concentrations of CO (3-10 percent) and NO (2-6 ppmv), and measuring the NO2 produced.

  1. Anion selectivity in biological systems.

    PubMed

    Wright, E M; Diamond, J M

    1977-01-01

    As background for appreciating the still-unsolved problems of monovalent anion selectivity, we summarize the facts and intepretations that seem reasonably well established. In section II we saw that specific effects of monovalent anions on biological and physical systems define qualitative patterns, in that only certain sequences of anion effects are observed. For example, the 4 halides can be permitted on paper as 4! = 24 sequences, yet only 5 of these sequences have been observed in nature as potency sequences. In addition, there are quantitative regularities in anion potency that permit the construction of so-called empirical selectivity isotherms (Figs. 4 and 13). That is, a given potency sequence is found to be associated with only a certain modest range of selectivity ratios. The sequences and isotherms apply to effects with a nonequilibrium component (e.g., permeability and conductance sequences) as well as to purely equilibrium effects. Since students of cation selectivity have had difficulty accepting this conclusion, we discuss the reasons why it is not as paradoxical as it at first seems. In sections III and IV we develop four theoretical models to account for the observed anion potency sequences as sequences of equilibrium binding energies. Two of these models involve calculation of electrostatic binding energies between anions and monopolar or dipolar cationic sites, assuming anions as well as sites to be rigid and nonpolarizable. The other two models use thermochemically measured binding energies between anions and thealkali cations or occasionally alkaline-earth cations, which in fact approximate rigid, nonpolarizable spheres. All four models consider the anion selectivity pattern of a given cationic site to be determined by anion differences in the balance between hydration energies and ion-site binding energies. Site differences in anion selectivity pattern are attributed to site differences in radius, charge, coordination number, or dipole length

  2. Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO2 Photocatalysis.

    PubMed

    Farner Budarz, Jeffrey; Turolla, Andrea; Piasecki, Aleksander F; Bottero, Jean-Yves; Antonelli, Manuela; Wiesner, Mark R

    2017-03-21

    The influence of inorganic anions on the photoreactivity and aggregation of titanium dioxide nanoparticles (NPs) was assessed by dosing carbonate, chloride, nitrate, phosphate, and sulfate as potassium salts at multiple concentrations. NP stability was monitored in terms of aggregate morphology and electrophoretic mobility (EPM). Aggregate size and fractal dimension were measured over time by laser diffraction, and the isoelectric point (IEP) as a function of anion and concentration was obtained by measuring EPM versus pH. Phosphate, carbonate, and to a lesser extent, sulfate decreased the IEP of TiO2 and stabilized NP suspensions owing to specific surface interactions, whereas this was not observed for nitrate and chloride. TiO2 NPs were exposed to UV-A radiation, and the photoreactivity was assessed by monitoring the production of reactive species over time both at the NP surface (photogenerated holes) and in the bulk solution (hydroxyl radicals) by observing their reactions with the selective probe compounds iodide and terephthalic acid, respectively. The generation of photogenerated holes and hydroxyl radicals was influenced by each inorganic anion to varying degrees. Carbonate and phosphate inhibited the oxidation of iodide, and this interaction was successfully described by a Langmuir-Hinshelwood mechanism and related to the characteristics of TiO2 aggregates. Chloride and nitrate do not specifically interact with TiO2, and sulfate creates relatively weak interactions with the TiO2 surface such that no decrease in photogenerated hole reactivity was observed. A decrease in hydroxyl radical generation was observed for all inorganic anions. Quenching rate constants for the reaction of hydroxyl radicals with each inorganic anion do not provide a comprehensive explanation for the magnitude of this decrease, which arises from the interplay of several physicochemical phenomena. This work shows that the reactivity of NPs will be strongly influenced by the makeup of

  3. Nitrogen is a deep acceptor in ZnO

    SciTech Connect

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence band relative to the vacuum level.

  4. Nitrogen is a deep acceptor in ZnO

    DOE PAGES

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  5. Design, synthesis and study of supramolecular donor-acceptor systems mimicking natural photosynthesis processes

    NASA Astrophysics Data System (ADS)

    Bikram, Chandra

    This dissertation investigates the chemical ingenuity into the development of various photoactive supramolecular donor -- acceptor systems to produce clean and carbon free energy for the next generation. The process is inspired by the principles learned from nature's approach where the solar energy is converted into the chemical energy through the natural photosynthesis process. Owing to the importance and complexity of natural photosynthesis process, we have designed ideal donor-acceptor systems to investigate their light energy harvesting properties. This process involves two major steps: the first step is the absorption of light energy by antenna or donor systems to promote them to an excited electronic state. The second step involves, the transfer of excitation energy to the reaction center, which triggers an electron transfer process within the system. Based on this principle, the research is focused into the development of artificial photosynthesis systems to investigate dynamics of photo induced energy and electron transfer events. The derivatives of Porphyrins, Phthalocyanines, BODIPY, and SubPhthalocyanines etc have been widely used as the primary building blocks for designing photoactive and electroactive ensembles in this area because of their excellent and unique photophysical and photochemical properties. Meanwhile, the fullerene, mainly its readily available version C60 is typically used as an electron acceptor component because of its unique redox potential, symmetrical shape and low reorganization energy appropriate for improved charge separation behavior. The primary research motivation of the study is to achieve fast charge separation and slow charge recombination of the system by stabilizing the radical ion pairs which are formed from photo excitation, for maximum utility of solar energy. Besides Fullerene C60, this dissertation has also investigated the potential application of carbon nanomaterials (Carbon nanotubes and graphene) as primary

  6. Relationship between Electron Affinity and Half-Wave Reduction Potential: A Theoretical Study on Cyclic Electron-Acceptor Compounds.

    PubMed

    Calbo, Joaquín; Viruela, Rafael; Ortí, Enrique; Aragó, Juan

    2016-12-05

    A high-level ab initio protocol to compute accurate electron affinities and half-wave reduction potentials is presented and applied for a series of electron-acceptor compounds with potential interest in organic electronics and redox flow batteries. The comprehensive comparison between the theoretical and experimental electron affinities not only proves the reliability of the theoretical G3(MP2) approach employed but also calls into question certain experimental measurements, which need to be revised. By using the thermodynamic cycle for the one-electron attachment reaction A+e(-) →A(-) , theoretical estimates for the first half-wave reduction potential have been computed along the series of electron-acceptor systems investigated, with maximum deviations from experiment of only 0.2 V. The precise inspection of the terms contributing to the half-wave reduction potential shows that the difference in the free energy of solvation between the neutral and the anionic species (ΔΔGsolv ) plays a crucial role in accurately estimating the electron-acceptor properties in solution, and thus it cannot be considered constant even in a family of related compounds. This term, which can be used to explain the occasional lack of correlation between electron affinities and reduction potentials, is rationalized by the (de)localization of the additional electron involved in the reduction process along the π-conjugated chemical structure.

  7. Fullerene-bisadduct acceptors for polymer solar cells.

    PubMed

    Li, Yongfang

    2013-10-01

    Polymer solar cells (PSCs) have drawn great attention in recent years for their simple device structure, light weight, and low-cost fabrication in comparison with inorganic semiconductor solar cells. However, the power-conversion efficiency (PCE) of PSCs needs to be increased for their future application. The key issue for improving the PCE of PSCs is the design and synthesis of high-efficiency conjugated polymer donors and fullerene acceptors for the photovoltaic materials. For the acceptor materials, several fullerene-bisadduct acceptors with high LUMO energy levels have demonstrated excellent photovoltaic performance in PSCs with P3HT as a donor. In this Focus Review, recent progress in high-efficiency fullerene-bisadduct acceptors is discussed, including the bisadduct of PCBM, indene-C60 bisadduct (ICBA), indene-C70 bisadduct (IC70BA), DMPCBA, NCBA, and bisTOQC. The LUMO levels and photovoltaic performance of these bisadduct acceptors with P3HT as a donor are summarized and compared. In addition, the applications of an ICBA acceptor in new device structures and with other conjugated polymer donors than P3HT are also introduced and discussed.

  8. Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis.

    PubMed

    Ruiz Espelt, Laura; McPherson, Iain S; Wiensch, Eric M; Yoon, Tehshik P

    2015-02-25

    We report the highly enantioselective addition of photogenerated α-amino radicals to Michael acceptors. This method features a dual-catalyst protocol that combines transition metal photoredox catalysis with chiral Lewis acid catalysis. The combination of these two powerful modes of catalysis provides an effective, general strategy to generate and control the reactivity of photogenerated reactive intermediates.

  9. Spectroscopic analysis of 1-butyl-2,3-dimethylimidazolium ionic liquids: Cation-anion interactions

    NASA Astrophysics Data System (ADS)

    Men, Shuang; Jiang, Jing; Licence, Peter

    2017-04-01

    In this study, four 1-butyl-2,3-dimethylimidazolium ionic liquids are analysed by X-ray photoelectron spectroscopy, together with three 1-butyl-3-methylimidazolium ionic liquids. A reliable fitting model for the carbon 1s region of 1-butyl-2,3-dimethylimidazolium ionic liquids is modified according to established models. The effect of the anion on the electronic environment of the cation is explored based upon the comparison between measured binding energies of nitrogen 1s and the hydrogen bond acceptor ability. The effect of the cation on the cation-anion interaction is also demonstrated by carefully comparing the hydrogen bond donating ability of different cations, with a definite anion.

  10. Asymmetric Anion-π Catalysis: Enamine Addition to Nitroolefins on π-Acidic Surfaces.

    PubMed

    Zhao, Yingjie; Cotelle, Yoann; Avestro, Alyssa-Jennifer; Sakai, Naomi; Matile, Stefan

    2015-09-16

    Here we provide experimental evidence for anion-π catalysis of enamine chemistry and for asymmetric anion-π catalysis. A proline for enamine formation on one side and a glutamic acid for nitronate protonation on the other side are placed to make the enamine addition to nitroolefins occur on the aromatic surface of π-acidic naphthalenediimides. With increasing π acidity of the formally trifunctional catalysts, rate and enantioselectivity of the reaction increase. Mismatched and more flexible controls reveal that the importance of rigidified, precisely sculpted architectures increases with increasing π acidity as well. The absolute configuration of stereogenic sulfoxide acceptors at the edge of the π-acidic surface has a profound influence on asymmetric anion-π catalysis and, if perfectly matched, affords the highest enantio- and diastereoselectivity.

  11. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic

    PubMed Central

    Luo, Chaosheng; Wang, Zhen; Huang, Yong

    2015-01-01

    Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194

  12. Tuning the Rectification Ratio by Changing the Electronic Nature (Open-Shell and Closed-Shell) in Donor-Acceptor Self-Assembled Monolayers.

    PubMed

    Souto, Manuel; Yuan, Li; Morales, Dayana C; Jiang, Li; Ratera, Imma; Nijhuis, Christian A; Veciana, Jaume

    2017-03-16

    This Communication describes the mechanism of charge transport across self-assembled monolayers (SAMs) of two donor-acceptor systems consisting of a polychlorotriphenylmethyl (PTM) electron-acceptor moiety linked to an electron-donor ferrocene (Fc) unit supported by ultraflat template-stripped Au and contacted by a eutectic alloy of gallium and indium top contacts. The electronic and supramolecular structures of these SAMs were well characterized. The PTM unit can be switched between the nonradical and radical forms, which influences the rectification behavior of the junction. Junctions with nonradical units rectify currents via the highest occupied molecular orbital (HOMO) with a rectification ratio R = 99, but junctions with radical units have a new accessible state, a single-unoccupied molecular orbital (SUMO), which turns rectification off and drops R to 6.

  13. [Lavoisier and radicals].

    PubMed

    Lafont, Olivier

    2007-01-01

    Lavoisier and his co-workers (Guyton de Morveau, Bertholet, Fourcroy) considered that acids were constituted of oxygen and of something else that they called radicals. These radicals were known in some cases, i.e. nitrogen for nitrous acid, carbon for carbonic acid, phosphorus for phosphoric acid. In the case of sulfur, the sulfuric radical could be associated with different quantities of oxigen leading to sulfuric or sulfurous acids. In other cases radicals remained unknown at the time i.e. muriatic radical for muriatic acid, or benzoyl radical for benzoic acid. It is interesting to notice that Lavoisier evoked the case of compound radicals constituted of different substances such as carbon and hydrogen.

  14. Spin-selective charge transport pathways through p-oligophenylene-linked donor-bridge-acceptor molecules.

    PubMed

    Scott, Amy M; Miura, Tomoaki; Ricks, Annie Butler; Dance, Zachary E X; Giacobbe, Emilie M; Colvin, Michael T; Wasielewski, Michael R

    2009-12-09

    A series of donor-bridge-acceptor (D-B-A) triads have been synthesized in which the donor, 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An), and the acceptor, naphthalene-1,8:4,5-bis(dicarboximide) (NI), are linked by p-oligophenylene (Ph(n)) bridging units (n = 1-5). Photoexcitation of DMJ-An produces DMJ(+*)-An(-*) quantitatively, so that An(-*) acts as a high potential electron donor, which rapidly transfers an electron to NI yielding a long-lived spin-coherent radical ion pair (DMJ(+*)-An-Ph(n)-NI(-*)). The charge transfer properties of 1-5 have been studied using transient absorption spectroscopy, magnetic field effects (MFEs) on radical pair and triplet yields, and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The charge separation (CS) and recombination (CR) reactions exhibit exponential distance dependencies with damping coefficients of beta = 0.35 A(-1) and 0.34 A(-1), respectively. Based on these data, a change in mechanism from superexchange to hopping was not observed for either process in this system. However, the CR reaction is spin-selective and produces the singlet ground state and both (3*)An and (3*)NI. A kinetic analysis of the MFE data shows that superexchange dominates both pathways with beta = 0.48 A(-1) for the singlet CR pathway and beta = 0.35 A(-1) for the triplet CR pathway. MFEs and TREPR experiments were used to measure the spin-spin exchange interaction, 2J, which is directly related to the electronic coupling matrix element for CR, V(CR)(2). The magnitude of 2J also shows an exponential distance dependence with a damping coefficient alpha = 0.36 A(-1), which agrees with the beta values obtained from the distance dependence for triplet CR. These results were analyzed in terms of the bridge molecular orbitals that participate in the charge transport mechanism.

  15. Free radical scavenging abilities of polypeptide from Chlamys farreri

    NASA Astrophysics Data System (ADS)

    Han, Zhiwu; Chu, Xiao; Liu, Chengjuan; Wang, Yuejun; Mi, Sun; Wang, Chunbo

    2006-09-01

    We investigated the radical scavenging effect and antioxidation property of polypeptide extracted from Chlamys farreri (PCF) in vitro using chemiluminescence and electron spin resonance (ESR) methods. We examined the scavenging effects of PCF on superoxide anions (O{2/-}), hydroxyl radicals (OH·), peroxynitrite (ONOO-) and the inhibiting capacity of PCF on peroxidation of linoleic acid. Our experiment suggested that PCF could scavenge oxygen free radicals including superoxide anions (O{2/-}) (IC50=0.3 mg/ml), hydroxyl radicals (OH·) (IC50=0.2 μg/ml) generated from the reaction systems and effectively inhibit the oxidative activity of ONOO- (IC50=0.2 mg/ml). At 1.25 mg/ml of PCF, the inhibition ratio on lipid peroxidation of linoleic acid was 43%. The scavenging effect of PCF on O{2/-}, OH· and ONOO- free radicals were stronger than those of vitamin C but less on lipid peroxidation of linoleic acid. Thus PCF could scavenge free radicals and inhibit the peroxidation of linoleic acid in vitro. It is an antioxidant from marine products and potential for industrial production in future.

  16. Ion pair dissociation effects of aza-based anion receptors on lithium salts in polymer electrolytes

    SciTech Connect

    Yang, X.Q.; Lee, H.S.; Xiang, C.; McBreen, J.; Choi, L.S.; Okamoto, Y.

    1996-12-31

    The addition of aza-based anion receptors greatly increases the conductivity of polymer electrolytes based on LiCl and KI complexes with poly(ethylene oxide) (PEO). In some cases the conductivity increase is more than two orders of magnitude. Also the addition of the anion acceptors imparts a rubber like consistency to the normally stiff PEO salt films. Ion-ion, ion-polymer and anion-complex interactions were studied using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy at the K and Cl K edges and at the I L{sub I} edge. The NEXAFS results show that Cl{sup {minus}} and I{sup {minus}} anions are complexed with the nitrogen groups of the anion receptors. The degree of complexation is related the chain length of the complexing agent and the number of R{double_bond}CF{sub 3}SO{sub 2} groups that are used to substitute for the amine hydrogen atoms in these aza-ether compounds. NEXAFS spectra at potassium K edge provide supplemental evidence for the ion pair dissociation effects of the anion receptors. The results show that dissociated K{sup +} cations are complexed with oxygen atoms of the PEO chains.

  17. Structure of cyano-anion ionic liquids: X-ray scattering and simulations.

    PubMed

    Dhungana, Kamal B; Faria, Luiz F O; Wu, Boning; Liang, Min; Ribeiro, Mauro C C; Margulis, Claudio J; Castner, Edward W

    2016-07-14

    Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790-14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN(-), SCN(-), N(CN)2 (-), C(CN)3 (-), and B(CN)4 (-). By combining molecular dynamics simulations, high-energy X-ray scattering measurements, and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)4 (-) anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im2,1 (+)/B(CN)4 (-) is cationic.

  18. The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors

    PubMed Central

    Vogel, Steven S.; Nguyen, Tuan A.; van der Meer, B. Wieb; Blank, Paul S.

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states. PMID:23152925

  19. Anion transporters and biological systems.

    PubMed

    Gale, Philip A; Pérez-Tomás, Ricardo; Quesada, Roberto

    2013-12-17

    In this Account, we discuss the development of new lipid bilayer anion transporters based on the structure of anionophoric natural products (the prodigiosins) and purely synthetic supramolecular systems. We have studied the interaction of these compounds with human cancer cell lines, and, in general, the most active anion transporter compounds possess the greatest anti-cancer properties. Initially, we describe the anion transport properties of synthetic molecules that are based on the structure of the family of natural products known as the prodiginines. Obatoclax, for example, is a prodiginine derivative with an indole ring that is currently in clinical trials for use as an anti-cancer drug. The anion transport properties of the compounds were correlated with their toxicity toward small cell human lung cancer GLC4 cells. We studied related compounds with enamine moieties, tambjamines, that serve as active transporters. These molecules and others in this series could depolarize acidic compartments within GLC4 cells and trigger apoptosis. In a study of the variation of lipophilicity of a series of these compounds, we observed that, as log P increases, the anion transport efficiency reaches a peak and then decreases. In addition, we discuss the anion transport properties of series of synthetic supramolecular anion receptor species. We synthesized trisureas and thioureas based on the tren backbone, and found that the thiourea compounds effectively transport anions. Fluorination of the pendant phenyl groups in this series of compounds greatly enhances the transport properties. Similar to our earlier results, the most active anion transporters reduced the viability of human cancer cell lines by depolarizing acidic compartments in GLC4 cells and triggering apoptosis. In an attempt to produce simpler transporters that obey Lipinski's Rule of Five, we synthesized simpler systems containing a single urea or thiourea group. Once again the thiourea systems, and in particular

  20. Acid generation mechanism in anion-bound chemically amplified resists used for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Ohomori, Katsumi; Kozawa, Takahiro

    2015-03-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub 10nm. An anion-bound polymer(ABP), in which at the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using γ and EUV radiolysis. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The protons of acids are considered to be mainly generated through the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through the hole transfer to the decomposition products of onium salts.

  1. Acid generation mechanism in anion-bound chemically amplified resists used for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Utsumi, Yoshiyuki; Ohomori, Katsumi; Kozawa, Takahiro

    2014-11-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub-10 nm. An anion-bound polymer (ABP), in which the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using electron (pulse), γ, and EUV radiolyses. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The major path for proton generation in the absence of effective proton sources is considered to be the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through hole transfer to the decomposition products of onium salts.

  2. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids. 1. Anions.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W; Chemerisov, Sergey D; Wishart, James F

    2011-04-14

    Room temperature ionic liquids (IL) find increasing use for the replacement of organic solvents in practical applications, including their use in solar cells and electrolytes for metal deposition, and as extraction solvents for the reprocessing of spent nuclear fuel. The radiation stability of ILs is an important concern for some of these applications, as previous studies suggested extensive fragmentation of the constituent ions upon irradiation. In the present study, electron paramagnetic resonance (EPR) spectroscopy has been used to identify fragmentation pathways for constituent anions in ammonium, phosphonium, and imidazolium ILs. Many of these detrimental reactions are initiated by radiation-induced redox processes involving these anions. Scission of the oxidized anions is the main fragmentation pathway for the majority of the practically important anions; (internal) proton transfer involving the aliphatic arms of these anions is a competing reaction. For perfluorinated anions, fluoride loss following dissociative electron attachment to the anion can be even more prominent than this oxidative fragmentation. Bond scission in the anion was also observed for NO(3)(-) and B(CN)(4)(-) anions and indirectly implicated for BF(4)(-) and PF(6)(-) anions. Among small anions, CF(3)SO(3)(-) and N(CN)(2)(-) are the most stable. Among larger anions, the derivatives of benzoate and imide anions were found to be relatively stable. This stability is due to suppression of the oxidative fragmentation. For benzoates, this is a consequence of the extensive sharing of unpaired electron density by the π-system in the corresponding neutral radical; for the imides, this stability could be the consequence of N-N σ(2)σ(*1) bond formation involving the parent anion. While fragmentation does not occur for these "exceptional" anions, H atom addition and electron attachment are prominent. Among the typically used constituent anions, aliphatic carboxylates were found to be the least

  3. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids. I. Anions.

    SciTech Connect

    Shkrob, I. A.; Marin, T.; Chemerisov, S.; Wishart, J.

    2011-04-14

    Room temperature ionic liquids (IL) find increasing use for the replacement of organic solvents in practical applications, including their use in solar cells and electrolytes for metal deposition, and as extraction solvents for the reprocessing of spent nuclear fuel. The radiation stability of ILs is an important concern for some of these applications, as previous studies suggested extensive fragmentation of the constituent ions upon irradiation. In the present study, electron paramagnetic resonance (EPR) spectroscopy has been used to identify fragmentation pathways for constituent anions in ammonium, phosphonium, and imidazolium ILs. Many of these detrimental reactions are initiated by radiation-induced redox processes involving these anions. Scission of the oxidized anions is the main fragmentation pathway for the majority of the practically important anions; (internal) proton transfer involving the aliphatic arms of these anions is a competing reaction. For perfluorinated anions, fluoride loss following dissociative electron attachment to the anion can be even more prominent than this oxidative fragmentation. Bond scission in the anion was also observed for NO{sub 3}{sup -} and B(CN){sub 4}{sup -} anions and indirectly implicated for BF{sub 4}{sup -} and PF{sub 6}{sup -} anions. Among small anions, CF{sub 3}SO{sub 3}{sup -} and N(CN){sub 2}{sup -} are the most stable. Among larger anions, the derivatives of benzoate and imide anions were found to be relatively stable. This stability is due to suppression of the oxidative fragmentation. For benzoates, this is a consequence of the extensive sharing of unpaired electron density by the {pi}-system in the corresponding neutral radical; for the imides, this stability could be the consequence of N-N {sigma}{sup 2}{sigma}*{sup 1} bond formation involving the parent anion. While fragmentation does not occur for these 'exceptional' anions, H atom addition and electron attachment are prominent. Among the typically used

  4. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  5. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  6. Electron acceptor-dependent respiratory and physiological stratifications in biofilms.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Sun, Guoping; Wu, Wei-Min; Xu, Meiying

    2015-01-06

    Bacterial respiration is an essential driving force in biogeochemical cycling and bioremediation processes. Electron acceptors respired by bacteria often have solid and soluble forms that typically coexist in the environment. It is important to understand how sessile bacteria attached to solid electron acceptors respond to ambient soluble alternative electron acceptors. Microbial fuel cells (MFCs) provide a useful tool to investigate this interaction. In MFCs with Shewanella decolorationis, azo dye was used as an alternative electron acceptor in the anode chamber. Different respiration patterns were observed for biofilm and planktonic cells, with planktonic cells preferred to respire with azo dye while biofilm cells respired with both the anode and azo dye. The additional azo respiration dissipated the proton accumulation within the anode biofilm. There was a large redox potential gap between the biofilms and anode surface. Changing cathodic conditions caused immediate effects on the anode potential but not on the biofilm potential. Biofilm viability showed an inverse and respiration-dependent profile when respiring with only the anode or azo dye and was enhanced when respiring with both simultaneously. These results provide new insights into the bacterial respiration strategies in environments containing multiple electron acceptors and support an electron-hopping mechanism within Shewanella electrode-respiring biofilms.

  7. Exploring the location and orientation of 4-( N, N-dimethylamino) cinnamaldehyde in anionic, cationic and non-ionic micelles

    NASA Astrophysics Data System (ADS)

    Panja, Subhasis; Chowdhury, Papia; Chakravorti, Sankar

    2003-01-01

    This Letter reports probing of non-ionic, anionic and cationic micelles utilizing different dual emission properties of 4-( N, N-dimethylamino) cinnamaldehyde. Twisted intramolecular charge transfer (TICT) band is more enhanced and blue shifted in non-ionic micelle than those are in ionic micelles. In non-ionic micelle, the molecule enters in the core region whereas, in ionic micelles, it is anchored in the interfacial region with different orientations. Micellar-water interface electric field in ionic micelles was found to have profound effect on TICT decay time. Interestingly, inorganic salt-counterion binding helps the acceptor moiety to enter into the core region in anionic micelle.

  8. Spin trapping of nitric oxide by aci anions of nitroalkanes.

    PubMed

    Reszka, Krzysztof J; Bilski, Piotr; Chignell, Colin F

    2004-03-01

    In alkaline solutions, nitroalkanes (RCH2NO2) undergo deprotonation and rearrange to an aci anion (RHC=NO2-), which may function as a spin trap. Using electron paramagnetic resonance (EPR) spectroscopy, we have investigated suitability of aci anions of a series of nitroalkanes (CH3NO2, CH3CH2NO2, CH3(CH2)2NO2, and CH3(CH2)3NO2) to spin trap nitric oxide (*NO). Based on the observed EPR spectra, the general structure of the adducts, formed by addition of *NO to RHC=NO2-, was identified as nitronitroso dianion radicals of general formula [RC(NO)NO2]*2- in strong base (0.5 M NaOH), and as a mono-anion radical [RCH(NO)NO2]*- in alkaline buffers, pH 10-13. The hyperfine splitting on 14N in the -NO2 moiety (11.2-12.48 G) is distinctly different from the splitting on 14N in the -NO moiety of the adducts (5.23-6.5 G). The structure of the adducts was verified using 15N-labeled *NO, which produced radicals, in which triplet due to splitting on 14N (I = 1) in 14NO/aci nitro adducts was replaced by a doublet due to 15N (I = 1/2) in 15NO/aci nitro adducts. EPR spectra of aci nitromethane/NO adduct recorded in NaOH and NaOD (0.5 M) showed that the hydrogen at alpha-carbon can be exchanged for deuterium, consistent with structures of the adducts being [CH(NO)NO2]*2- and [CD(NO)NO2]*2-, respectively. These results indicate that nitroalkanes could potentially be used as prototypes for development of *NO-specific spin traps suitable for EPR analysis.

  9. Radical prostatectomy - discharge

    MedlinePlus

    ... prostatectomy - discharge; Laparoscopic radical prostatectomy - discharge; LRP - discharge; Robotic-assisted laparoscopic prostatectomy - discharge ; RALP - discharge; Pelvic lymphadenectomy - discharge; Prostate cancer - prostatectomy

  10. Hydrogen in anion vacancies of semiconductors

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2009-01-01

    Density functional calculations show that, depending on the anion size, hydrogen in anion vacancies of various II-VI semiconductors can be either two-fold or four-fold coordinated, and has either amphoteric or shallow donor character. In general, the multi-coordination of hydrogen in an anion vacancy is the indication of an anionic H, H { ion, in the relatively ionic environment. In more covalent semiconductors, H would form a single cation-H bond in the anion vacancy.

  11. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  12. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    SciTech Connect

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  13. An overview of molecular acceptors for organic solar cells

    NASA Astrophysics Data System (ADS)

    Hudhomme, Piétrick

    2013-07-01

    Organic solar cells (OSCs) have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  14. Electron acceptor taxis and blue light effect on bacterial chemotaxis.

    PubMed

    Taylor, B L; Miller, J B; Warrick, H M; Koshland, D E

    1979-11-01

    Salmonella typhimurium and Escherichia coli from anaerobic cultures displayed tactic responses to gradients of nitrate, fumarate, and oxygen when the appropriate electron transport pathway was present. Such responses were named "electron acceptor taxis" because they are elicited by terminal electron acceptors. Mutant strains of S. typhimurium and E. coli were used to establish that functioning electron transport pathways to nitrate and fumarate are required for taxis to these compounds. Aerotaxis in S. typhimurium was blocked by 1.0 mM KCN, which inhibited oxygen uptake. Similarly, a functioning electron transport pathway was shown to be essential for the tumbling response of S. typhimurium and E. coli to intense light (290 to 530 nm). Some inhibitors and uncouplers of respiration were repellents of S. typhimurium. We propose that behavioral responses to light or electron acceptors involve electron transport-mediated perturbations of the proton motive force.

  15. Gut inflammation provides a respiratory electron acceptor for Salmonella

    PubMed Central

    Winter, Sebastian E.; Thiennimitr, Parameth; Winter, Maria G.; Butler, Brian P.; Huseby, Douglas L.; Crawford, Robert W.; Russell, Joseph M.; Bevins, Charles L.; Adams, L. Garry; Tsolis, Renée M.; Roth, John R.; Bäumler, Andreas J.

    2010-01-01

    Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation reacted with endogenous, luminal sulphur compounds (thiosulfate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to utilize tetrathionate as an electron acceptor produced a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus, the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen. PMID:20864996

  16. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting.

    PubMed

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G; Duan, Xue

    2015-07-15

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm(2) at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting.

  17. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting

    PubMed Central

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G.; Duan, Xue

    2015-01-01

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm2 at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting. PMID:26174201

  18. Free radicals and antioxidants at a glance using EPR spectroscopy.

    PubMed

    Spasojević, Ivan

    2011-01-01

    The delicate balance between the advantageous and detrimental effects of free radicals is one of the important aspects of human (patho)physiology. The controlled production of reactive oxygen and nitrogen species has an essential role in the regulation of various signaling switches. On the other hand, imbalanced generation of radicals is highly correlated with the pathogenesis of many diseases which require the application of selected antioxidants to regain the homeostasis. In the era of growing interest for redox processes, electron paramagnetic resonance (EPR) spectroscopy is arguably the best-suited technique for such research due to its ability to provide a unique insight into the world of free radicals and antioxidants. Herein, I present the principles of EPR spectroscopy and the applications of this method in assessing: (i) the oxidative status of biological systems, using endogenous long-lived free radicals (ascorbyl radical (Asc(•)), tocopheroxyl radical (TO(•)), melanin) as markers; (ii) the production of short-lived radicals (hydroxyl radical (OH(•)), superoxide radical anion (O(2)(•-)), sulfur- and carbon-centered radicals), which are implicated in both, oxidative stress and redox signaling; (iii) the metabolism of nitric oxide (NO(•)); (iv) the antioxidative properties of various drugs, compounds, and natural products; (v) other redox-relevant parameter. Besides giving a comprehensive survey of up-to-date literature, I also provide illustrative examples in sufficient detail to provide a means to exploit the potential of EPR in biochemical/physiological/medical research. The emphasis is on the features and characteristics (both positive and negative) relevant for EPR application in clinical sciences. My aim is to encourage fellow colleagues interested in free radicals and antioxidants to expand their base knowledge or methods used in their laboratories with data acquired by EPR or some of the EPR techniques outlined in this review, in order to

  19. Organic anion uptake by hepatocytes.

    PubMed

    Wolkoff, Allan W

    2014-10-01

    Many of the compounds taken up by the liver are organic anions that circulate tightly bound to protein carriers such as albumin. The fenestrated sinusoidal endothelium of the liver permits these compounds to have access to hepatocytes. Studies to characterize hepatic uptake of organic anions through kinetic analyses, suggested that it was carrier-mediated. Attempts to identify specific transporters by biochemical approaches were largely unsuccessful and were replaced by studies that utilized expression cloning. These studies led to identification of the organic anion transport proteins (oatps), a family of 12 transmembrane domain glycoproteins that have broad and often overlapping substrate specificities. The oatps mediate Na(+)-independent organic anion uptake. Other studies identified a seven transmembrane domain glycoprotein, Na(+)/taurocholate transporting protein (ntcp) as mediating Na(+)-dependent uptake of bile acids as well as other organic anions. Although mutations or deficiencies of specific members of the oatp family have been associated with transport abnormalities, there have been no such reports for ntcp, and its physiologic role remains to be determined, although expression of ntcp in vitro recapitulates the characteristics of Na(+)-dependent bile acid transport that is seen in vivo. Both ntcp and oatps traffic between the cell surface and intracellular vesicular pools. These vesicles move through the cell on microtubules, using the microtubule based motors dynein and kinesins. Factors that regulate this motility are under study and may provide a unique mechanism that can alter the plasma membrane content of these transporters and consequently their accessibility to circulating ligands.

  20. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase.

    PubMed

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Maeta, Ayami; Yamagiwa, Yoshiro; Kubo, Isao

    2015-01-01

    5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C₁₅:₃), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C₁₀:₀) also inhibited superoxide anion generation, but resorcinol and cardol (C₅:₀) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain.

  1. Acceptor specificity in the transglycosylation reaction using Endo-M.

    PubMed

    Tomabechi, Yusuke; Odate, Yuki; Izumi, Ryuko; Haneda, Katsuji; Inazu, Toshiyuki

    2010-11-22

    To determine the structural specificity of the glycosyl acceptor of the transglycosylation reaction using endo-β-N-acetylglucosaminidase (ENGase) (EC 3.2.1.96) from Mucor hiemalis (Endo-M), several acceptor derivatives were designed and synthesized. The narrow regions of the 1,3-diol structure from the 4- to 6-hydroxy functions of GlcNAc were found to be essential for the transglycosylation reaction using Endo-M. Furthermore, it was determined that Endo-M strictly recognizes a 1,3-diol structure consisting of primary and secondary hydroxyl groups.

  2. Donor-acceptor chemistry in the main group.

    PubMed

    Rivard, Eric

    2014-06-21

    This Perspective article summarizes recent progress from our laboratory in the isolation of reactive main group species using a general donor-acceptor protocol. A highlight of this program is the use of carbon-based donors in combination with suitable Lewis acidic acceptors to yield stable complexes of parent Group 14 element hydrides (e.g. GeH2 and H2SiGeH2). It is anticipated that this strategy could be extended to include new synthetic targets from throughout the Periodic Table with possible applications in bottom-up materials synthesis and main group element catalysis envisioned.

  3. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates.

    PubMed

    Cheng, Hong; Liang, Ran; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H

    2014-02-01

    The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k2 = 3.2 × 10(9) L mol(-1) s(-1) in 9 : 1 v/v chloroform-methanol at 23 °C, less efficiently by the anion of salicylic acid with 2.2 × 10(8) L mol(-1) s(-1), but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations.

  4. Anions in Nucleic Acid Crystallography.

    PubMed

    D'Ascenzo, Luigi; Auffinger, Pascal

    2016-01-01

    Nucleic acid crystallization buffers contain a large variety of chemicals fitting specific needs. Among them, anions are often solely considered for pH-regulating purposes and as cationic co-salts while their ability to directly bind to nucleic acid structures is rarely taken into account. Here we review current knowledge related to the use of anions in crystallization buffers along with data on their biological prevalence. Chloride ions are frequently identified in crystal structures but display low cytosolic concentrations. Hence, they are thought to be distant from nucleic acid structures in the cell. Sulfate ions are also frequently identified in crystal structures but their localization in the cell remains elusive. Nevertheless, the characterization of the binding properties of these ions is essential for better interpreting the solvent structure in crystals and consequently, avoiding mislabeling of electron densities. Furthermore, understanding the binding properties of these anions should help to get clues related to their potential effects in crowded cellular environments.

  5. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  6. Methylation of 2'-deoxyguanosine by a free radical mechanism.

    PubMed

    Crean, Conor; Geacintov, Nicholas E; Shafirovich, Vladimir

    2009-09-24

    The mechanistic aspects of the methylation of guanine in DNA initiated by methyl radicals that are derived from the metabolic oxidation of some chemical carcinogens remain poorly understood. In this work, we investigated the kinetics and the formation of methylated guanine products by two methods: (i) the combination of *CH3 radicals and guanine neutral radicals, G(-H)*, and (ii) the direct addition of *CH3 radicals to guanine bases. The simultaneous generation of *CH3 and dG(-H)* radicals was triggered by the competitive one-electron oxidation of dimethyl sulfoxide (DMSO) and 2'-deoxyguanosine (dG) by photochemically generated sulfate radicals in deoxygenated aqueous buffer solutions (pH 7.5). The photolysis of methylcob(III)alamin to form *CH3 radicals was used to investigate the direct addition of these radicals to guanine bases. The major end products of the radical combination reactions are the 8-methyl-dG and N2-methyl-dG products formed in a ratio of 1:0.7. In contrast, the methylation of dG by *CH3 radicals generates mostly the 8-methyl-dG adduct and only minor quantities of N2-methyl-dG (1:0.13 ratio). The methylation of the self-complementary 5'-d(AACGCGAATTCGCGTT) duplexes was achieved by the selective oxidation of the guanines with carbonate radical anions in the presence of DMSO as the precursor of *CH3 radicals. The methyl-G lesions formed were excised by the enzymatic digestion and identified by LC-MS/MS methods using uniformly 15N-labeled 8-methyl-dG and N2-methyl-dG adducts as internal standards. The ratios of 8-methyl-G/N2-methyl-G lesions derived from the combination of methyl radicals with G(-H)* radicals positioned in double-stranded DNA or that with the free nucleoside dG(-H)* radicals were found to be similar. Utilizing the photochemical method and dipropyl or dibutyl sulfoxides as sources of alkyl radicals, the corresponding 8-alkyl-dG and N2-alkyl-dG adducts were also generated in ratios similar to those obtained with DMSO.

  7. Tris-[8]annulenyl Isocyanurate Trianion Triradical and Hexa-anion from the Alkali Metal Reduction of [8]Annulenyl Isocyanate.

    PubMed

    Peters, Steven J; Klen, Joseph R

    2015-06-05

    The solution phase alkali metal reduction of [8]annulenyl isocyanate (C8H7NCO) yields an EPR spectrum, which reveals electron couplings to seven protons and only one nitrogen. Although this strongly suggested that the C8H7NCO anion radical was generated, experiments on the oxidized product reveal the actual reduced species to be tris-[8]annulenyl isocyanurate. Unlike the previously studied phenyl isocyanurate anion radical, the unpaired electron(s) is now localized within an [8]annulenyl moiety. Further exposure to metal results in the formation of an equilibrium mixture of trianion triradical and trianion radical species. The cyclotrimerization to form the isocyanurate is proposed to be driven by a reactive C8H7NCO dianion, which is produced from the large equilibrium disproportionation of the anion radical. Exhaustive reduction of the tris-[8]annulenyl isocyanurate with potassium in THF generates the first-ever observed hexa-anion of an isocyanurate. NMR analysis reveals that the polarity of the carbonyl bonds within this hexa-anion is augmented and is caused by the close proximity of K(+) ions, which are tightly ion paired to the three [8]annulenyl dianion rings. These preliminary studies on the reduction of C8H7NCO suggest that polymeric materials (e.g., polyisocyanates) made from this isocyanate might exhibit unique properties.

  8. Site-Specific Description of the Enhanced Recognition Between Electrogenerated Nitrobenzene Anions and Dihomooxacalix[4]arene Bidentate Ureas.

    PubMed

    Martínez-González, Eduardo; Armendáriz-Vidales, Georgina; Ascenso, José R; Marcos, Paula M; Frontana, Carlos

    2015-05-01

    Electron transfer controlled hydrogen bonding was studied for a series of nitrobenzene derivative radical anions, working as large guest anions, and substituted ureas, including dihomooxacalix[4]arene bidentate urea derivatives, in order to estimate binding constants (Kb) for the hydrogen-bonding process. Results showed enhanced Kb values for the interaction with phenyl-substituted bidentate urea, which is significantly larger than for the remaining compounds, e.g., in the case of 4-methoxynitrobenzene a 28-fold larger Kb value was obtained for the urea bearing a phenyl (Kb ∼ 6888) vs tert-butyl (Kb ∼ 247) moieties. The respective nucleophilic and electrophilic characters of the participant anion radical and urea hosts were parametrized with global and local electrodonating (ω(-)) and electroaccepting (ω(+)) powers, derived from DFT calculations. ω(-) data were useful for describing trends in structure–activity relationships when comparing nitrobenzene radical anions. However, ω(+) for the host urea structures lead to unreliable explanations of the experimental data. For the latter case, local descriptors ωk(+)(r) were estimated for the atoms within the urea region in the hosts [∑kωk(+)(r)]. By compiling all the theoretical and experimental data, a Kb-predictive contour plot was built considering ω(-) for the studied anion radicals and ∑kωk(+)(r) which affords good estimations.

  9. Self-assembled arene-ruthenium-based rectangles for the selective sensing of multi-carboxylate anions.

    PubMed

    Vajpayee, Vaishali; Song, Young Ho; Lee, Min Hyung; Kim, Hyunuk; Wang, Ming; Stang, Peter J; Chi, Ki-Whan

    2011-07-04

    Novel arene-ruthenium [2+2] metalla-rectangles 4 and 5 have been synthesized by self-assembly using dipyridyl amide ligand 3 and arene-ruthenium acceptors (arene: benzoquinone (1), naphthacenedione (2)) and characterized by NMR spectroscopy and ESI-MS. The solid-state structure of 5 was determined by X-ray diffraction and shows encapsulated diethyl ether molecule in the rectangular cavity of 5. The luminescent 5 was further used for anion sensing with the amidic linkage serving as a hydrogen-bond donor site for anions and the ruthenium moiety serving as a signaling unit. A UV/Vis titration study demonstrated that although 5 interacts very weakly with common monoanions as well as with flexible dicarboxylate anions such as malonate and succinate, it displays significant binding affinity (K>10(3) in MeOH) for rigid multi-carboxylate anions such as oxalate, citrate, and tartrate, exhibiting a 1:1 stoichiometry. It has been suggested that 1:1 bidentate hydrogen bonding assisted by appropriate geometrical complementarity is mainly responsible for the increased affinity of 5 towards such anions. A fluorescence titration study revealed a large fluorescence enhancement of 5 upon binding to multi-carboxylate anions, which can be attributed to the blocking of the photoinduced electron-transfer process from the arene-Ru moiety to the amidic donor in 5 as a result of hydrogen bonding between the donor and the anion.

  10. Microsolvation of anions by molecules forming CH··X- hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Nepal, Binod; Scheiner, Steve

    2015-12-01

    Various anions were surrounded by n molecules of CF3H, which was used as a prototype CH donor solvent, and the structures and energies studied by M06-2X calculations with a 6-31+G∗∗ basis set. Anions considered included the halides F-, Cl-, Br- and I-, as well as those with multiple proton acceptor sites: CN-, NO3-, HCOO-, CH3COO-, HSO4-, H2PO4-, and anions with higher charges SO42-, HPO42- and PO43-. Well structured cages were formed and the average H-bond energy decreases steadily as the number of surrounding solvent molecules rises, even when n exceeds 6 and the CF3H molecules begin to interact with one another rather than with the central anion. Total binding energies are very nearly proportional to the magnitude of the negative charge on the anion. The free energy of complexation becomes more negative for larger n initially, but then reaches a minimum and begins to rise for larger values of n.

  11. Competitive reaction pathways for o-anilide aryl radicals: 1,5- or 1,6-hydrogen transfer versus nucleophilic coupling reactions. A novel rearrangement to afford an amidyl radical.

    PubMed

    Rey, Valentina; Pierini, Adriana B; Peñéñory, Alicia B

    2009-02-06

    The photoinduced reactions of o-iodoanilides (o-IC6H4N(Me)COR, 4a-d) with sulfur nucleophiles such as thiourea anion (1, -SCNH(NH2)), thioacetate anion (2, MeCOS-), and sulfide anion (3, S(2-)) follow different reaction channels, giving the sulfides by a radical nucleophilic substitution or the dehalogenated products by hydrogen atom transfer pathways. After an initial photoinduced electron transfer (PET) from 1 to iodide 4, the o-amide aryl radicals 12 are generated. These aryl radicals 12 afford alternative reaction pathways depending on the structure of the alpha-carbonyl moiety: (a) 12b (R = Me) adds to 1 to render the methylthio-substituted compounds by quenching the thiolate anion intermediate with MeI after irradiation; (b) 12c (R = -CH2Ph) follows a 1,5-hydrogen transfer to give a stabilized alpha-carbonyl radical (17); and (c) 12d (R = t-Bu) affords 1,6-hydrogen transfer, followed by a 1,4-aryl migration to render an amidyl radical (20), which is reduced to the N-benzyl-N,2-dimethylpropanamide (10). Together with this last rearranged product, the ipso substitution derivative was also observed. Similar results were obtained in the PET reactions of 4d (R = t-Bu) with anions 2 and 3 under entrainment conditions with the enolate anion from cyclohexenone (5) or the tert-butoxide anion (6). From this novel rearrangement, and only under reductive conditions by PET reaction with anion 5, iodide 4d (R = t-Bu) affords quantitatively the propanamide 10. The energetic of the intramolecular rearrangements followed by radicals 12b-d were rationalized by B3LYP/6-31+G* calculations.

  12. Determination of thermodynamic affinities of various polar olefins as hydride, hydrogen atom, and electron acceptors in acetonitrile.

    PubMed

    Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing

    2013-07-19

    A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.

  13. Chlorophyll-quinone photochemistry in liposomes: mechanisms of radical formation and decay

    SciTech Connect

    Hurley, J.K.; Tollin, G.

    1980-01-01

    Laser flash photolysis has been used to investigate the mechanism of formation and decay of the radical species generated by light induced electron transfer from chlorophyll a triplet to quinone in egg phosphatidyl choline bilayer vesicles. Chlorophyll triplet quenching by quinone is controlled by diffusion occurring within the bilayer membrane and reflects bilayer viscosity. Radical formation via separation of the intermediate ion pair is also inhibited by increased bilayer viscosity. Cooperativity is observed in this process due to an enhancement of radical separation by electron transfer from semiquinone anion radical to a neighboring quinone molecule. Two modes of radical decay are observed, a rapid recombination occurring within the bilayer and a much slower recombination occurring across the bilayer. The slow decay is only observed with quinones which are not tightly anchored into the bilayer, and is probably the result of electron transfer from semiquinone anion radical formed within the bilayer to a quinone molecule residing at the bilayer-water interface. With benzoquinone, approximately 60% of the radical decay occurs via the slow mode. Triplet to radical conversion efficiencies in the bilayer systems are comparable to those obtained in fluid solution (approx. 60%). However, radical recombination, at least for the slow decay mechanism, is considerably retarded.

  14. Electron Acceptor-Electron Donor Interactions. XV and XVI.

    DTIC Science & Technology

    mixtures exhibit simple eutectic phase diagrams and the thermochromic effect is interpreted as a randomized structure in the liquid , whereas the solid is a...two-phase aggregate of isolated acceptor and onor crystals . The charge-transfer spectra of solutions of tungsten and molybdenum hexafluorides and iodine heptafluoride in n-hexane and cyclohexane were obtained.

  15. Poly(trifluoromethyl)azulenes: structures and acceptor properties.

    PubMed

    Clikeman, Tyler T; Bukovsky, Eric V; Kuvychko, Igor V; San, Long K; Deng, Shihu H M; Wang, Xue-Bin; Chen, Yu-Sheng; Strauss, Steven H; Boltalina, Olga V

    2014-06-14

    Six new poly(trifluoromethyl)azulenes prepared in a single high-temperature reaction exhibit strong electron accepting properties in the gas phase and in solution and demonstrate the propensity to form regular π-stacked columns in donor-acceptor crystals when mixed with pyrene as a donor.

  16. Multiple free-radical scavenging (MULTIS) capacity in cattle serum

    PubMed Central

    Sueishi, Yoshimi; Kamogawa, Erisa; Kimura, Anna; Kitahara, Go; Satoh, Hiroyuki; Asanuma, Taketoshi; Oowada, Shigeru

    2017-01-01

    Multiple free-radical scavenging (MULTIS) activity in cattle and human sera was evaluated with electron spin resonance spectroscopy. Scavenging rates against six active species, namely hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen were quantified. The difference in the electron spin resonance signal intensity in the presence and absence of the serum was converted into the scavenging rates. Comparative MULTIS measurements were made in sera from eight beef cattle, three fetal calves and fifteen healthy human volunteers. Further, we determined the MULTIS value of albumin, the most abundant component in serum. MULTIS values in cattle sera indicated higher scavenging activity against most free radical species tested than human sera. In particular, cattle serum scavenging activities against superoxide and methyl radical were higher than human serum by 2.6 and 3.7 fold, respectively. In cattle serum, albumin appears to play a dominant role in MULTIS activity, but in human serum that is not the case. Previous data indicated that the abundance of uric acid in bovine blood is nearly 80% less than humans; however, this difference does not explain the deviation in MULTIS profile. PMID:28163386

  17. Mineral dust exposure and free radical-mediated lung damage

    SciTech Connect

    Doelman, C.J.; Leurs, R.; Oosterom, W.C.; Bast, A. )

    1990-01-01

    Chronic exposure to several types of mineral dust particles induces an inflammatory reaction in the lung. Dust particles activate alveolar macrophages and prime leukocytes (neutrophils, eosinophils, and basophils), leading to an enhanced release of reactive oxygen species. Sometimes mineral dust particles also contain radicals. Reactive oxygen species (superoxide anion radical, hydrogen peroxide, hydroxyl radical, and singlet oxygen) may lead to tissue damage. These are able to break DNA strands, to destroy proteins, and to induce the process of lipid peroxidation. The effects of oxygen radicals on the beta-adrenergic and muscarinic receptor response of the guinea pig and rat tracheal strip are described. The beta-adrenergic receptor response appeared to be more susceptible to oxidative stress than the muscarinic receptor response. This may lead to an autonomic imbalance on exposure to oxygen radicals. The lipid peroxidation product 4-hydroxy-2,3-trans-nonenal diminished the beta-adrenergic responsiveness in guinea pig tracheal preparations. Histologic examinations indicated that at low concentrations of cumene hydroperoxide (10(-4) M) the epithelial layer of rat trachea was already destroyed, whereas no effect on the muscarinic response was found. Oxygen radical-mediated damage in lung tissue may lead to lung emphysema, hyperresponsiveness, and hypersensitivity. Pharmacotherapeutic interventions that prevent initiation or propagation of these free radical reactions may have a beneficial effect in mineral dust-associated lung disease. 70 references.

  18. Development of imide- and imidazole-containing electron acceptors for use in donor-acceptor conjugated compounds and polymers

    NASA Astrophysics Data System (ADS)

    Li, Duo

    Conjugated organic compounds and polymers have attracted significant attention due to their potential application in electronic devices as semiconducting materials, such as organic solar cells (OSCs). In order to tune band gaps, donor-acceptor (D-A) structure is widely used, which has been proved to be one of the most effective strategies. This thesis consists of three parts: 1) design, syntheses and characterization of new weak acceptors based on imides and the systematic study of the structure-property relationship; (2) introduction of weak and strong acceptors in one polymer to achieve a broad coverage of light absorption and improve the power conversion efficiency (PCE); (3) modification of benzothiadiazole (BT) acceptor in order to increase the electron withdrawing ability. Imide-based electron acceptors, 4-(5-bromothiophen-2-y1)-2-(2-ethylhexyl)-9- phenyl- 1H-benzo[f]isoindole-1,3(2H)-dione (BIDO-1) and 4,9-bis(5-bromothiophen-2-yl)-2-(2-ethylhexyl)-benzo[f]isoindole-1,3-dione (BIDO-2), were designed and synthesized. In this design, naphthalene is selected as its main core to maintain a planar structure, and thienyl groups are able to facilitate the bromination reaction and lower the band gap. BIDO-1 and BIDO-2 were successfully coupled with different donors by both Suzuki cross-coupling and Stille cross-coupling reactions. Based on the energy levels and band gaps of the BIDO-containing compounds and polymers, BIDO-1 and BIDO-2 are proved to be weak electron acceptors. Pyromellitic diimide (PMDI) was also studied and found to be a stronger electron acceptor than BIDO . In order to obtain broad absorption coverage, both weak acceptor ( BIDO-2) and strong acceptor diketopyrrolopyrrole (DPP) were introduced in the same polymer. The resulting polymers show two absorption bands at 400 and 600 nm and two emission peaks at 500 and 680 nm. The band gaps of the polymers are around 1.6 eV, which is ideal for OSC application. The PCE of 1.17% was achieved. Finally

  19. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  20. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  1. Effects of common inorganic anions on the rates of photocatalytic degradation of sodium dodecylbenzenesulfonate over illuminated titanium dioxide.

    PubMed

    Xia, Xing-hui; Xu, Jia-lin; Yun, Ying

    2002-04-01

    Experiments were carried out to study the effects of several anions on the photocatalytic degradation rates of sodium dodecylbenzene sulphonate (DBS) with TiO2 as catalyst. The anions were added as Na2SO4, NaNO3, NaCl, NaHCO3, NaH2PO4 and Na3PO4, and two levels of anion content, i.e. 12 mmol/L and 36 mmol/L in terms of Na+, were studied. The results revealed that: Cl-, SO4(2-), NO3- and HCO3- retarded the rates of DBS degradation to different degrees; PO4(3-) increased the DBS degradation rate at low concentration and decreased the rate at high concentration; H2PO4- accelerated the rate of DBS degradation. The mechanism of the effects of anions on DBS degradation was concluded as the following three aspects: anions compete for the radicals; anions are absorbed on the surface of catalyst and block the active site of catalyst; anions added to the solution change the pH value and influence the formation of .OH radicals and the adsorption of DBS on catalyst.

  2. Radical chemistry of artemisinin

    NASA Astrophysics Data System (ADS)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  3. Radical aminomethylation of imines.

    PubMed

    Fujii, Shintaro; Konishi, Takehito; Matsumoto, Yusuke; Yamaoka, Yousuke; Takasu, Kiyosei; Yamada, Ken-Ichi

    2014-09-05

    Taking advantage of the high level of performance of N-alkoxycarbonyl-imines, we achieved the first example of addition of the aminomethyl radical to imine. The reaction efficiency depended on the structure of the radical precursor, whether it is an iodide or a xanthate, and an electron-withdrawing group on the nitrogen atom of the radical. This reaction allows direct introduction of an N-substituted aminomethyl group onto imine to provide 1,2-diamine as well as the short-step synthesis of ICI-199,441.

  4. Anion-catalyzed Disprotionation of Nitrogen Dioxide on Microdroplets Surfaces

    NASA Astrophysics Data System (ADS)

    Hoffmann, M. R.; Enami, S.; Colussi, A. J.

    2009-04-01

    The reactive dissolution of NO2(g) on cloud and fog droplets and the conversion to HONO(g) : 2 NO2(g) + H2O(l) = HONO(g) + NO3-(aq) + H+(aq), is a viable transformation process. Recently, unexpectedly large HONO concentrations were observed that may account for ~ 50 % of OH radical production at noon and entail a diurnal source ~ 64 times stronger than the reaction above at night (Kleffmann, Chem. Phys. Chem. 2007, 8, 1137). Reported NO2(g) uptake coefficients in water are at odds in the range from γg 10-7 up to 10-3. Here we show that the probability of NO2 uptake on aqueous microdroplets depends on their ionic composition at the air/water interface, reaching peak values at ion concentrations in the low mM range, using a novel application of electrospray mass spectrometry. We found that the uptake rates under these conditions are three orders of magnitude larger than in pure water. Uptake appears to be controlled by the capture of NO2 into radical anion intermediates on droplet surfaces, and is modulated by overall anion concentration. These results would resolve the outstanding discrepancies between previous NO2 uptake measurements in water vs. NaCl-seeded clouds, and lead to half-lives for the reactive dissolution of NO2 in typical clouds and fogs that are sufficiently short to impact diurnal ×OH/HO2× budgets.

  5. Free radical biology of the cardiovascular system.

    PubMed

    Chen, Alex F; Chen, Dan-Dan; Daiber, Andreas; Faraci, Frank M; Li, Huige; Rembold, Christopher M; Laher, Ismail

    2012-07-01

    Most cardiovascular diseases (CVDs), as well as age-related cardiovascular alterations, are accompanied by increases in oxidative stress, usually due to increased generation and/or decreased metabolism of ROS (reactive oxygen species; for example superoxide radicals) and RNS (reactive nitrogen species; for example peroxynitrite). The superoxide anion is generated by several enzymatic reactions, including a variety of NADPH oxidases and uncoupled eNOS (endothelial NO synthase). To relieve the burden caused by this generation of free radicals, which also occurs as part of normal physiological processes, such as mitochondrial respiratory chain activity, mammalian systems have developed endogenous antioxidant enzymes. There is an increased usage of exogenous antioxidants such as vitamins C and E by many patients and the general public, ostensibly in an attempt to supplement intrinsic antioxidant activity. Unfortunately, the results of large-scale trails do not generate much enthusiasm for the continued use of antioxidants to mitigate free-radical-induced changes in the cardiovascular system. In the present paper, we review the clinical use of antioxidants by providing the rationale for their use and describe the outcomes of several large-scale trails that largely display negative outcomes. We also describe the emerging understanding of the detailed regulation of superoxide generation by an uncoupled eNOS and efforts to reverse eNOS uncoupling. SIRT1 (sirtuin 1), which regulates the expression and activity of multiple pro- and anti-oxidant enzymes, could be considered a candidate molecule for a 'molecular switch'.

  6. Free radical generation by selenium compounds

    SciTech Connect

    Yan, L.; Spallholz, J.E. )

    1991-03-11

    Sodium selenite, sodium selenate, selenocystine (SeCys) and selenomethionine (SeMet) were tested for their ability to generate free radicals in the absence and presence of glutathione (GSH) and in the presence of cells of the human mammary tumor cell line HTB123/DU4475. Free radical generation was measured by lucigenin or luminol enhanced chemiluminescence (CL). Lucigenin CL was observed form the reaction of selenite with GSH, 2-mercaptoethanol and L-cysteine. Catalase (CT), glutathione peroxidase (GSHPx) and superoxide dismutase (SOD) suppressed CL. Heat inactivated enzymes had no suppressive inhibition of CL. Luminol CL from the reaction of selenite with GSH was much less than that observed from lucigenin CL. In the presence of the human mammary tumor cells, lucigenin CL increased 5 times the CL produced by selenite or SeCys alone and GSH in the absence of tumor cells. The enhanced CL from these reactions in the presence of tumor cells was also suppressed by CT, GSHPx and SOD. These data suggest that free radicals, mainly superoxide (O{sub 2}{sup {minus}}) anion are produced by the reaction of selenite or SeCys with GSH. In the presence of tumor cells CL was enhanced which may account for selenite and Se Cys toxicity in vitro in comparison to the lesser toxicity of selenate or SeMet.

  7. Reductive Umpolung of Carbonyl Derivatives with Visible‐Light Photoredox Catalysis: Direct Access to Vicinal Diamines and Amino Alcohols via α‐Amino Radicals and Ketyl Radicals

    PubMed Central

    Fava, Eleonora; Millet, Anthony; Nakajima, Masaki; Loescher, Sebastian

    2016-01-01

    Abstract Visible‐light‐mediated photoredox‐catalyzed aldimine–aniline and aldehyde–aniline couplings have been realized. The reductive single electron transfer (SET) umpolung of various carbonyl derivatives enabled the generation of intermediary ketyl and α‐amino radical anions, which were utilized for the synthesis of unsymmetrically substituted 1,2‐diamines and amino alcohols. PMID:27136443

  8. Superb hydroxyl radical-mediated biocidal effect induced antibacterial activity of tuned ZnO/chitosan type II heterostructure under dark

    NASA Astrophysics Data System (ADS)

    Podder, Soumik; Halder, Suman; Roychowdhury, Anirban; Das, Dipankar; Ghosh, Chandan Kr.

    2016-10-01

    Reactive oxygen species (ROS) is the most dominating factor for bacteria cell toxicity due to release of oxidative stress. Hydroxyl radical (·OH) is a strong oxidizing ROS that has high impact on biocidal activity. This present paper highlights ·OH influenced antibacterial activity and biocidal propensity of tuned ZnO/chitosan (ZnO/CS) nanocomposite against Pseudomonas putida (P. putida) in the absence of light for the first time. For this purpose, the CS proportion was increased by 25 % (w/w) of ZnO during the preparation of ZnO/CS nanocomposite and a systematic study of different ROS like superoxide anion (O 2 ·- ), hydrogen peroxide (H2O2) and ·OH production as well as their kinetics was carried out both under UV irradiation and in dark by UV-Vis spectroscopy using NBT dye, starch and iodine reaction and fluorescence spectroscopy using terephthalic acid. The decoration of ZnO nanoparticles (ZnO·NPs) with CS tuning was characterized by XRD and FTIR spectroscopy, revealing sustained crystallinity and surface coating of ZnO NP (size about 24 nm) by CS molecule. The hybridization of ZnO nanoparticles with CS@50 wt% (w/w) resulted superior biocidal activity (81 %) within 3 h in dark mediated by optimum production of ·OH among all ROS. Here we have proposed the enhanced production of ·OH in ZnO/CS due to generation of holes by entrapment of electrons in acceptor level formed in nanocomposite for the first time, and the acceptor levels were probed by Positron annihilation lifetime spectroscopy. The increase in non-positronium (non-Ps) formation probability (I2) in ZnO/CS nanocomposite confirmed the acceptor levels. This work also confirms surface defect-mediated ROS generation in dark, and zinc interstitials are proposed as active defect sites for generation of holes and ·OH for the first time and confirmed by steady-state room temperature photoluminescence spectroscopy. Finally, a plausible mechanism was hypothesized focusing on hole generation in ZnO NP and

  9. Mechanisms of electron acceptor utilization: Implications for simulating anaerobic biodegradation

    USGS Publications Warehouse

    Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr, J.M.

    2004-01-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum- contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  10. Study on the free radical scavenging activity of sea cucumber (Paracaudina chinens var.) gelatin hydrolysate

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Xiao, Feng; Zhao, Yuanhui; Liu, Zunying; Li, Bafang; Dong, Shiyuan

    2007-07-01

    Gelatin from the sea cucumber (Paracaudina chinens var.) was hydrolyzed by bromelain and the hydrolysate was found to have a high free radical scavenging activity. The hydrolysate was fractionated through an ultrafiltration membrane with 5 kDa molecular weight cutoff (MWCO). The portion (less than 5 kDa) was further separated by Sephadex G-25. The active peak was collected and assayed for free radical scavenging activity. The scavenging rates for superoxide anion radicals (O2·-) and hydroxyl radicals (·OH) of the fraction with the highest activity were 29.02% and 75.41%, respectively. A rabbit liver mitochondrial free radical damage model was adopted to study the free radical scavenging activity of the fraction. The results showed that the sea cucumber gelatin hydrolysate can prevent the damage of rabbit liver and mitochondria.

  11. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  12. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  13. Binding Hydrated Anions with Hydrophobic Pockets.

    PubMed

    Sokkalingam, Punidha; Shraberg, Joshua; Rick, Steven W; Gibb, Bruce C

    2016-01-13

    Using a combination of isothermal titration calorimetry and quantum and molecular dynamics calculations, we demonstrate that relatively soft anions have an affinity for hydrophobic concavity. The results are consistent with the anions remaining partially hydrated upon binding, and suggest a novel strategy for anion recognition.

  14. NO3- anions can act as Lewis acid in the solid state.

    PubMed

    Bauzá, Antonio; Frontera, Antonio; Mooibroek, Tiddo J

    2017-02-21

    Identifying electron donating and accepting moieties is crucial to understanding molecular aggregation, which is of pivotal significance to biology. Anions such as NO3(-) are typical electron donors. However, computations predict that the charge distribution of NO3(-) is anisotropic and minimal on nitrogen. Here we show that when the nitrate's charge is sufficiently dampened by resonating over a larger area, a Lewis acidic site emerges on nitrogen that can interact favourably with electron rich partners. Surveys of the Cambridge Structural Database and Protein Data Bank reveal geometric preferences of some oxygen and sulfur containing entities around a nitrate anion that are consistent with this 'π-hole bonding' geometry. Computations reveal donor-acceptor orbital interactions that confirm the counterintuitive Lewis π-acidity of nitrate.

  15. NO3- anions can act as Lewis acid in the solid state

    NASA Astrophysics Data System (ADS)

    Bauzá, Antonio; Frontera, Antonio; Mooibroek, Tiddo J.

    2017-02-01

    Identifying electron donating and accepting moieties is crucial to understanding molecular aggregation, which is of pivotal significance to biology. Anions such as NO3- are typical electron donors. However, computations predict that the charge distribution of NO3- is anisotropic and minimal on nitrogen. Here we show that when the nitrate's charge is sufficiently dampened by resonating over a larger area, a Lewis acidic site emerges on nitrogen that can interact favourably with electron rich partners. Surveys of the Cambridge Structural Database and Protein Data Bank reveal geometric preferences of some oxygen and sulfur containing entities around a nitrate anion that are consistent with this `π-hole bonding' geometry. Computations reveal donor-acceptor orbital interactions that confirm the counterintuitive Lewis π-acidity of nitrate.

  16. NO3− anions can act as Lewis acid in the solid state

    PubMed Central

    Bauzá, Antonio; Frontera, Antonio; Mooibroek, Tiddo J.

    2017-01-01

    Identifying electron donating and accepting moieties is crucial to understanding molecular aggregation, which is of pivotal significance to biology. Anions such as NO3− are typical electron donors. However, computations predict that the charge distribution of NO3− is anisotropic and minimal on nitrogen. Here we show that when the nitrate's charge is sufficiently dampened by resonating over a larger area, a Lewis acidic site emerges on nitrogen that can interact favourably with electron rich partners. Surveys of the Cambridge Structural Database and Protein Data Bank reveal geometric preferences of some oxygen and sulfur containing entities around a nitrate anion that are consistent with this ‘π-hole bonding' geometry. Computations reveal donor–acceptor orbital interactions that confirm the counterintuitive Lewis π–acidity of nitrate. PMID:28220788

  17. Intra- and intermolecular hydrogen bonds in pyrrolylindandione derivatives and their interaction with fluoride and acetate: possible anion sensing properties.

    PubMed

    Sigalov, Mark V; Shainyan, Bagrat A; Chipanina, Nina N; Oznobikhina, Larisa P

    2013-11-07

    The series of push-pull compounds containing the pyrrole ring as a donor and the 1,3-indandione derived moieties as the acceptor unit were synthesized, and strong intramolecular hydrogen bonding in their molecules was studied. In the presence of fluoride and acetate anions their solutions undergo color changes. It was shown by NMR, UV-vis, and quantum chemical calculations including AIM analysis that all these compounds undergo solvent-assisted rupture of the intramolecular hydrogen bond followed by the formation of a strong intermolecular hydrogen bond with fluoride and acetate anions which finally abstract a proton from the pyrrole ring. The insensitivity of the studied compounds to other anions (Cl, Br, HSO4, PF6) is consequence of the instability of the corresponding hydrogen-bonded complexes.

  18. Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces.

    PubMed

    Cotelle, Yoann; Benz, Sebastian; Avestro, Alyssa-Jennifer; Ward, Thomas R; Sakai, Naomi; Matile, Stefan

    2016-03-18

    To integrate anion-π, cation-π, and ion pair-π interactions in catalysis, the fundamental challenge is to run reactions reliably on aromatic surfaces. Addressing a specific question concerning enolate addition to nitroolefins, this study elaborates on Leonard turns to tackle this problem in a general manner. Increasingly refined turns are constructed to position malonate half thioesters as close as possible on π-acidic surfaces. The resulting preorganization of reactive intermediates is shown to support the disfavored addition to enolate acceptors to an absolutely unexpected extent. This decisive impact on anion-π catalysis increases with the rigidity of the turns. The new, rigidified Leonard turns are most effective with weak anion-π interactions, whereas stronger interactions do not require such ideal substrate positioning to operate well. The stunning simplicity of the motif and its surprisingly strong relevance for function should render the introduced approach generally useful.

  19. Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure

    SciTech Connect

    Nishi, J.; Ogura, R.; Sugiyama, M.; Hidaka, T.; Kohno, M. )

    1991-07-01

    To elucidate the radical mechanism of lipid peroxidation induced by ultraviolet light (UV) irradiation, an electron spin resonance (ESR) study was made on epidermal homogenate prepared from albino rat skin. The exposure of the homogenate to UV light resulted in an increase in lipid peroxide content, which was proportional to the time of UV exposure. Using ESR spin trapping (dimethyl-1-pyrroline-N-oxide, DMPO), the DMPO spin adduct spectrum of lipid radicals (L.) was measured following UV exposure (DMPO-L.:aN = 15.5 G, aH = 22.7 G), as was the spectrum of DMPO-hydroxyl radical (DMPO-OH, aN = aH = 15.5 G). In the presence of superoxide dismutase, the DMPO spin adduct spectrum of lipid radicals was found to be reduced remarkably. Therefore, it was shown that the generation of the lipid radicals partially involves superoxide anion radicals, in addition to hydroxyl radicals. In the ESR free-radical experiment, an ESR signal appeared at g = 2.0064 when the ESR tube filled with homogenate was exposed to UV light at -150 degrees C. The temperature-dependent change in the ESR free radical signal of homogenate exposed to UV light was observed at temperatures varying from -150 degrees C to room temperature. By using degassed samples, it was confirmed that oxygen is involved in the formation of the lipid peroxide radicals (LOO.) from the lipid radicals (L.).

  20. Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells.

    PubMed

    Dai, Shuixing; Zhao, Fuwen; Zhang, Qianqian; Lau, Tsz-Ki; Li, Tengfei; Liu, Kuan; Ling, Qidan; Wang, Chunru; Lu, Xinhui; You, Wei; Zhan, Xiaowei

    2017-01-25

    We design and synthesize four fused-ring electron acceptors based on 6,6,12,12-tetrakis(4-hexylphenyl)-indacenobis(dithieno[3,2-b;2',3'-d]thiophene) as the electron-rich unit and 1,1-dicyanomethylene-3-indanones with 0-2 fluorine substituents as the electron-deficient units. These four molecules exhibit broad (550-850 nm) and strong absorption with high extinction coefficients of (2.1-2.5) × 10(5) M(-1) cm(-1). Fluorine substitution downshifts the LUMO energy level, red-shifts the absorption spectrum, and enhances electron mobility. The polymer solar cells based on the fluorinated electron acceptors exhibit power conversion efficiencies as high as 11.5%, much higher than that of their nonfluorinated counterpart (7.7%). We investigate the effects of the fluorine atom number and position on electronic properties, charge transport, film morphology, and photovoltaic properties.

  1. An organic donor/acceptor lateral superlattice at the nanoscale.

    PubMed

    Otero, Roberto; Ecija, David; Fernandez, Gustavo; Gallego, José María; Sanchez, Luis; Martín, Nazario; Miranda, Rodolfo

    2007-09-01

    A precise control of the nanometer-scale morphology in systems containing mixtures of donor/acceptor molecules is a key factor to improve the efficiency of organic photovoltaic devices. Here we report on a scanning tunneling microscopy study of the first stages of growth of 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole, as electron donor, and phenyl-C61-butyric acid methyl ester, as electron acceptor, on a Au(111) substrate under ultrahigh vacuum conditions. Due to differences in bonding strength with the substrate and different interactions with the Au(111) herringbone surface reconstruction, mixed thin films spontaneously segregate into a lateral superlattice of interdigitated nanoscale stripes with a characteristic width of about 10-20 nm, a morphology that has been predicted to optimize the efficiency of organic solar cells.

  2. Cross-conjugated chromophores: synthesis of iso-polydiacetylenes with Donor/Acceptor substitution

    PubMed

    Ciulei; Tykwinski

    2000-11-16

    The iterative construction of cross-conjugated donor (D), acceptor (A), and donor-acceptor (D-A) substituted iso-polydiacetylene (iso-PDA) oligomers has been achieved utilizing palladium-catalyzed cross-coupling techniques. Structure-property relationships for these compounds have been analyzed for cross-conjugated pi-electronic communication as a result of contributions from donor, acceptor, or donor-acceptor functionalization.

  3. Anion Solvation in Carbonate Electrolytes

    SciTech Connect

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  4. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  5. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  6. Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors

    SciTech Connect

    Nardes, Alexandre M.; Ferguson, Andrew J.; Wolfer, Pascal; Gui, Kurt; Burn, Paul L.; Meredith, Paul; Kopidakis, Nikos

    2014-03-05

    We present a comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85 % of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. Here, we propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub

  7. Aza compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

  8. Aza compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  9. Hosting anions. The energetic perspective.

    PubMed

    Schmidtchen, Franz P

    2010-10-01

    Hosting anions addresses the widely spread molecular recognition event of negatively charged species by dedicated organic compounds in condensed phases at equilibrium. The experimentally accessible energetic features comprise the entire system including the solvent, any buffers, background electrolytes or other components introduced for e.g. analysis. The deconvolution of all these interaction types and their dependence on subtle structural variation is required to arrive at a structure-energy correlation that may serve as a guide in receptor construction. The focus on direct host-guest interactions (lock-and-key complementarity) that have dominated the binding concepts of artificial receptors in the past must be widened in order to account for entropic contributions which constitute very significant fractions of the total free energy of interaction. Including entropy necessarily addresses the ambiguity and fuzziness of the host-guest structural ensemble and requires the appreciation of the fact that most liquid phases possess distinct structures of their own. Apparently, it is the perturbation of the intrinsic solvent structure occurring upon association that rules ion binding in polar media where ions are soluble and abundant. Rather than specifying peculiar structural elements useful in anion binding this critical review attempts an illumination of the concepts and individual energetic contributions resulting in the final observation of specific anion recognition (95 references).

  10. Engineered oligosaccharyltransferases with greatly relaxed acceptor site specificity

    PubMed Central

    Ollis, Anne A.; Zhang, Sheng; Fisher, Adam C.; DeLisa, Matthew P.

    2015-01-01

    The Campylobacter jejuni protein glycosylation locus (pgl) encodes machinery for asparagine-linked (N-linked) glycosylation and serves as the archetype for bacterial N-glycosylation. This machinery has been functionally transferred into Escherichia coli, thereby enabling convenient mechanistic dissection of the N-glycosylation process in this genetically tractable host. Here, we sought to identify sequence determinants in the oligosaccharyltransferase PglB that restrict its specificity to only those glycan acceptor sites containing a negatively charged residue at the −2 position relative to asparagine. This involved creation of a genetic assay named glycoSNAP (glycosylation of secreted N-linked acceptor proteins) that facilitates high-throughput screening of glycophenotypes in E. coli. Using this assay, we isolated several C. jejuni PglB variants that were capable of glycosylating an array of noncanonical acceptor sequences including one in a eukaryotic N-glycoprotein. Collectively, these results underscore the utility of glycoSNAP for shedding light on poorly understood aspects of N-glycosylation and for engineering designer N-glycosylation biocatalysts. PMID:25129029

  11. Income-generating activities for family planning acceptors.

    PubMed

    1989-07-01

    The Income Generating Activities program for Family Planning Acceptors was introduced in Indonesia in 1979. Capital input by the Indonesian National Family Planning Coordination Board and the UN Fund for Population Activities was used to set up small businesses by family planning acceptors. In 2 years, when the businesses become self-sufficient, the loans are repaid, and the money is used to set up new family planning acceptors in business. The program strengthens family planning acceptance, improves the status of women, and enhances community self-reliance. The increase in household income generated by the program raises the standards of child nutrition, encourages reliance on the survival of children, and decreases the value of large families. Approximately 18,000 Family Planning-Income Generating Activities groups are now functioning all over Indonesia, with financial assistance from the central and local governments, the World Bank, the US Agency for International Development, the UN Population Fund, the Government of the Netherlands, and the Government of Australia through the Association of South East Asian Nations.

  12. Design directed self-assembly of donor-acceptor polymers.

    PubMed

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements.

  13. Quantum dots as FRET acceptors for highly sensitive multiplexing immunoassays

    NASA Astrophysics Data System (ADS)

    Geissler, Daniel; Hildebrandt, Niko; Charbonnière, Loïc J.; Ziessel, Raymond F.; Löhmannsröben, Hans-Gerd

    2009-02-01

    Homogeneous immunoassays have the benefit that they do not require any time-consuming separation steps. FRET is one of the most sensitive homogeneous methods used for immunoassays. Due to their extremely strong absorption over a broad wavelength range the use of quantum dots as FRET acceptors allows for large Foerster radii, an important advantage for assays in the 5 to 10 nm distance range. Moreover, because of their size-tunable emission, quantum dots of different sizes can be used with a single donor for the detection of different analytes (multiplexing). As the use of organic dyes with short fluorescence decay times as donors is known to be inefficient with quantum dot acceptors, lanthanide complexes with long luminescence decays are very efficient alternatives. In this contribution we present the application of commercially available biocompatible CdSe/ZnS core/shell quantum dots as multiplexing FRET acceptors together with a single terbium complex as donor in a homogeneous immunoassay system. Foerster radii of 10 nm and FRET efficiencies of 75 % are demonstrated. The high sensitivity of the terbium-toquantum dot FRET assay is shown by sub-100-femtomolar detection limits for two different quantum dots (emitting at 605 and 655 nm) within the same biotin-streptavidin assay. Direct comparison to the FRET immunoassay "gold standard" (FRET from Eu-TBP to APC) yields a three orders of magnitude sensitivity improvement, demonstrating the big advantages of quantum dots not only for multiplexing but also for highly sensitive nanoscale analysis.

  14. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    PubMed

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  15. Covalent Polymers Containing Discrete Heterocyclic Anion Receptors

    NASA Astrophysics Data System (ADS)

    Rambo, Brett M.; Silver, Eric S.; Bielawski, Christopher W.; Sessler, Jonathan L.

    This chapter covers recent advances in the development of polymeric materials containing discrete heterocyclic anion receptors, and focuses on advances in anion binding and chemosensor chemistry. The development of polymers specific for anionic species is a relatively new and flourishing area of materials chemistry. The incorporation of heterocyclic receptors capable of complexing anions through noncovalent interactions (e.g., hydrogen bonding and electrostatic interactions) provides a route to not only sensitive but also selective polymeric materials. Furthermore, these systems have been utilized in the development of polymers capable of extracting anionic species from aqueous media. These latter materials may lead to advances in water purification and treatment of diseases resulting from surplus ions.

  16. 2012 ELECTRON DONOR-ACCEPTOR INTERACTIONS GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect

    McCusker, James

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  17. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors.

    PubMed

    Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A

    2015-04-15

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, (1)H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  18. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2015-04-01

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  19. From anion receptors to transporters.

    PubMed

    Gale, Philip A

    2011-03-15

    Cystic fibrosis is the most well-known of a variety of diseases termed channelopathies, in which the regulation of ion transport across cell membranes is so disrupted that the threshold of a pathology is passed. The human toll exacted by these diseases has led a number of research groups, including our own, to create compounds that mediate ion transport across lipid bilayers. In this Account, we discuss three classes of synthetic compounds that were refined to bind and transport anions across lipid bilayer membranes. All of the compounds were originally designed as anion receptors, that is, species that would simply create stable complexes with anions, but were then further developed as transporters. By studying structurally simple systems and varying their properties to change the degree of preorganization, the affinity for anions, or the lipophilicity, we have begun to rationalize why particular anion transport mechanisms (cotransport or antiport processes) occur in particular cases. For example, we have studied the chloride transport properties of receptors based on the closely related structures of isophthalamide and pyridine-2,6-dicarboxamide: the central ring in each case was augmented with pendant methylimidazole groups designed to cotransport H(+) and Cl(-). We observed that the more preorganized pyridine-based receptor was the more efficient transporter, a finding replicated with a series of isophthalamides in which one contained hydroxyl groups designed to preorganize the receptor. This latter class of compound, together with the natural product prodigiosin, can transport bicarbonate (as part of a chloride/bicarbonate antiport process) across lipid bilayer membranes. We have also studied the membrane transport properties of calix[4]pyrroles. Although the parent meso-octamethylcalix[4]pyrrole functions solely as a Cs(+)/Cl(-) cotransporter, other compounds with increased anion affinities can function through an antiport process. One example is octafluoro

  20. Charge separation distance for flexible donor-bridge-acceptor systems after electron-transfer quenching.

    PubMed

    Zhou, Jinwei; Lukin, Leonid V; Braun, Charles L

    2008-08-21

    Photoinduced transient dipole experiments are used to measure the effective charge separation distance, which is equivalent to the photoinduced change in dipole moment divided by the electron charge of flexible electron-donor/acceptor systems, D-(CH2)n-A, where D is 4- N,N-dimethylaniline, A is 9-anthryl, and n = 3, 4. We find that the dipole moments increase strongly with solvent polarity. For the compound with n = 4 (DBA4), analysis of dipole signals indicates that the effective charge separation distances in toluene, 1,4-dioxane, ethyl acetate, tetrahydrofuran, dichloromethane, 1,2-dichloroethane, 2-methylpentanone-3, 3-pentanone, and benzonitrile are 2.2, 2.5, 4.5, 4.7, 5.5, 5.5, 4.8, and 6.3 A, respectively. These values can be understood as the root-mean-square charge separation distance in the solutions of different solvents. We assume that the folded contact configuration has a separation distance of 3.5 A, the extended, solvent-separated configuration has a separation distance of 8.0 A, and that they are the only two stable species after electron-transfer quenching. The formation efficiencies of contact radical ion pairs (CRIPs) and solvent-separated radical ion pairs (SSRIPs) are estimated in different solvents. The results indicate that a significant fraction of the ion pairs exist as solvent-separated ion pairs when the dielectric constant of the solvent is larger than 10. These results indicate that electron-transfer quenching can indeed happen at large separations in polar solvents. They also reveal that there is a barrier for ion pairs formed at large separations, hindering collapse to a contact separation of around 3.5 A.

  1. Method for producing and regenerating a synthetic CO[sub 2] acceptor

    DOEpatents

    Lancet, M. S.; Curran, G. P.; Gorin, E.

    1982-05-18

    A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

  2. Method for producing and regenerating a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

    1982-01-01

    A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

  3. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  4. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.

    PubMed

    Flühe, Leif; Marahiel, Mohamed A

    2013-08-01

    Sactipeptides represent a new emerging class of ribosomally assembled and posttranslationally modified peptides that show diverse bioactivities. Their common hallmark is an intramolecular thioether bond that crosslink the sulfur atom of a cysteine residue with the α-carbon of an acceptor amino acid. This review summarizes recent achievements concerning the biosynthesis of sactipeptides in general and with special focus on the common enzymatic radical SAM mechanism leading to the thioether linkage formation. In addition this mechanism is compared to the mechanism of thioether bond formation during lanthipeptide biosynthesis and to other radical based thioether bond forming reactions.

  5. Mechanistic aspects of hydration of guanine radical cations in DNA.

    PubMed

    Rokhlenko, Yekaterina; Cadet, Jean; Geacintov, Nicholas E; Shafirovich, Vladimir

    2014-04-23

    The mechanistic aspects of hydration of guanine radical cations, G(•+) in double- and single-stranded oligonucleotides were investigated by direct time-resolved spectroscopic monitoring methods. The G(•+) radical one-electron oxidation products were generated by SO4(•-) radical anions derived from the photolysis of S2O8(2-) anions by 308 nm laser pulses. In neutral aqueous solutions (pH 7.0), after the complete decay of SO4(•-) radicals (∼5 μs after the actinic laser flash) the transient absorbance of neutral guanine radicals, G(-H)(•) with maximum at 312 nm, is dominant. The kinetics of decay of G(-H)(•) radicals depend strongly on the DNA secondary structure. In double-stranded DNA, the G(-H)(•) decay is biphasic with one component decaying with a lifetime of ∼2.2 ms and the other with a lifetime of ∼0.18 s. By contrast, in single-stranded DNA the G(-H)(•) radicals decay monophasically with a ∼ 0.28 s lifetime. The ms decay component in double-stranded DNA is correlated with the enhancement of 8-oxo-7,8-dihydroguanine (8-oxoG) yields which are ∼7 greater than in single-stranded DNA. In double-stranded DNA, it is proposed that the G(-H)(•) radicals retain radical cation character by sharing the N1-proton with the N3-site of C in the [G(•+):C] base pair. This [G(-H)(•):H(+)C ⇆ G(•+):C] equilibrium allows for the hydration of G(•+) followed by formation of 8-oxoG. By contrast, in single-stranded DNA, deprotonation of G(•+) and the irreversible escape of the proton into the aqueous phase competes more effectively with the hydration mechanism, thus diminishing the yield of 8-oxoG, as observed experimentally.

  6. Conformation-Selective Resonant Photoelectron Spectroscopy via Dipole-Bound States of Cold Anions.

    PubMed

    Huang, Dao-Ling; Liu, Hong-Tao; Ning, Chuan-Gang; Wang, Lai-Sheng

    2015-06-18

    Molecular conformation is important in chemistry and biochemistry. Conformers connected by low energy barriers can only be observed at low temperatures and are difficult to be separated. Here we report a new method to obtain conformation-selective spectroscopic information about dipolar molecular radicals via dipole-bound excited states of the corresponding anions cooled in a cryogenic ion trap. We observed two conformers of cold 3-hydroxyphenoxide anions [m-HO(C6H4)O(-)] in high-resolution photoelectron spectroscopy and measured different electron affinities, 18,850(8) and 18,917(5) cm(-1), for the syn and anti 3-hydroxyphenoxy radicals, respectively. We also observed dipole-bound excited states for m-HO(C6H4)O(-) with different binding energies for the two conformers due to the different dipole moments of the corresponding 3-hydroxyphenoxy radicals. Excitations to selected vibrational levels of the dipole-bound states result in conformation-selective photoelectron spectra. This method should be applicable to conformation-selective spectroscopic studies of any anions with dipolar neutral cores.

  7. Electric field-driven extraction of lipophilic anions across a carrier-mediated polymer inclusion membrane.

    PubMed

    See, Hong Heng; Hauser, Peter C

    2011-10-01

    The use of a cationic carrier-mediated polymer inclusion membrane (PIM) for extraction and preconcentration of anionic model analytes driven by an electric field directly into an aqueous acceptor solution is demonstrated. The optimized membrane was 20 μm thick and consisted of 60% cellulose triacetate as base polymer, 20% o-nitrophenyl octyl ether as plasticizer, and 20% Aliquat 336 as cationic carrier in the perchlorate form. By applying voltages of up to 700 V across the membrane, the lipophilic model analytes propanesulfonate, octanesulfonate, and decanesulfonate could be transported from the aqueous donor solution to the aqueous acceptor solution with efficiences >90% within 5 to 20 min. A preconcentration factor of 26, defined by the volume ratio between donor and acceptor compartments of the current cell design, could be achieved. The utility of the method for analytical applications is demonstrated by extraction of the herbicide glyphosate and its breakdown product aminomethylphosphonic acid from spiked river water, followed by quantification with capillary electrophoresis using contactless conductivity detection. Limits of detection of 0.8 and 1.5 ng/mL were obtained for glyphosate and aminomethylphosphonic acid, respectively.

  8. Radical Socioeducational Analysis.

    ERIC Educational Resources Information Center

    Sigmon, Scott B.

    This book describes an interactive-interdisciplinary way of looking at the social conditions which impinge upon schooling, and which impact upon the social facts of life. It examines current schooling problems from the perspective of radical social democratic thought. The book is organized into four major sections. Part 1 provides an overview and…

  9. Against Radical Multiculturalism.

    ERIC Educational Resources Information Center

    Zorn, Jeff

    This essay presents two strands of arguments against radical or critical emancipatory multiculturalism. In strand 1, "'Culture' is...whatever..." the looseness of the core concept of "culture," which can refer to anything at all concerning a social group that itself may exist only theoretically, is shown. In strand 2, "From ideology to leveling,…

  10. Beyond Radical Educational Cynicism.

    ERIC Educational Resources Information Center

    Wood, George H.

    1982-01-01

    An alternative is presented to counter current radical arguments that the schools cannot bring about social change because they are instruments of capitalism. The works of Samuel Bowles, Herbert Gintis, and Louis Althusser are discussed. Henry Giroux's "Ideology, Culture and the Process of Schooling" provides an alternative to cynicism.…

  11. Radically enhanced molecular recognition

    NASA Astrophysics Data System (ADS)

    Trabolsi, Ali; Khashab, Niveen; Fahrenbach, Albert C.; Friedman, Douglas C.; Colvin, Michael T.; Cotí, Karla K.; Benítez, Diego; Tkatchouk, Ekaterina; Olsen, John-Carl; Belowich, Matthew E.; Carmielli, Raanan; Khatib, Hussam A.; Goddard, William A.; Wasielewski, Michael R.; Stoddart, J. Fraser

    2010-01-01

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication.

  12. Radical School Reform.

    ERIC Educational Resources Information Center

    Gross, Beatrice, Ed.; Gross, Ronald, Ed.

    This book provides a comprehensive examination of the nature of the school crisis and the ways in which radical thinkers and educators are dealing with it. Excerpts from the writings of Jonathan Kozol, John Holt, Kenneth Clark, and others are concerned with the realities of education in ghettos and suburbs. Paul Goodman, Marshall McLuhan, Sylvia…

  13. Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides.

    PubMed

    Joffe, Avrum; Mock, Steven; Yun, Byeong Hwa; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Shafirovich, Vladimir

    2003-08-01

    A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion

  14. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors.

    PubMed

    Shaikh, Shaukat Ali M; Barik, Atanu; Singh, Beena G; Modukuri, Ramani V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Priyadarsini, K Indira

    2016-12-01

    Hispolon (HS), a natural polyphenol found in medicinal mushrooms, and its isoxazole (HI) and pyrazole (HP) derivatives have been examined for free radical reactions and in vitro antioxidant activity. Reaction of these compounds with one-electron oxidant, azide radicals ([Formula: see text]) and trichloromethyl peroxyl radicals ([Formula: see text]), model peroxyl radicals, studied by nanosecond pulse radiolysis technique, indicated formation of phenoxyl radicals absorbing at 420 nm with half life of few hundred microseconds (μs). The formation of phenoxyl radicals confirmed that the phenolic OH is the active centre for free radical reactions. Rate constant for the reaction of these radicals with these compounds were in the order kHI ≅ kHP > kHS. Further the compounds were examined for their ability to inhibit lipid peroxidation in model membranes and also for the scavenging of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide ([Formula: see text]) radicals. The results suggested that HP and HI are less efficient than HS towards these radical reactions. Quantum chemical calculations were performed on these compounds to understand the mechanism of reaction with different radicals. Lower values of adiabatic ionization potential (AIP) and elevated highest occupied molecular orbital (HOMO) for HI and HP compared with HS controlled their activity towards [Formula: see text] and [Formula: see text] radicals, whereas the contribution of overall anion concentration was responsible for higher activity of HS for DPPH, [Formula: see text], and lipid peroxyl radical. The results confirm the role of different structural moieties on the antioxidant activity of hispolon derivatives.

  15. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    PubMed Central

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  16. Pyrazole complexes as anion receptors.

    PubMed

    Nieto, Sonia; Pérez, Julio; Riera, Lucía; Riera, Víctor; Miguel, Daniel

    2006-03-01

    The behavior of the receptors [Re(CO)3(Hdmpz)3]BAr'4 (Hdmpz = 3,5-dimethylpyrazole) (1) and [Re(CO)3(HtBupz)3]BAr'4 (HtBupz = 3(5)-tert-butylpyrazole) (2; Ar' = 3,5-bis(trifluoromethyl)phenyl) toward the anions fluoride, chloride, bromide, iodide, hydrogensulfate, dihydrogenphosphate, nitrate, and perrhenate was studied in CD3CN solution. In most cases, the receptors were stable. Anion exchange was fast, and binding constants were calculated from the NMR titration profiles. The structure of the adduct [Re(CO)3(HtBupz)3] x NO3 (3) was determined by X-ray diffraction. Two pyrazole moieties are hydrogen-bonded to one nitrate oxygen atom, and the third pyrazole moiety is hydrogen-bonded to an oxygen atom of an adjacent nitrate, leading to infinite chains. The structure of the adduct [Re(CO)3(Hdmpz)3]BAr'4acetone (4), also determined by X-ray diffraction, showed a similar interaction of two pyrazole N-H groups with the acetone oxygen atom. F- and H2PO4(-) deprotonate the receptors, and HSO4(-) decomposed 1. The structure of one of the decomposition products (5), determined by X-ray diffraction, is consistent with pyrazole protonation and substitution by sulfate.

  17. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation.

    PubMed

    Fang, Guodong; Zhu, Changyin; Dionysiou, Dionysios D; Gao, Juan; Zhou, Dongmei

    2015-01-01

    This paper investigated hydroxyl radical (OH) generation from biochar suspensions for diethyl phthalate (DEP) degradation in the presence of oxygen. Electron paramagnetic resonance (EPR) coupled with a salicylic acid trapping method were used to detect free radicals in biochar and verify OH generation from biochar suspensions. Free radicals (FRs) in biochar could induce OH generation, and ≈12 spins of FRs were consumed to produce one trapped [OH] molecule. The proposed mechanism of OH generation was that FRs in biochar transferred electrons to O2 to produce the superoxide radical anion and hydrogen peroxide, which reacted further with FRs to produce OH. Free radical-quenching studies utilizing superoxide dismutase, catalase, and deferoxamine as scavengers were used to testify this mechanism. Furthermore, OH generated from biochar suspensions could degrade DEP efficiently. These findings of this study provide new insights into the physicochemical properties and environmental implications of biochar.

  18. Radical quenching by rosmarinic acid from Lavandula vera MM cell culture.

    PubMed

    Kovacheva, Elena; Georgiev, Milen; Pashova, Svetlana; Angelova, Maria; Ilieva, Mladenka

    2006-01-01

    This study was conducted to evaluate the radical scavenging capacities of extracts and preparations from a Lavandula vera MM plant cell culture with different rosmarinic acid content and to compare them with pure rosmarinic and caffeic acids as well. The methods, which were used are superoxide anion and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radicals scavenging assays. Results showed that extracts and preparations from Lavandula vera MM possess strong radical scavengers, as the best both radical scavengers appeared to be the fractions with enriched rosmarinic acid content, obtained after ethylacetate fractioning (47.7% inhibition of superoxide radicals and 14.2 microM 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid equivalents, respectively). These data reveal the possibilities for application of these preparations as antioxidants.

  19. Tunable electronic interactions between anions and perylenediimide.

    PubMed

    Goodson, Flynt S; Panda, Dillip K; Ray, Shuvasree; Mitra, Atanu; Guha, Samit; Saha, Sourav

    2013-08-07

    Over the past decade anion-π interaction has emerged as a new paradigm of supramolecular chemistry of anions. Taking advantage of the electronic nature of anion-π interaction, we have expanded its boundaries to charge-transfer (CT) and formal electron transfer (ET) events by adjusting the electron-donating and accepting abilities of anions and π-acids, respectively. To establish that ET, CT, and anion-π interactions could take place between different anions and π-acids as long as their electronic and structural properties are conducive, herein, we introduce 3,4,9,10-perylenediimide (PDI-1) that selectively undergoes thermal ET from strong Lewis basic hydroxide and fluoride anions, but remains electronically and optically silent to poor Lewis basic anions, as ET and CT events are turned OFF. These interactions have been fully characterized by UV/Vis, NMR, and EPR spectroscopies. These results demonstrate the generality of anion-induced ET events in aprotic solvents and further refute a notion that strong Lewis basic hydroxide and fluoride ions can only trigger nucleophilic attack to form covalent bonds instead of acting as sacrificial electron donors to π-acids under appropriate conditions.

  20. Hydroxyl radical scavengers inhibit human lectin-dependent cellular cytotoxicity.

    PubMed

    Melinn, M; McLaughlin, H

    1986-06-01

    The role of oxygen-derived free radicals (ODFR) in lectin-dependent cellular cytotoxicity (LDCC) in humans was investigated. The hydroxyl radical traps thiourea, methanol, ethanol and phenol were effective in inhibiting LDCC, as was DABCO, a singlet oxygen quencher. The proposed pathway of hydroxyl radical production in living cells is either an iron catalysed Haber-Weiss reaction or a Fenton reaction. The effect of inhibitors of these pathways was investigated. The superoxide anion scavengers superoxide dismutase, ferricytochrome c and Tiron were without effect. It was shown that Tiron inhibits the lucigenin-amplified chemiluminescence produced by the action of xanthine oxidase, and also the lucigenin-amplified chemiluminescence produced by activated PMN, suggesting that this agent (Tiron) scavenges intracellular superoxide anion. Catalase gave slight inhibition of LDCC only. The ferric iron chelator desferrioxamine gave no protection of the target cells, while the ferrous chelator, 1,10-phenanthroline, inhibited LDCC and partially prevented the detection of hydroxyl radicals generated by the Fe2+-H2O2 system. Cibacron blue, an agent that inhibits NAD(P)H linked enzymes, also inhibited LDCC. The cyclo-oxygenase inhibitors indomethacin and salicylate were without effect, while the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) inhibited cytolysis. None of the LDCC inhibitors was cytotoxic to the effector cells or to the target cells, neither did they inhibit lymphocyte-target binding. The findings would suggest that hydroxyl radicals have a role to play in human T-cell mediated cytolysis, either as the active lytic agent or as an epiphenomenon.

  1. The role of free radicals in traumatic brain injury.

    PubMed

    O'Connell, Karen M; Littleton-Kearney, Marguerite T

    2013-07-01

    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  2. Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

    PubMed Central

    So, Mi Jung; Cho, Eun Ju

    2014-01-01

    The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions (O2−), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, O2−, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide (H2O2)-induced SIPS. Phloroglucinol treatment attenuated H2O2-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS. PMID:25320709

  3. Donor-acceptor complexation and dehydrogenation chemistry of aminoboranes.

    PubMed

    Malcolm, Adam C; Sabourin, Kyle J; McDonald, Robert; Ferguson, Michael J; Rivard, Eric

    2012-12-03

    A series of formal donor-acceptor adducts of aminoborane (H(2)BNH(2)) and its N-substituted analogues (H(2)BNRR') were prepared: LB-H(2)BNRR'(2)-BH(3) (LB = DMAP, IPr, IPrCH(2) and PCy(3); R and R' = H, Me or tBu; IPr = [(HCNDipp)(2)C:] and Dipp = 2,6-iPr(2)C(6)H(3)). To potentially access complexes of molecular boron nitride, LB-BN-LA (LA = Lewis acid), preliminary dehydrogenation chemistry involving the parent aminoborane adducts LB-H(2)BNH(2)-BH(3) was investigated using [Rh(COD)Cl](2), CuBr, and NiBr(2) as dehydrogenation catalysts. In place of isolating the intended dehydrogenated BN donor-acceptor complexes, the formation of borazine was noted as a major product. Attempts to prepare the fluoroarylborane-capped aminoborane complexes, LB-H(2)BNH(2)-B(C(6)F(5))(3), are also described.

  4. Conductivity of a Weyl semimetal with donor and acceptor impurities

    NASA Astrophysics Data System (ADS)

    Rodionov, Ya. I.; Syzranov, S. V.

    2015-05-01

    We study transport in a Weyl semimetal with donor and acceptor impurities. At sufficiently high temperatures transport is dominated by electron-electron interactions, while the low-temperature resistivity comes from the scattering of quasiparticles on screened impurities. Using the diagrammatic technique, we calculate the conductivity σ (T ,ω ,nA,nD) in the impurities-dominated regime as a function of temperature T , frequency ω , and the concentrations nA and nD of acceptors and donors and discuss the crossover behavior between the regimes of low and high temperatures and impurity concentrations. In a sufficiently compensated material [| nA-nD|≪ (nA+nD) ] with a small effective fine structure constant α ,σ (ω ,T ) ∝T2/(T-2-i ω .const) in a wide interval of temperatures. For very low temperatures, or in the case of an uncompensated material, the transport is effectively metallic. We discuss experimental conditions necessary for realizing each regime.

  5. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls.

    PubMed

    Slawik, Christian; Rickmeyer, Christiane; Brehm, Martin; Böhme, Alexander; Schüürmann, Gerrit

    2017-02-22

    Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functio-nalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft and soft-soft adducts.

  6. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration.

    PubMed

    Richter, Katrin; Schicklberger, Marcus; Gescher, Johannes

    2012-02-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions.

  7. Toward Radicalizing Community Service Learning

    ERIC Educational Resources Information Center

    Sheffield, Eric C.

    2015-01-01

    This article advocates a radicalized theoretical construction of community service learning. To accomplish this radicalization, I initially take up a discussion of traditional understandings of CSL rooted in pragmatic/progressive thought. I then suggest that this traditional structural foundation can be radicalized by incorporating Deborah…

  8. Investigation of the antioxidant and radical scavenging activities of some phenolic Schiff bases with different free radicals.

    PubMed

    Marković, Zoran; Đorović, Jelena; Petrović, Zorica D; Petrović, Vladimir P; Simijonović, Dušica

    2015-11-01

    The antioxidant properties of some phenolic Schiff bases in the presence of different reactive particles such as (•)OH, (•)OOH, (CH2=CH-O-O(•)), and (-•)O2 were investigated. The thermodynamic values, ΔH BDE, ΔH IP, and ΔH PA, were used for this purpose. Three possible mechanisms for transfer of hydrogen atom, concerted proton-electron transfer (CPET), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were considered. These mechanisms were tested in solvents of different polarity. On the basis of the obtained results it was shown that SET-PT antioxidant mechanism can be the dominant mechanism when Schiff bases react with radical cation, while SPLET and CPET are competitive mechanisms for radical scavenging of hydroxy radical in all solvents under investigation. Examined Schiff bases react with the peroxy radicals via SPLET mechanism in polar and nonpolar solvents. The superoxide radical anion reacts with these Schiff bases very slowly.

  9. Anion adsorption induced surface reconstructions

    NASA Astrophysics Data System (ADS)

    Tang, Lei

    2005-11-01

    Surface stress plays an important role in the behavior of solid surfaces. Potential-controlled anion adsorption in electrolytes alters the surface stress of the electrode and results in morphology changes to the surfaces. With a combination of potential-induced surface stress measurement and in situ electrochemical scanning tunneling microscopy (STM), it is demonstrated that anion adsorption induces changes in structure of thin films and modifies the growth morphology and stress evolution in epitaxially grown films. Surface structural transitions in the heteroepitaxial system consisting of one to two gold monolayers on platinum substrates were observed. By increasing the potential, structural transitions, from (1 x 1), to a striped phase, to a hexagonal structure, occurred in the gold bilayer. This hexagonal structure was related to the formation of an ordered sulfate adlayer with a ( 3x7 ) structure. Such transitions were repeatable by cycling the potential. Furthermore, the transitions between various dislocation structures were affected by anion adsorption. The surface composition of the gold bilayer on Pt was measured by underpotential deposition of copper. By subtracting the contribution of a pure Pt surface from the gold bi-layer on Pt, a stress change of -2.4 N/m was observed, which agrees with the stress change of -2.46 N/m predicted to accompany formation of 1.5 MLs of coherent Au on Pt(111) from epitaxy theory. The Cu monolayer deposited on Au(111) from an acid sulfate electrolyte was found to be pseudomorphic while the Cu monolayer formed on Au(111) in vacuum was incoherent. The stress-thickness change associated with the coherent monolayer of copper on Au(111) in electrolyte was -0.6 N/m, while conventional epitaxy theories predict a value of +7.76 N/m. STM results elucidated the sulfate adsorption on the copper monolayer caused an expansion of the layer as evidenced by a Moire Structure. For the Cu monolayer on Au(111), the sulfate-induced expansion

  10. Fe doping and anion defects in bismuth pyrochlore photocatalysts

    NASA Astrophysics Data System (ADS)

    Mayfield, Cedric; Barker, David; Subramanian, Vaidyananthan; Huda, Muhammad

    2014-03-01

    To understand the change in photocatalytic properties of Bi2Ti2O7\\ after incorporating localized Fe 3d electrons, the electronic properties and formation energies of anion defects and cation substitutions have been systematically studied by first principles density functional theory. We have found for each type of doping, intrinsic or extrinsic, structural distortions are localized to the defect site. For the intrinsic defects, O vacancies (Ovac) are relatively shallow donors compared to O interstitials (Oint) . For the extrinsic defects, Fe substitutions at the Bi sites (FeBi) are more stable than Fe substitutions at the Ti sites (FeTi) , however they both promote the acceptor defect levels which are critical for band gap engineering. Complex doping (combined intrinsic and extrinsic doping) was also considered to examine the defect correlations at first nearest neighbor to third nearest neighbor distances. A detailed electronic structure analysis will be presented for both pristine and doped Bi2Ti2O7. National Science Foundation.

  11. Radicals in melanin biochemistry.

    PubMed

    Riley, P A

    1988-01-01

    Melanins are light-absorbant polymeric pigments found widely dispersed in nature. They possess many interesting physicochemical properties. One of these is the expression in the polymer of stable free radicals which appear to have a protective action in cells, probably by acting as a sink for diffusible free-radical species. Polymer formation is thought to occur by a free-radical process in which semiquinones are added to the chain. Semiquinones are formed by redox equilibration interactions between metabolic intermediates formed during the tyrosinase-catalyzed oxidation process. In the continued presence of substrate, steady-state concentrations of reactive species are predicted in the reaction system, and the melanogenic pathway may be considered as potentially hazardous for pigment-generating cells. This feature has been exploited by the use of analogue substrates to generate cytotoxic species as a possible rational approach to the treatment of malignant melanoma. One such substance is 4-hydroxyanisole, the oxidation of which gives rise to semiquinone radical species. The possibility that the anisyl semiquinone initiates a mechanism leading to cell damage has not been excluded. However, the current view is that the major cytotoxicity due to the oxidation products of this compound is the result of the action of the corresponding orthoquinone. A number of mechanisms exist for detoxifying quinones if they reach the cytosol such as O-methylation and the formation of thiol adducts with cysteine or glutathione, and these can be used as markers of melanogenesis. In general, however, only small amounts of reactive intermediates of melanogenesis escape from the confines of the melanosome, probably because of their limited lipid solubility. The selective toxic action of anisyl quinone in the treatment of melanoma may, in part, be due to membrane defects in the melanosomes of malignant melanocytes.

  12. Free radical explosive composition

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  13. Probability and radical behaviorism

    PubMed Central

    Espinosa, James M.

    1992-01-01

    The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative frequency interpretation of probability and its applicability to the data from the science of behavior as supplied by cumulative records. Two examples of stochastic processes are given that may model the data from cumulative records that result under conditions of continuous reinforcement and extinction, respectively. PMID:22478114

  14. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    The concept of a free radical propulsion system, utilizing the recombination energy of dissociated low molecular weight gases to produce thrust, is analyzed. The system, operating at a theoretical impulse with hydrogen, as high as 2200 seconds at high thrust to power ratio, is hypothesized to bridge the gap between chemical and electrostatic propulsion capabilities. A comparative methodology is outlined by which characteristics of chemical and electric propulsion for orbit raising mission can be investigated. It is noted that free radicals proposed in rockets previously met with difficulty and complexity in terms of storage requirements; the present study proposes to eliminate the storage requirements by using electric energy to achieve a continuous-flow product of free radicals which are recombined to produce a high velocity propellant. Microwave energy used to dissociate a continuously flowing gas is transferred to the propellant via three-body-recombination for conversion to propellant kinetic energy. Microwave plasma discharge was found in excess of 90 percent over a broad range of pressure in preliminary experiments, and microwave heating compared to electrothermal heating showed much higher temperatures in gasdynamic equations.

  15. Types of radical hysterectomies

    PubMed Central

    Marin, F; Plesca, M; Bordea, CI; Moga, MA; Blidaru, A

    2014-01-01

    Abstract The treatment for cervical cancer is a complex, multidisciplinary issue, which applies according to the stage of the disease. The surgical elective treatment of cervical cancer is represented by the radical abdominal hysterectomy. In time, many surgeons perfected this surgical technique; the ones who stood up for this idea were Thoma Ionescu and Ernst Wertheim. There are many varieties of radical hysterectomies performed by using the abdominal method and some of them through vaginal and mixed way. Each method employed has advantages and disadvantages. At present, there are three classifications of radical hysterectomies which are used for the simplification of the surgical protocols: Piver-Rutledge-Smith classification which is the oldest, GCG-EORTC classification and Querlow and Morrow classification. The last is the most evolved and recent classification; its techniques can be adapted for conservative operations and for different types of surgical approaches: abdominal, vaginal, laparoscopic or robotic. Abbreviations: GCG-EORTC = Gynecologic Cancer Group of the European Organization of Research and Treatment of Cancer; LEEP = loop electrosurgical excision procedure; I.O.B. = Institute of Oncology Bucharest; PRS = Piver-Rutledge-Smith PMID:25408722

  16. [Radical prostatectomy - pro robotic].

    PubMed

    Gillitzer, R

    2012-05-01

    Anatomical radical prostatectomy was introduced in the early 1980s by Walsh and Donker. Elucidation of key anatomical structures led to a significant reduction in the morbidity of this procedure. The strive to achieve similar oncological and functional results to this gold standard open procedure but with further reduction of morbidity through a minimally invasive access led to the establishment of laparoscopic prostatectomy. However, this procedure is complex and difficult and is associated with a long learning curve. The technical advantages of robotically assisted surgery coupled with the intuitive handling of the device led to increased precision and shortening of the learning curve. These main advantages, together with a massive internet presence and aggressive marketing, have resulted in a rapid dissemination of robotic radical prostatectomy and an increasing patient demand. However, superiority of robotic radical prostatectomy in comparison to the other surgical therapeutic options has not yet been proven on a scientific basis. Currently robotic-assisted surgery is an established technique and future technical improvements will certainly further define its role in urological surgery. In the end this technical innovation will have to be balanced against the very high purchase and running costs, which remain the main limitation of this technology.

  17. Formation and reactivity of pyridylperoxyl radicals in solution

    SciTech Connect

    Alfassi, Z.B.; Khaikin, G.I.; Neta, P.

    1995-03-30

    2-Pyridyl radicals were produced by the reaction of 2-chloro- or 2-bromopyridine with solvated electrons (k approximately 10{sup 10} L mol{sup -1} s{sup -1}) and reacted rapidly with oxygen (k = 2.2 x 10{sup 9} L mol{sup -1} s{sup -1}) to produce the 2-pyridylperoxyl radical. This radical exhibits optical absorption in the visible range, with {lambda}{sub max} at 440 nm. 2-Pyridylperoxyl radical is a fairly strong oxidant, which reacts with 2,2`-azinobis(3-ethylbenzothiazoline-6-sulfonate ion) (ABTS), chlorpromazine, and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox C) by one-electron oxidation. The rate constants k for these reactions, determined from the rate of formation of the one-electron oxidation as a function of substrate concentration, vary between 2 x 10{sup 6} and 2 x 10{sup 9} L mol{sup -1} s{sup -1} in various mixtures. For each substrate, a good correlation was found between log k and the cohesive pressure of the solvent or solvent mixture, as found before for CCI{sub 3}O{sub 2} radical reactions in nearly neat solvents. 3-Bromo, 3-chloro- and 4-chloropyridine also reacted rapidly with solvated electrons, but their radical anions underwent protonation on the nitrogen in competition with the dehalogenation process. Therefore, no pyridylperoxyl radicals were formed from these species in aqueous solutions and only partial yield was found in neat methanol. 20 refs., 4 figs., 1 tab.

  18. Nexal membrane permeability to anions

    PubMed Central

    1978-01-01

    The permeability of the septa of the earthworm in the median axon has been calculated for the anions fluorescein and its halogen derivatives. The values ranged from 5.4 X 10(-5) to 4 X 10(-6) cm/s. Previously, the septa had been shown to contain nexuses. By using freeze-fracture material, the surface area of nexus on the septal membranes was determined to be 4.5%, very similar to the percentage of nexus in the intercalated disk of mammalian myocardium. Plasma membrane permeability to these dyes was also calculated and shown to be much less than that of the septal membranes. In addition, an estimate of cytoplasmic binding for each dye was made, and most dyes showed little or no binding with the exception of aminofluorescein. PMID:702107

  19. Binding characteristics of homogeneous molecularly imprinted polymers for acyclovir using an (acceptor-donor-donor)-(donor-acceptor-acceptor) hydrogen-bond strategy, and analytical applications for serum samples.

    PubMed

    Wu, Suqin; Tan, Lei; Wang, Ganquan; Peng, Guiming; Kang, Chengcheng; Tang, Youwen

    2013-04-12

    This paper demonstrates a novel approach to assembling homogeneous molecularly imprinted polymers (MIPs) based on mimicking multiple hydrogen bonds between nucleotide bases by preparing acyclovir (ACV) as a template and using coatings grafted on silica supports. (1)H NMR studies confirmed the AAD-DDA (A for acceptor, D for donor) hydrogen-bond array between template and functional monomer, while the resultant monodisperse molecularly imprinted microspheres (MIMs) were evaluated using a binding experiment, high performance liquid chromatography (HPLC), and solid phase extraction. The Langmuir isothermal model and the Langmuir-Freundlich isothermal model suggest that ACV-MIMs have more homogeneous binding sites than MIPs prepared through normal imprinting. In contrast to previous MIP-HPLC columns, there were no apparent tailings for the ACV peaks, and ACV-MIMs had excellent specific binding properties with a Ka peak of 3.44 × 10(5)M(-1). A complete baseline separation is obtained for ACV and structurally similar compounds. This work also successfully used MIMs as a specific sorbent for capturing ACV from serum samples. The detection limit and mean recovery of ACV was 1.8 ng/mL(-1) and 95.6%, respectively, for molecularly imprinted solid phase extraction coupled with HPLC. To our knowledge, this was the first example of MIPs using AAD-DDA hydrogen bonds.

  20. Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice.

    PubMed

    Serafim, Karla G G; Navarro, Suelen A; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Cunha, Thiago M; Alves-Filho, Jose C; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A

    2015-11-01

    Bosentan is a mixed endothelin receptor antagonist widely used to treat patients with pulmonary arterial hypertension, and the emerging literature suggests bosentan as a potent anti-inflammatory drug. Superoxide anion is produced in large amounts during inflammation, stimulates cytokine production, and thus contributes to inflammation and pain. However, it remains to be determined whether endothelin contributes to the inflammatory response triggered by the superoxide anion. The present study investigated the effects of bosentan in a mouse model of inflammation and pain induced by potassium superoxide, a superoxide anion donor. Male Swiss mice were treated with bosentan (10-100 mg/kg) by oral gavage, 1 h before potassium superoxide injection, and the inflammatory response was evaluated locally and at spinal cord (L4-L6) levels. Bosentan (100 mg/kg) inhibited superoxide anion-induced mechanical and thermal hyperalgesia, overt pain-like behavior (abdominal writhings, paw flinching, and licking), paw edema, myeloperoxidase activity (neutrophil marker) in the paw skin, and leukocyte recruitment in the peritoneal cavity. Bosentan also inhibited superoxide anion-induced interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) production, while it enhanced IL-10 production in the paw skin and spinal cord. Bosentan inhibited the reduction of antioxidant capacity (reduced glutathione, ferric reducing antioxidant power, and ABTS radical scavenging ability) induced by the superoxide anion. Finally, we demonstrated that intraplantar injection of potassium superoxide induces the mRNA expression of prepro-endothelin-1 in the paw skin and spinal cord. In conclusion, our results demonstrated that superoxide anion-induced inflammation, pain, cytokine production, and oxidative stress depend on endothelin; therefore, these responses are amenable to bosentan treatment.

  1. Energetics, structure, and rovibrational spectroscopic properties of the sulfurous anions SNO{sup −} and OSN{sup −}

    SciTech Connect

    Fortenberry, Ryan C.; Francisco, Joseph S.

    2015-11-14

    The SNO{sup −} and OSN{sup −} anions are shown in this work to be very stable negatively charged species in line with other recent work [T. Trabelsi et al., J. Chem. Phys. 143, 164301 (2015)]. Utilizing established quartic force field techniques, the structural and rovibrational data for these anions are produced. The SNO{sup −} anion is less linear and has weaker bonds than the corresponding neutral radical giving much smaller rotational constants. OSN{sup −} is largely unchanged in these regards with inclusion of the additional electron. The S–N bond is actually stronger, and the rotational constants of OSN{sup −} versus OSN are similar. The vibrational frequencies of SNO{sup −} are red-shifted from the radical while those in OSN{sup −} are mixed. OSN{sup −} has mixing of the stretching modes while the S–N and N–S stretches of SNO{sup −} are largely independent of one another. The ω{sub 3} stretches are much brighter in these anions than they are in the radicals, but the ω{sub 1} stretches are still the brightest.

  2. The structure and bonding of iron-acceptor pairs in silicon

    SciTech Connect

    Zhao, S.; Assali, L.V.C.; Kimerling, L.C.

    1995-08-01

    The highly mobile interstitial iron and Group III impurities (B, Al, Ga, In) form iron-acceptor pairs in silicon. Based on the migration kinetics and taking host silicon as a dielectric medium, we have simulated the pairing process in a static silicon lattice. Different from the conventional point charge ionic model, our phenomenological calculations include (1) a correction that takes into account valence electron cloud polarization which adds a short range, attractive interaction in the iron-acceptor pair bonding; and (2) silicon lattice relaxation due to the atomic size difference which causes a local strain field. Our model explains qualitatively (1) trends among the iron-acceptor pairs revealing an increase of the electronic state hole emission energy with increasing principal quantum number of acceptor and decreasing pair separation distance; and (2) the stable and metastable sites and configurational symmetries of the iron-acceptor pairs. The iron-acceptor pairing and bonding mechanism is also discussed.

  3. Tripodal Receptors for Cation and Anion Sensors

    PubMed Central

    Kuswandi, Bambang; Nuriman; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selective recognition and sensing of cations and anions. Examples on the relationship between structure and selectivity towards cations and anions are described. Furthermore, their applications as potentiometric ion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  4. Peroxynitrite-mediated formation of free radicals in human plasma: EPR detection of ascorbyl, albumin-thiyl and uric acid-derived free radicals.

    PubMed Central

    Vásquez-Vivar, J; Santos, A M; Junqueira, V B; Augusto, O

    1996-01-01

    Formation of peroxynitrite by the fast reaction between nitric oxide and superoxide anion may represent a critical control point in cells producing both species, leading to either down-regulation of the physiological effects of superoxide anion and nitric oxide by forming an inert product, nitrate, or to potentiation of their toxic effects by oxidation of nearby molecules by peroxynitrite. (The term peroxynitrite is used to refer to the sum of all possible forms of peroxynitrite anion and peroxynitrous acid unless otherwise specified.) In this report we demonstrate that, in spite of all the antioxidant defences present in human plasma, its interaction with peroxynitrite leads to generation of free radical intermediates such as (i) the ascorbyl radical, detected by direct EPR, (ii) the albumin-thiyl radical, detected by spin-trapping experiments with both N-tert-butyl-alpha-phenylnitrone and 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and (iii) a uric acid-derived free radical, detected as the DMPO radical adduct in plasma whose thiol groups were previously blocked with 5,5-dithiobis-(2-nitrobenzoic acid). The identity of the latter adduct was confirmed by parallel experiments demonstrating that it is not detectable in plasma pretreated with uricase, whereas it is formed in incubations of peroxynitrite with uric acid. Peroxynitrite-mediated oxidations were also followed by oxygen consumption and ascorbate and plasma-thiol depletion. Our results support the view that peroxynitrite-mediated one-electron oxidation of biomolecules may be an important event in its cytotoxic mechanism. In addition, the data have methodological implications by providing support for the use of EPR methodologies for monitoring both free radical reactions and ascorbate concentrations in biological fluids. PMID:8615782

  5. Creating molecular macrocycles for anion recognition

    PubMed Central

    2016-01-01

    Summary The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures. PMID:27340452

  6. Covalent Polymers Containing Discrete Heterocyclic Anion Receptors

    PubMed Central

    Rambo, Brett M.; Silver, Eric S.; Bielawski, Christopher W.; Sessler, Jonathan L.

    2010-01-01

    This chapter covers recent advances in the development of polymeric materials containing discrete heterocyclic anion receptors, and focuses on advances in anion binding and chemosensor chemistry. The development of polymers specific for anionic species is a relatively new and flourishing area of materials chemistry. The incorporation of heterocyclic receptors capable of complexing anions through non-covalent interactions (e.g., hydrogen bonding and electrostatic interactions) provides a route to not only sensitive but also selective polymer materials. Furthermore, these systems have been utilized in the development of polymers capable of extracting anionic species from aqueous environments. These latter materials may lead to advances in water purification and treatment of diseases resulting from surplus ions. PMID:20871791

  7. Polymers for anion recognition and sensing.

    PubMed

    Rostami, Ali; Taylor, Mark S

    2012-01-16

    In biological systems, the selective and high-affinity recognition of anionic species is accomplished by macromolecular hosts (anion-binding proteins) that have been "optimized" through evolution. Surprisingly, it is only recently that chemists have systematically attempted to develop anion-responsive synthetic macromolecules for potential applications in medicine, national security, or environmental monitoring. Recent results indicating that unique features of polymeric systems such as signal amplification, multivalency, and cooperative behavior may be exploited productively in the context of anion recognition and sensing are documented. The wide variety of interactions-including Lewis acid/base, ion-pairing, and hydrogen bonding-that have been employed for this purpose is reflected in the structural diversity of anion-responsive macromolecules identified to date.

  8. Closing the gap on unmeasured anions

    PubMed Central

    Kellum, John A

    2003-01-01

    Many critically ill and injured patients, especially those with metabolic acidosis, have abnormally high levels of unmeasured anions in their blood. At the same time, such patients are prone to hypoalbuminemia, which makes the traditional anion gap calculation inaccurate. Thus, little is known about the epidemiology and clinical consequences of an excess in unmeasured anions in the blood. Indeed, even the etiology of these "missing ions" is often unclear. Unfortunately, more precise means of quantifying unmeasured anions, such as the strong ion gap (SIG), are cumbersome to use clinically. However, a simple means of correcting the anion gap can be used to estimate SIG and may provide additional insight into this common clinical problem. PMID:12793870

  9. Improving photocurrent generation: supramolecularly and covalently functionalized single-wall carbon nanotubes-polymer/porphyrin donor-acceptor nanohybrids.

    PubMed

    Rahman, G M Aminur; Troeger, Anna; Sgobba, Vito; Guldi, Dirk M; Jux, Norbert; Tchoul, Maxim N; Ford, Warren T; Mateo-Alonso, Aurelio; Prato, Maurizio

    2008-01-01

    Novel nanohybrids based on covalently and noncovalently functionalized single-wall carbon nanotubes (SWNTs) have been prepared and assembled for the construction of photoactive electrodes. Polymer-grafted SWNTs were synthesized by free-radical polymerization of (vinylbenzyl)trimethylammonium chloride. Poly[(vinylbenzyl)trimethylammonium chloride] (PVBTAn+) was also noncovalently wrapped around SWNTs to form stable, positively charged SWNT/PVBTAn+ suspensions in water. Versatile donor-acceptor nanohybrids were prepared by using the electrostatic/van der Waals interactions between covalent SWNT-PVBTAn+ and/or noncovalent SWNT/PVBTAn+ and porphyrins (H2P8- and/or ZnP8-). Several spectroscopic, microscopic, transient, and photoelectrochemical measurements were taken to characterize the resulting supramolecular complexes. Photoexcitation of the nanohybrids afforded long-lived radical ion pairs with lifetimes as long as 2.2 micros. In the final part, photoactive electrodes were constructed by using a layer-by-layer technique on an indium tin oxide covered glass support. Photocurrent measurements gave remarkable internal photon-to-current efficiencies of 3.81 and 9.90 % for the covalent ZnP8-/SWNT-PVBTAn+ and noncovalent ZnP8-/SWNT/PVBTAn+ complex, respectively, when a potential of 0.5 V was applied.

  10. Delocalization of unpaired electrons in acceptor-bridge-donor molecular structures as monitored by CW-EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Krzyminiewski, R.; Bielewicz, A.; Kudynska, J.; Buckmaster, H. A.; Brycki, B.

    1996-02-01

    This paper reports the application of EPR spectroscopy to study the spin density distribution of unpaired electrons in acceptor-hydrogen bridge-donor molecular complexes created by irradiation of the organic molecule piperidine with different substitutional acid groups. 9 GHz CW-EPR measurements were made at 290 K onpolycrystalline samples which were γ-irradiated with a 170 kGy dose. Measurements were also made on UV-irradiated frozen methanol solutions at 77 K. It was conclded that the ionizing radiation generates the ion radical by the removal of one hydrogen atom from the piperidine ring and that significant delocalization of the unpaired electron occurs on this ring. It was found that increasing the electronegativity of the hydrogen bridge causes a significant increase in the nitrogen hyperfine interaction and the observation of an additional hyperfine splitting which implies that a significant change in the spin density distribution of the unpaired electron has occurred. Measurements were also made on irradiated stilbene to study a π-bridge molecular structure. It was found that the ionizing radiation generates the radical by the addition of one hydrogen atom to a phenyl ring and that significant delocalization of the unpaired electron occurs on the π-bridge connecting the two phenyl rings and on one of these rings.

  11. Two acceptor levels and hopping conduction in Mn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Kajikawa, Yasutomo

    2017-01-01

    By analysing the experimental data of the temperature-dependent Hall-effect measurements, an additional acceptor level has been confirmed to exist in Mn-doped p-GaAs besides the isolated substitutional Mn acceptor level. It is found that, in most of the investigated samples, the room-temperature hole concentration is governed by the additional acceptor level rather than the isolated substitutional Mn acceptor level. The concentration of the additional acceptor level is found to increase almost in proportion to the square of the concentration of the isolated substitutional Mn acceptors, suggesting that the additional acceptor level is related to Mn dimers. This suggests that the ferromagnetism observed in more heavily Mn-doped GaAs may be attributed to Mn clusters. For some of the samples in which the characteristic of nearest-neighbour hopping conduction in the substitutional Mn acceptor impurity band is evident, the hopping activation energy is deduced and is proved to increase in proportion to the cube root of the concentration of the substitutional Mn acceptors.

  12. Protected sphingosine from phytosphingosine as an efficient acceptor in glycosylation reaction.

    PubMed

    Di Benedetto, Roberta; Zanetti, Luca; Varese, Monica; Rajabi, Mehdi; Di Brisco, Riccardo; Panza, Luigi

    2014-02-07

    A convenient, simple, and high-yielding five-step synthesis of a sphingosine acceptor from phytosphingosine is reported, and its behavior in glycosylation reactions is described. Different synthetic paths to sphingosine acceptors using tetrachlorophthalimide as a protecting group for the sphingosine amino function and different glycosylation methods have been explored. Among the acceptors tested, the easiest accessible acceptor, unprotected on the two hydroxyl groups in positions 1 and 3, was regioselectively glycosylated on the primary position, the regioselectivity depending on the donor used.

  13. Process for gasification using a synthetic CO/sub 2/ acceptor

    SciTech Connect

    Lancet, M.S.; Curran, G.P.

    1980-11-04

    Conoco's gasification process uses a synthetic CO/sub 2/ acceptor consisting essentially of at least one calcium compound (either calcium oxide or calcium carbonate) supported in a refractory carrier matrix having the general formula Ca/sub 5/(SiO/sub 4/)/sub 2/CO/sub 3/. The synthetic acceptor is more effective than a natural calcium oxide acceptor during the gasification process because the thermally stable matrix causes the calcium compounds to remain in discrete particles that tend to reactivate with each passage through the process. This eliminates the need for large quantities of fresh makeup acceptor materials.

  14. Impact of induced levels of specific free radicals and malondialdehyde on chicken semen quality and fertility.

    PubMed

    Rui, Bruno R; Shibuya, Fábio Y; Kawaoku, Allison J T; Losano, João D A; Angrimani, Daniel S R; Dalmazzo, Andressa; Nichi, Marcilio; Pereira, Ricardo J G

    2017-03-01

    Over the past decades, scientists endeavored to comprehend oxidative stress in poultry spermatozoa and its relationship with fertilizing ability, lipid peroxidation (LPO), free-radical scavenging systems, and antioxidant therapy. Although considerable progress has been made, further improvement is needed in understanding how specific reactive oxygen species (ROS) and malondialdehyde (MDA, a toxic byproduct of LPO) disrupt organelles in avian spermatozoon. Hence, this study examined functional changes in chicken spermatozoa after incubation with different ROS, and their implications for the fertility. First, semen samples from 14 roosters were individually diluted and aliquoted into five equal parts: control, superoxide anion, hydrogen peroxide (H2O2), hydroxyl radicals, and MDA. After incubation with these molecules, aliquots were analyzed for motility, plasma membrane and acrosome integrity, mitochondrial activity, and LPO and DNA damage. Hydrogen peroxide was more detrimental for sperm motility than hydroxyl radicals, whereas the superoxide anion and MDA exhibited no differences compared with controls. In turn, plasma membrane and acrosome integrity, mitochondrial activity, LPO and DNA integrity rates were only affected by hydroxyl radicals. Thereafter, semen aliquots were incubated under the same conditions and used for artificial insemination. In accordance to our in vitro observations, H2O2 and hydroxyl radicals sharply reduced egg fertility, whereas superoxide anion and MDA only induced slight declines. Thus, chicken sperm function was severely impaired by H2O2 and hydroxyl radicals, but their mechanisms of action seemingly comprise different pathways. Further analysis regarding susceptibility of spermatozoon organelles to specific radicals in other poultry will help us to understand the development of interspecific differences in scavenging systems and to outline more oriented antioxidant approaches.

  15. Anion stripping as a general method to create cationic porous framework with mobile anions.

    PubMed

    Mao, Chengyu; Kudla, Ryan A; Zuo, Fan; Zhao, Xiang; Mueller, Leonard J; Bu, Xianhui; Feng, Pingyun

    2014-05-28

    Metal-organic frameworks (MOFs) with cationic frameworks and mobile anions have many applications from sensing, anion exchange and separation, to fast ion conductivity. Despite recent progress, the vast majority of MOFs have neutral frameworks. A common mechanism for the formation of neutral frameworks is the attachment of anionic species such as F(-) or OH(-) to the framework metal sites, neutralizing an otherwise cationic scaffolding. Here, we report a general method capable of converting such neutral frameworks directly into cationic ones with concurrent generation of mobile anions. Our method is based on the differential affinity between distinct metal ions with framework anionic species. Specifically, Al(3+) is used to strip F(-) anions away from framework Cr(3+) sites, leading to cationic frameworks with mobile Cl(-) anions. The subsequent anion exchange with OH(-) further leads to a porous network with mobile OH(-) anions. New materials prepared by anion stripping can undergo ion exchange with anionic organic dyes and also exhibit much improved ionic conductivity compared to the original unmodified MOFs.

  16. Antioxidant and radical scavenging properties of Malva sylvestris.

    PubMed

    DellaGreca, Marina; Cutillo, Francesca; D'Abrosca, Brigida; Fiorentino, Antonio; Pacifico, Severina; Zarrelli, Armando

    2009-07-01

    Antioxidant capacity of the aqueous extract of Malva sylvestris was measured by its ability to scavenge the DPPH and superoxide anion radicals and to induce the formation of a phosphomolybdenum complex. Analysis of the extract, carried out by different chromatographic techniques, led to the isolation of eleven compounds: 4-hydroxybenzoic acid, 4-methoxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 4-hydroxycinnamic acid, ferulic acid, methyl 2-hydroxydihydrocinnamate, scopoletin, N-trans-feruloyl tyramine, a sesquiterpene, (3R,7E)-3-hydroxy-5,7-megastigmadien-9-one, and (10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoic acid. The antioxidant activities of all these compounds are reported.

  17. Spectroscopy of donor-pi-acceptor complexes for solar cells

    NASA Astrophysics Data System (ADS)

    Himpsel, F. J.; Zegkinoglou, I.; Johnson, P. S.; Pemmaraju, C. D.; Prendergast, D.; Ragoussi, M.-E.; de la Torre, G.; Pickup, D. F.; Ortega, J. E.

    2014-03-01

    A recent improvement in the design of dye sensitized solar cells has been the combination of light absorbing, electron-donating, and electron-withdrawing groups within the same sensitizer molecule. This dye architecture has contributed to increase the energy conversion efficiency, leading to record efficiency values. Here we investigate a zinc(II)-porphyrin-based complex with triphenylamine donor groups and carboxyl linkers for the attachment to an oxide acceptor. The unoccupied orbitals of these three moieties are probed by element-selective X-ray absorption spectroscopy at the N 1s, C 1s, and Zn 2p edges, complemented by time-dependent density functional theory. The attachment of electron-donating groups to the porphyrin ring significantly delocalizes the highest occupied molecular orbital (HOMO) of the molecule. This leads to a spatial separation between the HOMO and the lowest unoccupied molecular orbital (LUMO), reducing the recombination rate of photoinduced electrons and holes.

  18. Pigment-acceptor-catalyst triads for photochemical hydrogen evolution.

    PubMed

    Kitamoto, Kyoji; Sakai, Ken

    2014-04-25

    In order to solve the problems of global warming and shortage of fossil fuels, researchers have been endeavoring to achieve artificial photosynthesis: splitting water into H2 and O2 under solar light illumination. Our group has recently invented a unique system that drives photoinduced water reduction through "Z-scheme" photosynthetic pathways. Nevertheless, that system still suffered from a low turnover number (TON) of the photocatalytic cycle (TON=4.1). We have now found and describe herein a new methodology to make significant improvements in the TON, up to around TON=14-27. For the new model systems reported herein, the quantum efficiency of the second photoinduced step in the Z-scheme photosynthesis is dramatically improved by introducing multiviologen tethers to temporarily collect the high-energy electron generated in the first photoinduced step. These are unique examples of "pigment-acceptor-catalyst triads", which demonstrate a new effective type of artificial photosynthesis.

  19. Donor-acceptor pair recombination in gallium sulfide

    NASA Astrophysics Data System (ADS)

    Aydinli, A.; Gasanly, N. M.; Gökşen, K.

    2000-12-01

    Low temperature photoluminescence of GaS single crystals shows three broad emission bands below 2.4 eV. Temperature and excitation light intensity dependencies of these bands reveal that all of them originate from close donor-acceptor pair recombination processes. Temperature dependence of the peak energies of two of these bands in the visible range follow, as expected, the band gap energy shift of GaS. However, the temperature dependence of the peak energy of the third band in the near infrared shows complex behavior by blueshifting at low temperatures followed by a redshift at intermediate temperatures and a second blueshift close to room temperature, which could only be explained via a configuration coordinate model. A simple model calculation indicates that the recombination centers are most likely located at the nearest neighbor lattice or interstitial sites.

  20. Catalytic water oxidation by mononuclear Ru complexes with an anionic ancillary ligand.

    PubMed

    Tong, Lianpeng; Inge, A Ken; Duan, Lele; Wang, Lei; Zou, Xiaodong; Sun, Licheng

    2013-03-04

    Mononuclear Ru-based water oxidation catalysts containing anionic ancillary ligands have shown promising catalytic efficiency and intriguing properties. However, their insolubility in water restricts a detailed mechanism investigation. In order to overcome this disadvantage, complexes [Ru(II)(bpc)(bpy)OH2](+) (1(+), bpc = 2,2'-bipyridine-6-carboxylate, bpy = 2,2'-bipyridine) and [Ru(II)(bpc)(pic)3](+) (2(+), pic = 4-picoline) were prepared and fully characterized, which features an anionic tridentate ligand and has enough solubility for spectroscopic study in water. Using Ce(IV) as an electron acceptor, both complexes are able to catalyze O2-evolving reaction with an impressive rate constant. On the basis of the electrochemical and kinetic studies, a water nucleophilic attack pathway was proposed as the dominant catalytic cycle of the catalytic water oxidation by 1(+), within which several intermediates were detected by MS. Meanwhile, an auxiliary pathway that is related to the concentration of Ce(IV) was also revealed. The effect of anionic ligand regarding catalytic water oxidation was discussed explicitly in comparison with previously reported mononuclear Ru catalysts carrying neutral tridentate ligands, for example, 2,2':6',2″-terpyridine (tpy). When 2(+) was oxidized to the trivalent state, one of its picoline ligands dissociated from the Ru center. The rate constant of picoline dissociation was evaluated from time-resolved UV-vis spectra.

  1. Controlling the spatial arrangement of organic magnetic anions adsorbed on epitaxial graphene on Ru(0001).

    PubMed

    Stradi, Daniele; Garnica, Manuela; Díaz, Cristina; Calleja, Fabián; Barja, Sara; Martín, Nazario; Alcamí, Manuel; Vazquez de Parga, Amadeo L; Miranda, Rodolfo; Martín, Fernando

    2014-12-21

    Achieving control over the self-organization of functional molecules on graphene is critical for the development of graphene technology in organic electronic and spintronic. Here, by using a scanning tunneling microscope (STM), we show that the electron acceptor molecule 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) and its fluorinated derivative 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyano-p-quinodimethane (F4-TCNQ), co-deposited on the surface of epitaxial graphene on Ru(0001), transform spontaneously into their corresponding magnetic anions and self-organize in two remarkably different structures. TCNQ forms densely packed linear magnetic arrays, while F4-TCNQ molecules remain as isolated non interacting magnets. With the help of density functional theory (DFT) calculations, we trace back the origin of this behavior in the competition between the intermolecular repulsion experienced by the individual charged anions, which tends to separate the molecules, and the delocalization of the electrons transferred from the surface to the molecules, which promotes the formation of molecular oligomers. Our results demonstrate that it is possible to control the spatial arrangement of organic magnetic anions co-adsorbed on a surface by means of chemical substitution, paving the way for the design of two-dimensional fully organic magnetic structures on graphene and on other surfaces.

  2. First electron spin resonance evidence for the production of semiquinone and oxygen free radicals from orellanine, a mushroom nephrotoxin.

    PubMed

    Richard, J M; Cantin-Esnault, D; Jeunet, A

    1995-10-01

    Orellanine is the tetrahydroxylated and di-N-oxidized bipyridine toxin from several Cortinarius mushrooms. The mechanism responsible for its lethal nephrotoxicity was unknown until now. Our present ESR spectroscopic study of the redox properties of the toxin is an original contribution to the knowledge of its toxicity. It was achieved in particular by comparison of the properties of orellanine to that of other bipyridine compounds. After a one-electron oxidation (e.g., photochemical oxidation upon visible light), a radical form of orellanine is observed at physiological pH under aerobic or anaerobic conditions. This radical, identified as ortho-semiquinone anion radical, can also be generated by oxidation with biological oxidizing agents or enzymatic systems. Production of superoxide and hydroxyl radicals is shown by the spin-trapping method using DMPO as a spin trap. Bioreducing agents like GSH and cysteine involve in vitro the semiquinone radical and orellanine in a redox cycling process resulting in the production of glutathionyl and oxygen free radicals. This process leads in vitro to a large oxygen consumption and to a dramatic depletion of glutathione level. The formation of an apparently stable ortho-semiquinone anion radical and of reactive oxygen radical species is observed for the first time with a mushroom toxin. It is due to the catechol-like functions borne by the di-N-oxidized bipyridine structure of the toxin and may at least partly explain the toxicity of orellanine.

  3. Catalysis of Radical Reactions: A Radical Chemistry Perspective.

    PubMed

    Studer, Armido; Curran, Dennis P

    2016-01-04

    The area of catalysis of radical reactions has recently flourished. Various reaction conditions have been discovered and explained in terms of catalytic cycles. These cycles rarely stand alone as unique paths from substrates to products. Instead, most radical reactions have innate chains which form products without any catalyst. How do we know if a species added in "catalytic amounts" is a catalyst, an initiator, or something else? Herein we critically address both catalyst-free and catalytic radical reactions through the lens of radical chemistry. Basic principles of kinetics and thermodynamics are used to address problems of initiation, propagation, and inhibition of radical chains. The catalysis of radical reactions differs from other areas of catalysis. Whereas efficient innate chain reactions are difficult to catalyze because individual steps are fast, both inefficient chain processes and non-chain processes afford diverse opportunities for catalysis, as illustrated with selected examples.

  4. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    SciTech Connect

    Mardis, Kristy L.; Webb, J.; Holloway, Tarita; Niklas, Jens; Poluektov, Oleg G.

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.

  5. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    DOE PAGES

    Mardis, Kristy L.; Webb, J.; Holloway, Tarita; ...

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advancedmore » electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.« less

  6. Electron spin polarization transfer from photogenerated spin-correlated radical pairs to a stable radical observer spin.

    PubMed

    Colvin, Michael T; Carmieli, Raanan; Miura, Tomoaki; Richert, Sabine; Gardner, Daniel M; Smeigh, Amanda L; Dyar, Scott M; Conron, Sarah M; Ratner, Mark A; Wasielewski, Michael R

    2013-06-27

    A series of donor-chromophore-acceptor-stable radical (D-C-A-R(•)) molecules having well-defined molecular structures were synthesized to study the factors affecting electron spin polarization transfer from the photogenerated D(+•)-C-A(-•) spin-correlated radical pair (RP) to the stable radical R(•). Theory suggests that the magnitude of this transfer depends on the spin-spin exchange interaction (2JDA) of D(+•)-C-A(-•). Yet, the generality of this prediction has never been demonstrated. In the D-C-A-R(•) molecules described herein, D is 4-methoxyaniline (MeOAn), 2,3-dihydro-1,4-benzodioxin-6-amine (DioxAn), or benzobisdioxole aniline (BDXAn), C is 4-aminonaphthalene-1,8-dicarboximide, and A is naphthalene-1,8:4,5-bis(dicarboximide) (1A,B-3A,B) or pyromellitimide (4A,B-6A,B). The terminal imide of the acceptors is functionalized with either a hydrocarbon (1A-6A) or a 2,2,6,6-tetramethyl-1-piperidinyloxyl radical (R(•)) (1B-6B). Photoexcitation of C with 416-nm laser pulses results in two-step charge separation to yield D(+•)-C-A(-•)-(R(•)). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy using continuous-wave (CW) microwaves at both 295 and 85 K and pulsed microwaves at 85 K (electron spin-echo detection) was used to probe the initial formation of the spin-polarized RP and the subsequent polarization of the attached R(•) radical. The TREPR spectra show that |2JDA| for D(+•)-C-A(-•) decreases in the order MeOAn(+•) > DioxAn(+•) > BDXAn(+•) as a result of their spin density distributions, whereas the spin-spin dipolar interaction (dDA) remains nearly constant. Given this systematic variation in |2JDA|, electron spin-echo-detected EPR spectra of 1B-6B at 85 K show that the magnitude of the spin polarization transferred from the RP to R(•) depends on |2JDA|.

  7. Free radical scavengers and antioxidants from Tagetes mendocina.

    PubMed

    Schmeda-Hirschmann, Guillermo; Tapia, Alejandro; Theoduloz, Cristina; Rodríguez, Jaime; López, Susana; Feresin, Gabriela Egly

    2004-01-01

    Tagetes mendocina (Asteraceae) is a medicinal plant widely used in the Andean provinces of Argentina. Preliminary assays showed free radical scavenging activity in the methanol extract of the aerial parts, measured by the decoloration of a methanolic solution of the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and scavenging of the superoxide anion. Assay-guided isolation led to 4'-hydroxyacetophenone (1), protocatechuic acid (2), syringic acid (3), patuletin (4), quercetagetin 7-O-beta-D-glucoside (5), patuletin 7-O-beta-D-glucoside (6) and axillarin 7-O-beta-D-glucoside (7) as the free radical scavengers and antioxidant compounds from Tagetes mendocina. On the basis of dry starting material, the total phenolic content of the crude drug was 3.00% with 0.372% of flavonoids. The content of compounds 1-7 in the crude drug was 0.008, 0.015, 0.010, 0.029, 0.238, 0.058 and 0.017%, respectively. Quercetagetin 7-O-beta-D-glucoside proved to be the main free radical scavenger of the extracts measured by the DPPH decoloration test as well as for quenching the superoxide anion and inhibition of lipoperoxidation in erythrocytes. In the lipid peroxidation assay the percentual inhibition was related with the number of methoxy groups in the molecule, ranging from 86% for the quercetagetin glucoside to 67% for the monomethoxylated and 31% for the dimethoxylated derivative. The compounds showed low cytotoxicity towards human lung fibroblasts with IC50 > 1 mM for compounds 1-3 and 0.24 to 0.52 mM for the flavonoids 4-7.

  8. Controlling electron transfer dynamics in donor-bridge-acceptor molecules by increasing unpaired spin density on the bridge.

    PubMed

    Chernick, Erin T; Mi, Qixi; Vega, Amy M; Lockard, Jenny V; Ratner, Mark A; Wasielewski, Michael R

    2007-06-21

    A t-butylphenylnitroxide (BPNO*) stable radical is attached to an electron donor-bridge-acceptor (D-B-A) system having well-defined distances between the components: MeOAn-6ANI-Ph(BPNO*)-NI, where MeOAn=p-methoxyaniline, 6ANI=4-(N-piperidinyl)naphthalene-1,8-dicarboximide, Ph=phenyl, and NI=naphthalene-1,8:4,5-bis(dicarboximide). MeOAn-6ANI, BPNO*, and NI are attached to the 1, 3, and 5 positions of the Ph bridge, respectively. Time-resolved optical and EPR spectroscopy show that BPNO* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Ph(BPNO*)-NI-*), resulting in slower charge recombination within the triradical, as compared to the corresponding biradical lacking BPNO*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and NI-* is not altered by the presence of BPNO*. However, the increased spin density on the bridge greatly increases radical pair (RP) intersystem crossing from the photogenerated singlet RP to the triplet RP. Rapid formation of the triplet RP makes it possible to observe a biexponential decay of the total RP population with components of tau=740 ps (0.75) and 104 ns (0.25). Kinetic modeling shows that the faster decay rate is due to rapid establishment of an equilibrium between the triplet RP and the neutral triplet state resulting from charge recombination, whereas the slower rate monitors recombination of the singlet RP to ground state.

  9. Contrasting performance of donor-acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells.

    PubMed

    Khlyabich, Petr P; Rudenko, Andrey E; Burkhart, Beate; Thompson, Barry C

    2015-02-04

    Here two contrasting approaches to polymer-fullerene solar cells are compared. In the first approach, two distinct semi-random donor-acceptor copolymers are blended with phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The two poly(3-hexylthiophene)-based polymers contain either the acceptor thienopyrroledione (TPD) or diketopyrrolopyrrole (DPP). In the second approach, semi-random donor-acceptor copolymers containing both TPD and DPP acceptors in the same polymer backbone, termed two-acceptor polymers, are blended with PC61BM to give binary blend solar cells. The two approaches result in bulk heterojunction solar cells that have the same molecular active-layer components but differ in the manner in which these molecular components are mixed, either by physical mixing (ternary blend) or chemical "mixing" in the two-acceptor (binary blend) case. Optical properties and photon-to-electron conversion efficiencies of the binary and ternary blends were found to have similar features and were described as a linear combination of the individual components. At the same time, significant differences were observed in the open-circuit voltage (Voc) behaviors of binary and ternary blend solar cells. While in case of two-acceptor polymers, the Voc was found to be in the range of 0.495-0.552 V, ternary blend solar cells showed behavior inherent to organic alloy formation, displaying an intermediate, composition-dependent and tunable Voc in the range from 0.582 to 0.684 V, significantly exceeding the values achieved in the two-acceptor containing binary blend solar cells. Despite the differences between the physical and chemical mixing approaches, both pathways provided solar cells with similar power conversion efficiencies, highlighting the advantages of both pathways toward highly efficient organic solar cells.

  10. Modeling noncovalent radical-molecule interactions using conventional density-functional theory: beware erroneous charge transfer.

    PubMed

    Johnson, Erin R; Salamone, Michela; Bietti, Massimo; DiLabio, Gino A

    2013-02-07

    Conventional density-functional theory (DFT) has the potential to overbind radical-molecule complexes because of erroneous charge transfer. We examined this behavior by exploring the ability of various DFT approximations to predict fractional charge transfer and by quantifying the overbinding in a series of complexes. It is demonstrated that too much charge is transferred from molecules to radicals when the radical singly unoccupied molecular orbitals are predicted to be erroneously too low in energy relative to the molecule highest occupied molecular orbitals, leading to excessive Coulombic attraction. In this respect, DFT methods formulated with little or no Hartree-Fock exchange perform most poorly. The present results illustrate that the charge-transfer problem is much broader than may have been previously expected and is not limited to conventional (i.e., molecule-molecule) donor-acceptor complexes.

  11. Anionic Derivatives of Perfluorinated Trimethylgold.

    PubMed

    Menjón, Babil; Pérez-Bitrián, Alberto; Martínez-Salvador, Sonia; Baya, Miguel; Casas, José María; Martín, Antonio; Orduna, Jesús

    2017-03-20

    The homoleptic compound [PPh₄][CF₃AuCF₃] cleanly undergoes photoinduced oxidative addition of CF₃I to afford the organogold(III) derivative [PPh₄][(CF₃)₃AuI] in good yield and under mild conditions. This compound provides a convenient entry to the chemistry of the perfluorinated (CF₃)₃Au fragment whose properties are analyzed with the aid of DFT methods and compared with those of the homologous non-fluorinated (CH₃)₃Au moiety. It is found that reductive elimination of CX₃-CX₃ in the former (X = F) requires a much higher energy barrier than in the latter (X = H) and is therefore considerably less favored. This can be considered as one of the main features underlying the significantly higher stability associated to the (CF₃)₃Au fragment and its derivatives. This unsaturated, 14-electron species can be stabilized by coordination of any of the halide ligands, including fluoride. In fact, the whole series of anionic [PPh₄][(CF₃)₃AuX] complexes (X = F, Cl, Br, I, CN) has now been isolated and conveniently characterized. Evidence for intermolecular decomposition pathways upon thermolysis in the condensed phase is presented.

  12. Anion conductance selectivity mechanism of the CFTR chloride channel.

    PubMed

    Linsdell, Paul

    2016-04-01

    All ion channels are able to discriminate between substrate ions to some extent, a process that involves specific interactions between permeant anions and the so-called selectivity filter within the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) anion-selective channel, both anion relative permeability and anion relative conductance are dependent on anion free energy of hydration--anions that are relatively easily dehydrated tend to show both high permeability and low conductance. In the present work, patch clamp recording was used to investigate the relative conductance of different anions in CFTR, and the effect of mutations within the channel pore. In constitutively-active E1371Q-CFTR channels, the anion conductance sequence was Cl(-) > NO3(-) > Br(-) > formate > SCN(-) > I(-). A mutation that disrupts anion binding in the inner vestibule of the pore (K95Q) disrupted anion conductance selectivity, such that anions with different permeabilities showed almost indistinguishable conductances. Conversely, a mutation at the putative narrowest pore region that is known to disrupt anion permeability selectivity (F337A) had minimal effects on anion relative conductance. Ion competition experiments confirmed that relatively tight binding of permeant anions resulted in relatively low conductance. These results suggest that the relative affinity of ion binding in the inner vestibule of the pore controls the relative conductance of different permeant anions in CFTR, and that the pore has two physically distinct anion selectivity filters that act in series to control anion conductance selectivity and anion permeability selectivity respectively.

  13. Oligorotaxane Radicals under Orders.

    PubMed

    Wang, Yuping; Frasconi, Marco; Liu, Wei-Guang; Sun, Junling; Wu, Yilei; Nassar, Majed S; Botros, Youssry Y; Goddard, William A; Wasielewski, Michael R; Stoddart, J Fraser

    2016-02-24

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components-namely oligoviologens-in which different numbers of 4,4'-bipyridinium (BIPY(2+)) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT(4+)) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY(•+) radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne-azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers.

  14. Oligorotaxane Radicals under Orders

    PubMed Central

    2016-01-01

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components—namely oligoviologens—in which different numbers of 4,4′-bipyridinium (BIPY2+) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT4+) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY•+ radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne–azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  15. Radically innovative steelmaking technologies

    NASA Astrophysics Data System (ADS)

    Szekely, Julian

    1980-09-01

    The steel industry is faced with serious problems caused by the increasing cost of energy, labor and capital and by tough overseas competition, employing new highly efficient process plants. The very high cost of capital and of capital equipment renders the construction of new green field site plants, exemplifying the best available technology economically unattractive. For this reason, over the long term the development radically innovative steelmaking technologies appears to be the only satisfactory resolution of this dilemma. The purpose of this article is to present a critical review of some of the radically innovative steelmaking technologies that have been proposed during the past few years and to develop the argument that these indeed do deserve serious consideration at the present time. It should be stressed, however, that these innovative technologies can be implemented only as part of a carefully conceived long range plan, which contains as a subset short term solutions, such as trigger prices improved investment credits, and so forth and intermediate term solutions, such as more extensive use of continuous casting, external desulfurization and selective modernization in general.

  16. Time-resolved EPR studies of charge recombination and triplet-state formation within donor-bridge-acceptor molecules having wire-like oligofluorene bridges.

    PubMed

    Miura, Tomoaki; Carmieli, Raanan; Wasielewski, Michael R

    2010-05-13

    Spin-selective charge recombination of photogenerated radical ion pairs within a series of donor-bridge-acceptor (D-B-A) molecules, where D = phenothiazine (PTZ), B = oligo(2,7-fluorenyl), and A = perylene-3,4:9,10-bis(dicarboximide) (PDI), PTZ-FL(n)-PDI, where n = 1-4 (compounds 1-4), is studied using time-resolved electron paramagnetic resonance (TREPR) spectroscopy in which the microwave source is either continuous-wave or pulsed. Radical ion pair TREPR spectra are observed for 3 and 4 at 90-294 K, while the neutral triplet state of PDI ((3)*PDI) is observed at 90-294 K for 2-4 and at 90 K for 1. (3)*PDI is produced by three mechanisms, as elucidated by its zero-field splitting parameters and spin polarization pattern. The mechanisms are spin-orbit-induced intersystem crossing (SO-ISC) in PDI aggregates, direct spin-orbit charge-transfer intersystem crossing (SOCT) from the singlet radical pair within 1, and radical pair intersystem crossing (RP-ISC) as a result of S-T(0) mixing of the radical ion pair states in 2-4. The temperature dependence of the spin-spin exchange interaction (2J) shows a dramatic decrease at low temperatures, indicating that the electronic coupling between the radical ions decreases due to an increase in the average fluorene-fluorene dihedral angle at low temperatures. The charge recombination rates for 3 and 4 decrease at low temperature, but that for 2 is almost temperature-independent. These results strongly suggest that the dominant mechanism of charge recombination for n >or= 3 is incoherent thermal hopping, which results in wire-like charge transfer.

  17. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  18. Structural Characterization of Hydroxyl Radical Adducts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2015-06-01

    The oxidation by the hydroxyl (OH) radical is one of the most widely studied reactions because of its central role in chemistry, biology, organic synthesis, and photocatalysis in aqueous environments, wastewater treatment, and numerous other chemical processes. Although the redox potential of OH is very high, direct electron transfer (ET) is rarely observed. If it happens, it mostly proceeds through the formation of elusive OH adduct intermediate which facilitates ET and formation of hydroxide anion. Using time resolved resonance Raman technique we structurally characterized variety of OH adducts to sulfur containing organic compounds, halide ions as well as some metal cations. The bond between oxygen of OH radical and the atom of oxidized molecule differs depending on the nature of solute that OH radical reacts with. For most of sulfur containing organics, as well as halide and pseudo-halide ions, our observation suggested that this bond has two-center three-electron character. For several metal aqua ions studied, the nature of the bond depends on type of the cation being oxidized. Discussion on spectral parameters of all studied hydroxyl radical adducts as well as the role solvent plays in their stabilization will be presented.

  19. Nanostructured cobalt phosphates as excellent biomimetic enzymes to sensitively detect superoxide anions released from living cells.

    PubMed

    Wang, Min-Qiang; Ye, Cui; Bao, Shu-Juan; Xu, Mao-Wen; Zhang, Yan; Wang, Ling; Ma, Xiao-Qing; Guo, Jun; Li, Chang-Ming

    2017-01-15

    Monitoring superoxide anion radicals in living cells has been attracting much academic and industrial interest due to the dual roles of the radicals. Herein, we synthesized a novel nanostructured cobalt phosphate nanorods (Co3(PO4)2 NRs) with tunable pore structure using a simple and effective micro-emulsion method and explored their potential utilization in the electrochemical sensing of superoxide anions. As an analytical and sensing platform, the nanoscale biomimetic enzymes Co3(PO4)2 NRs exhibited excellent selectivity and sensitivity towards superoxide anion (O2(•-)) with a low detection limit (2.25nM), wide linear range (5.76-5396nM), and long-term stability. Further, the nanoscale biomimetic enzyme could be efficiently applied in situ to electrochemically detect O2(•-) released from human malignant melanoma cells and normal keratinocyte, showing excellent real time quantitative detection capability. This material open up exciting opportunities for implementing biomimetic enzymes in nanoscale transition metal phosphates and designing enzyme-free biosensors with much higher sensitivity and durability in health and disease analysis than those of natural one.

  20. Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport.

    PubMed Central

    Sanders, S P; Zweier, J L; Kuppusamy, P; Harrison, S J; Bassett, D J; Gabrielson, E W; Sylvester, J T

    1993-01-01

    Free radical generation by hyperoxic endothelial cells was studied using electron paramagnetic resonance (EPR) spectroscopy and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Studies were performed to determine the radical species produced, whether mitochondrial electron transport was involved, and the effect of the radical generation on cell mortality. Sheep pulmonary microvascular endothelial cell suspensions exposed to 100% O2 for 30 min exhibited prominent DMPO-OH and, occasionally, additional smaller DMPO-R signals thought to arise from the trapping of superoxide anion (O2-.), hydroxyl (.OH), and alkyl (.R) radicals. Superoxide dismutase (SOD) quenched both signals suggesting that the observed radicals were derived from O2-.. Studies with deferoxamine suggested that the generation of .R occurred secondary to the formation of .OH from O2-. via an iron-mediated Fenton reaction. Blocking mitochondrial electron transport with rotenone (20 microM) markedly decreased radical generation. Cell mortality increased slightly in oxygen-exposed cells. This increase was not significantly altered by SOD or deferoxamine, nor was it different from the mortality observed in air-exposed cells. These results suggest that endothelial cells exposed to hyperoxia for 30 min produce free radicals via mitochondrial electron transport, but under the conditions of these experiments, this radical generation did not appear cause cell death. PMID:8380815

  1. Reduction of calcium channel antagonist binding sites by oxygen free radicals in rat heart.

    PubMed

    Kaneko, M; Lee, S L; Wolf, C M; Dhalla, N S

    1989-09-01

    In view of the importance of Ca2+-channels in controlling the entry of Ca2+ into the myocardium, this study was undertaken to examine the effects of oxygen free radicals on the binding of Ca2+-channel antagonists in rat heart by employing [3H]-nitrendipine as a ligand. Isolated heart membranes were incubated with xanthine + xanthine oxidase (a superoxide anion radicals generating system), hydrogen peroxide (an activated species of oxygen), or hydrogen peroxide + Fe2+ (a hydroxyl radicals generating system). The assay of the [3H]-nitrendipine binding activity revealed that the maximal number of binding sites (Bmax) were reduced in a time-dependent manner by superoxide radicals without any changes in the binding constant (Kd); a significant reduction of Bmax was seen after incubating membranes with xanthine + xanthine oxidase for a 10-min-period. Superoxide dismutase showed a protective effect on the superoxide radicals induced reduction in Bmax. Both hydrogen peroxide and hydroxyl radicals also depressed the Bmax for [3H]-nitrendipine binding without any significant change in Kd; catalase and mannitol showed protective effects on hydrogen peroxide or hydroxyl radicals induced depression in Bmax, respectively. These results indicate that oxygen free radicals may reduce the number of Ca2+-channels in the cell membrane and this change may contribute towards decreasing the voltage-dependent Ca2+ influx in the cardiac cell.

  2. Factors affecting the stability and equilibria of free radicals. XIII. N-alkoxy- and N-aralkoxypicrylamines and ESR spectra of the corresponding capto-dative persistent aminyls

    NASA Astrophysics Data System (ADS)

    Stanciuc, Gabriela; Caproiu, M. Teodor; Caragheorgheopol, Agneta; Caldararu, Horia; Balaban, Alexandru T.; Walter, Robert I.

    Five O-alkylhydroxylamines and three aralkylhydroxylamines have been picrylated to give O-alkyl- N-picrylhydroxylamines. These were converted to the corresponding N-(ar)alkoxy-picryl-aminyl radicals in toluene solution, and the ESR spectra were recorded. Simulations of the spectra with reasonable parameters and g values confirm the expected radical structures. Hyperfine coupling constants for nuclei in the picryl (acceptor) ring are smaller than those for the (ar)alkoxy group. This indication of competitive electron pair delocalization to the picryl ring, together with the long lifetimes of these radicals (compared with the symmetrically substituted diphenylaminyls), both support the concept of captodative stabilization.

  3. Temperature effect on back electron-transfer reactions within a geminate radical pair: The influence of the solvent on the adiabaticity of the process

    NASA Astrophysics Data System (ADS)

    Vauthey, Eric; Suppan, Paul

    1989-12-01

    A study of the temperature dependence (from 233 to 353 K) of the rate of back electron-transfer reactions within geminate radical pairs by measurement of the free radical yield is reported. The radical pair is generated by photoinduced electron transfer with rhodamine 6G and oxazine 118 cations as electron acceptors and aromatic amines and methoxy-benzene derivatives as electron donors in acetonitrile, methanol and ethanol. In acetonitrile, the back electron transfer is non-adiabatic and apparent negative activation energies are observed for barrierless reactions. In alcohol solvents, an anomalously large temperature dependence is observed, which is attributed to a solvent-controlled adiabatic behaviour.

  4. Combination of nitrogen dioxide radicals with 8-oxo-7,8-dihydroguanine and guanine radicals in DNA: oxidation and nitration end-products.

    PubMed

    Misiaszek, Richard; Crean, Conor; Geacintov, Nicholas E; Shafirovich, Vladimir

    2005-02-23

    The oxidation and nitration reactions in DNA associated with the combination of nitrogen dioxide radicals with 8-oxo-7,8-dihydroguanine (8-oxoGua) and guanine radicals were explored by kinetic laser spectroscopy and mass spectrometry methods. The oxidation/nitration processes were triggered by photoexcitation of 2-aminopurine (2AP) residues site-specifically positioned in the 2'-deoxyribooligonucleotide 5'-d(CC[2AP]TC[X]CTACC) sequences (X = 8-oxoGua or G), by intense 308 nm excimer laser pulses. The photoionization products, 2AP radicals, rapidly oxidize either 8-oxoGua or G residues positioned within the same oligonucleotide but separated by a TC dinucleotide step on the 3'-side of 2AP. The two-photon ionization of the 2AP residue also generates hydrated electrons that are trapped by nitrate anions thus forming nitrogen dioxide radicals. The combination of nitrogen dioxide radicals with the 8-oxoGua and G radicals occurs with similar rate constants (approximately 4.3 x 10(8) M(-1) s(-1)) in both single- and double-stranded DNA. In the case of 8-oxoGua, the major end-products of this bimolecular radical-radical addition are spiroiminodihydantoin lesions, the products of 8-oxoGua oxidation. Oxygen-18 isotope labeling experiments reveal that the O-atom in the spiroiminodihydantoin lesion originates from water molecules, not from nitrogen dioxide radicals. In contrast, combination of nitrogen dioxide and guanine neutral radicals generated under the same conditions results in the formation of the nitro products, 5-guanidino-4-nitroimidazole and 8-nitroguanine adducts. The mechanistic aspects of the oxidation/nitration processes and their biological implications are discussed.

  5. Dichotomous Role of Exciting the Donor or the Acceptor on Charge Generation in Organic Solar Cells.

    PubMed

    Hendriks, Koen H; Wijpkema, Alexandra S G; van Franeker, Jacobus J; Wienk, Martijn M; Janssen, René A J

    2016-08-10

    In organic solar cells, photoexcitation of the donor or acceptor phase can result in different efficiencies for charge generation. We investigate this difference for four different 2-pyridyl diketopyrrolopyrrole (DPP) polymer-fullerene solar cells. By comparing the external quantum efficiency spectra of the polymer solar cells fabricated with either [60]PCBM or [70]PCBM fullerene derivatives as acceptor, the efficiency of charge generation via donor excitation and acceptor excitation can both be quantified. Surprisingly, we find that to make charge transfer efficient, the offset in energy between the HOMO levels of donor and acceptor that govern charge transfer after excitation of the acceptor must be larger by ∼0.3 eV than the offset between the corresponding two LUMO levels when the donor is excited. As a consequence, the driving force required for efficient charge generation is significantly higher for excitation of the acceptor than for excitation of the donor. By comparing charge generation for a total of 16 different DPP polymers, we confirm that the minimal driving force, expressed as the photon energy loss, differs by about 0.3 eV for exciting the donor and exciting the acceptor. Marcus theory may explain the dichotomous role of exciting the donor or the acceptor on charge generation in these solar cells.

  6. Electrochemical reduction of aromatic ketones in 1-butyl-3-methylimidazolium-based ionic liquids in the presence of carbon dioxide: the influence of the ketone substituent and the ionic liquid anion on bulk electrolysis product distribution.

    PubMed

    Zhao, Shu-Feng; Horne, Mike; Bond, Alan M; Zhang, Jie

    2015-07-15

    Electrochemical reduction of aromatic ketones, including acetophenone, benzophenone and 4-phenylbenzophenone, has been undertaken in 1-butyl-3-methylimidazolium-based ionic liquids containing tetrafluoroborate ([BF4](-)), trifluoromethanesulfonate ([TfO](-)) and tris(pentafluoroethyl)trifluorophosphate ([FAP](-)) anions in the presence of carbon dioxide in order to investigate the ketone substituent effect and the influence of the acidic proton on the imidazolium cation (C2-H) on bulk electrolysis product distribution. For acetophenone, the minor products were dimers (<10%) in all ionic liquids, which are the result of acetophenone radical anion coupling. For benzophenone and 4-phenylbenzophenone, no dimers were formed due to steric hindrance. In these cases, even though carboxylic acids were obtained, the main products generated were alcohols (>50%) derived from proton coupled electron transfer reactions involving the electrogenerated radical anions and C2-H. In the cases of both acetophenone and benzophenone, the product distribution is essentially independent of the ionic liquid anion. By contrast, 4-phenylbenzophenone shows a product distribution that is dependent on the ionic liquid anion. Higher yields of carboxylic acids (∼40%) are obtained with [TfO](-) and [FAP](-) anions because in these ionic liquids the C2-H is less acidic, making the formation of alcohol less favourable. In comparison with benzophenone, a higher yield of carboxylic acid (>30% versus ∼15%) was obtained with 4-phenylbenzophenone in all ionic liquids due to the weaker basicity of 4-phenylbenzophenone radical anion.

  7. Raman and IR studies and DFT calculations of the vibrational spectra of 2,4-Dithiouracil and its cation and anion.

    PubMed

    Singh, R; Yadav, R A

    2014-09-15

    Raman and FTIR spectra of solid 2,4-Dithiouracil (DTU) at room temperature have been recorded. DFT calculations were carried out to compute the optimized molecular geometries, GAPT charges and fundamental vibrational frequencies along with their corresponding IR intensities, Raman activities and depolarization ratios of the Raman bands for the neutral DTU molecule and its cation (DTU+) and anion (DTU-) using the Gaussian-03 software. Addition of one electron leads to increase in the atomic charges on the sites N1 and N3 and decrease in the atomic charges on the sites S8 and S10. Due to ionization of DTU molecule, the charge at the site C6 decreases in the cationic and anionic radicals of DTU as compared to its neutral species. As a result of anionic radicalization, the C5C6 bond length increases and loses its double bond character while the C4C5 bond length decreases. In the case of the DTU+ ion the IR and Raman band corresponding to the out-of-phase coupled NH stretching mode is strongest amongst the three species. The anionic DTU radical is found to be the most stable. The two NH out-of-plane bending modes are found to originate due to out-of-phase and in-phase coupling of the two NH bonds in the anion and cation contrary to the case of the neutral DTU molecule in which the out-of-plane bending motions of the two NH bonds are not coupled.

  8. Hexa-peri-hexabenzocoronene with Different Acceptor Units for Tuning Optoelectronic Properties.

    PubMed

    Keerthi, Ashok; Hou, Ian Cheng-Yi; Marszalek, Tomasz; Pisula, Wojciech; Baumgarten, Martin; Narita, Akimitsu

    2016-10-06

    Hexa-peri-hexabenzocoronene (HBC)-based donor-acceptor dyads were synthesized with three different acceptor units, through two pathways: 1) "pre-functionalization" of monobromo-substituted hexaphenylbenzene prior to the cyclodehydrogenation; and 2) "post-functionalization" of monobromo-substituted HBC after the cyclodehydrogenation. The HBC-acceptor dyads demonstrated varying degrees of intramolecular charge-transfer interactions, depending on the attached acceptor units, which allowed tuning of their photophysical and optoelectronic properties, including the energy gaps. The two synthetic pathways described here can be complementary and potentially be applied for the synthesis of nanographene-acceptor dyads with larger aromatic cores, including one-dimensionally extended graphene nanoribbons.

  9. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  10. Vacancy-Induced Electronic Structure Variation of Acceptors and Correlation with Proton Conduction in Perovskite Oxides.

    PubMed

    Kim, Hye-Sung; Jang, Ahreum; Choi, Si-Young; Jung, WooChul; Chung, Sung-Yoon

    2016-10-17

    In most proton-conducing perovskite oxides, the electrostatic attraction between negatively charged acceptor dopants and protonic defects having a positive charge is known to be a major cause of retardation of proton conduction, a phenomenon that is generally referred to as proton trapping. We experimentally show that proton trapping can be suppressed by clustering of positively charged oxygen vacancies to acceptors in BaZrO3-δ and BaCeO3-δ . In particular, to ensure the vacancy-acceptor association is effective against proton trapping, the valence electron density of acceptors should not significantly vary when the oxygen vacancies cluster, based on the weak hybridization between the valence d or p orbitals of acceptors and the 2p orbitals of oxygen.

  11. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xia, Chunyu; Wu, Wei-Min; Sun, Guoping; Xu, Meiying

    2014-07-01

    To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors.

  12. The activation energy for Mg acceptor in the Ga-rich InGaN alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Wei, Tong; Chen, Li-Ying; Wang, Sha-Sha; Wang, Jun

    2017-02-01

    The activation energy for Mg acceptor in InxGa1-xN alloys is investigated. It is found that there are three factors to influence the activation energy for Mg acceptor. One is the stronger dependence of the VBM of InxGa1-xN depending on In content than that of the Mg acceptor energy level. The other is the concentration of Mg acceptors. Another is the extending of the valence band-tail states into the band gap. In addition, a model based on modifying the effective mass model is developed. It is found that the model can describe the activation energy for Mg acceptor in the Ga-rich InxGa1-xN alloys well after considering the influence of the valence band-tail states.

  13. Kinetics and mechanism of exogenous anion exchange in FeFbpA-NTA: significance of periplasmic anion lability and anion binding activity of ferric binding protein A.

    PubMed

    Heymann, Jared J; Gabricević, Mario; Mietzner, Timothy A; Crumbliss, Alvin L

    2010-02-01

    The bacterial transferrin ferric binding protein A (FbpA) requires an exogenous anion to facilitate iron sequestration, and subsequently to shuttle the metal across the periplasm to the cytoplasmic membrane. In the diverse conditions of the periplasm, numerous anions are known to be present. Prior in vitro experiments have demonstrated the ability of multiple anions to fulfill the synergistic iron-binding requirement, and the identity of the bound anion has been shown to modulate important physicochemical properties of iron-bound FbpA (FeFbpA). Here we address the kinetics and mechanism of anion exchange for the FeFbpA-nitrilotriacetate (NTA) assembly with several biologically relevant anions (citrate, oxalate, phosphate, and pyrophosphate), with nonphysiologic NTA serving as a representative synergistic anion/chelator. The kinetic data are consistent with an anion-exchange process that occurs in multiple steps, dependent on the identity of both the entering anion and the leaving anion. The exchange mechanism may proceed either as a direct substitution or through an intermediate FeFbpA-X* assembly based on anion (X) identity. Our kinetic results further develop an understanding of exogenous anion lability in the periplasm, as well as address the final step of the iron-free FbpA (apo-FbpA)/Fe(3+) sequestration mechanism. Our results highlight the kinetic significance of the FbpA anion binding site, demonstrating a correlation between apo-FbpA/anion affinity and the FeFbpA rate of anion exchange, further supporting the requirement of an exogenous anion to complete tight sequestration of iron by FbpA, and developing a mechanism for anion exchange within FeFbpA that is dependent on the identity of both the entering anion and the leaving anion.

  14. Dynamics of radical cations of poly(4-hydroxystyrene) in the presence and absence of triphenylsulfonium triflate as determined by pulse radiolysis of its highly concentrated solution

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazumasa; Ishida, Takuya; Yamamoto, Hiroki; Kozawa, Takahiro; Fujiyoshi, Ryoko; Umegaki, Kikuo

    2016-07-01

    Pulse radiolysis of highly concentrated poly(4-hydroxystyrene) (PHS) solutions in cyclohexanone and p-dioxane was performed both with and without an onium-type photoacid generator (PAG). With increasing PHS concentration, the rate constant of deprotonation of PHS radical cations was found to decrease. In the presence of PAG, the yield of the multimer radical cation of PHS was shown to decrease. We found that pairing between the anions produced by the attachment of dissociative electrons of PAGs and the monomer PHS radical cations restrict local molecular motions, leading to the formation of the multimer PHS radical cations.

  15. Rate constants and isotope effects for the reaction of H-atom abstraction from RH substrates by PINO radicals

    NASA Astrophysics Data System (ADS)

    Opeida, I. A.; Litvinov, Yu. E.; Kushch, O. V.; Kompanets, M. A.; Shendrik, A. N.; Matvienko, A. G.; Novokhatko, A. A.

    2016-11-01

    The kinetics of the reactions of hydrogen atom abstraction from the C-H bonds of substrates of different structures by phthalimide- N-oxyl radicals is studied. The rate constants of this reaction are measured and the kinetic isotope effects are determined. It is shown that in addition to the thermodynamic factor, Coulomb forces and donor-acceptor interactions affect the reaction between phthalimide- N-oxyl radicals and substrate molecules, altering the shape of the transition state. This favors the tunneling of hydrogen atoms and leads to a substantial reduction in the activation energy of the process.

  16. A new class of organocatalysts: sulfenate anions.

    PubMed

    Zhang, Mengnan; Jia, Tiezheng; Yin, Haolin; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2014-09-26

    Sulfenate anions are known to act as highly reactive species in the organic arena. Now they premiere as organocatalysts. Proof of concept is offered by the sulfoxide/sulfenate-catalyzed (1-10 mol%) coupling of benzyl halides in the presence of base to generate trans-stilbenes in good to excellent yields (up to 99%). Mechanistic studies support the intermediacy of sulfenate anions, and the deprotonated sulfoxide was determined to be the resting state of the catalyst.

  17. Anionic Lewis Acids. A Chemical Oxymoron.

    DTIC Science & Technology

    1995-10-17

    NUMBER OF PAGES12 anionic lewis acid ab initio synthesis 1 2 methide FT NMR 16. PRICE CODE imide multi-nule r 17. SECURITY CLASSIFICATION 18...chemically robust, thermally stable, non-toxic, environmentally safe, and cost-effective. One of our current areas of interest involves the synthesis and...developing a predictive knowledge base that can be used to guide the synthesis of new locally electron-deficient anions. Additionally, we proposed to

  18. Fluorescence-lifetime-based sensors for anions

    NASA Astrophysics Data System (ADS)

    Teichmann, Maria; Draxler, Sonja; Kieslinger, Dietmar; Lippitsch, Max E.

    1997-05-01

    Sensing of anions has been investigated using the fluorescence decaytime as the information carrier. The sensing mechanism is based on the coextraction of an anion and a proton, and the presence of a fluorophore with a rather long fluorescence decaytime inside the membrane to act as a pH indicator. The relevant theory is discussed shortly. As an example a sensor for nitrate is shown, and the influence of ionic additives on the working function has been investigated.

  19. Radicals in Berkeley?

    PubMed Central

    Linn, Stuart

    2015-01-01

    In a previous autobiographical sketch for DNA Repair (Linn, S. (2012) Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair 11, 595–605), I wrote about my involvement in research on mechanisms of DNA repair. In this Reflections, I look back at how I became interested in free radical chemistry and biology and outline some of our bizarre (at the time) observations. Of course, these studies could never have succeeded without the exceptional aid of my mentors: my teachers; the undergraduate and graduate students, postdoctoral fellows, and senior lab visitors in my laboratory; and my faculty and staff colleagues here at Berkeley. I am so indebted to each and every one of these individuals for their efforts to overcome my ignorance and set me on the straight and narrow path to success in research. I regret that I cannot mention and thank each of these mentors individually. PMID:25713083

  20. Radicals in Berkeley?

    PubMed

    Linn, Stuart

    2015-04-03

    In a previous autobiographical sketch for DNA Repair (Linn, S. (2012) Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair 11, 595-605), I wrote about my involvement in research on mechanisms of DNA repair. In this Reflections, I look back at how I became interested in free radical chemistry and biology and outline some of our bizarre (at the time) observations. Of course, these studies could never have succeeded without the exceptional aid of my mentors: my teachers; the undergraduate and graduate students, postdoctoral fellows, and senior lab visitors in my laboratory; and my faculty and staff colleagues here at Berkeley. I am so indebted to each and every one of these individuals for their efforts to overcome my ignorance and set me on the straight and narrow path to success in research. I regret that I cannot mention and thank each of these mentors individually.

  1. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.

  2. Radical Chemistry and Cytotoxicity of Bioreductive 3-Substituted Quinoxaline Di-N-Oxides.

    PubMed

    Anderson, Robert F; Yadav, Pooja; Shinde, Sujata S; Hong, Cho R; Pullen, Susan M; Reynisson, Jóhannes; Wilson, William R; Hay, Michael P

    2016-08-15

    The radical chemistry and cytotoxicity of a series of quinoxaline di-N-oxide (QDO) compounds has been investigated to explore the mechanism of action of this class of bioreductive drugs. A series of water-soluble 3-trifluoromethyl (4-10), 3-phenyl (11-19), and 3-methyl (20-21) substituted QDO compounds were designed to span a range of electron affinities consistent with bioreduction. The stoichiometry of loss of QDOs by steady-state radiolysis of anaerobic aqueous formate buffer indicated that one-electron reduction of QDOs generates radicals able to initiate chain reactions by oxidation of formate. The 3-trifluoromethyl analogues exhibited long chain reactions consistent with the release of the HO(•), as identified in EPR spin trapping experiments. Several carbon-centered radical intermediates, produced by anaerobic incubation of the QDO compounds with N-terminal truncated cytochrome P450 reductase (POR), were characterized using N-tert-butyl-α-phenylnitrone (PBN) and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps and were observed by EPR. Experimental data were well simulated for the production of strongly oxidizing radicals, capable of H atom abstraction from methyl groups. The kinetics of formation and decay of the radicals produced following one-electron reduction of the parent compounds, both in oxic and anoxic solutions, were determined using pulse radiolysis. Back oxidation of the initially formed radical anions by molecular oxygen did not compete effectively with the breakdown of the radical anions to form oxidizing radicals. The QDO compounds displayed low hypoxic selectivity when tested against oxic and hypoxic cancer cell lines in vitro. The results from this study form a kinetic description and explanation of the low hypoxia-selective cytotoxicity of QDOs against cancer cells compared to the related benzotriazine 1,4-dioxide (BTO) class of compounds.

  3. Structure reactivity relationship in the reaction of DNA guanyl radicals with hydroxybenzoates

    NASA Astrophysics Data System (ADS)

    Do, Trinh T.; Tang, Vicky J.; Aguilera, Joseph A.; Milligan, Jamie R.

    2010-11-01

    In DNA, guanine bases are the sites from which electrons are most easily removed. As a result of hole migration to this stable location on guanine, guanyl radicals are major intermediates in DNA damage produced by the direct effect of ionizing radiation (ionization of the DNA itself and not through the intermediacy of water radicals). We have modeled this process by employing gamma irradiation in the presence of thiocyanate ions, a method which also produces single electron oxidized guanyl radicals in plasmid DNA in aqueous solution. The stable products formed in DNA from these radicals are detected as strand breaks after incubation with the FPG protein. When a phenolic compound is present in the solution during gamma irradiation, the formation of guanyl radical species is decreased by electron donation from the phenol to the guanyl radical. We have quantified the rate of this reaction for four different phenolic compounds bearing carboxylate substituents as proton acceptors. A comparison of the rates of these reactions with the redox strengths of the phenolic compounds reveals that salicylate reacts ca. 10-fold faster than its structural analogs. This observation is consistent with a reaction mechanism involving a proton coupled electron transfer, because intra-molecular transfer of a proton from the phenolic hydroxyl group to the carboxylate group is possible only in salicylate, and is favored by the strong 6-membered ring intra-molecular hydrogen bond in this compound.

  4. High Performance Anion Chromatography of Gadolinium Chelates.

    PubMed

    Hajós, Peter; Lukács, Diana; Farsang, Evelin; Horváth, Krisztian

    2016-11-01

    High performance anion chromatography (HPIC) method to separate ionic Gd chelates, [Formula: see text], [Formula: see text], [Formula: see text] and free matrix anions was developed. At alkaline pHs, polydentate complexing agents such as ethylene-diamine-tetraacetate, diethylene-triamine pentaacetate and trans-1,2-diamine-cyclohexane-tetraacetate tend to form stable Gd chelate anions and can be separated by anion exchange. Separations were studied in the simple isocratic chromatographic run over the wide range of pH and concentration of carbonate eluent using suppressed conductivity detection. The ion exchange and complex forming equilibria were quantitatively described and demonstrated in order to understand major factors in the control of selectivity of Gd chelates. Parameters of optimized resolution between concurrent ions were presented on a 3D resolution surface. The applicability of the developed method is represented by the simultaneous analysis of Gd chelates and organic/inorganic anions. Inductively coupled plasma atomic emission spectroscopy  (ICP-AES) analysis was used for confirmation of HPIC results for Gd. Collection protocols for the heart-cutting procedure of chromatograms were applied. SPE procedures were also developed not only to extract traces of free gadolinium ions from samples, but also to remove the high level of interfering anions of the complex matrices. The limit of detection, the recoverability and the linearity of the method were also presented.

  5. On the importance of anion-π interactions in the mechanism of sulfide:quinone oxidoreductase.

    PubMed

    Bauzá, Antonio; Quiñonero, David; Deyà, Pere M; Frontera, Antonio

    2013-11-01

    Sulfide:quinone oxidoreductase (SQR) is a flavin-dependent enzyme that plays a physiological role in two important processes. First, it is responsible for sulfide detoxification by oxidizing sulfide ions (S(2-) and HS(-)) to elementary sulfur and the electrons are first transferred to flavin adenine dinucleotide (FAD), which in turn passes them to the quinone pool in the membrane. Second, in sulfidotrophic bacteria, SQRs play a key role in the sulfide-dependent respiration and anaerobic photosynthesis, deriving energy for their growth from reduced sulfur. Two mechanisms of action for SQR have been proposed: first, nucleophilic attack of a Cys residue on the C4 of FAD, and second, an alternate anionic radical mechanism by direct electron transfer from Cys to the isoalloxazine ring of FAD. Both mechanisms involve a common anionic intermediate that it is stabilized by a relevant anion-π interaction and its previous formation (from HS(-) and Cys-S-S-Cys) is also facilitated by reducing the transition-state barrier, owing to an interaction that involves the π system of FAD. By analyzing the X-ray structures of SQRs available in the Protein Data Bank (PDB) and using DFT calculations, we demonstrate the relevance of the anion-π interaction in the enzymatic mechanism.

  6. The Expanding Family of Natural Anion Channelrhodopsins Reveals Large Variations in Kinetics, Conductance, and Spectral Sensitivity

    PubMed Central

    Govorunova, Elena G.; Sineshchekov, Oleg A.; Rodarte, Elsa M.; Janz, Roger; Morelle, Olivier; Melkonian, Michael; Wong, Gane K.-S.; Spudich, John L.

    2017-01-01

    Natural anion channelrhodopsins (ACRs) discovered in the cryptophyte alga Guillardia theta generate large hyperpolarizing currents at membrane potentials above the Nernst equilibrium potential for Cl− and thus can be used as efficient inhibitory tools for optogenetics. We have identified and characterized new ACR homologs in different cryptophyte species, showing that all of them are anion-selective, and thus expanded this protein family to 20 functionally confirmed members. Sequence comparison of natural ACRs and engineered Cl−-conducting mutants of cation channelrhodopsins (CCRs) showed radical differences in their anion selectivity filters. In particular, the Glu90 residue in channelrhodopsin 2, which needed to be mutated to a neutral or alkaline residue to confer anion selectivity to CCRs, is nevertheless conserved in all of the ACRs identified. The new ACRs showed a large variation of the amplitude, kinetics, and spectral sensitivity of their photocurrents. A notable variant, designated “ZipACR”, is particularly promising for inhibitory optogenetics because of its combination of larger current amplitudes than those of previously reported ACRs and an unprecedentedly fast conductance cycle (current half-decay time 2–4 ms depending on voltage). ZipACR expressed in cultured mouse hippocampal neurons enabled precise photoinhibition of individual spikes in trains of up to 50 Hz frequency. PMID:28256618

  7. Interpreting the physical background of empirical solvent polarity via photodetachment spectroscopy of microsolvated aromatic ketyl anions.

    PubMed

    Maeyama, Toshihiko; Yoshida, Keiji; Yagi, Izumi; Fujii, Asuka; Mikami, Naohiko

    2009-10-08

    The physical background of empirical solvent polarity is explored in regard to trends in solute-solvent intermolecular potential energy functions. Aromatic ketyl anions, benzophenone, and 9-fluorenone radical anions, are chosen for a model solute molecule showing solvatochromic behavior similar to betaine-30 dye, which provides the most established solvent polarity scale, E(T)(30). Common features among the ketyl anions and betaine-30 were examined with quantum chemical calculations for the electronic states and solvation structure. Vertical photodetachment and photoabsorption energies were determined for the ketyl anions microsolvated with a single solvent molecule by measuring photoelectron spectra as well as photodetachment excitation spectra for several aprotic and protic solvents. The spectroscopic data were analyzed through quantum chemical calculations based on density functional theory, and their relationship with the characteristics of intermolecular potential energies was considered. As a result, the typical solvent polarity parameter can be interpreted to reflect essentially the gradient of a potential energy function (namely, the strength of force) between a negative charge and the solvent molecules in the attractive region. A large polarity for protic solvents is attributed to an effective interaction of a proton-like hydrogen atom with the negative charge in a short-range.

  8. Ultrafast exciton dissociation at donor/acceptor interfaces

    NASA Astrophysics Data System (ADS)

    Grancini, G.; Fazzi, D.; Binda, M.; Maiuri, M.; Petrozza, A.; Criante, L.; Perissinotto, S.; Egelhaaf, H.-J.; Brida, D.; Cerullo, G.; Lanzani, G.

    2013-09-01

    Charge generation at donor/acceptor interface is a highly debated topic in the organic photovoltaics (OPV) community. The primary photoexcited state evolution happens in few femtosecond timescale, thus making very intriguing their full understanding. In particular charge generation is believed to occur in < 200 fs, but no clear picture emerged so far. In this work we reveal for the first time the actual charge generation mechanism following in real time the exciton dissociation mechanism by means of sub-22 fs pump-probe spectroscopy. We study a low-band-gap polymer: fullerene interface as an ideal system for OPV. We demonstrate that excitons dissociation leads, on a timescale of 20-50 fs, to two byproducts: bound interfacial charge transfer states (CTS) and free charges. The branching ratio of their formation depends on the excess photon energy provided. When high energy singlet polymer states are excited, well above the optical band gap, an ultrafast hot electron transfer happens between the polymer singlet state and the interfacial hot CTS* due to the high electronic coupling between them. Hot exciton dissociation prevails then on internal energy dissipation that occurs within few hundreds of fs. By measuring the internal quantum efficiency of a prototypical device a rising trend with energy is observed, thus indicating that hot exciton dissociation effectively leads to a higher fraction of free charges.

  9. Potassium acceptor doping of ZnO crystals

    SciTech Connect

    Parmar, Narendra S. Lynn, K. G.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  10. Poly(trifluoromethyl)azulenes: structures and acceptor properties

    SciTech Connect

    Clikeman, Tyler T.; Bukovsky, Eric V.; Kuvychko, Igor V.; San, Long K.; Deng, Shihu; Wang, Xue B.; Chen, Yu-Sheng; Strauss, Steven H.; Boltalina, Olga V.

    2014-07-10

    Azulene is a non-alternant, non-benzenoid aromatic hydrocarbon with an intense blue colour, a dipole moment of 1.0 D,1 positive electron affinity, and an “anomalous” emission from the second excited state in violation of Kasha’s rule.2,3 Azulene’s unique properties have potential uses in molecular switches,4,5 molecular diodes,6 organic photovoltaics,7 and charge transfer complexes.8-12 Introduction of electron-withdrawing groups to the azulenic core, such as CN,8,13,14 halogens,15-19 and CF3,20,21 can enhance certain electrical and photophysical properties. In this work, we report six new trifluoromethyl derivatives of azulene (AZUL), three isomers of AZUL(CF3)3 and three isomers of AZUL(CF3)4, and the first X-ray structure of a π-stacked donor-acceptor complex of a trifluoromethyl azulene with donor pyrene.

  11. Analysis of nonlinear optical properties in donor–acceptor materials

    SciTech Connect

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  12. Self-association and electron transfer in donor-acceptor dyads connected by meta-substituted oligomers.

    PubMed

    Molina-Ontoria, Agustín; Fernández, Gustavo; Wielopolski, Mateusz; Atienza, Carmen; Sánchez, Luis; Gouloumis, Andreas; Clark, Timothy; Martín, Nazario; Guldi, Dirk M

    2009-09-02

    The synthesis of a new series of electron donor-acceptor conjugates (5, 10, 13, and 16) in which the electron acceptor--C(60)--and the electron donor--pi-extended tetrathiafulvalene (exTTF)--are bridged by means of m-phenyleneethynylene spacers of variable length is reported. The unexpected self-association of these hybrids was first detected to occur in the gas phase by means of MALDI-TOF spectrometry and subsequently corroborated in solution by utilizing concentration-dependent and variable-temperature (1)H NMR experiments. Furthermore, the ability of these new conjugates to form wirelike structures upon deposition onto a mica surface has been demonstrated by AFM spectroscopy. In light of their photoactivity and redoxactivity, 5, 10, 13, and 16 were probed in concentration-dependent photophysical experiments. Importantly, absorption and fluorescence revealed subtle dissimilarities for the association constants, that is, a dependence on the length of the m-phenylene spacers. The binding strength is in 5 greatly reduced when compared with those in 10, 13, and 16. Not only that, the spacer length also plays a decisive role in governing excited-state interactions in the corresponding electron donor-acceptor conjugates (5, 10, 13, and 16). To this end, 5, in which the photo- and electroactive constituents are bridged by just one aromatic ring, displays--exclusively and independent of the concentration (10(-6) to 10(-4) M)--efficient intramolecular electron transfer events on the basis of a "through-bond" mechanism. On the contrary, the lack of conjugation throughout the bridges in 10 (two m-phenyleneethynylene rings), 13 (three m-phenyleneethynylene rings), and 16 (four m-phenyleneethynylene rings) favors at low concentration (10(-6) M) "through space" intramolecular electron transfer events. These are, however, quite ineffective and, in turn, lead to excited-state deactivations that are at high concentrations (10(-4) M) dominated by intracomplex electron transfer

  13. A homologous heterospin series of mononuclear lanthanide/TCNQF(4) organic radical complexes.

    PubMed

    Lopez, Nazario; Zhao, Hanhua; Prosvirin, Andrey V; Wernsdorfer, Wolfgang; Dunbar, Kim R

    2010-05-14

    Reactions between trivalent rare earth ions (M(III) = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er and Yb) and the radical anion of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (TCNQF(4)) produce a family of mononuclear complexes {M[(TCNQF(4))](2)[H(2)O](x)}.(TCNQF(4))(3H(2)O), x = 6, 7. The cationic complex {M(III)([TCNQF(4)](-) )(2)[H(2)O](x)}(+) cocrystallizes with one [TCNQF(4)](-) radical anion and three water molecules. One of the coordinated [TCNQF(4)](-) radicals is involved in pi-pi stacking interactions with the uncoordinated [TCNQF(4)](-) radicals which leads to the antiferromagnetic coupling for these ((TCNQF(4))(2))(2-)pi-dimers. The second coordinated [TCNQF(4)](-) remains as a radical ligand and is not involved in pi-pi interactions. Magnetic studies indicate that the Sm compound magnetically orders at 4.4 K and that a fraction of the Gd and Dy samples undergo magnetic ordering at 3.7 K and 4.3 K respectively due to partial dehydration (loss of interstitial water molecules). Diamagnetic metal ions were used to generate magnetically dilute Gd, and Dy compounds that do not exhibit any signs of magnetic ordering.

  14. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  15. Radical Change by Entrepreneurial Design

    DTIC Science & Technology

    1998-01-01

    This article offers a conceptual framework to understand radical change. It opens with a typology that defines change in terms of its pace and scope...known entrepreneurs who have been successful in molding and shaping the radical change process. The implications of this conceptual framework to

  16. Negative electrostatic surface potential of protein sites specific for anionic ligands.

    PubMed Central

    Ledvina, P S; Yao, N; Choudhary, A; Quiocho, F A

    1996-01-01

    Determination of the crystal structure of an "open" unliganded active mutant (T141D) form of the Escherichia coli phosphate receptor for active transport has allowed calculation of the electrostatic surface potential for it and two other comparably modeled receptor structures (wild type and D137N). A discovery of considerable implication is the intensely negative potential of the phosphate-binding cleft. We report similar findings for a sulfate transport receptor, a DNA-binding protein, and, even more dramatically, redox proteins. Evidently, for proteins such as these, which rely almost exclusively on hydrogen bonding for anion interactions and electrostatic balance, a noncomplementary surface potential is not a barrier to binding. Moreover, experimental results show that the exquisite specificity and high affinity of the phosphate and sulfate receptors for unions are insensitive to modulations of charge potential, but extremely sensitive to conditions that leave a hydrogen bond donor or acceptor unpaired. Images Fig. 1 Fig. 2 Fig. 3 PMID:8692896

  17. Negative electrostatic surface potential of protein sites specific for anionic ligands.

    PubMed

    Ledvina, P S; Yao, N; Choudhary, A; Quiocho, F A

    1996-06-25

    Determination of the crystal structure of an "open" unliganded active mutant (T141D) form of the Escherichia coli phosphate receptor for active transport has allowed calculation of the electrostatic surface potential for it and two other comparably modeled receptor structures (wild type and D137N). A discovery of considerable implication is the intensely negative potential of the phosphate-binding cleft. We report similar findings for a sulfate transport receptor, a DNA-binding protein, and, even more dramatically, redox proteins. Evidently, for proteins such as these, which rely almost exclusively on hydrogen bonding for anion interactions and electrostatic balance, a noncomplementary surface potential is not a barrier to binding. Moreover, experimental results show that the exquisite specificity and high affinity of the phosphate and sulfate receptors for unions are insensitive to modulations of charge potential, but extremely sensitive to conditions that leave a hydrogen bond donor or acceptor unpaired.

  18. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2012-01-01

    The A 1B1 <-1A0 excitation into the dipole-bound state of the cyanomethyl anion (CH2CN??) has been hypothesized as the carrier for one di use interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study we are employing the use of proven quartic force elds and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X 1A0 CH2CN?? in order to assist in laboratory studies and astronomical observations. Keywords: Astrochemistry, ISM: molecular anions, Quartic force elds, Rotational constants, Vibrational frequencies

  19. Colorimetric and fluorometric dual-modal probes for cyanide detection based on the doubly activated Michael acceptor and their bioimaging applications.

    PubMed

    Li, Hongda; Chen, Tie; Jin, Longyi; Kan, Yuhe; Yin, Bingzhu

    2014-12-10

    In this study, we synthesized CTB and CB probes based on doubly activated Michael acceptors to selectively detect cyanide (CN(-)) anions through a one-step condensation reaction of coumarinyl acrylaldehyde with the corresponding derivatives of malonyl urea (thiourea). Through the conjugated addition of CN(-) to the β-site of the Michael acceptor, both probes displayed colorimetric and fluorometric dual-modal responses that were highly reactive and selective. CTB generates an active fluorescent response, whereas CB displays a ratiometric fluorescent response. The fluorescent signal of the probes reached its maximum given only 1 CN(-) equivalent and the signal change was linearly proportional to CN(-) concentrations ranging from 0 to 5 μM with the detection limits 18 and 23 nM, respectively. The reaction rate of the probes is highly dependent on the methylene acidity of malonyl urea derivatives. Thus, the response rate of CTB to CN(-) is 1.2-fold faster than that of CB, and the response rate of CB to CN(-) is 1.2-fold faster than that of the previously examined CM. We then verified the highly reactive nature of the β-site of the probes through density functional reactivity theory calculations. In addition, according to proof-of-concept experiments, these probes may be applied to analyze CN(-) contaminated water and biomimetic samples. Finally, cell cytotoxicity and bioimaging studies revealed that the probes were cell-permeable and could be used to detect CN(-) with low cytotoxicity.

  20. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor

    SciTech Connect

    Kumazaki, Shigeichi; Kandori, Hideki; Yoshihara, Keitaro ); Iwaki, Masayo; Itoh, Shigeru ); Ikegamu, Isamu )

    1994-10-27

    Rates of sequential electron transfer reactions from the primary electron donor chlorophyll dimer (P700) to the electron acceptor chlorophyll a-686 (A[sub 0]) and to the secondary acceptor quinone (Q[sub [phi

  1. Studies of radiation-produced radicals and radical ions

    SciTech Connect

    Williams, T.F.

    1991-01-01

    The radiolytic oxidation of anti-5-methylbicyclo(2.1.0)pentane gives the 1-methylcyclopentene radical cation as the sole rearrangement product H migration whereas oxidation of its syn isomer results in the highly selective formation of the 3-methylcyclopentene radical cation by methyl group migration. Since exactly the same stereoselectivity of olefin formation was observed in corresponding PET (photosensitized electron transfer) studies in the liquid phase, it is concluded that the rearrangement in this case also occurs through the intermediacy of radical cations. Clearly, the radical cation rearrangement must occur very rapidly (10{sup {minus}8}--10{sup {minus}9}s) under liquid-phase conditions at room temperature to compete with back electron transfer, and therefore the hydrogen (or methyl) migration is a fast process under these conditions. An intramolecular cycloaddition reaction was demonstrated in the radical cation rearrangement of 4-vinylcyclohexene to bicyclo(3.2.1)oct-2-ene. ESR studies show that the radiolytic oxidation of quadricyclane in Freon matrices under conditions of high substrate dilution leads to the bicyclo(3.2.0)hepta-2,6-diene radical cation as well as the previously reported norbornadiene radical cation, the former species predominating at sufficiently low concentrations.

  2. Free Radical Polymerization of Styrene and Methyl Methacrylate in Various Room Temperature Ionic Liquids

    SciTech Connect

    Zhang, Hongwei; Hong, Kunlun; Mays, Jimmy

    2005-01-01

    Conventional free radical polymerization of styrene and methyl methacrylate was carried out in various room temperature ionic liquids (RTILs). The RTILs used in this research encompass a wide range of cations and anions. Typical cations include imidazolium, phosphonium, pyridinium, and pyrrolidinium; typical anions include amide, borate, chloride, imide, phosphate, and phosphinate. Reactions are faster and polymers obtained usually have higher molecular weights when compared to polymerizations carried out in volatile organic solvents under the same conditions. This shows that rapid rates of polymerization and high molecular weights are general features of conventional radical polymerizations in RTILs. Attempts to correlate the polarities and viscosities of the RTILs with the polymerization behavior fail to yield discernible trends.

  3. Fenton-like Degradation of MTBE: Effects of Iron Counter Anion and Radical Scavengers

    EPA Science Inventory

    Fenton-driven oxidation of Methyl tert-butyl ether (MTBE) (0.11-0.16 mM) in batch reactors containing ferric iron (5 mM), hydrogen peroxide (H2O2) (6 mM) (pH=3) was performed to investigate MTBE transformation mechanisms. Independent variables included the form of iron (Fe) (Fe2(...

  4. Communication: Vibrationally resolved photoelectron spectroscopy of the tetracyanoquinodimethane (TCNQ) anion and accurate determination of the electron affinity of TCNQ

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Wang, Lai-Sheng

    2015-12-01

    Tetracyanoquinodimethane (TCNQ) is widely used as an electron acceptor to form highly conducting organic charge-transfer solids. Surprisingly, the electron affinity (EA) of TCNQ is not well known and has never been directly measured. Here, we report vibrationally resolved photoelectron spectroscopy (PES) of the TCNQ- anion produced using electrospray and cooled in a cryogenic ion trap. Photoelectron spectrum taken at 354.7 nm represents the detachment transition from the ground state of TCNQ- to that of neutral TCNQ with a short vibrational progression. The EA of TCNQ is measured accurately to be 3.383 ± 0.001 eV (27 289 ± 8 cm-1), compared to the 2.8 ± 0.1 eV value known in the literature and measured previously using collisional ionization technique. In addition, six vibrational peaks are observed in the photoelectron spectrum, yielding vibrational frequencies for three totally symmetric modes of TCNQ. Two-photon PES via a bound electronic excited state of TCNQ- at 3.100 eV yields a broad low kinetic energy peak due to fast internal conversion to vibrationally excited levels of the anion ground electronic state. The high EA measured for TCNQ underlies its ability as a good electron acceptor.

  5. Communication: Vibrationally resolved photoelectron spectroscopy of the tetracyanoquinodimethane (TCNQ) anion and accurate determination of the electron affinity of TCNQ

    SciTech Connect

    Zhu, Guo-Zhu; Wang, Lai-Sheng

    2015-12-14

    Tetracyanoquinodimethane (TCNQ) is widely used as an electron acceptor to form highly conducting organic charge-transfer solids. Surprisingly, the electron affinity (EA) of TCNQ is not well known and has never been directly measured. Here, we report vibrationally resolved photoelectron spectroscopy (PES) of the TCNQ{sup −} anion produced using electrospray and cooled in a cryogenic ion trap. Photoelectron spectrum taken at 354.7 nm represents the detachment transition from the ground state of TCNQ{sup −} to that of neutral TCNQ with a short vibrational progression. The EA of TCNQ is measured accurately to be 3.383 ± 0.001 eV (27 289 ± 8 cm{sup −1}), compared to the 2.8 ± 0.1 eV value known in the literature and measured previously using collisional ionization technique. In addition, six vibrational peaks are observed in the photoelectron spectrum, yielding vibrational frequencies for three totally symmetric modes of TCNQ. Two-photon PES via a bound electronic excited state of TCNQ{sup −} at 3.100 eV yields a broad low kinetic energy peak due to fast internal conversion to vibrationally excited levels of the anion ground electronic state. The high EA measured for TCNQ underlies its ability as a good electron acceptor.

  6. Electro-driven extraction of inorganic anions from water samples and water miscible organic solvents and analysis by ion chromatography.

    PubMed

    Nojavan, Saeed; Bidarmanesh, Tina; Memarzadeh, Farkhondeh; Chalavi, Soheila

    2014-09-01

    A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1-heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R(2) ) between 0.987 and 0.999 were obtained. The LODs of the EME-IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications.

  7. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries: discovery and molecular characterization.

    PubMed

    Duan, Peng; Li, Shanshan; Ai, Ni; Hu, Longqin; Welsh, William J; You, Guofeng

    2012-11-05

    Transporter-mediated drug-drug interactions in the kidney dramatically influence the pharmacokinetics and other clinical effects of drugs. Human organic anion transporters 1 (hOAT1) and 3 (hOAT3) are the major transporters in the basolateral membrane of kidney proximal tubules, mediating the rate-limiting step in the elimination of a broad spectrum of drugs. In the present study, we screened two clinical drug libraries against hOAT1 and hOAT3. Of the 727 compounds screened, 92 compounds inhibited hOAT1 and 262 compounds inhibited hOAT3. When prioritized based on the peak unbound plasma concentrations of these compounds, three inhibitors for hOAT1 and seven inhibitors for hOAT3 were subsequently identified with high inhibitory potency (>95%). Computational analyses revealed that inhibitors and noninhibitors can be differentiated from each other on the basis of several physicochemical features, including number of hydrogen-bond donors, number of rotatable bonds, and topological polar surface area (TPSA) for hOAT1; and molecular weight, number of hydrogen-bond donors and acceptors, TPSA, partition coefficient (log P(7.4)), and polarizability for hOAT3. Pharmacophore modeling identified two common structural features associated with inhibitors for hOAT1 and hOAT3, viz., an anionic hydrogen-bond acceptor atom, and an aromatic center separated by ∼5.7 Å. Such model provides mechanistic insights for predicting new OAT inhibitors.

  8. Communication: Vibrationally resolved photoelectron spectroscopy of the tetracyanoquinodimethane (TCNQ) anion and accurate determination of the electron affinity of TCNQ.

    PubMed

    Zhu, Guo-Zhu; Wang, Lai-Sheng

    2015-12-14

    Tetracyanoquinodimethane (TCNQ) is widely used as an electron acceptor to form highly conducting organic charge-transfer solids. Surprisingly, the electron affinity (EA) of TCNQ is not well known and has never been directly measured. Here, we report vibrationally resolved photoelectron spectroscopy (PES) of the TCNQ(-) anion produced using electrospray and cooled in a cryogenic ion trap. Photoelectron spectrum taken at 354.7 nm represents the detachment transition from the ground state of TCNQ(-) to that of neutral TCNQ with a short vibrational progression. The EA of TCNQ is measured accurately to be 3.383 ± 0.001 eV (27,289 ± 8 cm(-1)), compared to the 2.8 ± 0.1 eV value known in the literature and measured previously using collisional ionization technique. In addition, six vibrational peaks are observed in the photoelectron spectrum, yielding vibrational frequencies for three totally symmetric modes of TCNQ. Two-photon PES via a bound electronic excited state of TCNQ(-) at 3.100 eV yields a broad low kinetic energy peak due to fast internal conversion to vibrationally excited levels of the anion ground electronic state. The high EA measured for TCNQ underlies its ability as a good electron acceptor.

  9. Use of anions of C{sub 60} as electrogenerated bases

    SciTech Connect

    Niyazymbetov, M.E.; Evans, D.H.

    1995-08-01

    C{sub 60} was reduced in the mixed solvent acetonitrile-toluene (2:3) to form a series of three electrogenerated bases of successively increasing basicity. These were the radical anion, the dianion, and the radical trianion of the fullerene. Cyclic voltammograms indicated that the radical anion was capable of deprotonating the relatively strong C-H acid, ethyl nitroacetate. The weaker acid, diethyl malonate, required the stronger base C{sub 60}{sup 2{minus}} in order to observe deprotonation on the voltammetric time scale. Other weak acids that react with C{sub 60}{sup 2{minus}} include diethyl methylalonate, 2-nitropropane, and n-octanethiol. The anionic electrogenerated bases were used to carry out efficient base-catalyzed synthetic reactions. These included the C{sub 60}{sup {minus}{sm_bullet}}-catalyzed reaction of ethyl nitroacetate with ethyl acrylate and acrylonitrile to form double addition products. The dianion promoted reaction of nitromethane with ethyl acrylate to form a triple addition product in good yield, as well as the reaction of diethyl malonate with acrylonitrile to give a double addition product. In this case it was demonstrated that the fullerene probase may be recycled at least two times. The dianion was also used to catalyze the addition of n-octanethiol to styrene oxide. The reactions of still weaker acids could be promoted by the highly basic C{sub 60}{sup 3{minus}}. These included the addition of pyrrole to acrylonitrile and the Wittig-Horner reaction of diethyl benzylphosphonate with benzaldehyde.

  10. Analysis of Shewanella oneidensis Membrane Protein Expression in Response to Electron Acceptor Availability

    SciTech Connect

    Giometti, Carol S.; Khare, Tripti; Verberkmoes, Nathan; O'Loughlin, Ed; Lindberg, Carl; Thompson, Melissa; Hettich, Robert

    2006-04-05

    Shewanella oneidensis MR-1, a gram negative metal-reducing bacterium, can utilize a large number of electron acceptors. In the natural environment, S. oneidensis utilizes insoluble metal oxides as well as soluble terminal electron acceptors. The purpose of this ERSP project is to identify differentially expressed proteins associated with the membranes of S. oneidensis MR-1 cells grown with different electron acceptors, including insoluble metal oxides. We hypothesize that through the use of surface labeling, subcellular fractionation, and a combination of proteome analysis tools, proteins involved in the reduction of different terminal electron acceptors will be elucidated. We are comparing the protein profiles from cells grown with the soluble electron acceptors oxygen and fumarate and with those from cells grown with the insoluble iron oxides goethite, ferrihydrite and lepidocrocite. Comparison of the cell surface proteins isolated from cells grown with oxygen or anaerobically with fumarate revealed an increase in the abundance of over 25 proteins in anaerobic cells, including agglutination protein and flagellin proteins along with the several hypothetical proteins. In addition, the surface protein composition of cells grown with the insoluble iron oxides varies considerably from the protein composition observed with either soluble electron acceptor as well as between the different insoluble acceptors.

  11. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method.

  12. Synthesis and electrochemical studies of charge-transfer complexes of thiazolidine-2,4-dione with σ and π acceptors

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Kumar, Pradeep; Katyal, Anju; Kalra, Rashmi; Dass, Sujata K.; Prakash, Satya; Chandra, Ramesh

    2010-03-01

    In the present work, we report the synthesis and characterization of novel charge-transfer complexes of thiazolidine-2,4-dione (TZD) with sigma acceptor (iodine) and pi acceptors (chloranil, dichlorodicyanoquinone, picric acid and duraquinone). We also evaluated their thermal and electrochemical properties and we conclude that these complexes are frequency dependent. Charge-transfer complex between thiazolidine-2,4-dione and iodine give best conductivity. In conclusion, complex with sigma acceptors are more conducting than with pi acceptors.

  13. Copper Complexes of Anionic Nitrogen Ligands in the Amidation and Imidation of Aryl Halides

    PubMed Central

    Tye, Jesse W.; Weng, Zhiqiang; Johns, Adam M.; Incarvito, Christopher D.; Hartwig, John F.

    2010-01-01

    Copper(I) imidate and amidate complexes of chelating N,N-donor ligands, which are proposed intermediates in copper-catalyzed amidations of aryl halides, have been synthesized and characterized by X-ray diffraction and detailed solution-phase methods. In some cases, the complexes adopt neutral, three-coordinate trigonal planar structures in the solid state, but in other cases they adopt an ionic form consisting of an L2Cu+ cation and a CuX2− anion. A tetraalkylammonium salt of the CuX2− anion in which X = phthalimidate was also isolated. Conductivity measurements and 1H NMR spectra of mixtures of two complexes all indicate that the complexes exist predominantly in the ionic form in DMSO and DMF solutions. One complex was sufficiently soluble for conductance measurements in less polar solvents and was shown to adopt some degree of the ionic form in THF and predominantly the neutral form in benzene. The complexes containing dative nitrogen ligands reacted with iodoarenes and bromoarenes to form products from C–N coupling, but the ammonium salt of [Cu(phth)2]− did not. Similar selectivities for stoichiometric and catalytic reactions with two different iodoarenes and faster rates for the stoichiometric reactions implied that the isolated amidate and imidate complexes are intermediates in the reactions of amides and imides with haloarenes catalyzed by copper complexes containing dative N,N ligands. These amidates and imidates reacted much more slowly with chloroarenes, including chloroarenes that possess more favorable reduction potentials than some bromoarenes and that are known to undergo fast dissociation of chloride from the chloroarene radical anion. The reaction of o-(allyloxy)iodobenzene with [(phen)2Cu][Cu(pyrr)2] results in formation of the C-N coupled product in high yield and no detectable amount of the 3-methyl-2,3-dihydrobenzofuran or 3-methylene-2,3-dihydrobenzofuran products that would be expected from a reaction that generated free radicals. These

  14. EPR Spin Trapping of an Oxalate-Derived Free Radical in the Oxalate Decarboxylase Reaction

    PubMed Central

    Imaram, Witcha; Saylor, Benjamin T.; Centonze, Christopher P.; Richards, Nigel G. J.; Angerhofer, Alexander

    2011-01-01

    EPR spin trapping experiments on bacterial oxalate decarboxylase from Bacillus subtilis under turn-over conditions are described. The use of doubly 13C-labeled oxalate leads to a characteristic splitting of the observed radical adducts using the spin trap N-tert-butyl-α-phenylnitrone linking them directly to the substrate. The radical was identified as the carbon dioxide radical anion which is a key intermediate in the hypothetical reaction mechanism of both decarboxylase and oxidase activities. X-ray crystallography had identified a flexible loop, SENS161-4, which acts as a lid to the putative active site. Site directed mutagenesis of the hinge amino acids, S161 and T165 was explored and showed increased radical trapping yields compared to the wild type. In particular, T165V shows approximately ten times higher radical yields while at the same time its decarboxylase activity was reduced by about a factor of ten. This mutant lacks a critical H-bond between T165 and R92 resulting in compromised control over its radical chemistry allowing the radical intermediate to leak into the surrounding solution. PMID:21277974

  15. Photochemical synthesis of simple organic free radicals on simulated planetary surfaces - An ESR study

    NASA Technical Reports Server (NTRS)

    Tseng, S.-S.; Chang, S.

    1975-01-01

    Electron spin resonance (ESR) spectroscopy provided evidence for formation of hydroxyl radicals during ultraviolet photolysis (254 nm) at -170 C of H2O adsorbed on silica gel or of silica gel alone. The carboxyl radical was observed when CO or CO2 or a mixture of CO and CO2 adsorbed on silica gel at -170 C was irradiated. The ESR signals of these radicals slowly disappeared when the irradiated samples were warmed to room temperature. However, reirradiation of CO or CO2, or the mixture CO and CO2 on silica gel at room temperature then produced a new species, the carbon dioxide anion radical, which slowly decayed and was identical with that produced by direct photolysis of formic acid adsorbed on silica gel. The primary photochemical process may involve formation of hydrogen and hydroxyl radicals. Subsequent reactions of these radicals with adsorbed CO or CO2 or both yield carboxyl radicals, CO2H, the precursors of formic acid. These results confirm the formation of formic acid under simulated Martian conditions and provide a mechanistic basis for gauging the potential importance of gas-solid photochemistry for chemical evolution on other extraterrestrial bodies, on the primitive earth, and on dust grains in the interstellar medium.

  16. Recent developments in copper-catalyzed radical alkylations of electron-rich π-systems

    PubMed Central

    2015-01-01

    Summary Recently, a number of papers have emerged demonstrating copper-catalyzed alkylation reactions of electron-rich small molecules. The processes are generally thought to be related to long established atom-transfer radical reactions. However, unlike classical reactions, these new transformations lead to simple alkylation products. This short review will highlight recent advances in alkylations of nitronate anions, alkenes and alkynes, as well as discuss current mechanistic understanding of these novel reactions. PMID:26734076

  17. Natural dibenzoxazepinones from leaves of Carex distachya: Structural elucidation and radical scavenging activity.

    PubMed

    Fiorentino, Antonio; D'Abrosca, Brigida; Pacifico, Severina; Cefarelli, Giuseppe; Uzzo, Piera; Monaco, Pietro

    2007-02-01

    Two new dibenzoxazepinones have been isolated from the leaves of Carex distachya, an herbaceous plant growing in the Mediterranean area. The structures have been elucidated on the basis of their spectroscopic properties. Bidimensional NMR (DQ-COSY, TOCSY, NOESY, ROESY, HSQC, and HMBC) furnished important data useful for the characterization of the molecules. The compounds have been assayed, for the antioxidant activity, by measuring its capacity to scavenge the DPPH, the superoxide anion, and nitric oxide radicals.

  18. Anionic surfactant with hydrophobic and hydrophilic chains for nanoparticle dispersion and shape memory polymer nanocomposites.

    PubMed

    Iijima, Motoyuki; Kobayakawa, Murino; Yamazaki, Miwa; Ohta, Yasuhiro; Kamiya, Hidehiro

    2009-11-18

    An anionic surfactant comprising a hydrophilic poly(ethylene glycol) (PEG) chain, hydrophobic alkyl chain, and polymerizable vinyl group was synthesized as a capping agent of nanoparticles. TiO(2) nanoparticles modified by this surfactant were completely dispersible in various organic solvents with a wide range of polarities, such as nitriles, alcohols, ketones, and acetates. Furthermore, these particles were found to be dispersible in various polymers with different properties, such as thermosetting epoxy resins and radical polymerized poly(methylmethacrylate) (PMMA). A polymer composite of surface-modified TiO(2) nanoparticles in epoxy resins prepared by using the developed surfactant also possessed temperature-induced shape memory properties.

  19. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-12-11

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  20. Isatinphenylsemicarbazones as efficient colorimetric sensors for fluoride and acetate anions - anions induce tautomerism.

    PubMed

    Jakusová, Klaudia; Donovalová, Jana; Cigáň, Marek; Gáplovský, Martin; Garaj, Vladimír; Gáplovský, Anton

    2014-04-05

    The anion induced tautomerism of isatin-3-4-phenyl(semicarbazone) derivatives is studied herein. The interaction of F(-), AcO(-), H2PO4(-), Br(-) or HSO4(-) anions with E and Z isomers of isatin-3-4-phenyl(semicarbazone) and N-methylisatin-3-4-phenyl(semicarbazone) as sensors influences the tautomeric equilibrium of these sensors in the liquid phase. This tautomeric equilibrium is affected by (1) the inter- and intra-molecular interactions' modulation of isatinphenylsemicarbazone molecules due to the anion induced change in the solvation shell of receptor molecules and (2) the sensor-anion interaction with the urea hydrogens. The acid-base properties of anions and the difference in sensor structure influence the equilibrium ratio of the individual tautomeric forms. Here, the tautomeric equilibrium changes were indicated by "naked-eye" experiment, UV-VIS spectral and (1)H NMR titration, resulting in confirmation that appropriate selection of experimental conditions leads to a high degree of sensor selectivity for some investigated anions. Sensors' E and Z isomers differ in sensitivity, selectivity and sensing mechanism. Detection of F(-) or CH3COO(-) anions at high weakly basic anions' excess is possible.

  1. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, Kristen

    2004-12-01

    This project have focuses on the basic chemical aspects of anion receptor design of functional pH independent systems, with the ultimate goal of targeting the selective binding of sulfate, as well as design of separations strategies for selective and efficient removal of targeted anions. Key findings include: (1) the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate anion from acidic, nitrate-containing aqueous media. Areas probed during the last funding period include: the design, synthesis, and physical and structural characterization of receptors and investigation of anion and dual ion pair extraction using lipophilic amide receptors for anion binding. A new collaboration has been added to the project in addition to the one with Dr. Bruce Moyer at Oak Ridge National Laboratory, with Professor Jonathan Sessler at the University of Texas at Austin.

  2. Optical spectroscopy of single beryllium acceptors in GaAs/AlGaAs quantum well

    NASA Astrophysics Data System (ADS)

    Petrov, P. V.; Kokurin, I. A.; Klimko, G. V.; Ivanov, S. V.; Ivánov, Yu. L.; Koenraad, P. M.; Silov, A. Yu.; Averkiev, N. S.

    2016-09-01

    We carry out microphotoluminescence measurements of an acceptor-bound exciton (A0X ) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into account a quantum well (QW) confinement, an electron-hole and hole-hole exchange interaction. By means of fitting the measured data with the model we are able to study the fine structure of individual acceptors inside the QW. The good agreement between our experiments and the model indicates that we observe single acceptors in a pure two-dimensional environment whose states are unstrained in the QW plain.

  3. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  4. Free radicals and male reproduction.

    PubMed

    Agarwal, Ashok; Allamaneni, Shyam S R

    2011-03-01

    Male factor accounts for almost 50% cases of infertility. The exact mechanism of sperm dysfunction is not known in many cases. Extensive research in the last decade has led to the identification of free radicals (reactive oxygen species) as mediators of sperm dysfunction in both specific diagnoses and idiopathic cases of male infertility. Elevated levels of reactive oxygen species are seen in up to 30-80% of men with male infertility. The role of free radicals has been studied extensively in the process of human reproduction. We know now that a certain level of free radicals is necessary for normal sperm function, whereas an excessive level of free radicals can cause detrimental effect on sperm function and subsequent fertilisation and offspring health. Oxidative stress develops when there is an imbalance between generation of free radicals and scavenging capacity of anti-oxidants in reproductive tract. Oxidative stress has been shown to affect both standard semen parameters and fertilising capacity. In addition, high levels of free radicals have been associated with lack of or poor fertility outcome after natural conception or assisted reproduction. Diagnostic techniques to quantify free radicals in infertile patients can assist physicians treating patients with infertility to plan for proper treatment strategies. In vivo anti-oxidants can be used against oxidative stress in male reproductive tract. Supplementation of in vitro anti-oxidants can help prevent the oxidative stress during sperm preparation techniques in assisted reproduction.

  5. Putting anion-π interactions into perspective.

    PubMed

    Frontera, Antonio; Gamez, Patrick; Mascal, Mark; Mooibroek, Tiddo J; Reedijk, Jan

    2011-10-04

    Supramolecular chemistry is a field of scientific exploration that probes the relationship between molecular structure and function. It is the chemistry of the noncovalent bond, which forms the basis of highly specific recognition, transport, and regulation events that actuate biological processes. The classic design principles of supramolecular chemistry include strong, directional interactions like hydrogen bonding, halogen bonding, and cation-π complexation, as well as less directional forces like ion pairing, π-π, solvophobic, and van der Waals potentials. In recent years, the anion-π interaction (an attractive force between an electron-deficient aromatic π system and an anion) has been recognized as a hitherto unexplored noncovalent bond, the nature of which has been interpreted through both experimental and theoretical investigations. The design of selective anion receptors and channels based on this interaction represent important advances in the field of supramolecular chemistry. The objectives of this Review are 1) to discuss current thinking on the nature of this interaction, 2) to survey key experimental work in which anion-π bonding is demonstrated, and 3) to provide insights into the directional nature of anion-π contact in X-ray crystal structures.

  6. Infrared spectroscopy of anionic hydrated fluorobenzenes

    NASA Astrophysics Data System (ADS)

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-09-01

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C6F6-•H2O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules.

  7. [Impact of biologically important anions on reactive oxygen species formation in water under the effect of non-ionizing physical agents].

    PubMed

    Gudkov, S V; Ivanov, V E; Karp, O É; Chernikov, A V; Belosludtsev, K N; Bobylev, A G; Astashev, M E; Gapeev, A B; Bruskov, V I

    2014-01-01

    The influence of biologically relevant anions (succinate, acetate, citrate, chloride, bicarbonate, hydroorthophosphate, dihydroorthophosphate, nitrite, nitrate) on the formation of hydrogen peroxide and hydroxyl radicals in water was studied under the effect of non-ionizing radiation: heat, laser light with a wavelength of 632.8 nm, corresponding to the maximum absorption of molecular oxygen, and electromagnetic radiation of extremely high frequencies. It has been established that various anions may both inhibit the formation of reactive oxygen species and increase it. Bicarbonate and sulfate anions included in the biological fluids' and medicinal mineral waters have significant, but opposite effects on reactive oxygen species production. Different molecular mechanisms of reactive oxygen species formation are considered under the action of the investigated physical factors involving these anions, which may influence the biological processes by signal-regulatory manner and provide a healing effect in physical therapy.

  8. HOCCO versus OCCO: Comparative spectroscopy of the radical and diradical reactive intermediates

    NASA Astrophysics Data System (ADS)

    Dixon, Andrew R.; Xue, Tian; Sanov, Andrei

    2016-06-01

    We present a photoelectron imaging study of three glyoxal derivatives: the ethylenedione anion (OCCO-), ethynediolide (HOCCO-), and glyoxalide (OHCCO-). These anions provide access to the corresponding neutral reactive intermediates: the OCCO diradical and the HOCCO and OHCCO radicals. Contrasting the straightforward deprotonation pathway in the reaction of O- with glyoxal (OHCCHO), which is expected to yield glyoxalide (OHCCO-), OHCCO- is shown to be a minor product, with HOCCO- being the dominant observed isomer of the m/z = 57 anion. In the HOCCO/OHCCO anion photoelectron spectrum, we identify several electronic states of this radical system and determine the adiabatic electron affinity of HOCCO as 1.763(6) eV. This result is compared to the corresponding 1.936(8) eV value for ethylenedione (OCCO), reported in our recent study of this transient diradical [A. R. Dixon, T. Xue, and A. Sanov, Angew. Chem., Int. Ed. 54, 8764-8767 (2015)]. Based on the comparison of the HOCCO-/OHCCO- and OCCO- photoelectron spectra, we discuss the contrasting effects of the hydrogen connected to the carbon framework or the terminal oxygen in OCCO.

  9. Cytotoxic mechanisms of hydrosulfide anion and cyanide anion in primary rat hepatocyte cultures.

    PubMed

    Thompson, Rodney W; Valentine, Holly L; Valentine, William M

    2003-06-30

    Hydrogen sulfide and hydrogen cyanide are known to compromise mitochondrial respiration through inhibition of cytochrome c oxidase and this is generally considered to be their primary mechanism of toxicity. Experimental studies and the efficiency of current treatment protocols suggest that H(2)S may exert adverse physiological effects through additional mechanisms. To evaluate the role of alternative mechanisms in H(2)S toxicity, the relative contributions of electron transport inhibition, uncoupling of mitochondrial respiration, and opening of the mitochondrial permeability transition pore (MPTP) to hydrosulfide and cyanide anion cytotoxicity in primary hepatocyte cultures were examined. Supplementation of hepatocytes with the glycolytic substrate, fructose, rescued hepatocytes from cyanide anion induced toxicity, whereas fructose supplementation increased hydrosulfide anion toxicity suggesting that hydrosulfide anion may compromise glycolysis in hepatocytes. Although inhibitors of the MPTP opening were protective for hydrosulfide anion, they had no effect on cyanide anion toxicity, consistent with an involvement of the permeability transition pore in hydrosulfide anion toxicity but not cyanide anion toxicity. Exposure of isolated rat liver mitochondria to hydrosulfide did not result in large amplitude swelling suggesting that if H(2)S induces the permeability transition it does so indirectly through a mechanism requiring other cellular components. Hydrosulfide anion did not appear to be an uncoupler of mitochondrial respiration in hepatocytes based upon the inability of oligomycin and fructose to protect hepatocytes from hydrosulfide anion toxicity. These findings support mechanisms additional to inhibition of cytochrome c oxidase in hydrogen sulfide toxicity. Further investigations are required to assess the role of the permeability transition in H(2)S toxicity, determine whether similar affects occur in other cell types or in vivo and evaluate whether this may

  10. Vibrational spectroscopy of microhydrated conjugate base anions.

    PubMed

    Asmis, Knut R; Neumark, Daniel M

    2012-01-17

    Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface speciation and reactivity of aerosols, which are a central component of atmospheric and oceanic chemical cycles. In this Account, as a means of studying conjugate-base anions in water, we describe infrared multiple-photon dissociation spectroscopy on clusters in which the sulfate, nitrate, bicarbonate, and suberate anions are hydrated by a known number of water molecules. This spectral technique, used over the range of 550-1800 cm(-1), serves as a structural probe of these clusters. The experiments follow how the solvent network around the conjugate-base anion evolves, one water molecule at a time. We make structural assignments by comparing the experimental infrared spectra to those obtained from electronic structure calculations. Our results show how changes in anion structure, symmetry, and charge state have a profound effect on the structure of the solvent network. Conversely, they indicate how hydration can markedly affect the structure of the anion core in a microhydrated cluster. Some key results include the following. The first few water molecules bind to the anion terminal oxo groups in a bridging fashion, forming two anion-water hydrogen bonds. Each oxo group can form up to three hydrogen bonds; one structural result, for example, is the highly symmetric, fully coordinated SO(4)(2-)(H(2)O)(6) cluster, which only contains bridging water molecules. Adding more water molecules results in the formation of a solvent network comprising water-water hydrogen bonding in addition to hydrogen bonding to the anion. For the nitrate, bicarbonate, and suberate anions, fewer bridging sites are available, namely, three, two, and one (per carboxylate group), respectively. As a result, an earlier onset of water

  11. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors

    EPA Science Inventory

    Lab- and pilot-scale simultaneous nitrification, denitrification and phosphorus removal-sequencing batch reactors were operated under cyclic anaerobic and micro-aerobic conditions. The use of oxygen, nitrite, and nitrate as electron acceptors by Candidatus Accumulibacter phosphat...

  12. Selection of the acceptor medium in in vitro measurements of drug release from dermatological ointments.

    PubMed

    Gloor, M; Shabafrouz, H

    1983-01-01

    Comparative measurements of in vitro agent release using hydrophilic, intermediate, and lipophilic acceptor phases and in vivo measurements of the blanching effect with triamcinolone acetonide are reported. White petrolatum, wool alcohols ointment, and polyethylene glycol ointment served as donator phases. The results demonstrate that the lipophilic acceptor phase (isopropyl palmitate) is most representative for the in vivo acceptor phase. Conclusions cannot be drawn regarding in vivo effectiveness from measurements of agent release to the hydrophilic (phosphate buffer, pH 6) and intermediate (n-octanol) acceptor phases. In vitro measurements of agent release have a screening character and must usually be supplemented by very elaborate penetration models of the human skin for a definitive evaluation of an ointment.

  13. Reversal-bounded multipushdown machines. [Turing acceptors for context free languages

    NASA Technical Reports Server (NTRS)

    Baker, B. S.; Book, R. V.

    1974-01-01

    Several representations of the recursively enumerable (r.e.) sets are presented. The first states that every r.e. set is the homomorphic image of the intersection of two linear context-free languages. The second states that every r.e. set is accepted by an on-line Turing acceptor with two pushdown stores such that in every computation, each pushdown store can make at most one reversal (that is, one change from 'pushing' to 'popping'). It is shown that this automata theoretic representation cannot be strengthened by restricting the acceptors to be deterministic multitape, nondeterministic one-tape, or nondeterministic multicounter acceptors. This provides evidence that reversal bounds are not a natural measure of computational complexity for multitape Turing acceptors.

  14. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications.

    PubMed

    Stalder, Romain; Xie, Dongping; Islam, Ashraful; Han, Liyuan; Reynolds, John R; Schanze, Kirk S

    2014-06-11

    We report on a sexithienyl and two donor-acceptor-donor oligothiophenes, employing benzothiadiazole and isoindigo as electron-acceptors, each functionalized with a phosphonic acid group for anchoring onto TiO2 substrates as light-harvesting molecules for dye sensitized solar cells (DSSCs). These dyes absorb light to wavelengths as long as 700 nm, as their optical HOMO/LUMO energy gaps are reduced from 2.40 to 1.77 eV with increasing acceptor strength. The oligomers were adsorbed onto mesoporous TiO2 films on fluorine doped tin oxide (FTO)/glass substrates and incorporated into DSSCs, which show AM1.5 power conversion efficiencies (PCEs) ranging between 2.6% and 6.4%. This work demonstrates that the donor-acceptor-donor (D-A-D) molecular structures coupled to phosphonic acid anchoring groups, which have not been used in DSSCs, can lead to high PCEs.

  15. Interface-induced heavy-hole/light-hole splitting of acceptors in silicon

    SciTech Connect

    Mol, J. A.; Salfi, J.; Simmons, M. Y.; Rogge, S.; Rahman, R.; Hsueh, Y.; Klimeck, G.; Miwa, J. A.

    2015-05-18

    The energy spectrum of spin-orbit coupled states of individual sub-surface boron acceptor dopants in silicon have been investigated using scanning tunneling spectroscopy at cryogenic temperatures. The spatially resolved tunnel spectra show two resonances, which we ascribe to the heavy- and light-hole Kramers doublets. This type of broken degeneracy has recently been argued to be advantageous for the lifetime of acceptor-based qubits [R. Ruskov and C. Tahan, Phys. Rev. B 88, 064308 (2013)]. The depth dependent energy splitting between the heavy- and light-hole Kramers doublets is consistent with tight binding calculations, and is in excess of 1 meV for all acceptors within the experimentally accessible depth range (<2 nm from the surface). These results will aid the development of tunable acceptor-based qubits in silicon with long coherence times and the possibility for electrical manipulation.

  16. Preparation and spectroscopic studies on charge-transfer complexes of 2-hydroxypyridine with electron acceptors

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.

    2013-07-01

    The CT-interactions of electron acceptors such as iodine (I2), chloranilic acid (H2CA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) with 2-hydroxypyridine (HPyO) have been investigated in the defined solvent. The data indicate the formation of CT-complexes with the general formula [(HPyO)(acceptor)]. The 1:1 stoichiometry of the (HPyO)-acceptors were based on elemental analysis, IR spectra and thermogravimetric analysis of the solid CT-complexes along with the photometric titration measurements for the reactions. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes are discussed.

  17. Preparation and spectroscopic studies on charge-transfer complexes of famciclovir drug with different electron acceptors

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.; Teleb, Said M.; Nour, El-Metwally

    2012-09-01

    The CT-interaction of electron acceptors such as chloranilic acid (H2CA), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and and 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) with the antiviral drug famciclovir (FCV) have been investigated spectrophotometrically in the defined solvent. The data indicate the formation of CT-complexes with the general formula [(FCV)(acceptor)]. The 1:1 stoichiometry of the (FCV)-acceptors were based on elemental analysis, IR spectra and thermogravimetric analysis of the solid CT-complexes along with the photometric titration measurements for the reactions. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptor. Factors affecting the CT-processes such as redox potentials and steric hinderance of reactants are discussed.

  18. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.

    PubMed

    Wu, Chao; Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Wen-Wei; Li, Dao-Bo; Yu, Han-Qing

    2013-05-01

    Shewanella oneidensis MR-1 is an extensively studied dissimilatory metal-reducing bacterium with a great potential for bioremediation and electricity generation. It secretes flavins as electron shuttles which play an important role in extracellular electron transfer. However, the influence of various environmental factors on the secretion of flavins is largely unknown. Here, the effects of electron acceptors, including fumarate, ferrihydrite, Fe(III)-nitrilotriacetic acid (NTA), nitrate and trimethylamine oxide (TMAO), on the secretion of flavins were investigated. The level of riboflavin and riboflavin-5'-phosphate (FMN) secreted by S. oneidensis MR-1 varied considerably with different electron acceptors. While nitrate and ferrihydrite suppressed the secretion of flavins in relative to fumarate, Fe(III)-NTA and TMAO promoted such a secretion and greatly enhanced ferrihydrite reduction and electricity generation. This work clearly demonstrates that electron acceptors could considerably affect the secretion of flavins and consequent microbial EET. Such impacts of electron acceptors in the environment deserve more attention.

  19. Time-resolved spectroscopy of the fluorescence quenching of a donor — acceptor pair by halothane

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Draxler, S.; Lippitsch, M. E.

    1992-04-01

    Donor (anthracene) sensitized acceptor (perylene) fluorescence is quenched more efficiently by halothane than is intrinsic perylene fluorescence. The underlying process of dynamic fluorescence quenching is investigated by time-resolved fluorescence spectroscopy.

  20. Tuning the Ground State Symmetry of Acetylenyl Radicals

    PubMed Central

    2015-01-01

    The lowest excited state of the acetylenyl radical, HCC, is a 2Π state, only 0.46 eV above the ground state, 2Σ+. The promotion of an electron from a π bond pair to a singly occupied σ hybrid orbital is all that is involved, and so we set out to tune those orbital energies, and with them the relative energetics of 2Π and 2Σ+ states. A strategy of varying ligand electronegativity, employed in a previous study on substituted carbynes, RC, was useful, but proved more difficult to apply for substituted acetylenyl radicals, RCC. However, π-donor/acceptor substitution is effective in modifying the state energies. We are able to design molecules with 2Π ground states (NaOCC, H2NCC (2A″), HCSi, FCSi, etc.) and vary the 2Σ+–2Π energy gap over a 4 eV range. We find an inconsistency between bond order and bond dissociation energy measures of the bond strength in the Si-containing molecules; we provide an explanation through an analysis of the relevant potential energy curves. PMID:27162981