Science.gov

Sample records for acceptor substrate binding

  1. Mode of binding of methyl acceptor substrates to the adrenaline-synthesizing enzyme phenylethanolamine N-methyltransferase: implications for catalysis.

    PubMed

    Gee, Christine L; Tyndall, Joel D A; Grunewald, Gary L; Wu, Qian; McLeish, Michael J; Martin, Jennifer L

    2005-12-27

    Here we report three crystal structure complexes of human phenylethanolamine N-methyltransferase (PNMT), one bound with a substrate that incorporates a flexible ethanolamine side chain (p-octopamine), a second bound with a semirigid analogue substrate [cis-(1R,2S)-2-amino-1-tetralol, cis-(1R,2S)-AT], and a third with trans-(1S,2S)-2-amino-1-tetralol [trans-(1S,2S)-AT] that acts as an inhibitor of PNMT rather than a substrate. A water-mediated interaction between the critical beta-hydroxyl of the flexible ethanolamine group of p-octopamine and an acidic residue, Asp267, is likely to play a key role in positioning the side chain correctly for methylation to occur at the amine. A second interaction with Glu219 may play a lesser role. Catalysis likely occurs via deprotonation of the amine through the action of Glu185; mutation of this residue significantly reduced the kcat without affecting the Km. The mode of binding of cis-(1R,2S)-AT supports the notion that this substrate is a conformationally restrained analogue of flexible PNMT substrates, in that it forms interactions with the enzyme similar to those observed for p-octopamine. By contrast, trans-(1S,2S)-AT, an inhibitor rather than a substrate, binds in an orientation that is flipped by 180 degrees compared with cis-(1R,2S)-AT. A consequence of this flipped binding mode is that the interactions between the hydroxyl and Asp267 and Glu219 are lost. However, the amines of inhibitor trans-(1S,2S)-AT and substrate cis-(1R,2S)-AT are both within methyl transfer distance of the cofactor. These results suggest that PNMT catalyzes transfer of methyl to ligand amines only when "anchor" interactions, such as those identified for the beta-hydroxyls of p-octopamine and cis-AT, are present.

  2. Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.

    PubMed

    Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd

    2013-08-16

    α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.

  3. Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea.

    PubMed

    Hiromoto, Takeshi; Honjo, Eijiro; Noda, Naonobu; Tamada, Taro; Kazuma, Kohei; Suzuki, Masahiko; Blaber, Michael; Kuroki, Ryota

    2015-03-01

    UDP-glucose: anthocyanidin 3-O-glucosyltransferase (UGT78K6) from Clitoria ternatea catalyzes the transfer of glucose from UDP-glucose to anthocyanidins such as delphinidin. After the acylation of the 3-O-glucosyl residue, the 3'- and 5'-hydroxyl groups of the product are further glucosylated by a glucosyltransferase in the biosynthesis of ternatins, which are anthocyanin pigments. To understand the acceptor-recognition scheme of UGT78K6, the crystal structure of UGT78K6 and its complex forms with anthocyanidin delphinidin and petunidin, and flavonol kaempferol were determined to resolutions of 1.85 Å, 2.55 Å, 2.70 Å, and 1.75 Å, respectively. The enzyme recognition of unstable anthocyanidin aglycones was initially observed in this structural determination. The anthocyanidin- and flavonol-acceptor binding details are almost identical in each complex structure, although the glucosylation activities against each acceptor were significantly different. The 3-hydroxyl groups of the acceptor substrates were located at hydrogen-bonding distances to the Nε2 atom of the His17 catalytic residue, supporting a role for glucosyl transfer to the 3-hydroxyl groups of anthocyanidins and flavonols. However, the molecular orientations of these three acceptors are different from those of the known flavonoid glycosyltransferases, VvGT1 and UGT78G1. The acceptor substrates in UGT78K6 are reversely bound to its binding site by a 180° rotation about the O1-O3 axis of the flavonoid backbones observed in VvGT1 and UGT78G1; consequently, the 5- and 7-hydroxyl groups are protected from glucosylation. These substrate recognition schemes are useful to understand the unique reaction mechanism of UGT78K6 for the ternatin biosynthesis, and suggest the potential for controlled synthesis of natural pigments.

  4. Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea

    PubMed Central

    Hiromoto, Takeshi; Honjo, Eijiro; Noda, Naonobu; Tamada, Taro; Kazuma, Kohei; Suzuki, Masahiko; Blaber, Michael; Kuroki, Ryota

    2015-01-01

    UDP-glucose: anthocyanidin 3-O-glucosyltransferase (UGT78K6) from Clitoria ternatea catalyzes the transfer of glucose from UDP-glucose to anthocyanidins such as delphinidin. After the acylation of the 3-O-glucosyl residue, the 3′- and 5′-hydroxyl groups of the product are further glucosylated by a glucosyltransferase in the biosynthesis of ternatins, which are anthocyanin pigments. To understand the acceptor-recognition scheme of UGT78K6, the crystal structure of UGT78K6 and its complex forms with anthocyanidin delphinidin and petunidin, and flavonol kaempferol were determined to resolutions of 1.85 Å, 2.55 Å, 2.70 Å, and 1.75 Å, respectively. The enzyme recognition of unstable anthocyanidin aglycones was initially observed in this structural determination. The anthocyanidin- and flavonol-acceptor binding details are almost identical in each complex structure, although the glucosylation activities against each acceptor were significantly different. The 3-hydroxyl groups of the acceptor substrates were located at hydrogen-bonding distances to the Nε2 atom of the His17 catalytic residue, supporting a role for glucosyl transfer to the 3-hydroxyl groups of anthocyanidins and flavonols. However, the molecular orientations of these three acceptors are different from those of the known flavonoid glycosyltransferases, VvGT1 and UGT78G1. The acceptor substrates in UGT78K6 are reversely bound to its binding site by a 180° rotation about the O1–O3 axis of the flavonoid backbones observed in VvGT1 and UGT78G1; consequently, the 5- and 7-hydroxyl groups are protected from glucosylation. These substrate recognition schemes are useful to understand the unique reaction mechanism of UGT78K6 for the ternatin biosynthesis, and suggest the potential for controlled synthesis of natural pigments. PMID:25556637

  5. Crystal Structures of a Poplar Xyloglucan Endotransglycosylase Reveal Details of Transglycosylation Acceptor Binding

    PubMed Central

    Johansson, Patrik; Brumer, Harry; Baumann, Martin J.; Kallas, Åsa M.; Henriksson, Hongbin; Denman, Stuart E.; Teeri, Tuula T.; Jones, T. Alwyn

    2004-01-01

    Xyloglucan endotransglycosylases (XETs) cleave and religate xyloglucan polymers in plant cell walls via a transglycosylation mechanism. Thus, XET is a key enzyme in all plant processes that require cell wall remodeling. To provide a basis for detailed structure–function studies, the crystal structure of Populus tremula x tremuloides XET16A (PttXET16A), heterologously expressed in Pichia pastoris, has been determined at 1.8-Å resolution. Even though the overall structure of PttXET16A is a curved β-sandwich similar to other enzymes in the glycoside hydrolase family GH16, parts of its substrate binding cleft are more reminiscent of the distantly related family GH7. In addition, XET has a C-terminal extension that packs against the conserved core, providing an additional β-strand and a short α-helix. The structure of XET in complex with a xyloglucan nonasaccharide, XLLG, reveals a very favorable acceptor binding site, which is a necessary but not sufficient prerequisite for transglycosylation. Biochemical data imply that the enzyme requires sugar residues in both acceptor and donor sites to properly orient the glycosidic bond relative to the catalytic residues. PMID:15020748

  6. Kinetic mechanism and energetics of binding of phosphoryl group acceptors to Mycobacterium tuberculosis cytidine monophosphate kinase.

    PubMed

    Jaskulski, Léia; Rosado, Leonardo A; Rostirolla, Diana C; Timmers, Luis F S M; de Souza, Osmar N; Santos, Diogenes S; Basso, Luiz A

    2013-08-01

    Cytidine monophosphate kinase from Mycobacterium tuberculosis (MtCMK) likely plays a role in supplying precursors for nucleic acid synthesis. MtCMK catalyzes the ATP-dependent phosphoryl group transfer preferentially to CMP and dCMP. Initial velocity studies and Isothermal titration calorimetry (ITC) measurements showed that MtCMK follows a random-order mechanism of substrate (CMP and ATP) binding, and an ordered mechanism for product release, in which ADP is released first followed by CDP. The thermodynamic signatures of CMP and CDP binding to MtCMK showed favorable enthalpy and unfavorable entropy, and ATP binding was characterized by favorable changes in enthalpy and entropy. The contribution of linked protonation events to the energetics of MtCMK:phosphoryl group acceptor binary complex formation suggested a net gain of protons. Values for the pKa of a likely chemical group involved in proton exchange and for the intrinsic binding enthalpy were calculated. The Asp187 side chain of MtCMK is suggested as the likely candidate for the protonation event. Data on thermodynamics of binary complex formation were collected to evaluate the contribution of 2'-OH group to intermolecular interactions. The data are discussed in light of functional and structural comparisons between CMP/dCMP kinases and UMP/CMP ones.

  7. Binding characteristics of homogeneous molecularly imprinted polymers for acyclovir using an (acceptor-donor-donor)-(donor-acceptor-acceptor) hydrogen-bond strategy, and analytical applications for serum samples.

    PubMed

    Wu, Suqin; Tan, Lei; Wang, Ganquan; Peng, Guiming; Kang, Chengcheng; Tang, Youwen

    2013-04-12

    This paper demonstrates a novel approach to assembling homogeneous molecularly imprinted polymers (MIPs) based on mimicking multiple hydrogen bonds between nucleotide bases by preparing acyclovir (ACV) as a template and using coatings grafted on silica supports. (1)H NMR studies confirmed the AAD-DDA (A for acceptor, D for donor) hydrogen-bond array between template and functional monomer, while the resultant monodisperse molecularly imprinted microspheres (MIMs) were evaluated using a binding experiment, high performance liquid chromatography (HPLC), and solid phase extraction. The Langmuir isothermal model and the Langmuir-Freundlich isothermal model suggest that ACV-MIMs have more homogeneous binding sites than MIPs prepared through normal imprinting. In contrast to previous MIP-HPLC columns, there were no apparent tailings for the ACV peaks, and ACV-MIMs had excellent specific binding properties with a Ka peak of 3.44 × 10(5)M(-1). A complete baseline separation is obtained for ACV and structurally similar compounds. This work also successfully used MIMs as a specific sorbent for capturing ACV from serum samples. The detection limit and mean recovery of ACV was 1.8 ng/mL(-1) and 95.6%, respectively, for molecularly imprinted solid phase extraction coupled with HPLC. To our knowledge, this was the first example of MIPs using AAD-DDA hydrogen bonds.

  8. Ligand-bound Structures and Site-directed Mutagenesis Identify the Acceptor and Secondary Binding Sites of Streptomyces coelicolor Maltosyltransferase GlgE*

    PubMed Central

    Syson, Karl; Stevenson, Clare E. M.; Miah, Farzana; Barclay, J. Elaine; Tang, Minhong; Gorelik, Andrii; Rashid, Abdul M.; Lawson, David M.; Bornemann, Stephen

    2016-01-01

    GlgE is a maltosyltransferase involved in α-glucan biosynthesis in bacteria that has been genetically validated as a target for tuberculosis therapies. Crystals of the Mycobacterium tuberculosis enzyme diffract at low resolution so most structural studies have been with the very similar Streptomyces coelicolor GlgE isoform 1. Although the donor binding site for α-maltose 1-phosphate had been previously structurally defined, the acceptor site had not. Using mutagenesis, kinetics, and protein crystallography of the S. coelicolor enzyme, we have now identified the +1 to +6 subsites of the acceptor/product, which overlap with the known cyclodextrin binding site. The sugar residues in the acceptor subsites +1 to +5 are oriented such that they disfavor the binding of malto-oligosaccharides that bear branches at their 6-positions, consistent with the known acceptor chain specificity of GlgE. A secondary binding site remote from the catalytic center was identified that is distinct from one reported for the M. tuberculosis enzyme. This new site is capable of binding a branched α-glucan and is most likely involved in guiding acceptors toward the donor site because its disruption kinetically compromises the ability of GlgE to extend polymeric substrates. However, disruption of this site, which is conserved in the Streptomyces venezuelae GlgE enzyme, did not affect the growth of S. venezuelae or the structure of the polymeric product. The acceptor subsites +1 to +4 in the S. coelicolor enzyme are well conserved in the M. tuberculosis enzyme so their identification could help inform the design of inhibitors with therapeutic potential. PMID:27531751

  9. Substrate binding to mammalian 15-lipoxygenase

    NASA Astrophysics Data System (ADS)

    Toledo, Lea; Masgrau, Laura; Lluch, José M.; González-Lafont, Àngels

    2011-09-01

    Lipoxygenases (LOs) are implicated in the regulation of metabolic processes and in several human diseases. Revealing their exact role is hindered by an incomplete understanding of their activity, including substrate specificity and substrate alignment in the active site. Recently, it has been proposed that the change in substrate specificity for arachidonic acid (AA) or linoleic acid (LA) could be part of an auto-regulatory mechanism related to cancer grow. Kinetic differences between reactions of 15-hLO with AA and LA have also led to the suggestion that the two substrates could present mechanistic differences. In the absence of a crystal structure for the substrate:15-LO complex, here we present an atomic-level study of catalytically competent binding modes for LA to rabbit 15-LO (15-rLO-1) and compare the results to our previous work on AA. Docking calculations, molecular dynamics simulations, re-docking and cross-docking calculations are all used to analyze the differences and similarities between the binding modes of the two substrates. Interestingly, LA seems to adapt more easily to the enzyme structure and differs from AA on some dynamical aspects that could introduce kinetic differences, as observed experimentally. Still, our study concludes that, despite the different chain lengths and number of insaturations between these two physiological substrates of 15-rLO-1, the enzyme seems to catalyze their hydroperoxidation by binding them with a common binding mode that leads to similar catalytically competent complexes.

  10. Stimulation of the ATPase activity of rat brain protein kinase C by phospho acceptor substrates of the enzyme.

    PubMed

    O'Brian, C A; Ward, N E

    1991-03-05

    We recently reported that autophosphorylated rat brain protein kinase C (PKC) catalyzes a Ca2(+)- and phosphatidylserine- (PS-) dependent ATPase reaction. The Ca2(+)- and PS-dependent ATPase and histone kinase reactions of PKC each had a Km app(ATP) of 6 microM. Remarkably, the catalytic fragment of PKC lacked detectable ATPase activity. In this paper, we show that subsaturating concentrations of protein substrates accelerate the ATPase reaction catalyzed by PKC and that protein and peptide substrates of PKC induce ATPase catalysis by the catalytic fragment. At subsaturating concentrations, histone III-S and protamine sulfate each accelerated the ATPase activity of PKC in the presence of Ca2+ and PS by as much as 1.5-fold. At saturating concentrations, the protein substrates were inhibitory. Poly(L-lysine) failed to accelerate the ATPase activity, indicating that the acceleration observed with histone III-S and protamine sulfate was not simply a result of their gross physical properties. Furthermore, histone III-S induced the ATPase activity of the catalytic fragment of PKC, at both subsaturating and saturating histone concentrations. The induction of ATPase activity was also elicited by the peptide substrate Arg-Arg-Lys-Ala-Ser-Gly-Pro-Pro-Val, when the peptide was present at concentrations near its Km app. The induction of the ATPase activity by the nonapeptide provides strong evidence that the binding of phospho acceptor substrates to the active site of PKC can stimulate ATP hydrolysis. Taken together, our results indicate that PKC-catalyzed protein phosphorylation is inefficient, since it is accompanied by Pi production.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Thermodynamic signature of substrates and substrate analogs binding to human blood group B galactosyltransferase from isothermal titration calorimetry experiments.

    PubMed

    Sindhuwinata, Nora; Grimm, Lena L; Weißbach, Sophie; Zinn, Sabrina; Munoz, Eva; Palcic, Monica M; Peters, Thomas

    2013-10-01

    It has been observed earlier that human blood group B galactosyltransferase (GTB) hydrolyzes its donor substrate UDP-Galactose (UDP-Gal) in the absence of acceptor substrate, and that this reaction is promoted by the presence of an acceptor substrate analog, α-L-Fuc-(1,2)-β-D-3-deoxy-Gal-O-octyl (3DD). This acceleration of enzymatic hydrolysis of UDP-Gal was traced back to an increased affinity of GTB toward the donor substrate in the presence of 3DD. Herein, we present new thermodynamic data from isothermal titration calorimetry (ITC) on the binding of donor and acceptor substrates and analogs to GTB. ITC data are supplemented by surface plasmon resonance and STD-NMR titration experiments. These new data validate mutual allosteric control of binding of donor and acceptor substrates to GTB. It is of note that ITC experiments reveal significant differences in enthalpic and entropic contributions to binding of the natural donor substrate UDP-Gal, when compared with its analog UDP-Glucose (UDP-Glc). This may reflect different degrees of ordering of an internal loop (amino acids 176-194) and the C-terminus (amino acids 346-354), which close the binding pocket on binding of UDP-Gal or UDP-Glc. As both ligands have rather similar dissociation constants KD and almost identical modes of binding this finding is unexpected. Another surprising finding is that an acceptor analog, α-L-Fuc-(1,2)-β-D-3-amino-3-deoxy-Gal-O-octyl (3AD) as well as the constituent monosaccharide β-D-3-amino-3-deoxy-Gal-O-octyl (3AM) effectively inhibit enzymatic hydrolysis of UDP-Gal. This is unexpected, too, because in analogy to the effects of 3DD one would have predicted acceleration of enzymatic hydrolysis of UDP-Gal. It is difficult to explain these observations based on structural data alone. Therefore, our results highlight that there is an urgent need of experimental studies into the dynamic properties of GTB.

  12. Effect of geometry on the screened acceptor binding energy in a quantum wire

    SciTech Connect

    Shanthi, R. Vijaya Nithiananthi, P.

    2014-04-24

    The effect of various Geometries G(x, y) of the GaAs/Al{sub x}Ga{sub 1−x}As Quantum wire like G{sub 1}: (L, L) {sub 2}: (L, L/2) {sub 3}: (L/2, L/4) on the binding energy of an on-center acceptor impurity has been investigated through effective mass approximation using variational technique. The observations were made including the effect of spatial dependent dielectric screening for different concentration of Al, at T=300K. The influence of spatial dielectric screening on different geometries of the wire has been compared and hence the behavior of the acceptor impurity in GaAs/Al{sub x}Ga{sub 1−x}As Quantum wire has been discussed.

  13. Binding of cellulose binding modules reveal differences between cellulose substrates

    PubMed Central

    Arola, Suvi; Linder, Markus B.

    2016-01-01

    The interaction between cellulase enzymes and their substrates is of central importance to several technological and scientific challenges. Here we report that the binding of cellulose binding modules (CBM) from Trichoderma reesei cellulases Cel6A and Cel7A show a major difference in how they interact with substrates originating from wood compared to bacterial cellulose. We found that the CBM from TrCel7A recognizes the two substrates differently and as a consequence shows an unexpected way of binding. We show that the substrate has a large impact on the exchange rate of the studied CBM, and moreover, CBM-TrCel7A seems to have an additional mode of binding on wood derived cellulose but not on cellulose originating from bacterial source. This mode is not seen in double CBM (DCBM) constructs comprising both CBM-TrCel7A and CBM-TrCel6A. The linker length of DCBMs affects the binding properties, and slows down the exchange rates of the proteins and thus, can be used to analyze the differences between the single CBM. These results have impact on the cellulase research and offer new understanding on how these industrially relevant enzymes act. PMID:27748440

  14. Protein NMR Studies of substrate binding to human blood group A and B glycosyltransferases.

    PubMed

    Peters, Thomas; Grimm, Lena Lisbeth; Weissbach, Sophie; Flügge, Friedemann; Begemann, Nora; Palcic, Monica

    2017-03-03

    Donor and acceptor substrate binding to human blood group A and B glycosyltransferases (GTA, GTB) has been studied by a variety of protein NMR experiments. Prior crystallographic studies have shown these enzymes to adopt an open conformation in the absence of substrates. Binding of either the donor substrate UDP-Gal, or of UDP induces a semi-closed conformation. In the presence of both, donor- and acceptor substrates, the enzymes shift towards a closed conformation with ordering of an internal loop and the C-terminal residues, which then completely cover the donor-binding pocket. Chemical shift titrations of uniformly 2H,15N labeled GTA or GTB with UDP affected about 20% of all cross peaks in 1H,15N-TROSY-HSQC spectra reflecting substantial plasticity of the enzymes. On the other hand, it is this conformational flexibility that impedes NH backbone assignments. Chemical shift perturbation experiments using 1-13C-methyl Ile labeled samples revealed two Ile residues, Ile123 at the bottom of the UDP binding pocket, and Ile192 as part of the internal loop that were significantly disturbed upon stepwise addition of UDP and H-disaccharide, also revealing long-range perturbations. Finally, methyl TROSY based relaxation dispersion experiments do not reveal s to ms time scale motions. Although this study reveals substantial conformational plasticity of GTA and GTB it remains enigmatic how binding of substrates shifts the enzymes into catalytically competent states.

  15. Fluorescent mannosides serve as acceptor substrates for glycosyltransferase and sugar-1-phosphate transferase activities in Euglena gracilis membranes.

    PubMed

    Ivanova, Irina M; Nepogodiev, Sergey A; Saalbach, Gerhard; O'Neill, Ellis C; Urbaniak, Michael D; Ferguson, Michael A J; Gurcha, Sudagar S; Besra, Gurdyal S; Field, Robert A

    2017-01-13

    Synthetic hexynyl α-D-mannopyranoside and its α-1,6-linked disaccharide counterpart were fluorescently labelled through CuAAC click chemistry with 3-azido-7-hydroxycoumarin. The resulting triazolyl-coumarin adducts, which were amenable to analysis by TLC, HPLC and mass spectrometry, proved to be acceptor substrates for α-1,6-ManT activities in mycobacterial membranes, as well as α- and β-GalT activities in trypanosomal membranes, benchmarking the potential of the fluorescent acceptor approach against earlier radiochemical assays. Following on to explore the glycobiology of the benign protozoan alga Euglena gracilis, α-1,3- and α-1,2-ManT activities were detected in membrane preparations, along with GlcT, Glc-P-T and GlcNAc-P-T activities. These studies serve to demonstrate the potential of readily accessible fluorescent glycans as substrates for exploring carbohydrate active enzymes.

  16. Crystal structures of β-1,4-galactosyltransferase 7 enzyme reveal conformational changes and substrate binding.

    PubMed

    Tsutsui, Yuko; Ramakrishnan, Boopathy; Qasba, Pradman K

    2013-11-01

    The β-1,4-galactosyltransferase 7 (β4GalT7) enzyme is involved in proteoglycan synthesis. In the presence of a manganese ion, it transfers galactose from UDP-galactose to xylose on a proteoglycan acceptor substrate. We present here the crystal structures of human β4GalT7 in open and closed conformations. A comparison of these crystal structures shows that, upon manganese and UDP or UDP-Gal binding, the enzyme undergoes conformational changes involving a small and a long loop. We also present the crystal structures of Drosophila wild-type β4GalT7 and D211N β4GalT7 mutant enzymes in the closed conformation in the presence of the acceptor substrate xylobiose and the donor substrate UDP-Gal, respectively. To understand the catalytic mechanism, we have crystallized the ternary complex of D211N β4GalT7 mutant enzyme in the presence of manganese with the donor and the acceptor substrates together in the same crystal structure. The galactose moiety of the bound UDP-Gal molecule forms seven hydrogen bonds with the protein molecule. The nonreducing end of the xylose moiety of xylobiose binds to the hydrophobic acceptor sugar binding pocket created by the conformational changes, whereas its extended xylose moiety forms hydrophobic interactions with a Tyr residue. In the ternary complex crystal structure, the nucleophile O4 oxygen atom of the xylose molecule is found in close proximity to the C1 and O5 atoms of the galactose moiety. This is the first time that a Michaelis complex of a glycosyltransferase has been described, and it clearly suggests an SN2 type catalytic mechanism for the β4GalT7 enzyme.

  17. Levansucrases from Pseudomonas syringae pv. tomato and P. chlororaphis subsp. aurantiaca: substrate specificity, polymerizing properties and usage of different acceptors for fructosylation.

    PubMed

    Visnapuu, Triinu; Mardo, Karin; Mosoarca, Cristina; Zamfir, Alina D; Vigants, Armands; Alamäe, Tiina

    2011-09-20

    Levansucrases of Pseudomonas syringae pv. tomato DC3000 (Lsc3) and Pseudomonas chlororaphis subsp. aurantiaca (also Pseudomonas aurantiaca) (LscA) have 73% identity of protein sequences, similar substrate specificity and kinetic properties. Both enzymes produce levan and fructooligosaccharides (FOS) of varied length from sucrose, raffinose and sugar beet molasses. A novel high-throughput chip-based nanoelectrospray mass spectrometric method was applied to screen alternative fructosyl acceptors for levansucrases. Lsc3 and LscA could both transfructosylate D-xylose, D-fucose, L- and D-arabinose, D-ribose, D-sorbitol, xylitol, xylobiose, D-mannitol, D-galacturonic acid and methyl-α-D-glucopyranoside and heterooligofructans with degree of polymerization up to 5 were detected. The ability of D-sorbitol, xylobiose, D-galacturonic acid, D-mannitol, xylitol and methyl-α-D-glucopyranoside to serve as fructosyl acceptors for levansucrases is shown for the first time. Expectedly, site-directed mutagenesis of His321 in Lsc3 to Arg, Lys, Leu and Ser resulted in proteins with decreased catalytic activity, affinity for sucrose and polymerizing ability. Random mutagenesis yielded a Lsc3 mutant Thr302Pro with reduced synthesis of levan and long-chain FOS. Thr302 is located in conserved DQTERP region of levansucrases adjacent to predicted acid-base catalyst Glu303. Thr302 and His321 are predicted to belong to +1 subsite of the substrate binding region of Lsc3.

  18. Substrate Binding Mechanism of a Type I Extradiol Dioxygenase*

    PubMed Central

    Cho, Hyo Je; Kim, Kyungsun; Sohn, Seo Yean; Cho, Ha Yeon; Kim, Kyung Jin; Kim, Myung Hee; Kim, Dockyu; Kim, Eungbin; Kang, Beom Sik

    2010-01-01

    A meta-cleavage pathway for the aerobic degradation of aromatic hydrocarbons is catalyzed by extradiol dioxygenases via a two-step mechanism: catechol substrate binding and dioxygen incorporation. The binding of substrate triggers the release of water, thereby opening a coordination site for molecular oxygen. The crystal structures of AkbC, a type I extradiol dioxygenase, and the enzyme substrate (3-methylcatechol) complex revealed the substrate binding process of extradiol dioxygenase. AkbC is composed of an N-domain and an active C-domain, which contains iron coordinated by a 2-His-1-carboxylate facial triad motif. The C-domain includes a β-hairpin structure and a C-terminal tail. In substrate-bound AkbC, 3-methylcatechol interacts with the iron via a single hydroxyl group, which represents an intermediate stage in the substrate binding process. Structure-based mutagenesis revealed that the C-terminal tail and β-hairpin form part of the substrate binding pocket that is responsible for substrate specificity by blocking substrate entry. Once a substrate enters the active site, these structural elements also play a role in the correct positioning of the substrate. Based on the results presented here, a putative substrate binding mechanism is proposed. PMID:20810655

  19. Structural basis for non-genuine phenolic acceptor substrate specificity of Streptomyces roseochromogenes prenyltransferase CloQ from the ABBA/PT-barrel superfamily

    PubMed Central

    Araya-Cloutier, Carla; Martens, Bianca; Schaftenaar, Gijs; Leipoldt, Franziska; Gruppen, Harry

    2017-01-01

    Acceptor substrate specificity of Streptomyces roseochromogenes prenyltransferase SrCloQ was investigated using different non-genuine phenolic compounds. RP-UHPLC-UV-MSn was used for the tentative annotation and quantification of the prenylated products. Flavonoids, isoflavonoids and stilbenoids with different types of substitution were prenylated by SrCloQ, although with less efficiency than the genuine substrate 4-hydroxyphenylpyruvate. The isoflavan equol, followed by the flavone 7,4’-dihydroxyflavone, were the best non-genuine acceptor substrates. B-ring C-prenylation was in general preferred over A-ring C-prenylation (ratio 5:1). Docking studies of non-genuine acceptor substrates with the B-ring oriented towards the donor substrate dimethylallyl pyrophosphate, showed that the carbonyl group of the C-ring was able to make stabilizing interactions with the residue Arg160, which might determine the preference observed for B-ring prenylation. No reaction products were formed when the acceptor substrate had no phenolic hydroxyl groups. This preference can be explained by the essential hydrogen bond needed between a phenolic hydroxyl group and the residue Glu281. Acceptor substrates with an additional hydroxyl group at the C3’ position (B-ring), were mainly O3’-prenylated (> 80% of the reaction products). This can be explained by the proximity of the C3’ hydroxyl group to the donor substrate at the catalytic site. Flavones were preferred over isoflavones by SrCloQ. Docking studies suggested that the orientation of the B-ring and of the phenolic hydroxyl group at position C7 (A-ring) of flavones towards the residue Tyr233 plays an important role in this observed preference. Finally, the insights obtained on acceptor substrate specificity and regioselectivity for SrCloQ were extended to other prenyltransferases from the CloQ/NhpB family. PMID:28355308

  20. Substrate and drug binding sites in LeuT.

    PubMed

    Nyola, Ajeeta; Karpowich, Nathan K; Zhen, Juan; Marden, Jennifer; Reith, Maarten E; Wang, Da-Neng

    2010-08-01

    LeuT is a member of the neurotransmitter/sodium symporter family, which includes the neuronal transporters for serotonin, norepinephrine, and dopamine. The original crystal structure of LeuT shows a primary leucine-binding site at the center of the protein. LeuT is inhibited by different classes of antidepressants that act as potent inhibitors of the serotonin transporter. The newly determined crystal structures of LeuT-antidepressant complexes provide opportunities to probe drug binding in the serotonin transporter, of which the exact position remains controversial. Structure of a LeuT-tryptophan complex shows an overlapping binding site with the primary substrate site. A secondary substrate binding site was recently identified, where the binding of a leucine triggers the cytoplasmic release of the primary substrate. This two binding site model presents opportunities for a better understanding of drug binding and the mechanism of inhibition for mammalian transporters.

  1. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex.

    PubMed

    Rosokha, Sergiy V; Kochi, Jay K

    2008-05-01

    Seminal insights provided by the iconic R. S. Mulliken and his "charge-transfer" theory, H. Taube and his "outer/inner-sphere" mechanisms, R. A. Marcus and his "two-state non-adiabatic" theory, and N. S. Hush and his "intervalence" theory are each separately woven into the rich panoramic tapestry constituting chemical research into electron-transfer dynamics, and its mechanistic dominance for the past half century and more. In this Account, we illustrate how the simultaneous melding of all four key concepts allows sharp focus on the charge-transfer character of the critical encounter complex to evoke the latent facet of traditional electron-transfer mechanisms. To this end, we exploit the intervalence (electronic) transition that invariably accompanies the diffusive encounter of electron-rich organic donors (D) with electron-poor acceptors (A) as the experimental harbinger of the collision complex, which is then actually isolated and X-ray crystallographically established as loosely bound pi-stacked pairs of various aromatic and olefinic donor/acceptor dyads with uniform interplanar separations of r(DA) = 3.1 +/- 0.2 A. These X-ray structures, together with the spectral measurements of their intervalence transitions, lead to the pair of important electron-transfer parameters, H(DA) (electronic coupling element) versus lambdaT (reorganization energy), the ratio of which generally defines the odd-electron mobility within such an encounter complex in terms of the resonance stabilization of the donor/acceptor assembly [D, A] as opposed to the reorganization-energy penalty required for its interconversion to the electron-transfer state [D(+*), A(-*)]. We recognize the resonance-stabilization energy relative to the intrinsic activation barrier as the mechanistic binding factor, Q = 2H(DA)/lambdaT, to represent the quantitative measure of the highly variable continuum of inner-sphere/outer-sphere interactions that are possible within various types of precursor complexes

  2. Cap analog substrates reveal three clades of cap guanine-N2 methyltransferases with distinct methyl acceptor specificities.

    PubMed

    Benarroch, Delphine; Jankowska-Anyszka, Marzena; Stepinski, Janusz; Darzynkiewicz, Edward; Shuman, Stewart

    2010-01-01

    The Tgs proteins are structurally homologous AdoMet-dependent eukaryal enzymes that methylate the N2 atom of 7-methyl guanosine nucleotides. They have an imputed role in the synthesis of the 2,2,7-trimethylguanosine (TMG) RNA cap. Here we exploit a collection of cap-like substrates to probe the repertoire of three exemplary Tgs enzymes, from mammalian, protozoan, and viral sources, respectively. We find that human Tgs (hTgs1) is a bona fide TMG synthase adept at two separable transmethylation steps: (1) conversion of m(7)G to m(2,7)G, and (2) conversion of m(2,7)G to m(2,2,7)G. hTgs1 is unable to methylate G or m(2)G, signifying that both steps require an m(7)G cap. hTgs1 utilizes a broad range of m(7)G nucleotides, including mono-, di-, tri-, and tetraphosphate derivatives as well as cap dinucleotides with triphosphate or tetraphosphate bridges. In contrast, Giardia lamblia Tgs (GlaTgs2) exemplifies a different clade of guanine-N2 methyltransferase that synthesizes only a dimethylguanosine (DMG) cap structure and cannot per se convert DMG to TMG under any conditions tested. Methylation of benzyl(7)G and ethyl(7)G nucleotides by hTgs1 and GlaTgs2 underscored the importance of guanine N7 alkylation in providing a key pi-cation interaction in the methyl acceptor site. Mimivirus Tgs (MimiTgs) shares with the Giardia homolog the ability to catalyze only a single round of methyl addition at guanine-N2, but is distinguished by its capacity for guanine-N2 methylation in the absence of prior N7 methylation. The relaxed cap specificity of MimiTgs is revealed at alkaline pH. Our findings highlight both stark and subtle differences in acceptor specificity and reaction outcomes among Tgs family members.

  3. Localization of the Substrate-binding Site in the Homodimeric Mannitol Transporter, EIImtl, of Escherichia coli*

    PubMed Central

    Opačić, Milena; Vos, Erwin P. P.; Hesp, Ben H.; Broos, Jaap

    2010-01-01

    The mannitol transporter from Escherichia coli, EIImtl, belongs to a class of membrane proteins coupling the transport of substrates with their chemical modification. EIImtl is functional as a homodimer, and it harbors one high affinity mannitol-binding site in the membrane-embedded C domain (IICmtl). To localize this binding site, 19 single Trp-containing mutants of EIImtl were biosynthetically labeled with 5-fluorotryptophan (5-FTrp) and mixed with azi-mannitol, a substrate analog acting as a Förster resonance energy transfer (FRET) acceptor. Typically, for mutants showing FRET, only one 5-FTrp was involved, whereas the 5-FTrp from the other monomer was too distant. This proves that the mannitol-binding site is asymmetrically positioned in dimeric IICmtl. Combined with the available two-dimensional projection maps of IICmtl, it is concluded that a second resting binding site is present in this transporter. Active transport of mannitol only takes place when EIImtl becomes phosphorylated at Cys384 in the cytoplasmic B domain. Stably phosphorylated EIImtl mutants were constructed, and FRET experiments showed that the position of mannitol in IICmtl remains the same. We conclude that during the transport cycle, the phosphorylated B domain has to move to the mannitol-binding site, located in the middle of the membrane, to phosphorylate mannitol. PMID:20522557

  4. Kinetics and Thermodynamics of Reversible Thiol Additions to Mono- and Diactivated Michael Acceptors: Implications for the Design of Drugs That Bind Covalently to Cysteines.

    PubMed

    Krenske, Elizabeth H; Petter, Russell C; Houk, K N

    2016-12-02

    Additions of cysteine thiols to Michael acceptors underpin the mechanism of action of several covalent drugs (e.g., afatinib, osimertinib, ibrutinib, neratinib, and CC-292). Reversible Michael acceptors have been reported in which an additional electron-withdrawing group was added at the α-carbon of a Michael acceptor. We have performed density functional theory calculations to determine why thiol additions to these Michael acceptors are reversible. The α-EWG group stabilizes the anionic transition state and intermediate of the Michael addition, but less intuitively, it destabilizes the neutral adduct. This makes the reverse reaction (elimination) both faster and more thermodynamically favorable. For thiol addition to be reversible, the Michael acceptor must also contain a suitable substituent on the β-carbon, such as an aryl or branched alkyl group. Computations explain how these structural elements contribute to reversibility and the ability to tune the binding affinities and the residence times of covalent inhibitors.

  5. Central action of dendrotoxin: selective reduction of a transient K conductance in hippocampus and binding to localized acceptors.

    PubMed Central

    Halliwell, J V; Othman, I B; Pelchen-Matthews, A; Dolly, J O

    1986-01-01

    Dendrotoxin, a small single-chain protein from the venom of Dendroaspis angusticeps, is highly toxic following intracerebroventricular injection into rats. Voltage-clamp analysis of CA1 neurons in hippocampal slices, treated with tetrodotoxin, revealed that nanomolar concentrations of dendrotoxin reduce selectively a transient, voltage-dependent K conductance. Epileptiform activity known to be induced by dendrotoxin can be attributed to such an action. Membrane currents not affected directly by the toxin include (i) Ca-activated K conductance; (ii) noninactivating voltage-dependent K conductance; (iii) inactivating and noninactivating Ca conductances; (iv) persistent inward (anomalous) rectifier current. Persistence of the effects of the toxin when Cd was included to suppress spontaneous transmitter release indicates a direct action on the neuronal membrane. Using biologically active, 125I-labeled dendrotoxin, protein acceptor sites of high affinity were detected on cerebrocortical synaptosomal membranes and sections of rat brain. In hippocampus, toxin binding was shown autoradiographically to reside in synapse-rich and white matter regions, with lower levels in cell body layers. This acceptor is implicated in the action of toxin because its affinities for dendrotoxin congeners are proportional to their central neurotoxicities and potencies in reducing the transient, voltage-dependent K conductance. Images PMID:2417246

  6. Effects of formate binding on the quinone-iron electron acceptor complex of photosystem II.

    PubMed

    Sedoud, Arezki; Kastner, Lisa; Cox, Nicholas; El-Alaoui, Sabah; Kirilovsky, Diana; Rutherford, A William

    2011-02-01

    EPR was used to study the influence of formate on the electron acceptor side of photosystem II (PSII) from Thermosynechococcus elongatus. Two new EPR signals were found and characterized. The first is assigned to the semiquinone form of Q(B) interacting magnetically with a high spin, non-heme-iron (Fe²(+), S=2) when the native bicarbonate/carbonate ligand is replaced by formate. This assignment is based on several experimental observations, the most important of which were: (i) its presence in the dark in a significant fraction of centers, and (ii) the period-of-two variations in the concentration expected for Q(B)(•-) when PSII underwent a series of single-electron turnovers. This signal is similar but not identical to the well-know formate-modified EPR signal observed for the Q(A)(•-)Fe²(+) complex (W.F.J. Vermaas and A.W. Rutherford, FEBS Lett. 175 (1984) 243-248). The formate-modified signals from Q(A)(•-)Fe²(+) and Q(B)(•-)Fe²(+) are also similar to native semiquinone-iron signals (Q(A)(•-)Fe²(+)/Q(B)(•-)Fe²(+)) seen in purple bacterial reaction centers where a glutamate provides the carboxylate ligand to the iron. The second new signal was formed when Q(A)(•-) was generated in formate-inhibited PSII when the secondary acceptor was reduced by two electrons. While the signal is reminiscent of the formate-modified semiquinone-iron signals, it is broader and its main turning point has a major sub-peak at higher field. This new signal is attributed to the Q(A)(•-)Fe²(+) with formate bound but which is perturbed when Q(B) is fully reduced, most likely as Q(B)H₂ (or possibly Q(B)H(•-) or Q(B)(²•-)). Flash experiments on formate-inhibited PSII monitoring these new EPR signals indicate that the outcome of charge separation on the first two flashes is not greatly modified by formate. However on the third flash and subsequent flashes, the modified Q(A)(•-)Fe²(+)Q(B)H₂ signal is trapped in the EPR experiment and there is a marked

  7. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures.

    PubMed

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Skerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Strisovsky, Kvido

    2014-10-16

    The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the 'water retention site', suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG.

  8. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    SciTech Connect

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-He

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of the substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  9. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    DOE PAGES

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; ...

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of themore » substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  10. Human OGA binds substrates in a conserved peptide recognition groove.

    PubMed

    Schimpl, Marianne; Schüttelkopf, Alexander W; Borodkin, Vladimir S; van Aalten, Daan M F

    2010-11-15

    Modification of cellular proteins with O-GlcNAc (O-linked N-acetylglucosamine) competes with protein phosphorylation and regulates a plethora of cellular processes. O-GlcNAcylation is orchestrated by two opposing enzymes, O-GlcNAc transferase and OGA (O-GlcNAcase or β-N-acetylglucosaminidase), which recognize their target proteins via as yet unidentified mechanisms. In the present study, we uncovered the first insights into the mechanism of substrate recognition by human OGA. The structure of a novel bacterial OGA orthologue reveals a putative substrate-binding groove, conserved in metazoan OGAs. Guided by this structure, conserved amino acids lining this groove in human OGA were mutated and the activity on three different substrate proteins [TAB1 (transforming growth factor-β-activated protein kinase 1-binding protein 1), FoxO1 (forkhead box O1) and CREB (cAMP-response-element-binding protein)] was tested in an in vitro deglycosylation assay. The results provide the first evidence that human OGA may possess a substrate-recognition mechanism that involves interactions with O-GlcNAcylated proteins beyond the GlcNAc-binding site, with possible implications for differential regulation of cycling of O-GlcNAc on different proteins.

  11. Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: distinctive binding affinity for purine and pyrimidine nucleotides.

    PubMed

    Chu, Hsing-Mao; Ko, Tzu-Ping; Wang, Andrew H-J

    2010-03-01

    Cytokinins are important plant hormones, and their biosynthesis most begins with the transfer of isopentenyl group from dimethylallyl diphosphate (DMAPP) to the N6-amino group of adenine by either adenylate isopentenyltransferase (AIPT) or tRNA-IPT. Plant AIPTs use ATP/ADP as an isopentenyl acceptor and bacterial AIPTs prefer AMP, whereas tRNA-IPTs act on specific sites of tRNA. Here, we present the crystal structure of an AIPT-ATP complex from Humulus lupulus (HlAIPT), which is similar to the previous structures of Agrobacterium AIPT and yeast tRNA-IPT. The enzyme is structurally homologous to the NTP-binding kinase family of proteins but forms a solvent-accessible channel that binds to the donor substrate DMAPP, which is directed toward the acceptor substrate ATP/ADP. When measured with isothermal titration calorimetry, some nucleotides displayed different binding affinities to HlAIPT with an order of ATP > dATP approximately ADP > GTP > CTP > UTP. Two basic residues Lys275 and Lys220 in HlAIPT interact with the beta and gamma-phosphate of ATP. By contrast, the interactions are absent in Agrobacterium AIPT because they are replaced by the acidic residues Asp221 and Asp171. Despite its structural similarity to the yeast tRNA-IPT, HlAIPT has evolved with a different binding strategy for adenylate.

  12. Experimental verification of structural alerts for the protein binding of cyclic compounds acting as Michael acceptors.

    PubMed

    Rodriguez-Sanchez, N; Schultz, T W; Cronin, M T D; Enoch, S J

    2013-11-01

    This study outlines how a combination of and in vitro data can be used to define the applicability domain of selected structural alerts within the protein binding profilers of the Organisation for Economic Co-operation (OECD) Quantitative Structure-Activity Relationship (QSAR) Toolbox. Thirty chemicals containing a cyclic moiety were profiled for reactivity using the OECD and Optimised Approach based on Structural Indices Set (OASIS) protein binding profilers. The profiling results identified 22 of the chemicals as being reactive towards proteins. Analysis of the experimentally data showed 19 of these chemicals to be reactive. Subsequent analysis allowed refinements to be suggested to improve the applicability domain of the structural alerts investigated. The accurate definition of the applicability domain for structural alerts within in silico profilers is important due to their use in chemical category in predictive and regulatory toxicology.

  13. An additional substrate binding site in a bacterial phenylalanine hydroxylase.

    PubMed

    Ronau, Judith A; Paul, Lake N; Fuchs, Julian E; Corn, Isaac R; Wagner, Kyle T; Liedl, Klaus R; Abu-Omar, Mahdi M; Das, Chittaranjan

    2013-09-01

    Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes oxidation of phenylalanine to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH has a regulatory domain in which binding of the substrate leads to allosteric activation of the enzyme. However, the existence of PAH regulation in evolutionarily distant organisms, for example some bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum, a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site 15.7 Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 μM for phenylalanine. Under the same conditions, ITC revealed no detectable binding for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of amino acid residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) led to impaired binding, consistent with the presence of distal site binding in solution. Although kinetic analysis revealed that the distal site mutants suffer discernible loss of their catalytic activity, X-ray crystallographic analysis of Y155A and F258A, the two mutants with the most noticeable decrease in activity, revealed no discernible change in the structure of their active sites, suggesting that the effect of distal binding may result from protein dynamics in solution.

  14. Comparative study of substrate and product binding to the human ABO(H) blood group glycosyltransferases.

    PubMed

    Soya, Naoto; Shoemaker, Glen K; Palcic, Monica M; Klassen, John S

    2009-11-01

    The first comparative thermodynamic study of the human blood group glycosyltransferases, alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and alpha-(1-->3)-galactosyltransferase (GTB), interacting with donor substrates, donor and acceptor analogs, and trisaccharide products in vitro is reported. The binding constants, measured at 24 degrees C with the direct electrospray ionization mass spectrometry (ES-MS) assay, provide new insights into these model GTs and their interactions with substrate and product. Notably, the recombinant forms of GTA and GTB used in this study are shown to exist as homodimers, stabilized by noncovalent interactions at neutral pH. In the absence of divalent metal ion, neither GTA nor GTB exhibits any appreciable affinity for its native donors (UDP-GalNAc, UDP-Gal). Upon introduction of Mn(2+), both donors undergo enzyme-catalyzed hydrolysis in the presence of either GTA or GTB. Hydrolysis of UDP-GalNAc in the presence of GTA proceeds very rapidly under the solution conditions investigated and a binding constant could not be directly measured. In contrast, the rate of hydrolysis of UDP-Gal in the presence of GTB is significantly slower and, utilizing a modified approach to analyze the ES-MS data, a binding constant of 2 x 10(4) M(-1) was established. GTA and GTB bind the donor analogs UDP-GlcNAc, UDP-Glc with affinities similar to those measured for UDP-Gal and UDP-GalNAc (GTB only), suggesting that the native donors and donor analogs bind to the GTA and GTB through similar interactions. The binding constant determined for GTA and UDP-GlcNAc (approximately 1 x 10(4) M(-1)), therefore, provides an estimate for the binding constant for GTA and UDP-GalNAc. Binding of GTA and GTB with the A and B trisaccharide products was also investigated for the first time. In the absence of UDP and Mn(2+), both GTA and GTB recognize their respective trisaccharide products but with a low affinity approximately 10(3) M(-1); the presence of UDP and Mn(2

  15. Ligand Binding and Substrate Discrimination by UDP-Galactopyranose Mutase

    SciTech Connect

    Gruber, Todd D.; Borrok, M. Jack; Westler, William M.; Forest, Katrina T.; Kiessling, Laura L.

    2009-07-31

    Galactofuranose (Galf) residues are present in cell wall glycoconjugates of numerous pathogenic microbes. Uridine 5{prime}-diphosphate (UDP) Galf, the biosynthetic precursor of Galf-containing glycoconjugates, is produced from UDP-galactopyranose (UDP-Galp) by the flavoenzyme UDP-galactopyranose mutase (UGM). The gene encoding UGM (glf) is essential for the viability of pathogens, including Mycobacterium tuberculosis, and this finding underscores the need to understand how UGM functions. Considerable effort has been devoted to elucidating the catalytic mechanism of UGM, but progress has been hindered by a lack of structural data for an enzyme-substrate complex. Such data could reveal not only substrate binding interactions but how UGM can act preferentially on two very different substrates, UDP-Galp and UDP-Galf, yet avoid other structurally related UDP sugars present in the cell. Herein, we describe the first structure of a UGM-ligand complex, which provides insight into the catalytic mechanism and molecular basis for substrate selectivity. The structure of UGM from Klebsiella pneumoniae bound to the substrate analog UDP-glucose (UDP-Glc) was solved by X-ray crystallographic methods and refined to 2.5 {angstrom} resolution. The ligand is proximal to the cofactor, a finding that is consistent with a proposed mechanism in which the reduced flavin engages in covalent catalysis. Despite this proximity, the glucose ring of the substrate analog is positioned such that it disfavors covalent catalysis. This orientation is consistent with data indicating that UDP-Glc is not a substrate for UGM. The relative binding orientations of UDP-Galp and UDP-Glc were compared using saturation transfer difference NMR. The results indicate that the uridine moiety occupies a similar location in both ligand complexes, and this relevant binding mode is defined by our structural data. In contrast, the orientations of the glucose and galactose sugar moieties differ. To understand the

  16. The productive cellulase binding capacity of cellulosic substrates.

    PubMed

    Karuna, Nardrapee; Jeoh, Tina

    2017-03-01

    Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc.

  17. In-Silico Analysis of Binding Site Features and Substrate Selectivity in Plant Flavonoid-3-O Glycosyltransferases (F3GT) through Molecular Modeling, Docking and Dynamics Simulation Studies

    PubMed Central

    Sharma, Ranu; Panigrahi, Priyabrata; Suresh, C.G.

    2014-01-01

    Flavonoids are a class of plant secondary metabolites that act as storage molecules, chemical messengers, as well as participate in homeostasis and defense processes. They possess pharmaceutical properties important for cancer treatment such as antioxidant and anti-tumor activities. The drug-related properties of flavonoids can be improved by glycosylation. The enzymes glycosyltransferases (GTs) glycosylate acceptor molecules in a regiospecific manner with the help of nucleotide sugar donor molecules. Several plant GTs have been characterized and their amino acid sequences determined. However, three-dimensional structures of only a few are reported. Here, phylogenetic analysis using amino acid sequences have identified a group of GTs with the same regiospecific activity. The structures of these closely related GTs were modeled using homologous GT structures. Their substrate binding sites were elaborated by docking flavonoid acceptor and UDP-sugar donor molecules in the modeled structures. Eight regions near the acceptor binding site in the N- and C- terminal domain of GTs have been identified that bind and specifically glycosylate the 3-OH group of acceptor flavonoids. Similarly, a conserved motif in the C-terminal domain is known to bind a sugar donor substrate. In certain GTs, the substitution of a specific glutamine by histidine in this domain changes the preference of sugar from glucose to galactose as a result of changed pattern of interactions. The molecular modeling, docking, and molecular dynamics simulation studies have revealed the chemical and topological features of the binding site and thus provided insights into the basis of acceptor and donor recognition by GTs. PMID:24667893

  18. Structural basis for substrate discrimination and integrin binding by autotaxin

    PubMed Central

    Hausmann, Jens; Kamtekar, Satwik; Christodoulou, Evangelos; Day, Jacqueline E.; Wu, Tao; Fulkerson, Zachary; Albers, Harald M.H.G.; van Meeteren, Laurens A.; Houben, Anna; van Zeijl, Leonie; Jansen, Silvia; Andries, Maria; Hall, Troii; Pegg, Lyle E.; Benson, Timothy E.; Kasiem, Mobien; Harlos, Karl; Vander Kooi, Craig; Smyth, Susan S.; Ovaa, Huib; Bollen, Mathieu; Morris, Andrew J.; Moolenaar, Wouter H.; Perrakis, Anastassis

    2010-01-01

    Autotaxin (ATX) or ecto-nucleotide pyrophosphatase/phosphodiesterase-2 (ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemo-attractant for many cell types. ATX-LPA signaling has roles in various pathologies including tumour progression and inflammation. However, the molecular basis of substrate recognition and catalysis, and the mechanism of interaction with target cells, has been elusive. Here we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We identify a hydrophobic lipid-binding pocket and map key residues required for catalysis and selection between nucleotide and phospholipid substrates. We show that ATX interacts with cell-surface integrins via its N-terminal somatomedin-B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling, and enable new approaches to target ATX with small-molecule therapeutics. PMID:21240271

  19. Structural basis of substrate discrimination and integrin binding by autotaxin

    SciTech Connect

    Hausmann, Jens; Kamtekar, Satwik; Christodoulou, Evangelos; Day, Jacqueline E.; Wu, Tao; Fulkerson, Zachary; Albers, Harald M.H.G.; van Meeteren, Laurens A.; Houben, Anna J.S.; van Zeijl, Leonie; Jansen, Silvia; Andries, Maria; Hall, Troii; Pegg, Lyle E.; Benson, Timothy E.; Kasiem, Mobien; Harlos, Karl; Vander Kooi, Craig W.; Smyth, Susan S.; Ovaa, Huib; Bollen, Mathieu; Morris, Andrew J.; Moolenaar, Wouter H.; Perrakis, Anastassis

    2013-09-25

    Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates. We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.

  20. Changes in [14C]Atrazine Binding Associated with the Oxidation-Reduction State of the Secondary Quinone Acceptor of Photosystem II 1

    PubMed Central

    Jursinic, Paul; Stemler, Alan

    1983-01-01

    One hypothesis of triazine-type herbicide action in photosynthetic material is that the herbicide molecule competes with a secondary quinone acceptor, B, for a binding site at the reaction center of photosystem II. The binding affinity of B has been suggested to change with its level of reduction, being most strongly bound in its semiquinone form. To test this hypothesis, [14C]atrazine binding studies have been carried out under different photochemically induced levels of B reduction in Pisum sativum. It is found that herbicide binding is reduced in continuously illuminated samples compared to dark-adapted samples. Decreased binding of atrazine corresponds to an increase in the semiquinone form of B. With flash excitation, the herbicide binding oscillates with a cycle of two, being low on odd-numbered flashes when the amount of semiquinone form of B is greatest. Treatment with NH2OH was found to significantly decrease the strength of herbicide binding in the dark as well as stop the ability of p-benzoquinone to oxidize the semiquinone form of B. It is suggested that the mode of action of NH2OH is disruption of quinones or their environment on both the oxidizing and reducing sides of photosystem II. Herbicide binding was found to be unaltered under conditions when p-benzosemiquinone oxidation of the reduced primary acceptor, Q−, is herbicide insensitive; weak herbicide binding cannot explain this herbicide insensitivity. It is concluded that the quinone-herbicide competition theory of herbicide action is correct. Also, since quinones are lipophilic the importance of the lipid composition of the thylakoid membrane in herbicide interactions is stressed. PMID:16663286

  1. Involvement of Tyr24 and Trp108 in substrate binding and substrate specificity of glycolate oxidase.

    PubMed

    Stenberg, K; Clausen, T; Lindqvist, Y; Macheroux, P

    1995-03-01

    Tyr24 and Trp108 are located in the active site of spinach glycolate oxidase. To elucidate their function in substrate binding and catalysis, they were replaced by phenylalanine and serine, respectively. The [Y24F]glycolate oxidase mutant enzyme showed a tenfold higher Km value for glycolate. L-lactate and DL-2-hydroxybutyrate also showed higher Km values, however, the substrate specificity was unchanged as compared to the wild-type enzyme (Km increases in the order glycolate < DL-2-hydroxybutyrate < L-lactate < L-mandelate). The turnover number and the rate of reduction, found to be rate limiting in catalysis, were only slightly affected by the deletion of the hydroxyl group. These findings suggest that Tyr24 is mostly involved in substrate binding. The spectral features of the [Y24F]glycolate oxidase suggest that a fraction (50-80%) of the protein bears a flavin N(5) adduct instead of the oxidized cofactor. Crystals obtained from the isolated [Y24F]glycolate oxidase mutant protein allowed the determination of the three-dimensional structure. Although the structure was low resolution (0.3 nm), it is evident that the structure determined is that of the N(5) adduct species. In addition to the lacking hydroxyl group of Tyr24, we also observed movements of the amino acid side chains of Arg164 and Trp108, the latter replacing a water molecule in the substrate-binding pocket. Other features predominantly found in the class of flavoprotein oxidases, such as stabilization of the covalent N(5)-sulfite adduct and of the paraquinoid form of 8-mercapto-FMN, were found to be conserved. [W108S]Glycolate oxidase, in contrast, showed dramatic effects on both the Km of substrates as well as the turnover number. The Km for glycolate was increased some hundred fold and the turnover number was decreased 500-fold. In addition, it was found that the higher homologs of glycolate, L-lactate and DL-2-hydroxybutyrate had turnover numbers similar to those found with the wild-type enzyme

  2. Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design

    SciTech Connect

    Xue, Xiaoyu; Yu, Hongwei; Yang, Haitao; Xue, Fei; Wu, Zhixin; Shen, Wei; Li, Jun; Zhou, Zhe; Ding, Yi; Zhao, Qi; Zhang, Xuejun C.; Liao, Ming; Bartlam, Mark; Rao, Zihe

    2008-07-21

    Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) MP{sup pro} and a severe acute respiratory syndrome CoV (SARS-CoV) M{sup pro} mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M{sup pro}. A monomeric form of IBV M{sup pro} was identified for the first time in CoV M{sup pro} structures. A comparison of these two structures to other available M{sup pro} structures provides new insights for the design of substrate-based inhibitors targeting CoV M{sup pro}s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M{sup pro} and was found to demonstrate in vitro inactivation of IBV M{sup pro} and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M{sup pro}.

  3. Structure of photosystem II and substrate binding at room temperature.

    PubMed

    Young, Iris D; Ibrahim, Mohamed; Chatterjee, Ruchira; Gul, Sheraz; Fuller, Franklin D; Koroidov, Sergey; Brewster, Aaron S; Tran, Rosalie; Alonso-Mori, Roberto; Kroll, Thomas; Michels-Clark, Tara; Laksmono, Hartawan; Sierra, Raymond G; Stan, Claudiu A; Hussein, Rana; Zhang, Miao; Douthit, Lacey; Kubin, Markus; de Lichtenberg, Casper; Vo Pham, Long; Nilsson, Håkan; Cheah, Mun Hon; Shevela, Dmitriy; Saracini, Claudio; Bean, Mackenzie A; Seuffert, Ina; Sokaras, Dimosthenis; Weng, Tsu-Chien; Pastor, Ernest; Weninger, Clemens; Fransson, Thomas; Lassalle, Louise; Bräuer, Philipp; Aller, Pierre; Docker, Peter T; Andi, Babak; Orville, Allen M; Glownia, James M; Nelson, Silke; Sikorski, Marcin; Zhu, Diling; Hunter, Mark S; Lane, Thomas J; Aquila, Andy; Koglin, Jason E; Robinson, Joseph; Liang, Mengning; Boutet, Sébastien; Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Moriarty, Nigel W; Liebschner, Dorothee; Afonine, Pavel V; Waterman, David G; Evans, Gwyndaf; Wernet, Philippe; Dobbek, Holger; Weis, William I; Brunger, Axel T; Zwart, Petrus H; Adams, Paul D; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Sauter, Nicholas K; Kern, Jan; Yachandra, Vittal K; Yano, Junko

    2016-12-15

    Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O-O bond formation and O2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.

  4. Structure of photosystem II and substrate binding at room temperature

    PubMed Central

    Gul, Sheraz; Fuller, Franklin; Koroidov, Sergey; Brewster, Aaron S.; Tran, Rosalie; Alonso-Mori, Roberto; Kroll, Thomas; Michels-Clark, Tara; Laksmono, Hartawan; Sierra, Raymond G.; Stan, Claudiu A.; Hussein, Rana; Zhang, Miao; Douthit, Lacey; Kubin, Markus; de Lichtenberg, Casper; Long Vo, Pham; Nilsson, Håkan; Cheah, Mun Hon; Shevela, Dmitriy; Saracini, Claudio; Bean, Mackenzie A.; Seuffert, Ina; Sokaras, Dimosthenis; Weng, Tsu-Chien; Pastor, Ernest; Weninger, Clemens; Fransson, Thomas; Lassalle, Louise; Bräuer, Philipp; Aller, Pierre; Docker, Peter T.; Andi, Babak; Orville, Allen M.; Glownia, James M.; Nelson, Silke; Sikorski, Marcin; Zhu, Diling; Hunter, Mark S.; Lane, Thomas J.; Aquila, Andy; Koglin, Jason E.; Robinson, Joseph; Liang, Mengning; Boutet, Sébastien; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Moriarty, Nigel W.; Liebschner, Dorothee; Afonine, Pavel V.; Waterman, David G.; Evans, Gwyndaf; Wernet, Philippe; Dobbek, Holger; Weis, William I.; Brunger, Axel T.; Zwart, Petrus H.; Adams, Paul D.; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Sauter, Nicholas K.; Kern, Jan; Yachandra, Vittal K.; Yano, Junko

    2016-01-01

    Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment-protein complex, couples the one-electron photochemistry at the reaction center with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC) (Fig. 1a, Extended Data Fig. 1). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4)1, where S1 is the dark stable state and S3 is the last semi-stable state before O-O bond formation and O2 evolution2,3. A detailed understanding of the O-O bond formation mechanism remains a challenge, and elucidating the structures of the OEC in the different S-states, as well as the binding of the two substrate waters to the catalytic site4-6, is a prerequisite for this purpose. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage free, room temperature (RT) structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å structure of PS II7 at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, RT measurements are required to study the structural landscape of proteins under functional conditions8,9, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analog, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states10. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site10-13. Thus, this approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms. PMID:27871088

  5. Human plasma lecithin:cholesterol acyltransferase. On the substrate efficiency of cholest-5-ene-3 beta-thiol as a fatty acyl acceptor.

    PubMed

    Zhou, G; Dolphin, P J

    1995-09-14

    Lecithin:cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyses cholesteryl ester formation from lecithin and cholesterol present in the surface of plasma lipoproteins. Sterol fatty acid acceptors have previously been shown to require the presence of a trans conformation of the A/B ring and a 3 beta-OH group. Our laboratory has, however, demonstrated that two thiol sites within LCAT can become fatty acylated following lecithin cleavage although this does not appear to be essential for catalysis. In order to assess the ability of LCAT to donate a fatty acid derived from the sn-2 position of lecithin and present as an acyl enzyme intermediate (linked via an oxyester bond to Ser-181) to a sulfhydryl residue, we evaluated the ability of cholest-5-ene-3 beta-thiol to act as a substrate for cholesterol ester formation by LCAT. Thiocholesterol was a good terminal fatty acyl acceptor when incorporated into synthetic proteoliposomes containing lecithin/thiocholesterol/apo A-I in the molar ratios of 250:15:0.8. The Km for thiocholesterol was 203.6 microM with a Vmax of 5.3 nmol thiocholesteryl ester formed/h per microgram. The Km for cholesterol when substituted for thiocholesterol in the proteoliposomes was 29.5 microM with a Vmax of 8.8 nmol cholesteryl ester formed/h per microgram. Thiocholesterol and cholesterol were shown to occupy the same catalytic site in LCAT. Thus, thiocholesterol exhibits approx. 10% of the substrate efficiency of cholesterol when incubated with pure human LCAT. We conclude that LCAT can transacylate a fatty acyl moiety from the sn-2 position of lecithin to the 3 beta-SH group of thiocholesterol forming a cholesteryl thioester. Although the 3 beta-SH group is not as good a terminal acceptor as the 3 beta-OH group of cholesterol, LCAT is clearly capable of transacylating a fatty acid esterified via an oxyester linkage to one containing a thioester.

  6. UV cross-link mapping of the substrate-binding site of an RNase P ribozyme to a target mRNA sequence.

    PubMed Central

    Kilani, A F; Liu, F

    1999-01-01

    RNase P ribozyme cleaves an RNA helix that resembles the acceptor stem and T-stem structure of its natural ptRNA substrate. When covalently linked with a guide sequence, the ribozyme can function as a sequence-specific endonuclease and cleave any target RNA sequences that base pair with the guide sequence. Using a site-directed ultraviolet (UV) cross-linking approach, we have mapped the regions of the ribozyme that are in close proximity to a substrate that contains the mRNA sequence encoding thymidine kinase of human herpes simplex virus 1. Our data suggest that the cleavage site of the mRNA substrate is positioned at the same regions of the ribozyme that bind to the cleavage site of a ptRNA. The mRNA-binding domains include regions that interact with the acceptor stem and T-stem and in addition, regions that are unique and not in close contact with a ptRNA. Identification of the mRNA-binding site provides a foundation to study how RNase P ribozymes achieve their sequence specificity and facilitates the development of gene-targeting ribozymes. PMID:10496224

  7. Measurement of internal substrate binding in dehaloperoxidase-hemoglobin by competition with the heme-fluoride binding equilibrium.

    PubMed

    Zhao, Jing; Moretto, Justin; Le, Peter; Franzen, Stefan

    2015-02-19

    The application of fluoride anion as a probe for investigating the internal substrate binding has been developed and applied to dehaloperoxidase-hemoglobin (DHP) from Amphitrite ornata. By applying the fluoride titration strategy using UV-vis spectroscopy, we have studied series of halogenated phenols, other substituted phenols, halogenated indoles, and several natural amino acids that bind internally (and noncovalently) in the distal binding pocket of the heme. This approach has identified 2,4-dibromophenol (2,4-DBP) as the tightest binding substrate discovered thus far, with approximately 20-fold tighter binding affinity than that of 4-bromophenol (4-BP), a known internally binding inhibitor in DHP. Combined with resonance Raman spectroscopy, we have confirmed that competitive binding equilibria exist between fluoride anion and internally bound molecules. We have further investigated the hydrogen bonding network of the active site of DHP that stabilizes the exogenous fluoride ligand. These measurements demonstrate a general method for determination of differences in substrate binding affinity based on detection of a competitive fluoride binding equilibrium. The significance of the binding that 2,4-dibromophenol binds more tightly than any other substrate is evident when the structural and mechanistic data are taken into consideration.

  8. Functional characterization of Ost3p. Loss of the 34-kD subunit of the Saccharomyces cerevisiae oligosaccharyltransferase results in biased underglycosylation of acceptor substrates

    PubMed Central

    1995-01-01

    Within the lumen of the rough endoplasmic reticulum, oligosaccharyltransferase catalyzes the en bloc transfer of a high mannose oligosaccharide moiety from the lipid-linked oligosaccharide donor to asparagine acceptor sites in nascent polypeptides. The Saccharomyces cerevisiae oligosaccharyltransferase was purified as a heteroligomeric complex consisting of six subunits (alpha-zeta) having apparent molecular masses of 64 kD (Ost1p), 45 kD (Wbp1p), 34 kD, 30 kD (Swp1p), 16 kD, and 9 kD. Here we report a structural and functional characterization of Ost3p which corresponds to the 34-kD gamma-subunit of the oligosaccharyltransferase. Unlike Ost1p, Wbp1p, and Swp1p, expression of Ost3p is not essential for viability of yeast. Instead, ost3 null mutant yeast grow at wild-type rates on solid or in liquid media irrespective of culture temperature. Nonetheless, detergent extracts prepared from ost3 null mutant membranes are twofold less active than extracts prepared from wild-type membranes in an in vitro oligosaccharyltransferase assay. Furthermore, loss of Ost3p is accompanied by significant underglycosylation of soluble and membrane- bound glycoproteins in vivo. Compared to the previously characterized ost1-1 mutant in the oligosaccharyltransferase, and the alg5 mutant in the oligosaccharide assembly pathway, ost3 null mutant yeast appear to be selectively impaired in the glycosylation of several membrane glycoproteins. The latter observation suggests that Ost3p may enhance oligosaccharide transfer in vivo to a subset of acceptor substrates. PMID:7622558

  9. Identification of a second substrate-binding site in solute-sodium symporters.

    PubMed

    Li, Zheng; Lee, Ashley S E; Bracher, Susanne; Jung, Heinrich; Paz, Aviv; Kumar, Jay P; Abramson, Jeff; Quick, Matthias; Shi, Lei

    2015-01-02

    The structure of the sodium/galactose transporter (vSGLT), a solute-sodium symporter (SSS) from Vibrio parahaemolyticus, shares a common structural fold with LeuT of the neurotransmitter-sodium symporter family. Structural alignments between LeuT and vSGLT reveal that the crystallographically identified galactose-binding site in vSGLT is located in a more extracellular location relative to the central substrate-binding site (S1) in LeuT. Our computational analyses suggest the existence of an additional galactose-binding site in vSGLT that aligns to the S1 site of LeuT. Radiolabeled galactose saturation binding experiments indicate that, like LeuT, vSGLT can simultaneously bind two substrate molecules under equilibrium conditions. Mutating key residues in the individual substrate-binding sites reduced the molar substrate-to-protein binding stoichiometry to ~1. In addition, the related and more experimentally tractable SSS member PutP (the Na(+)/proline transporter) also exhibits a binding stoichiometry of 2. Targeting residues in the proposed sites with mutations results in the reduction of the binding stoichiometry and is accompanied by severely impaired translocation of proline. Our data suggest that substrate transport by SSS members requires both substrate-binding sites, thereby implying that SSSs and neurotransmitter-sodium symporters share common mechanistic elements in substrate transport.

  10. Age dependent alterations in photosystem II acceptor side in Cucumis sativus cotyledonary leaf thylakoids: analysis of binding characteristics of herbicide [14C]-atrazine.

    PubMed

    Prakash, J S; Baig, M A; Mohanty, P

    1999-02-01

    Senescence induced temporal changes in photosystems can be conveniently studied in cotyledonary leaves. We monitored the protein, chlorophyll and electron transport activities in Cucumis sativus cv Poinsette cotyledonary leaves and observed that by 20th day, there was a 50%, 41% and 30-33% decline in the chlorophyll, protein and photosystem II activity respectively when compared to 6th day cotyledonary leaves taken as control. We investigated the changes in photosystem II activity (O2 evolution) as a function of light intensity. The photosystem II functional antenna decreased by 27% and the functional photosystem II units decreased by 30% in 20-day old cotyledonary leaf thylakoids. The herbicide [14C]-atrazine binding assay to monitor specific binding of the herbicide to the acceptor side of photosystem II reaction centre protein, D1, showed an increase in the affinity for atrazine towards D1 protein and decrease in the QB binding sites in 20th day leaf thylakoids when compared to 6th day leaf thylakoids. The western blot analysis also suggested a decrease in steady state levels of D1 protein in 20th day cotyledonary leaf thylakoids as compared to 6th day sample which is in agreement with [14C]-atrazine binding assay and light saturation kinetics.

  11. Binding of the immunomodulatory drug Bz-423 to mitochondrial FoF1-ATP synthase in living cells by FRET acceptor photobleaching

    NASA Astrophysics Data System (ADS)

    Starke, Ilka; Johnson, Kathryn M.; Petersen, Jan; Gräber, Peter; Opipari, Anthony W.; Glick, Gary D.; Börsch, Michael

    2016-03-01

    Bz-423 is a promising new drug for treatment of autoimmune diseases. This small molecule binds to subunit OSCP of the mitochondrial enzyme FoF1-ATP synthase and modulates its catalytic activities. We investigate the binding of Bz-423 to mitochondria in living cells and how subunit rotation in FoF1-ATP synthase, i.e. the mechanochemical mechanism of this enzyme, is affected by Bz-423. Therefore, the enzyme was marked selectively by genetic fusion with the fluorescent protein EGFP to the C terminus of subunit γ. Imaging the threedimensional arrangement of mitochondria in living yeast cells was possible at superresolution using structured illumination microscopy, SIM. We measured uptake and binding of a Cy5-labeled Bz-423 derivative to mitochondrial FoF1-ATP synthase in living yeast cells using FRET acceptor photobleaching microscopy. Our data confirmed the binding of Cy5-labeled Bz-423 to the top of the F1 domain of the enzyme in mitochondria of living Saccharomyces cerevisiae cells.

  12. Stopped-flow analysis of substrate binding to neuronal nitric oxide synthase.

    PubMed

    Abu-Soud, H M; Wang, J; Rousseau, D L; Stuehr, D J

    1999-09-21

    The kinetics of binding L-arginine and three alternative substrates (homoarginine, N-methylarginine, and N-hydroxyarginine) to neuronal nitric oxide synthase (nNOS) were characterized by conventional and stopped-flow spectroscopy. Because binding these substrates has only a small effect on the light absorbance spectrum of tetrahydrobiopterin-saturated nNOS, their binding was monitored by following displacement of imidazole, which displays a significant change in Soret absorbance from 427 to 398 nm. Rates of spectral change upon mixing Im-nNOS with increasing amounts of substrates were obtained and found to be monophasic in all cases. For each substrate, a plot of the apparent rate versus substrate concentration showed saturation at the higher concentrations. K(-)(1), k(2), k(-)(2), and the apparent dissociation constant were derived for each substrate from the kinetic data. The dissociation constants mostly agreed with those calculated from equilibrium spectral data obtained by titrating Im-nNOS with each substrate. We conclude that nNOS follows a two-step, reversible mechanism of substrate binding in which there is a rapid equilibrium between Im-nNOS and the substrate S followed by a slower isomerization process to generate nNOS'-S: Im-nNOS + S if Im-nNOS-S if nNOS'-S + Im. All four substrates followed this general mechanism, but differences in their kinetic values were significant and may contribute to their varying capacities to support NO synthesis.

  13. Base pair sensitivity and enhanced ON/OFF ratios of DNA-binding: donor-acceptor-donor fluorophores.

    PubMed

    Wilson, James N; Wigenius, Jens; Pitter, Demar R G; Qiu, Yanhua; Abrahamsson, Maria; Westerlund, Fredrik

    2013-10-10

    The photophysical properties of two recently reported live cell compatible, DNA-binding dyes, 4,6-bis(4-(4-methylpiperazin-1-yl)phenyl)pyrimidin-2-ol, 1, and [1,3-bis[4-(4-methylpiperazin-1-yl)phenyl]-1,3-propandioato-κO, κO']difluoroboron, 2, are characterized. Both dyes are quenched in aqueous solutions, while binding to sequences containing only AT pairs enhances the emission. Binding of the dyes to sequences containing only GC pairs does not produce a significant emission enhancement, and for sequences containing both AT and GC base pairs, emission is dependent on the length of the AT pair tracts. Through emission lifetime measurements and analysis of the dye redox potentials, photoinduced electron transfer with GC pairs is implicated as a quenching mechanism. Binding of the dyes to AT-rich regions is accompanied by bathochromic shifts of 26 and 30 nm, respectively. Excitation at longer wavelengths thus increases the ON/OFF ratio of the bound probes significantly and provides improved contrast ratios in solution as well as in fluorescence microscopy of living cells.

  14. Reactions of the cumyloxyl and benzyloxyl radicals with strong hydrogen bond acceptors. Large enhancements in hydrogen abstraction reactivity determined by substrate/radical hydrogen bonding.

    PubMed

    Salamone, Michela; DiLabio, Gino A; Bietti, Massimo

    2012-12-07

    A kinetic study on hydrogen abstraction from strong hydrogen bond acceptors such as DMSO, HMPA, and tributylphosphine oxide (TBPO) by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out in acetonitrile. The reactions with CumO(•) were described in terms of a direct hydrogen abstraction mechanism, in line with the kinetic deuterium isotope effects, k(H)/k(D), of 2.0 and 3.1 measured for reaction of this radical with DMSO/DMSO-d(6) and HMPA/HMPA-d(18). Very large increases in reactivity were observed on going from CumO(•) to BnO(•), as evidenced by k(H)(BnO(•))/k(H)(CumO(•)) ratios of 86, 4.8 × 10(3), and 1.6 × 10(4) for the reactions with HMPA, TBPO, and DMSO, respectively. The k(H)/k(D) of 0.91 and 1.0 measured for the reactions of BnO(•) with DMSO/DMSO-d(6) and HMPA/HMPA-d(18), together with the k(H)(BnO(•))/k(H)(CumO(•)) ratios, were explained on the basis of the formation of a hydrogen-bonded prereaction complex between the benzyloxyl α-C-H and the oxygen atom of the substrates followed by hydrogen abstraction. This is supported by theoretical calculations that show the formation of relatively strong prereaction complexes. These observations confirm that in alkoxyl radical reactions specific hydrogen bond interactions can dramatically influence the hydrogen abstraction reactivity, pointing toward the important role played by structural and electronic effects.

  15. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    SciTech Connect

    Patarroyo, Manuel E.; Almonacid, Hannia; Moreno-Vranich, Armando

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.

  16. Coupling Substrate and Ion Binding to Extracellular Gate of a Sodium-Dependent Aspartate Transporter

    SciTech Connect

    Boudker,O.; Ryan, R.; Yernool, D.; Shimamoto, K.; Gouaux, E.

    2007-01-01

    Secondary transporters are integral membrane proteins that catalyze the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt{sub Ph}, a sodium (Na{sup +})-coupled aspartate transporter, defining sites for aspartate, two sodium ions and D,L-threo-{beta}-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound {alpha}-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.

  17. Structural Analysis of Substrate and Effector Binding in Mycobacterium tuberculosis D-3-Phosphoglycerate Dehydrogenase

    SciTech Connect

    Dey, Sanghamitra; Burton, Rodney L.; Grant, Gregory A.; Sacchettini, James C.

    2008-08-20

    The crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase has been solved with bound effector, L-serine, and substrate, hydroxypyruvic acid phosphate, at resolutions of 2.7 and 2.4 {angstrom}, respectively. The subunits display the same extreme asymmetry as seen in the apo-structure and provide insight into the mode of serine binding and closure of the active site. Mutagenesis studies confirm the identity of the main residues involved in serine binding and suggest that the poly glycine stretch in the loop that contains the locus for the 160{sup o} rotation that leads to subunit asymmetry may have a larger role in folding than in catalysis. The lack of electron density for the cofactor, NADH, in any of the crystals examined led us to study binding by stopped flow kinetic analysis. The kinetic data suggest that productive NADH binding, that would support catalytic turnover, is dependent on the presence of substrate. This observation, along with the binding of substrate in the active site, but in an unproductive conformation, suggests a possible mechanism where initial binding of substrate leads to enhanced interaction with cofactor accompanied by a rearrangement of catalytically critical residue side chains. Furthermore, comparison to the structure of a truncated form of human D-3-phosphoglycerate dehydrogenase with cofactor and a substrate analog, provides insight into the conformational changes that occur during catalysis.

  18. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures

    PubMed Central

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Škerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Strisovsky, Kvido

    2014-01-01

    The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the ‘water retention site’, suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG. PMID:25216680

  19. Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis.

    PubMed

    Gao, Dahai; Chundawat, Shishir P S; Sethi, Anurag; Balan, Venkatesh; Gnanakaran, S; Dale, Bruce E

    2013-07-02

    Substrate binding is typically one of the rate-limiting steps preceding enzyme catalytic action during homogeneous reactions. However, interfacial-based enzyme catalysis on insoluble crystalline substrates, like cellulose, has additional bottlenecks of individual biopolymer chain decrystallization from the substrate interface followed by its processive depolymerization to soluble sugars. This additional decrystallization step has ramifications on the role of enzyme-substrate binding and its relationship to overall catalytic efficiency. We found that altering the crystalline structure of cellulose from its native allomorph I(β) to III(I) results in 40-50% lower binding partition coefficient for fungal cellulases, but surprisingly, it enhanced hydrolytic activity on the latter allomorph. We developed a comprehensive kinetic model for processive cellulases acting on insoluble substrates to explain this anomalous finding. Our model predicts that a reduction in the effective binding affinity to the substrate coupled with an increase in the decrystallization procession rate of individual cellulose chains from the substrate surface into the enzyme active site can reproduce our anomalous experimental findings.

  20. Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis

    PubMed Central

    Gao, Dahai; Chundawat, Shishir P. S.; Sethi, Anurag; Balan, Venkatesh; Gnanakaran, S.; Dale, Bruce E.

    2013-01-01

    Substrate binding is typically one of the rate-limiting steps preceding enzyme catalytic action during homogeneous reactions. However, interfacial-based enzyme catalysis on insoluble crystalline substrates, like cellulose, has additional bottlenecks of individual biopolymer chain decrystallization from the substrate interface followed by its processive depolymerization to soluble sugars. This additional decrystallization step has ramifications on the role of enzyme–substrate binding and its relationship to overall catalytic efficiency. We found that altering the crystalline structure of cellulose from its native allomorph Iβ to IIII results in 40–50% lower binding partition coefficient for fungal cellulases, but surprisingly, it enhanced hydrolytic activity on the latter allomorph. We developed a comprehensive kinetic model for processive cellulases acting on insoluble substrates to explain this anomalous finding. Our model predicts that a reduction in the effective binding affinity to the substrate coupled with an increase in the decrystallization procession rate of individual cellulose chains from the substrate surface into the enzyme active site can reproduce our anomalous experimental findings. PMID:23784776

  1. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.

    PubMed

    Cakir, Bilal; Tuncel, Aytug; Green, Abigail R; Koper, Kaan; Hwang, Seon-Kap; Okita, Thomas W; Kang, ChulHee

    2015-06-04

    Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism.

  2. Mitochondrial carriers in the cytoplasmic state have a common substrate binding site

    PubMed Central

    Robinson, Alan J.; Kunji, Edmund R. S.

    2006-01-01

    Mitochondrial carriers link biochemical pathways in the cytosol and mitochondrial matrix by transporting substrates across the inner mitochondrial membrane. Substrate recognition is specific for each carrier, but sequence similarities suggest the carriers have similar structures and mechanisms of substrate translocation. By considering conservation of amino acids, distance and chemical constraints, and by modeling family members on the known structure of the ADP/ATP translocase, we have identified a common substrate binding site. It explains substrate selectivity and proton coupling and provides a mechanistic link to carrier opening by substrate-induced perturbation of the salt bridges that seal the pathway to and from the mitochondrial matrix. It enables the substrate specificity of uncharacterized mitochondrial carriers to be predicted. PMID:16469842

  3. A novel Pim-1 kinase inhibitor targeting residues that bind the substrate peptide.

    PubMed

    Tsuganezawa, Keiko; Watanabe, Hisami; Parker, Lorien; Yuki, Hitomi; Taruya, Shigenao; Nakagawa, Yukari; Kamei, Daisuke; Mori, Masumi; Ogawa, Naoko; Tomabechi, Yuri; Handa, Noriko; Honma, Teruki; Yokoyama, Shigeyuki; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo; Tanaka, Akiko

    2012-03-30

    A new screening method using fluorescent correlation spectroscopy was developed to select kinase inhibitors that competitively inhibit the binding of a fluorescently labeled substrate peptide. Using the method, among approximately 700 candidate compounds selected by virtual screening, we identified a novel Pim-1 kinase inhibitor targeting its peptide binding residues. X-ray crystal analysis of the complex structure of Pim-1 with the inhibitor indicated that the inhibitor actually binds to the ATP-binding site and also forms direct interactions with residues (Asp128 and Glu171) that bind the substrate peptide. These interactions, which cause small side-chain movements, seem to affect the binding ability of the fluorescently labeled substrate. The compound inhibited Pim-1 kinase in vitro, with an IC(50) value of 150 nM. Treatment of cultured leukemia cells with the compound reduced the amount of p21 and increased the amount of p27, due to Pim-1 inhibition, and then triggered apoptosis after cell-cycle arrest at the G(1)/S phase. This screening method may be widely applicable for the identification of various new Pim-1 kinase inhibitors targeting the residues that bind the substrate peptide.

  4. Progress on binding CO{sub 2} in mineral substrates

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1996-10-01

    Based on current estimates of reserves, coal could satisfy even a very much increased world energy demand for centuries, if only the emission of CO{sub 2} disposal that is based on combining CO{sub 2} chemically with abundant raw materials to form stable carbonate minerals. A major advantage of this method is that the resulting waste product is thermodynamically stable and environmentally neutral. It is therefore possible to store large quantities permanently with minimal environmental impact and without the danger of an accidental release of CO{sub 2} which has proven fatal in quantities far smaller than contemplated here. The raw materials to bind CO{sub 2} exist in nature in large quantities. They are readily accessible and far exceed what would be required to bind all CO{sub 2} that could possibly be generated by burning the entire fossil fuel reserves. In this paper the authors outline a specific process that they are currently investigating. The initial rough cost estimate of about 3{cents}/kWh is encouraging. The availability of a CO{sub 2} fixation technology would serve as insurance in case global warming, or the perception of global warming, would cause severe restrictions on CO{sub 2} emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would be unavoidable.

  5. Determination of the Substrate Binding Mode to the Active Site Iron of (S)-2-Hydroxypropylphosphonic Acid Epoxidase Using 17O-Enriched Substrates and Substrate Analogues†

    PubMed Central

    Yan, Feng; Moon, Sung-Ju; Liu, Pinghua; Zhao, Zongbao; Lipscomb, John D.; Liu, Aimin; Liu, Hung-wen

    2009-01-01

    (S)-2-hydroxypropylphosphonic acid epoxidase (HppE) is an O2-dependent, nonheme Fe(II)-containing oxidase that converts (S)-2-hydroxypropylphosphonic acid ((S)-HPP) to the regio-and enantiomerically specific epoxide, fosfomycin. Use of (R)-2-hydroxypropylphosphonic acid ((R)-HPP) yields the 2-keto-adduct rather than the epoxide. Here we report the chemical synthesis of a range of HPP analogs designed to probe the basis for this specificity. In past studies, NO has been used as an O2 surrogate to provide an EPR probe of the Fe(II) environment. These studies suggest that O2 binds to the iron, and substrates bind in a single orientation that strongly perturbs the iron environment. Recently, the X-ray crystal structure showed direct binding of the substrate to the iron, but both monodentate (via the phosphonate) and chelated (via the hydroxyl and phosphonate) orientations were observed. In the current study, hyperfine broadening of the homogeneous S = 3/2 EPR spectrum of the HppE-NO-HPP complex was observed when either the hydroxyl or the phosphonate group of HPP was enriched with 17O (I = 5/2). These results indicate that both functional groups of HPP bind to Fe(II) ion at the same time as NO, suggesting that the chelated substrate binding mode dominates in solution. (R)- and (S)-analog compounds that maintained the core structure of HPP but added bulky terminal groups were turned over to give products analogous to those from (R)- and (S)-HPP, respectively. In contrast, substrate analogs lacking either the phosphonate or hydroxyl group were not turned over. Elongation of the carbon chain between the hydroxyl and phosphonate allowed binding to the iron in a variety of orientations to give keto and diol products at positions determined by the hydroxyl substituent, but no stable epoxide was formed. These studies show the importance of the Fe(II)-substrate chelate structure to active antibiotic formation. This fixed orientation may align the substrate next to the iron

  6. Defining critical residues for substrate binding to 1-deoxy-d-xylulose 5-phosphate synthase: Active site substitutions stabilize the pre-decarboxylation intermediate C2α-lactylthiamin diphosphate

    PubMed Central

    Kakalis, Lazaros; Jordan, Frank; Meyers, Caren L. Freel

    2014-01-01

    1-Deoxy-d-xylulose 5-phosphate (DXP) synthase catalyzes formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) in a thiamin diphosphate (ThDP)-dependent manner, and is the first step in the essential pathway to isoprenoids in human pathogens. Understanding the mechanism of this unique enzyme is critical for developing new anti-infective agents that selectively target isoprenoid biosynthesis. The present study uses mutagenesis and a combination of protein fluorescence, circular dichroism and kinetics experiments to investigate the roles of Arg-420, Arg-478 and Tyr-392 in substrate binding and catalysis. The results support a random sequential, preferred order mechanism and predict Arg-420 and Arg-478 are involved in binding of the acceptor substrate, d-GAP. d-Glyceraldehyde, an alternative acceptor substrate lacking the phosphoryl group predicted to interact with Arg-420 and Arg-478, also accelerates decarboxylation of the pre-decarboxylation intermediate C2α-lactylthiamin diphosphate (LThDP) on DXP synthase, indicating this binding interaction is not absolutely required, and the hydroxyaldehyde sufficiently triggers decarboxylation. Unexpectedly, Tyr-392 contributes to d-GAP affinity and is not required for LThDP formation or its d-GAP-promoted decarboxylation. Time-resolved CD spectroscopy and NMR experiments indicate LThDP is significantly stabilized on R420A and Y392F variants compared to wild type DXP synthase in the absence of acceptor substrate, yet these substitutions do not appear to impact the rate of d-GAP-promoted LThDP decarboxylation in the presence of high d-GAP, and LThDP formation remains the rate-limiting step. These results suggest a role of these residues to promote d-GAP binding which in turn facilitates decarboxylation, and further highlight interesting differences between DXP synthase and other ThDP-dependent enzymes. PMID:24767541

  7. DNA sequencing using polymerase substrate-binding kinetics

    PubMed Central

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-01

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848

  8. Oligosaccharide and substrate binding in the starch debranching enzyme barley limit dextrinase.

    PubMed

    Møller, Marie S; Windahl, Michael S; Sim, Lyann; Bøjstrup, Marie; Abou Hachem, Maher; Hindsgaul, Ole; Palcic, Monica; Svensson, Birte; Henriksen, Anette

    2015-03-27

    Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that confine high activity of LD to branched maltooligosaccharides. For the first time, an intact α-1,6-glucosidically linked substrate spanning the active site of a LD or pullulanase has been trapped and characterized by crystallography. The crystal structure reveals both the branch and main-chain binding sites and is used to suggest a mechanism for nucleophilicity enhancement in the active site. The substrate, product and analogue complexes were further used to outline substrate binding subsites and substrate binding restraints and to suggest a mechanism for avoidance of dual α-1,6- and α-1,4-hydrolytic activity likely to be a biological necessity during starch synthesis.

  9. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome.

    PubMed

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A H; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G; Engen, John R; Finley, Daniel; Walters, Kylie J

    2016-02-19

    Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site ( T1: ) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like ( UBL: ) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site ( T2: ) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.

  10. Characterization of substrate binding of the WW domains in human WWP2 protein.

    PubMed

    Jiang, Jiahong; Wang, Nan; Jiang, Yafei; Tan, Hongwei; Zheng, Jimin; Chen, Guangju; Jia, Zongchao

    2015-07-08

    WW domains harbor substrates containing proline-rich motifs, but the substrate specificity and binding mechanism remain elusive for those WW domains less amenable for structural studies, such as human WWP2 (hWWP2). Herein we have employed multiple techniques to investigate the second WW domain (WW2) in hWWP2. Our results show that hWWP2 is a specialized E3 for PPxY motif-containing substrates only and does not recognize other amino acids and phospho-residues. The strongest binding affinity of WW2, and the incompatibility between each WW domain, imply a novel relationship, and our SPR experiment reveals a dynamic binding mode in Class-I WW domains for the first time. The results from alanine-scanning mutagenesis and modeling further point to functionally conserved residues in WW2.

  11. Multiple binding modes of substrate to the catalytic RNA subunit of RNase P from Escherichia coli.

    PubMed Central

    Pomeranz Krummel, D A; Altman, S

    1999-01-01

    M1 RNA that contained 4'-thiouridine was photochemically cross-linked to different substrates and to a product of the reaction it governs. The locations of the cross-links in these photochemically induced complexes were identified. The cross-links indicated that different substrates share some contacts but have distinct binding modes to M1 RNA. The binding of some substrates also results in a substrate-dependent conformational change in the enzymatic RNA, as evidenced by the appearance of an M1 RNA intramolecular cross-link. The identification of the cross-links between M1 RNA and product indicate that they are shared with only one of the three cross-linked E-S complexes that were identified, an indication of noncompetitive inhibition by the product. We also examined whether the cross-linked complexes between M1 RNA and substrate(s) or product are altered in the presence of the enzyme's protein cofactor (C5 protein) and in the presence of different concentrations of divalent metal ions. C5 protein enhanced the yield of certain M1 RNA-substrate cross-linked complexes for both wild-type M1 RNA and a deletion mutant of M1 RNA (delta[273-281]), but not for the M1 RNA-product complex. High concentrations of Mg2+ increased the yield of all M1 RNA-substrate complexes but not the M1 RNA-product complex. PMID:10445877

  12. Selective inhibition of dipeptidyl peptidase 4 by targeting a substrate-specific secondary binding site.

    PubMed

    Kühn-Wache, Kerstin; Bär, Joachim W; Hoffmann, Torsten; Wolf, Raik; Rahfeld, Jens-Ulrich; Demuth, Hans-Ulrich

    2011-03-01

    Dipeptidyl peptidase 4/CD26 (DP4) is a multifunctional serine protease liberating dipeptide from the N-terminus of (oligo)peptides which can modulate the activity of these peptides. The enzyme is involved in physiological processes such as blood glucose homeostasis and immune response. DP4 substrate specificity is characterized in detail using synthetic dipeptide derivatives. The specificity constant k(cat)/K(m) strongly depends on the amino acid in P₁-position for proline, alanine, glycine and serine with 5.0 x 10⁵ M⁻¹ s⁻¹, 1.8 x 10⁴ M⁻¹ s⁻¹, 3.6 x 10² M⁻¹ s⁻¹, 1.1 x 10² M⁻¹ s⁻¹, respectively. By contrast, kinetic investigation of larger peptide substrates yields a different pattern. The specific activity of DP4 for neuropeptide Y (NPY) cleavage comprising a proline in P₁-position is the same range as the k(cat)/K(m) values of NPY derivatives containing alanine or serine in P₁-position with 4 x 10⁵ M⁻¹ s⁻¹, 9.5 x 10⁵ M⁻¹ s⁻¹ and 2.1 x 10⁵ M⁻¹ s⁻¹, respectively. The proposed existence of an additional binding region outside the catalytic center is supported by measurements of peptide substrates with extended chain length. This 'secondary' binding site interaction depends on the amino acid sequence in P₄'-P₈'-position. Interactions with this binding site could be specifically blocked for substrates of the GRF/glucagon peptide family. By contrast, substrates not belonging to this peptide family and dipeptide derivative substrates that only bind to the catalytic center of DP4 were not inhibited. This more selective inhibition approach allows, for the first time, to distinguish between substrate families by substrate-discriminating inhibitors.

  13. Insight into determinants of substrate binding and transport in a multidrug efflux protein.

    PubMed

    Alegre, Kamela O; Paul, Stephanie; Labarbuta, Paola; Law, Christopher J

    2016-03-10

    Multidrug resistance arising from the activity of integral membrane transporter proteins presents a global public health threat. In bacteria such as Escherichia coli, transporter proteins belonging to the major facilitator superfamily make a considerable contribution to multidrug resistance by catalysing efflux of myriad structurally and chemically different antimicrobial compounds. Despite their clinical relevance, questions pertaining to mechanistic details of how these promiscuous proteins function remain outstanding, and the role(s) played by individual amino acid residues in recognition, binding and subsequent transport of different antimicrobial substrates by multidrug efflux members of the major facilitator superfamily requires illumination. Using in silico homology modelling, molecular docking and mutagenesis studies in combination with substrate binding and transport assays, we identified several amino acid residues that play important roles in antimicrobial substrate recognition, binding and transport by Escherichia coli MdtM, a representative multidrug efflux protein of the major facilitator superfamily. Furthermore, our studies suggested that 'aromatic clamps' formed by tyrosine and phenylalanine residues located within the substrate binding pocket of MdtM may be important for antimicrobial substrate recognition and transport by the protein. Such 'clamps' may be a structurally and functionally important feature of all major facilitator multidrug efflux proteins.

  14. Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase.

    PubMed

    Whittington, D A; Rosenzweig, A C; Frederick, C A; Lippard, S J

    2001-03-27

    To investigate the role of protein cavities in facilitating movement of the substrates, methane and dioxygen, in the soluble methane monooxygenase hydroxylase (MMOH), we determined the X-ray structures of MMOH from Methylococcus capsulatus (Bath) cocrystallized with dibromomethane or iodoethane, or by using crystals pressurized with xenon gas. The halogenated alkanes bind in two cavities within the alpha-subunit that extend from one surface of the protein to the buried dinuclear iron active site. Two additional binding sites were located in the beta-subunit. Pressurization of two crystal forms of MMOH with xenon resulted in the identification of six binding sites located exclusively in the alpha-subunit. These results indicate that hydrophobic species bind preferentially in preexisting cavities in MMOH and support the hypothesis that such cavities may play a functional role in sequestering and enhancing the availability of the physiological substrates for reaction at the active site.

  15. Effects of organic solvents and substrate binding on trypsin in acetonitrile and hexane media.

    PubMed

    Meng, Yanyan; Yuan, Yuan; Zhu, Yanyan; Guo, Yanzhi; Li, Menglong; Wang, Zhimeng; Pu, Xuemei; Jiang, Lin

    2013-09-01

    In this work, we used molecular dynamic (MD) simulation to study trypsin with and without a six-amino-acid peptide bound in three different solvents (water, acetonitrile and hexane) in order to provide molecular information for well understanding the structure and function of enzymes in non-aqueous media. The results show that the enzyme is more compact and less native-like in hexane than in the other two polar solvents. The substrate could stabilize the native protein structure in the two polar media, but not in the non-polar hexane. There are no significant differences in the conformation of the S1 pocket upon the substrate binding in water and acetonitrile media while a reverse behavior is observed in hexane media, implying a possible induced fit binding mechanism in the non-polar media. The substrate binding enhances the stability of catalytic H-bond network since it could expel the solvent molecules from the active site. The enzyme and the substrate appear to be more appropriate to the reactive conformation in the organic solvents compared with aqueous solution. There is much greater substrate binding strength in hexane media than the water and acetonitrile ones since the polar solvent significantly weakens electrostatic interactions, which are observed to be the main driving force to the binding. In addition, some residues of the S1 pocket could remain favorable contribution to the binding despite the solvent change, but with differences in the contribution extent, the number and the type of residues between the three media.

  16. Comparative Modeling of the Human Monoamine Transporters: Similarities in Substrate Binding

    PubMed Central

    2012-01-01

    The amino acid compositions of the substrate binding pockets of the three human monoamine transporters are compared as is the orientation of the endogenous substrates, serotonin, dopamine, and norepinephrine, bound in these. Through a combination of homology modeling, induced fit dockings, molecular dynamics simulations, and uptake experiments in mutant transporters, we propose a common binding mode for the three substrates. The longitudinal axis of the substrates is similarly oriented with these, forming an ionic interaction between the ammonium group and a highly conserved aspartate, Asp98 (serotonin transporter, hSERT), Asp79 (dopamine transporter, hDAT), and Asp75 (norepinephrine transporter, hNET). The 6-position of serotonin and the para-hydroxyl groups of dopamine and norepinephrine were found to face Ala173 in hSERT, Gly153 in hDAT, and Gly149 in hNET. Three rotations of the substrates around the longitudinal axis were identified. In each mode, an aromatic hydroxyl group of the substrates occupied equivalent volumes of the three binding pockets, where small changes in amino acid composition explains the differences in selectivity. Uptake experiments support that the 5-hydroxyl group of serotonin and the meta-hydroxyl group norepinephrine and dopamine are placed in the hydrophilic pocket around Ala173, Ser438, and Thr439 in hSERT corresponding to Gly149, Ser419, Ser420 in hNET and Gly153 Ser422 and Ala423 in hDAT. Furthermore, hDAT was found to possess an additional hydrophilic pocket around Ser149 to accommodate the para-hydroxyl group. Understanding these subtle differences between the binding site compositions of the three transporters is imperative for understanding the substrate selectivity, which could eventually aid in developing future selective medicines. PMID:23421681

  17. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.

    PubMed Central

    Liaw, S. H.; Kuo, I.; Eisenberg, D.

    1995-01-01

    Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS

  18. Unlocking the binding and reaction mechanism of hydroxyurea substrates as biological nitric oxide donors

    PubMed Central

    Vankayala, Sai Lakshmana; Hargis, Jacqueline C.; Woodcock, H. Lee

    2012-01-01

    Hydroxyurea is the only FDA approved treatment of sickle cell disease. It is believed the primary mechanism of action is associated with the pharmacological elevation of nitric oxide in the blood; however, the exact details of this are still unclear. In the current work, we investigate the atomic level details of this process using a combination of flexible-ligand / flexible-receptor virtual screening coupled with energetic analysis that decomposes interaction energies. Utilizing these methods we were able to elucidate the previously unknown substrate binding modes of a series of hydroxyurea analogs to hemoglobin and the concomitant structural changes of the enzyme. We identify a backbone carbonyl that forms a hydrogen bond with bound substrates. Our results are consistent with kinetic and EPR measurements of hydroxyurea-hemoglobin reactions and a full mechanism is proposed that offers new insights into possibly improving substrate binding and/or reactivity. PMID:22519847

  19. Substrate binding and formation of an occluded state in the leucine transporter.

    PubMed

    Celik, Leyla; Schiøtt, Birgit; Tajkhorshid, Emad

    2008-03-01

    Translocation through the extracellular vestibule and binding of leucine in the leucine transporter (LeuT) have been studied with molecular dynamics simulations. More than 0.1 mus of all-atom molecular dynamics simulations have been performed on different combinations of LeuT, bound substrate, and bound structural Na(+) ions to describe molecular events involved in substrate binding and in the formation of the occluded state and to investigate the dynamics of this state. Three structural features are found to be directly involved in the initial steps of leucine transport: a Na(+) ion directly coordinated to leucine (Na-1), two aromatic residues closing the binding site toward the extracellular vestibule (Tyr-108 and Phe-253), and a salt bridge in the extracellular vestibule (Arg-30 and Asp-404). These features account for observed differences between simulations of LeuT with and without bound substrate and for a possible pathway for leucine binding and thereby formation of the occluded LeuT binding site.

  20. Rearrangement of substrate secondary structure facilitates binding to the Neurospora VS ribozyme.

    PubMed

    Zamel, Ricardo; Collins, Richard A

    2002-12-13

    The Neurospora VS ribozyme differs from other small, naturally occurring ribozymes in that it recognizes for trans cleavage or ligation a substrate that consists largely of a stem-loop structure. We have previously found that cleavage or ligation by the VS ribozyme requires substantial rearrangement of the secondary structure of stem-loop I, which contains the cleavage/ligation site. This rearrangement includes breaking the top base-pair of stem-loop I, allowing formation of a kissing interaction with loop V, and changing the partners of at least three other base-pairs within stem-loop I to adopt a conformation termed shifted. In the work presented, we have designed a binding assay and used mutational analysis to investigate the contribution of each of these structural changes to binding and ligation. We find that the loop I-V kissing interaction is necessary but not sufficient for binding and ligation. Constitutive opening of the top base-pair of stem-loop I has little, if any, effect on either activity. In contrast, the ability to adopt the shifted conformation of stem-loop I is a major determinant of binding: mutants that cannot adopt this conformation bind much more weakly than wild-type and mutants with a constitutively shifted stem-loop I bind much more strongly. These results implicate the adoption of the shifted structure of stem-loop I as an important process at the binding step in the VS ribozyme reaction pathway. Further investigation of features near the cleavage/ligation site revealed that sulphur substitution of the non-bridging phosphate oxygen atoms immediately downstream of the cleavage/ligation site, implicated in a putative metal ion binding site, significantly altered the cleavage/ligation equilibrium but did not perturb substrate binding significantly. This indicates that the substituted oxygen atoms, or an associated metal ion, affect a step that occurs after binding and that they influence the rates of cleavage and ligation differently.

  1. Comparison of three classes of human liver alcohol dehydrogenase. Emphasis on different substrate binding pockets.

    PubMed

    Eklund, H; Müller-Wille, P; Horjales, E; Futer, O; Holmquist, B; Vallee, B L; Höög, J O; Kaiser, R; Jörnvall, H

    1990-10-24

    Conformational models of the three characterized classes of mammalian liver alcohol dehydrogenase were constructed using computer graphics based on the known three-dimensional structure of the E subunit of the horse enzyme (class I) and the primary structures of the three human enzyme classes. This correlates the substrate-binding pockets of the class I subunits (alpha, beta and gamma in the human enzyme) with those of the class II and III subunits (pi and chi, respectively) for three enzymes that differ in substrate specificity, inhibition pattern and many other properties. The substrate-binding sites exhibit pronounced differences in both shape and properties. Comparing human class I subunits with those of class II and III subunits there are no less than 8 and 10 replacements, respectively, out of 11 residues in the substrate pocket, while in the human class I isozyme variants, only 1-3 of these 11 positions differ. A single residue, Val294, is conserved throughout. The liver alcohol dehydrogenases, with different substrate-specificity pockets, resemble the patterns of other enzyme families such as the pancreatic serine proteases. The inner part of the substrate cleft in the class II and III enzymes is smaller than in the horse class I enzyme, because both Ser48 and Phe93 are replaced by larger residues, Thr and Tyr, respectively. In class II, the residues in the substrate pocket are larger in about half of the positions. It is rich in aromatic residues, four Phe and one Tyr, making the substrate site distinctly smaller than in the class I subunits. In class III, the inner part of the substrate cleft is narrow but the outer part considerably wider and more polar than in the class I and II enzymes. In addition, Ser (or Thr) and Tyr in class II and III instead of His51 may influence proton abstraction/donation at the active site.

  2. Structural characterization of the Streptococcus pneumoniae carbohydrate substrate-binding protein SP0092

    PubMed Central

    Tang, Minzhe

    2017-01-01

    Streptococcus pneumoniae is an opportunistic respiratory pathogen that remains a major cause of morbidity and mortality globally, with infants and the elderly at the highest risk. S. pneumoniae relies entirely on carbohydrates as a source of carbon and dedicates a third of all uptake systems to carbohydrate import. The structure of the carbohydrate-free substrate-binding protein SP0092 at 1.61 Å resolution reveals it to belong to the newly proposed subclass G of substrate-binding proteins, with a ligand-binding pocket that is large enough to accommodate complex oligosaccharides. SP0092 is a dimer in solution and the crystal structure reveals a domain-swapped dimer with the monomer subunits in a closed conformation but in the absence of carbohydrate ligand. This closed conformation may be induced by dimer formation and could be used as a mechanism to regulate carbohydrate uptake. PMID:28045395

  3. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  4. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition.

    PubMed

    Wienk, Hans; Slootweg, Jack C; Speerstra, Sietske; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2013-07-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition.

  5. Substrate binding by a bacterial ABC transporter involved in polysaccharide export

    SciTech Connect

    Cuthbertson, Leslie; Kimber, Matthew S.; Whitfield, Chris

    2008-04-02

    ATP-binding-cassette (ABC) transporters are responsible for the export of a wide variety of cell-surface glycoconjugates in both Gram-positive and Gram-negative bacteria. These include the O-antigenic polysaccharide (O-PS) portion of lipopolysaccharide, a crucial virulence determinant in Gram-negative pathogens. O-PSs are synthesized by one of two fundamentally different pathways. Escherichia coli O serotypes O8 and O9a provide the prototype systems for studying O-PS export via ABC transporters. The transporter is composed of the transmembrane component Wzm and the nucleotide-binding component Wzt. Although the N-terminal domain of Wzt is a conventional ABC protein, the C-terminal domain of Wzt (C-Wzt) is a unique structural element that determines the specificity of the transporter for either the O8 or O9a O-PS. We show here that the two domains of Wzt can function when expressed as separate polypeptides; both are essential for export. In vitro, C-Wzt binds its cognate O-PS by recognizing a residue located at the nonreducing end of the polymer. The crystal structure of C-WztO9a is reported here and reveals a {beta} sandwich with an immunoglobulin-like topology that contains the O-PS-binding pocket. Substrate interactions with nucleotide-binding domains have been demonstrated in an ABC exporter previously. However, to our knowledge substrate binding by a discrete, cytoplasmic accessory domain in an extended nucleotide-binding domain polypeptide has not previously been demonstrated. Elucidation of the substrate-recognition system involved in O-PS export provides insight into the mechanism that coordinates polymer biosynthesis, termination, and export.

  6. The effect on structural and solvent water molecules of substrate binding to ferric horseradish peroxidase.

    PubMed

    Simpson, Niall; Adamczyk, Katrin; Hithell, Gordon; Shaw, Daniel J; Greetham, Gregory M; Towrie, Michael; Parker, Anthony W; Hunt, Neil T

    2015-01-01

    Ultrafast, multi-dimensional infrared spectroscopy, in the form of 2D-IR and pump-probe measurements, has been employed to investigate the effect of substrate binding on the structural dynamics of the horseradish peroxidase (HRP) enzyme. Using nitric oxide bound to the ferric haem of HRP as a sensitive probe of local dynamics, we report measurements of the frequency fluctuations (spectral diffusion) and vibrational lifetime of the NO stretching mode with benzohydroxamic acid (BHA) located in the substrate-binding position at the periphery of the haem pocket, in both D2O and H2O solvents. The results reveal that, with BHA bound to the enzyme, the local structural dynamics are insensitive to H/D exchange. These results are in stark contrast to those found in studies of the substrate-free enzyme, which demonstrated that the local chemical and dynamic environment of the haem ligand is influenced by water molecules. In light of the large changes in solvent accessibility caused by substrate binding, we discuss the potential for varying roles for the solvent in the haem pocket of HRP at different stages along the reaction coordinate of the enzymatic mechanism.

  7. A role for the strained phenylalanine ring rotation induced by substrate binding to cytochrome CYP102A1.

    PubMed

    Haines, Donovan C

    2006-01-01

    X-ray crystal structures of CYP102A1 (P450BM-3) have shown that PHE87 rotates upon substrate binding and is in contact with the heme cofactor. Analysis of substrate binding data combined with DFT calculations suggest that the ring is rotated into an unfavorable interaction with the heme and this could drive active site rearrangement.

  8. Insight into the Role of Substrate-binding Residues in Conferring Substrate Specificity for the Multifunctional Polysaccharide Lyase Smlt1473

    PubMed Central

    MacDonald, Logan C.; Berger, Bryan W.

    2014-01-01

    Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly

  9. Insight into the role of substrate-binding residues in conferring substrate specificity for the multifunctional polysaccharide lyase Smlt1473.

    PubMed

    MacDonald, Logan C; Berger, Bryan W

    2014-06-27

    Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly

  10. Binding Induced RNA Conformational Changes Control Substrate Recognition and Catalysis by the Thiostrepton Resistance Methyltransferase (Tsr)*

    PubMed Central

    Kuiper, Emily G.; Conn, Graeme L.

    2014-01-01

    Ribosomal RNA (rRNA) post-transcriptional modifications are essential for ribosome maturation, translational fidelity, and are one mechanism used by both antibiotic-producing and pathogenic bacteria to resist the effects of antibiotics that target the ribosome. The thiostrepton producer Streptomyces azureus prevents self-intoxication by expressing the thiostrepton-resistance methyltransferase (Tsr), which methylates the 2′-hydroxyl of 23 S rRNA nucleotide adenosine 1067 within the thiostrepton binding site. Tsr is a homodimer with each protomer containing an L30e-like amino-terminal domain (NTD) and a SPOUT methyltransferase family catalytic carboxyl-terminal domain (CTD). We show that both enzyme domains are required for high affinity RNA substrate binding. The Tsr-CTD has intrinsic, weak RNA affinity that is necessary to direct the specific high-affinity Tsr-RNA interaction via NTDs, which have no detectable RNA affinity in isolation. RNA structure probing experiments identify the Tsr footprint on the RNA and structural changes in the substrate, induced specifically upon NTD binding, which are necessary for catalysis by the CTD. Additionally, we identify a key amino acid in each domain responsible for CTD-RNA binding and the observed NTD-dependent RNA structural changes. These studies allow us to develop a model for Tsr-RNA interaction in which the coordinated substrate recognition of each Tsr structural domain is an obligatory pre-catalytic recognition event. Our findings underscore the complexity of substrate recognition by RNA modification enzymes and the potential for direct involvement of the RNA substrate in controlling the process of its modification. PMID:25086036

  11. Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode.

    PubMed Central

    Blankenfeldt, W.; Nowicki, C.; Montemartini-Kalisz, M.; Kalisz, H. M.; Hecht, H. J.

    1999-01-01

    The crystal structure of tyrosine aminotransferase (TAT) from the parasitic protozoan Trypanosoma cruzi, which belongs to the aminotransferase subfamily Igamma, has been determined at 2.5 A resolution with the R-value R = 15.1%. T. cruzi TAT shares less than 15% sequence identity with aminotransferases of subfamily Ialpha but shows only two larger topological differences to the aspartate aminotransferases (AspATs). First, TAT contains a loop protruding from the enzyme surface in the larger cofactor-binding domain, where the AspATs have a kinked alpha-helix. Second, in the smaller substrate-binding domain, TAT has a four-stranded antiparallel beta-sheet instead of the two-stranded beta-sheet in the AspATs. The position of the aromatic ring of the pyridoxal-5'-phosphate cofactor is very similar to the AspATs but the phosphate group, in contrast, is closer to the substrate-binding site with one of its oxygen atoms pointing toward the substrate. Differences in substrate specificities of T. cruzi TAT and subfamily Ialpha aminotransferases can be attributed by modeling of substrate complexes mainly to this different position of the cofactor-phosphate group. Absence of the arginine, which in the AspATs fixes the substrate side-chain carboxylate group by a salt bridge, contributes to the inability of T. cruzi TAT to transaminate acidic amino acids. The preference of TAT for tyrosine is probably related to the ability of Asn17 in TAT to form a hydrogen bond to the tyrosine side-chain hydroxyl group. PMID:10595543

  12. Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis.

    PubMed

    Liu, Shijia; Shao, Shangjin; Li, Linlin; Cheng, Zhi; Tian, Li; Gao, Peiji; Wang, Lushan

    2015-12-11

    Chitinases and chitosanases, referred to as chitinolytic enzymes, are two important categories of glycoside hydrolases (GH) that play a key role in degrading chitin and chitosan, two naturally abundant polysaccharides. Here, we investigate the active site architecture of the major chitosanase (GH8, GH46) and chitinase families (GH18, GH19). Both charged (Glu, His, Arg, Asp) and aromatic amino acids (Tyr, Trp, Phe) are observed with higher frequency within chitinolytic active sites as compared to elsewhere in the enzyme structure, indicating significant roles related to enzyme function. Hydrogen bonds between chitinolytic enzymes and the substrate C2 functional groups, i.e. amino groups and N-acetyl groups, drive substrate recognition, while non-specific CH-π interactions between aromatic residues and substrate mainly contribute to tighter binding and enhanced processivity evident in GH8 and GH18 enzymes. For different families of chitinolytic enzymes, the number, type, and position of substrate atoms bound in the active site vary, resulting in different substrate-binding specificities. The data presented here explain the synergistic action of multiple enzyme families at a molecular level and provide a more reasonable method for functional annotation, which can be further applied toward the practical engineering of chitinases and chitosanases.

  13. Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases.

    PubMed

    Manjeet, Kaur; Purushotham, Pallinti; Neeraja, Chilukoti; Podile, Appa Rao

    2013-08-25

    Glycosyl hydrolase (GH) family 18 chitinases (Chi) and family 33 chitin binding proteins (CBPs) from Bacillus thuringiensis serovar kurstaki (BtChi and BtCBP), B. licheniformis DSM13 (BliChi and BliCBP) and Serratia proteamaculans 568 (SpChiB and SpCBP21) were used to study the efficiency and synergistic action of BtChi, BliChi and SpChiB individually with BtCBP, BliCBP or SpCBP21. Chitinase assay revealed that only BtChi and SpChiB showed synergism in hydrolysis of chitin, while there was no increase in products generated by BliChi, in the presence of the three above mentioned CBPs. This suggests that some (specific) CBPs are able to exert a synergistic effect on (specific) chitinases. A mutant of BliChi, designated as BliGH, was constructed by deleting the C-terminal fibronectin III (FnIII) and carbohydrate binding module 5 (CBM5) to assess the contribution of FnIII and CBM5 domains in the synergistic interactions of GH18 chitinases with CBPs. Chitinase assay with BliGH revealed that the accessory domains play a major role in making BliChi an efficient enzyme. We studied binding of BtCBP and BliCBP to α- and β-chitin. The BtCBP, BliCBP or SpCBP21 did not act synergistically with chitinases in hydrolysis of the chitin, interspersed with other polymers, present in fungal cell walls.

  14. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome

    PubMed Central

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.

    2016-01-01

    Structured Abstract INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly-associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced

  15. Roles of the anaphase-promoting complex/cyclosome and of its activator Cdc20 in functional substrate binding

    PubMed Central

    Eytan, Esther; Moshe, Yakir; Braunstein, Ilana; Hershko, Avram

    2006-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin-protein ligase that targets for degradation cell-cycle regulatory proteins during exit from mitosis and in the G1 phase of the cell cycle. The activity of APC/C in mitosis and in G1 requires interaction with the activator proteins Cdc20 and Cdh1, respectively. Substrates of APC/C–Cdc20 contain a recognition motif called the “destruction box” (D-box). The mode of the action of APC/C activators and their possible role in substrate binding remain poorly understood. Several investigators suggested that Cdc20 and Cdh1 mediate substrate recognition, whereas others proposed that substrates bind to APC/C or to APC/C–activator complexes. All these studies used binding assays, which do not necessarily indicate that substrate binding is functional and leads to product formation. In the present investigation we examined this problem by an “isotope-trapping” approach that directly demonstrates productive substrate binding. With this method we found that the simultaneous presence of both APC/C and Cdc20 is required for functional substrate binding. By contrast, with conventional binding assays we found that either Cdc20 or APC/C can bind substrate by itself, but only at low affinity and relaxed selectivity for D-box. Our results are consistent with models in which interaction of substrate with specific binding sites on both APC/C and Cdc20 is involved in selective and productive substrate binding. PMID:16455800

  16. An active-site phenylalanine directs substrate binding and C-H cleavage in the alpha-ketoglutarate-dependent dioxygenase TauD.

    PubMed

    McCusker, Kevin P; Klinman, Judith P

    2010-04-14

    Enzymes that cleave C-H bonds are often found to depend on well-packed hydrophobic cores that influence the distance between the hydrogen donor and acceptor. Residue F159 in taurine alpha-ketoglutarate dioxygenase (TauD) is demonstrated to play an important role in the binding and orientation of its substrate, which undergoes a hydrogen atom transfer to the active site Fe(IV)=O. Mutation of F159 to smaller hydrophobic side chains (L, V, A) leads to substantially reduced rates for substrate binding and for C-H bond cleavage, as well as increased contribution of the chemical step to k(cat) under steady-state turnover conditions. The greater sensitivity of these substrate-dependent processes to mutation at position 159 than observed for the oxygen activation process supports a previous conclusion of modularity of function within the active site of TauD (McCusker, K. P.; Klinman, J. P. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19791-19795). Extraction of intrinsic deuterium kinetic isotope effects (KIEs) using single turnover transients shows 2- to 4-fold increase in the size of the KIE for F159V in relation to wild-type and F159L. It appears that there is a break in behavior following removal of a single methylene from the side chain of F159L to generate F159V, whereby the protein active site loses its ability to restore the internuclear distance between substrate and Fe(IV)=O that supports optimal hydrogenic wave function overlap.

  17. Structural domains in NADPH: Protochlorophyllide oxidoreductases involved in catalysis and substrate binding. Final report

    SciTech Connect

    Timko, Michael P.

    1999-09-24

    Until recently little direct information was available about specific structural determinants within the light-dependent NADPH: protochlorophyllide oxidoreductases (PORs) required for substrate and cofactor binding, catalytic activity, and thylakoid membrane localization. Based on our previous DOE-funded studies, during the past year we brought to fruition a number of ongoing experiments, initiated several new avenues of investigations, and overall have made considerable progress towards establishing the basic structural parameters governing POR function. Our studies to date have defined residues and domains involved in substrate and cofactor binding and catalysis, and elaborated on the mechanism for membrane localization of POR in developing plastids. Our results and their significance, as well as our work in progress, are detailed.

  18. Studies on the mechanism of hydroxymethylbilane synthase concerning the role of arginine residues in substrate binding.

    PubMed Central

    Lander, M; Pitt, A R; Alefounder, P R; Bardy, D; Abell, C; Battersby, A R

    1991-01-01

    The role of conserved arginine residues in hydroxymethylbilane synthase was investigated by replacing these residues in the enzyme from Escherichia coli with leucine residues by using site-directed mutagenesis. The kinetic parameters for these mutant enzymes and studies on the formation of intermediate enzyme-substrate complexes indicate that several of these arginine residues are involved in binding the carboxylate side chains of the pyrromethane cofactor and the growing oligopyrrole chain. Images Fig. 6. PMID:2025226

  19. Oligosaccharyltransferase Subunits Bind Polypeptide Substrate to Locally Enhance N-glycosylation*

    PubMed Central

    Jamaluddin, M. Fairuz B.; Bailey, Ulla-Maja; Schulz, Benjamin L.

    2014-01-01

    Oligosaccharyltransferase is a multiprotein complex that catalyzes asparagine-linked glycosylation of diverse proteins. Using yeast genetics and glycoproteomics, we found that transient interactions between nascent polypeptide and Ost3p/Ost6p, homologous subunits of oligosaccharyltransferase, were able to modulate glycosylation efficiency in a site-specific manner in vivo. These interactions were driven by hydrophobic and electrostatic complementarity between amino acids in the peptide-binding groove of Ost3p/Ost6p and the sequestered stretch of substrate polypeptide. Based on this dependence, we used in vivo scanning mutagenesis and in vitro biochemistry to map the precise interactions that affect site-specific glycosylation efficiency. We conclude that transient binding of substrate polypeptide by Ost3p/Ost6p increases glycosylation efficiency at asparagines proximal and C-terminal to sequestered sequences. We detail a novel mode of interaction between translocating nascent polypeptide and oligosaccharyltransferase in which binding to Ost3p/Ost6p segregates a short flexible loop of glycosylation-competent polypeptide substrate that is delivered to the oligosaccharyltransferase active site for efficient modification. PMID:25118247

  20. Substrate and Transition State Binding in Alkaline Phosphatase Analyzed by Computation of Oxygen Isotope Effects.

    PubMed

    Roston, Daniel; Cui, Qiang

    2016-09-14

    Enzymes are powerful catalysts, and a thorough understanding of the sources of their catalytic power will facilitate many medical and industrial applications. Here we have studied the catalytic mechanism of alkaline phosphatase (AP), which is one of the most catalytically proficient enzymes known. We have used quantum mechanics calculations and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to model a variety of isotope effects relevant to the reaction of AP. We have calculated equilibrium isotope effects (EIEs), binding isotope effects (BIEs), and kinetic isotope effects (KIEs) for a range of phosphate mono- and diester substrates. The results agree well with experimental values, but the model for the reaction's transition state (TS) differs from the original interpretation of those experiments. Our model indicates that isotope effects on binding make important contributions to measured KIEs on V/K, which complicated interpretation of the measured values. Our results provide a detailed interpretation of the measured isotope effects and make predictions that can test the proposed model. The model indicates that the substrate is deformed in the ground state (GS) of the reaction and partially resembles the TS. The highly preorganized active site preferentially binds conformations that resemble the TS and not the GS, which induces the substrate to adapt to the enzyme, rather than the other way around-as with classic "induced fit" models. The preferential stabilization of the TS over the GS is what lowers the barrier to the chemical step.

  1. Binding of mouse immunoglobulin G to polylysine-coated glass substrate for immunodiagnosis

    NASA Astrophysics Data System (ADS)

    Vashist, Sandeep Kumar; Tewari, Rupinder; Bajpai, Ram Prakash; Bharadwaj, Lalit Mohan; Raiteri, Roberto

    2006-12-01

    We report a method for immobilizing mouse immunoglobulin G (IgG) on polylysine-coated glass substrate for immunodiagnostic applications. Mouse IgG molecules were immobilized on polylysine-coated glass substrate employing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and protein A. The amino groups of the polylysine-coated glass slide were cross linked to the carboxyl groups of protein A employing EDC crosslinker. Protein A was employed as it binds to the constant Fc region of antibodies keeping their antigen binding sites on the variable F ab region free to bind to antigens. The qualitative analysis of surface immobilized mouse IgG was done by fluorescent microscopy employing fluorescein isothiocyanate (FITC) labeled mouse IgG molecules. The immobilization densities of protein A and mouse IgG were determined by 3, 3', 4, 4'-tetramethyl benzidine (TMB) substrate assay employing horse radish peroxidise labelled molecules and were found to be 130 +/- 17 ng/cm2 and 596 +/- 31 ng/cm2 respectively. The biomolecular coatings analyzed by atomic force microscopy (AFM) were found to be uniform.

  2. Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding.

    PubMed

    Anandan, Anandhi; Evans, Genevieve L; Condic-Jurkic, Karmen; O'Mara, Megan L; John, Constance M; Phillips, Nancy J; Jarvis, Gary A; Wills, Siobhan S; Stubbs, Keith A; Moraes, Isabel; Kahler, Charlene M; Vrielink, Alice

    2017-02-28

    Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.

  3. Ricin A-chain structural determinant for binding substrate analogues: a molecular dynamics simulation analysis.

    PubMed

    Olson, M A

    1997-01-01

    Ricin A-chain is a cytotoxic protein that attacks ribosomes by hydrolyzing a specific adenine base from a highly conserved, single-stranded rRNA hairpin containing the tetraloop sequence GAGA. Molecular-dynamics simulation methods are used to analyze the structural determinant for three substrate analogues bound to the ricin A-chain molecule. Simulations were applied to the binding of the dinucleotide adenyl-3',5'-guanosine employing the x-ray crystal structure of the ricin complex and a modeled CGAGAG hexanucleotide loop taken from the NMR solution structure of a 29-mer oligonucleotide hairpin. A third simulation model is also presented describing a conformational search of the docked 29-mer structure by using a simulated-annealing method. Analysis of the structural interaction energies for each model shows the overall binding dominated by nonspecific interactions, which are mediated by specific arginine contracts from the highly basic region on the protein surface. The tetraloop conformation of the 29-mer was found to make specific interactions with conserved protein residues, in a manner that favored the GAGA sequence. A comparison of the two docked loop conformations with the NMR structure revealed significant positional deviations, suggesting that ricin may use an induced fit mechanism to recognize and bind the rRNA substrate. The conserved Tyr-80 may play an important conformational entropic role in the binding and release of the target adenine in the active site.

  4. Acceptor conductivity in bulk zinc oxide (0001) crystals

    NASA Astrophysics Data System (ADS)

    Adekore, Bababunmi Tolu

    ZnO is a promising wide bandgap semiconductor. Its renowned and prominent properties as its bandgap of 3.37eV at 4.2K; its very high excitonic binding energy, 60meV; its high melting temperature, 2248K constitute the basis for the recently renewed and sustained scientific interests in the material. In addition to the foregoing, the availability of bulk substrates of industrially relevant sizes provides important opportunities such as homoepitaxial deposition of the material which is a technological asset in the production of efficient optoelectronic and electronic devices. The nemesis of wide bandgap materials cannot be more exemplified than in ZnO. The notorious limitation of asymmetric doping and the haunting plague of electrically active point defects dim the bright future of the material. In this case, the search for reliable and consistent acceptor conductivity in bulk substrates has been hitherto, unsuccessful. In the dissertation that now follows, our efforts have been concerted in the search for a reliable acceptor. We have carefully investigated the science of point defects in the material, especially those responsible for the high donor conductivity. We also investigated and herein report variety of techniques of introducing acceptors into the material. We employ the most relevant and informative characterization techniques in verifying both the intended conductivity and the response of intrinsic crystals to variation in temperature and strain. And finally we explain deviations, where they exist, from ideal acceptor characteristics. Our work on reliable acceptor has been articulated in four papers. The first establishing capacitance based methods of monitoring electrically active donor defects. The second investigates the nature of anion acceptors on the oxygen sublattice. A study similar to the preceding study was conducted for cation acceptors on the zinc sublattice and reported in the third paper. Finally, an analysis of the response of the crystal to

  5. Behavior of lignin-binding cellulase in the presence of fresh cellulosic substrate.

    PubMed

    Nonaka, Hiroshi; Kobayashi, Ai; Funaoka, Masamitsu

    2013-05-01

    A model lignin-binding cellulase was prepared from Trichoderma reesei cellulase and lignocresol, which was synthesized from softwood or hardwood lignin. Filter paper was incubated with the lignocresol-cellulase complex, and it was observed that only a limited amount of cellulase migrated to the filter paper. The cellulase adsorption isotherms for the lignocresols and filter paper were fitted to a Langmuir absorption model, and the determined Langmuir constants were as follows: softwood lignocresol>hardwood lignocresol>filter paper. The calculations demonstrated that lignin-binding cellulase can potentially be recovered by the addition of a sufficient quantity of cellulosic substrate. As a result, the lignocresol-binding cellulase is highly stable and lignocresol can potentially be used for immobilizing cellulase in the active state.

  6. Multi-site substrate binding and interplay in barley alpha-amylase 1.

    PubMed

    Nielsen, Morten Munch; Seo, Eun-Seong; Bozonnet, Sophie; Aghajari, Nushin; Robert, Xavier; Haser, Richard; Svensson, Birte

    2008-07-23

    Certain starch hydrolases possess secondary carbohydrate binding sites outside of the active site, suggesting that multi-site substrate interactions are functionally significant. In barley alpha-amylase both Tyr380, situated on a remote non-catalytic domain, and Tyr105 in subsite -6 of the active site cleft are principal carbohydrate binding residues. The dual active site/secondary site mutants Y105A/Y380A and Y105A/Y380M show that each of Tyr380 and Tyr105 is important, albeit not essential for binding, degradation, and multiple attack on polysaccharides, while Tyr105 predominates in oligosaccharide hydrolysis. Additional delicate structure/function relationships of the secondary site are uncovered using Y380A/H395A, Y380A, and H395A AMY1 mutants.

  7. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    SciTech Connect

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  8. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE PAGES

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; ...

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  9. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  10. Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase.

    PubMed

    Shi, Rong; McDonald, Laura; Cui, Qizhi; Matte, Allan; Cygler, Miroslaw; Ekiel, Irena

    2011-01-25

    The Escherichia coli dihydroxyacetone (Dha) kinase is an unusual kinase because (i) it uses the phosphoenolpyruvate carbohydrate: phosphotransferase system (PTS) as the source of high-energy phosphate, (ii) the active site is formed by two subunits, and (iii) the substrate is covalently bound to His218(K)* of the DhaK subunit. The PTS transfers phosphate to DhaM, which in turn phosphorylates the permanently bound ADP coenzyme of DhaL. This phosphoryl group is subsequently transferred to the Dha substrate bound to DhaK. Here we report the crystal structure of the E. coli Dha kinase complex, DhaK-DhaL. The structure of the complex reveals that DhaK undergoes significant conformational changes to accommodate binding of DhaL. Combined mutagenesis and enzymatic activity studies of kinase mutants allow us to propose a catalytic mechanism for covalent Dha binding, phosphorylation, and release of the Dha-phosphate product. Our results show that His56(K) is involved in formation of the covalent hemiaminal bond with Dha. The structure of H56N(K) with noncovalently bound substrate reveals a somewhat different positioning of Dha in the binding pocket as compared to covalently bound Dha, showing that the covalent attachment to His218(K) orients the substrate optimally for phosphoryl transfer. Asp109(K) is critical for activity, likely acting as a general base activating the γ-OH of Dha. Our results provide a comprehensive picture of the roles of the highly conserved active site residues of dihydroxyacetone kinases.

  11. Conformational Changes in Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase upon Substrate Binding

    PubMed Central

    Baños-Sanz, José Ignacio; Sanz-Aparicio, Julia; Whitfield, Hayley; Hamilton, Chris; Brearley, Charles A.; González, Beatriz

    2012-01-01

    Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5 2-K) catalyzes the synthesis of inositol 1,2,3,4,5,6-hexakisphosphate from ATP and IP5. Inositol 1,2,3,4,5,6-hexakisphosphate is implicated in crucial processes such as mRNA export, DNA editing, and phosphorus storage in plants. We previously solved the first structure of an IP5 2-K, which shed light on aspects of substrate recognition. However, failure of IP5 2-K to crystallize in the absence of inositide prompted us to study putative conformational changes upon substrate binding. We have made mutations to residues on a region of the protein that produces a clasp over the active site. A W129A mutant allowed us to capture IP5 2-K in its different conformations by crystallography. Thus, the IP5 2-K apo-form structure displays an open conformation, whereas the nucleotide-bound form shows a half-closed conformation, in contrast to the inositide-bound form obtained previously in a closed conformation. Both nucleotide and inositide binding produce large conformational changes that can be understood as two rigid domain movements, although local changes were also observed. Changes in intrinsic fluorescence upon nucleotide and inositide binding are in agreement with the crystallographic findings. Our work suggests that the clasp might be involved in enzyme kinetics, with the N-terminal lobe being essential for inositide binding and subsequent conformational changes. We also show how IP5 2-K discriminates between inositol 1,3,4,5-tetrakisphosphate and 3,4,5,6-tetrakisphosphate enantiomers and that substrate preference can be manipulated by Arg130 mutation. Altogether, these results provide a framework for rational design of specific inhibitors with potential applications as biological tools for in vivo studies, which could assist in the identification of novel roles for IP5 2-K in mammals. PMID:22745128

  12. Structural Basis for Substrate Binding and the Catalytic Mechanism of Type III Pantothenate Kinase

    SciTech Connect

    Yang, Kun; Strauss, Erick; Huerta, Carlos; Zhang, Hong

    2008-07-15

    Pantothenate kinase (PanK) catalyzes the first step of the universal five-step coenzyme A (CoA) biosynthetic pathway. The recently characterized type III PanK (PanK-III, encoded by the coaX gene) is distinct in sequence, structure and enzymatic properties from both the long-known bacterial type I PanK (PanK-I, exemplified by the Escherichia coli CoaA protein) and the predominantly eukaryotic type II PanK (PanK-II). PanK-III enzymes have an unusually high K{sub m} for ATP, are resistant to feedback inhibition by CoA, and are unable to utilize the N-alkylpantothenamide family of pantothenate analogues as alternative substrates, thus making type III PanK ineffective in generating CoA analogues as antimetabolites in vivo. Previously, we reported the crystal structure of the PanK-III from Thermotoga maritima and identified it as a member of the 'acetate and sugar kinase/heat shock protein 70/actin' (ASKHA) superfamily. Here we report the crystal structures of the same PanK-III in complex with one of its substrates (pantothenate), its product (phosphopantothenate) as well as a ternary complex structure of PanK-III with pantothenate and ADP. These results are combined with isothermal titration calorimetry experiments to present a detailed structural and thermodynamic characterization of the interactions between PanK-III and its substrates ATP and pantothenate. Comparison of substrate binding and catalytic sites of PanK-III with that of eukaryotic PanK-II revealed drastic differences in the binding modes for both ATP and pantothenate substrates, and suggests that these differences may be exploited in the development of new inhibitors specifically targeting PanK-III.

  13. Structural and mechanistic insight into substrate binding from the conformational dynamics in apo and substrate-bound DapE enzyme.

    PubMed

    Dutta, Debodyuti; Mishra, Sabyashachi

    2016-01-21

    Conformational dynamics in large biomolecular systems is often associated with their physiological roles. The dynamics of a dimeric microbial enzyme, DapE, with great potential as an antibiotic target, has been studied employing long molecular dynamics simulations of the enzyme in apo form and in substrate bound complex form. The essential dynamics of the apo enzyme and the enzyme-substrate complex are extracted from the principal component analysis of the simulations of these two systems where the first two principal components are analyzed in detail. The essential motion of the enzyme in the substrate bound form exhibits a folding motion of its two catalytic domains over the two dimerization domains, which results in repulsion of water molecules away from the active site of the enzyme-substrate complex. This folding motion also leads to a stabilizing binding free energy of the substrate arising from the favorable interaction of the substrate and side chains of the enzyme. The dynamics in the enzyme-substrate complex results in stronger interaction between the catalytic and dimerization domains reflected by an increased number of inter-domain hydrogen bonds. The substrate, located in the catalytic domain of DapE, establishes contacts with the side chains of the dimerization domain of DapE by extended chains of hydrogen bonds, which emphasizes the role of the dimerization domain in substrate binding.

  14. Exciton binding energies in GaAs films on AlxGa1-xAs substrates

    NASA Astrophysics Data System (ADS)

    Wu, Zhenhua; Chen, Lei; Tian, Qiang

    2015-10-01

    We use the fractional-dimensional approach (FDA) to study exciton binding energies in GaAs films on AlxGa1-xAs substrates. In this approach, the Schrödinger equation for a given anisotropic system is solved in a noninteger-dimensional space where the interactions are assumed to occur in an isotropic effective environment. The heavy-hole and light-hole exciton binding energies are calculated as functions of the film thickness and substrate thickness. The numerical results show that both the heavy-hole and light-hole exciton binding energies decrease monotonously as the film thickness increases. When the film thickness and the substrate thickness is relatively small, the change of substrate thickness has comparatively remarkable influence on both heavy-hole and light-hole exciton binding energies. As the substrate thickness increases, both the heavy-hole and light-hole exciton binding energies increase gradually. When the film thickness or the substrate thickness is relatively large, the change of substrate thickness has no significant influence on both heavy-hole and light-hole exciton binding energies.

  15. Planar substrate-binding site dictates the specificity of ECF-type nickel/cobalt transporters

    PubMed Central

    Yu, You; Zhou, Mingze; Kirsch, Franziska; Xu, Congqiao; Zhang, Li; Wang, Yu; Jiang, Zheng; Wang, Na; Li, Jun; Eitinger, Thomas; Yang, Maojun

    2014-01-01

    The energy-coupling factor (ECF) transporters are multi-subunit protein complexes that mediate uptake of transition-metal ions and vitamins in about 50% of the prokaryotes, including bacteria and archaea. Biological and structural studies have been focused on ECF transporters for vitamins, but the molecular mechanism by which ECF systems transport metal ions from the environment remains unknown. Here we report the first crystal structure of a NikM, TtNikM2, the substrate-binding component (S component) of an ECF-type nickel transporter from Thermoanaerobacter tengcongensis. In contrast to the structures of the vitamin-specific S proteins with six transmembrane segments (TSs), TtNikM2 possesses an additional TS at its N-terminal region, resulting in an extracellular N-terminus. The highly conserved N-terminal loop inserts into the center of TtNikM2 and occludes a region corresponding to the substrate-binding sites of the vitamin-specific S components. Nickel binds to NikM via its coordination to four nitrogen atoms, which are derived from Met1, His2 and His67 residues. These nitrogen atoms form an approximately square-planar geometry, similar to that of the metal ion-binding sites in the amino-terminal Cu2+- and Ni2+-binding (ATCUN) motif. Replacements of residues in NikM contributing to nickel coordination compromised the Ni-transport activity. Furthermore, systematic quantum chemical investigation indicated that this geometry enables NikM to also selectively recognize Co2+. Indeed, the structure of TtNikM2 containing a bound Co2+ ion has almost no conformational change compared to the structure that contains a nickel ion. Together, our data reveal an evolutionarily conserved mechanism underlying the metal selectivity of EcfS proteins, and provide insights into the ion-translocation process mediated by ECF transporters. PMID:24366337

  16. Substrate binding mode and reaction mechanism of undecaprenyl pyrophosphate synthase deduced from crystallographic studies.

    PubMed

    Chang, Sing-Yang; Ko, Tzu-Ping; Chen, Annie P-C; Wang, Andrew H-J; Liang, Po-Huang

    2004-04-01

    Undecaprenyl pyrophosphate synthase (UPPs) catalyzes eight consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to form a 55-carbon long-chain product. We previously reported the crystal structure of the apo-enzyme from Escherichia coli and the structure of UPPs in complex with sulfate ions (resembling pyrophosphate of substrate), Mg(2+), and two Triton molecules (product-like). In the present study, FPP substrate was soaked into the UPPs crystals, and the complex structure was solved. Based on the crystal structure, the pyrophosphate head group of FPP is bound to the backbone NHs of Gly29 and Arg30 as well as the side chains of Asn28, Arg30, and Arg39 through hydrogen bonds. His43 is close to the C2 carbon of FPP and may stabilize the farnesyl cation intermediate during catalysis. The hydrocarbon moiety of FPP is bound with hydrophobic amino acids including Leu85, Leu88, and Phe89, located on the alpha3 helix. The binding mode of FPP in cis-type UPPs is apparently different from that of trans-type and many other prenyltransferases which utilize Asprich motifs for substrate binding via Mg(2+). The new structure provides a plausible mechanism for the catalysis of UPPs.

  17. Binding of peroxiredoxin 6 to substrate determines differential phospholipid hydroperoxide peroxidase and phospholipase A2 activities

    PubMed Central

    Manevich, Yefim; Shuvaeva, Tea; Dodia, Chandra; Kazi, Altaf; Feinstein, Sheldon I.; Fisher, Aron B.

    2010-01-01

    Peroxiredoxin 6 (Prdx6) differs from other mammalian peroxiredoxins both in its ability to reduce phospholipid hydroperoxides at neutral pH and in having phospholipase A2 (PLA2) activity that is maximal at acidic pH. We previously showed an active site C47 for peroxidase activity and a catalytic triad S32-H26-D140 necessary for binding of phospholipid and PLA2 activity. This study evaluated binding of reduced and oxidized phospholipid hydroperoxide to Prdx6 at cytosolic pH. Incubation of recombinant Prdx6 with 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine hydroperoxide (PLPCOOH) resulted in peroxidase activity, cys47 oxidation as detected with Prdx6-SO2(3) antibody, and a marked shift in the Prdx6 melting temperature by circular dichroism analysis indicating that PLPCOOH is a specific substrate for Prdx6. Preferential Prdx6 binding to oxidized liposomes was detected by changes in DNS-PE or bis-Pyr fluorescence and by ultrafiltration. Site-specific mutation of S32 or H26 in Prdx6 abolished binding while D140 mutation had no effect. Treatment of A549 cells with peroxides led to lipid peroxidation and translocation of Prdx6 from the cytosol to the cell membrane. Thus, the pH specificity for the two enzymatic activities of Prdx6 can be explained by the differential binding kinetics of the protein; Prdx6 binds to reduced phospholipid at acidic pH but at cytosolic pH binds only phospholipid that is oxidized compatible with a role for Prdx6 in the repair of peroxidized cell membranes. PMID:19236840

  18. Pharmacophore, QSAR, and binding mode studies of substrates of human cytochrome P450 2D6 (CYP2D6) using molecular docking and virtual mutations and an application to chinese herbal medicine screening.

    PubMed

    Mo, Sui-Lin; Liu, Wei-Feng; Li, Chun-Guang; Zhou, Zhi-Wei; Luo, Hai-Bin; Chew, Helen; Liang, Jun; Zhou, Shu-Feng

    2012-07-01

    The highly polymorphic human cytochrome P450 2D6 (CYP2D6) metabolizes about 25% of currently used drugs. In this study, we have explored the interaction of a large number of substrates (n = 120) with wild-type and mutated CYP2D6 by molecular docking using the CDOCKER module. Before we conducted the molecular docking and virtual mutations, the pharmacophore and QSAR models of CYP2D6 substrates were developed and validated. Finally, we explored the interaction of a traditional Chinese herbal formula, Fangjifuling decoction, with CYP2D6 by virtual screening. The optimized pharmacophore model derived from 20 substrates of CYP2D6 contained two hydrophobic features and one hydrogen bond acceptor feature, giving a relevance ratio of 76% when a validation set of substrates were tested. However, our QSAR models gave poor prediction of the binding affinity of substrates. Our docking study demonstrated that 117 out of 120 substrates could be docked into the active site of CYP2D6. Forty one out of 117 substrates (35.04%) formed hydrogen bonds with various active site residues of CYP2D6 and 53 (45.30%) substrates formed a strong π-π interaction with Phe120 (53/54), with only carvedilol showing π-π interaction with Phe483. The active site residues involving hydrogen bond formation with substrates included Leu213, Lys214, Glu216, Ser217, Gln244, Asp301, Ser304, Ala305, Phe483, and Phe484. Furthermore, the CDOCKER algorithm was further applied to study the impact of mutations of 28 active site residues (mostly non-conserved) of CYP2D6 on substrate binding modes using five probe substrates including bufuralol, debrisoquine, dextromethorphan, sparteine, and tramadol. All mutations of the residues examined altered the hydrogen bond formation and/or aromatic interactions, depending on the probe used in molecular docking. Apparent changes of the binding modes have been observed with the Glu216Asp and Asp301Glu mutants. Overall, 60 compounds out of 130 from Fangjifuling decoction

  19. Substrate-binding model of the chlorophyll biosynthetic magnesium chelatase BchH subunit.

    PubMed

    Sirijovski, Nickolche; Lundqvist, Joakim; Rosenbäck, Matilda; Elmlund, Hans; Al-Karadaghi, Salam; Willows, Robert D; Hansson, Mats

    2008-04-25

    Photosynthetic organisms require chlorophyll and bacteriochlorophyll to harness light energy and to transform water and carbon dioxide into carbohydrates and oxygen. The biosynthesis of these pigments is initiated by magnesium chelatase, an enzyme composed of BchI, BchD, and BchH proteins, which catalyzes the insertion of Mg(2+) into protoporphyrin IX (Proto) to produce Mg-protoporphyrin IX. BchI and BchD form an ATP-dependent AAA(+) complex that transiently interacts with the Proto-binding BchH subunit, at which point Mg(2+) is chelated. In this study, controlled proteolysis, electron microscopy of negatively stained specimens, and single-particle three-dimensional reconstruction have been used to probe the structure and substrate-binding mechanism of the BchH subunit to a resolution of 25A(.) The apo structure contains three major lobe-shaped domains connected at a single point with additional densities at the tip of two lobes termed the "thumb" and "finger." With the independent reconstruction of a substrate-bound BchH complex (BchH.Proto), we observed a distinct conformational change in the thumb and finger subdomains. Prolonged proteolysis of native apo-BchH produced a stable C-terminal fragment of 45 kDa, and Proto was shown to protect the full-length polypeptide from degradation. Fitting of a truncated BchH polypeptide reconstruction identified the N- and C-terminal domains. Our results show that the N- and C-terminal domains play crucial roles in the substrate-binding mechanism.

  20. Small Substrate Transport and Mechanism of a Molybdate ATP Binding Cassette Transporter in a Lipid Environment*

    PubMed Central

    Rice, Austin J.; Harrison, Alistair; Alvarez, Frances J. D.; Davidson, Amy L.; Pinkett, Heather W.

    2014-01-01

    Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria. PMID:24722984

  1. Multiple ligand simultaneous docking (MLSD): A novel approach to study the effect of inhibitors on substrate binding to PPO.

    PubMed

    Raghavendra, S; Aditya Rao, S J; Kumar, Vadlapudi; Ramesh, C K

    2015-12-01

    Multiple ligand simultaneous docking, a computational approach is used to study the concurrent interactions between substrate and the macromolecule binding together in the presence of an inhibitor. The present investigation deals with the study of the effect of different inhibitors on binding of substrate to the protein Polyphenoloxidase (PPO). The protein was isolated from Mucuna pruriens and confirmed as tyrosinases involved in L-DOPA production. The activity was measured using different inhibitors at different concentrations taking catechol as substrate. A high-throughput binding study was conducted to compare the binding orientations of individual ligands and multiple ligands employing Autodock 4.2. The results of single substrate docking showed a better binding of urea with the binding energy of -3.48 kJ mol(-1) and inter molecular energy of -3.48 kJ mol(-1) while the results of MLSD revealed that ascorbic acid combined with the substrate showed better inhibition with a decreased binding energy of -2.37 kJ mol(-1).

  2. Substrate Binding Mode and its Implication on Drug Design for Botulinum Neurotoxin A

    SciTech Connect

    Kumaran, D.; Rawat, R; Ahmed, A; Swaminathan, S

    2008-01-01

    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide 197QRATKM202 and its variant 197RRATKM202 to 1.5 A and 1.6 A, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5? sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1?-Arg198, occupies the S1? site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2? subsite is formed by Arg363, Asn368 and Asp370, while S3? subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4?-Lys201 makes hydrogen bond with Gln162. P5?-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.

  3. Comparative thermodynamic studies on substrate and product binding of O-Acetylserine Sulfhydrylase reveals two different ligand recognition modes†

    PubMed Central

    2011-01-01

    Background The importance of understanding the detailed mechanism of cysteine biosynthesis in bacteria is underscored by the fact that cysteine is the only sulfur donor for all cellular components containing reduced sulfur. O-acetylserine sulfhydrylase (OASS) catalyzes this crucial last step in the cysteine biosynthesis and has been recognized as an important gene for the survival and virulence of pathogenic bacteria. Structural and kinetic studies have contributed to the understanding of mechanistic aspects of OASS, but details of ligand recognition features of OASS are not available. In the absence of any detailed study on the energetics of ligand binding, we have studied the thermodynamics of OASS from Salmonella typhimurium (StOASS), Haemophilus influenzae (HiOASS), and Mycobacterium tuberculosis (MtOASS) binding to their substrate O-acetylserine (OAS), substrate analogue (methionine), and product (cysteine). Results Ligand binding properties of three OASS enzymes are studied under defined solution conditions. Both substrate and product binding is an exothermic reaction, but their thermodynamic signatures are very different. Cysteine binding to OASS shows that both enthalpy and entropy contribute significantly to the binding free energy at all temperatures (10-30°C) examined. The analyses of interaction between OASS with OAS (substrate) or methionine (substrate analogue) revealed a completely different mode of binding. Binding of both OAS and methionine to OASS is dominated by a favorable entropy change, with minor contribution from enthalpy change (ΔHSt-Met = -1.5 ± 0.1 kJ/mol; TΔSSt-Met = 8.2 kJ/mol) at 20°C. Our salt dependent ligand binding studies indicate that methionine binding affinity is more sensitive to [NaCl] as compared to cysteine affinity. Conclusions We show that OASS from three different pathogenic bacteria bind substrate and product through two different mechanisms. Results indicate that predominantly entropy driven methionine binding is

  4. Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding.

    PubMed

    Huang, Yun-Tzu; Liu, Tseng-Huang; Lin, Shih-Ming; Chen, Yen-Wei; Pan, Yih-Jiuan; Lee, Ching-Hung; Sun, Yuh-Ju; Tseng, Fan-Gang; Pan, Rong-Long

    2013-07-05

    Homodimeric proton-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H(+)-PPase consists of 14-16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H(+)-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H(+)-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H(+)-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H(+)-PPase upon substrate binding.

  5. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    SciTech Connect

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  6. Structures of 5-Methylthioribose Kinase Reveal Substrate Specificity and Unusual Mode of Nucleotide Binding

    SciTech Connect

    Ku,S.; Yip, P.; Cornell, K.; Riscoe, M.; Behr, J.; Guillerm, G.; Howell, P.

    2007-01-01

    The methionine salvage pathway is ubiquitous in all organisms, but metabolic variations exist between bacteria and mammals. 5-Methylthioribose (MTR) kinase is a key enzyme in methionine salvage in bacteria and the absence of a mammalian homolog suggests that it is a good target for the design of novel antibiotics. The structures of the apo-form of Bacillus subtilis MTR kinase, as well as its ADP, ADP-PO4, AMPPCP, and AMPPCP-MTR complexes have been determined. MTR kinase has a bilobal eukaryotic protein kinase fold but exhibits a number of unique features. The protein lacks the DFG motif typically found at the beginning of the activation loop and instead coordinates magnesium via a DXE motif (Asp{sup 250}-Glu{sup 252}). In addition, the glycine-rich loop of the protein, analogous to the 'Gly triad' in protein kinases, does not interact extensively with the nucleotide. The MTR substrate-binding site consists of Asp{sup 233} of the catalytic HGD motif, a novel twin arginine motif (Arg{sup 340}/Arg{sup 341}), and a semi-conserved W-loop, which appears to regulate MTR binding specificity. No lobe closure is observed for MTR kinase upon substrate binding. This is probably because the enzyme lacks the lobe closure/inducing interactions between the C-lobe of the protein and the ribosyl moiety of the nucleotide that are typically responsible for lobe closure in protein kinases. The current structures suggest that MTR kinase has a dissociative mechanism.

  7. Electrochemical synthesis and characterisation of alternating tripyridyl-dipyrrole molecular strands with multiple nitrogen-based donor-acceptor binding sites.

    PubMed

    Tabatchnik-Rebillon, Alexandra; Aubé, Christophe; Bakkali, Hicham; Delaunay, Thierry; Manh, Gabriel Thia; Blot, Virginie; Thobie-Gautier, Christine; Renault, Eric; Soulard, Marine; Planchat, Aurélien; Le Questel, Jean-Yves; Le Guével, Rémy; Guguen-Guillouzo, Christiane; Kauffmann, Brice; Ferrand, Yann; Huc, Ivan; Urgin, Karène; Condon, Sylvie; Léonel, Eric; Evain, Michel; Lebreton, Jacques; Jacquemin, Denis; Pipelier, Muriel; Dubreuil, Didier

    2010-10-18

    Synthesis of alternating pyridine-pyrrole molecular strands composed of two electron-rich pyrrole units (donors) sandwiched between three pyridinic cores (acceptors) is described. The envisioned strategy was a smooth electrosynthesis process involving ring contraction of corresponding tripyridyl-dipyridazine precursors. 2,6-Bis[6-(pyridazin-3-yl)]pyridine ligands 2a-c bearing pyridine residues at the terminal positions were prepared in suitable quantities by a Negishi metal cross-coupling procedure. The yields of heterocyclic coupling between 2-pyridyl zinc bromide reagents 12a-c and 2,6-bis(6-trifluoromethanesulfonylpyridazin-3-yl)pyridine increased from 68 to 95% following introduction of electron-donating methyl groups on the metallated halogenopyridine units. Favorable conditions for preparative electrochemical reduction of tripyridyl-dipyridazines 2b,c were established in THF/acetate buffer (pH 4.6)/acetonitrile to give the targeted 2,6-bis[5-(pyridin-2-yl)pyrrol-2-yl]pyridines 1b and 1c in good yields. The absorption behavior of the donor-acceptor tripyridyl-dipyrrole ligands was evaluated and compared to theoretical calculations. Highly fluorescent properties of these chromophores were found (ν(em)≈2 × 10(4) cm(-1) in MeOH and CH(2)Cl(2)), and both pyrrolic ligands exhibit a remarkable quantum yield in CH(2)Cl(2) (φ(f)=0.10). Structural studies in the solid state established the preferred cis conformation of the dipyrrolic ligands, which adopting a planar arrangement with an embedded molecule of water having a complexation energy exceeding 10 kcal mol(-1). The ability of the tripyridyl-dipyrrole to complex two copper(II) ions in a pentacoordinate square was investigated.

  8. A substrate-induced biotin binding pocket in the carboxyltransferase domain of pyruvate carboxylase.

    PubMed

    Lietzan, Adam D; St Maurice, Martin

    2013-07-05

    Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp(590) and Tyr(628) and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes.

  9. Specificity profiling of dual specificity phosphatase vaccinia VH1-related (VHR) reveals two distinct substrate binding modes.

    PubMed

    Luechapanichkul, Rinrada; Chen, Xianwen; Taha, Hashem A; Vyas, Shubham; Guan, Xiaoyan; Freitas, Michael A; Hadad, Christopher M; Pei, Dehua

    2013-03-01

    Vaccinia VH1-related (VHR) is a dual specificity phosphatase that consists of only a single catalytic domain. Although several protein substrates have been identified for VHR, the elements that control the in vivo substrate specificity of this enzyme remain unclear. In this work, the in vitro substrate specificity of VHR was systematically profiled by screening combinatorial peptide libraries. VHR exhibits more stringent substrate specificity than classical protein-tyrosine phosphatases and recognizes two distinct classes of Tyr(P) peptides. The class I substrates are similar to the Tyr(P) motifs derived from the VHR protein substrates, having sequences of (D/E/ϕ)(D/S/N/T/E)(P/I/M/S/A/V)pY(G/A/S/Q) or (D/E/ϕ)(T/S)(D/E)pY(G/A/S/Q) (where ϕ is a hydrophobic amino acid and pY is phosphotyrosine). The class II substrates have the consensus sequence of (V/A)P(I/L/M/V/F)X1-6pY (where X is any amino acid) with V/A preferably at the N terminus of the peptide. Site-directed mutagenesis and molecular modeling studies suggest that the class II peptides bind to VHR in an opposite orientation relative to the canonical binding mode of the class I substrates. In this alternative binding mode, the Tyr(P) side chain binds to the active site pocket, but the N terminus of the peptide interacts with the carboxylate side chain of Asp(164), which normally interacts with the Tyr(P) + 3 residue of a class I substrate. Proteins containing the class II motifs are efficient VHR substrates in vitro, suggesting that VHR may act on a novel class of yet unidentified Tyr(P) proteins in vivo.

  10. Localization of the substrate and oxalacetate binding site of succinate dehydrogenase.

    PubMed

    Kenney, W C; Mowery, P C; Seng, R L; Singer, T P

    1976-04-25

    Succinate dehydrogenase is composed of two subunits, one of molecular weight 70,000, containing FAD in covalent linkage to a histidyl residue of the polypeptide chain, the other subunit of molecular weight 30,000. The fact that substrate, substrate analogs, and oxalacetate prevent inactivation of the enzyme by thiol-specific agents indicates that a thiol group must be present in close proximity to the flavin. Comparison of the incorporation of radioactivity into each subunit in the presence and absence of succinate or malonate shows that both substrate and competitive inhibitors protect a sulfhydryl group of the 70,000-molecular weight subunit. This indicates that a thiol group of the flavoprotein subunit is part of the active site. Similar investigations using oxalacetate as a protecting agent indicate that the tight binding of oxalacetate to the deactivated enzyme also occurs in the flavoprotein subunit, and may involve the same thiol group which is protected by succinate from alkylation by N-ethylmaleimide. It is clear, therefore, that not only the flavin site but also an essential thiol residue are located in the 70,000-molecular weight subunit. A second thiol group, located in the 30,000-molecular weight subunit, also binds N-ethylmaleimide covalently under similar conditions, without being part of the active site. Succinate, malonate, and oxalacetate do not influence the binding of this inhibitor to the thiol group of the lower molecular weight subunit. Using maleimide derivatives of nitroxide-type spin labels, it has been possible to demonstrate the presence of two types of thiol groups in the enzyme which form covalent derivatives with the spin probe. When the enzyme is treated with an equimolar quantity of the spin probe, a largely isotropic electron spin resonance spectrum is obtained, indicating a high probe mobility. When this site is first blocked by treating the enzyme with an equimolar quantity of N-ethylmaleimide, followed by an equimolar amount of

  11. Structural Dynamics of the Heterodimeric ABC Transporter TM287/288 Induced by ATP and Substrate Binding.

    PubMed

    Furuta, Tadaomi; Sato, Yukiko; Sakurai, Minoru

    2016-12-06

    TM287/288 is a heterodimeric ATP-binding cassette (ABC) transporter, which harnesses the energy of ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) to transport a wide variety of molecules through the transmembrane domains (TMDs) by alternating inward- and outward-facing conformations. Here, we conducted multiple 100 ns molecular dynamics simulations of TM287/288 in different ATP- and substrate-bound states to elucidate the effects of ATP and substrate binding. As a result, the binding of two ATP molecules to the NBDs induced the formation of the consensus ATP-binding pocket (ABP2) or the NBD dimerization, whereas these processes did not occur in the presence of a single ATP molecule or when the protein was in its apo state. Moreover, binding of the substrate to the TMDs enhanced the formation of ABP2 through allosteric TMD-NBD communication. Furthermore, in the apo state, α-helical subdomains of the NBDs approached each other, acquiring a conformation with core half-pockets exposed to the solvent, appropriate for ATP binding. We propose a "core-exposed" model for this novel conformation found in the apo state of ABC transporters. These findings provide important insights into the structural dynamics of ABC transporters.

  12. Accumulation of acyl-enzyme in DD-peptidase-catalysed reactions with analogues of peptide substrates.

    PubMed Central

    Jamin, M; Adam, M; Damblon, C; Christiaens, L; Frère, J M

    1991-01-01

    Thioester substrates can be used to study the hydrolysis and transfer reactions catalysed by beta-lactamases and DD-peptidases. With the latter enzymes, accumulation of the acyl-enzyme can be detected directly. The efficiency of various amines as acceptor substrates was in excellent agreement with previous results obtained with peptide substrates of the DD-peptidases. The results indicated the presence of a specific binding site for the acceptor substrates. Although most of the results agreed well with a simple partition model, more elaborate hypotheses will be needed to account for all the data presented. PMID:1747125

  13. Affinity electrophoresis as a method for determining substrate-binding specificity of carbohydrate-active enzymes for soluble polysaccharides.

    PubMed

    Moraïs, Sarah; Lamed, Raphael; Bayer, Edward A

    2012-01-01

    Affinity electrophoresis is a simple and rapid tool for the analysis of protein-binding affinities to soluble polysaccharides. This approach is particularly suitable for the characterization of the carbohydrate-active enzymes that contain a carbohydrate-binding module and for their mutants and chimeras. Knowledge of the binding characteristics of these enzymes can be the first step to elucidate the enzymatic activity of a putative enzyme; moreover in some cases, enzymes are able to bind polysaccharides targets other than their specified substrate, and this knowledge can be essential to understand the basics of the intrinsic mechanism of these enzymes in their natural environment.

  14. Direct assessment of substrate binding to the Neurotransmitter:Sodium Symporter LeuT by solid state NMR

    PubMed Central

    Erlendsson, Simon; Gotfryd, Kamil; Larsen, Flemming Hofmann; Mortensen, Jonas Sigurd; Geiger, Michel-Andreas; van Rossum, Barth-Jan; Oschkinat, Hartmut; Gether, Ulrik; Teilum, Kaare; Loland, Claus J

    2017-01-01

    The Neurotransmitter:Sodium Symporters (NSSs) represent an important class of proteins mediating sodium-dependent uptake of neurotransmitters from the extracellular space. The substrate binding stoichiometry of the bacterial NSS protein, LeuT, and thus the principal transport mechanism, has been heavily debated. Here we used solid state NMR to specifically characterize the bound leucine ligand and probe the number of binding sites in LeuT. We were able to produce high-quality NMR spectra of substrate bound to microcrystalline LeuT samples and identify one set of sodium-dependent substrate-specific chemical shifts. Furthermore, our data show that the binding site mutants F253A and L400S, which probe the major S1 binding site and the proposed S2 binding site, respectively, retain sodium-dependent substrate binding in the S1 site similar to the wild-type protein. We conclude that under our experimental conditions there is only one detectable leucine molecule bound to LeuT. DOI: http://dx.doi.org/10.7554/eLife.19314.001 PMID:28117663

  15. Direct assessment of substrate binding to the Neurotransmitter:Sodium Symporter LeuT by solid state NMR.

    PubMed

    Erlendsson, Simon; Gotfryd, Kamil; Larsen, Flemming Hofmann; Mortensen, Jonas Sigurd; Geiger, Michel-Andreas; van Rossum, Barth-Jan; Oschkinat, Hartmut; Gether, Ulrik; Teilum, Kaare; Loland, Claus J

    2017-01-24

    The Neurotransmitter:Sodium Symporters (NSSs) represent an important class of proteins mediating sodium-dependent uptake of neurotransmitters from the extracellular space. The substrate binding stoichiometry of the bacterial NSS protein, LeuT, and thus the principal transport mechanism, has been heavily debated. Here we used solid state NMR to specifically characterize the bound leucine ligand and probe the number of binding sites in LeuT. We were able to produce high-quality NMR spectra of substrate bound to microcrystalline LeuT samples and identify one set of sodium-dependent substrate-specific chemical shifts. Furthermore, our data show that the binding site mutants F253A and L400S, which probe the major S1 binding site and the proposed S2 binding site, respectively, retain sodium-dependent substrate binding in the S1 site similar to the wild-type protein. We conclude that under our experimental conditions there is only one detectable leucine molecule bound to LeuT.

  16. Structural modelling of substrate binding and inhibition in penicillin V acylase from Pectobacterium atrosepticum.

    PubMed

    Avinash, V S; Panigrahi, Priyabrata; Suresh, C G; Pundle, Archana V; Ramasamy, Sureshkumar

    2013-08-09

    Penicillin V acylases (PVAs) and bile salt hydrolases (BSHs) have considerable sequence and structural similarity; however, they vary significantly in their substrate specificity. We have identified a PVA from a Gram-negative organism, Pectobacterium atrosepticum (PaPVA) that turned out to be a remote homolog of the PVAs and BSHs reported earlier. Even though the active site residues were conserved in PaPVA it showed high specificity towards penV and interestingly the penV acylase activity was inhibited by bile salts. Comparative modelling and docking studies were carried out to understand the structural differences of the binding site that confer this characteristic property. We show that PaPVA exhibits significant differences in structure, which are in contrast to those of known PVAs and such enzymes from Gram-negative bacteria require further investigation.

  17. Biochemical and Crystallographic Analysis of Substrate Binding and Conformational Changes in Acetyl-CoA Synthetase

    SciTech Connect

    Reger,A.; Carney, J.; Gulick, A.

    2007-01-01

    The adenylate-forming enzymes, including acyl-CoA synthetases, the adenylation domains of non-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping-pong mechanism. We have proposed a domain alternation mechanism for these enzymes whereby, upon completion of the initial adenylation reaction, the C-terminal domain of these enzymes undergoes a 140{sup o} rotation to perform the second thioester-forming half-reaction. Structural and kinetic data of mutant enzymes support this hypothesis. We present here mutations to Salmonella enterica acetyl-CoA synthetase (Acs) and test the ability of the enzymes to catalyze the complete reaction and the adenylation half-reaction. Substitution of Lys609 with alanine results in an enzyme that is unable to catalyze the adenylate reaction, while the Gly524 to leucine substitution is unable to catalyze the complete reaction yet catalyzes the adenylation half-reaction with activity comparable to the wild-type enzyme. The positions of these two residues, which are located on the mobile C-terminal domain, strongly support the domain alternation hypothesis. We also present steady-state kinetic data of putative substrate-binding residues and demonstrate that no single residue plays a dominant role in dictating CoA binding. We have also created two mutations in the active site to alter the acyl substrate specificity. Finally, the crystallographic structures of wild-type Acs and mutants R194A, R584A, R584E, K609A, and V386A are presented to support the biochemical analysis.

  18. Successful prediction of substrate-binding pocket in SLC17 transporter sialin.

    PubMed

    Pietrancosta, Nicolas; Anne, Christine; Prescher, Horst; Ruivo, Raquel; Sagné, Corinne; Debacker, Cécile; Bertrand, Hugues-Olivier; Brossmer, Reinhard; Acher, Francine; Gasnier, Bruno

    2012-03-30

    Secondary active transporters from the SLC17 protein family are required for excitatory and purinergic synaptic transmission, sialic acid metabolism, and renal function, and several members are associated with inherited neurological or metabolic diseases. However, molecular tools to investigate their function or correct their genetic defects are limited or absent. Using structure-activity, homology modeling, molecular docking, and mutagenesis studies, we have located the substrate-binding site of sialin (SLC17A5), a lysosomal sialic acid exporter also recently implicated in exocytotic release of aspartate. Human sialin is defective in two inherited sialic acid storage diseases and is responsible for metabolic incorporation of the dietary nonhuman sialic acid N-glycolylneuraminic acid. We built cytosol-open and lumen-open three-dimensional models of sialin based on weak, but significant, sequence similarity with the glycerol-3-phosphate and fucose permeases from Escherichia coli, respectively. Molecular docking of 31 synthetic sialic acid analogues to both models was consistent with inhibition studies. Narrowing the sialic acid-binding site in the cytosol-open state by two phenylalanine to tyrosine mutations abrogated recognition of the most active analogue without impairing neuraminic acid transport. Moreover, a pilot virtual high-throughput screening of the cytosol-open model could identify a pseudopeptide competitive inhibitor showing >100-fold higher affinity than the natural substrate. This validated model of human sialin and sialin-guided models of other SLC17 transporters should pave the way for the identification of inhibitors, glycoengineering tools, pharmacological chaperones, and fluorescent false neurotransmitters targeted to these proteins.

  19. Effect of Mutation and Substrate Binding on the Stability of Cytochrome P450BM3 Variants.

    PubMed

    Geronimo, Inacrist; Denning, Catherine A; Rogers, W Eric; Othman, Thaer; Huxford, Tom; Heidary, David K; Glazer, Edith C; Payne, Christina M

    2016-06-28

    Cytochrome P450BM3 is a heme-containing enzyme from Bacillus megaterium that exhibits high monooxygenase activity and has a self-sufficient electron transfer system in the full-length enzyme. Its potential synthetic applications drive protein engineering efforts to produce variants capable of oxidizing nonnative substrates such as pharmaceuticals and aromatic pollutants. However, promiscuous P450BM3 mutants often exhibit lower stability, thereby hindering their industrial application. This study demonstrated that the heme domain R47L/F87V/L188Q/E267V/F81I pentuple mutant (PM) is destabilized because of the disruption of hydrophobic contacts and salt bridge interactions. This was directly observed from crystal structures of PM in the presence and absence of ligands (palmitic acid and metyrapone). The instability of the tertiary structure and heme environment of substrate-free PM was confirmed by pulse proteolysis and circular dichroism, respectively. Binding of the inhibitor, metyrapone, significantly stabilized PM, but the presence of the native substrate, palmitic acid, had no effect. On the basis of high-temperature molecular dynamics simulations, the lid domain, β-sheet 1, and Cys ligand loop (a β-bulge segment connected to the heme) are the most labile regions and, thus, potential sites for stabilizing mutations. Possible approaches to stabilization include improvement of hydrophobic packing interactions in the lid domain and introduction of new salt bridges into β-sheet 1 and the heme region. An understanding of the molecular factors behind the loss of stability of P450BM3 variants therefore expedites site-directed mutagenesis studies aimed at developing thermostability.

  20. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding

    PubMed Central

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388

  1. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding.

    PubMed

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.

  2. Insulin Receptor Substrate-4 Binds to Slingshot-1 Phosphatase and Promotes Cofilin Dephosphorylation*

    PubMed Central

    Homma, Yuta; Kanno, Shin-ichiro; Sasaki, Kazutaka; Nishita, Michiru; Yasui, Akira; Asano, Tomoichiro; Ohashi, Kazumasa; Mizuno, Kensaku

    2014-01-01

    Cofilin plays an essential role in cell migration and morphogenesis by enhancing actin filament dynamics via its actin filament-severing activity. Slingshot-1 (SSH1) is a protein phosphatase that plays a crucial role in regulating actin dynamics by dephosphorylating and reactivating cofilin. In this study, we identified insulin receptor substrate (IRS)-4 as a novel SSH1-binding protein. Co-precipitation assays revealed the direct endogenous binding of IRS4 to SSH1. IRS4, but not IRS1 or IRS2, was bound to SSH1. IRS4 was bound to SSH1 mainly through the unique region (amino acids 335–400) adjacent to the C terminus of the phosphotyrosine-binding domain of IRS4. The N-terminal A, B, and phosphatase domains of SSH1 were bound to IRS4 independently. Whereas in vitro phosphatase assays revealed that IRS4 does not directly affect the cofilin phosphatase activity of SSH1, knockdown of IRS4 increased cofilin phosphorylation in cultured cells. Knockdown of IRS4 decreased phosphatidylinositol 3-kinase (PI3K) activity, and treatment with an inhibitor of PI3K increased cofilin phosphorylation. Akt preferentially phosphorylated SSH1 at Thr-826, but expression of a non-phosphorylatable T826A mutant of SSH1 did not affect insulin-induced cofilin dephosphorylation, and an inhibitor of Akt did not increase cofilin phosphorylation. These results suggest that IRS4 promotes cofilin dephosphorylation through sequential activation of PI3K and SSH1 but not through Akt. In addition, IRS4 co-localized with SSH1 in F-actin-rich membrane protrusions in insulin-stimulated cells, which suggests that the association of IRS4 with SSH1 contributes to localized activation of cofilin in membrane protrusions. PMID:25100728

  3. Redesign of substrate specificity and identification of aminoglycoside binding residues of Eis from Mycobacterium tuberculosis

    PubMed Central

    Jennings, Benjamin C.; Labby, Kristin J.; Green, Keith D.; Garneau-Tsodikova, Sylvie

    2013-01-01

    The upsurge of drug-resistant tuberculosis (TB) is an emerging global problem. Increased expression of the enhanced intracellular survival (Eis) protein is responsible for clinical resistance to aminoglycoside (AG) antibiotics in Mycobacterium tuberculosis. Eis from M. tuberculosis (Eis_Mtb) and from M. smegmatis (Eis_Msm) both function as acetyltransferases capable of acetylating multiple amines of many AGs; however, these Eis homologs differ in AG substrate preference and number of acetylated amine groups per AG. The AG binding cavity of Eis_Mtb is divided into two narrow channels, whereas Eis_Msm contains one large cavity. Five bulky residues lining one of the AG binding channels of Eis_Mtb, His119, Ile268, Trp289, Gln291, and Glu401, have significantly smaller counterparts in Eis_Msm, Thr119, Gly266, Ala287, Ala289, and Gly401, respectively. To identify the residue(s) responsible for AG binding in Eis_Mtb and functional differences from Eis_Msm, we have generated single, double, triple, quadruple, and quintuple mutants of these residues in Eis_Mtb into their Eis_Msm counterparts and tested their acetylation activity with three structurally diverse AGs: kanamycin A (KAN), paromomyin (PAR), and apramycin (APR). We show that the penultimate C-terminal residue Glu401 plays a critical role in the overall activity of Eis_Mtb. We also demonstrate that the identities of residues Ile268, Trp289, and Gln291 (in Eis_Mtb nomenclature) dictate the differences between acetylation efficiencies of Eis_Mtb and Eis_Msm for KAN and PAR. Finally, we show that the mutation of Trp289 in Eis_Mtb into Ala plays a role in APR acetylation. PMID:23837529

  4. To be, or not to be two sites: that is the question about LeuT substrate binding.

    PubMed

    Reyes, Nicolas; Tavoulari, Sotiria

    2011-10-01

    Transport proteins of the neurotransmitter sodium symporter (NSS) family regulate the extracellular concentration of several neurotransmitters in the central nervous system. The only member of this family for which atomic-resolution structural data are available is the prokaryotic homologue LeuT. This protein has been used as a model system to study the molecular mechanism of transport of the NSS family. In this Journal Club, we discuss two strikingly different LeuT transport mechanisms: one involving a single high-affinity substrate binding site and one recently proposed alternative involving two high-affinity substrate binding sites that are allosterically coupled.

  5. The adsorption of substrate-binding domain of PHB depolymerases to the surface of poly(3-hydroxybutyric acid).

    PubMed

    Shinomiya, M; Iwata, T; Doi, Y

    1998-04-01

    The binding characteristic of PHB depolymerase has been studied by using glutathione S-transferase (GST) fusion proteins with substrate-binding domain of three bacterial PHB depolymerases, Alcaligenes faecalis, Comamonas acidovorans and Comamonas testosteroni. Analysis using immuno-gold labeling technique and transmission electron microscopy indicated that a novel GST fusion protein derived from A. Faecalis enzyme adsorbed to the surface of poly(3-hydroxybutyric acid) (P(3HB)) single crystals like other fusion proteins. Comparison of inhibiting degree of P(3HB) powder hydrolysis activity of PHB depolymerase by fusion proteins indicated that three fusion proteins bind to P(3HB) powder in the same degree. The measurement of the surface hydrophobicity of proteins suggests that the interaction of the substrate-binding domain with insoluble P(3HB) may include not only a hydrophobic effect but also molecule-specific contacts.

  6. The N-terminal hybrid binding domain of RNase HI from Thermotoga maritima is important for substrate binding and Mg2+-dependent activity.

    PubMed

    Jongruja, Nujarin; You, Dong-Ju; Kanaya, Eiko; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2010-11-01

    Thermotoga maritima ribonuclease H (RNase H) I (Tma-RNase HI) contains a hybrid binding domain (HBD) at the N-terminal region. To analyze the role of this HBD, Tma-RNase HI, Tma-W22A with the single mutation at the HBD, the C-terminal RNase H domain (Tma-CD) and the N-terminal domain containing the HBD (Tma-ND) were overproduced in Escherichia coli, purified and biochemically characterized. Tma-RNase HI prefers Mg(2+) to Mn(2+) for activity, and specifically loses most of the Mg(2+)-dependent activity on removal of the HBD and 87% of it by the mutation at the HBD. Tma-CD lost the ability to suppress the RNase H deficiency of an E. coli rnhA mutant, indicating that the HBD is responsible for in vivo RNase H activity. The cleavage-site specificities of Tma-RNase HI are not significantly changed on removal of the HBD, regardless of the metal cofactor. Binding analyses of the proteins to the substrate using surface plasmon resonance indicate that the binding affinity of Tma-RNase HI is greatly reduced on removal of the HBD or the mutation. These results indicate that there is a correlation between Mg(2+)-dependent activity and substrate binding affinity. Tma-CD was as stable as Tma-RNase HI, indicating that the HBD is not important for stability. The HBD of Tma-RNase HI is important not only for substrate binding, but also for Mg(2+)-dependent activity, probably because the HBD affects the interaction between the substrate and enzyme at the active site, such that the scissile phosphate group of the substrate and the Mg(2+) ion are arranged ideally.

  7. Phosphoenolpyruvate- and ATP-dependent dihydroxyacetone kinases: covalent substrate-binding and kinetic mechanism.

    PubMed

    Garcia-Alles, Luis F; Siebold, Christian; Nyffeler, Therese Lüthi; Flükiger-Brühwiler, Karin; Schneider, Philipp; Bürgi, Hans-Beat; Baumann, Ulrich; Erni, Bernhard

    2004-10-19

    Dihydroxyacetone (Dha) kinases are a sequence-conserved family of enzymes, which utilize two different phosphoryldonors, ATP in animals, plants, and some bacteria, and a multiphosphoprotein of the phosphoenolpyruvate carbohydrate phosphotransferase system (PTS) in most bacteria. Here, we compare the PTS-dependent kinase of Escherichia coli and the ATP-dependent kinase of Citrobacter freundii. They display 30% sequence identity. The binding constants of the E. coli kinase for eleven short-chain carbonyl compounds were determined by acetone precipitation of the enzyme-substrate complexes. They are 3.4 microM for Dha, 780 microM for Dha-phosphate (DhaP), 50 microM for D,L-glyceraldehyde (GA), and 90 microM for D,L-glyceraldehyde-3-phosphate. The k(cat) for Dha of the PTS-dependent kinase is 290 min(-1), and that of the ATP-dependent kinase is 1050 min(-1). The Km for Dha of both kinases is <6 microM. The X-ray structures of the enzyme-GA and the enzyme-DhaP complex show that substrates as well as products are bound in hemiaminal linkage to an active-site histidine. Quantum-mechanical calculations offer no indication for activation of the reacting hydroxyl group by the formation of the hemiaminal. However, the formation of the hemiaminal bond allows selection for short-chain carbonyl compounds and discrimination against structurally similar polyols. The Dha kinase remains fully active in the presence of 2 M glycerol, and phosphorylates trace impurities of carbonyl compounds present in glycerol.

  8. Probing of the substrate binding domain of lactose permease by a proton pulse.

    PubMed

    Nachliel, E; Gutman, M

    2001-09-03

    The lactose permease of Escherichia coli coupled proton transfer across the bacterial inner membrane with the uptake of beta-galactosides. In the present study we have used the cysteine-less C148 mutant that was selectively labeled by fluorescein maleimide on the C148 residue, which is an active component of the substrate transporting cavity. Measurements of the protonation dynamics of the bound pH indicator in the time resolved domain allowed us to probe the binding site by a free diffusing proton. The measured signal was reconstructed by numeric integration of differential rate equations that comply with the detailed balance principle and account for all proton transfer reactions taking place in the reaction mixture. This analysis yields the rate constants and pK values of all residues participating in the fast proton transfer reaction between the bulk and the protein's surface, revealing the exposed residues that react with free protons in a diffusion controlled reaction and how they transfer protons among themselves. The magnitudes of these rate constants were finally evaluated by comparison with the rate predicted by the Debye-Smoluchowski equation. The analysis of the kinetic and pK values indicated that the protein-fluorescein adduct assumes two conformation states. One is dominant above pH 7.4, while the other exists only below 7.1. In the high pH range, the enzyme assumes a constrained configuration and the rate constant of the reaction of a free diffusing proton with the bound dye is 10 times slower than a diffusion controlled reaction. In this state, the carboxylate moiety of residue E126 is in close proximity to the dye and exchanges a proton with it at a very fast rate. Below pH 7.1, the substrate binding domain is in a relaxed configuration and freely accessed by bulk protons, and the rate of proton exchange between the dye and E126 is 100,000 times slower. The relevance of these observations to the catalytic cycle is discussed.

  9. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain.

    PubMed

    Kameshita, I; Matsuda, Z; Taniguchi, T; Shizuta, Y

    1984-04-25

    Poly(ADP-ribose) synthetase of Mr = 120,000 is cleaved by limited proteolysis with alpha-chymotrypsin into two fragments of Mr = 54,000 (54K) and Mr = 66,000 (66K). When the native enzyme is modified with 3-(bromoacetyl)pyridine, both portions of the enzyme are alkylated; however, alkylation of the 54K portions of the enzyme is protected by the addition of the substrate, NAD, or its analog, nicotinamide, suggesting that the substrate-binding site is localized in the 54K fragment. When the enzyme previously automodified with a low concentration of [adenine-U-14C] NAD is digested with alpha-chymotrypsin, the radioactivity is detected exclusively in the 66K fragment. The 66K fragment thus labeled is further cleaved with papain into two fragments of Mr = 46,000 and Mr = 22,000. With these two fragments, the label is detected only in the 22K fragment, but not in the 46K fragment. The 46K fragment binds to a DNA-cellulose column with the same affinity as that of the native enzyme, while the 22K fragment and the 54K fragment have little affinity for the DNA ligand. These results indicate that poly (ADP-ribose) synthetase contains three separable domains, the first possessing the site for binding of the substrate, NAD, the second containing the site for binding of DNA, and the third acting as the site(s) for accepting poly(ADP-ribose).

  10. Molecular Interplay between the Dimer Interface and the Substrate-Binding Site of Human Peptidylarginine Deiminase 4

    PubMed Central

    Lee, Chien-Yun; Lin, Chu-Cheng; Liu, Yi-Liang; Liu, Guang-Yaw; Liu, Jyung-Hurng; Hung, Hui-Chih

    2017-01-01

    Our previous studies suggest that the fully active form of Peptidylarginine deiminase 4 (PAD4) should be a dimer and not a monomer. This paper provides a plausible mechanism for the control of PAD4 catalysis by molecular interplay between its dimer-interface loop (I-loop) and its substrate-binding loop (S-loop). Mutagenesis studies revealed that two hydrophobic residues, W347 and V469, are critical for substrate binding at the active site; mutating these two residues led to a severe reduction in the catalytic activity. We also identified several hydrophobic amino acid residues (L6, L279 and V283) at the dimer interface. Ultracentrifugation analysis revealed that interruption of the hydrophobicity of this region decreases dimer formation and, consequently, enzyme activity. Molecular dynamic simulations and mutagenesis studies suggested that the dimer interface and the substrate-binding site of PAD4, which consist of the I-loop and the S-loop, respectively, are responsible for substrate binding and dimer stabilization. We identified five residues with crucial roles in PAD4 catalysis and dimerization: Y435 and R441 in the I-loop, D465 and V469 in the S-loop, and W548, which stabilizes the I-loop via van der Waals interactions with C434 and Y435. The molecular interplay between the S-loop and the I-loop is crucial for PAD4 catalysis. PMID:28209966

  11. How do ADARs bind RNA? New protein-RNA structures illuminate substrate recognition by the RNA editing ADARs.

    PubMed

    Thomas, Justin M; Beal, Peter A

    2017-04-01

    Deamination of adenosine in RNA to form inosine has wide ranging consequences on RNA function including amino acid substitution to give proteins not encoded in the genome. What determines which adenosines in an mRNA are subject to this modification reaction? The answer lies in an understanding of the mechanism and substrate recognition properties of adenosine deaminases that act on RNA (ADARs). Our recent publication of X-ray crystal structures of the human ADAR2 deaminase domain bound to RNA editing substrates shed considerable light on how the catalytic domains of these enzymes bind RNA and promote adenosine deamination. Here we review in detail the deaminase domain-RNA contact surfaces and present models of how full length ADARs, bearing double stranded RNA-binding domains (dsRBDs) and deaminase domains, could process naturally occurring substrate RNAs.

  12. Alternansucrase acceptor products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regioselectivity of alternansucrase (EC 2.4.1.140) differs from dextransucrase (EC 2.4.1.5) in ways that can be useful for the synthesis of novel oligosaccharide structures. For example, it has been recently shown that the major oligosaccharides produced when maltose is the acceptor include one...

  13. Tyr-301 Phosphorylation Inhibits Pyruvate Dehydrogenase by Blocking Substrate Binding and Promotes the Warburg Effect*

    PubMed Central

    Fan, Jun; Kang, Hee-Bum; Shan, Changliang; Elf, Shannon; Lin, Ruiting; Xie, Jianxin; Gu, Ting-Lei; Aguiar, Mike; Lonning, Scott; Chung, Tae-Wook; Arellano, Martha; Khoury, Hanna J.; Shin, Dong M.; Khuri, Fadlo R.; Boggon, Titus J.; Kang, Sumin; Chen, Jing

    2014-01-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect. PMID:25104357

  14. Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect.

    PubMed

    Fan, Jun; Kang, Hee-Bum; Shan, Changliang; Elf, Shannon; Lin, Ruiting; Xie, Jianxin; Gu, Ting-Lei; Aguiar, Mike; Lonning, Scott; Chung, Tae-Wook; Arellano, Martha; Khoury, Hanna J; Shin, Dong M; Khuri, Fadlo R; Boggon, Titus J; Kang, Sumin; Chen, Jing

    2014-09-19

    The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect.

  15. Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle.

    PubMed

    Banerjee, Rupa; Jayaraj, Gopal Gunanathan; Peter, Joshua Jebakumar; Kumar, Vignesh; Mapa, Koyeli

    2016-08-01

    DnaK or Hsp70 of Escherichia coli is a master regulator of the bacterial proteostasis network. Allosteric communication between the two functional domains of DnaK, the N-terminal nucleotide-binding domain (NBD) and the C-terminal substrate- or peptide-binding domain (SBD) regulate its activity. X-ray crystallography and NMR studies have provided snapshots of distinct conformations of Hsp70 proteins in various physiological states; however, the conformational heterogeneity and dynamics of allostery-driven Hsp70 activity remains underexplored. In this work, we employed single-molecule Förster resonance energy transfer (sm-FRET) measurements to capture distinct intradomain conformational states of a region within the DnaK-SBD known as the lid. Our data conclusively demonstrate prominent conformational heterogeneity of the DnaK lid in ADP-bound states; in contrast, the ATP-bound open conformations are homogeneous. Interestingly, a nonhydrolysable ATP analogue, AMP-PNP, imparts heterogeneity to the lid conformations mimicking the ADP-bound state. The cochaperone DnaJ confers ADP-like heterogeneous lid conformations to DnaK, although the presence of the cochaperone accelerates the substrate-binding rate by a hitherto unknown mechanism. Irrespective of the presence of DnaJ, binding of a peptide substrate to the DnaK-SBD leads to prominent lid closure. Lid closure is only partial upon binding to molten globule-like authentic cellular substrates, probably to accommodate non-native substrate proteins of varied structures.

  16. Conformational changes in inositol 1,3,4,5,6-pentakisphosphate 2-kinase upon substrate binding: role of N-terminal lobe and enantiomeric substrate preference.

    PubMed

    Baños-Sanz, José Ignacio; Sanz-Aparicio, Julia; Whitfield, Hayley; Hamilton, Chris; Brearley, Charles A; González, Beatriz

    2012-08-24

    Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP(5) 2-K) catalyzes the synthesis of inositol 1,2,3,4,5,6-hexakisphosphate from ATP and IP(5). Inositol 1,2,3,4,5,6-hexakisphosphate is implicated in crucial processes such as mRNA export, DNA editing, and phosphorus storage in plants. We previously solved the first structure of an IP(5) 2-K, which shed light on aspects of substrate recognition. However, failure of IP(5) 2-K to crystallize in the absence of inositide prompted us to study putative conformational changes upon substrate binding. We have made mutations to residues on a region of the protein that produces a clasp over the active site. A W129A mutant allowed us to capture IP(5) 2-K in its different conformations by crystallography. Thus, the IP(5) 2-K apo-form structure displays an open conformation, whereas the nucleotide-bound form shows a half-closed conformation, in contrast to the inositide-bound form obtained previously in a closed conformation. Both nucleotide and inositide binding produce large conformational changes that can be understood as two rigid domain movements, although local changes were also observed. Changes in intrinsic fluorescence upon nucleotide and inositide binding are in agreement with the crystallographic findings. Our work suggests that the clasp might be involved in enzyme kinetics, with the N-terminal lobe being essential for inositide binding and subsequent conformational changes. We also show how IP(5) 2-K discriminates between inositol 1,3,4,5-tetrakisphosphate and 3,4,5,6-tetrakisphosphate enantiomers and that substrate preference can be manipulated by Arg(130) mutation. Altogether, these results provide a framework for rational design of specific inhibitors with potential applications as biological tools for in vivo studies, which could assist in the identification of novel roles for IP(5) 2-K in mammals.

  17. Binding of polychlorinated biphenyls to aquatic humic substances: The role of substrate and sorbate properties on partitioning

    USGS Publications Warehouse

    Uhle, M.E.; Chin, Y.-P.; Aiken, G.R.; McKnight, Diane M.

    1999-01-01

    Two ortho- (2,2',5 and 2,2',5,6') and a non-ortho- (3,3',4,4') substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho- substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1' carbon bond, thereby making the molecule less able to interact effectively with the fulvic acid substrate relative to its non-ortho-substituted congeners. Finally, binding of all three PCBs to the Great Dismal Swamp fulvic acid was significantly higher than for the Pony Lake sample. This observation is attributable to the former substrate's higher degree of aromaticity and polarizability, which can potentially interact more favorably with the PCBs through an increase in van der Waals type interactions.Two ortho- (2,2???,5 and 2,2???,5,6???) and a non-ortho- (3,3???,4,4???) substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho-substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1??? carbon bond, thereby making the molecule less able to interact

  18. Structure and function of Plasmodium falciparum malate dehydrogenase: role of critical amino acids in co-substrate binding pocket.

    PubMed

    Pradhan, Anupam; Tripathi, Abhai K; Desai, Prashant V; Mukherjee, Prasenjit K; Avery, Mitchell A; Walker, Larry A; Tekwani, Babu L

    2009-01-01

    The malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our laboratory have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal glycine motif, which forms a characteristic Rossman dinucleotide-binding fold in the co-substrate binding pocket, differentiates PfMDH (GlyXGlyXXGly) from other eukaryotic and prokaryotic malate dehydrogenases (GlyXXGlyXXGly). The amino acids lining the co-substrate binding pocket are completely conserved in MDHs from different species of human, primate and rodent malaria parasites. Based on this knowledge and conserved domains among prokaryotic and eukaryotic MDH, the role of critical amino acids lining the co-substrate binding pocket was analyzed in catalytic functions of PfMDH using site-directed mutagenesis. Insertion of Ala at the 9th or 10th position, which converts the N-terminal GlyXGlyXXGly motif (characteristic of malarial MDH and LDH) to GlyXXGlyXXGly (as in bacterial and eukaryotic MDH), uncoupled regulation of the enzyme through substrate inhibition. The dinucleotide fold GlyXGlyXXGly motif seems not to be responsible for the distinct affinity of PfMDH to 3-acetylpyridine-adenine dinucleotide (APAD, a synthetic analog of NAD), since Ala9 and Ala10 insertion mutants still utilized APADH. The Gln11Met mutation, which converts the signature glycine motif in PfMDH to that of PfLDH, did not change the enzyme function. However, the Gln11Gly mutant showed approximately a 5-fold increase in catalytic activity, and higher susceptibility to inhibition with gossypol. Asn119 and His174 participate in binding of both co-substrate and substrate. The Asn119Gly mutant exhibited approximately a 3-fold decrease in catalytic efficiency, while mutation of His174 to Asn or Ala resulted in an inactive enzyme. These studies provide critical insights into the co-substrate

  19. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  20. Hsp70 Oligomerization Is Mediated by an Interaction between the Interdomain Linker and the Substrate-Binding Domain

    PubMed Central

    Aprile, Francesco A.; Dhulesia, Anne; Stengel, Florian; Roodveldt, Cintia; Benesch, Justin L. P.; Tortora, Paolo; Robinson, Carol V.; Salvatella, Xavier; Dobson, Christopher M.; Cremades, Nunilo

    2013-01-01

    Oligomerization in the heat shock protein (Hsp) 70 family has been extensively documented both in vitro and in vivo, although the mechanism, the identity of the specific protein regions involved and the physiological relevance of this process are still unclear. We have studied the oligomeric properties of a series of human Hsp70 variants by means of nanoelectrospray ionization mass spectrometry, optical spectroscopy and quantitative size exclusion chromatography. Our results show that Hsp70 oligomerization takes place through a specific interaction between the interdomain linker of one molecule and the substrate-binding domain of a different molecule, generating dimers and higher-order oligomers. We have found that substrate binding shifts the oligomerization equilibrium towards the accumulation of functional monomeric protein, probably by sequestering the helical lid sub-domain needed to stabilize the chaperone: substrate complex. Taken together, these findings suggest a possible role of chaperone oligomerization as a mechanism for regulating the availability of the active monomeric form of the chaperone and for the control of substrate binding and release. PMID:23840795

  1. Structural Comparison, Substrate Specificity, and Inhibitor Binding of AGPase Small Subunit from Monocot and Dicot: Present Insight and Future Potential

    PubMed Central

    Choudhury, Manabendra D.; Modi, Mahendra K.

    2014-01-01

    ADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide. PMID:25276800

  2. Structural comparison, substrate specificity, and inhibitor binding of AGPase small subunit from monocot and dicot: present insight and future potential.

    PubMed

    Sarma, Kishore; Sen, Priyabrata; Barooah, Madhumita; Choudhury, Manabendra D; Roychoudhury, Shubhadeep; Modi, Mahendra K

    2014-01-01

    ADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide.

  3. On the induced-fit mechanism of substrate-enzyme binding structures of nylon-oligomer hydrolase.

    PubMed

    Baba, Takeshi; Harada, Ryuhei; Nakano, Masayoshi; Shigeta, Yasuteru

    2014-06-15

    We present a detailed computational investigation of the induced-fit motion in a nylon-oligomer hydrolase (NylB) upon substrate binding. To this aim, we resort on the recently introduced parallel cascade selection molecular dynamics approach, allowing for an accelerated access to the set of conformational changes from an open- to a closed-state structure to form the enzyme-substrate complex in a specific induce-fit mechanism. The structural investigation is quantitatively complemented by free energy analyses within the umbrella sampling algorithm accompanied by weighted histogram analysis. We find that the stabilization free energy is about 1.4 kcal/mol, whereas the highest free energy barrier to be overcome is about 2.3 kcal/mol. Conversely, the energetic contribution for the substrate binding is about 20 kcal/mol, as estimated from Generalized Born/Surface Area. This means that the open-close induced-fit motion could occur frequently once the substrate binds to the open state of NylB.

  4. Conformational heterogeneity within the LID domain mediates substrate binding to Escherichia coli adenylate kinase: function follows fluctuations.

    PubMed

    Schrank, Travis P; Wrabl, James O; Hilser, Vincent J

    2013-01-01

    Proteins exist as dynamic ensembles of molecules, implying that protein amino acid sequences evolved to code for both the ground state structure as well as the entire energy landscape of excited states. Accumulating theoretical and experimental evidence suggests that enzymes use such conformational fluctuations to facilitate allosteric processes important for substrate binding and possibly catalysis. This phenomenon can be clearly demonstrated in Escherichia coli adenylate kinase, where experimentally observed local unfolding of the LID subdomain, as opposed to a more commonly postulated rigid-body opening motion, is related to substrate binding. Because "entropy promoting" glycine mutations designed to increase specifically the local unfolding of the LID domain also affect substrate binding, changes in the excited energy landscape effectively tune the function of this enzyme without changing the ground state structure or the catalytic site. Thus, additional thermodynamic information, above and beyond the single folded structure of an enzyme-substrate complex, is likely required for a full and quantitative understanding of how enzymes work.

  5. Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase

    PubMed Central

    2016-01-01

    mediate the formation of Mn(III) for catalysis upon substrate binding. PMID:27014926

  6. Substrate binds in the S1 site of the F253A mutant of LeuT, a neurotransmitter sodium symporter homologue

    SciTech Connect

    Wang, Hui; Gouaux, Eric

    2012-10-10

    LeuT serves as the model protein for understanding the relationships between structure, mechanism and pharmacology in neurotransmitter sodium symporters (NSSs). At the present time, however, there is a vigorous debate over whether there is a single high-affinity substrate site (S1) located at the original, crystallographically determined substrate site or whether there are two high-affinity substrates sites, one at the primary or S1 site and the other at a second site (S2) located at the base of the extracellular vestibule. In an effort to address the controversy over the number of high-affinity substrate sites in LeuT, one group studied the F253A mutant of LeuT and asserted that in this mutant substrate binds exclusively to the S2 site and that 1 mM clomipramine entirely ablates substrate binding to the S2 site. Here we study the binding of substrate to the F253A mutant of LeuT using ligand binding and X-ray crystallographic methods. Both experimental methods unambiguously show that substrate binds to the S1 site of the F253A mutant and that binding is retained in the presence of 1 mM clomipramine. These studies, in combination with previous work, are consistent with a mechanism ofr LeuT that involves a single high-affinity substrate binding site.

  7. Substrate binds in the S1 site of the F253A mutant of LeuT, a neurotransmitter sodium symporter homologue.

    PubMed

    Wang, Hui; Gouaux, Eric

    2012-09-01

    LeuT serves as the model protein for understanding the relationships between structure, mechanism and pharmacology in neurotransmitter sodium symporters (NSSs). At the present time, however, there is a vigorous debate over whether there is a single high-affinity substrate site (S1) located at the original, crystallographically determined substrate site or whether there are two high-affinity substrates sites, one at the primary or S1 site and the other at a second site (S2) located at the base of the extracellular vestibule. In an effort to address the controversy over the number of high-affinity substrate sites in LeuT, one group studied the F253A mutant of LeuT and asserted that in this mutant substrate binds exclusively to the S2 site and that 1 mM clomipramine entirely ablates substrate binding to the S2 site. Here we study the binding of substrate to the F253A mutant of LeuT using ligand binding and X-ray crystallographic methods. Both experimental methods unambiguously show that substrate binds to the S1 site of the F253A mutant and that binding is retained in the presence of 1 mM clomipramine. These studies, in combination with previous work, are consistent with a mechanism for LeuT that involves a single high-affinity substrate binding site.

  8. Molecular basis of P450 OleTJE: an investigation of substrate binding mechanism and major pathways.

    PubMed

    Du, Juan; Liu, Lin; Guo, Li Zhong; Yao, Xiao Jun; Yang, Jian Ming

    2017-03-25

    Cytochrome P450 OleTJE has attracted much attention for its ability to catalyze the decarboxylation of long chain fatty acids to generate alkenes, which are not only biofuel molecule, but also can be used broadly for making lubricants, polymers and detergents. In this study, the molecular basis of the binding mechanism of P450 OleTJE for arachidic acid, myristic acid, and caprylic acid was investigated by utilizing conventional molecular dynamics simulation and binding free energy calculations. Moreover, random acceleration molecular dynamics (RAMD) simulations were performed to uncover the most probable access/egress channels for different fatty acids. The predicted binding free energy shows an order of arachidic acid < myristic acid < caprylic acid. Key residues interacting with three substrates and residues specifically binding to one of them were identified. The RAMD results suggest the most likely channel for arachidic acid, myristic acid, and caprylic acid are 2e/2b, 2a and 2f/2a, respectively. It is suggested that the reaction is easier to carry out in myristic acid bound system than those in arachidic acid and caprylic acid bound system based on the distance of Hβ atom of substrate relative to P450 OleTJE Compound I states. This study provided novel insight to understand the substrate preference mechanism of P450 OleTJE and valuable information for rational enzyme design for short chain fatty acid decarboxylation.

  9. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis.

    PubMed

    Kratzer, Regina; Leitgeb, Stefan; Wilson, David K; Nidetzky, Bernd

    2006-01-01

    Little is known about how substrates bind to CtXR (Candida tenuis xylose reductase; AKR2B5) and other members of the AKR (aldo-keto reductase) protein superfamily. Modelling of xylose into the active site of CtXR suggested that Trp23, Asp50 and Asn309 are the main components of pentose-specific substrate-binding recognition. Kinetic consequences of site-directed substitutions of these residues are reported. The mutants W23F and W23Y catalysed NADH-dependent reduction of xylose with only 4 and 1% of the wild-type efficiency (kcat/K(m)) respectively, but improved the wild-type selectivity for utilization of ketones, relative to xylose, by factors of 156 and 471 respectively. Comparison of multiple sequence alignment with reported specificities of AKR members emphasizes a conserved role of Trp23 in determining aldehyde-versus-ketone substrate selectivity. D50A showed 31 and 18% of the wild-type catalytic-centre activities for xylose reduction and xylitol oxidation respectively, consistent with a decrease in the rates of the chemical steps caused by the mutation, but no change in the apparent substrate binding constants and the pattern of substrate specificities. The 30-fold preference of the wild-type for D-galactose compared with 2-deoxy-D-galactose was lost completely in N309A and N309D mutants. Comparison of the 2.4 A (1 A=0.1 nm) X-ray crystal structure of mutant N309D bound to NAD+ with the previous structure of the wild-type holoenzyme reveals no major structural perturbations. The results suggest that replacement of Asn309 with alanine or aspartic acid disrupts the function of the original side chain in donating a hydrogen atom for bonding with the substrate C-2(R) hydroxy group, thus causing a loss of transition-state stabilization energy of 8-9 kJ/mol.

  10. Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context

    SciTech Connect

    Wang, Hui; Elferich, Johannes; Gouaux, Eric

    2012-02-13

    Neurotransmitter sodium symporters (NSSs) catalyze the uptake of neurotransmitters into cells, terminating neurotransmission at chemical synapses. Consistent with the role of NSSs in the central nervous system, they are implicated in multiple diseases and disorders. LeuT, from Aquifex aeolicus, is a prokaryotic ortholog of the NSS family and has contributed to our understanding of the structure, mechanism and pharmacology of NSSs. At present, however, the functional state of LeuT in crystals grown in the presence of n-octyl-{beta}-D-glucopyranoside ({beta}-OG) and the number of substrate binding sites are controversial issues. Here we present crystal structures of LeuT grown in DMPC-CHAPSO bicelles and demonstrate that the conformations of LeuT-substrate complexes in lipid bicelles and in {beta}-OG detergent micelles are nearly identical. Furthermore, using crystals grown in bicelles and the substrate leucine or the substrate analog selenomethionine, we find only a single substrate molecule in the primary binding site.

  11. Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context.

    PubMed

    Wang, Hui; Elferich, Johannes; Gouaux, Eric

    2012-01-15

    Neurotransmitter sodium symporters (NSSs) catalyze the uptake of neurotransmitters into cells, terminating neurotransmission at chemical synapses. Consistent with the role of NSSs in the central nervous system, they are implicated in multiple diseases and disorders. LeuT, from Aquifex aeolicus, is a prokaryotic ortholog of the NSS family and has contributed to our understanding of the structure, mechanism and pharmacology of NSSs. At present, however, the functional state of LeuT in crystals grown in the presence of n-octyl-β-D-glucopyranoside (β-OG) and the number of substrate binding sites are controversial issues. Here we present crystal structures of LeuT grown in DMPC-CHAPSO bicelles and demonstrate that the conformations of LeuT-substrate complexes in lipid bicelles and in β-OG detergent micelles are nearly identical. Furthermore, using crystals grown in bicelles and the substrate leucine or the substrate analog selenomethionine, we find only a single substrate molecule in the primary binding site.

  12. Structural insights into conserved L-arabinose metabolic enzymes reveal the substrate binding site of a thermophilic L-arabinose isomerase.

    PubMed

    Lee, Yong-Jik; Lee, Sang-Jae; Kim, Seong-Bo; Lee, Sang Jun; Lee, Sung Haeng; Lee, Dong-Woo

    2014-03-18

    Structural genomics demonstrates that despite low levels of structural similarity of proteins comprising a metabolic pathway, their substrate binding regions are likely to be conserved. Herein based on the 3D-structures of the α/β-fold proteins involved in the ara operon, we attempted to predict the substrate binding residues of thermophilic Geobacillus stearothermophilus L-arabinose isomerase (GSAI) with no 3D-structure available. Comparison of the structures of L-arabinose catabolic enzymes revealed a conserved feature to form the substrate-binding modules, which can be extended to predict the substrate binding site of GSAI (i.e., D195, E261 and E333). Moreover, these data implicated that proteins in the l-arabinose metabolic pathway might retain their substrate binding niches as the modular structure through conserved molecular evolution even with totally different structural scaffolds.

  13. Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate

    SciTech Connect

    Pazy, Y.; Motaleb, M.A.; Guarnieri, M.T.; Charon, N.W.; Zhao, R.; Silversmith, R.E.

    2010-04-05

    Two-component signal transduction systems are widespread in prokaryotes and control numerous cellular processes. Extensive investigation of sensor kinase and response regulator proteins from many two-component systems has established conserved sequence, structural, and mechanistic features within each family. In contrast, the phosphatases which catalyze hydrolysis of the response regulator phosphoryl group to terminate signal transduction are poorly understood. Here we present structural and functional characterization of a representative of the CheC/CheX/FliY phosphatase family. The X-ray crystal structure of Borrelia burgdorferi CheX complexed with its CheY3 substrate and the phosphoryl analogue BeF{sub 3}{sup -} reveals a binding orientation between a response regulator and an auxiliary protein different from that shared by every previously characterized example. The surface of CheY3 containing the phosphoryl group interacts directly with a long helix of CheX which bears the conserved (E - X{sub 2} - N) motif. Conserved CheX residues Glu96 and Asn99, separated by a single helical turn, insert into the CheY3 active site. Structural and functional data indicate that CheX Asn99 and CheY3 Thr81 orient a water molecule for hydrolytic attack. The catalytic residues of the CheX-CheY3 complex are virtually superimposable on those of the Escherichia coli CheZ phosphatase complexed with CheY, even though the active site helices of CheX and CheZ are oriented nearly perpendicular to one other. Thus, evolution has found two structural solutions to achieve the same catalytic mechanism through different helical spacing and side chain lengths of the conserved acid/amide residues in CheX and CheZ.

  14. Regulation of rat liver phenylalanine hydroxylase. II. Substrate binding and the role of activation in the control of enzymatic activity.

    PubMed

    Shiman, R; Xia, T; Hill, M A; Gray, D W

    1994-10-07

    Activation by phenylalanine and reduction by the co-factor (6R)-tetrahydrobiopterin (BH4) are required for formation of active liver phenylalanine hydroxylase. This work describes effects of the activation and redox state on substrate and effector recognition of this enzyme, it establishes relationships among the pterin and phenylalanine binding sites on the different forms of the enzyme, and it provides a quantitative description of the enzyme's presumptive regulatory and catalytic sites. BH4, 7,8-dihydrobiopterin (BH2), 6-methyltetrahydropterin, and 5-deaza-6-methyltetrahydropterin were found to bind to unactivated phenylalanine hydroxylase with a stoichiometry of 1/enzyme subunit and with hyperbolic kinetics; all appear to compete for the same binding site on the enzyme, and all appear to bind in the proximity of, but not to, the enzyme's non-heme iron. In the transition from unactivated to activated enzyme, phenylalanine and pterin binding is modified, a new site for phenylalanine is formed, and the pterin site is replaced by a site of greatly decreased affinity for BH4 and BH2, one which does not appear to recognize the dihydroxypropyl side chain of BH4 and BH2. The pterin- and phenylalanine-binding sites on activated phenylalanine hydroxylase appear to be part of the enzyme's active site. Despite large effects on substrate binding, neither chelator binding ability nor solvent accessibility of the iron are affected by activation; activation appears to affect the nearby environment of the enzyme's iron but not the iron itself. Studies of oxidized and reduced phenylalanine hydroxylase indicate that the redox state is not a major determinant of pterin and phenylalanine association with enzyme.

  15. Crystallographic structure and substrate-binding interactions of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri.

    PubMed

    Balan, Andrea; Santacruz-Pérez, Carolina; Moutran, Alexandre; Ferreira, Luís Carlos Souza; Neshich, Goran; Gonçalves Barbosa, João Alexandre Ribeiro

    2008-02-01

    In Xanthomonas axonopodis pv. citri (Xac or X. citri), the modA gene codes for a periplasmic protein (ModA) that is capable of binding molybdate and tungstate as part of the ABC-type transporter required for the uptake of micronutrients. In this study, we report the crystallographic structure of the Xac ModA protein with bound molybdate. The Xac ModA structure is similar to orthologs with known three-dimensional structures and consists of two nearly symmetrical domains separated by a hinge region where the oxyanion-binding site lies. Phylogenetic analysis of different ModA orthologs based on sequence alignments revealed three groups of molybdate-binding proteins: bacterial phytopathogens, enterobacteria and soil bacteria. Even though the ModA orthologs are segregated into different groups, the ligand-binding hydrogen bonds are mostly conserved, except for Archaeglobus fulgidus ModA. A detailed discussion of hydrophobic interactions in the active site is presented and two new residues, Ala38 and Ser151, are shown to be part of the ligand-binding pocket.

  16. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    PubMed Central

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  17. Local entropy difference upon a substrate binding of a psychrophilic α-amylase and a mesophilic homologue

    NASA Astrophysics Data System (ADS)

    Kosugi, Takahiro; Hayashi, Shigehiko

    2011-01-01

    Psychrophilic α-amylase from the antarctic bacterium pseudoalteromonashaloplanktis (AHA) and its mesophilic homologue, porcine pancreatic α-amylase (PPA) are theoretically investigated with molecular dynamics (MD) simulations. We carried out 240-ns MD simulations for four systems, AHA and PPA with/without the bound substrate, and examined protein conformational entropy changes upon the substrate binding. We developed an analysis that decomposes the entropy changes into contributions of individual amino acids, and successfully identified protein regions responsible for the entropy changes. The results provide a molecular insight into the structural flexibilities of those enzymes related to the temperature dependences of the enzymatic activity.

  18. Crystal Structure of 12-Lipoxygenase Catalytic-Domain-Inhibitor Complex Identifies a Substrate-Binding Channel for Catalysis

    SciTech Connect

    Xu, Shu; Mueser, Timothy C.; Marnett, Lawrence J.; Funk, Jr., Max O.

    2014-10-02

    Lipoxygenases are critical enzymes in the biosynthesis of families of bioactive lipids including compounds with important roles in the initiation and resolution of inflammation and in associated diseases such as diabetes, cardiovascular disease, and cancer. Crystals diffracting to high resolution (1.9 {angstrom}) were obtained for a complex between the catalytic domain of leukocyte 12-lipoxygenase and the isoform-specific inhibitor, 4-(2-oxapentadeca-4-yne)phenylpropanoic acid (OPP). In the three-dimensional structure of the complex, the inhibitor occupied a new U-shaped channel open at one end to the surface of the protein and extending past the redox-active iron site that is essential for catalysis. In models, the channel accommodated arachidonic acid, defining the binding site for the substrate of the catalyzed reaction. There was a void adjacent to the OPP binding site connecting to the surface of the enzyme and providing a plausible access channel for the other substrate, oxygen.

  19. The role of substrate specificity and metal binding in defining the activity and structure of an intracellular subtilisin.

    PubMed

    Gamble, Michael; Künze, Georg; Brancale, Andrea; Wilson, Keith S; Jones, D Dafydd

    2012-01-01

    The dimeric intracellular subtilisin proteases (ISPs) found throughout Gram-positive bacteria are a structurally distinct class of the subtilase family. Unlike the vast majority of subtilisin-like proteases, the ISPs function exclusively within the cell, contributing the majority of observed cellular proteolytic activity. Given that they are active within the cell, little is known about substrate specificity and the role of stress signals such as divalent metal ions in modulating ISP function. We demonstrate that both play roles in defining the proteolytic activity of Bacillus clausii ISP and propose the molecular basis of their effects. Enzyme kinetics reveal that one particular synthetic tetrapeptide substrate, Phe-Ala-Ala-Phe-pNA, is hydrolysed with a catalytic efficiency ∼100-fold higher than any other tested. Heat-denatured whole proteins were found to be better substrates for ISP than the native forms. Substrate binding simulations suggest that the S1, S2 and S4 sites form defined binding pockets. The deep S1 cavity and wide S4 site are fully occupied by the hydrophobic aromatic side-chains of Phe. Divalent metal ions, probably Ca(2+), are proposed to be important for ISP activity through structural changes. The presence of >0.01 mM EDTA inactivates ISP, with CD and SEC suggesting that the protein becomes less structured and potentially monomeric. Removal of Ca(2+) at sites close to the dimer interface and the S1 pocket are thought to be responsible for the effect. These studies provide a new insight into the potential physiological function of ISPs, by reconciling substrate specificity and divalent metal binding to associate ISP with the unfolded protein response under stress conditions.

  20. The role of substrate specificity and metal binding in defining the activity and structure of an intracellular subtilisin

    PubMed Central

    Gamble, Michael; Künze, Georg; Brancale, Andrea; Wilson, Keith S.; Jones, D. Dafydd

    2012-01-01

    The dimeric intracellular subtilisin proteases (ISPs) found throughout Gram-positive bacteria are a structurally distinct class of the subtilase family. Unlike the vast majority of subtilisin-like proteases, the ISPs function exclusively within the cell, contributing the majority of observed cellular proteolytic activity. Given that they are active within the cell, little is known about substrate specificity and the role of stress signals such as divalent metal ions in modulating ISP function. We demonstrate that both play roles in defining the proteolytic activity of Bacillus clausii ISP and propose the molecular basis of their effects. Enzyme kinetics reveal that one particular synthetic tetrapeptide substrate, Phe-Ala-Ala-Phe-pNA, is hydrolysed with a catalytic efficiency ∼100-fold higher than any other tested. Heat-denatured whole proteins were found to be better substrates for ISP than the native forms. Substrate binding simulations suggest that the S1, S2 and S4 sites form defined binding pockets. The deep S1 cavity and wide S4 site are fully occupied by the hydrophobic aromatic side-chains of Phe. Divalent metal ions, probably Ca2+, are proposed to be important for ISP activity through structural changes. The presence of >0.01 mM EDTA inactivates ISP, with CD and SEC suggesting that the protein becomes less structured and potentially monomeric. Removal of Ca2+ at sites close to the dimer interface and the S1 pocket are thought to be responsible for the effect. These studies provide a new insight into the potential physiological function of ISPs, by reconciling substrate specificity and divalent metal binding to associate ISP with the unfolded protein response under stress conditions. PMID:23650602

  1. Specificity and versatility of substrate binding sites in four catalytic domains of human N-terminal acetyltransferases.

    PubMed

    Grauffel, Cédric; Abboud, Angèle; Liszczak, Glen; Marmorstein, Ronen; Arnesen, Thomas; Reuter, Nathalie

    2012-01-01

    Nt-acetylation is among the most common protein modifications in eukaryotes. Although thought for a long time to protect proteins from degradation, the role of Nt-acetylation is still debated. It is catalyzed by enzymes called N-terminal acetyltransferases (NATs). In eukaryotes, several NATs, composed of at least one catalytic domain, target different substrates based on their N-terminal sequences. In order to better understand the substrate specificity of human NATs, we investigated in silico the enzyme-substrate interactions in four catalytic subunits of human NATs (Naa10p, Naa20p, Naa30p and Naa50p). To date hNaa50p is the only human subunit for which X-ray structures are available. We used the structure of the ternary hNaa50p/AcCoA/MLG complex and a structural model of hNaa10p as a starting point for multiple molecular dynamics simulations of hNaa50p/AcCoA/substrate (substrate=MLG, EEE, MKG), hNaa10p/AcCoA/substrate (substrate=MLG, EEE). Nine alanine point-mutants of the hNaa50p/AcCoA/MLG complex were also simulated. Homology models of hNaa20p and hNaa30p were built and compared to hNaa50p and hNaa10p. The simulations of hNaa50p/AcCoA/MLG reproduce the interactions revealed by the X-ray data. We observed strong hydrogen bonds between MLG and tyrosines 31, 138 and 139. Yet the tyrosines interacting with the substrate's backbone suggest that their role in specificity is limited. This is confirmed by the simulations of hNaa50p/AcCoA/EEE and hNaa10p/AcCoA/MLG, where these hydrogen bonds are still observed. Moreover these tyrosines are all conserved in hNaa20p and hNaa30p. Other amino acids tune the specificity of the S1' sites that is different for hNaa10p (acidic), hNaa20p (hydrophobic/basic), hNaa30p (basic) and hNaa50p (hydrophobic). We also observe dynamic correlation between the ligand binding site and helix [Formula: see text] that tightens under substrate binding. Finally, by comparing the four structures we propose maps of the peptide-enzyme interactions

  2. Quantum mechanics/molecular mechanics study on the oxygen binding and substrate hydroxylation step in AlkB repair enzymes.

    PubMed

    Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P

    2014-01-07

    AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N(1) -methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)-oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ- and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained.

  3. Enzyme-substrate binding landscapes in the process of nitrile biodegradation mediated by nitrile hydratase and amidase.

    PubMed

    Zhang, Yu; Zeng, Zhuotong; Zeng, Guangming; Liu, Xuanming; Chen, Ming; Liu, Lifeng; Liu, Zhifeng; Xie, Gengxin

    2013-08-01

    The continuing discharge of nitriles in various industrial processes has caused serious environmental consequences of nitrile pollution. Microorganisms possess several nitrile-degrading pathways by direct interactions of nitriles with nitrile-degrading enzymes. However, these interactions are largely unknown and difficult to experimentally determine but important for interpretation of nitrile metabolisms and design of nitrile-degrading enzymes with better nitrile-converting activity. Here, we undertook a molecular modeling study of enzyme-substrate binding modes in the bi-enzyme pathway for degradation of nitrile to acid. Docking results showed that the top substrates having favorable interactions with nitrile hydratase from Rhodococcus erythropolis AJ270 (ReNHase), nitrile hydratase from Pseudonocardia thermophila JCM 3095 (PtNHase), and amidase from Rhodococcus sp. N-771 (RhAmidase) were benzonitrile, 3-cyanopyridine, and L-methioninamide, respectively. We further analyzed the interactional profiles of these top poses with corresponding enzymes, showing that specific residues within the enzyme's binding pockets formed diverse contacts with substrates. This information on binding landscapes and interactional profiles is of great importance for the design of nitrile-degrading enzyme mutants with better oxidation activity toward nitriles or amides in the process of pollutant treatments.

  4. Investigating the Turing conditions for diffusion-driven instability in the presence of a binding immobile substrate.

    PubMed

    Korvasová, K; Gaffney, E A; Maini, P K; Ferreira, M A; Klika, V

    2015-02-21

    Turing's diffusion-driven instability for the standard two species reaction-diffusion system is only achievable under well-known and rather restrictive conditions on both the diffusion rates and the kinetic parameters, which necessitates the pairing of a self-activator with a self-inhibitor. In this study we generalize the standard two-species model by considering the case where the reactants can bind to an immobile substrate, for instance extra-cellular matrix, and investigate the influence of this dynamics on Turing's diffusion-driven instability. Such systems have been previously studied on the grounds that binding of the self-activator to a substrate may effectively reduce its diffusion rate and thus induce a Turing instability for species with equal diffusion coefficients, as originally demonstrated by Lengyel and Epstein (1992) under the assumption that the bound state dynamics occurs on a fast timescale. We, however, analyse the full system without any separation of timescales and demonstrate that the full system also allows a relaxation of the standard constraints on the reaction kinetics for the Turing instability, increasing the type of interactions that could give rise to spatial patterning. In particular, we show that two self-activators can undertake a diffusively driven instability in the presence of a binding immobile substrate, highlighting that the interactions required of a putative biological Turing instability need not be associated with a self-activator-self-inhibitor morphogen pair.

  5. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy.

    PubMed

    Wijaya, I M Mahaputra; Zhang, Yu; Iwata, Tatsuya; Yamamoto, Junpei; Hitomi, Kenichi; Iwai, Shigenori; Getzoff, Elizabeth D; Kandori, Hideki

    2013-02-12

    Photolyases (PHRs) utilize near-ultraviolet (UV)-blue light to specifically repair the major photoproducts (PPs) of UV-induced damaged DNA. The cyclobutane pyrimidine dimer PHR (CPD-PHR) from Escherichia coli binds flavin adenine dinucleotide (FAD) as a cofactor and 5,10-methenyltetrahydrofolate as a light-harvesting pigment and specifically repairs CPD lesions. By comparison, a second photolyase known as (6-4) PHR, present in a range of higher organisms, uniquely repairs (6-4) PPs. To understand the repair mechanism and the substrate specificity that distinguish CPD-PHR from (6-4) PHR, we applied Fourier transform infrared (FTIR) spectroscopy to bacterial CPD-PHR in the presence or absence of a well-defined DNA substrate, as we have studied previously for vertebrate (6-4) PHR. PHRs show light-induced reduction of FAD, and photorepair by CPD-PHR involves the transfer of an electron from the photoexcited reduced FAD to the damaged DNA for cleaving the dimers to maintain the DNA's integrity. Here, we measured and analyzed difference FTIR spectra for the photoactivation and DNA photorepair processes of CPD-PHR. We identified light-dependent signals only in the presence of substrate. The signals, presumably arising from a protonated carboxylic acid or the DNA substrate, implicate conformational rearrangements of the protein and substrate during the repair process. Deuterium exchange FTIR measurements of CPD-PHR highlight potential differences in the photoactivation and photorepair mechanisms in comparison to those of (6-4) PHR. Although CPD-PHR and (6-4) PHR appear to exhibit similar overall structures, our studies indicate that distinct conformational rearrangements, especially in the α-helices, are initiated within these enzymes upon binding of their respective DNA substrates.

  6. Trypanosoma brucei 20 S Editosomes Have One RNA Substrate-binding Site and Execute RNA Unwinding Activity*

    PubMed Central

    Böhm, Cordula; Katari, Venkata Subbaraju; Brecht, Michael; Göringer, H. Ulrich

    2012-01-01

    Editing of mitochondrial pre-mRNAs in African trypanosomes generates full-length transcripts by the site-specific insertion and deletion of uridylate nucleotides. The reaction is catalyzed by a 0.8 MDa multienzyme complex, the editosome. Although the binding of substrate pre-edited mRNAs and cognate guide RNAs (gRNAs) represents the first step in the reaction cycle, the biochemical and biophysical details of the editosome/RNA interaction are not understood. Here we show that editosomes bind full-length substrate mRNAs with nanomolar affinity in a nonselective fashion. The complexes do not discriminate–neither kinetically nor thermodynamically–between different mitochondrial pre-mRNAs or between edited and unedited versions of the same transcript. They also bind gRNAs and gRNA/pre-mRNA hybrid RNAs with similar affinities and association rate constants. Gold labeling of editosome-bound RNA in combination with transmission electron microscopy identified a single RNA-binding site per editosome. However, atomic force microscopy of individual pre-mRNA-editosome complexes revealed that multiple editosomes can interact with one pre-mRNA. Lastly, we demonstrate a so far unknown activity of the editing machinery: editosome-bound RNA becomes unfolded by a chaperone-type RNA unwinding activity. PMID:22661715

  7. Substrate adaptabilities of Thermotogae mannan binding proteins as a function of their evolutionary histories.

    PubMed

    Boucher, Nathalie; Noll, Kenneth M

    2016-09-01

    The Thermotogae possess a large number of ATP-binding cassette (ABC) transporters, including two mannan binding proteins, ManD and CelE (previously called ManE). We show that a gene encoding an ancestor of these was acquired by the Thermotogae from the archaea followed by gene duplication. To address the functional evolution of these proteins as a consequence of their evolutionary histories, we measured the binding affinities of ManD and CelE orthologs from representative Thermotogae. Both proteins bind cellobiose, cellotriose, cellotetraose, β-1,4-mannotriose, and β-1,4-mannotetraose. The CelE orthologs additionally bind β-1,4-mannobiose, laminaribiose, laminaritriose and sophorose while the ManD orthologs additionally only weakly bind β-1,4-mannobiose. The CelE orthologs have higher unfolding temperatures than the ManD orthologs. An examination of codon sites under positive selection revealed that many of these encode residues located near or in the binding site, suggesting that the proteins experienced selective pressures in regions that might have changed their functions. The gene arrangement, phylogeny, binding properties, and putative regulatory networks suggest that the ancestral mannan binding protein was a CelE ortholog which gave rise to the ManD orthologs. This study provides a window on how one class of proteins adapted to new functions and temperatures to fit the physiologies of their new hosts.

  8. The noncompetitive inhibitor WW781 senses changes in erythrocyte anion exchanger (AE1) transport site conformation and substrate binding.

    PubMed

    Knauf, P A; Raha, N M; Spinelli, L J

    2000-02-01

    WW781 binds reversibly to red blood cell AE1 and inhibits anion exchange by a two-step mechanism, in which an initial complex (complex 1) is rapidly formed, and then there is a slower equilibration to form a second complex (complex 2) with a lower free energy. According to the ping-pong kinetic model, AE1 can exist in forms with the anion transport site facing either inward or outward, and the transition between these forms is greatly facilitated by binding of a transportable substrate such as Cl(-). Both the rapid initial binding of WW781 and the formation of complex 2 are strongly affected by the conformation of AE1, such that the forms with the transport site facing outward have higher affinity than those with the transport site facing inward. In addition, binding of Cl(-) seems to raise the free energy of complex 2 relative to complex 1, thereby reducing the equilibrium binding affinity, but Cl(-) does not compete directly with WW781. The WW781 binding site, therefore, reveals a part of the AE1 structure that is sensitive to Cl(-) binding and to transport site orientation, in addition to the disulfonic stilbene binding site. The relationship of the inhibitory potency of WW781 under different conditions to the affinities for the different forms of AE1 provides information on the possible asymmetric distributions of unloaded and Cl(-)-loaded transport sites that are consistent with the ping-pong model, and supports the conclusion from flux and nuclear magnetic resonance data that both the unloaded and Cl(-)-loaded sites are very asymmetrically distributed, with far more sites facing the cytoplasm than the outside medium. This asymmetry, together with the ability of WW781 to recruit toward the forms with outward-facing sites, implies that WW781 may be useful for changing the conformation of AE1 in studies of structure-function relationships.

  9. Effective Quenchers Are Required to Eliminate the Interference of Substrate: Cofactor Binding in the HAT Scintillation Proximity Assay

    PubMed Central

    Ngo, Liza; Wu, Jiang; Yang, Chao

    2015-01-01

    Abstract Histone acetyltransferases (HATs) mediate the transfer of an acetyl group from the cofactor, acetyl-CoA, to the side chain amino group of specific lysines in diverse protein substrates, most notably nuclear histones. The deregulation of HATs is connected to a number of disease states. Reliable and rapid biochemical assays for HATs are critical for understanding biological functions of protein acetylation, as well as for screening small-molecule inhibitors of HAT enzymes. In this report, we present a scintillation proximity assay (SPA) for the measurement of HAT enzymatic activities. The acetyl donor was [3H]Ac-CoA, and a biotin-modified histone peptide served as the HAT substrate. After the HAT reaction, streptavidin-coated beads were added to induce proximity of acetylated substrate to the scintillant molecules. However, we observed strong nonspecific binding between the cofactor and the histone peptide substrates, which adversely complicated the SPA performance. To prevent this problem, a set of chemical agents were evaluated to eliminate the cofactor–substrate interaction, thus providing reliable SPA readings. With optimization, the SPA showed consistent and robust performance for HAT activity measurement and HAT inhibitor evaluation. Overall, this mix-and-measure assay does not require any washing procedure, can be utilized in the microplate format, and is well suited for high-throughput screening of HAT chemical modulators. PMID:26065557

  10. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation.

    PubMed

    Fung, Angela W; Ebhardt, H Alexander; Abeysundara, Heshani; Moore, Jack; Xu, Zhizhong; Fahlman, Richard P

    2011-06-17

    Eubacterial leucyl/phenylalanyl tRNA protein transferase (L/F transferase) catalyzes the transfer of a leucine or a phenylalanine from an aminoacyl-tRNA to the N-terminus of a protein substrate. This N-terminal addition of an amino acid is analogous to that of peptide synthesis by ribosomes. A previously proposed catalytic mechanism for Escherichia coli L/F transferase identified the conserved aspartate 186 (D186) and glutamine 188 (Q188) as key catalytic residues. We have reassessed the role of D186 and Q188 by investigating the enzymatic reactions and kinetics of enzymes possessing mutations to these active-site residues. Additionally three other amino acids proposed to be involved in aminoacyl-tRNA substrate binding are investigated for comparison. By quantitatively measuring product formation using a quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based assay, our results clearly demonstrate that, despite significant reduction in enzymatic activity as a result of different point mutations introduced into the active site of L/F transferase, the formation of product is still observed upon extended incubations. Our kinetic data and existing X-ray crystal structures result in a proposal that the critical roles of D186 and Q188, like the other amino acids in the active site, are for substrate binding and orientation and do not directly participate in the chemistry of peptide bond formation. Overall, we propose that L/F transferase does not directly participate in the chemistry of peptide bond formation but catalyzes the reaction by binding and orientating the substrates for reaction in an analogous mechanism that has been described for ribosomes.

  11. Insights into Phosphate Cooperativity and Influence of Substrate Modifications on Binding and Catalysis of Hexameric Purine Nucleoside Phosphorylases

    PubMed Central

    de Giuseppe, Priscila O.; Martins, Nadia H.; Meza, Andreia N.; dos Santos, Camila R.; Pereira, Humberto D’Muniz; Murakami, Mario T.

    2012-01-01

    The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233) displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural description of the binding mode of substrates and nucleoside analogues to the active site of the hexameric BsPNP233. Here we report the crystal structure of BsPNP233 in the apo form and in complex with 11 ligands, including clinically relevant compounds. The crystal structure of six ligands (adenine, 2′deoxyguanosine, aciclovir, ganciclovir, 8-bromoguanosine, 6-chloroguanosine) in complex with a hexameric PNP are presented for the first time. Our data showed that free bases adopt alternative conformations in the BsPNP233 active site and indicated that binding of the co-substrate (2′deoxy)ribose 1-phosphate might contribute for stabilizing the bases in a favorable orientation for catalysis. The BsPNP233-adenosine complex revealed that a hydrogen bond between the 5′ hydroxyl group of adenosine and Arg43* side chain contributes for the ribosyl radical to adopt an unusual C3’-endo conformation. The structures with 6-chloroguanosine and 8-bromoguanosine pointed out that the Cl6 and Br8 substrate modifications seem to be detrimental for catalysis and can be explored in the design of inhibitors for hexameric PNPs from pathogens. Our data also corroborated the competitive inhibition mechanism of hexameric PNPs by tubercidin and suggested that the acyclic nucleoside ganciclovir is a better inhibitor for hexameric PNPs than aciclovir. Furthermore, comparative structural analyses indicated that the replacement of Ser90 by a threonine in the B. cereus hexameric adenosine phosphorylase (Thr91) is responsible for the lack of negative cooperativity of phosphate binding in this

  12. Substrate-dependent, non-hyperbolic kinetics of pig brain prolyl oligopeptidase and its tight binding inhibition by JTP-4819.

    PubMed

    Venäläinen, Jarkko I; Juvonen, Risto O; Forsberg, Markus M; Garcia-Horsman, Arturo; Poso, Antti; Wallen, Erik A A; Gynther, Jukka; Männistö, Pekka T

    2002-08-01

    Prolyl oligopeptidase (POP) is a cytosolic serine protease that hydrolyses small peptides at the carboxyl end of the proline residue. It has raised pharmaceutical interest, since its inhibitors have been shown to have antiamnesic properties. We studied prolyl oligopeptidase kinetics with two 7-amino-4-methylcoumarin derivatives: Z-Gly-Pro-AMC and Suc-Gly-Pro-AMC. Z-Gly-Pro-AMC was found to obey standard Henri-Michaelis-Menten kinetics with a K(m) of 30+/-3 microM, whereas Suc-Gly-Pro-AMC exhibited substrate inhibition kinetics with K(m) and K(is) of 510+/-150 and 270+/-90 microM, respectively. Autodock simulations revealed that either the succinyl or the AMC-end of Suc-Gly-Pro-AMC may bind to the S'1 subsite of the active site. We believe that non-specifically bound Suc-Gly-Pro-AMC allows the simultaneous binding of second substrate molecule to the active site and this leads in substrate inhibition. In addition, we demonstrated that the inhibition type of a well characterized prolyl oligopeptidase inhibitor, JTP-4819, is competitive tight binding with a K(ic) of 0.045+/-0.008 nM. We suggest that due to the high concentration of prolyl oligopeptidase in the brain (0.12 nmol/g pig brain), the tight binding nature of the inhibition should be considered when using brain homogenate as the enzyme source in prolyl oligopeptidase inhibition measurements. This is of importance in studying structure-activity relationships of potent prolyl oligopeptidase inhibitors.

  13. High Resolution Structures of the Human ABO(H) Blood Group Enzymes in Complex with Donor Analogs Reveal That the Enzymes Utilize Multiple Donor Conformations to Bind Substrates in a Stepwise Manner.

    PubMed

    Gagnon, Susannah M L; Meloncelli, Peter J; Zheng, Ruixiang B; Haji-Ghassemi, Omid; Johal, Asha R; Borisova, Svetlana N; Lowary, Todd L; Evans, Stephen V

    2015-11-06

    Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the "tucked under" conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be "isosteric" with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB.

  14. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis

    PubMed Central

    Kratzer, Regina; Leitgeb, Stefan; Wilson, David K.; Nidetzky, Bernd

    2005-01-01

    Little is known about how substrates bind to CtXR (Candida tenuis xylose reductase; AKR2B5) and other members of the AKR (aldo–keto reductase) protein superfamily. Modelling of xylose into the active site of CtXR suggested that Trp23, Asp50 and Asn309 are the main components of pentose-specific substrate-binding recognition. Kinetic consequences of site-directed substitutions of these residues are reported. The mutants W23F and W23Y catalysed NADH-dependent reduction of xylose with only 4 and 1% of the wild-type efficiency (kcat/Km) respectively, but improved the wild-type selectivity for utilization of ketones, relative to xylose, by factors of 156 and 471 respectively. Comparison of multiple sequence alignment with reported specificities of AKR members emphasizes a conserved role of Trp23 in determining aldehyde-versus-ketone substrate selectivity. D50A showed 31 and 18% of the wild-type catalytic-centre activities for xylose reduction and xylitol oxidation respectively, consistent with a decrease in the rates of the chemical steps caused by the mutation, but no change in the apparent substrate binding constants and the pattern of substrate specificities. The 30-fold preference of the wild-type for D-galactose compared with 2-deoxy-D-galactose was lost completely in N309A and N309D mutants. Comparison of the 2.4 Å (1 Å=0.1 nm) X-ray crystal structure of mutant N309D bound to NAD+ with the previous structure of the wild-type holoenzyme reveals no major structural perturbations. The results suggest that replacement of Asn309 with alanine or aspartic acid disrupts the function of the original side chain in donating a hydrogen atom for bonding with the substrate C-2(R) hydroxy group, thus causing a loss of transition-state stabilization energy of 8–9 kJ/mol. PMID:16336198

  15. Pig pancreatic anhydro-elastase. Role of the serine-195 hydroxy group in the binding of inhibitors and substrate.

    PubMed Central

    Williams, H R; Lin, T Y; Navia, M A; Springer, J P; Hoogsteen, K

    1987-01-01

    The binding constants of a number of ligands were measured for pancreatic elastase (PE) and anhydro-elastase (AE) in order to assess the contribution of Ser-195 to substrate and inhibitor binding by PE. AE was purified by affinity chromatography on a column containing immobilized turkey ovomucoid inhibitor. The AE had 0.1 +/- 0.1% of the activity of the native enzyme and contained 0.8 +/- 0.06 residue of dehydroalanine per molecule. A difference electron-density map, derived from an X-ray crystallographic analysis of AE, showed that the modified residue was Ser-195. The complexing of 3-carboxypropionyl-Ala-Ala-Ala-p-nitroanilide (SAN) to the active site of AE was also demonstrated by X-ray-diffraction analysis of an AE crystal soaked overnight with substrate. The nitroanilide moiety was not observed in the difference map. AE was shown to bind turkey ovomucoid inhibitor with a dissociation constant (Kd) of 0.3 +/- 0.06 microM compared with 0.10 microM for PE. The Kd of the AE-SAN complex (0.2 mM) was comparable with the Michaelis constant for SAN with PE (1.0 mM). A number of inhibitors, such as elastatinal, which forms a hemiketal adduct with PE, while others such as the beta-lactams, which function as acylators of the active-site serine residue, bound AE with a lower affinity than to PE. The binding of a peptidylchloromethane (acetyl-Ala-Ala-Pro-Ala-CH2Cl) to AE occurs without evidence for alkylation of histidine. The binding constants for benzoisothiazolinone and 3,4-dichloroisocoumarin to PE differed from their binding constants to AE by less than a factor of 4.0-fold. The contribution of the hydroxy group of Ser-195 to the binding of these inhibitors to PE in their non-covalent complexes is relatively small, even though they inactivate PE by an acylation mechanism. These results suggest that the hydroxy group on Ser-195 in PE is of secondary importance in the energetics of ligand binding, in contrast with its essential role in the catalytic properties of the

  16. Molecular dynamics of Mycobacterium tuberculosis KasA: implications for inhibitor and substrate binding and consequences for drug design

    NASA Astrophysics Data System (ADS)

    Schaefer, Benjamin; Kisker, Caroline; Sotriffer, Christoph A.

    2011-11-01

    Inhibition of the production of fatty acids as essential components of the mycobacterial cell wall has been an established way of fighting tuberculosis for decades. However, increasing resistances and an outdated medical treatment call for the validation of new targets involved in this crucial pathway. In this regard, the β-ketoacyl ACP synthase KasA is a promising enzyme. In this study, three molecular dynamics simulations based on the wildtype crystal structures of inhibitor bound and unbound KasA were performed in order to investigate the flexibility and conformational space of this target. We present an exhaustive analysis of the binding-site flexibility and representative pocket conformations that may serve as new starting points for structure-based drug design. We also revealed a mechanism which may account for the comparatively low binding affinity of thiolactomycin. Furthermore, we examined the behavior of water molecules within the binding pocket and provide recommendations how to handle them in the drug design process. Finally, we analyzed the dynamics of a channel that accommodates the long-chain fatty acid substrates and, thereby, propose a mechanism of substrate access to this channel and how products are most likely released.

  17. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin.

    PubMed

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-03-20

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT.

  18. Interactions of human P-glycoprotein transport substrates and inhibitors at the drug binding domain: Functional and molecular docking analyses.

    PubMed

    Kadioglu, Onat; Saeed, Mohamed E M; Valoti, Massimo; Frosini, Maria; Sgaragli, Giampietro; Efferth, Thomas

    2016-03-15

    Rhodamine 123 (R123) transport substrate sensitizes P-glycoprotein (P-gp) to inhibition by compound 2c (cis-cis) N,N-bis(cyclohexanolamine)aryl ester isomer in a concentration-dependent manner in human MDR1-gene transfected mouse T-lymphoma L5178 cells as shown previously. By contrast, epirubicin (EPI) concentration changes left unaltered 2c IC50 values of EPI efflux. To clarify this discrepancy, defined molecular docking (DMD) analyses of 12 N,N-bis(cyclohexanolamine)aryl esters, the highly flexible aryl ester analog 4, and several P-gp substrate/non-substrate inhibitors were performed on human P-gp drug- or nucleotide-binding domains (DBD or NBD). DMD measurements yielded lowest binding energy (LBE, kcal/mol) values (mean ± SD) ranging from -11.8 ± 0.54 (valspodar) to -3.98 ± 0.01 (4). Lys234, Ser952 and Tyr953 residues formed H-bonds with most of the compounds. Only 2c docked also at ATP binding site (LBE value of -6.9 ± 0.30 kcal/mol). Inhibition of P-gp-mediated R123 efflux by 12 N,N-bis(cyclohexanolamine)aryl esters and 4 significantly correlated with LBE values. DMD analysis of EPI, (3)H-1EPI, (3)H-2EPI, (14)C-1EPI, (14)C-2EPI, R123 and 2c before and after previous docking of each of them indicated that pre-docking of either 2c or EPI significantly reduced LBE of both EPI and R123, and that of both (3)H-2EPI and (14)C-2EPI, respectively. Since the clusters of DBD amino acid residues interacting with EPI were different, if EPI docked alone or after pre-docking of EPI or 2c, the existence of alternative secondary binding site for EPI on P-gp is credible. In conclusion, 2c may allocate the drug-binding pocket and reduce strong binding of EPI and R123 in agreement with P-gp inhibition experiments, where 2c reduced efflux of EPI and R123.

  19. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators

    PubMed Central

    Hagting, Anja; Izawa, Daisuke; Mansfeld, Jörg; Gibson, Toby J.; Pines, Jonathon

    2016-01-01

    The APC/C is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the Spindle Assembly Checkpoint (SAC). How the APC/C recognises its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in Cyclin A, BUBR1, BUB1 and Acm1, and show that it binds to the APC/C co-activator CDC20. The ABBA motif in Cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC. PMID:25669885

  20. Crystal Structure of StnA for the Biosynthesis of Antitumor Drug Streptonigrin Reveals a Unique Substrate Binding Mode

    PubMed Central

    Qian, Tianle; Wo, Jing; Zhang, Yan; Song, Quanwei; Feng, Guoqiang; Luo, Ray; Lin, Shuangjin; Wu, Geng; Chen, Hai-Feng

    2017-01-01

    Streptonigrin methylesterase A (StnA) is one of the tailoring enzymes that modify the aminoquinone skeleton in the biosynthesis pathway of Streptomyces species. Although StnA has no significant sequence homology with the reported α/β-fold hydrolases, it shows typical hydrolytic activity in vivo and in vitro. In order to reveal its functional characteristics, the crystal structures of the selenomethionine substituted StnA (SeMet-StnA) and the complex (S185A mutant) with its substrate were resolved to the resolution of 2.71 Å and 2.90 Å, respectively. The overall structure of StnA can be described as an α-helix cap domain on top of a common α/β hydrolase domain. The substrate methyl ester of 10′-demethoxystreptonigrin binds in a hydrophobic pocket that mainly consists of cap domain residues and is close to the catalytic triad Ser185-His349-Asp308. The transition state is stabilized by an oxyanion hole formed by the backbone amides of Ala102 and Leu186. The substrate binding appears to be dominated by interactions with several specific hydrophobic contacts and hydrogen bonds in the cap domain. The molecular dynamics simulation and site-directed mutagenesis confirmed the important roles of the key interacting residues in the cap domain. Structural alignment and phylogenetic tree analysis indicate that StnA represents a new subfamily of lipolytic enzymes with the specific binding pocket located at the cap domain instead of the interface between the two domains. PMID:28074848

  1. Single-stranded DNA Binding by the Helix-Hairpin-Helix Domain of XPF Protein Contributes to the Substrate Specificity of the ERCC1-XPF Protein Complex.

    PubMed

    Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2017-02-17

    The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble.

  2. Purification and characterization of Ak.1 protease, a thermostable subtilisin with a disulphide bond in the substrate-binding cleft.

    PubMed

    Toogood, H S; Smith, C A; Baker, E N; Daniel, R M

    2000-08-15

    Ak.1 protease, a thermostable subtilisin isolated originally from Bacillus st. Ak.1, was purified to homogeneity from the Escherichia coli clone PB5517. It is active against substrates containing neutral or hydrophobic branched-chain amino acids at the P(1) site, such as valine, alanine or phenylalanine. The K(m) and k(cat) of the enzyme decrease with decreasing temperature, though not to the same degree with all substrates, suggesting that specificity changes with temperature. The protease is markedly stabilized by Ca(2+) ions. At 70 degrees C, a 10-fold increase in Ca(2+) concentration increases the half-life by three orders of magnitude. Ak.1 protease is stabilized by Ca(2+) to a greater extent than is thermitase. This may be due, in part, to the presence of an extra Ca(2+)-binding site in Ak.1 protease. Other metal ions, such as Sr(2+), increase the thermostability of the enzyme, but to a significantly lower degree than does Ca(2+). The structure of the protease showed the presence of a disulphide bond located within the active-site cleft. This bond influences both enzyme activity and thermostability. The disulphide bond appears to have a dual role: maintaining the integrity of the substrate-binding cleft and increasing the thermostability of the protease. The protease was originally investigated to determine its usefulness in the clean-up of DNA at high temperatures. However, it was found that this protease has a limited substrate specificity, so this application was not explored further.

  3. 3-(4-Hydroxyphenyl)propionic acid: the forgotten detection substrate for ligand-binding assay-based bioanalysis.

    PubMed

    Jordan, Gregor; Stubenrauch, Kay-Gunnar; Heinrich, Julia; Staack, Roland F

    2017-02-01

    Ligand-binding assays are ideal for routine bioanalysis, but we reason that the straightforward replacement of the conventional chromogenic horseradish peroxidase substrate, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, of a routinely used preclinical immunoassay to detect hIgG, with the fluorogenic 3-(4-hydroxyphenyl)propionic acid would broaden the narrow dynamic range. The replacement leads to a sensitivity of 0.47 (minimum required dilution [MRD] 10) and 1.02 (MRD 50) ng/ml, and dynamic ranges of 3.3 (MRD 10) and 3.6 (MRD 50) orders of magnitude, and thereby had improved sensitivity and dynamic range compared with other conventional colorimetric ELISAs, other ligand-binding assay technologies or LC-MS assays. Improvements in sensitivity and dynamic range were achieved for the sera of horse, mice and monkeys without assay optimization.

  4. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    SciTech Connect

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  5. Small heat shock protein IbpB acts as a robust chaperone in living cells by hierarchically activating its multi-type substrate-binding residues.

    PubMed

    Fu, Xinmiao; Shi, Xiaodong; Yin, Linxiang; Liu, Jiafeng; Joo, Keehyoung; Lee, Jooyoung; Chang, Zengyi

    2013-04-26

    As ubiquitous molecular chaperones, small heat shock proteins (sHSPs) are crucial for protein homeostasis. It is not clear why sHSPs are able to bind a wide spectrum of non-native substrate proteins and how such binding is enhanced by heat shock. Here, by utilizing a genetically incorporated photo-cross-linker (p-benzoyl-l-phenylalanine), we systematically characterized the substrate-binding residues in IbpB (a sHSP from Escherichia coli) in living cells over a wide spectrum of temperatures (from 20 to 50 °C). A total of 20 and 48 residues were identified at normal and heat shock temperatures, respectively. They are not necessarily hydrophobic and can be classified into three types: types I and II were activated at low and normal temperatures, respectively, and type III mediated oligomerization at low temperature but switched to substrate binding at heat shock temperature. In addition, substrate binding of IbpB in living cells began at temperatures as low as 25 °C and was further enhanced upon temperature elevation. Together, these in vivo data provide novel structural insights into the wide substrate spectrum of sHSPs and suggest that sHSP is able to hierarchically activate its multi-type substrate-binding residues and thus act as a robust chaperone in cells under fluctuating growth conditions.

  6. Comparative rates of transfer of N-acetylneuraminic acid to acceptors bearing one or more Gal(beta 1-4)GlcNAc terminus by the Gal(beta 1-4)GlcNAc(NeuAc-Gal) (alpha 2-6)-sialyltransferase from embryonic chicken liver. Utilization of oligosaccharides as acceptors in sialyltransferase assays.

    PubMed Central

    Bendiak, B; Cook, G M

    1983-01-01

    Using a number of branched and unbranched oligosaccharides, glycoproteins and artificial glycoproteins bearing Gal(beta 1-4)GlcNAc-R termini as acceptors (where R represents H, oligosaccharide, oligosaccharide-protein or fatty acid-protein), the comparative rates of transfer of NeuAc by the Gal(beta 1-4)GlcNAc(NeuAc-Gal) (alpha 2-6)-sialyltransferase of embryonic chicken liver were determined. Acceptor substrates were utilized at levels approximating physiological, near the Km value of the best acceptor, desialylated alpha 1 acid glycoprotein. The sialyltransferase has a marked preference for multi-branched acceptors. From the specificity data, it is concluded that the enzyme binds at least two Gal(beta 1-4)GlcNAc termini of an acceptor molecule, and that the relative orientation of the branches is an important factor determining the rate of catalysis by the enzyme. The use of oligosaccharides as acceptors to study sialyltransferase catalyses is emphasized. Results are discussed in the context of the mode of assembly of sialoside termini of known glycoprotein structures in vivo. Images Fig. 2. PMID:6615429

  7. Role of THR501 residue in substrate binding and catalytic activity of cytochrome P4501A1.

    PubMed

    Cvrk, T; Strobel, H W

    2001-05-01

    A putative binding region for cumene hydroperoxide in the active site of cytochrome P4501A1 was identified using photoaffinity labeling. Thr501 was determined as the most likely site of modification by azidocumene used as the photoaffinity label (T. Cvrk and H. W. Strobel, (1998) Arch. Biochem. Biophys. 349, 95-104). To evaluate further the role of this amino acid residue a site-directed mutagenesis approach was employed. P4501A1 wild type and two mutants, P4501A1Glu501 and P4501A1Phe501, were expressed in and purified from Escherichia coli and used for kinetic analysis to confirm the role of Thr501 residue in cumene hydroperoxide binding. The mutation resulted in a two- to fourfold decrease in the rate of heme degradation in the presence of 0.5 mM cumene hydroperoxide. The mutations do not prevent or significantly alter binding of the tested substrates; however, binding of 2-phenyl-2-propanol (product generated from cumene hydroperoxide) to P4501A1Glu501 and P4501A1Phe501 exhibited four- and eightfold decreases, respectively, suggesting that the mutations strongly affected the affinity of cumene hydroperoxide for the P4501A1 active site. The kinetic analysis of cumene hydroperoxide-supported reactions showed that both mutants exhibit increased Km and decreased VMax values for all tested substrates. Furthermore, the mutations affected product distribution in testosterone hydroxylation. On the basis of P4501A1Glu501 and P4501A1Phe501 characterization, it can be concluded that Thr501 plays an important role in cumene hydroperoxide/P4501A1 interaction.

  8. Methylation-independent DNA Binding Modulates Specificity of Repressor of Silencing 1 (ROS1) and Facilitates Demethylation in Long Substrates*

    PubMed Central

    Ponferrada-Marín, María Isabel; Martínez-Macías, María Isabel; Morales-Ruiz, Teresa; Roldán-Arjona, Teresa; Ariza, Rafael R.

    2010-01-01

    DNA cytosine methylation is an epigenetic mark that promotes gene silencing and performs critical roles during reproduction and development in both plants and animals. The genomic distribution of DNA methylation is the dynamic outcome of opposing methylation and demethylation processes. In plants, active demethylation occurs through a base excision repair pathway initiated by 5-methycytosine (5-meC) DNA glycosylases of the REPRESSOR OF SILENCING 1 (ROS1)/DEMETER (DME) family. To gain insight into the mechanism by which Arabidopsis ROS1 recognizes and excises 5-meC, we have identified those protein regions that are required for efficient DNA binding and catalysis. We have found that a short N-terminal lysine-rich domain conserved in members of the ROS1/DME family mediates strong methylation-independent binding of ROS1 to DNA and is required for efficient activity on 5-meC·G, but not for T·G processing. Removal of this domain does not significantly affect 5-meC excision from short molecules, but strongly decreases ROS1 activity on long DNA substrates. This region is not required for product binding and is not involved in the distributive behavior of the enzyme on substrates containing multiple 5-meC residues. Altogether, our results suggest that methylation-independent DNA binding allows ROS1 to perform a highly redundant search for efficient excision of a nondamaged, correctly paired base such as 5-meC in long stretches of DNA. These findings may have implications for understanding the evolution of structure and target specificity in DNA glycosylases. PMID:20489198

  9. Positive cooperativity between acceptor and donor sites of the peptidoglycan glycosyltransferase.

    PubMed

    Bury, Daniel; Dahmane, Ismahene; Derouaux, Adeline; Dumbre, Shrinivas; Herdewijn, Piet; Matagne, André; Breukink, Eefjan; Mueller-Seitz, Erika; Petz, Michael; Terrak, Mohammed

    2015-01-15

    The glycosyltransferases of family 51 (GT51) catalyze the polymerization of lipid II to form linear glycan chains, which, after cross linking by the transpeptidases, form the net-like peptidoglycan macromolecule. The essential function of the GT makes it an attractive antimicrobial target; therefore a better understanding of its function and its mechanism of interaction with substrates could help in the design and the development of new antibiotics. In this work, we have used a surface plasmon resonance Biacore(®) biosensor, based on an amine derivative of moenomycin A immobilized on a sensor chip surface, to investigate the mechanism of binding of substrate analogous inhibitors to the GT. Addition of increasing concentrations of moenomycin A to the Staphylococcus aureus MtgA led to reduced binding of the protein to the sensor chip as expected. Remarkably, in the presence of low concentrations of the most active disaccharide inhibitors, binding of MtgA to immobilized moenomycin A was found to increase; in contrast competition with moenomycin A occurred only at high concentrations. This finding suggests that at low concentrations, the lipid II analogs bind to the acceptor site and induce a cooperative binding of moenomycin A to the donor site. Our results constitute the first indication of the existence of a positive cooperativity between the acceptor and the donor sites of peptidoglycan GTs. In addition, our study indicates that a modification of two residues (L119N and F120S) within the hydrophobic region of MtgA can yield monodisperse forms of the protein with apparently no change in its secondary structure content, but this is at the expense of the enzyme function.

  10. Mutational analysis of a Ser/Thr phosphatase. Identification of residues important in phosphoesterase substrate binding and catalysis.

    PubMed

    Zhuo, S; Clemens, J C; Stone, R L; Dixon, J E

    1994-10-21

    The Ser/Thr phosphoprotein phosphatases (PPases) display similarities in amino acid sequence and biochemical properties. Most members of this family require transition metal ions for activity. The smallest family member, the bacteriophage lambda PPase (lambda-PPase), has been successfully overexpressed in Escherichia coli, purified, and characterized (Zhuo, S., Clemens, J.C., Hakes, D.J., Barford, D., and Dixon, J. E. (1993) J. Biol. Chem. 268, 17754-17761). Site-directed mutagenesis has now been employed to define amino acid residues in lambda-PPase required for metal ion binding and catalysis. Conservative amino acid substitutions at residues Asp20, His22, Asp49, His76, and Glu77 affected lambda-PPase catalysis and metal ion binding, whereas substitutions at residues Arg53 and Arg73 affected catalysis and substrate binding. Each of these residues is invariant in all phosphoprotein phosphatases, suggesting that these residues may play important roles in binding and catalysis in all of the PPases. Computer-assisted sequence alignment further revealed that lambda-PPase residues Asp20, His22, Asp49, His76, Arg53, and Arg73 lie within three larger regions of PPase sequence identity with the consensus sequence (DXH-(approximately 25)-GDXXD-(approximately 25)-GNHD/E). This motif can be found in a wide variety of phosphoesterases unrelated to the PPases and defines structural and catalytic features utilized by a diverse group of enzymes for the hydrolysis of phosphate esters.

  11. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  12. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft.

    PubMed

    Kandra, Lili; Hachem, Maher Abou; Gyémánt, Gyöngyi; Kramhøft, Birte; Svensson, Birte

    2006-09-18

    Subsite affinity maps of long substrate binding clefts in barley alpha-amylases, obtained using a series of maltooligosaccharides of degree of polymerization of 3-12, revealed unfavorable binding energies at the internal subsites -3 and -5 and at subsites -8 and +3/+4 defining these subsites as binding barriers. Barley alpha-amylase 1 mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile, converting barriers to binding areas. These findings highlight the dynamic binding energy distribution and the versatility of long maltooligosaccharide derivatives in mapping extended binding clefts in alpha-amylases.

  13. Substrate masking: binding of RNA by EGTA-inactivated micrococcal nuclease results in artifactual inhibition of RNA processing reactions.

    PubMed Central

    Wang, M J; Gegenheimer, P

    1990-01-01

    Inhibition of an RNA processing reaction after treatment with the Ca2(+)-dependent micrococcal nuclease (MN) is often used as a criterion for the presence of a required RNA or ribonucleoprotein component in the system. Following MN digestion, the nuclease is inactivated with EGTA and radiolabeled substrate is added to assay for remaining RNA processing activity. We found previously that inhibition of RNA processing by MN need not involve RNA hydrolysis: EGTA-inactivated MN can suppress RNA processing if the assay is performed in the absence of carrier RNA. We now demonstrate both by native gel electrophoresis and by nitrocellulose filter retention that EGTA-inactivated MN forms a complex with free RNA which can be dissociated by addition of synthetic polynucleotides or heparin. In the absence of Ca2+, nuclease binds to precursor tRNA with an apparent KD congruent to 1.4 x 10(-6) M, comparable to its reported affinity for DNA. In an assay for endonucleolytic tRNA maturation, inactivated MN bound to radiolabeled pre-tRNA physically blocks the sites of endonuclease cleavage and prevents tRNA processing. We call this phenomenon 'substrate masking'. Addition of excess carrier RNA competes with pre-tRNA for MN binding and restores normal processing. Images PMID:2123540

  14. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity.

    PubMed

    Maddock, Danielle J; Patrick, Wayne M; Gerth, Monica L

    2015-08-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2'-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary-secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2'-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme-cofactor interactions.

  15. Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding

    PubMed Central

    Zhu, Haixia; Xu, Guochao; Zhang, Kai; Kong, Xudong; Han, Ruizhi; Zhou, Jiahai; Ni, Ye

    2016-01-01

    Tyrosine decarboxylase (TDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme and is mainly responsible for the synthesis of tyramine, an important biogenic amine. In this study, the crystal structures of the apo and holo forms of Lactobacillus brevis TDC (LbTDC) were determined. The LbTDC displays only 25% sequence identity with the only reported TDC structure. Site-directed mutagenesis of the conformationally flexible sites and catalytic center was performed to investigate the potential catalytic mechanism. It was found that H241 in the active site plays an important role in PLP binding because it has different conformations in the apo and holo structures of LbTDC. After binding to PLP, H241 rotated to the position adjacent to the PLP pyridine ring. Alanine scanning mutagenesis revealed several crucial regions that determine the substrate specificity and catalytic activity. Among the mutants, the S586A variant displayed increased catalytic efficiency and substrate affinity, which is attributed to decreased steric hindrance and increased hydrophobicity, as verified by the saturation mutagenesis at S586. Our results provide structural information about the residues important for the protein engineering of TDC to improve catalytic efficiency in the green manufacturing of tyramine. PMID:27292129

  16. Molecular modeling and docking of novel laccase from multiple serotype of Yersinia enterocolitica suggests differential and multiple substrate binding.

    PubMed

    Singh, Deepti; Sharma, Krishna Kant; Dhar, Mahesh Shanker; Virdi, Jugsharan Singh

    2014-06-20

    Multi-copper oxidases (MCOs) are widely distributed in bacteria, where they are responsible for metal homeostasis, acquisition and oxidation. Using specific primers, yacK coding for MCO was amplified from different serotypes of Yersinia enterocolitica biovar 1A. Homology modeling of the protein followed by docking with five well-known substrates for different MCO's (viz., 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid [ABTS], syringaldazine, L-tyrosine, ammonium ferrous sulfate and guaiacol), lignin monomers (Coniferyl alcohol, p-coumaryl alcohol and sinapyl alcohol) and two inhibitors i.e., kojic acid and N-hydroxyglycine was done. The docking gave maximum GoldScore i.e., 91.93 and 72.64 with ammonium ferrous sulfate and ABTS, respectively. Similarly, docking with ICM gave -82.10 and -83.61 docking score, confirming the protein to be true laccase with ferroxidase activity. Further, validation with ammonium ferrous sulfate as substrate gave laccase activity of 0.36Units/L/min. Guaiacol, L-tyrosine, and lignin monomers showed good binding affinity with protein models with GoldScores of 35.89, 41.82, 40.41, 41.12 and 43.10, respectively. The sequence study of all the cloned Yack genes showed serotype specific clade in dendrogram. There was distinct discrimination in the ligand binding affinity of Y. enterocolitica laccase, among strains of same clonal groups, suggesting it as a tool for phylogenetic studies.

  17. QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II

    PubMed Central

    Sproviero, Eduardo M; Shinopoulos, Katherine; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S

    2007-01-01

    This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn3CaO4Mn metal cluster with three closely associated manganese ions linked to a single μ4-oxo-ligated Mn ion, often called the ‘dangling manganese’. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk 18O-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the S1→S2 transition should produce opposite effects on the two water-exchange rates. PMID:17971333

  18. A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding.

    PubMed

    Zhou, Zhanping; Zhao, Shuangzhi; Liu, Yang; Chang, Zhengying; Ma, Yanhe; Li, Jian; Song, Jiangning

    2016-11-01

    The chitosanase from Bacillus sp. TS (CsnTS) is an enzyme belonging to the glycoside hydrolase family 8. The sequence of CsnTS shares 98 % identity with the chitosanase from Bacillus sp. K17. Crystallography analysis and site-direct mutagenesis of the chitosanase from Bacillus sp. K17 identified the important residues involved in the catalytic interaction and substrate binding. However, despite progress in understanding the catalytic mechanism of the chitosanase from the family GH8, the functional roles of some residues that are highly conserved throughout this family have not been fully elucidated. This study focused on one of these residues, i.e., the aspartic acid residue at position 318. We found that apart from asparagine, mutation of Asp318 resulted in significant loss of enzyme activity. In-depth investigations showed that mutation of this residue not only impaired enzymatic activity but also affected substrate binding. Taken together, our results showed that Asp318 plays an important role in CsnTS activity.

  19. Ionic contacts at DnaK substrate binding domain involved in the allosteric regulation of lid dynamics.

    PubMed

    Fernández-Sáiz, Vanesa; Moro, Fernando; Arizmendi, Jesus M; Acebrón, Sergio P; Muga, Arturo

    2006-03-17

    To gain further insight into the interactions involved in the allosteric transition of DnaK we have characterized wild-type (wt) protein and three mutants in which ionic interactions at the interface between the two subdomains of the substrate binding domain, and within the lid subdomain have been disrupted. Our data show that ionic contacts, most likely forming an electrically charged network, between the N-terminal region of helix B and an inner loop of the beta-sandwich are involved in maintaining the position of the lid relative to the beta-subdomain in the ADP state but not in the ATP state of the protein. Disruption of the ionic interactions between the C-terminal region of helix B and the outer loops of the beta-sandwich, known as the latch, does not have the same conformational consequences but results equally in an inactive protein. This indicates that a variety of mechanisms can inactivate this complex allosteric machine. Our results identify the ionic contacts at the subdomain and interdomain interfaces that are part of the hinge region involved in the ATP-induced allosteric displacement of the lid away from the peptide binding site. These interactions also stabilize peptide-Hsp70 complexes at physiological (37 degrees C) and stress (42 degrees C) temperatures, a requirement for productive substrate (re)folding.

  20. On the functional role of Arg172 in substrate binding and allosteric transition in Escherichia coli glucosamine-6-phosphate deaminase.

    PubMed

    Lucumí-Moreno, Armando; Calcagno, Mario L

    2005-10-01

    Glucosamine-6-phosphate deaminase from Escherichia coli (EC 3.5.99.6) is an allosteric enzyme, activated by N-acetylglucosamine 6-phosphate, which converts glucosamine-6-phosphate into fructose 6-phosphate and ammonia. X-ray crystallographic structural models have showed that Arg172 and Lys208, together with the segment 41-44 of the main chain backbone, are involved in binding the substrate phospho group when the enzyme is in the R activated state. A set of mutants of the enzyme involving the targeted residues were constructed to analyze the role of Arg172 and Lys208 in deaminase allosteric function. The mutant enzymes were characterized by kinetic, chemical, and spectrometric methods, revealing conspicuous changes in their allosteric properties. The study of these mutants indicated that Arg172 which is located in the highly flexible motif 158-187 forming the active site lid has a specific role in binding the substrate to the enzyme in the T state. The possible role of this interaction in the conformational coupling of the active and the allosteric sites is discussed.

  1. Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU)

    PubMed Central

    Mochalkin, Igor; Lightle, Sandra; Zhu, Yaqi; Ohren, Jeffrey F.; Spessard, Cindy; Chirgadze, Nickolay Y.; Banotai, Craig; Melnick, Michael; McDowell, Laura

    2007-01-01

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) catalyzes the first step in peptidoglycan biosynthesis in both Gram-positive and Gram-negative bacteria. The products of the GlmU reaction are essential for bacterial survival, making this enzyme an attractive target for antibiotic drug discovery. A series of Haemophilus influenzae GlmU (hiGlmU) structures were determined by X-ray crystallography in order to provide structural and functional insights into GlmU activity and inhibition. The information derived from these structures was combined with biochemical characterization of the K25A, Q76A, D105A, Y103A, V223A, and E224A hiGlmU mutants in order to map these active-site residues to catalytic activity of the enzyme and refine the mechanistic model of the GlmU uridyltransferase reaction. These studies suggest that GlmU activity follows a sequential substrate-binding order that begins with UTP binding noncovalently to the GlmU enzyme. The uridyltransferase active site then remains in an open apo-like conformation until N-acetylglucosamine-1-phosphate (GlcNAc-1-P) binds and induces a conformational change at the GlcNAc-binding subsite. Following the binding of GlcNAc-1-P to the UTP-charged uridyltransferase active site, the non-esterified oxygen of GlcNAc-1-P performs a nucleophilic attack on the α-phosphate group of UTP. The new data strongly suggest that the mechanism of phosphotransfer in the uridyltransferase reaction in GlmU is primarily through an associative mechanism with a pentavalent phosphate intermediate and an inversion of stereochemistry. Finally, the structural and biochemical characterization of the uridyltransferase active site and catalytic mechanism described herein provides a basis for the structure-guided design of novel antibacterial agents targeting GlmU activity. PMID:18029420

  2. ALKBH7 Variant Related to Prostate Cancer Exhibits Altered Substrate Binding

    PubMed Central

    Müller, Tina A.; Podolsky, Robert H.; Dyson, Gregory; Cisneros, Gerardo Andrés

    2017-01-01

    The search for prostate cancer biomarkers has received increased attention and several DNA repair related enzymes have been linked to this dysfunction. Here we report a targeted search for single nucleotide polymorphisms (SNPs) and functional impact characterization of human ALKBH family dioxygenases related to prostate cancer. Our results uncovered a SNP of ALKBH7, rs7540, which is associated with prostate cancer disease in a statistically significantly manner in two separate cohorts, and maintained in African American men. Comparisons of molecular dynamics (MD) simulations on the wild-type and variant protein structures indicate that the resulting alteration in the enzyme induces a significant structural change that reduces ALKBH7’s ability to bind its cosubstrate. Experimental spectroscopy studies with purified proteins validate our MD predictions and corroborate the conclusion that this cancer-associated mutation affects productive cosubstrate binding in ALKBH7. PMID:28231280

  3. Function of Phe-259 and Thr-314 within the Substrate Binding Pocket of the Juvenile Hormone Esterase of Manduca sexta†

    PubMed Central

    Kamita, Shizuo G.; Wogulis, Mark D.; Law, Christopher S.; Morisseau, Christophe; Tanaka, Hiromasa; Huang, Huazhang; Wilson, David K.; Hammock, Bruce D.

    2013-01-01

    Juvenile hormone (JH) is a key insect developmental hormone that is found at low nanomolar levels in larval insects. The methyl ester of JH is hydrolyzed in many insects by an esterase that shows high specificity for JH. We have previously determined a crystal structure of the JH esterase (JHE) of the tobacco hornworm Manduca sexta (MsJHE) [Wogulis, M., Wheelock, C. E., Kamita, S. G., Hinton, A. C., Whetstone, P. A., Hammock, B. D., and Wilson, D. K. (2006) Biochemistry 45, 4045-4057]. Our molecular modeling indicates that JH fits very tightly within the substrate binding pocket of MsJHE. This tight fit places two non-catalytic amino acid residues, Phe-259 and Thr-314, within the appropriate distance and geometry to potentially interact with the α,β-unsaturated ester and epoxide, respectively, of JH. These residues are highly conserved in numerous biologically active JHEs. Kinetic analyses of mutants of Phe-259 or Thr-314 indicate that these residues contribute to the low KM that MsJHE shows for JH. This low KM, however, comes at the cost of reduced substrate turnover. Neither nucleophilic attack of the resonance stabilized ester by the catalytic serine nor the availability of a water molecule for attack of the acyl-enzyme intermediate appear to be a rate-determining step in the hydrolysis of JH by MsJHE. We hypothesize that the release of the JH acid metabolite from the substrate binding pocket limits the catalytic cycle. Our findings also demonstrate that chemical bond strength does not necessarily correlate with how reactive the bond will be to metabolism. PMID:20307057

  4. Rational design of a carboxylic esterase RhEst1 based on computational analysis of substrate binding

    DOE PAGES

    Chen, Qi; Luan, Zheng -Jiao; Yu, Hui -Lei; ...

    2015-10-31

    A new carboxylic esterase RhEst1 which catalyzes the hydrolysis of (S)-(+)-2,2-dimethylcyclopropanecarboxylate (S-DmCpCe), the key chiral building block of cilastatin, was identified and subsequently crystallized in our previous work. Mutant RhEst1A147I/V148F/G254A was found to show a 5-fold increase in the catalytic activity. In this work, molecular dynamic simulations were performed to elucidate the molecular determinant of the enzyme activity. Our simulations show that the substrate binds much more strongly in the A147I/V148F/G254A mutant than in wild type, with more hydrogen bonds formed between the substrate and the catalytic triad and the oxyanion hole. The OH group of the catalytic residue Ser101more » in the mutant is better positioned to initiate the nucleophilic attack on S-DmCpCe. Interestingly, the "170-179" loop which is involved in shaping the catalytic sites and facilitating the product release shows remarkable dynamic differences in the two systems. Based on the simulation results, six residues were identified as potential "hot-spots" for further experimental testing. Consequently, the G126S and R133L mutants show higher catalytic efficiency as compared with the wild type. In conclusion, this work provides molecular-level insights into the substrate binding mechanism of carboxylic esterase RhEst1, facilitating future experimental efforts toward developing more efficient RhEst1 variants for industrial applications.« less

  5. Rational design of a carboxylic esterase RhEst1 based on computational analysis of substrate binding

    SciTech Connect

    Chen, Qi; Luan, Zheng -Jiao; Yu, Hui -Lei; Cheng, Xiaolin; Xu, Jian -He

    2015-10-31

    A new carboxylic esterase RhEst1 which catalyzes the hydrolysis of (S)-(+)-2,2-dimethylcyclopropanecarboxylate (S-DmCpCe), the key chiral building block of cilastatin, was identified and subsequently crystallized in our previous work. Mutant RhEst1A147I/V148F/G254A was found to show a 5-fold increase in the catalytic activity. In this work, molecular dynamic simulations were performed to elucidate the molecular determinant of the enzyme activity. Our simulations show that the substrate binds much more strongly in the A147I/V148F/G254A mutant than in wild type, with more hydrogen bonds formed between the substrate and the catalytic triad and the oxyanion hole. The OH group of the catalytic residue Ser101 in the mutant is better positioned to initiate the nucleophilic attack on S-DmCpCe. Interestingly, the "170-179" loop which is involved in shaping the catalytic sites and facilitating the product release shows remarkable dynamic differences in the two systems. Based on the simulation results, six residues were identified as potential "hot-spots" for further experimental testing. Consequently, the G126S and R133L mutants show higher catalytic efficiency as compared with the wild type. In conclusion, this work provides molecular-level insights into the substrate binding mechanism of carboxylic esterase RhEst1, facilitating future experimental efforts toward developing more efficient RhEst1 variants for industrial applications.

  6. Aromatic amino acid mutagenesis at the substrate binding pocket of Yarrowia lipolytica lipase Lip2 affects its activity and thermostability.

    PubMed

    Wang, Guilong; Liu, Zimin; Xu, Li; Yan, Yunjun

    2014-01-01

    The lipase2 from Yarrowia lipolytica (YLLip2) is a yeast lipase exhibiting high homologous to filamentous fungal lipase family. Though its crystal structure has been resolved, its structure-function relationship has rarely been reported. By contrast, there are two amino acid residues (V94 and I100) with significant difference in the substrate binding pocket of YLLip2; they were subjected to site-directed mutagenesis (SDM) to introduce aromatic amino acid mutations. Two mutants (V94W and I100F) were created. The enzymatic properties of the mutant lipases were detected and compared with the wild-type. The activities of mutant enzymes dropped to some extent towards p-nitrophenyl palmitate (pNPC16) and their optimum temperature was 35°C, which was 5°C lower than that of the wild-type. However, the thermostability of I100F increased 22.44% after incubation for 1 h at 40°C and its optimum substrate shifted from p-nitrophenyl laurate (pNPC12) to p-nitrophenyl caprate (pNPC10). The above results demonstrated that the two substituted amino acid residuals have close relationship with such enzymatic properties as thermostability and substrate selectivity.

  7. Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions

    PubMed Central

    Zegeye, Ephrem Debebe; Balasingham, Seetha V.; Laerdahl, Jon K.; Homberset, Håvard

    2012-01-01

    The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the recG gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that Mycobacterium tuberculosis RecG (RecGMtb) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecGMtb preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecGMtb helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg2+, Mn2+, Cu2+ or Fe2+. Like its Escherichia coli orthologue, RecGMtb is also a strictly DNA-dependent ATPase. PMID:22628485

  8. Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates

    PubMed Central

    Rakitina, D. V.; Taliansky, Michael; Brown, J. W. S.; Kalinina, N. O.

    2011-01-01

    Fibrillarin, one of the major proteins of the nucleolus, plays several essential roles in ribosome biogenesis including pre-rRNA processing and 2′-O-ribose methylation of rRNA and snRNAs. Recently, it has been shown that fibrillarin plays a role in virus infections and is associated with viral RNPs. Here, we demonstrate the ability of recombinant fibrillarin 2 from Arabidopsis thaliana (AtFib2) to interact with RNAs of different lengths and types including rRNA, snoRNA, snRNA, siRNA and viral RNAs in vitro. Our data also indicate that AtFib2 possesses two RNA-binding sites in the central (138–179 amino acids) and C-terminal (225–281 amino acids) parts of the protein, respectively. The conserved GCVYAVEF octamer does not bind RNA directly as suggested earlier, but may assist with the proper folding of the central RNA-binding site. PMID:21785141

  9. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.

    PubMed

    Broussard, Tyler C; Pakhomova, Svetlana; Neau, David B; Bonnot, Ross; Waldrop, Grover L

    2015-06-23

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1'-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1'-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO₂ from the carboxyphosphate intermediate to biotin.

  10. Insights into substrate binding to the oxygen-evolving complex of photosystem II from ammonia inhibition studies.

    PubMed

    Vinyard, David J; Brudvig, Gary W

    2015-01-20

    Water oxidation in Photosystem II occurs at the oxygen-evolving complex (OEC), which cycles through distinct intermediates, S0-S4. The inhibitor ammonia selectively binds to the S2 state at an unresolved site that is not competitive with substrate water. By monitoring the yields of flash-induced oxygen production, we show that ammonia decreases the net efficiency of OEC turnover and slows the decay kinetics of S2 to S1. The temperature dependence of biphasic S2 decay kinetics provides activation energies that do not vary in control and ammonia conditions. We interpret our data in the broader context of previous studies by introducing a kinetic model for both the formation and decay of ammonia-bound S2. The model predicts ammonia binds to S2 rapidly (t1/2 = 1 ms) with a large equilibrium constant. This finding implies that ammonia decreases the reduction potential of S2 by at least 2.7 kcal mol(-1) (>120 mV), which is not consistent with ammonia substitution of a terminal water ligand of Mn(IV). Instead, these data support the proposal that ammonia binds as a bridging ligand between two Mn atoms. Implications for the mechanism of O-O bond formation are discussed.

  11. Influence of donor substrate on kinetic parameters of thiamine diphosphate binding to transketolase.

    PubMed

    Ospanov, R V; Kochetov, G A; Kurganov, B I

    2007-01-01

    The two-step mechanism of interaction of thiamine diphosphate (ThDP) with transketolase (TK) has been studied: TK + ThDP <--> TK...ThDP <--> TK*-ThDP. The scheme involves the formation of inactive intermediate complex TK...ThDP followed by its transformation into catalytically active holoenzyme, TK*-ThDP. The dissociation and kinetic constants for individual stages of this process have been determined. The values of forward and backward rate constants change in the presence of the donor substrate hydroxypyruvate. This finally leads to an increase in the overall affinity of the coenzyme to TK.

  12. The RNA-binding protein RNP29 is an unusual Toc159 transport substrate

    PubMed Central

    Grimmer, Julia; Rödiger, Anja; Hoehenwarter, Wolfgang; Helm, Stefan; Baginsky, Sacha

    2014-01-01

    The precursors of RNP29 and Ferredoxin (Fd2) were previously identified in the cytosol of ppi2 plant cells with their N-terminal amino acid acetylated. Here, we explore whether precursor accumulation in ppi2 is characteristic for Toc159 client proteins, by characterizing the import properties of the RNP29 precursor in comparison to Fd2 and other Toc159-dependent or independent substrates. We find specific accumulation of the RNP29 precursor in ppi2 but not in wild type or ppi1 protoplasts. With the exception of Lhcb4, precursor accumulation is also detected with all other tested constructs in ppi2. However, RNP29 is clearly different from the other proteins because only precursor but almost no mature protein is detectable in protoplast extracts. Co-transformation of RNP29 with Toc159 complements its plastid import, supporting the hypothesis that RNP29 is a Toc159-dependent substrate. Exchange of the second amino acid in the RNP29 transit peptide to Glu or Asn prevents methionine excision but not N-terminal acetylation, suggesting that different N-acetyltransferases may act on chloroplast precursor proteins in vivo. All different RNP29 constructs are efficiently imported into wild type but not into ppi2 plastids, arguing for a minor impact of the N-terminal amino acid on the import process. PMID:24982663

  13. Grip it and rip it: structural mechanisms of DNA helicase substrate binding and unwinding.

    PubMed

    Bhattacharyya, Basudeb; Keck, James L

    2014-11-01

    Maintenance and faithful transmission of genomic information depends on the efficient execution of numerous DNA replication, recombination, and repair pathways. Many of the enzymes that catalyze steps within these pathways require access to sequence information that is buried in the interior of the DNA double helix, which makes DNA unwinding an essential cellular reaction. The unwinding process is mediated by specialized molecular motors called DNA helicases that couple the chemical energy derived from nucleoside triphosphate hydrolysis to the otherwise non-spontaneous unwinding reaction. An impressive number of high-resolution helicase structures are now available that, together with equally important mechanistic studies, have begun to define the features that allow this class of enzymes to function as molecular motors. In this review, we explore the structural features within DNA helicases that are used to bind and unwind DNA. We focus in particular on "aromatic-rich loops" that allow some helicases to couple single-stranded DNA binding to ATP hydrolysis and "wedge/pin" elements that provide mechanical tools for DNA strand separation when connected to translocating motor domains.

  14. Coordination of substrate binding and ATP hydrolysis in Vps4-mediated ESCRT-III disassembly.

    PubMed

    Davies, Brian A; Azmi, Ishara F; Payne, Johanna; Shestakova, Anna; Horazdovsky, Bruce F; Babst, Markus; Katzmann, David J

    2010-10-01

    ESCRT-III undergoes dynamic assembly and disassembly to facilitate membrane exvagination processes including multivesicular body (MVB) formation, enveloped virus budding, and membrane abscission during cytokinesis. The AAA-ATPase Vps4 is required for ESCRT-III disassembly, however the coordination of Vps4 ATP hydrolysis with ESCRT-III binding and disassembly is not understood. Vps4 ATP hydrolysis has been proposed to execute ESCRT-III disassembly as either a stable oligomer or an unstable oligomer whose dissociation drives ESCRT-III disassembly. An in vitro ESCRT-III disassembly assay was developed to analyze Vps4 function during this process. The studies presented here support a model in which Vps4 acts as a stable oligomer during ATP hydrolysis and ESCRT-III disassembly. Moreover, Vps4 oligomer binding to ESCRT-III induces coordination of ATP hydrolysis at the level of individual Vps4 subunits. These results suggest that Vps4 functions as a stable oligomer that acts upon individual ESCRT-III subunits to facilitate ESCRT-III disassembly.

  15. Contribution of Gln9 and Phe80 to substrate binding in ribonuclease MC1 from bitter gourd seeds.

    PubMed

    Numata, T; Kimura, M

    2001-11-01

    Ribonuclease MC1 (RNase MC1) isolated from bitter gourd (Momordica charantia) seeds specifically cleaves phosphodiester bonds on the 5'-side of uridine. The crystal structures of RNase MC1 in complex with 2'-UMP or 3'-UMP reveal that Gln9, Asn71, Leu73, and Phe80 are involved in uridine binding by hydrogen bonding and hydrophobic interactions [Suzuki et al. (2000) Biochem. Biophys. Res. Commun. 275, 572-576]. To evaluate the contribution of Gln9 and Phe80 to uridine binding, Gln9 was replaced with Ala, Phe, Glu, or His, and Phe80 with Ala by site-directed mutagenesis. The kinetic properties of the resulting mutant enzymes were characterized using cytidylyl-3',5'-uridine (CpU) as a substrate. The mutant Q9A exhibited a 3.7-fold increased K(m) and 27.6-fold decreased k(cat), while three other mutations, Q9F, Q9E, and Q9H, predominantly affected the k(cat) value. Replacing Phe80 with Ala drastically reduced the catalytic efficiency (k(cat)/K(m)) with a minimum K(m) value equal to 8 mM. It was further found that the hydrolytic activities of the mutants toward cytidine-2',3'-cyclic monophosphate (cCMP) were reduced. These results demonstrate that Gln9 and Phe80 play essential roles not only in uridine binding but also in hydrolytic activity. Moreover, we produced double Ala substituted mutants at Gln9, Asn71, Leu73, and Phe80, and compared their kinetic properties with those of the corresponding single mutants. The results suggest that these four residues may contribute to uridine binding in a mutually independent manner.

  16. 2.0A resolution crystal structures of the ternary complexes of human phenylalanine hydroxylase catalytic domain with tetrahydrobiopterin and 3-(2-thienyl)-L-alanine or L-norleucine: substrate specificity and molecular motions related to substrate binding.

    PubMed

    Andersen, Ole Andreas; Stokka, Anne J; Flatmark, Torgeir; Hough, Edward

    2003-10-31

    The crystal structures of the catalytic domain of human phenylalanine hydroxylase (hPheOH) in complex with the physiological cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and the substrate analogues 3-(2-thienyl)-L-alanine (THA) or L-norleucine (NLE) have been determined at 2.0A resolution. The ternary THA complex confirms a previous 2.5A structure, and the ternary NLE complex shows that similar large conformational changes occur on binding of NLE as those observed for THA. Both structures demonstrate that substrate binding triggers structural changes throughout the entire protomer, including the displacement of Tyr138 from a surface position to a buried position at the active site, with a maximum displacement of 20.7A for its hydroxyl group. Two hinge-bending regions, centred at Leu197 and Asn223, act in consort upon substrate binding to create further large structural changes for parts of the C terminus. Thus, THA/L-Phe binding to the active site is likely to represent the epicentre of the global conformational changes observed in the full-length tetrameric enzyme. The carboxyl and amino groups of THA and NLE are positioned identically in the two structures, supporting the conclusion that these groups are of key importance in substrate binding, thus explaining the broad non-physiological substrate specificity observed for artificially activated forms of the enzyme. However, the specific activity with NLE as the substrate was only about 5% of that with THA, which is explained by the different affinities of binding and different catalytic turnover.

  17. Structural Basis of Substrate-Binding Specificity of Human Arylamine N-acetyltransferases

    SciTech Connect

    Wu,H.; Dombrovsky, L.; Tempel, W.; Martin, F.; Loppnau, P.; Goodfellow, G.; Grant, D.; Plotnikov, A.

    2007-01-01

    The human arylamine N-acetyltransferases NAT1 and NAT2 play an important role in the biotransformation of a plethora of aromatic amine and hydrazine drugs. They are also able to participate in the bioactivation of several known carcinogens. Each of these enzymes is genetically variable in human populations, and polymorphisms in NAT genes have been associated with various cancers. Here we have solved the high resolution crystal structures of human NAT1 and NAT2, including NAT1 in complex with the irreversible inhibitor 2-bromoacetanilide, a NAT1 active site mutant, and NAT2 in complex with CoA, and have refined them to 1.7-, 1.8-, and 1.9- Angstroms resolution, respectively. The crystal structures reveal novel structural features unique to human NATs and provide insights into the structural basis of the substrate specificity and genetic polymorphism of these enzymes.

  18. Mutations within the mepA operator affect binding of the MepR regulatory protein and its induction by MepA substrates in Staphylococcus aureus.

    PubMed

    Schindler, Bryan D; Seo, Susan M; Birukou, Ivan; Brennan, Richard G; Kaatz, Glenn W

    2015-03-01

    The expression of mepA, encoding the Staphylococcus aureus MepA multidrug efflux protein, is repressed by the MarR homologue MepR. Repression occurs through binding of two MepR dimers to an operator with two homologous and closely approximated pseudopalindromic binding sites (site 1 [S1] and site 2 [S2]). MepR binding is impeded in the presence of pentamidine, a MepA substrate. The effects of various mepA operator mutations on MepR binding were determined using electrophoretic mobility shift assays and isothermal titration calorimetry, and an in vivo confirmation of the effects observed was established for a fully palindromic operator mutant. Altering the S1-S2 spacing by 1 to 4 bp severely impaired S2 binding, likely due to a physical collision between adjacent MepR dimers. Extension of the spacing to 9 bp eliminated the S1 binding-mediated DNA allostery required for efficient S2 binding, consistent with positive cooperative binding of MepR dimers. Binding of a single dimer to S1 was maintained when S2 was disrupted, whereas disruption of S1 eliminated any significant binding to S2, also consistent with positive cooperativity. Palindromization of binding sites, especially S2, enhanced MepR affinity for the mepA operator and reduced MepA substrate-mediated MepR induction. As a result, the on-off equilibrium between MepR and its binding sites was shifted toward the on state, resulting in less free MepR being available for interaction with inducing ligand. The selective pressure(s) under which mepA expression is advantageous likely contributed to the accumulation of mutations in the mepA operator, resulting in the current sequence from which MepR is readily induced by MepA substrates.

  19. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors.

    PubMed

    Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A

    2015-04-15

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, (1)H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  20. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2015-04-01

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  1. Microseconds simulations reveal a new sodium-binding site and the mechanism of sodium-coupled substrate uptake by LeuT.

    PubMed

    Zomot, Elia; Gur, Mert; Bahar, Ivet

    2015-01-02

    The bacterial sodium-coupled leucine/alanine transporter LeuT is broadly used as a model system for studying the transport mechanism of neurotransmitters because of its structural and functional homology to mammalian transporters such as serotonin, dopamine, or norepinephrine transporters, and because of the resolution of its structure in different states. Although the binding sites (S1 for substrate, and Na1 and Na2 for two co-transported sodium ions) have been resolved, we still lack a mechanistic understanding of coupled Na(+)- and substrate-binding events. We present here results from extensive (>20 μs) unbiased molecular dynamics simulations generated using the latest computing technology. Simulations show that sodium binds initially the Na1 site, but not Na2, and, consistently, sodium unbinding/escape to the extracellular (EC) region first takes place at Na2, succeeded by Na1. Na2 diffusion back to the EC medium requires prior dissociation of substrate from S1. Significantly, Na(+) binding (and unbinding) consistently involves a transient binding to a newly discovered site, Na1″, near S1, as an intermediate state. A robust sequence of substrate uptake events coupled to sodium bindings and translocations between those sites assisted by hydration emerges from the simulations: (i) bindings of a first Na(+) to Na1″, translocation to Na1, a second Na(+) to vacated Na1″ and then to Na2, and substrate to S1; (ii) rotation of Phe(253) aromatic group to seclude the substrate from the EC region; and (iii) concerted tilting of TM1b and TM6a toward TM3 and TM8 to close the EC vestibule.

  2. Binding-induced Folding of Prokaryotic Ubiquitin-like Protein on the Mycobacterium Proteasomal ATPase Targets Substrates for Degradation

    SciTech Connect

    T Wang; K Heran Darwin; H Li

    2011-12-31

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  3. Binding-induced folding of prokaryotic ubiquitin-like protein on the mycobacterium proteasomal ATPase targets substrates for degradation

    SciTech Connect

    Wang, T.; Li, H.; Darwin, K. H.

    2010-11-01

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  4. Identification of catalysis, substrate, and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii.

    PubMed

    Jiang, Wei; Lin, Peng; Yang, Ruonan; Fang, Baishan

    2016-10-01

    Formate dehydrogenases (FDHs) are continually used for the cofactor regeneration in biocatalysis and biotransformation with hiring NAD(P)H-dependent oxidoreductases. Major weaknesses of most native FDHs are their low activity and operational stability in the catalytic reaction. In this work, the FDH from Candida boidinii (CboFDH) was engineered in order to gain an enzyme with high activity and better operational stability. Through comparing and analyzing its spatial structure with other FDHs, the catalysis, substrate, and coenzyme binding sites of the CboFDH were identified. To improve its performance, amino acids, which concentrated on the enzyme active site or in the conserved NAD(+) and substrate binding motif, were mutated. The mutant V120S had the highest catalytic efficiency (k cat/K m ) with COONH4 as it enhanced the catalytic velocity (k cat) and k cat/K m 3.48-fold and 1.60-fold, respectively, than that of the wild type. And, the double-mutant V120S-N187D had the highest k cat/K m with NAD(+) as it displayed an approximately 1.50-fold increase in k cat/K m . The mutants showed higher catalytic efficiency than other reported FDHs, suggesting that the mutation has achieved good results. The single and double mutants exhibited higher thermostability than the wild type. The structure-function relationship of single and double mutants was analyzed by homology models and site parsing. Asymmetric synthesis of L-tert-leucine was executed to evaluate the ability of cofactor regeneration of the mutants with about 100 % conversion rates. This work provides a helpful theoretical reference for the evolution of an enzyme in vitro and promotion of the industrial production of chiral compounds, e.g., amino acid and chiral amine.

  5. Homology modeling of Homo sapiens Lipoic acid Synthase: substrate docking and insights on its binding mode.

    PubMed

    Krishnamoorthy, Ezhilarasi; Hassan, Sameer; Hanna, Luke Elizabeth; Padmalayam, Indira; Rajaram, Rama; Viswanathan, Vijay

    2016-10-04

    Lipoic acid synthase (LIAS) is an iron-sulfur cluster mitochondrial enzyme which catalyzes the final step in the de novo pathway for the biosynthesis of lipoic acid, a potent antioxidant. Recently there has been significant interest in its role in metabolic diseases and its deficiency in LIAS expression has been linked to conditions such as diabetes, atherosclerosis and neonatal-onset epilepsy, suggesting a strong inverse correlation between LIAS reduction and disease status. In this study we use a bioinformatics approach to predict its structure, which would be helpful to understanding its role. A homology model for LIAS protein was generated using X - ray crystallographic structure of Thermosynechococcus elongatus BP-1 (PDB ID: 4U0P). The predicted structure has 93% of the residues in the most favour region of Ramachandran plot. The active site of LIAS protein was mapped and docked with S-Adenosyl Methionine (SAM) using GOLD software. The LIAS - SAM complex was further refined using molecular dynamics simulation within the subsite 1 and subsite 3 of the active site. To the best of our knowledge, this is the first study to report a reliable homology model of LIAS protein. This study will facilitate a better understanding mode of action of the enzyme-substrate complex for future studies in designing drugs that can target LIAS protein.

  6. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    PubMed

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer.

  7. Role of Hypothalamic Creb-Binding Protein in Obesity and Molecular Reprogramming of Metabolic Substrates

    PubMed Central

    Moreno, Cesar L.; Yang, Linda; Dacks, Penny A.; Isoda, Fumiko; van Deursen, Jan M. A.; Mobbs, Charles V.

    2016-01-01

    We have reported a correlation between hypothalamic expression of Creb-binding protein (Cbp) and lifespan, and that inhibition of Cbp prevents protective effects of dietary restriction during aging, suggesting that hypothalamic Cbp plays a role in responses to nutritional status and energy balance. Recent GWAS and network analyses have also implicated Cbp as the most connected gene in protein-protein interactions in human Type 2 diabetes. The present studies address mechanisms mediating the role of Cbp in diabetes by inhibiting hypothalamic Cbp using a Cre-lox strategy. Inhibition of hypothalamic Cbp results in profound obesity and impaired glucose homeostasis, increased food intake, and decreased body temperature. In addition, these changes are accompanied by molecular evidence in the hypothalamus for impaired leptin and insulin signaling, a shift from glucose to lipid metabolism, and decreased Pomc mRNA, with no effect on locomotion. Further assessment of the significance of the metabolic switch demonstrated that enhanced expression of hypothalamic Cpt1a, which promotes lipid metabolism, similarly resulted in increased body weight and reduced Pomc mRNA. PMID:27832201

  8. Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members.

    PubMed

    Marcos, Enrique; Crehuet, Ramon; Bahar, Ivet

    2011-09-01

    Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities.

  9. Evidence that Asn542 of neprilysin (EC 3.4.24.11) is involved in binding of the P2' residue of substrates and inhibitors.

    PubMed Central

    Dion, N; Le Moual, H; Fournié-Zaluski, M C; Roques, B P; Crine, P; Boileau, G

    1995-01-01

    Neprilysin (EC 3.4.24.11) is a Zn2+ metallopeptidase involved in the degradation of biologically active peptides, e.g. enkephalins and atrial natriuretic peptide. The substrate specificity and catalytic activity of neprilysin resemble those of thermolysin, a crystallized bacterial Zn2+ metalloprotease. Despite little overall homology between the primary structures of thermolysin and neprilysin, many of the amino acid residues involved in catalysis, as well as Zn2+ and substrate binding, are highly conserved. Most of the active-site residues of neprilysin have their homologues in thermolysin and have been characterized by site-directed mutagenesis. Furthermore, hydrophobic cluster analysis has revealed some other analogies between the neprilysin and thermolysin sequences [Benchetrit, Bissery, Mornon, Devault, Crine and Roques (1988) Biochemistry 27, 592-596]. According to this analysis the role of Asn542 in the neprilysin active site is analogous to that of Asn112 of thermolysin, which is to bind the substrate. Site-directed mutagenesis was used to change Asn542 to Gly or Gln residues. The effect of these mutations on substrate catalysis and inhibitor binding was examined with a series of thiorphan-like compounds containing various degrees of methylation at the P2' residue. For both mutated enzymes, determination of kinetic parameters with [D-Ala2,Leu5]enkephalin as substrate showed that the large decrease in activity was attributable to an increase in Km (14-16-fold) whereas kcat values were only slightly affected (2-3-fold decrease). This is in agreement with Asn542 being involved in substrate binding rather than directly in catalysis. Finally, the IC50 values for thiorphan and substituted thiorphans strongly suggest that Asn542 of neprilysin binds the substrate on the amino side of the P2' residue by formation of a unique hydrogen bond. Images Figure 2 Figure 3 PMID:7487905

  10. The mechanism of nitrogenase. Computed details of the site and geometry of binding of alkyne and alkene substrates and intermediates.

    PubMed

    Dance, Ian

    2004-09-29

    The chemical mechanism by which the enzyme nitrogenase effects the remarkable reduction of N(2) to NH(3) under ambient conditions continues to be enigmatic, because no intermediate has been observed directly. Recent experimental investigation of the enzymatic consequences of the valine --> alanine modification of residue alpha-70 of the component MoFe protein on the reduction of alkynes, together with EPR and ENDOR spectroscopic characterization of a trappable intermediate in the reduction of propargyl alcohol or propargyl amine (HCC[triple bond]C-CH(2)OH/NH(2)), has localized the site of binding and reduction of these substrates on the FeMo-cofactor and led to proposed eta(2)-Fe coordination geometry. Here these experimental data are modeled using density functional calculations of the allyl alcohol/amine intermediates and the propargyl alcohol/amine reactants coordinated to the FeMo-cofactor, together with force-field calculations of the interactions of these models with the surrounding MoFe protein. The results support and elaborate the earlier proposals, with the most probable binding site and geometry being eta(2)-coordination at Fe6 of the FeMo-cofactor (crystal structure in the Protein Database), in a position that is intermediate between the exo and endo coordination extremes at Fe6. The models described account for (1) the steric influence of the alpha-70 residue, (2) the crucial hydrogen bonding with Nepsilon of alpha-195(His), (3) the spectroscopic symmetry of the allyl-alcohol intermediate, and (4) the preferential stabilization of the allyl alcohol/amine relative to propargyl alcohol/amine. Alternative binding sites and geometries for ethyne and ethene, relevant to the wild-type protein, are described. This model defines the location and scene for detailed investigation of the mechanism of nitrogenase.

  11. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D A; Norberto de Souza, Osmar

    2015-01-01

    Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward's, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill

  12. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features

    PubMed Central

    Ruiz, Duncan D. A.; Norberto de Souza, Osmar

    2015-01-01

    Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward’s, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill

  13. A QM/MM study of the active species of the human cytochrome P450 3A4, and the influence thereof of the multiple substrate binding

    PubMed Central

    Fishelovitch, Dan; Hazan, Carina; Hirao, Hajime; Wolfson, Haim J.; Nussinov, Ruth; Shaik, Sason

    2008-01-01

    Cytochrome P450 3A4 is involved in the metabolism of 50% of all swallowed drugs. The enzyme functions by means of a high-valent iron-oxo species, called Compound I (Cpd I), which is formed after entrance of the substrate to the active site. We explored the features of Cpd I using hybrid quantum mechanical/molecular mechanical calculations on various models that are either substrate-free or containing one and two molecules of diazepam as a substrate. Mössbauer parameters of Cpd I were computed. Our major finding shows that without the substrate, Cpd I tends to elongate its Fe-S bond, localize the radical on the sulfur, and form hydrogen bonds with A305 and T309, which may hypothetically lead to Cpd I consumption by H-abstraction. However, the positioning of diazepam close to Cpd I, as enforced by the effector molecule, was found to strengthen the NH---S interactions of the conserved I443 and G444 residues with the proximal cysteinate ligand. These interactions are known to stabilize the Fe-S bond, and as such, the presence of the substrate leads to a shorter Fe-S bond and it prevents the localization of the radical on the sulfur. This diazepam-Cpd I stabilization was manifested in the 1W0E conformer. The effector substrate did not influence Cpd I directly but rather by positioning the active substrate close to Cpd I, thus displacing the hydrogen bonds with A305 and T309, and thereby giving preference to substrate oxidation. It is hypothesized that these effects on Cpd I, promoted by the restrained substrate, may be behind the special metabolic behavior observed in cases of multiple substrate binding (called also cooperative binding). This restraint constitutes a mechanism whereby substrates stabilize Cpd I sufficiently long to affect monooxygenation by P450s at the expense of Cpd I destruction by the protein residues. PMID:18020326

  14. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation.

    PubMed

    Quick, Matthias; Winther, Anne-Marie Lund; Shi, Lei; Nissen, Poul; Weinstein, Harel; Javitch, Jonathan A

    2009-04-07

    The first crystal structure of the neurotransmitter/sodium symporter homolog LeuT revealed an occluded binding pocket containing leucine and 2 Na(+); later structures showed tricyclic antidepressants (TCAs) in an extracellular vestibule approximately 11 A above the bound leucine and 2 Na(+). We recently found this region to be a second binding (S2) site and that binding of substrate to this site triggers Na(+)-coupled substrate symport. Here, we show a profound inhibitory effect of n-octyl-beta-d-glucopyranoside (OG), the detergent used for LeuT crystallization, on substrate binding to the S2 site. In parallel, we determined at 2.8 A the structure of LeuT-E290S, a mutant that, like LeuT-WT, binds 2 substrate molecules. This structure was similar to that of WT and clearly revealed an OG molecule in the S2 site. We also observed electron density at the S2 site in LeuT-WT crystals, and this also was accounted for by an OG molecule in that site. Computational analyses, based on the available crystal structures of LeuT, indicated the nature of structural arrangements in the extracellular region of LeuT that differentiate the actions of substrates from inhibitors bound in the S2 site. We conclude that the current LeuT crystal structures, all of which have been solved in OG, represent functionally blocked forms of the transporter, whereas a substrate bound in the S2 site will promote a different state that is essential for Na(+)-coupled symport.

  15. Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40.

    PubMed

    Kuszak, Adam J; Jacobs, Daniel; Gurnev, Philip A; Shiota, Takuya; Louis, John M; Lithgow, Trevor; Bezrukov, Sergey M; Rostovtseva, Tatiana K; Buchanan, Susan K

    2015-10-23

    Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function.

  16. Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40*

    PubMed Central

    Kuszak, Adam J.; Jacobs, Daniel; Gurnev, Philip A.; Shiota, Takuya; Louis, John M.; Lithgow, Trevor; Bezrukov, Sergey M.; Rostovtseva, Tatiana K.; Buchanan, Susan K.

    2015-01-01

    Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function. PMID:26336107

  17. Human placental estradiol 17. beta. -dehydrogenase: evidence for inverted substrate orientation (wrong-way binding) at the active site

    SciTech Connect

    Murdock, G.L.; Warren, J.C.; Sweet, F.

    1988-06-14

    Human placental estradiol 17..beta..-dehydrogenase was affinity labeled with 17lambda-estradiol 17-(bromo(2-/sup 14/C)acetate) (10 ..mu..M) or 17..beta..-estradiol 17-(bromo(2-/sup 14/C)acetate) (10 ..mu..M). The steroid bromoacetates competitively inhibit the enzyme (against 17..beta..-estradiol) with K/sub i/ values of 90 ..mu..M (17..cap alpha.. bromoacetate) and 134 ..mu..M(17..beta.. bromoacetate). Inactivation of the enzyme followed pseudo-first-order kinetics with t/sub 1/2/ = 110 min (17..cap alpha.. bromoacetate) and t/sub 1/2/ = 220 min (17..beta.. bromoacetate). Amino acid analysis of the affinity radioalkylated enzyme samples from the two bromoacetates revealed that N/sup ..pi../-(carboxy(/sup 14/C)methyl histidine was the modified amino acid labeled in each case. Digestion with trypsin produced peptides that were isolated by reverse-phase high-performance liquid chromatography and found to contain N/sup ..pi../-(carboxy(/sup 14/C)methyl)histidine. Both the 17..cap alpha.. bromoacetate and also the 17..beta.. bromoacetate modified the same histidine in the peptide Phe-Tyr-Gln-Tyr-Leu-Ala-His(..pi..CM)-Ser-Lys. Previously, the same histidine had been exclusively labeled by estrone 3-(bromoacetate) and shown not to be directly involve in catalytic hydrogen transfer at the D-ring of estradiol. Therefore, this histidine was presumed to proximate the A-ring of the bound steroid substrate. The present results suggest that the 17..cap alpha.. bromoacetate and 17..beta.. bromoacetate D-ring analogue of estradiol react with the same active site histidine residue as estrone 3-(bromoacetate), the A-ring analogue of estrone. Moreover, as each of the estradiol 17-(bromoacetates) undergoes the reversible binding step at the enzyme active site, its D-ring is in a reversed binding position relative to that of the natural substrate 17..beta..-estradiol as it undergoes catalytic hydrogen transfer at the same active site.

  18. IDENTIFICATION OF A MEMBRANE-LOCALIZED CYSTEINE CLUSTER NEAR THE SUBSTRATE BINDING SITES OF THE STREPTOCOCCUS EQUISIMILIS HYALURONAN SYNTHASE

    PubMed Central

    Kumari, Kshama; Weigel, Paul H.

    2005-01-01

    The membrane-bound hyaluronan synthase (HAS) from Streptococcus equisimilis (seHAS), which is the smallest Class I HAS, has four cysteine residues (positions 226, 262, 281, and 367) that are generally conserved within this family. Although Cys-null seHAS is still active, chemical modification of cysteine residues causes inhibition of wildtype enzyme (Kumari et al., J. Biol. Chem. 277, 13943, 2002). Here we studied the effects of N-ethylmaleimide (NEM) treatment on a panel of seHAS Cys-mutants to examine the structural and functional roles of the four cysteine residues in the activity of the enzyme. We found that Cys226, Cys262, and Cys281 are reactive with NEM, but that Cys367 is not. Substrate protection studies of wildtype seHAS and a variety of Cys-mutants revealed that binding of UDP-GlcUA, UDP-GlcNAc or UDP can protect Cys226 and Cys262 from NEM inhibition. Inhibition of the six double Cys-mutants of seHAS by sodium arsenite, which can crosslink vicinyl sulfhydryl groups, also supported the conclusion that Cys262 and Cys281 are close enough to be crosslinked. Similar results indicated that Cys281 and Cys367 are also very close in the active enzyme. We conclude that three of the four Cys residues in seHAS (Cys262, Cys281, and Cys367 ) are clustered very close together, that these Cys residues and Cys226 are located at the inner surface of the cell membrane, and that Cys226 and Cys262 are located in or near a UDP binding site. PMID:15616126

  19. Enhanced Binding Affinity for an i-Motif DNA Substrate Exhibited by a Protein Containing Nucleobase Amino Acids.

    PubMed

    Bai, Xiaoguang; Talukder, Poulami; Daskalova, Sasha M; Roy, Basab; Chen, Shengxi; Li, Zhongxian; Dedkova, Larisa M; Hecht, Sidney M

    2017-03-17

    Several variants of a nucleic acid binding motif (RRM1) of putative transcription factor hnRNP LL containing nucleobase amino acids at specific positions have been prepared and used to study binding affinity for the BCL2 i-motif DNA. Molecular modeling suggested a number of amino acids in RRM1 likely to be involved in interaction with the i-motif DNA, and His24 and Arg26 were chosen for modification based on their potential ability to interact with G14 of the i-motif DNA. Four nucleobase amino acids were introduced into RRM1 at one or both of positions 24 and 26. The introduction of cytosine nucleobase 2 into position 24 of RRM1 increased the affinity of the modified protein for the i-motif DNA, consistent with the possible Watson-Crick interaction of 2 and G14. In comparison, the introduction of uracil nucleobase 3 had a minimal effect on DNA affinity. Two structurally simplified nucleobase analogues (1 and 4) lacking both the N-1 and the 2-oxo substituents were also introduced in lieu of His24. Again, the RRM1 analogue containing 1 exhibited enhanced affinity for the i-motif DNA, while the protein analogue containing 4 bound less tightly to the DNA substrate. Finally, the modified protein containing 1 in lieu of Arg26 also bound to the i-motif DNA more strongly than the wild-type protein, but a protein containing 1 both at positions 24 and 26 bound to the DNA less strongly than wild type. The results support the idea of using nucleobase amino acids as protein constituents for controlling and enhancing DNA-protein interaction. Finally, modification of the i-motif DNA at G14 diminished RRM1-DNA interaction, as well as the ability of nucleobase amino acid 1 to stabilize RRM1-DNA interaction.

  20. Presteady-state kinetics of Bacillus 1,3-1,4-beta-glucanase: binding and hydrolysis of a 4-methylumbelliferyl trisaccharide substrate.

    PubMed Central

    Abel, M; Planas, A; Christensen, U

    2001-01-01

    In the present study the first stopped-flow experiments performed on Bacillus 1,3-1,4-beta-glucanases are reported. The presteady-state kinetics of the binding of 4-methylumbelliferyl 3-O-beta-cellobiosyl-beta-D-glucoside to the inactive mutant E134A, and the wild-type-catalysed hydrolysis of the same substrate, were studied by measuring changes in the fluorescence of bound substrate or 4-methylumbelliferone produced. The presteady-state traces all showed an initial lag phase followed by a fast monoexponential phase leading to equilibration (for binding to E134A) or to steady state product formation (for the wild-type reaction). The lag phase, with a rate constant of the order of 100 s(-1), was independent of the substrate concentration; apparently an induced-fit mechanism governs the formation of enzyme-substrate complexes. The concentration dependencies of the observed rate constant of the second presteady-state phase were analysed according to a number of reaction models. For the reaction of the wild-type enzyme, it is shown that the fast product formation observed before steady state is not due to a rate-determining deglycosylation step. A model that can explain the observed results involves, in addition to the induced fit, a conformational change of the productive ES complex into a form that binds a second substrate molecule in a non-productive mode. PMID:11415449

  1. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  2. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  3. High Resolution Structures of Periplasmic Glucose-binding Protein of Pseudomonas putida CSV86 Reveal Structural Basis of Its Substrate Specificity.

    PubMed

    Pandey, Suman; Modak, Arnab; Phale, Prashant S; Bhaumik, Prasenjit

    2016-04-08

    Periplasmic substrate-binding proteins (SBPs) bind to the specific ligand with high affinity and mediate their transport into the cytoplasm via the cognate inner membrane ATP-binding cassette proteins. Because of low sequence identities, understanding the structural basis of substrate recognition by SBPs has remained very challenging. There are several structures available for the ligand-bound sugar SBPs, but very few unliganded structures are reported. No structural data are available for sugar SBPs fromPseudomonassp. to date. This study reports the first high resolution crystal structures of periplasmic glucose-binding protein fromPseudomonas putidaCSV86 (ppGBP) in unliganded form (2.5 Å) and complexed with glucose (1.25 Å) and galactose (1.8 Å). Asymmetric domain closure of ppGBP was observed upon substrate binding. The ppGBP was found to have an affinity of ∼ 0.3 μmfor glucose. The structural analysis showed that the sugars are bound to the protein mainly by hydrogen bonds, and the loss of two strong hydrogen bonds between ppGBP and galactose compared with glucose may be responsible for lowering its affinity toward galactose. The higher stability of ppGBP-glucose complex was also indicated by an 8 °C increase in the melting temperature compared with unliganded form and ppGBP-galactose complex. ppGBP binds to monosaccharide, but the structural features revealed it to have an oligosaccharide-binding protein fold, indicating that during evolution the sugar binding pocket may have undergone structural modulation to accommodate monosaccharide only.

  4. Structure of Methylobacterium extorquens malyl-CoA lyase: CoA-substrate binding correlates with domain shift.

    PubMed

    González, Javier M; Marti-Arbona, Ricardo; Chen, Julian C H; Unkefer, Clifford J

    2017-02-01

    Malyl-CoA lyase (MCL) is an Mg(2+)-dependent enzyme that catalyzes the reversible cleavage of (2S)-4-malyl-CoA to yield acetyl-CoA and glyoxylate. MCL enzymes, which are found in a variety of bacteria, are members of the citrate lyase-like family and are involved in the assimilation of one- and two-carbon compounds. Here, the 1.56 Å resolution X-ray crystal structure of MCL from Methylobacterium extorquens AM1 with bound Mg(2+) is presented. Structural alignment with the closely related Rhodobacter sphaeroides malyl-CoA lyase complexed with Mg(2+), oxalate and CoA allows a detailed analysis of the domain motion of the enzyme caused by substrate binding. Alignment of the structures shows that a simple hinge motion centered on the conserved residues Phe268 and Thr269 moves the C-terminal domain by about 30° relative to the rest of the molecule. This domain motion positions a conserved aspartate residue located in the C-terminal domain in the active site of the adjacent monomer, which may serve as a general acid/base in the catalytic mechanism.

  5. Structure of Methylobacterium extorquens malyl-CoA lyase: CoA-substrate binding correlates with domain shift

    DOE PAGES

    Gonzalez, Javier M.; Marti-Arbona, Ricardo; Chen, Julian C. -H.; ...

    2017-01-27

    Malyl-CoA lyase (MCL) is an Mg2+-dependent enzyme that catalyzes the reversible cleavage of (2S)-4-malyl-CoA to yield acetyl-CoA and glyoxylate. MCL enzymes, which are found in a variety of bacteria, are members of the citrate lyase-like family and are involved in the assimilation of one- and two-carbon compounds. Here, the 1.56 Å resolution X-ray crystal structure of MCL from Methylobacterium extorquens AM1 with bound Mg2+is presented. Structural alignment with the closely related Rhodobacter sphaeroides malyl-CoA lyase complexed with Mg2+, oxalate and CoA allows a detailed analysis of the domain motion of the enzyme caused by substrate binding. Alignment of the structuresmore » shows that a simple hinge motion centered on the conserved residues Phe268 and Thr269 moves the C-terminal domain by about 30° relative to the rest of the molecule. Furthermore, this domain motion positions a conserved aspartate residue located in the C-terminal domain in the active site of the adjacent monomer, which may serve as a general acid/base in the catalytic mechanism.« less

  6. Positive cooperativity in substrate binding of human prostatic acid phosphatase entrapped in AOT-isooctane-water reverse micelles.

    PubMed

    Luchter-Wasylewska, Ewa; Iciek, Małgorzata

    2004-05-15

    The kinetics of 1-naphthyl phosphate and phenyl phosphate hydrolysis, catalyzed by human prostatic acid phosphatase (PAP) entrapped in AOT-isooctane-water reverse micelles, has been studied over surfactant hydration degree (w0) range 5 to 35. Continuous spectrophotometric acid phosphatase assays, previously prepared, were employed. PAP was catalytically active over the whole w0 studied range. In order to determine steady-state reaction constants the experimental data were fitted to Hill rate equation. Positive cooperativity in substrate binding was observed, as it was earlier found in aqueous solutions. The extent of cooperativity (expressed as the value of the Hill cooperation coefficient h) increased from 1 to 4, when the micellar water-pool size was growing, at fixed enzyme concentration. In the plots of catalytic activity (kcat) versus w0, the maxima have been found at w0=10 (pH 5.6) and 23 (pH 3.8). It is suggested that catalytically active monomeric and dimeric PAP forms are entrapped in reverse micelles of w0=10 and 23, respectively.

  7. Redox State of Flavin Adenine Dinucleotide Drives Substrate Binding and Product Release in Escherichia coli Succinate Dehydrogenase

    PubMed Central

    Cheng, Victor W.T.; Piragasam, Ramanaguru Siva; Rothery, Richard A.; Maklashina, Elena; Cecchini, Gary; Weiner, Joel H.

    2016-01-01

    The Complex II family of enzymes, comprising the respiratory succinate dehydrogenases and fumarate reductases, catalyze reversible interconversion of succinate and fumarate. In contrast to the covalent flavin adenine dinucleotide (FAD) cofactor assembled in these enzymes, the soluble fumarate reductases (e.g. that from Shewanella frigidimarina) that assemble a noncovalent FAD cannot catalyze succinate oxidation but retain the ability to reduce fumarate. In this study, an SdhA-H45A variant that eliminates the site of the 8α-N3-histidyl covalent linkage between the protein and the FAD was examined. The variants SdhA-R286A/K/Y and -H242A/Y, that target residues thought to be important for substrate binding and catalysis were also studied. The variants SdhA-H45A and -R286A/K/Y resulted in assembly of a noncovalent FAD cofactor, which led to a significant decrease (−87 mV or more) in its reduction potential. The variant enzymes were studied by electron paramagnetic resonance spectroscopy following stand-alone reduction and potentiometric titrations. The “free” and “occupied” states of the active site were linked to the reduced and oxidized states of the FAD, respectively. Our data allows for a proposed model of succinate oxidation that is consistent with tunnel diode effects observed in the succinate dehydrogenase enzyme and a preference for fumarate reduction catalysis in fumarate reductase homologues that assemble a noncovalent FAD. PMID:25569225

  8. Allosteric transition and substrate binding are entropy-driven in glucosamine-6-phosphate deaminase from Escherichia coli.

    PubMed

    Bustos-Jaimes, I; Calcagno, M L

    2001-10-15

    Glucosamine-6P-deaminase (EC 3.5.99.6, formerly glucosamine-6-phosphate isomerase, EC 5.3.1.10) from Escherichia coli is an attractive experimental model for the study of allosteric transitions because it is both kinetically and structurally well-known, and follows rapid equilibrium random kinetics, so that the kinetic K(m) values are true thermodynamic equilibrium constants. The enzyme is a typical allosteric K-system activated by N-acetylglucosamine 6-P and displays an allosteric behavior that can be well described by the Monod-Wyman-Changeux model. This thermodynamic study based on the temperature dependence of allosteric parameters derived from this model shows that substrate binding and allosteric transition are both entropy-driven processes in E. coli GlcN6P deaminase. The analysis of this result in the light of the crystallographic structure of the enzyme implicates the active-site lid as the structural motif that could contribute significantly to this entropic component of the allosteric transition because of the remarkable change in its crystallographic B factors.

  9. Evaluation of Substrate and Inhibitor Binding to Yeast and Human Isoprenylcysteine Carboxyl Methyltransferases (Icmts) using Biotinylated Benzophenone-containing Photoaffinity Probes

    PubMed Central

    Hahne, Kalub; Vervacke, Jeffery; Shrestha, Liza; Donelson, James L.; Gibbs, Richard A.; Distefano, Mark D.; Hrycyna, Christine A.

    2013-01-01

    Isoprenylcysteine carboxyl methyltransferases (Icmts) are a class of integral membrane protein methyltransferases localized to the endoplasmic reticulum (ER) membrane in eukaryotes. The Icmts from human (hIcmt) and S. cerevisae (Ste14p) catalyze the α-carboxyl methyl esterification step in the post-translational processing of CaaX proteins, including the yeast a-factor mating pheromones and both human and yeast Ras proteins. Herein, we evaluated synthetic analogs of two well-characterized Icmt substrates, N-acetyl-S-farnesyl-L-cysteine (AFC) and the yeast a-factor peptide mating pheromone, that contain photoactive benzophenone moieties in either the lipid or peptide portion of the molecule. The AFC based-compounds were substrates for both hIcmt and Ste14p, whereas the a-factor analogs were only substrates for Ste14p. However, the a-factor analogs were found to be micromolar inhibitors of hIcmt. Together, these data suggest that the Icmt substrate binding site is dependent upon features in both the isoprenyl moiety and upstream amino acid composition and that hIcmt and Ste14p have overlapping, yet distinct, substrate specificities. Photocrosslinking and neutravidin-agarose capture experiments with these analogs revealed that both hIcmt and Ste14p were specifically photolabeled to varying degrees with all of the compounds tested. These data suggest that these analogs will be useful for the future identification of the Icmt substrate binding sites. PMID:22634004

  10. Evaluation of substrate and inhibitor binding to yeast and human isoprenylcysteine carboxyl methyltransferases (Icmts) using biotinylated benzophenone-containing photoaffinity probes.

    PubMed

    Hahne, Kalub; Vervacke, Jeffrey S; Shrestha, Liza; Donelson, James L; Gibbs, Richard A; Distefano, Mark D; Hrycyna, Christine A

    2012-06-22

    Isoprenylcysteine carboxyl methyltransferases (Icmts) are a class of integral membrane protein methyltransferases localized to the endoplasmic reticulum (ER) membrane in eukaryotes. The Icmts from human (hIcmt) and Saccharomyces cerevisiae (Ste14p) catalyze the α-carboxyl methyl esterification step in the post-translational processing of CaaX proteins, including the yeast a-factor mating pheromones and both human and yeast Ras proteins. Herein, we evaluated synthetic analogs of two well-characterized Icmt substrates, N-acetyl-S-farnesyl-L-cysteine (AFC) and the yeast a-factor peptide mating pheromone, that contain photoactive benzophenone moieties in either the lipid or peptide portion of the molecule. The AFC based-compounds were substrates for both hIcmt and Ste14p, whereas the a-factor analogs were only substrates for Ste14p. However, the a-factor analogs were found to be micromolar inhibitors of hIcmt. Together, these data suggest that the Icmt substrate binding site is dependent upon features in both the isoprenyl moiety and upstream amino acid composition. Furthermore, these data suggest that hIcmt and Ste14p have overlapping, yet distinct, substrate specificities. Photocrosslinking and neutravidin-agarose capture experiments with these analogs revealed that both hIcmt and Ste14p were specifically photolabeled to varying degrees with all of the compounds tested. Our data suggest that these analogs will be useful for the future identification of the Icmt substrate binding sites.

  11. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates.

    PubMed

    Kumar, Charanya; Eichmiller, Robin; Wang, Bangchen; Williams, Gregory M; Bianco, Piero R; Surtees, Jennifer A

    2014-06-01

    In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3' non-homologous tail removal (3'NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3'NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3'NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3'NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype.

  12. Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study.

    PubMed

    Flannelly, David F; Aoki, Thalia G; Aristilde, Ludmilla

    2015-09-01

    The complete degradation of cellulose to glucose is essential to carbon turnover in terrestrial ecosystems and to engineered biofuel production. A rate-limiting step in this pathway is catalyzed by beta-glucosidase (BG) enzymes, which convert cellulobiose into two glucose molecules. The activity of these enzymes has been shown to vary with solution pH. However, it is not well understood how pH influences the enzyme conformation required for catalytic action on the substrate. A structural understanding of this pH effect is important for predicting shifts in BG activity in bioreactors and environmental matrices, in addition to informing targeted protein engineering. Here we applied molecular dynamics simulations to explore conformational and substrate binding dynamics in two well-characterized BGs of bacterial (Clostridium cellulovorans) and fungal (Trichoderma reesei) origins as a function of pH. The enzymes were simulated in an explicit solvated environment, with NaCl as electrolytes, at their prominent ionization states obtained at pH 5, 6, 7, and 7.5. Our findings indicated that pH-dependent changes in the ionization states of non-catalytic residues localized outside of the immediate active site led to pH-dependent disruption of the active site conformation. This disruption interferes with favorable H-bonding interactions with catalytic residues required to initiate catalysis on the substrate. We also identified specific non-catalytic residues that are involved in stabilizing the substrate at the optimal pH for enzyme activity. The simulations further revealed the dynamics of water-bridging interactions both outside and inside the substrate binding cleft during structural changes in the enzyme-substrate complex. These findings provide new structural insights into the pH-dependent substrate binding specificity in BGs.

  13. Phosphoramidate pronucleotides: a comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins.

    PubMed

    Chou, Tsui-Fen; Baraniak, Janina; Kaczmarek, Renata; Zhou, Xin; Cheng, Jilin; Ghosh, Brahma; Wagner, Carston R

    2007-01-01

    To facilitate the delivery of nucleotide-based therapeutics to cells and tissues, a variety of pronucleotide approaches have been developed. Our laboratory and others have demonstrated that nucleoside phosphoramidates can be activated intracellularly to the corresponding 5'-monophosphate nucleotide and that histidine triad nucleotide binding proteins (Hints) are potentially responsible for their bioactivation. Hints are conserved and ubiquitous enzymes that hydrolyze phosphoramidate bonds between nucleoside 5'-monophosphate and an amine leaving group. On the basis of the ability of nucleosides to quench the fluorescence of covalently linked amines containing indole, a sensitive, continuous fluorescence-based assay was developed. A series of substrates linking the naturally fluorogenic indole derivatives to nucleoside 5'-monophosphates were synthesized, and their steady state kinetic parameters of hydrolysis by human Hint1 and Escherichia coli hinT were evaluated. To characterize the elemental and stereochemical effect on the reaction, two P-diastereoisomers of adenosine or guanosine phosphoramidothioates were synthesized and studied to reveal a 15-200-fold decrease in the specificity constant (kcat/Km) when the phosphoryl oxygen is replaced with sulfur. While a stereochemical preference was not observed for E. coli hinT, hHint1 exhibited a 300-fold preference for d-tryptophan phosphoramidates over l-isomers. The most efficient substrates evaluated to date are those that contain the less sterically hindering amine leaving group, tryptamine, with kcat and Km values comparable to those found for adenosine kinase. The apparent second-order rate constants (kcat/Km) for adenosine tryptamine phosphoramidate monoester were found to be 107 M-1 s-1 for hHint1 and 106 M-1 s-1 for E. coli hinT. Both the human and E. coli enzymes preferred purine over pyrimidine analogues. Consistent with observed hydrogen bonding between the 2'-OH group of adenosine monophosphate and the

  14. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    SciTech Connect

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate

  15. Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC

    PubMed Central

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Gapsys, Vytautas; Ucurum, Zöhre; de Groot, Bert L.; Fotiadis, Dimitrios

    2016-01-01

    Pathogenic enterobacteria need to survive the extreme acidity of the stomach to successfully colonize the human gut. Enteric bacteria circumvent the gastric acid barrier by activating extreme acid-resistance responses, such as the arginine-dependent acid resistance system. In this response, l-arginine is decarboxylated to agmatine, thereby consuming one proton from the cytoplasm. In Escherichia coli, the l-arginine/agmatine antiporter AdiC facilitates the export of agmatine in exchange of l-arginine, thus providing substrates for further removal of protons from the cytoplasm and balancing the intracellular pH. We have solved the crystal structures of wild-type AdiC in the presence and absence of the substrate agmatine at 2.6-Å and 2.2-Å resolution, respectively. The high-resolution structures made possible the identification of crucial water molecules in the substrate-binding sites, unveiling their functional roles for agmatine release and structure stabilization, which was further corroborated by molecular dynamics simulations. Structural analysis combined with site-directed mutagenesis and the scintillation proximity radioligand binding assay improved our understanding of substrate binding and specificity of the wild-type l-arginine/agmatine antiporter AdiC. Finally, we present a potential mechanism for conformational changes of the AdiC transport cycle involved in the release of agmatine into the periplasmic space of E. coli. PMID:27582465

  16. Crystal structures of antibiotic-bound complexes of aminoglycoside 2''-phosphotransferase IVa highlight the diversity in substrate binding modes among aminoglycoside kinases.

    PubMed

    Shi, Kun; Houston, Douglas R; Berghuis, Albert M

    2011-07-19

    Aminoglycoside 2''-phosphotransferase IVa [APH(2'')-IVa] is a member of a family of bacterial enzymes responsible for medically relevant resistance to antibiotics. APH(2'')-IVa confers high-level resistance against several clinically used aminoglycoside antibiotics in various pathogenic Enterococcus species by phosphorylating the drug, thereby preventing it from binding to its ribosomal target and producing a bactericidal effect. We describe here three crystal structures of APH(2'')-IVa, one in its apo form and two in complex with a bound antibiotic, tobramycin and kanamycin A. The apo structure was refined to a resolution of 2.05 Å, and the APH(2'')-IVa structures with tobramycin and kanamycin A bound were refined to resolutions of 1.80 and 2.15 Å, respectively. Comparison among the structures provides insight concerning the substrate selectivity of this enzyme. In particular, conformational changes upon substrate binding, involving rotational shifts of two distinct segments of the enzyme, are observed. These substrate-induced shifts may also rationalize the altered substrate preference of APH(2'')-IVa in comparison to those of other members of the APH(2'') subfamily, which are structurally closely related. Finally, analysis of the interactions between the enzyme and aminoglycoside reveals a distinct binding mode as compared to the intended ribosomal target. The differences in the pattern of interactions can be utilized as a structural basis for the development of improved aminoglycosides that are not susceptible to these resistance factors.

  17. An organic donor/acceptor lateral superlattice at the nanoscale.

    PubMed

    Otero, Roberto; Ecija, David; Fernandez, Gustavo; Gallego, José María; Sanchez, Luis; Martín, Nazario; Miranda, Rodolfo

    2007-09-01

    A precise control of the nanometer-scale morphology in systems containing mixtures of donor/acceptor molecules is a key factor to improve the efficiency of organic photovoltaic devices. Here we report on a scanning tunneling microscopy study of the first stages of growth of 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole, as electron donor, and phenyl-C61-butyric acid methyl ester, as electron acceptor, on a Au(111) substrate under ultrahigh vacuum conditions. Due to differences in bonding strength with the substrate and different interactions with the Au(111) herringbone surface reconstruction, mixed thin films spontaneously segregate into a lateral superlattice of interdigitated nanoscale stripes with a characteristic width of about 10-20 nm, a morphology that has been predicted to optimize the efficiency of organic solar cells.

  18. Lysine-21 of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase participates in substrate binding through charge-charge interaction.

    PubMed Central

    Lee, W. T.; Levy, H. R.

    1992-01-01

    Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) was isolated in high yield and purified to homogeneity from a newly constructed strain of Escherichia coli which lacks its own glucose 6-phosphate dehydrogenase gene. Lys-21 is one of two lysyl residues in the enzyme previously modified by the affinity labels pyridoxal 5'-phosphate and pyridoxal 5'-diphosphate-5'-adenosine, which are competitive inhibitors of the enzyme with respect to glucose 6-phosphate (LaDine, J.R., Carlow, D., Lee, W.T., Cross, R.L., Flynn, T.G., & Levy, H.R., 1991, J. Biol. Chem. 266, 5558-5562). K21R and K21Q mutants of the enzyme were purified to homogeneity and characterized kinetically to determine the function of Lys-21. Both mutant enzymes showed increased Km-values for glucose 6-phosphate compared to wild-type enzyme: 1.4-fold (NAD-linked reaction) and 2.1-fold (NADP-linked reaction) for the K21R enzyme, and 36-fold (NAD-linked reaction) and 53-fold (NADP-linked reaction) for the K21Q enzyme. The Km for NADP+ was unchanged in both mutant enzymes. The Km for NAD+ was increased 1.5- and 3.2-fold, compared to the wild-type enzyme, in the K21R and K21Q enzymes, respectively. For the K21R enzyme the kcat for the NAD- and NADP-linked reactions was unchanged. The kcat for the K21Q enzyme was increased in the NAD-linked reaction by 26% and decreased by 30% in the NADP-linked reaction from the values for the wild-type enzyme. The data are consistent with Lys-21 participating in the binding of the phosphate group of the substrate to the enzyme via charge-charge interaction. PMID:1304341

  19. Degradation and recycling of the substrate-binding subunit of type II iodothyronine 5'-deiodinase in astrocytes.

    PubMed

    Farwell, A P; Safran, M; Dubord, S; Leonard, J L

    1996-07-05

    Thyroxine dynamically regulates levels of type II iodothyronine 5'-deiodinase (5'D-II) by modulating enzyme inactivation and targeting the enzyme to different pathways of internalization. 5'D-II is an approximately 200-kDa multimeric protein containing a 29-kDa substrate-binding subunit (p29) and an unknown number of other subunits. In the absence of thyroxine (T4), p29 is slowly endocytosed and transported to the lysosomes. T4 treatment rapidly activates an actin-mediated endocytotic pathway and targets the enzyme to the endosomes. In this study, we have characterized the influence of T4 on the intracellular trafficking of 5'D-II. We show that T4 accelerates the rate of 5'D-II inactivation by translocating the enzyme to the interior of the cell and by sequestering p29 in the endosomal pool without accelerating the rate of degradation of p29. This dichotomy between the rapid inactivation of catalytic activity and the much slower degradation of p29 is consistent with the reuse of p29 in the production of 5'D-II activity. Immunocytochemical analysis with a specific anti-p29 IgG shows that pulse affinity-labeled p29 reappears on the plasma membrane approximately 2 h after enzyme internalization in the presence of T4, indicating that p29 is recycled. Despite the ability of p29 to be recycled in the T4-treated cell, 5'D-II catalytic activity requires ongoing protein synthesis, presumably of another enzyme component(s) or an accessory enzyme-related protein. In the absence of T4, enzyme inactivation and p29 degradation are temporally linked, and pulse affinity-labeled p29 is internalized and sequestered in discrete intracellular pools. These data suggest that T4 regulates fundamental processes involved with the turnover of integral membrane proteins and participates in regulating the inter-relationships between the degradation, recycling, and synthetic pathways.

  20. Kinetic and X-Ray Structural Evidence for Negative Cooperativity in Substrate Binding to Nicotinate Mononucleotide Adenylyltransferase (NMAT) from Bacillus anthracis

    SciTech Connect

    Sershon, Valerie C.; Santarsiero, Bernard D.; Mesecar, Andrew D.

    2009-08-07

    Biosynthesis of NAD(P) in bacteria occurs either de novo or through one of the salvage pathways that converge at the point where the reaction of nicotinate mononucleotide (NaMN) with ATP is coupled to the formation of nicotinate adenine dinucleotide (NaAD) and inorganic pyrophosphate. This reaction is catalyzed by nicotinate mononucleotide adenylyltransferase (NMAT), which is essential for bacterial growth, making it an attractive drug target for the development of new antibiotics. Steady-state kinetic and direct binding studies on NMAT from Bacillus anthracis suggest a random sequential Bi-Bi kinetic mechanism. Interestingly, the interactions of NaMN and ATP with NMAT were observed to exhibit negative cooperativity, i.e. Hill coefficients <1.0. Negative cooperativity in binding is supported by the results of X-ray crystallographic studies. X-ray structures of the B. anthracis NMAT apoenzyme, and the NaMN- and NaAD-bound complexes were determined to resolutions of 2.50 A, 2.60 A and 1.75 A, respectively. The X-ray structure of the NMAT-NaMN complex revealed only one NaMN molecule bound in the biological dimer, supporting negative cooperativity in substrate binding. The kinetic, direct-binding, and X-ray structural studies support a model in which the binding affinity of substrates to the first monomer of NMAT is stronger than that to the second, and analysis of the three X-ray structures reveals significant conformational changes of NMAT along the enzymatic reaction coordinate. The negative cooperativity observed in B. anthracis NMAT substrate binding is a unique property that has not been observed in other prokaryotic NMAT enzymes. We propose that regulation of the NAD(P) biosynthetic pathway may occur, in part, at the reaction catalyzed by NMAT.

  1. Thermodynamic insights into the structural basis governing the donor substrate recognition by human beta1,4-galactosyltransferase 7.

    PubMed

    Daligault, Franck; Rahuel-Clermont, Sophie; Gulberti, Sandrine; Cung, Manh-Thong; Branlant, Guy; Netter, Patrick; Magdalou, Jacques; Lattard, Virginie

    2009-03-15

    Human beta1,4-GalT (galactosyltransferase)7 is involved in the biosynthesis of the tetrasaccharide linker protein region (GlcAbeta1-->3Galbeta1-->3Galbeta1-->4Xylbeta1) (where GlcA is glucuronic acid and Xyl is xylose) of proteoglycans, by catalysing the transfer of Gal (galactose) from the uridine 5'-diphosphogalactose to a Xyl residue. This reaction is rate-limiting in glycosaminoglycan biosynthesis. In the present study, we established a large-scale production system of beta1,4-GalT7 fused with the maltose-binding protein to study substrate recognition. Calorimetric binding studies showed that the binding of the donor substrate UDP-Gal largely promoted binding of the acceptor substrate. To identify the structural basis governing substrate recognition, we used a fragment-based approach involving the artificial breakdown of the donor substrate into smaller fragments and characterization of their respective binding to the enzyme by isothermal titration calorimetry. The beta-phosphate, and to a lesser extent the alpha-phosphate, largely contributed to the binding energy. However, the uridine moiety was found to be essential for the optimal positioning of the donor substrate within the binding site. Unexpectedly, the contribution of the Gal moiety in substrate recognition was found to be negligible. Indeed, UDP-Gal, but also various UDP-sugars, could bind to beta1,4-GalT7. Surprisingly, in contrast with other GalTs, soluble beta1,4-GalT7 was able to transfer Glc (glucose), Xyl and, to a lesser extent GlcA and GlcNAc (N-acetyl glucosamine), to acceptor sugars, whereas UDP-Man (mannose) and UDP-GalNAc (N-acetyl galactosamine) were not substrates.

  2. Refinement of the Central Steps of Substrate Transport by the Aspartate Transporter GltPh: Elucidating the Role of the Na2 Sodium Binding Site

    PubMed Central

    Venkatesan, SanthoshKannan; Saha, Kusumika; Sohail, Azmat; Sandtner, Walter; Freissmuth, Michael; Ecker, Gerhard F.; Sitte, Harald H.; Stockner, Thomas

    2015-01-01

    Glutamate homeostasis in the brain is maintained by glutamate transporter mediated accumulation. Impaired transport is associated with several neurological disorders, including stroke and amyotrophic lateral sclerosis. Crystal structures of the homolog transporter GltPh from Pyrococcus horikoshii revealed large structural changes. Substrate uptake at the atomic level and the mechanism of ion gradient conversion into directional transport remained enigmatic. We observed in repeated simulations that two local structural changes regulated transport. The first change led to formation of the transient Na2 sodium binding site, triggered by side chain rotation of T308. The second change destabilized cytoplasmic ionic interactions. We found that sodium binding to the transiently formed Na2 site energized substrate uptake through reshaping of the energy hypersurface. Uptake experiments in reconstituted proteoliposomes confirmed the proposed mechanism. We reproduced the results in the human glutamate transporter EAAT3 indicating a conserved mechanics from archaea to humans. PMID:26485255

  3. An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates.

    PubMed

    Padlan, Camille S; Malashkevich, Vladimir N; Almo, Steve C; Levy, Matthew; Brenowitz, Michael; Girvin, Mark E

    2014-04-01

    RNA aptamers are being developed as inhibitors of macromolecular and cellular function, diagnostic tools, and potential therapeutics. Our understanding of the physical nature of this emerging class of nucleic acid-protein complexes is limited; few atomic resolution structures have been reported for aptamers bound to their protein target. Guided by chemical mapping, we systematically minimized an RNA aptamer (Lys1) selected against hen egg white lysozyme. The resultant 59-nucleotide compact aptamer (Lys1.2minE) retains nanomolar binding affinity and the ability to inhibit lysozyme's catalytic activity. Our 2.0-Å crystal structure of the aptamer-protein complex reveals a helical stem stabilizing two loops to form a protein binding platform that binds lysozyme distal to the catalytic cleft. This structure along with complementary solution analyses illuminate a novel protein-nucleic acid interface; (1) only 410 Å(2) of solvent accessible surface are buried by aptamer binding; (2) an unusually small fraction (∼18%) of the RNA-protein interaction is electrostatic, consistent with the limited protein phosphate backbone contacts observed in the structure; (3) a single Na(+) stabilizes the loops that constitute the protein-binding platform, and consistent with this observation, Lys1.2minE-lysozyme complex formation takes up rather than displaces cations at low ionic strength; (4) Lys1.2minE inhibits catalysis of large cell wall substrates but not catalysis of small model substrates; and (5) the helical stem of Lys1.2minE can be shortened to four base pairs (Lys1.2minF) without compromising binding affinity, yielding a 45-nucleotide aptamer whose structure may be an adaptable protein binding platform.

  4. Probing the role of aromatic residues at the secondary saccharide binding sites of human salivary α-amylase in substrate hydrolysis and bacterial binding

    PubMed Central

    Ragunath, Chandran; Manuel, Suba G.A.; Venkataraman, Venkat; Sait, Hameetha B.R.; Kasinathan, Chinnasamy; Ramasubbu, Narayanan

    2008-01-01

    SUMMARY Human salivary α-amylase (HSAmy) has three distinct functions relevant to oral health: 1) hydrolysis of starch; 2) binding to hydroxyapatite; and 3) binding to bacteria (e.g. viridans streptococci). Although the active site of HSAmy for starch hydrolysis is well characterized, the regions responsible for the bacterial binding are yet to be defined. Since HSAmy possesses several secondary saccharide-binding sites in which aromatic residues are prominently located, we hypothesized that one or more of the secondary saccharide binding sites harboring the aromatic residues may play an important role in bacterial binding. To test this hypothesis, the aromatic residues at five secondary binding sites were mutated to alanine to generate six mutants representing either single (W203A, Y276A and W284A), double (Y276A/W284A and W316A/W388A) or multiple (HSAmy-ar; W134A/W203A/Y276A/W284A/W316A/W388A) mutations. The crystal structure of HSAmy-ar was determined at a resolution of 1.5 Å as an acarbose complex and compared with the existing wild type acarbose complex. The wild type and the mutant enzymes were characterized for their abilities to exhibit enzyme activity, starch binding, hydroxyapatite and bacterial binding activities. Our results clearly showed that 1) mutation of aromatic residues does not alter the overall conformation of the molecule; 2) the single or double mutants showed either moderate or minimal changes in both starch and bacterial binding activities activity whereas the HSAmy-ar showed significant reduction in these activities; 3) the starch hydrolytic activity was reduced 10-fold in HSAmy-ar; 4) oligosaccharide hydrolytic activity was reduced in all the mutants but the action pattern was similar to that of the wild type enzyme; and 5) the hydroxyaptite binding was unaffected in HSAmy-ar. These results clearly show that the aromatic residues at the secondary saccharide binding sites in HSAmy play a critical role in bacterial binding and starch

  5. Crystal Structure of Vancosaminyltransferase GtfD from the Vancomycin Biosynthetic Pathway: Interactions with Acceptor and Nucleotide Ligands

    SciTech Connect

    Mulichak, A.M.; Lu, W.; Losey, H.C.; Walsh, C.T.; Garavito, R.M.

    2010-03-08

    The TDP-vancosaminyltransferase GtfD catalyzes the attachment of L-vancosamine to a monoglucosylated heptapeptide intermediate during the final stage of vancomycin biosynthesis. Glycosyltransferases from this and similar antibiotic pathways are potential tools for the design of new compounds that are effective against vancomycin resistant bacterial strains. We have determined the X-ray crystal structure of GtfD as a complex with TDP and the natural glycopeptide substrate at 2.0 {angstrom} resolution. GtfD, a member of the bidomain GT-B glycosyltransferase superfamily, binds TDP in the interdomain cleft, while the aglycone acceptor binds in a deep crevice in the N-terminal domain. However, the two domains are more interdependent in terms of substrate binding and overall structure than was evident in the structures of closely related glycosyltransferases GtfA and GtfB. Structural and kinetic analyses support the identification of Asp13 as a catalytic general base, with a possible secondary role for Thr10. Several residues have also been identified as being involved in donor sugar binding and recognition.

  6. Molecular dynamics investigations of regioselectivity of anionic/aromatic substrates by a family of enzymes: a case study of diclofenac binding in CYP2C isoforms.

    PubMed

    Cui, Ying-Lu; Xu, Fang; Wu, Rongling

    2016-06-29

    The CYP2C subfamily is of particular importance in the metabolism of drugs, food toxins, and procarcinogens. Like other P450 subfamilies, 2C enzymes share a high sequence identity, but significantly contribute in different ways to hepatic capacity to metabolize drugs. They often metabolize the same substrate to more than one product with different catalytic sites. Because it is challenging to characterize experimentally, much still remains unknown about the reason for why the substrate regioselectivity of these closely related subfamily members is different. Here, we have investigated the structural features of CYP2C8, CYP2C9, and CYP2C19 bound with their shared substrate diclofenac to elucidate the underlying molecular mechanism for the substrate regioselectivity of CYP2C subfamily enzymes. The obtained results demonstrate how a sequence divergence for the active site residues causes heterogeneous variations in the secondary structures and in major tunnel selections, and further affects the shape and chemical properties of the substrate-binding site. Structural analysis and free energy calculations showed that the most important determinants of regioselectivity among the CYP2C isoforms are the geometrical features of the active sites, as well as the hydrogen bonds and the hydrophobic interactions, mainly presenting as the various locations of Arg108 and substitutions of Phe205 for Ile205 in CYP2C8. The MM-GB/SA calculations combined with PMF results accord well with the experimental KM values, bridging the gap between the theory and the experimentally observed results of binding affinity differences. The present study provides important insights into the structure-function relationships of CYP2C subfamily enzymes, the knowledge of ligand binding characteristics and key residue contributions could guide future experimental and computational work on the synthesis of drugs with better pharmacokinetic properties so that CYP interactions could be avoided.

  7. The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1

    PubMed Central

    Herbert, Alan; Rich, Alexander

    2001-01-01

    RNA editing changes the read-out of genetic information, increasing the number of different protein products that can be made from a single gene. One form involves the deamination of adenosine to form inosine, which is subsequently translated as guanosine. The reaction requires a double-stranded RNA (dsRNA) substrate and is catalyzed by the adenosine deaminase that act on dsRNA (ADAR) family of enzymes. These enzymes possess dsRNA-binding domains (DRBM) and a catalytic domain. ADAR1 so far has been found only in vertebrates and is characterized by two Z-DNA-binding motifs, the biological function of which remains unknown. Here the role of the various functional domains of ADAR1 in determining the editing efficiency and specificity of ADAR1 is examined in cell-based assays. A variety of dsRNA substrates was tested. It was found that a 15-bp dsRNA stem with a single base mismatch was sufficient for editing. The particular adenosine modified could be varied by changing the position of the mismatch. Editing efficiency could be increased by placing multiple pyrimidines 5′ to the edited adenosine. With longer substrates, editing efficiency also increased and was partly due to the use of DRBMs. Additional editing sites were also observed that clustered on the complementary strand 11–15 bp from the first. An unexpected finding was that the DRBMs are not necessary for the editing of the shorter 15-bp substrates. However, mutation of the Z-DNA-binding domains of ADAR1 decreased the efficiency with which such a substrate was edited. PMID:11593027

  8. Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding

    PubMed Central

    Peleh, Valentina; Cordat, Emmanuelle; Herrmann, Johannes M

    2016-01-01

    Many proteins of the mitochondrial IMS contain conserved cysteines that are oxidized to disulfide bonds during their import. The conserved IMS protein Mia40 is essential for the oxidation and import of these proteins. Mia40 consists of two functional elements: an N-terminal cysteine-proline-cysteine motif conferring substrate oxidation, and a C-terminal hydrophobic pocket for substrate binding. In this study, we generated yeast mutants to dissect both Mia40 activities genetically and biochemically. Thereby we show that the substrate-binding domain of Mia40 is both necessary and sufficient to promote protein import, indicating that trapping by Mia40 drives protein translocation. An oxidase-deficient Mia40 mutant is inviable, but can be partially rescued by the addition of the chemical oxidant diamide. Our results indicate that Mia40 predominantly serves as a trans-site receptor of mitochondria that binds incoming proteins via hydrophobic interactions thereby mediating protein translocation across the outer membrane by a ‘holding trap’ rather than a ‘folding trap’ mechanism. DOI: http://dx.doi.org/10.7554/eLife.16177.001 PMID:27343349

  9. Removal of the four C-terminal glycine-rich repeats enhances the thermostability and substrate binding affinity of barley beta-amylase.

    PubMed

    Ma, Y F; Eglinton, J K; Evans, D E; Logue, S J; Langridge, P

    2000-11-07

    Barley beta-amylase undergoes proteolytic cleavage in the C-terminal region after germination. The implication of the cleavage in the enzyme's characteristics is unclear. With purified native beta-amylases from both mature barley grain and germinated barley, we found that the beta-amylase from germinated barley had significantly higher thermostability and substrate binding affinity for starch than that from mature barley grain. To better understand the effect of the proteolytic cleavage on the enzyme's thermostability and substrate binding affinity for starch, recombinant barley beta-amylases with specific deletions at the C-terminal tail were generated. The complete deletion of the four C-terminal glycine-rich repeats significantly increased the enzyme's thermostability, but an incomplete deletion with one repeat remaining did not change the thermostability. Although different C-terminal deletions affect the thermostability differently, they all increased the enzyme's affinity for starch. The possible reasons for the increased thermostability and substrate binding affinity, due to the removal of the four C-terminal glycine-rich repeats, are discussed in terms of the three-dimensional structure of beta-amylase.

  10. The crystal structure of spermidine/spermine N1-acetyltransferase in complex with spermine provides insights into substrate binding and catalysis.

    PubMed

    Montemayor, Eric J; Hoffman, David W

    2008-09-02

    The enzyme spermidine/spermine N (1)-acetyltransferase (SSAT) catalyzes the transfer of acetyl groups from acetylcoenzyme A to spermidine and spermine, as part of a polyamine degradation pathway. This work describes the crystal structure of SSAT in complex with coenzyme A, with and without bound spermine. The complex with spermine provides a direct view of substrate binding by an SSAT and demonstrates structural plasticity near the active site of the enzyme. Associated water molecules bridge several of the intermolecular contacts between spermine and the enzyme and form a "proton wire" between the side chain of Glu92 and the N1 amine of spermine. A single water molecule can also be seen forming hydrogen bonds with the side chains of Glu92, Asp93, and the N4 amine of spermine. Site-directed mutation of Glu92 to glutamine had a detrimental effect on both substrate binding and catalysis and shifted the optimal pH for enzyme activity further into alkaline solution conditions, while mutation of Asp93 to asparagine affected both substrate binding and catalysis without changing the pH dependence of the enzyme. Considered together, the structural and kinetic data suggest that Glu92 functions as a catalytic base to drive an otherwise unfavorable deprotonation step at physiological pH.

  11. Enzyme-substrate complexes of the quinate/shikimate dehydrogenase from Corynebacterium glutamicum enable new insights in substrate and cofactor binding, specificity, and discrimination.

    PubMed

    Höppner, Astrid; Schomburg, Dietmar; Niefind, Karsten

    2013-11-01

    Quinate dehydrogenase (QDH) catalyzes the reversible oxidation of quinate to 3-dehydroquinate by nicotineamide adenine dinucleotide (NADH) and is involved in the catabolic quinate metabolism required for the degradation of lignin. The enzyme is a member of the family of shikimate/quinate dehydrogenases (SDH/QDH) occurring in bacteria and plants. We characterized the dual-substrate quinate/shikimate dehydrogenase (QSDH) from Corynebacterium glutamicum (CglQSDH) kinetically and revealed a clear substrate preference of CglQSDH for quinate compared with shikimate both at the pH optimum and in a physiological pH range, which is a remarkable contrast to closely related SDH/QDH enzymes. With respect to the cosubstrate, CglQSDH is strictly NAD(H) dependent. These substrate and cosubstrate profiles correlate well with the details of three atomic resolution crystal structures of CglQSDH in different functional states we report here: with bound NAD+ (binary complex) and as ternary complexes with NADH plus either shikimate or quinate. The CglQSDH-NADH-quinate structure is the first complex structure of any member of the SDH/QDH family with quinate. Based on this novel structural information and systematic sequence and structure comparisons with closely related enzymes, we can explain the strict NAD(H) dependency of CglQSDH as well as its discrimination between shikimate and quinate.

  12. Quantum computing with acceptor spins in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  13. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  14. Probing the location of the substrate binding site of ascorbate oxidase near type 1 copper: an investigation through spectroscopic, inhibition and docking studies.

    PubMed

    Santagostini, Laura; Gullotti, Michele; De Gioia, Luca; Fantucci, Piercarlo; Franzini, Elena; Marchesini, Augusto; Monzani, Enrico; Casella, Luigi

    2004-05-01

    The present investigation addresses the problem of the binding mode of phenolic inhibitors and the substrate ascorbate to the active site of ascorbate oxidase. The results from both types of compounds indicate that the binding site is located in a pocket near the type 1 copper center. This information is of general interest for blue multicopper oxidases. Docking calculations performed on the ascorbate oxidase-ascorbate complex show that binding of the substrate occurs in a pocket near type 1 Cu, and is stabilized by at least five hydrogen bonding interactions with protein residues, one of which involves the His512 Cu ligand. Similar docking studies show that the isomeric fluorophenols, which act as competitive inhibitors toward ascorbate, bind to the enzyme in a manner similar to ascorbate. The docking calculations are supported by 19F NMR relaxation measurements performed on fluorophenols in the presence of the enzyme, which show that the bound inhibitors undergo enhanced relaxation by the paramagnetic effect of a nearby Cu center. Unambiguous support to the location of the inhibitor close to type 1 Cu was obtained by comparative relaxation measurements of the fluorophenols in the presence of the ascorbate oxidase derivative where a Zn atom selectively replaces the paramagnetic type 2 Cu. The latter experiments show that contribution to relaxation of the bound inhibitors by the type 2 Cu site is negligible.

  15. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications.

    PubMed

    Stalder, Romain; Xie, Dongping; Islam, Ashraful; Han, Liyuan; Reynolds, John R; Schanze, Kirk S

    2014-06-11

    We report on a sexithienyl and two donor-acceptor-donor oligothiophenes, employing benzothiadiazole and isoindigo as electron-acceptors, each functionalized with a phosphonic acid group for anchoring onto TiO2 substrates as light-harvesting molecules for dye sensitized solar cells (DSSCs). These dyes absorb light to wavelengths as long as 700 nm, as their optical HOMO/LUMO energy gaps are reduced from 2.40 to 1.77 eV with increasing acceptor strength. The oligomers were adsorbed onto mesoporous TiO2 films on fluorine doped tin oxide (FTO)/glass substrates and incorporated into DSSCs, which show AM1.5 power conversion efficiencies (PCEs) ranging between 2.6% and 6.4%. This work demonstrates that the donor-acceptor-donor (D-A-D) molecular structures coupled to phosphonic acid anchoring groups, which have not been used in DSSCs, can lead to high PCEs.

  16. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    SciTech Connect

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonist (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.

  17. Structures of Streptococcus pneumoniae PiaA and Its Complex with Ferrichrome Reveal Insights into the Substrate Binding and Release of High Affinity Iron Transporters

    PubMed Central

    Cheng, Wang; Li, Qiong; Jiang, Yong-Liang; Zhou, Cong-Zhao; Chen, Yuxing

    2013-01-01

    Iron scarcity is one of the nutrition limitations that the Gram-positive infectious pathogens Streptococcus pneumoniae encounter in the human host. To guarantee sufficient iron supply, the ATP binding cassette (ABC) transporter Pia is employed to uptake iron chelated by hydroxamate siderophore, via the membrane-anchored substrate-binding protein PiaA. The high affinity towards ferrichrome enables PiaA to capture iron at a very low concentration in the host. We presented here the crystal structures of PiaA in both apo and ferrichrome-complexed forms at 2.7 and 2.1 Å resolution, respectively. Similar to other class III substrate binding proteins, PiaA is composed of an N-terminal and a C-terminal domain bridged by an α-helix. At the inter-domain cleft, a molecule of ferrichrome is stabilized by a number of highly conserved residues. Upon ferrichrome binding, two highly flexible segments at the entrance of the cleft undergo significant conformational changes, indicating their contribution to the binding and/or release of ferrichrome. Superposition to the structure of Escherichia coli ABC transporter BtuF enabled us to define two conserved residues: Glu119 and Glu262, which were proposed to form salt bridges with two arginines of the permease subunits. Further structure-based sequence alignment revealed that the ferrichrome binding pattern is highly conserved in a series of PiaA homologs encoded by both Gram-positive and negative bacteria, which were predicted to be sensitive to albomycin, a sideromycin antibiotic derived from ferrichrome. PMID:23951167

  18. Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism*

    PubMed Central

    Li, Yang; Mayer, Felix P.; Hasenhuetl, Peter S.; Burtscher, Verena; Schicker, Klaus; Sitte, Harald H.; Freissmuth, Michael; Sandtner, Walter

    2017-01-01

    The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn2+-binding site. All transition metals except Mn2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu2+, followed by Ni2+ and Zn2+ (= Co2+). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni2+ and Cu2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn2+ elicited biphasic effects on transport, i.e. stimulation at 1 μm and inhibition at 10 μm. A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn2+-binding site may be of interest to restore transport in loss-of-function mutants. PMID:28096460

  19. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  20. The crystal structure of Pseudomonas avirulence protein AvrPphB: A papain-like fold with a distinct substrate binding site

    SciTech Connect

    Zhu, M.; Shao, F.; Innes, R.W.; Dixon, J.E.; Xu, Z.

    2010-03-08

    AvrPphB is an avirulence (Avr) protein from the plant pathogen Pseudomonas syringae that can trigger a disease-resistance response in a number of host plants including Arabidopsis. AvrPphB belongs to a novel family of cysteine proteases with the charter member of this family being the Yersinia effector protein YopT. AvrPphB has a very stringent substrate specificity, catalyzing a single proteolytic cleavage in the Arabidopsis serine/threonine kinase PBS1. We have determined the crystal structure of AvrPphB by x-ray crystallography at 1.35-{angstrom} resolution. The structure is composed of a central antiparallel {beta}-sheet, with {alpha}-helices packing on both sides of the sheet to form a two-lobe structure. The core of this structure resembles the papain-like cysteine proteases. The similarity includes the AvrPphB active site catalytic triad of Cys-98, His-212, and Asp-227 and the oxyanion hole residue Asn-93. Based on analogy with inhibitor complexes of the papain-like proteases, we propose a model for the substrate-binding mechanism of AvrPphB. A deep and positively charged pocket (S2) and a neighboring shallow surface (S3) likely bind to aspartic acid and glycine residues in the substrate located two (P2) and three (P3) residues N terminal to the cleavage site, respectively. Further implications about the specificity of plant pathogen recognition are also discussed.

  1. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  2. Crystal structures of yeast beta-alanine synthase complexes reveal the mode of substrate binding and large scale domain closure movements.

    PubMed

    Lundgren, Stina; Andersen, Birgit; Piskur, Jure; Dobritzsch, Doreen

    2007-12-07

    Beta-alanine synthase is the final enzyme of the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of uracil and thymine in higher organisms. The fold of the homodimeric enzyme from the yeast Saccharomyces kluyveri identifies it as a member of the AcyI/M20 family of metallopeptidases. Its subunit consists of a catalytic domain harboring a di-zinc center and a smaller dimerization domain. The present site-directed mutagenesis studies identify Glu(159) and Arg(322) as crucial for catalysis and His(262) and His(397) as functionally important but not essential. We determined the crystal structures of wild-type beta-alanine synthase in complex with the reaction product beta-alanine, and of the mutant E159A with the substrate N-carbamyl-beta-alanine, revealing the closed state of a dimeric AcyI/M20 metallopeptidase-like enzyme. Subunit closure is achieved by a approximately 30 degrees rigid body domain rotation, which completes the active site by integration of substrate binding residues that belong to the dimerization domain of the same or the partner subunit. Substrate binding is achieved via a salt bridge, a number of hydrogen bonds, and coordination to one of the zinc ions of the di-metal center.

  3. Prediction of binding modes between protein L-isoaspartyl (D-aspartyl) O-methyltransferase and peptide substrates including isomerized aspartic acid residues using in silico analytic methods for the substrate screening.

    PubMed

    Oda, Akifumi; Noji, Ikuhiko; Fukuyoshi, Shuichi; Takahashi, Ohgi

    2015-12-10

    Because the aspartic acid (Asp) residues in proteins are occasionally isomerized in the human body, not only l-α-Asp but also l-β-Asp, D-α-Asp and D-β-Asp are found in human proteins. In these isomerized aspartic acids, the proportion of D-β-Asp is the largest and the proportions of l-β-Asp and D-α-Asp found in human proteins are comparatively small. To explain the proportions of aspartic acid isomers, the possibility of an enzyme able to repair l-β-Asp and D-α-Asp is frequently considered. The protein L-isoaspartyl (D-aspartyl) O-methyltransferase (PIMT) is considered one of the possible repair enzymes for l-β-Asp and D-α-Asp. Human PIMT is an enzyme that recognizes both l-β-Asp and D-α-Asp, and catalyzes the methylation of their side chains. In this study, the binding modes between PIMT and peptide substrates containing l-β-Asp or D-α-Asp residues were investigated using computational protein-ligand docking and molecular dynamics simulations. The results indicate that carboxyl groups of both l-β-Asp and D-α-Asp were recognized in similar modes by PIMT and that the C-terminal regions of substrate peptides were located in similar positions on PIMT for both the l-β-Asp and D-α-Asp peptides. In contrast, for peptides containing l-α-Asp or D-β-Asp residues, which are not substrates of PIMT, the computationally constructed binding modes between PIMT and peptides greatly differed from those between PIMT and substrates. In the nonsubstrate peptides, not inter- but intra-molecular hydrogen bonds were observed, and the conformations of peptides were more rigid than those of substrates. Thus, the in silico analytical methods were able to distinguish substrates from nonsubstrates and the computational methods are expected to complement experimental analytical methods.

  4. Systematic investigation on the central metal ion dependent binding geometry of M-meso-tetrakis(N-methylpyridinium-4-yl)porphyrin to DNA and their efficiency as an acceptor in DNA-mediated energy transfer.

    PubMed

    Kim, Young Rhan; Gong, Lindan; Park, Jongjin; Jang, Yoon Jung; Kim, Jinheung; Kim, Seog K

    2012-02-23

    Binding geometry to DNA and the efficiency as a donor for energy transfer of various metallo- and nonmetallo-porphyrins were investigated mainly by polarized light spectrscopy and fluorescence measurements. Planar porphyrins including nonmetallo meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP), CuTMPyP, and NiTMPyP produced large red-shift and hypochromism in absorption spectrum and a negative circular dichroism (CD) in the Soret band suggesting that these porphyrins intercalate between DNA base-pairs as expected. In the intercalation pocket, the molecular plane of these porphyrins tilts to a large extent. From a linear dichroism (LD) study, the angle between the two electric transition moments in the Soret band were 16°, 12°, and 11° for TMPyP, NiTMPyP, and CuTMPyP, respectively. On the other hand, porphyrins with axial ligands namely, VOTMPyP, TiOTMPyP, and CoTMPyP, produced a positive CD signal in the Soret band. Hyperchromism and less red-shift were apparent in the absorption spectrum. These observations indicated that the porphyrins with an axial ligand bind outside of the DNA. The angles of both the B(x) and B(y) transition with respect to the local DNA helix were 39°~46° for all porphyrins. From these results, the conceivable binding site of porphyrins with axial ligands is suggested to be the minor groove. All porphyrins were able to quench the fluorescence of intercalated ethidium. Strong overlap between emission spectrum of ethidium and the absorption spectrum of porphyrins when they simultaneously bound to DNA was found suggesting the mechanism behind energy transfer is, at least in part, the Förster type resonance energy transfer (FRET). The minimum distance in base pairs between ethidium and porphyrin required to permit the excited ethidium to emit a photon was the longest for CoTMPyP being 17.6 base pairs and was the shortest for CuTMPyP and NiTMPyP at 8.0 base pairs. The variation in the distance was almost proportional to the extent of

  5. Insights from molecular dynamics: the binding site of cocaine in the dopamine transporter and permeation pathways of substrates in the leucine and dopamine transporters

    PubMed Central

    Merchant, Bonnie A.; Madura, Jeffry D.

    2012-01-01

    The dopamine transporter (DAT) facilitates the regulation of synaptic neurotransmitter levels. As a target for therapeutic and illicit psycho-stimulant drugs like antidepressants and cocaine, DAT has been studied intensively. Despite a wealth of mutational and physiological data regarding DAT, the structure remains unsolved and details of the transport mechanism, binding sites and conformational changes remain debated. A bacterial homologue of DAT, the leucine transporter (LeuTAa) has been used as a template and framework for modeling and understanding DAT. Free energy profiles obtained from Multi-Configuration Thermodynamic Integration allowed us to correctly identify the primary and secondary binding pockets of LeuTAa. A comparison of free energy profiles for dopamine and cocaine in DAT suggests that the binding site of cocaine is located in a secondary pocket, not the primary substrate site. Two recurring primary pathways for intracellular substrate release from the primary pocket are identified in both transporters using the Random Acceleration Molecular Dynamics method. One pathway appears to follow transmembranes (TMs) 1a and 6b while the other pathway follows along TMs 6b and 8. Interestingly, we observe that a single sodium ion is co-transported with leucine during both simulations types. PMID:23079638

  6. Breast Cancer Anti-estrogen Resistance 3 (BCAR3) Protein Augments Binding of the c-Src SH3 Domain to Crk-associated Substrate (p130cas)*

    PubMed Central

    Makkinje, Anthony; Vanden Borre, Pierre; Near, Richard I.; Patel, Prayag S.; Lerner, Adam

    2012-01-01

    The focal adhesion adapter protein p130cas regulates adhesion and growth factor-related signaling, in part through Src-mediated tyrosine phosphorylation of p130cas. AND-34/BCAR3, one of three NSP family members, binds the p130cas carboxyl terminus, adjacent to a bipartite p130cas Src-binding domain (SBD) and induces anti-estrogen resistance in breast cancer cell lines as well as phosphorylation of p130cas. Only a subset of the signaling properties of BCAR3, specifically augmented motility, are dependent upon formation of the BCAR3-p130cas complex. Using GST pull-down and immunoprecipitation studies, we show that among NSP family members, only BCAR3 augments the ability of p130cas to bind the Src SH3 domain through an RPLPSPP motif in the p130cas SBD. Although our prior work identified phosphorylation of the serine within the p130cas RPLPSPP motif, mutation of this residue to alanine or glutamic acid did not alter BCAR3-induced Src SH3 domain binding to p130cas. The ability of BCAR3 to augment Src SH3 binding requires formation of a BCAR3-p130cas complex because mutations that reduce association between these two proteins block augmentation of Src SH3 domain binding. Similarly, in MCF-7 cells, BCAR3-induced tyrosine phosphorylation of the p130cas substrate domain, previously shown to be Src-dependent, was reduced by an R743A mutation that blocks BCAR3 association with p130cas. Immunofluorescence studies demonstrate that BCAR3 expression alters the intracellular location of both p130cas and Src and that all three proteins co-localize. Our work suggests that BCAR3 expression may regulate Src signaling in a BCAR3-p130cas complex-dependent fashion by altering the ability of the Src SH3 domain to bind the p130cas SBD. PMID:22711540

  7. X-ray Structure and Molecular Dynamics Simulations of Endoglucanase 3 from Trichoderma harzianum: Structural Organization and Substrate Recognition by Endoglucanases That Lack Cellulose Binding Module

    PubMed Central

    Prates, Érica T.; Stankovic, Ivana; Silveira, Rodrigo L.; Liberato, Marcelo V.; Henrique-Silva, Flávio; Pereira, Nei; Polikarpov, Igor; Skaf, Munir S.

    2013-01-01

    Plant biomass holds a promise for the production of second-generation ethanol via enzymatic hydrolysis, but its utilization as a biofuel resource is currently limited to a large extent by the cost and low efficiency of the cellulolytic enzymes. Considerable efforts have been dedicated to elucidate the mechanisms of the enzymatic process. It is well known that most cellulases possess a catalytic core domain and a carbohydrate binding module (CBM), without which the enzymatic activity can be drastically reduced. However, Cel12A members of the glycosyl hydrolases family 12 (GHF12) do not bear a CBM and yet are able to hydrolyze amorphous cellulose quite efficiently. Here, we use X-ray crystallography and molecular dynamics simulations to unravel the molecular basis underlying the catalytic capability of endoglucanase 3 from Trichoderma harzianum (ThEG3), a member of the GHF12 enzymes that lacks a CBM. A comparative analysis with the Cellulomonas fimi CBM identifies important residues mediating interactions of EG3s with amorphous regions of the cellulose. For instance, three aromatic residues constitute a harboring wall of hydrophobic contacts with the substrate in both ThEG3 and CfCBM structures. Moreover, residues at the entrance of the active site cleft of ThEG3 are identified, which might hydrogen bond to the substrate. We advocate that the ThEG3 residues Asn152 and Glu201 interact with the substrate similarly to the corresponding CfCBM residues Asn81 and Arg75. Altogether, these results show that CBM motifs are incorporated within the ThEG3 catalytic domain and suggest that the enzymatic efficiency is associated with the length and position of the substrate chain, being higher when the substrate interact with the aromatic residues at the entrance of the cleft and the catalytic triad. Our results provide guidelines for rational protein engineering aiming to improve interactions of GHF12 enzymes with cellulosic substrates. PMID:23516599

  8. Kinetic characterization of factor Xa binding using a quenched fluorescent substrate based on the reactive site of factor Xa inhibitor from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L V; Andrade, S A; Juliano, M A; Sallai, R C; Torquato, R J; Sampaio, M U; Pott, V J; Sampaio, C A M

    2003-07-01

    The specific Kunitz Bauhinia ungulata factor Xa inhibitor (BuXI) and the Bauhinia variegata trypsin inhibitor (BvTI) blocked the activity of trypsin, chymotrypsin, plasmin, plasma kallikrein and factor XIIa, and factor Xa inhibition was achieved only by BuXI (K(i) 14 nM). BuXI and BvTI are highly homologous (70%). The major differences are the methionine residues at BuXI reactive site, which are involved in the inhibition, since the oxidized protein no longer inhibits factor Xa but maintains the trypsin inhibition. Quenched fluorescent substrates based on the reactive site sequence of the inhibitors were synthesized and the kinetic parameters of the hydrolysis were determined using factor Xa and trypsin. The catalytic efficiency k(cat)/K(m) 4.3 x 10(7) M(-1)sec(>-1) for Abz-VMIAALPRTMFIQ-EDDnp (lead peptide) hydrolysis by factor Xa was 10(4)-fold higher than that of Boc-Ile-Glu-Gly-Arg-AMC, widely used as factor Xa substrate. Lengthening of the substrate changed its susceptibility to factor Xa hydrolysis. Both methionine residues in the substrate influence the binding to factor Xa. Serine replacement of threonine (P(1)') decreases the catalytic efficiency by four orders of magnitude. Factor Xa did not hydrolyze the substrate containing the reactive site sequence of BvTI, that inhibits trypsin inhibitor but not factor Xa. Abz-VMIAALPRTMFIQ-EDDnp prolonged both the prothrombin time and the activated partial thromboplastin time, and the other modified substrates used in this experiment altered blood-clotting assays.

  9. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality.

    PubMed

    Lei, Zhen; Gao, Jiaxue; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-04-27

    We developed a three-dimensional (3D) polymer-brush substrate for protein and peptide microarray fabrication, and this substrate was facilely prepared by copolymerization of glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) monomers via surface-initiated atom transfer radical polymerization (SI-ATRP) on a glass slide. The performance of obtained poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) (P(GMA-HEMA)) brush substrate was assessed by binding of human IgG with rabbit antihuman IgG antibodies on a protein microarray and by the determination of matrix metalloproteinase (MMP) activities on a peptide microarray. The P(GMA-HEMA) brush substrate exhibited higher immobilization capacities for proteins and peptides than those of a two-dimensional (2D) planar epoxy slide. Furthermore, the sensitivity of the P(GMA-HEMA) brush-based microarray on rabbit antihuman IgG antibody detection was much higher than that of its 2D counterpart. The enzyme activities of MMPs were determined specifically with a low detection limit of 6.0 pg mL(-1) for MMP-2 and 5.7 pg mL(-1) for MMP-9. By taking advantage of the biocompatibility of PHEMA, the P(GMA-HEMA) brush-based peptide microarray was also employed to evaluate the secretion of MMP-2 and MMP-9 by cells cultured off the chip or directly on the chip, and satisfactory results were obtained.

  10. Roles of Ile66 and Ala107 of D-psicose 3-epimerase from Agrobacterium tumefaciens in binding O6 of its substrate, D-fructose.

    PubMed

    Kim, Hye-Jung; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Dooil; Oh, Deok-Kun

    2010-01-01

    Using site-directed mutagenesis, we investigated the roles of Ile66 and Ala107 of D: -psicose 3-epimerase from Agrobacterium tumefaciens in binding O6 of its true substrate, D: -fructose. When Ile66 was substituted with alanine, glycine, cysteine, leucine, phenylalanine, tryptophan, tyrosine or valine, all the mutants dramatically increased the K (m) for D: -tagatose but slightly decreased the K (m) for D: -fructose, indicating that Ile66 is involved in substrate recognition. When Ala107 was substituted by either isoleucine or valine, the substituted mutants had lower thermostability than the wild-type enzyme whereas the proline-substituted mutant had higher thermostability. Thus, Ala107 is involved in enzyme stability.

  11. Contributions of the substrate-binding arginine residues to maleate-induced closure of the active site of Escherichia coli aspartate aminotransferase.

    PubMed

    Matharu, A; Hayashi, H; Kagamiyama, H; Maras, B; John, R A

    2001-03-01

    Crystallography shows that aspartate aminotransferase binds dicarboxylate substrate analogues by bonds to Arg292 and Arg386, respectively [Jager, J, Moser, M. Sauder, U. & Jansonius, J. N. (1994) J. Mol. Biol., 239, 285-305]. The contribution of each interaction to the conformational change that the enzyme undergoes when it binds ligands via these residues, is assessed by probing mutant forms of the enzyme lacking either or both arginines. The probes used are NaH(3)BCN which reduces the cofactor imine, the reactive substrate analogue, cysteine sulfinate and proteolysis by trypsin. The unreactive substrate analogue, maleate, is used to induce closure. Each single mutant reacted only 2.5-fold more slowly with NaH(3)BCN than the wild-type indicating that charge repulsion by the arginines contributes little to maintaining the open conformation. Maleate lowered the rate of reduction of the wild-type enzyme more than 300-fold but had little effect on the reaction of the mutant enzymes indicating that the ability of this dicarboxylate analogue to bridge the arginines precisely makes the major contribution to closure. The R292L mutant reacted 20 times more rapidly with cysteine sulfinate than R386L but 5 x 10(4) times more slowly than the wild-type enzyme, consistent with the proposal that enzyme's catalytic abilities are not developed unless closure is induced by bridging of the arginines. Proteolysis of the mutants with trypsin showed that, in the wild-type enzyme, the bonds most susceptible to trypsin are those contributed by Arg292 and Arg386. Proteolysis of the next most susceptible bond, at Arg25 in the double mutant, was protected by maleate demonstrating the presence of an additional site on the enzyme for binding dicarboxylates.

  12. Crystal complexes of a predicted S-adenosylmethionine-dependent methyltransferase reveal a typical AdoMet binding domain and a substrate recognition domain

    SciTech Connect

    Miller, D.J.; Ouellette, N.; Evodokimova, E.; Savchenko, A.; Edwards, A.; Anderson, W.F.

    2010-03-08

    S-adenosyl-L-methionine-dependent methyltransferases (MTs) are abundant, and highly conserved across phylogeny. These enzymes use the cofactor AdoMet to methylate a wide variety of molecular targets, thereby modulating important cellular and metabolic activities. Thermotoga maritima protein 0872 (TM0872) belongs to a large sequence family of predicted MTs, ranging phylogenetically from relatively simple bacteria to humans. The genes for many of the bacterial homologs are located within operons involved in cell wall synthesis and cell division. Despite preliminary biochemical studies in E. coli and B. subtilis, the substrate specificity of this group of more than 150 proteins is unknown. As part of the Midwest Center for Structural Genomics initiative (www.mcsg.anl.gov), we have determined the structure of TM0872 in complexes with AdoMet and with S-adenosyl-L-homocysteine (AdoHcy). As predicted, TM0872 has a typical MT domain, and binds endogenous AdoMet, or co-crystallized AdoHcy, in a manner consistent with other known MT structures. In addition, TM0872 has a second domain that is novel among MTs in both its location in the sequence and its structure. The second domain likely acts in substrate recognition and binding, and there is a potential substrate-binding cleft spanning the two domains. This long and narrow cleft is lined with positively charged residues which are located opposite the S{sup +}-CH{sub 3} bond, suggesting that a negatively charged molecule might be targeted for catalysis. However, AdoMet and AdoHcy are both buried, and access to the methyl group would presumably require structural rearrangement. These TM0872 crystal structures offer the first structural glimpses at this phylogenetically conserved sequence family.

  13. The Aspergillus nidulans Proline Permease as a Model for Understanding the Factors Determining Substrate Binding and Specificity of Fungal Amino Acid Transporters*

    PubMed Central

    Gournas, Christos; Evangelidis, Thomas; Athanasopoulos, Alexandros; Mikros, Emmanuel; Sophianopoulou, Vicky

    2015-01-01

    Amino acid uptake in fungi is mediated by general and specialized members of the yeast amino acid transporter (YAT) family, a branch of the amino acid polyamine organocation (APC) transporter superfamily. PrnB, a highly specific l-proline transporter, only weakly recognizes other Put4p substrates, its Saccharomyces cerevisiae orthologue. Taking advantage of the high sequence similarity between the two transporters, we combined molecular modeling, induced fit docking, genetic, and biochemical approaches to investigate the molecular basis of this difference and identify residues governing substrate binding and specificity. We demonstrate that l-proline is recognized by PrnB via interactions with residues within TMS1 (Gly56, Thr57), TMS3 (Glu138), and TMS6 (Phe248), which are evolutionary conserved in YATs, whereas specificity is achieved by subtle amino acid substitutions in variable residues. Put4p-mimicking substitutions in TMS3 (S130C), TMS6 (F252L, S253G), TMS8 (W351F), and TMS10 (T414S) broadened the specificity of PrnB, enabling it to recognize more efficiently l-alanine, l-azetidine-2-carboxylic acid, and glycine without significantly affecting the apparent Km for l-proline. S253G and W351F could transport l-alanine, whereas T414S, despite displaying reduced proline uptake, could transport l-alanine and glycine, a phenotype suppressed by the S130C mutation. A combination of all five Put4p-ressembling substitutions resulted in a functional allele that could also transport l-alanine and glycine, displaying a specificity profile impressively similar to that of Put4p. Our results support a model where residues in these positions determine specificity by interacting with the substrates, acting as gating elements, altering the flexibility of the substrate binding core, or affecting conformational changes of the transport cycle. PMID:25572393

  14. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.

    PubMed

    Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella

    2015-05-01

    Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat  = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat  = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase.

  15. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases.

    PubMed

    Patra, Ayan; Bera, Manindranath

    2014-01-30

    In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms.

  16. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.

    PubMed

    Nealson, K H; Moser, D P; Saffarini, D A

    1995-04-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  17. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  18. Crystal Structure of OXA-58 with the Substrate-Binding Cleft in a Closed State: Insights into the Mobility and Stability of the OXA-58 Structure

    PubMed Central

    Saino, Hiromichi; Sugiyabu, Tomohiro; Ueno, Go; Yamamoto, Masaki; Ishii, Yoshikazu; Miyano, Masashi

    2015-01-01

    OXA-58 is a class D β-lactamase from the multi-drug resistant Acinetobacter baumannii. We determined the crystal structure of OXA-58 in a novel crystal, and revealed the structure of the substrate-binding cleft in a closed state, distinct from a previously reported OXA-58 crystal structure with the binding cleft in an open state. In the closed state, the movement of three loops (α3–α4, β6–β7, and β8–α10) forms an arch-like architecture over the binding cleft through interaction between the Phe113 residues of α3–α4 and Met225 of β6–β7. This structure suggests the involvement of these flexible loops in OXA-58 substrate binding. In contrast to the mobile loops, the Ω-loop appeared static, including the conserved loop residues and their hydrogen bonds; the pivotal residue Trp169 within the Ω-loop, ζ-carbamic acid of the modified base catalyst residue Lys86, and nucleophilic residue Ser83. The stability of OXA-58 was enhanced concomitant with an increase in the hydrolytic activity catalyzed by NaHCO3-dependent ζ-carbamic acid formation, with an EC50 of 0.34 mM. The W169A mutant enzyme was significantly thermally unstable even in the presence of 100 mM NaHCO3, whereas the S83A mutant was stabilized with NaHCO3-dependent activation. The ζ-carbamic acid was shown to increase not only OXA-58 hydrolytic activity but also OXA-58 stability through the formation of a hydrogen bond network connected to the Ω-loop with Ser83 and Trp169. Thus, the static Ω-loop is important for OXA-58 stability, whereas the mobile loops of the substrate-binding cleft form the basis for accommodation of the various substituents of β-lactam backbone. PMID:26701320

  19. A Conserved Phenylalanine of Motif IV in Superfamily 2 Helicases Is Required for Cooperative, ATP-Dependent Binding of RNA Substrates in DEAD-Box Proteins▿ †

    PubMed Central

    Banroques, Josette; Cordin, Olivier; Doère, Monique; Linder, Patrick; Tanner, N. Kyle

    2008-01-01

    We have identified a highly conserved phenylalanine in motif IV of the DEAD-box helicases that is important for their enzymatic activities. In vivo analyses of essential proteins in yeast showed that mutants of this residue had severe growth phenotypes. Most of the mutants also were temperature sensitive, which suggested that the mutations altered the conformational stability. Intragenic suppressors of the F405L mutation in yeast Ded1 mapped close to regions of the protein involved in ATP or RNA binding in DEAD-box crystal structures, which implicated a defect at this level. In vitro experiments showed that these mutations affected ATP binding and hydrolysis as well as strand displacement activity. However, the most pronounced effect was the loss of the ATP-dependent cooperative binding of the RNA substrates. Sequence analyses and an examination of the Protein Data Bank showed that the motif IV phenylalanine is conserved among superfamily 2 helicases. The phenylalanine appears to be an anchor that maintains the rigidity of the RecA-like domain. For DEAD-box proteins, the phenylalanine also aligns a highly conserved arginine of motif VI through van der Waals and cation-π interactions, thereby helping to maintain the network of interactions that exist between the different motifs involved in ATP and RNA binding. PMID:18332124

  20. Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites.

    PubMed

    Kim, Yeon-Jin; Bahn, Minjin; Kim, Yong Hwan; Shin, Jee-Yoon; Cheong, Seon-Woo; Ju, Bong-Gun; Kim, Won-Sun; Yeo, Chang-Yeol

    2015-01-01

    Members of the fibroblast growth factor (FGF) family play important roles during various developmental processes including eye development. FRS (FGF receptor substrate) proteins bind to FGFR and serve as adapters for coordinated assembly of multi-protein complexes involved in Ras/MAPK and PI3 kinase/Akt pathways. Here, we identified Xenopus laevis Frs3 (XFrs3), a homolog of vertebrate Frs3, and investigated its roles during embryogenesis. XFrs3 is expressed maternally and zygotically with specific expression patterns throughout the early development. Knockdown of XFrs3 using a specific antisense morpholino oligonucleotide (MO) caused reduction of Pax6 expression in the lens placode, and defects in the eye ranging from microphthalmia to anophthalmia. XFrs3 MO-induced defects were alleviated by wild type XFrs3 or a mutant XFrs3 (XFrs3-4YF), in which the putative tyrosine phosphorylation sites served as Grb2-binding sites are mutated. However, another XFrs3 mutant (XFrs3-2YF), in which the putative Shp2-binding sites are mutated, could not rescue the defects of XFrs3 morphants. In addition, we found that XFrs3 is important for FGF or IGF-induced ERK activation in ectodermal tissue. Taken together, our results suggest that signaling through Shp2-binding sites of XFrs3 is necessary for the eye development in Xenopus laevis.

  1. The first crystal structure of human RNase 6 reveals a novel substrate-binding and cleavage site arrangement

    PubMed Central

    Prats-Ejarque, Guillem; Arranz-Trullén, Javier; Blanco, Jose A.; Pulido, David; Nogués, M. Victòria; Moussaoui, Mohammed; Boix, Ester

    2016-01-01

    Human RNase 6 is a cationic secreted protein that belongs to the RNase A superfamily. Its expression is induced in neutrophils and monocytes upon bacterial infection, suggesting a role in host defence. We present here the crystal structure of RNase 6 obtained at 1.72 Å (1 Å=0.1 nm) resolution, which is the first report for the protein 3D structure and thereby setting the basis for functional studies. The structure shows an overall kidney-shaped globular fold shared with the other known family members. Three sulfate anions bound to RNase 6 were found, interacting with residues at the main active site (His15, His122 and Gln14) and cationic surface-exposed residues (His36, His39, Arg66 and His67). Kinetic characterization, together with prediction of protein–nucleotide complexes by molecular dynamics, was applied to analyse the RNase 6 substrate nitrogenous base and phosphate selectivity. Our results reveal that, although RNase 6 is a moderate catalyst in comparison with the pancreatic RNase type, its structure includes lineage-specific features that facilitate its activity towards polymeric nucleotide substrates. In particular, enzyme interactions at the substrate 5′ end can provide an endonuclease-type cleavage pattern. Interestingly, the RNase 6 crystal structure revealed a novel secondary active site conformed by the His36–His39 dyad that facilitates the polynucleotide substrate catalysis. PMID:27013146

  2. The Crystal Structure Analysis of Group B Streptococcus Sortase C1: A Model for the ;Lid; Movement upon Substrate Binding

    SciTech Connect

    Khare, Baldeep; Fu, Zheng-Qing; Huang, I-Hsiu; Ton-That, Hung; Narayana, Sthanam V.L.

    2012-02-07

    A unique feature of the class-C-type sortases, enzymes essential for Gram-positive pilus biogenesis, is the presence of a flexible 'lid' anchored in the active site. However, the mechanistic details of the 'lid' displacement, suggested to be a critical prelude for enzyme catalysis, are not yet known. This is partly due to the absence of enzyme-substrate and enzyme-inhibitor complex crystal structures. We have recently described the crystal structures of the Streptococcus agalactiae SAG2603 V/R sortase SrtC1 in two space groups (type II and type III) and that of its 'lid' mutant and proposed a role of the 'lid' as a protector of the active-site hydrophobic environment. Here, we report the crystal structures of SAG2603 V/R sortase C1 in a different space group (type I) and that of its complex with a small-molecule cysteine protease inhibitor. We observe that the catalytic Cys residue is covalently linked to the small-molecule inhibitor without lid displacement. However, the type I structure provides a view of the sortase SrtC1 lid displacement while having structural elements similar to a substrate sorting motif suitably positioned in the active site. We propose that these major conformational changes seen in the presence of a substrate mimic in the active site may represent universal features of class C sortase substrate recognition and enzyme activation.

  3. The crystal structure analysis of group B Streptococcus sortase C1: a model for the "lid" movement upon substrate binding.

    PubMed

    Khare, Baldeep; Fu, Zheng-Qing; Huang, I-Hsiu; Ton-That, Hung; Narayana, Sthanam V L

    2011-12-09

    A unique feature of the class-C-type sortases, enzymes essential for Gram-positive pilus biogenesis, is the presence of a flexible "lid" anchored in the active site. However, the mechanistic details of the "lid" displacement, suggested to be a critical prelude for enzyme catalysis, are not yet known. This is partly due to the absence of enzyme-substrate and enzyme-inhibitor complex crystal structures. We have recently described the crystal structures of the Streptococcus agalactiae SAG2603 V/R sortase SrtC1 in two space groups (type II and type III) and that of its "lid" mutant and proposed a role of the "lid" as a protector of the active-site hydrophobic environment. Here, we report the crystal structures of SAG2603 V/R sortase C1 in a different space group (type I) and that of its complex with a small-molecule cysteine protease inhibitor. We observe that the catalytic Cys residue is covalently linked to the small-molecule inhibitor without lid displacement. However, the type I structure provides a view of the sortase SrtC1 lid displacement while having structural elements similar to a substrate sorting motif suitably positioned in the active site. We propose that these major conformational changes seen in the presence of a substrate mimic in the active site may represent universal features of class C sortase substrate recognition and enzyme activation.

  4. Parallel modulation of brown adipose tissue GDP-binding, substrate uptake and (Na(+)-K+)-ATPase activity in the rat.

    PubMed

    Zamora, F; Alemany, M; Arola, L

    1991-10-01

    Brown adipose tissue (Na(+)-K+)-ATPase activity, in vitro glucose uptake and 2-aminoisobutyric acid uptake, as well as mitochondrial GDP-binding and succinate dehydrogenase activity were determined in order to study the relationship between these parameters in control, cold acclimated and cafeteria-fed rats. GDP-binding, (Na(+)-K+)-ATPase and glucose uptake were increased in interscapular brown adipose tissue from cold-acclimated and cafeteria-fed rats, whereas 2-aminoisobutyric acid uptake was only increased in cafeteria-fed rats. GDP-binding and (Na(+)-K+)-ATPase activity showed a high correlation coefficient suggesting a parallel modulation of both systems, which would probably share a common regulation mechanism.

  5. Crystal Structure of a Putative Cytochrome P450 Alkane Hydroxylase (CYP153D17) from Sphingomonas sp. PAMC 26605 and Its Conformational Substrate Binding

    PubMed Central

    Lee, Chang Woo; Yu, Sang-Cheol; Lee, Joo-Ho; Park, Sun-Ha; Park, Hyun; Oh, Tae-Jin; Lee, Jun Hyuck

    2016-01-01

    Enzymatic alkane hydroxylation reactions are useful for producing pharmaceutical and agricultural chemical intermediates from hydrocarbons. Several cytochrome P450 enzymes catalyze the regio- and stereo-specific hydroxylation of alkanes. We evaluated the substrate binding of a putative CYP alkane hydroxylase (CYP153D17) from the bacterium Sphingomonas sp. PAMC 26605. Substrate affinities to C10–C12 n-alkanes and C10–C14 fatty acids with Kd values varied from 0.42 to 0.59 μM. A longer alkane (C12) bound more strongly than a shorter alkane (C10), while shorter fatty acids (C10, capric acid; C12, lauric acid) bound more strongly than a longer fatty acid (C14, myristic acid). These data displayed a broad substrate specificity of CYP153D17, hence it was named as a putative CYP alkane hydroxylase. Moreover, the crystal structure of CYP153D17 was determined at 3.1 Å resolution. This is the first study to provide structural information for the CYP153D family. Structural analysis showed that a co-purified alkane-like compound bound near the active-site heme group. The alkane-like substrate is in the hydrophobic pocket containing Thr74, Met90, Ala175, Ile240, Leu241, Val244, Leu292, Met295, and Phe393. Comparison with other CYP structures suggested that conformational changes in the β1–β2, α3–α4, and α6–α7 connecting loop are important for incorporating the long hydrophobic alkane-like substrate. These results improve the understanding of the catalytic mechanism of CYP153D17 and provide valuable information for future protein engineering studies. PMID:27941697

  6. Probing the substrate-binding sites of aminoacyl-tRNA synthetases with the procion dye green HE-4BD.

    PubMed Central

    McArdell, J E; Duffield, M; Atkinson, T

    1989-01-01

    A reactive bis-dichloro derivative of the Procion dye Green HE-4BD was shown to inactivate irreversibly methionyl-tRNA synthetase (MTS) from Escherichia coli and also tryptophyl-tRNA synthetase (WTS) and tyrosyl-tRNA synthetase (YTS) from Bacillus stearothermophilus at pH 8.5 and 37 degrees C. At a 5-fold excess of reactive dye over enzyme subunit concentration MTS was quantitatively inactivated within 20 min in the ATP/pyrophosphate exchange assay, whereas WTS and YTS show an 80% loss of activity over the same time period. The inactivation is affected by the addition of substrates, which either protect (WTS and YTS) or promote (YTS with tyrosine) the dye-mediated enzyme inactivation. Green HE-4BD-OH was shown to be a competitive inhibitor of MTS with respect to MgATP, methionine and tRNA substrates. PMID:2658972

  7. Molecular dynamics simulations of the active matrix metalloproteinase-2: positioning of the N-terminal fragment and binding of a small peptide substrate.

    PubMed

    Díaz, Natalia; Suárez, Dimas

    2008-07-01

    Herein we use different computational methods to study the structure and energetic stability of the catalytic domain of the active MMP-2 enzyme considering two different orientations of its N-terminal coil. The first orientation is largely solvent accessible and corresponds to that observed in the 1CK7 crystal structure of the proenzyme. In the second orientation, the N-terminal coil is packed against the Omega-loop and the alpha3-helix of the MMP-2 enzyme likewise in the so-called "superactivated" form of other MMPs. Binding to the MMP-2 catalytic domain of a short peptide substrate, which mimics the sequence of the alpha1 chain of collagen type I, is also examined considering again the two configurations of the N-terminal coil. All these MMP-2 models are subject to 20 ns molecular dynamics (MD) simulations followed by MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) calculations. The positioning of the N-terminal coil in the "superactivated" form is found to be energetically favored for the MMP-2 enzyme. Moreover, this configuration of the N-terminal moiety can facilitate the binding of peptide substrates. Globally, the results obtained in this study could be relevant for the structural-based design of specific MMP inhibitors.

  8. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-24

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state.

  9. Identification of Myb-binding protein 1A (MYBBP1A) as a novel substrate for aurora B kinase.

    PubMed

    Perrera, Claudia; Colombo, Riccardo; Valsasina, Barbara; Carpinelli, Patrizia; Troiani, Sonia; Modugno, Michele; Gianellini, Laura; Cappella, Paolo; Isacchi, Antonella; Moll, Jurgen; Rusconi, Luisa

    2010-04-16

    Aurora kinases are mitotic enzymes involved in centrosome maturation and separation, spindle assembly and stability, and chromosome condensation, segregation, and cytokinesis and represent well known targets for cancer therapy because their deregulation has been linked to tumorigenesis. The availability of suitable markers is of crucial importance to investigate the functions of Auroras and monitor kinase inhibition in in vivo models and in clinical trials. Extending the knowledge on Aurora substrates could help to better understand their biology and could be a source for clinical biomarkers. Using biochemical, mass spectrometric, and cellular approaches, we identified MYBBP1A as a novel Aurora B substrate and serine 1303 as the major phosphorylation site. MYBBP1A is phosphorylated in nocodazole-arrested cells and is dephosphorylated upon Aurora B silencing or by treatment with Danusertib, a small molecule inhibitor of Aurora kinases. Furthermore, we show that MYBBP1A depletion by RNA interference causes mitotic progression delay and spindle assembly defects. MYBBP1A has until now been described as a nucleolar protein, mainly involved in transcriptional regulation. The results presented herein show MYBBP1A as a novel Aurora B kinase substrate and reveal a not yet recognized link of this nucleolar protein to mitosis.

  10. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate

    PubMed Central

    Maloney, Finn P.; Gerwick, Lena; Gerwick, William H.; Sherman, David H.; Smith, Janet L.

    2016-01-01

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA. PMID:27573844

  11. Structures of Human Cyctochrome P450 2E1: Insights Into the Binding of Inhibitors And Both Small Molecular Weight And Fatty Acid Substrates

    SciTech Connect

    Porubsky, P.R.; Meneely, K.M.; Scott, E.E.

    2009-05-21

    Human microsomal cytochrome P-450 2E1 (CYP2E1) monooxygenates >70 low molecular weight xenobiotic compounds, as well as much larger endogenous fatty acid signaling molecules such as arachidonic acid. In the process, CYP2E1 can generate toxic or carcinogenic compounds, as occurs with acetaminophen overdose, nitrosamines in cigarette smoke, and reactive oxygen species from uncoupled catalysis. Thus, the diverse roles that CYP2E1 has in normal physiology, toxicity, and drug metabolism are related to its ability to metabolize diverse classes of ligands, but the structural basis for this was previously unknown. Structures of human CYP2E1 have been solved to 2.2 {angstrom} for an indazole complex and 2.6 {angstrom} for a 4-methylpyrazole complex. Both inhibitors bind to the heme iron and hydrogen bond to Thr{sup 303} within the active site. Complementing its small molecular weight substrates, the hydrophobic CYP2E1 active site is the smallest yet observed for a human cytochrome P-450. The CYP2E1 active site also has two adjacent voids: one enclosed above the I helix and the other forming a channel to the protein surface. Minor repositioning of the Phe{sup 478} aromatic ring that separates the active site and access channel would allow the carboxylate of fatty acid substrates to interact with conserved {sup 216}QXXNN{sup 220} residues in the access channel while positioning the hydrocarbon terminus in the active site, consistent with experimentally observed {omega}-1 hydroxylation of saturated fatty acids. Thus, these structures provide insights into the ability of CYP2E1 to effectively bind and metabolize both small molecule substrates and fatty acids.

  12. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras

    PubMed Central

    Warren, Jeremy G.; Lincoln, James E.; Kirkpatrick, Bruce C.

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  13. Guanosine 5'-triphosphate binding protein (G/sub i/) and two additional pertussis toxin substrates associated with muscarinic receptors in rat heart myocytes: characterization and age dependency

    SciTech Connect

    Moscona-Amir, E.; Henis, Y.I.; Sokolovsky, M.

    1988-07-12

    The coupling of muscarinic receptors with G-proteins was investigated in cultured myocytes prepared from the hearts of newborn rats. The coupling was investigated in both young (5 days after plating) and aged (14 days after plating) cultures, in view of the completely different effects of 5'-guanylyl imidodiphosphate (Gpp(NH)p) on muscarinic agonist binding to homogenates from young vs aged cultures. Pretreatment of cultures from both ages by Bordetella pertussis toxin (IAP) was found to eliminate any Gpp(NH)p effect on carbamylcholine binding. IAP by itself induced a rightward shift in the carbamylcholine competition curve in homogenates from aged cultures, but no such effect was observed in homogenates from young cultures. IAP-catalyzed (/sup 32/P)ADP-ribosylation of membrane preparations from young and aged cultures revealed major differences between them. Young cultures exhibited a major IAP substrate at 40 kDa, which was also recognized by anti-..cap alpha../sub i/ antibodies, and two novel IAP substrates at 28 and 42 kDa, which were weakly ADP-ribosylated by the toxin and were not recognized with either anti-..cap alpha../sub i/ or anti-..cap alpha../sub 0/ antibodies. In aged cultures, only the 40-kDa band (ribosylated to a lower degree) was detected. The parallel age-dependent changes in the three IAP substrates (28, 40, and 42 kDa) and in the interactions of the G-protein(s) with the muscarinic receptors strongly suggest close association between the two phenomena. All of these age-dependent changes in the G-protein related parameters were prevented by phosphatidylcholine-liposome treatment of the aged cultures. The role of the membrane lipid composition in these phenomena is discussed.

  14. Crystal Structure of Human Liver delta {4}-3-Ketosteroid 5 beta-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo,L.; Drury, J.; Penning, T.; Christianson, D.

    2008-01-01

    AKR1D1 (steroid 5{beta}-reductase) reduces all 4-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an a,{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a 4-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90 bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human 4-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP+ at 1.79- and 1.35- Angstroms resolution (HEPES bound in the active site), NADP+ and cortisone at 1.90- Angstroms resolution, NADP+ and progesterone at 2.03- Angstroms resolution, and NADP+ and testosterone at 1.62- Angstroms resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP+. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr58 and Glu120. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  15. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    PubMed

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  16. Biochemical and structural characterization of quinoprotein aldose sugar dehydrogenase from Thermus thermophilus HJ6: Mutational analysis of Tyr156 in the substrate-binding site.

    PubMed

    Kim, Han-Woo; Wang, Ji-Yeon; Lee, Ji-Yeon; Park, Ae-Kyung; Park, Hyun; Jeon, Sung-Jong

    2016-10-15

    The gene encoding a quinoprotein aldose sugar dehydrogenase (ASD) from Thermus thermophilus HJ6 (Tt_ASD) was cloned and sequenced; it comprised 1059 nucleotides encoding a protein containing 352 amino acids that had a predicted molecular mass of 38.9 kDa. The deduced amino acid sequence showed 42.9% and 33.9% identities to the ASD proteins from Pyrobaculum aerophilum and Escherichia coli, respectively. The biochemical properties of Tt_ASD were characterized. The optimum pH for the oxidation of glucose was 7.0-7.5 and the optimum temperature was 70 °C. The half-life of heat inactivation for the apoenzyme was about 25 min at 85 °C. The enzyme was highly thermostable, and the activity of the pyrroloquinoline quinone-bound holoenzyme was not lost after incubation at 85 °C for 100 min. Tt_ASD could oxidize various sugars, including hexoses, pentoses, disaccharides, and polysaccharides, in addition to alcohols. Structural analysis suggested that Tyr156 would be the substrate-binding residue. Two mutants, Y156A and Y156K, had impaired activities and affinities for all substrates and completely lost their activities for alcohols. This structural and mutational analysis of Tt_ASD demonstrates the crucial role of Tyr156 in determining substrate specificity.

  17. Evidence for separate substrate binding sites for hydrogen peroxide and cumene hydroperoxide (CHP) in the oxidation of ethanol by catalase

    SciTech Connect

    DeMaster, E.G.; Nagasawa,ss H.T.

    1986-03-01

    The oxidation of ethanol by purified bovine liver catalase (Sigma, C-40) can be supported by H/sub 2/O/sub 2/ or by CHP. The time course of the H/sub 2/O/sub 2/ supported reaction (using glucose/glucose oxidase as the H/sub 2/O/sub 2/ source) was linear for at least one hr, whereas the rate of acetaldehyde formation in the CHP (4.2 mM) supported reaction decreased with time. When catalase was exposed o CHP for 5 min before the addition of ethanol, the rate of CHP supported ethanol oxidation was reduced by more than 90% compared to incubations where the addition of ethanol preceded that of CHP. In the CHP inhibited state, the peroxidative activity of catalase was not restored by further addition of CHP or ethanol; however, addition of fresh catalase yielded its expected activity. Significantly, the CHP inhibited enzyme was equally effective as the untreated enzyme in catalyzing (a) the oxidation of ethanol in the presence H/sub 2/O/sub 2/ supported peroxidative activity as well as catalytic activity by CHP inhibited catalase points to separate binding sites for H/sub 2/O/sub 2/ and CHP in this reaction. Alternatively, CHP may bind adjacent to a common peroxide active site, thereby sterically impeding the binding of CHP - but not of H/sub 2/O/sub 2/ - to this active site.

  18. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter - substrate binding protein complex

    PubMed Central

    Nguyen, Phong T.; Li, Qi Wen; Kadaba, Neena S.; Lai, Jeffrey Y.; Yang, Janet G.; Rees, Douglas C.

    2015-01-01

    Despite the ubiquitous role of ATP Binding Cassette (ABC) importers in nutrient uptake, only the E. coli maltose and vitamin B12 ABC transporters have been structurally characterized in multiple conformations relevant to the alternating access transport mechanism. To complement our previous structure determination of the E. coli MetNI methionine importer in the inward facing conformation (Kadaba et al. (2008) Science 321, 250–253), we have explored conditions stabilizing the outward facing conformation. Using two variants, the Walker B E166Q mutation with ATP+EDTA to stabilize MetNI in the ATP-bound conformation and the N229A variant of the binding protein MetQ, shown in this work to disrupt methionine binding, a high affinity MetNIQ complex was formed with a dissociation constant measured to be 27 nM. Using wild type MetQ containing a co-purified methionine (for which the crystal structure is reported at 1.6 Å resolution), the dissociation constant for complex formation with MetNI is measured to be ~40-fold weaker, indicating that complex formation lowers the affinity of MetQ for methionine by this amount. Preparation of a stable MetNIQ complex is an essential step towards the crystallographic analysis of the outward facing conformation, a key intermediate in the uptake of methionine by this transport system. PMID:25803078

  19. Interface-induced heavy-hole/light-hole splitting of acceptors in silicon

    SciTech Connect

    Mol, J. A.; Salfi, J.; Simmons, M. Y.; Rogge, S.; Rahman, R.; Hsueh, Y.; Klimeck, G.; Miwa, J. A.

    2015-05-18

    The energy spectrum of spin-orbit coupled states of individual sub-surface boron acceptor dopants in silicon have been investigated using scanning tunneling spectroscopy at cryogenic temperatures. The spatially resolved tunnel spectra show two resonances, which we ascribe to the heavy- and light-hole Kramers doublets. This type of broken degeneracy has recently been argued to be advantageous for the lifetime of acceptor-based qubits [R. Ruskov and C. Tahan, Phys. Rev. B 88, 064308 (2013)]. The depth dependent energy splitting between the heavy- and light-hole Kramers doublets is consistent with tight binding calculations, and is in excess of 1 meV for all acceptors within the experimentally accessible depth range (<2 nm from the surface). These results will aid the development of tunable acceptor-based qubits in silicon with long coherence times and the possibility for electrical manipulation.

  20. Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding.

    PubMed

    Wang, An; Stout, C David; Zhang, Qinghai; Johnson, Eric F

    2015-02-20

    P450 2D6 contributes significantly to the metabolism of >15% of the 200 most marketed drugs. Open and closed crystal structures of P450 2D6 thioridazine complexes were obtained using different crystallization conditions. The protonated piperidine moiety of thioridazine forms a charge-stabilized hydrogen bond with Asp-301 in the active sites of both complexes. The more open conformation exhibits a second molecule of thioridazine bound in an expanded substrate access channel antechamber with its piperidine moiety forming a charge-stabilized hydrogen bond with Glu-222. Incubation of the crystalline open thioridazine complex with alternative ligands, prinomastat, quinidine, quinine, or ajmalicine, displaced both thioridazines. Quinine and ajmalicine formed charge-stabilized hydrogen bonds with Glu-216, whereas the protonated nitrogen of quinidine is equidistant from Asp-301 and Glu-216 with protonated nitrogen H-bonded to a water molecule in the access channel. Prinomastat is not ionized. Adaptations of active site side-chain rotamers and polypeptide conformations were evident between the complexes, with the binding of ajmalicine eliciting a closure of the open structure reflecting in part the inward movement of Glu-216 to form a hydrogen bond with ajmalicine as well as sparse lattice restraints that would hinder adaptations. These results indicate that P450 2D6 exhibits sufficient elasticity within the crystal lattice to allow the passage of compounds between the active site and bulk solvent and to adopt a more closed form that adapts for binding alternative ligands with different degrees of closure. These crystals provide a means to characterize substrate and inhibitor binding to the enzyme after replacement of thioridazine with alternative compounds.

  1. Roles of phosphate recognition in inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) substrate binding and activation.

    PubMed

    Gosein, Varin; Miller, Gregory J

    2013-09-13

    Inositol phosphate kinases (IPKs) sequentially phosphorylate inositol phosphates (IPs) to yield a group of small signaling molecules involved in diverse cellular processes. IPK1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase) phosphorylates inositol 1,3,4,5,6-pentakisphosphate to inositol 1,2,3,4,5,6-hexakisphosphate; however, the mechanism of IP recognition employed by IPK1 is currently unresolved. We demonstrated previously that IPK1 possesses an unstable N-terminal lobe in the absence of IP, which led us to propose that the phosphate profile of the IP was linked to stabilization of IPK1. Here, we describe a systematic study to determine the roles of the 1-, 3-, 5-, and 6-phosphate groups of inositol 1,3,4,5,6-pentakisphosphate in IP binding and IPK1 activation. The 5- and 6-phosphate groups were the most important for IP binding to IPK1, and the 1- and 3-phosphate groups were more important for IPK1 activation than the others. Moreover, we demonstrate that there are three critical residues (Arg-130, Lys-170, and Lys-411) necessary for IPK1 activity. Arg-130 is the only substrate-binding N-terminal lobe residue that can render IPK1 inactive; its 1-phosphate is critical for full IPK1 activity and for stabilization of the active conformation of IPK1. Taken together, our results support the model for recognition of the IP substrate by IPK1 in which (i) the 4-, 5-, and 6-phosphates are initially recognized by the C-terminal lobe, and subsequently, (ii) the interaction between the 1-phosphate and Arg-130 stabilizes the N-terminal lobe and activates IPK1. This model of IP recognition, believed to be unique among IPKs, could be exploited for selective inhibition of IPK1 in future studies that investigate the role of higher IPs.

  2. Computational and Biochemical Docking of the Irreversible Cocaine Analog RTI 82 Directly Demonstrates Ligand Positioning in the Dopamine Transporter Central Substrate-binding Site*

    PubMed Central

    Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D.; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R.; Vaughan, Roxanne A.; Henry, L. Keith

    2014-01-01

    The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4′-azido-3′-iodophenylethyl ester ([125I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [125I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors. PMID:25179220

  3. Computational and biochemical docking of the irreversible cocaine analog RTI 82 directly demonstrates ligand positioning in the dopamine transporter central substrate-binding site.

    PubMed

    Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R; Vaughan, Roxanne A; Henry, L Keith

    2014-10-24

    The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([(125)I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [(125)I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors.

  4. Structure-Based Mutagenesis of the Substrate-Recognition Domain of Nrdp1/FLRF Identifies the Binding Site for the Receptor Tyrosine Kinase ErbB3

    SciTech Connect

    Bouyain,S.; Leahy, D.

    2007-01-01

    The E3 ubiquitin ligase neuregulin receptor degrading protein 1 (Nrdp1) mediates the ligand-independent degradation of the epidermal growth factor receptor family member ErbB3/HER3. By regulating cellular levels of ErbB3, Nrdp1 influences ErbB3-mediated signaling, which is essential for normal vertebrate development. Nrdp1 belongs to the tripartite or RBCC (RING, B-box, coiled-coil) family of ubiquitin ligases in which the RING domain is responsible for ubiquitin ligation and a variable C-terminal region mediates substrate recognition. We report here the 1.95 A crystal structure of the C-terminal domain of Nrdp1 and show that this domain is sufficient to mediate ErbB3 binding. Furthermore, we have used site-directed mutagenesis to map regions of the Nrdp1 surface that are important for interacting with ErbB3 and mediating its degradation in transfected cells. The ErbB3-binding site localizes to a region of Nrdp1 that is conserved from invertebrates to vertebrates, in contrast to ErbB3, which is only found in vertebrates. This observation suggests that Nrdp1 uses a common binding site to recognize its targets in different species.

  5. Structure-based mutagenesis of the substrate-recognition domain of Nrdp1/FLRF identifies the binding site for the receptor tyrosine kinase ErbB3

    PubMed Central

    Bouyain, Samuel; Leahy, Daniel J.

    2007-01-01

    The E3 ubiquitin ligase neuregulin receptor degrading protein 1 (Nrdp1) mediates the ligand-independent degradation of the epidermal growth factor receptor family member ErbB3/HER3. By regulating cellular levels of ErbB3, Nrdp1 influences ErbB3-mediated signaling, which is essential for normal vertebrate development. Nrdp1 belongs to the tripartite or RBCC (RING, B-box, coiled-coil) family of ubiquitin ligases in which the RING domain is responsible for ubiquitin ligation and a variable C-terminal region mediates substrate recognition. We report here the 1.95 Å crystal structure of the C-terminal domain of Nrdp1 and show that this domain is sufficient to mediate ErbB3 binding. Furthermore, we have used site-directed mutagenesis to map regions of the Nrdp1 surface that are important for interacting with ErbB3 and mediating its degradation in transfected cells. The ErbB3-binding site localizes to a region of Nrdp1 that is conserved from invertebrates to vertebrates, in contrast to ErbB3, which is only found in vertebrates. This observation suggests that Nrdp1 uses a common binding site to recognize its targets in different species. PMID:17384230

  6. Structure-based mutagenesis of the substrate-recognition domain of Nrdp1/FLRF identifies the binding site for the receptor tyrosine kinase ErbB3.

    PubMed

    Bouyain, Samuel; Leahy, Daniel J

    2007-04-01

    The E3 ubiquitin ligase neuregulin receptor degrading protein 1 (Nrdp1) mediates the ligand-independent degradation of the epidermal growth factor receptor family member ErbB3/HER3. By regulating cellular levels of ErbB3, Nrdp1 influences ErbB3-mediated signaling, which is essential for normal vertebrate development. Nrdp1 belongs to the tripartite or RBCC (RING, B-box, coiled-coil) family of ubiquitin ligases in which the RING domain is responsible for ubiquitin ligation and a variable C-terminal region mediates substrate recognition. We report here the 1.95 A crystal structure of the C-terminal domain of Nrdp1 and show that this domain is sufficient to mediate ErbB3 binding. Furthermore, we have used site-directed mutagenesis to map regions of the Nrdp1 surface that are important for interacting with ErbB3 and mediating its degradation in transfected cells. The ErbB3-binding site localizes to a region of Nrdp1 that is conserved from invertebrates to vertebrates, in contrast to ErbB3, which is only found in vertebrates. This observation suggests that Nrdp1 uses a common binding site to recognize its targets in different species.

  7. Flexibility of the Thrombin-activatable Fibrinolysis Inhibitor Pro-domain Enables Productive Binding of Protein Substrates*

    PubMed Central

    Valnickova, Zuzana; Sanglas, Laura; Arolas, Joan L.; Petersen, Steen V.; Schar, Christine; Otzen, Daniel; Aviles, Francesc X.; Gomis-Rüth, F. Xavier; Enghild, Jan J.

    2010-01-01

    We have previously reported that thrombin-activatable fibrinolysis inhibitor (TAFI) exhibits intrinsic proteolytic activity toward large peptides. The structural basis for this observation was clarified by the crystal structures of human and bovine TAFI. These structures evinced a significant rotation of the pro-domain away from the catalytic moiety when compared with other pro-carboxypeptidases, thus enabling access of large peptide substrates to the active site cleft. Here, we further investigated the flexible nature of the pro-domain and demonstrated that TAFI forms productive complexes with protein carboxypeptidase inhibitors from potato, leech, and tick (PCI, LCI, and TCI, respectively). We determined the crystal structure of the bovine TAFI-TCI complex, revealing that the pro-domain was completely displaced from the position observed in the TAFI structure. It protruded into the bulk solvent and was disordered, whereas TCI occupied the position previously held by the pro-domain. The authentic nature of the presently studied TAFI-inhibitor complexes was supported by the trimming of the C-terminal residues from the three inhibitors upon complex formation. This finding suggests that the inhibitors interact with the active site of TAFI in a substrate-like manner. Taken together, these data show for the first time that TAFI is able to form a bona fide complex with protein carboxypeptidase inhibitors. This underlines the unusually flexible nature of the pro-domain and implies a possible mechanism for regulation of TAFI intrinsic proteolytic activity in vivo. PMID:20880845

  8. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.

    PubMed

    Cai, Jing; Zheng, Ping; Mahmood, Qaisar

    2016-01-01

    The current investigation reports the effect of cathode electron acceptors on simultaneous sulfide and nitrate removal in two-chamber microbial fuel cells (MFCs). Potassium permanganate and potassium ferricyanide were common cathode electron acceptors and evaluated for substrate removal and electricity generation. The abiotic MFCs produced electricity through spontaneous electrochemical oxidation of sulfide. In comparison with abiotic MFC, the biotic MFC showed better ability for simultaneous nitrate and sulfide removal along with electricity generation. Keeping external resistance of 1,000 Ω, both MFCs showed good capacities for substrate removal where nitrogen and sulfate were the main end products. The steady voltage with potassium permanganate electrodes was nearly twice that of with potassium ferricyanide. Cyclic voltammetry curves confirmed that the potassium permanganate had higher catalytic activity than potassium ferricyanide. The potassium permanganate may be a suitable choice as cathode electron acceptor for enhanced electricity generation during simultaneous treatment of sulfide and nitrate in MFCs.

  9. Isolation and characterisation of transport-defective substrate-binding mutants of the tetracycline antiporter TetA(B)

    PubMed Central

    Wright, David J.; Tate, Christopher G.

    2015-01-01

    The tetracycline antiporter TetA(B) is a member of the Major Facilitator Superfamily which confers tetracycline resistance to cells by coupling the efflux of tetracycline to the influx of protons down their chemical potential gradient. Although it is a medically important transporter, its structure has yet to be determined. One possibility for why this has proven difficult is that the transporter may be conformationally heterogeneous in the purified state. To overcome this, we developed two strategies to rapidly identify TetA(B) mutants that were transport-defective and that could still bind tetracycline. Up to 9 amino acid residues could be deleted from the loop between transmembrane α-helices 6 and 7 with only a slight decrease in affinity of tetracycline binding as measured by isothermal titration calorimetry, although the mutant was transport-defective. Scanning mutagenesis where all the residues between 2 and 389 were mutated to either valine, alanine or glycine (VAG scan) identified 15 mutants that were significantly impaired in tetracycline transport. Of these mutants, 12 showed no evidence of tetracycline binding by isothermal titration calorimetry performed on the purified transporters. In contrast, the mutants G44V and G346V bound tetracycline 4–5 fold more weakly than TetA(B), with Kds of 28 μM and 36 μM, respectively, whereas the mutant R70G bound tetracycline 3-fold more strongly (Kd 2.1 μM). Systematic mutagenesis is thus an effective strategy for isolating transporter mutants that may be conformationally constrained and which represent attractive targets for crystallisation and structure determination. PMID:26143388

  10. Three-dimensional structures of noncovalent complexes of Citrobacter freundii methionine γ-lyase with substrates.

    PubMed

    Revtovich, S V; Morozova, E A; Khurs, E N; Zakomirdina, L N; Nikulin, A D; Demidkina, T V; Khomutov, R M

    2011-05-01

    Crystal structures of Citrobacter freundii methionine γ-lyase complexes with the substrates of γ- (L-1-amino-3-methylthiopropylphosphinic acid) and β- (S-ethyl-L-cysteine) elimination reactions and the competitive inhibitor L-norleucine have been determined at 1.45, 1.8, and 1.63 Å resolution, respectively. All three amino acids occupy the active site of the enzyme but do not form a covalent bond with pyridoxal 5'-phosphate. Hydrophobic interactions between the active site residues and the side groups of the substrates and the inhibitor are supposed to cause noncovalent binding. Arg374 and Ser339 are involved in the binding of carboxyl groups of the substrates and the inhibitor. The hydroxyl of Tyr113 is a potential acceptor of a proton from the amino groups of the amino acids.

  11. Collagen-Gelatin Mixtures as Wound Model, and Substrates for VEGF-Mimetic Peptide Binding and Endothelial Cell Activation

    PubMed Central

    Chan, Tania R.; Stahl, Patrick J.; Li, Yang; Yu, S. Michael

    2015-01-01

    In humans, high level of collagen remodeling is seen during normal physiological events such as bone renewal, as well as in pathological conditions, such as arthritis, tumor growth and other chronic wounds. Our lab recently discovered that collagen mimetic peptide (CMP) is able to hybridize with denatured collagens at these collagen remodeling sites with high affinity. Here, we show that the CMP's high binding affinity to denatured collagens can be utilized to deliver angiogenic signals to scaffolds composed of heat-denatured collagens (gelatins). We first demonstrate hybridization between denatured collagens and QKCMP, a CMP with pro-angiogenic QK domain. We show that high levels of QKCMP can be immobilized to a new artificial matrix containing both fibrous type I collagen and heat denatured collagen through triple helix hybridization, and that the QKCMP is able to stimulate early angiogenic response of endothelial cells (ECs). We also show that the QKCMP can bind to excised tissues from burn injuries in cutaneous mouse model, suggesting its potential for promoting neovascularization of burn wounds. PMID:25584990

  12. Homo-timeric structural model of human microsomal prostaglandin E synthase-1 and characterization of its substrate/inhibitor binding interactions

    NASA Astrophysics Data System (ADS)

    Xing, Li; Kurumbail, Ravi G.; Frazier, Ronald B.; Davies, Michael S.; Fujiwara, Hideji; Weinberg, Robin A.; Gierse, James K.; Caspers, Nicole; Carter, Jeffrey S.; McDonald, Joseph J.; Moore, William M.; Vazquez, Michael L.

    2009-01-01

    Inducible, microsomal prostaglandin E synthase 1 (mPGES-1), the terminal enzyme in the prostaglandin (PG) biosynthetic pathway, constitutes a promising therapeutic target for the development of new anti-inflammatory drugs. To elucidate structure-function relationships and to enable structure-based design, an mPGES-1 homology model was developed using the three-dimensional structure of the closest homologue of the MAPEG family (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism), mGST-1. The ensuing model of mPGES-1 is a homo-trimer, with each monomer consisting of four membrane-spanning segments. Extensive structure refinement revealed an inter-monomer salt bridge (K26-E77) as well as inter-helical interactions within each monomer, including polar hydrogen bonds (e.g. T78-R110-T129) and hydrophobic π-stacking (F82-F103-F106), all contributing to the overall stability of the homo-trimer of mPGES-1. Catalytic co-factor glutathione (GSH) was docked into the mPGES-1 model by flexible optimization of both the ligand and the protein conformations, starting from the initial location ascertained from the mGST-1 structure. Possible binding site for the substrate, prostaglandin H2 (PGH2), was identified by systematically probing the refined molecular structure of mPGES-1. A binding model was generated by induced fit docking of PGH2 in the presence of GSH. The homology model prescribes three potential inhibitor binding sites per mPGES-1 trimer. This was further confirmed experimentally by equilibrium dialysis study which generated a binding stoichiometric ratio of approximately three inhibitor molecules to three mPGES-1 monomers. The structural model that we have derived could serve as a useful tool for structure-guided design of inhibitors for this emergently important therapeutic target.

  13. Osteopontin is cleaved at multiple sites close to its integrin-binding motifs in milk and is a novel substrate for plasmin and cathepsin D.

    PubMed

    Christensen, Brian; Schack, Lotte; Kläning, Eva; Sørensen, Esben S

    2010-03-12

    Osteopontin (OPN) is a highly modified integrin-binding protein present in most tissues and body fluids where it has been implicated in numerous biological processes. A significant regulation of OPN function is mediated through phosphorylation and proteolytic processing. Proteolytic cleavage by thrombin and matrix metalloproteinases close to the integrin-binding Arg-Gly-Asp sequence modulates the function of OPN and its integrin binding properties. In this study, seven N-terminal OPN fragments originating from proteolytic cleavage have been characterized from human milk. Identification of the cleavage sites revealed that all fragments contained the Arg-Gly-Asp(145) sequence and were generated by cleavage of the Leu(151)-Arg(152), Arg(152)-Ser(153), Ser(153)-Lys(154), Lys(154)-Ser(155), Ser(155)-Lys(156), Lys(156)-Lys(157), or Phe(158)-Arg(159) peptide bonds. Six cleavages cannot be ascribed to thrombin or matrix metalloproteinase activity, whereas the cleavage at Arg(152)-Ser(153) matches thrombin specificity for OPN. The principal protease in milk, plasmin, hydrolyzed the same peptide bond as thrombin, but its main cleavage site was identified to be Lys(154)-Ser(155). Another endogenous milk protease, cathepsin D, cleaved the Leu(151)-Arg(152) bond. OPN fragments corresponding to plasmin activity were also identified in urine showing that plasmin cleavage of OPN is not restricted to milk. Plasmin, but not cathepsin D, cleavage of OPN increased cell adhesion mediated by the alpha(V)beta(3)- or alpha(5)beta(1)-integrins. Similar cellular adhesion was mediated by plasmin and thrombin-cleaved OPN showing that plasmin can be a potent regulator of OPN activity. These data show that OPN is highly susceptible to cleavage near its integrin-binding motifs, and the protein is a novel substrate for plasmin and cathepsin D.

  14. The M17 leucine aminopeptidase of the malaria parasite Plasmodium falciparum: importance of active site metal ions in the binding of substrates and inhibitors.

    PubMed

    Maric, Selma; Donnelly, Sheila M; Robinson, Mark W; Skinner-Adams, Tina; Trenholme, Katharine R; Gardiner, Donald L; Dalton, John P; Stack, Colin M; Lowther, Jonathan

    2009-06-16

    The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.

  15. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  16. Putative implication of alpha-amylase loop 7 in the mechanism of substrate binding and reaction products release.

    PubMed

    André, G; Tran, V

    2004-10-05

    Alpha-amylases are widespread endo-enzymes involved in the hydrolysis of internal alpha-(1,4) glycosidic linkages of starch polymers. Molecular modeling of amylose-amylase interactions is a step toward enzymatic mechanism understanding and rational design of new enzymes. From the crystallographic complex of barley alpha-amylase AMY2-acarbose, the static aspects of amylose-amylase docking have been characterized with a model of maltododecaose (DP12) (G. André, A. Buléon, R. Haser, and V. Tran, Biopolymers 1999, Vol. 50, pp. 751-762; G. André and V. Tran, Special Publication no. 246 1999, The Royal Society of Chemistry, H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson, Eds., Cambridge, pp. 165-174). These studies, consistent with the experimental subsite mapping (K. Bak-Jensen, G. André, V. Tran, and B. Svensson, Journal of Biological Chemistry, to be published), propose a propagation scheme for an amylose chain in the active cleft of AMY2. The topographical overview of alpha-amylases identified loop 7 as a conserved segment flanking the active site. Since some crystallographic experiments suspected its high flexibility, its putative motion was explored through a robotic scheme, an alternate route to dynamics simulations that consume CPU time. The present article describes the characteristics of the flexibility of loop 7: location and motion in AMY2. A back-and-forth motion with a large amplitude of more than 0.6 nm was evaluated. This movement could be triggered by two hinge residues. It results in the loop flipping over the active site to enhance the docking of the native helical substrate through specific interactions, it positions the catalytic residues, it distorts the substrate towards its transition state geometry, and finally monitors the release of the products after hydrolysis. The residues involved in the process are now rational mutation points in the hands of molecular biologists.

  17. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity.

    PubMed

    Bozonnet, Sophie; Jensen, Morten T; Nielsen, Morten M; Aghajari, Nushin; Jensen, Malene H; Kramhøft, Birte; Willemoës, Martin; Tranier, Samuel; Haser, Richard; Svensson, Birte

    2007-10-01

    Some starch-degrading enzymes accommodate carbohydrates at sites situated at a certain distance from the active site. In the crystal structure of barley alpha-amylase 1, oligosaccharide is thus bound to the 'sugar tongs' site. This site on the non-catalytic domain C in the C-terminal part of the molecule contains a key residue, Tyr380, which has numerous contacts with the oligosaccharide. The mutant enzymes Y380A and Y380M failed to bind to beta-cyclodextrin-Sepharose, a starch-mimic resin used for alpha-amylase affinity purification. The K(d) for beta-cyclodextrin binding to Y380A and Y380M was 1.4 mm compared to 0.20-0.25 mm for the wild-type, S378P and S378T enzymes. The substitution in the S378P enzyme mimics Pro376 in the barley alpha-amylase 2 isozyme, which in spite of its conserved Tyr378 did not bind oligosaccharide at the 'sugar tongs' in the structure. Crystal structures of both wild-type and S378P enzymes, but not the Y380A enzyme, showed binding of the pseudotetrasaccharide acarbose at the 'sugar tongs' site. The 'sugar tongs' site also contributed importantly to the adsorption to starch granules, as Kd = 0.47 mg.mL(-1) for the wild-type enzyme increased to 5.9 mg.mL(-1) for Y380A, which moreover catalyzed the release of soluble oligosaccharides from starch granules with only 10% of the wild-type activity. beta-cyclodextrin both inhibited binding to and suppressed activity on starch granules for wild-type and S378P enzymes, but did not affect these properties of Y380A, reflecting the functional role of Tyr380. In addition, the Y380A enzyme hydrolyzed amylose with reduced multiple attack, emphasizing that the 'sugar tongs' participates in multivalent binding of polysaccharide substrates.

  18. Kinetic modeling of the interactions between 4-methylumbelliferone, 1-naphthol, and zidovudine glucuronidation by udp-glucuronosyltransferase 2B7 (UGT2B7) provides evidence for multiple substrate binding and effector sites.

    PubMed

    Uchaipichat, Verawan; Galetin, Aleksandra; Houston, J Brian; Mackenzie, Peter I; Williams, J Andrew; Miners, John O

    2008-10-01

    Interactions between the UGT2B7-catalyzed glucuronidation of zidovudine (AZT), 4-methylumbelliferone (4MU), and 1-naphthol (1NP) were analyzed using multisite and empirical kinetic models to explore the existence of multiple substrate and effector binding sites within this important drug metabolizing enzyme. 4MU and 1NP glucuronidation by UGT2B7 exhibit sigmoidal kinetics characteristic of homotropic cooperativity (autoactivation), which may be modeled assuming the existence of two equivalent, interacting substrate binding sites. In contrast, UGT2B7-catalyzed AZT glucuronidation follows hyperbolic (Michaelis-Menten) kinetics. Although 4MU and 1NP decreased the binding affinity of AZT, the kinetics of AZT glucuronidation changed from hyperbolic to sigmoidal in the presence of both modifiers. Data were well described by a generic two-substrate binding site model in which there is no interaction between the sites in the absence of 4MU or 1NP, but heterotropic cooperativity results from the binding of modifier. Inhibition of 4MU and 1NP glucuronidation by AZT and interactions between 4MU and 1NP required more complex three-site models, where the modifier acts via a distinct effector site to alter either substrate binding affinity or Vmax without affecting the homotropic cooperativity characteristic of 4MU and 1NP glucuronidation. It is noteworthy that 1NP inhibited 4MU glucuronidation, whereas 4MU activated 1NP glucuronidation. The results are consistent with the existence of two "catalytic" sites for each substrate within the UGT2B7 active site, along with multiple effector sites. The multiplicity of binding and effector sites results in complex kinetic interactions between UGT2B7 substrates, which potentially complicates inhibition screening studies.

  19. Structural and Kinetic Analysis of Schwanniomyces occidentalis Invertase Reveals a New Oligomerization Pattern and the Role of Its Supplementary Domain in Substrate Binding*

    PubMed Central

    Álvaro-Benito, Miguel; Polo, Aitana; González, Beatriz; Fernández-Lobato, María; Sanz-Aparicio, Julia

    2010-01-01

    Schwanniomyces occidentalis invertase is an extracellular enzyme that hydrolizes sucrose and releases β-fructose from various oligosaccharides and essential storage fructan polymers such as inulin. We report here the three-dimensional structure of Sw. occidentalis invertase at 2.9 Å resolution and its complex with fructose at 1.9 Å resolution. The monomer presents a bimodular arrangement common to other GH32 enzymes, with an N-terminal 5-fold β-propeller catalytic domain and a C-terminal β-sandwich domain for which the function has been unknown until now. However, the dimeric nature of Sw. occidentalis invertase reveals a unique active site cleft shaped by both subunits that may be representative of other yeast enzymes reported to be multimeric. Binding of the tetrasaccharide nystose and the polymer inulin was explored by docking analysis, which suggested that medium size and long substrates are recognized by residues from both subunits. The identified residues were mutated, and the enzymatic activity of the mutants against sucrose, nystose, and inulin were investigated by kinetic analysis. The replacements that showed the largest effect on catalytic efficiency were Q228V, a residue putatively involved in nystose and inulin binding, and S281I, involved in a polar link at the dimer interface. Moreover, a significant decrease in catalytic efficiency against inulin was observed in the mutants Q435A and Y462A, both located in the β-sandwich domain of the second monomer. This highlights the essential function that oligomerization plays in substrate specificity and assigns, for the first time, a direct catalytic role to the supplementary domain of a GH32 enzyme. PMID:20181943

  20. EGFR kinase possesses a broad specificity for ErbB phosphorylation sites, and ligand increases catalytic-centre activity without affecting substrate binding affinity

    PubMed Central

    2005-01-01

    We previously found that EGF (epidermal growth factor) increases the EGFR (EGF receptor) kinase-binding affinity towards the major tyrosine phosphorylation sites in downstream adaptor proteins such as Gab1 (Grb2-associated binding protein 1) and Shc [Src homology 2 (SH2) domain and collagen containing protein], but not that towards EGFR autophosphorylation sites [Fan, Wong, Deb and Johnson (2004) J. Biol. Chem. 279, 38143–38150]. EGFR activation can also result in transphosphorylation of tyrosine resides in the C-terminal region of the related receptors ErbB2, ErbB3 and ErbB4 in heterodimers which are formed upon ligand stimulation. In the present study, we investigated the specificity of EGFR kinase by comparing the steady state kinetic parameters for peptides derived from all four ErbBs in the absence or presence of EGF. Our results demonstrated that (i) EGFR kinase can efficiently phosphorylate a broad range of diverse peptide sequences representing ErbB sites; (ii) certain ErbB2, ErbB3 and ErbB4 sites had higher specificity constants than any EGFR sequence and (iii) EGF stimulation consistently increases the kcat approx. 5-fold, but does not significantly alter the Km for any ErbB peptides. Furthermore, peptides containing lysine at position −2 or −3 N-terminal to the target tyrosine were found to be poor EGFR kinase substrates, and substitution of these lysines with glutamine decreased the Km and increased the kcat for these substrates. We conclude that EGFR kinase-mediated ErbB transphosphorylations are mostly controlled at the level of oligomerization, and not by a preference of the EGFR kinase for phosphorylation sites in any particular ErbB. The results also demonstrated that, unlike phosphorylation sites in select downstream targets, EGF does not regulate the recognition of phosphorylation sites in the C-terminal region of any of the ErbBs. PMID:16122376

  1. Crystal Structure of Cytochrome P450 (CYP105P2) from Streptomyces peucetius and Its Conformational Changes in Response to Substrate Binding

    PubMed Central

    Lee, Chang Woo; Lee, Joo-Ho; Rimal, Hemraj; Park, Hyun; Lee, Jun Hyuck; Oh, Tae-Jin

    2016-01-01

    Cytochrome P450 monooxygenases (CYP, EC 1.14.14.1) belong to a large family of enzymes that catalyze the hydroxylation of various substrates. Here, we present the crystal structure of CYP105P2 isolated from Streptomyces peucetius ATCC27952 at a 2.1 Å resolution. The structure shows the presence of a pseudo-ligand molecule in the active site, which was co-purified fortuitously and is presumed to be a biphenyl derivative. Comparison with previously determined substrate-bound CYP structures showed that binding of the ligand produces large and distinctive conformational changes in α2–α3, α7–α9, and the C-terminal loop regions. This structural flexibility confirms our previous observation that CYP105P2 can accommodate a broad range of ligands. The structure complexed with a pseudo-ligand provides the first molecular view of CYP105P2–ligand interactions, and it indicates the involvement of hydrophobic residues (Pro82, Ala181, Met187, Leu189, Leu193, and Ile236) in the interactions between hydrophobic ligands and CYP105P2. These results provide useful insights into the structural changes involved in the recognition of different ligands by CYP105P2. PMID:27231902

  2. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.

    PubMed

    Metrick, Michael A; Temple, Joshua E; MacDonald, Gina

    2013-12-31

    The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions.

  3. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis

    SciTech Connect

    Gao, Jinlan; Li, Xiaolu; Feng, Yue; Zhang, Bo; Miao, Shiying; Wang, Linfang; Wang, Na

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We truncated the signal peptide of OppA{sub TTE0054} to make it express in Escherichia coli as a soluble protein. Black-Right-Pointing-Pointer Crystals of OppA{sub TTE0054} were grown by sitting-drop vapor diffusion method. Black-Right-Pointing-Pointer The crystal of OppA{sub TTE0054} diffracted to 2.25 A. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGE after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 A. The crystal belonged to space group C222{sub 1}, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 A, and {alpha} = {beta} = {gamma} = 90 Degree-Sign .

  4. Structural studies of ROK fructokinase YdhR from Bacillus subtilis : insights into substrate binding and fructose specificity.

    SciTech Connect

    Nocek, B.; Stein, A.; Jedrzejczak, R.; Cuff, M.; Li, H.; Volkart, L.; Joachimiak, A.; Biosciences Division

    2011-02-18

    The main pathway of bacterial sugar phosphorylation utilizes specific phosphoenolpyruvate phosphotransferase system (PTS) enzymes. In addition to the classic PTS system, a PTS-independent secondary system has been described in which nucleotide-dependent sugar kinases are used for monosaccharide phosphorylation. Fructokinase (FK), which phosphorylates d-fructose with ATP as a cofactor, has been shown to be a member of this secondary system. Bioinformatic analysis has shown that FK is a member of the 'ROK' (bacterial Repressors, uncharacterized Open reading frames, and sugar Kinases) sequence family. In this study, we report the crystal structures of ROK FK from Bacillus subtilis (YdhR) (a) apo and in the presence of (b) ADP and (c) ADP/d-fructose. All structures show that YdhR is a homodimer with a monomer composed of two similar {alpha}/{beta} domains forming a large cleft between domains that bind ADP and d-fructose. Enzymatic activity assays support YdhR function as an ATP-dependent fructose kinase.

  5. Simulating the slow to fast switch in cytochrome c oxidase catalysis by introducing a loop flip near to the enzyme's cytochrome c (substrate) binding site.

    PubMed

    Alleyne, Trevor; Ignacio, Diane N; Sampson, Valerie B; Ashe, Damian; Wilson, Michael

    2016-08-04

    The mitochondrial enzyme cytochrome c oxidase catalyses the reduction of molecular oxygen in the critical step of oxidative phosphorylation that links the oxidation of food consumed to ATP production in cells. The enzyme catalyses the reduction of oxygen at two vastly different rates that are thought to be linked to two different conformations but the conformation of the 'fast enzyme' remains obscure. In this study we demonstrated how oxygen binding at haem a3 could trigger long distance conformational changes and then simulated a conformational change in an eight residue loop near to the enzyme's substrate (cytochrome c) binding site. We then used this modified COX to simulate a stable COX-cytochrome c ES-complex. Compared to ES-complexes formed in the absence of the conformation change, the distance between the redox centres of the two proteins was reduced by half and instead of nine, only four COX amino acid residues were found along the axis linking the electron entry point and the CuA redox centre of COX: We proposed that intramolecular electron transfer in COX occurs via a charge/hydrogen relay system involving these four residues. We suggest that the conformational change and resulting shortened electron pathway are features of fast-acting COX. This article is protected by copyright. All rights reserved.

  6. A novel virus-like particle based on hepatitis B core antigen and substrate-binding domain of bacterial molecular chaperone DnaK.

    PubMed

    Wang, Xue Jun; Gu, Kai; Xiong, Qi Yan; Shen, Liang; Cao, Rong Yue; Li, Ming Hui; Li, Tai Ming; Wu, Jie; Liu, Jing Jing

    2009-12-09

    Hepatitis B virus core (HBc) protein has been proved to be an attractive carrier for foreign epitopes, and can display green fluorescent protein (GFP) on its surface. The structure of substrate-binding domain of DnaK [DnaK (394-504 aa), DnaK SBD] is similar to GFP, we therefore reasoned that DnaK SBD might also be tolerated. Electron microscopic observations suggested that the chimeric proteins containing the truncated HBc (HBcDelta) and DnaK SBD could self-assemble into virus-like particle (VLP). Then the accessibility of DnaK SBD and the adjuvanticity of VLP HBcDelta-SBD were demonstrated by two recombinant peptide vaccines against gonadotropin-releasing hormone (GnRH), GhM and GhMNR. The latter carries in addition the peptide motif NRLLLTG which is known to bind to DnaK and DnaK SBD. The combination of VLP HBcDelta-SBD and GhMNR elicited stronger humoral responses and caused further testicular atrophy than the combinations of VLP HBcDelta and GhMNR or VLP HBcDelta-SBD and GhM in Balb/c mice. These findings indicate VLP HBcDelta-SBD might serve as an excellent carrier for GhMNR and some other peptide vaccines.

  7. The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate.

    PubMed

    Gutiérrez-Jiménez, Javier; Arciniega, Ivonne; Navarro-García, Fernando

    2008-08-01

    The pic gene is harbored on the chromosomes of three important pathogens: enteroaggregative Escherichia coli (EAEC), uropathogenic E. coli (UPEC), and Shigella flexneri. Since Pic is secreted into the intestinal lumen during EAEC infection, we sought to identify intestinal-mucosal substrates for Pic. Pic did not damage epithelial cells, cleave fodrin, or degrade host defense proteins embedded in the mucus layer (sIgA, lactoferrin and lysozyme). However, by using a solid-phase assay to evaluate the mucinolytic activity of EAEC Pic, we documented a specific, dose-dependent mucinolytic activity. A serine protease inhibitor and an enzymatically inactive variant of Pic were used to show that the Pic serine protease motif is required for mucinolytic activity. Pic binds mucin, and this binding was blocked in competition assays using monosaccharide constituents of the oligosaccharide side chains of mucin. Moreover, Pic mucinolytic activity decreased when sialic acid was removed from mucin. Thus, Pic is a mucinase with lectin-like activity that can be related to its reported hemagglutinin activity. Our results suggest that EAEC may secrete Pic into the intestinal lumen as a strategy for penetrating the gel-like mucus layer during EAEC colonization.

  8. The Vaccine Candidate Substrate Binding Protein SBP2 Plays a Key Role in Arginine Uptake, Which Is Required for Growth of Moraxella catarrhalis

    PubMed Central

    Otsuka, Taketo; Kirkham, Charmaine; Brauer, Aimee; Koszelak-Rosenblum, Mary; Malkowski, Michael G.

    2015-01-01

    Moraxella catarrhalis is an exclusively human pathogen that is an important cause of otitis media in children and lower respiratory tract infections in adults with chronic obstructive pulmonary disease. A vaccine to prevent M. catarrhalis infections would have an enormous global impact in reducing morbidity resulting from these infections. Substrate binding protein 2 (SBP2) of an ABC transporter system has recently been identified as a promising vaccine candidate antigen on the bacterial surface of M. catarrhalis. In this study, we showed that SBP1, -2, and -3 individually bind different basic amino acids with exquisite specificity. We engineered mutants that each expressed a single SBP from this gene cluster and showed in growth experiments that SBP1, -2, and -3 serve a nutritional function through acquisition of amino acids for the bacterium. SBP2 mediates uptake of arginine, a strict growth requirement of M. catarrhalis. Adherence and invasion assays demonstrated that SBP1 and SBP3 play a role in invasion of human respiratory epithelial cells, consistent with a nutritional role in intracellular survival in the human respiratory tract. This work demonstrates that the SBPs of an ABC transporter system function in the uptake of basic amino acids to support growth of M. catarrhalis. The critical role of SBP2 in arginine uptake may contribute to its potential as a vaccine antigen. PMID:26597985

  9. Crystal Structure of Human Liver [delta][superscript 4]-3-Ketosteroid 5[beta]-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo, Luigi; Drury, Jason E.; Penning, Trevor M.; Christianson, David W.

    2008-07-15

    AKR1D1 (steroid 5{beta}-reductase) reduces all {Delta}{sup 4}-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an {alpha}{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a {Delta}{sup 4}-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90{sup o} bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human {Delta}{sup 4}-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP{sup +} at 1.79- and 1.35-{angstrom} resolution (HEPES bound in the active site), NADP{sup +} and cortisone at 1.90-{angstrom} resolution, NADP{sup +} and progesterone at 2.03-{angstrom} resolution, and NADP{sup +} and testosterone at 1.62-{angstrom} resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP{sup +}. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr{sup 58} and Glu{sup 120}. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  10. Extrapolation of Inter Domain Communications and Substrate Binding Cavity of Camel HSP70 1A: A Molecular Modeling and Dynamics Simulation Study

    PubMed Central

    Gupta, Saurabh; Rao, Atmakuri Ramakrishna; Varadwaj, Pritish Kumar; De, Sachinandan; Mohapatra, Trilochan

    2015-01-01

    Heat shock protein 70 (HSP70) is an important chaperone, involved in protein folding, refolding, translocation and complex remodeling reactions under normal as well as stress conditions. However, expression of HSPA1A gene in heat and cold stress conditions associates with other chaperons and perform its function. Experimental structure for Camel HSP70 protein (cHSP70) has not been reported so far. Hence, we constructed 3D models of cHSP70 through multi- template comparative modeling with HSP110 protein of S. cerevisiae (open state) and with HSP70 protein of E. coli 70kDa DnaK (close state) and relaxed them for 100 nanoseconds (ns) using all-atom Molecular Dynamics (MD) Simulation. Two stable conformations of cHSP70 with Substrate Binding Domain (SBD) in open and close states were obtained. The collective mode analysis of different transitions of open state to close state and vice versa was examined via Principal Component Analysis (PCA) and Minimum Distance Matrix (MDM). The results provide mechanistic representation of the communication between Nucleotide Binding Domain (NBD) and SBD to identify the role of sub domains in conformational change mechanism, which leads the chaperone cycle of cHSP70. Further, residues present in the chaperon functioning site were also identified through protein-peptide docking. This study provides an overall insight into the inter domain communication mechanism and identification of the chaperon binding cavity, which explains the underlying mechanism involved during heat and cold stress conditions in camel. PMID:26313938

  11. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.

    PubMed

    Grabarse, W; Mahlert, F; Duin, E C; Goubeaud, M; Shima, S; Thauer, R K; Lamzin, V; Ermler, U

    2001-05-25

    Methyl-coenzyme M reductase (MCR) catalyzes the final reaction of the energy conserving pathway of methanogenic archaea in which methylcoenzyme M and coenzyme B are converted to methane and the heterodisulfide CoM-S-S-CoB. It operates under strictly anaerobic conditions and contains the nickel porphinoid F430 which is present in the nickel (I) oxidation state in the active enzyme. The known crystal structures of the inactive nickel (II) enzyme in complex with coenzyme M and coenzyme B (MCR-ox1-silent) and in complex with the heterodisulfide CoM-S-S-CoB (MCR-silent) were now refined at 1.16 A and 1.8 A resolution, respectively. The atomic resolution structure of MCR-ox1-silent describes the exact geometry of the cofactor F430, of the active site residues and of the modified amino acid residues. Moreover, the observation of 18 Mg2+ and 9 Na+ ions at the protein surface of the 300 kDa enzyme specifies typical constituents of binding sites for either ion. The MCR-silent and MCR-ox1-silent structures differed in the occupancy of bound water molecules near the active site indicating that a water chain is involved in the replenishment of the active site with water molecules. The structure of the novel enzyme state MCR-red1-silent at 1.8 A resolution revealed an active site only partially occupied by coenzyme M and coenzyme B. Increased flexibility and distinct alternate conformations were observed near the active site and the substrate channel. The electron density of the MCR-red1-silent state aerobically co-crystallized with coenzyme M displayed a fully occupied coenzyme M-binding site with no alternate conformations. Therefore, the structure was very similar to the MCR-ox1-silent state. As a consequence, the binding of coenzyme M induced specific conformational changes that postulate a molecular mechanism by which the enzyme ensures that methylcoenzyme M enters the substrate channel prior to coenzyme B as required by the active-site geometry. The three different

  12. Exploring the molecular basis for selective binding of Mycobacterium tuberculosis Asp kinase toward its natural substrates and feedback inhibitors: a docking and molecular dynamics study.

    PubMed

    Chaitanya, M; Babajan, B; Anuradha, C M; Naveen, M; Rajasekhar, C; Madhusudana, P; Kumar, Chitta Suresh

    2010-08-01

    Tuberculosis (TB) is still a major public health problem, compounded by the human immunodeficiency virus (HIV)-TB co-infection and recent emergence of multidrug-resistant (MDR) and extensively drug resistant (XDR)-TB. In this context, aspartokinase of mycobacterium tuberculosis has drawn attention for designing novel anti-TB drugs. Asp kinase is an enzyme responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate and involved in the branched biosynthetic pathway leading to the synthesis of amino acids lysine, threonine, methionine and isoleucine. An intermediate of lysine biosynthetic branch, mesodiaminopimelate is also a component of the peptidoglycan which is a component of bacterial cell wall. To interfere with the production of all these amino acids and cell wall, it is possible to inhibit Asp kinase activity. This can be achieved using Asp kinase inhibitors. In order to design novel Asp kinase inhibitors as effective anti-TB drugs, it is necessary to have an understanding of the binding sites of Asp kinase. As no crystal structure of the enzyme has yet been published, we built a homology model of Asp kinase using the crystallized Asp kinase from M. Jannaschii, as template structures (2HMF and 3C1M). After the molecular dynamics refinement, the optimized homology model was assessed as a reliable structure by PROCHECK, ERRAT, WHAT-IF, PROSA2003 and VERIFY-3D. The results of molecular docking studies with natural substrates, products and feedback inhibitors are in agreement with the published data and showed that ACT domain plays an important role in binding to ligands. Based on the docking conformations, pharmacophore model can be developed by probing the common features of ligands. By analyzing the results, ACT domain architecture, certain key residues that are responsible for binding to feedback inhibitors and natural substrates were identified. This would be very helpful in understanding the blockade mechanism of Asp kinase and providing insights

  13. Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

    SciTech Connect

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.; Herdendorf, Timothy J.; Miziorko, Henry M.; Geisbrecht, Brian V.

    2011-10-28

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  14. Crystal structures of Staphylococcus epidermidis mevalonate diphosphate decarboxylase bound to inhibitory analogs reveal new insight into substrate binding and catalysis.

    PubMed

    Barta, Michael L; Skaff, D Andrew; McWhorter, William J; Herdendorf, Timothy J; Miziorko, Henry M; Geisbrecht, Brian V

    2011-07-08

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in K(i) values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser(192) as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases k(cat) by ∼10(3)-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  15. Age-associated mitochondrial oxidative decay: Improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-l- carnitine and/or R-α-lipoic acid

    PubMed Central

    Liu, Jiankang; Killilea, David W.; Ames, Bruce N.

    2002-01-01

    We test whether the dysfunction with age of carnitine acetyltransferase (CAT), a key mitochondrial enzyme for fuel utilization, is due to decreased binding affinity for substrate and whether this substrate, fed to old rats, restores CAT activity. The kinetics of CAT were analyzed by using the brains of young and old rats and of old rats supplemented for 7 weeks with the CAT substrate acetyl-l-carnitine (ALCAR) and/or the mitochondrial antioxidant precursor R-α-lipoic acid (LA). Old rats, compared with young rats, showed a decrease in CAT activity and in CAT-binding affinity for both substrates, ALCAR and CoA. Feeding ALCAR or ALCAR plus LA to old rats significantly restored CAT-binding affinity for ALCAR and CoA, and CAT activity. To explore the underlying mechanism, lipid peroxidation and total iron and copper levels were assayed; all increased in old rats. Feeding old rats LA or LA plus ALCAR inhibited lipid peroxidation but did not decrease iron and copper levels. Ex vivo oxidation of young-rat brain with Fe(II) caused loss of CAT activity and binding affinity. In vitro oxidation of purified CAT with Fe(II) inactivated the enzyme but did not alter binding affinity. However, in vitro treatment of CAT with the lipid peroxidation products malondialdehyde or 4-hydroxy-nonenal caused a decrease in CAT-binding affinity and activity, thus mimicking age-related change. Preincubation of CAT with ALCAR or CoA prevented malondialdehyde-induced dysfunction. Thus, feeding old rats high levels of key mitochondrial metabolites can ameliorate oxidative damage, enzyme activity, substrate-binding affinity, and mitochondrial dysfunction. PMID:11854488

  16. Specificity determinants for the two tRNA substrates of the cyclodipeptide synthase AlbC from Streptomyces noursei

    PubMed Central

    Moutiez, Mireille; Seguin, Jérôme; Fonvielle, Matthieu; Belin, Pascal; Jacques, Isabelle Béatrice; Favry, Emmanuel; Arthur, Michel; Gondry, Muriel

    2014-01-01

    Cyclodipeptide synthases (CDPSs) use two aminoacyl-tRNA substrates in a sequential ping-pong mechanism to form a cyclodipeptide. The crystal structures of three CDPSs have been determined and all show a Rossmann-fold domain similar to the catalytic domain of class-I aminoacyl-tRNA synthetases (aaRSs). Structural features and mutational analyses however suggest that CDPSs and aaRSs interact differently with their tRNA substrates. We used AlbC from Streptomyces noursei that mainly produces cyclo(l-Phe-l-Leu) to investigate the interaction of a CDPS with its substrates. We demonstrate that Phe-tRNAPhe is the first substrate accommodated by AlbC. Its binding to AlbC is dependent on basic residues located in the helix α4 that form a basic patch at the surface of the protein. AlbC does not use all of the Leu-tRNALeu isoacceptors as a second substrate. We show that the G1-C72 pair of the acceptor stem is essential for the recognition of the second substrate. Substitution of D163 located in the loop α6–α7 or D205 located in the loop β6–α8 affected Leu-tRNALeu isoacceptors specificity, suggesting the involvement of these residues in the binding of the second substrate. This is the first demonstration that the two substrates of CDPSs are accommodated in different binding sites. PMID:24782519

  17. Carbon Nanotube Patterning on a Metal Substrate

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor)

    2016-01-01

    A CNT electron source, a method of manufacturing a CNT electron source, and a solar cell utilizing a CNT patterned sculptured substrate are disclosed. Embodiments utilize a metal substrate which enables CNTs to be grown directly from the substrate. An inhibitor may be applied to the metal substrate to inhibit growth of CNTs from the metal substrate. The inhibitor may be precisely applied to the metal substrate in any pattern, thereby enabling the positioning of the CNT groupings to be more precisely controlled. The surface roughness of the metal substrate may be varied to control the density of the CNTs within each CNT grouping. Further, an absorber layer and an acceptor layer may be applied to the CNT electron source to form a solar cell, where a voltage potential may be generated between the acceptor layer and the metal substrate in response to sunlight exposure.

  18. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOEpatents

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  19. Structure and dynamics of GeoCyp: a thermophilic cyclophilin with a novel substrate binding mechanism that functions efficiently at low temperatures

    SciTech Connect

    Holliday, Michael; Camilloni, Carlo; Armstrong, Geoffrey S.; Isern, Nancy G.; Zhang, Fengli; Vendruscolo, Michele; Eisenmesser, Elan Z.

    2015-05-26

    Thermophilic proteins have found extensive use in research and industrial applications due to their high stability and functionality at elevated temperatures while simultaneously providing valuable insight into our understanding of protein folding, stability, dynamics, and function. Cyclophilins, a ubiquitously expressed family of peptidyl-prolyl isomerases with a range of biological functions and disease associations, have been utilized both for conferring stress tolerances and in exploring the link between conformational dynamics and enzymatic function. To date, however, no active thermophilic cyclophilin has been fully biophysically characterized. Here, we determine the structure of a thermophilic cyclophilin (GeoCyp) from Geobacillus kaustophilus, characterize its dynamic motions over several timescales using an array of methodologies that include chemical shift-based methods and relaxation experiments over a range of temperatures, and measure catalytic activity over a range of temperatures in order to compare structure, dynamics, and function to a mesophilic counterpart, human Cyclophilin A (CypA). Unlike most thermophile/mesophile pairs, GeoCyp catalysis is not substantially impaired at low temperatures as compared to CypA, retaining ~70% of the activity of its mesophilic counterpart. Examination of substrate-bound ensembles reveals a mechanism by which the two cyclophilins may have adapted to their environments through altering dynamic loop motions and a critical residue that acts as a clamp to regulate substrate binding differentially in CypA and GeoCyp. Despite subtle differences in conformational movements, dynamics over fast (ps-ns) and slow (μs) timescales are largely conserved between the two proteins.

  20. Structure and Dynamics of GeoCyp: A Thermophilic Cyclophilin with a Novel Substrate Binding Mechanism That Functions Efficiently at Low Temperatures.

    PubMed

    Holliday, Michael J; Camilloni, Carlo; Armstrong, Geoffrey S; Isern, Nancy G; Zhang, Fengli; Vendruscolo, Michele; Eisenmesser, Elan Z

    2015-05-26

    Thermophilic proteins have found extensive use in research and industrial applications because of their high stability and functionality at elevated temperatures while simultaneously providing valuable insight into our understanding of protein folding, stability, dynamics, and function. Cyclophilins, constituting a ubiquitously expressed family of peptidyl-prolyl isomerases with a range of biological functions and disease associations, have been utilized both for conferring stress tolerances and in exploring the link between conformational dynamics and enzymatic function. To date, however, no active thermophilic cyclophilin has been fully biophysically characterized. Here, we determine the structure of a thermophilic cyclophilin (GeoCyp) from Geobacillus kaustophilus, characterize its dynamic motions over several time scales using an array of methodologies that include chemical shift-based methods and relaxation experiments over a range of temperatures, and measure catalytic activity over a range of temperatures to compare its structure, dynamics, and function to those of a mesophilic counterpart, human cyclophilin A (CypA). Unlike those of most thermophile/mesophile pairs, GeoCyp catalysis is not substantially impaired at low temperatures as compared to that of CypA, retaining ~70% of the activity of its mesophilic counterpart. Examination of substrate-bound ensembles reveals a mechanism by which the two cyclophilins may have adapted to their environments through altering dynamic loop motions and a critical residue that acts as a clamp to regulate substrate binding differentially in CypA and GeoCyp. Fast time scale (pico- to nanosecond) dynamics are largely conserved between the two proteins, in accordance with the high degree of structural similarity, although differences do exist in their temperature dependencies. Slower (microsecond) time scale motions are likewise localized to similar regions in the two proteins with some variability in their magnitudes yet do

  1. Degradation and adsorption characteristics of PHB depolymerase as revealed by kinetics of mutant enzymes with amino acid substitution in substrate-binding domain.

    PubMed

    Hiraishi, Tomohiro; Komiya, Naoya; Matsumoto, Nobuhiko; Abe, Hideki; Fujita, Masahiro; Maeda, Mizuo

    2010-01-11

    Extracelluar Poly[(R)-3-hydroxybutyrate] (PHB) depolymerase (PhaZ(RpiT1)) from Ralstonia pickettii T1 adsorbs to PHB surface via its substrate-binding domain (SBD) to enhance PHB degradation. Our previous study combining PCR random mutagenesis with the determination of PHB degradation levels of mutant enzymes suggested that Ser, Tyr, Val, Ala, and Leu residues in SBD are probably involved in the enzymatic adsorption to and degradation of PHB. In the present study, the effects of mutations at Leu441, Tyr443, and Ser445 on PHB degradation were investigated because these residues were predicted to form a beta-sheet structure and orient in the same direction to interact possibly directly with the PHB surface. Purified L441H, Y443H, and S445C mutant enzymes were prepared, and their CD spectra and hydrolytic activities for water-soluble substrates were found to be identical to those of wild-type enzyme, indicating that these mutations have no influence on their structures and their ability to cleave the ester bond. In contrast, the PHB-degrading activity of these mutants differed from that of the wild type: L441H and Y443H enzymes had lower PHB-degrading activity than their wild-type counterpart, whereas S445C had higher activity. Kinetic analysis of PHB degradation by the mutants suggested that the hydrophobic residues at these positions are important for the enzyme adsorption to the PHB surface, and such substitutions as Y443H and S445C may more effectively disrupt the PHB surface to enhance the hydrolysis of PHB polymer chains than the wild-type enzyme. Surface plasmon resonance (SPR) analysis revealed that the three substitutions mentioned above altered the association phase rather than the dissociation phase in the enzyme adsorption to the polymer surface.

  2. Studies of the relationship between the catalytic activity and binding of non-substrate ligands by the glutathione S-transferases.

    PubMed Central

    Boyer, T D; Vessey, D A; Holcomb, C; Saley, N

    1984-01-01

    The dimeric enzyme glutathione S-transferase B is composed of two dissimilar subunits, referred to as Ya and Yc. Transferase B (YaYc) and two other transferases that are homodimers of the individual Ya and Yc subunits were purified from rat liver. Inhibition of these three enzymes by Indocyanine Green, biliverdin and several bile acids was investigated at different values of pH (range 6.0-8.0). Indocyanine Green, biliverdin and chenodeoxycholate were found to be effective inhibitors of transferases YaYc and YcYc at low (pH 6.0) but not high (pH 8.0) values of pH. Between these extremes of pH intermediate degrees of inhibition were observed. Cholate and taurochenodeoxycholate, however, were ineffective inhibitors of transferase YcYc at all values of pH. The observed differences in bile acids appeared to be due, in part, to differences in their state of ionization. In contrast with the above results, transferase YaYa was inhibited by at least 80% by the non-substrate ligands at all values of pH. These effects of pH on the three transferases could not be accounted for by pH-induced changes in the enzyme's affinity for the inhibitor. Thus those glutathione S-transferases that contain the Yc subunit are able to act simultaneously as both enzymes and binding proteins. In addition to enzyme structure, the state of ionization of the non-substrate ligands may also influence whether the transferases can perform both functions simultaneously. PMID:6696720

  3. 5'-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping.

    PubMed

    Ogino, Minako; Ogino, Tomoaki

    2017-03-15

    The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5'-phospho-RNA (pRNA) from 5'-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5'-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m(7)G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m(7)GpppA (cap 0), respectively. Furthermore, either the 2'- or 3'-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5'-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups of GDP as

  4. Structure of the Catalytic Domain of EZH2 Reveals Conformational Plasticity in Cofactor and Substrate Binding Sites and Explains Oncogenic Mutations

    PubMed Central

    Wu, Hong; Zeng, Hong; Dong, Aiping; Li, Fengling; He, Hao; Senisterra, Guillermo; Seitova, Alma; Duan, Shili; Brown, Peter J.; Vedadi, Masoud; Arrowsmith, Cheryl H.; Schapira, Matthieu

    2013-01-01

    Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 Å crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation. PMID:24367611

  5. Picosecond-Resolved Fluorescence Studies of Substrate and Cofactor-Binding Domain Mutants in a Thermophilic Alcohol Dehydrogenase Uncover an Extended Network of Communication

    PubMed Central

    2015-01-01

    Time-resolved fluorescence dynamics are investigated in two mutants of a thermophilic alcohol dehydrogenase (ht-ADH): Y25A (at the dimer interface) and V260A (at the cofactor-binding domain). These residues, ca. 32 Å apart, are shown to exhibit opposing low-temperature effects on the hydride tunneling step. Using single-tryptophan constructs at the active site (Trp87) and a remote, surface-exposed site (Trp167), time-dependent Stokes shifts and collisional quenching data allow an analysis of intra-protein dynamical communication. A double mutant, Y25A:V260A, was also inserted into each single-Trp construct and analyzed accordingly. None of the mutations affect fluorescence lifetimes, Stokes shift relaxation rates, and quenching data for the surface-exposed Trp167 to an appreciable extent. By contrast, fluorescent probes of the active-site tryptophan 87 reveal distinctive forms of dynamical communication. Stokes shifts show that the distal Y25A increases active-site flexibility, V260A introduces a temperature-dependent equilibration process not previously reported by such measurements, and the double mutant (Y25A:V260A) eliminates the temperature-dependent transition sensed by the active-site tryptophan in the presence of V260A. Collisional quenching data at Trp87 further show a structural change in the active-site environment/solvation for V260A. In the aggregate, the temperature dependencies of the fluorescence data are distinct from the breaks in behavior previously reported for catalysis and hydrogen/deuterium exchange, attributed to time scales for the interconversion of protein conformational substates that are slower and more global than the local motions monitored within. An extended network of dynamical communication between the protein dimer surface and substrate- and cofactor-binding domains emerges from the flourescent data. PMID:25314615

  6. Manganese(II) semiquinonato and manganese(III) catecholato complexes with tridentate ligand: modeling the substrate-binding state of manganese-dependent catechol dioxygenase and reactivity with molecular oxygen.

    PubMed

    Komatsuzaki, Hidehito; Shiota, Akihiko; Hazawa, Shogo; Itoh, Muneaki; Miyamura, Noriko; Miki, Nahomi; Takano, Yoichi; Nakazawa, Jun; Inagaki, Akiko; Akita, Munetaka; Hikichi, Shiro

    2013-06-01

    Catecholate catwalk: Monomeric manganese(III) catecholato and manganese(II) semiquinonato complexes as the substrate-binding model of catechol dioxygenase have been synthesized and structurally characterized. The semiquinonato complex reacted with molecular oxygen to give ring-cleaved products and benzoquinone in the catalytic condition.

  7. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.

    PubMed

    Kumar, Challa V; Duff, Michael R

    2008-12-01

    Specific donor and acceptor pairs have been assembled in bovine serum albumin (BSA), at neutral pH and room temperature, and these dye-protein complexes indicated efficient donor to acceptor singlet-singlet energy transfer. For example, pyrene-1-butyric acid served as the donor and Coumarin 540A served as the acceptor. Both the donor and the acceptor bind to BSA with affinity constants in excess of 2x10(5) M(-1), as measured in absorption and circular dichroism (CD) spectral titrations. Simultaneous binding of both the donor and the acceptor chromophores was supported by CD spectra and one chromophore did not displace the other from the protein host, even when limited concentrations of the host were used. For example, a 1:1:1 complex between the donor, acceptor and the host can be readily formed, and spectral data clearly show that the binding sites are mutually exclusive. The ternary complexes (two different ligands bound to the same protein molecule) provided opportunities to examine singlet-singlet energy transfer between the protein-bound chromophores. Donor emission was quenched by the addition of the acceptor, in the presence of limited amounts of BSA, while no energy transfer was observed in the absence of the protein host, under the same conditions. The excitation spectra of the donor-acceptor-host complexes clearly show the sensitization of acceptor emission by the donor. Protein denaturation, as induced by the addition of urea or increasing the temperature to 360 K, inhibited energy transfer, which indicate that protein structure plays an important role. Sensitization also proceeded at low temperature (77 K) and diffusion of the donor or the acceptor is not required for energy transfer. Stern-Volmer quenching plots show that the quenching constant is (3.1+/-0.2)x10(4) M(-1), at low acceptor concentrations (<35 microM). Other albumins such as human and porcine proteins also served as good hosts for the above experiments. For the first time, non

  8. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  9. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls.

    PubMed

    Slawik, Christian; Rickmeyer, Christiane; Brehm, Martin; Böhme, Alexander; Schüürmann, Gerrit

    2017-02-22

    Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functio-nalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft and soft-soft adducts.

  10. Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors.

    PubMed Central

    Frébortová, Jitka; Fraaije, Marco W; Galuszka, Petr; Sebela, Marek; Pec, Pavel; Hrbác, Jan; Novák, Ondrej; Bilyeu, Kristin D; English, James T; Frébort, Ivo

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors. PMID:14965342

  11. Family 13 carbohydrate-binding module of alginate lyase from Agarivorans sp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution.

    PubMed

    Li, Shangyong; Yang, Xuemei; Bao, Mengmeng; Wu, Ying; Yu, Wengong; Han, Feng

    2015-05-01

    The carbohydrate-binding module (CBM) in polysaccharide hydrolases plays a key role in the hydrolysis of cellulose, xylan and chitin. However, the function of CBM in alginate lyases has not been elucidated. A new alginate lyase gene, alyL2, was cloned from the marine bacterium Agarivorans sp. L11 by using degenerate and site-finding PCR. The alginate lyase, AlyL2, contained an N-terminal CBM13 and a C-terminal catalytic family 7 polysaccharide lyase (PL7) module. To better understand the function of CBM13 in alginate lyase AlyL2, the full-length enzyme (AlyL2-FL) and its catalytic module (AlyL2-CM) were expressed in Escherichia coli and characterized. The specific activity and catalytic efficiency of AlyL2-FL were approximately twice those of AlyL2-CM. The half-lives of AlyL2-FL were 4.7-6.6 times those of AlyL2-CM at 30-50°C. In addition, the presence of CBM13 in AlyL2 changed its substrate preference and increased the percentage of disaccharides from 50.5% to 64.6% in the total products. This first report of the function of CBM13 in alginate lyase provides new insights into the degradation of alginate by marine microorganisms.

  12. Substrate specificity of the Rad3 ATPase/DNA helicase of Saccharomyces cerevisiae and binding of Rad3 protein to nucleic acids.

    PubMed

    Naegeli, H; Bardwell, L; Harosh, I; Freidberg, E C

    1992-04-15

    Rad3 protein from the yeast Saccharomyces cerevisiae is a single-stranded DNA-dependent ATPase which catalyzes the unwinding of DNA.DNA duplexes. In the present studies we have demonstrated that the purified enzyme additionally catalyzes the displacement of RNA fragments annealed to complementary DNA. Quantitative comparisons using otherwise identical partially duplex DNA.DNA and DNA.RNA substrates indicate a significant preference for the latter. Competition for ATPase or DNA helicase activity by various homopolymers suggests that Rad3 protein does not discriminate between ribonucleotide and deoxyribonucleotide homopolymers with respect to binding. However, neither single-stranded RNA nor various ribonucleotide homopolymers supported the hydrolysis of nucleoside 5'-triphosphates. Additionally, Rad3 protein was unable to catalyze the displacement of oligo(dA) annealed to poly(U), suggesting that the catalytic domain of the enzyme is exquisitely sensitive to chemical and/or or conformational differences between DNA and RNA. Hence, it appears that Rad3 protein is not an RNA helicase.

  13. The presence of a hydroxyl group at the C-1 atom of the transketolase substrate molecule is necessary for the enzyme to perform the transferase reaction.

    PubMed

    Meshalkina, L E; Neef, H; Tjaglo, M V; Schellenberger, A; Kochetov, G A

    1995-11-20

    Transketolase catalyzes the transfer of an aldehyde residue from keto sugars to aldo sugars. The intermediate product is dihydroxyethylthiamine pyrophosphate (DHETPP). In the absence of an acceptor substrate, the reaction is stopped at this stage and DHETPP does not undergo subsequent transformations. Pyruvate decarboxylase catalyses pyruvate decarboxylation to yield free aldehyde. The intermediate product is hydroxyethylthiamine pyrophosphate (HETPP). It differs from DHETPP only in that it has no hydroxyl at the C-2 atom of the aldehyde residue. We have shown that transketolase can bind HETPP and split the aldehyde residue from it. This fact suggests that the path of the reaction is determined by the absence (in HETPP) or presence (in DHETPP) of a hydroxyl group. In the former case the reaction will yield free aldehyde, in the latter the aldehyde residue will be transferred onto an acceptor substrate.

  14. Endo-β-N-acetylglucosaminidase catalysed glycosylation: tolerance of enzymes to structural variation of the glycosyl amino acid acceptor.

    PubMed

    Tomabechi, Yusuke; Squire, Marie A; Fairbanks, Antony J

    2014-02-14

    Endo-β-N-Acetylglucosaminidases (ENGases) are highly useful biocatalysts that can be used to synthetically access a wide variety of defined homogenous N-linked glycoconjugates in a convergent manner. The synthetic efficiency of a selection of family GH85 ENGases was investigated as the structure of the acceptor substrate was varied. Several different GlcNAc-asparagine acceptors were synthesised, and used in conjunction with penta- and decasaccharide oxazoline donors. Different enzymes showed different tolerances of modification of the GlcNAc acceptor. Whilst none tolerated modification of either the 4- or 6-hydroxyl, both Endo M and Endo D tolerated modification of OH-3. For Endo D the achievable synthetic efficiency was increased by a factor of three by the use a 3-O-benzyl protected acceptor. The presence of a fucose at position-3 was not tolerated by any of the enzymes assayed.

  15. Structural Analysis of an Evolved Transketolase Reveals Divergent Binding Modes

    PubMed Central

    Affaticati, Pierre E.; Dai, Shao-Bo; Payongsri, Panwajee; Hailes, Helen C.; Tittmann, Kai; Dalby, Paul A.

    2016-01-01

    The S385Y/D469T/R520Q variant of E. coli transketolase was evolved previously with three successive smart libraries, each guided by different structural, bioinformatical or computational methods. Substrate-walking progressively shifted the target acceptor substrate from phosphorylated aldehydes, towards a non-phosphorylated polar aldehyde, a non-polar aliphatic aldehyde, and finally a non-polar aromatic aldehyde. Kinetic evaluations on three benzaldehyde derivatives, suggested that their active-site binding was differentially sensitive to the S385Y mutation. Docking into mutants generated in silico from the wild-type crystal structure was not wholly satisfactory, as errors accumulated with successive mutations, and hampered further smart-library designs. Here we report the crystal structure of the S385Y/D469T/R520Q variant, and molecular docking of three substrates. This now supports our original hypothesis that directed-evolution had generated an evolutionary intermediate with divergent binding modes for the three aromatic aldehydes tested. The new active site contained two binding pockets supporting π-π stacking interactions, sterically separated by the D469T mutation. While 3-formylbenzoic acid (3-FBA) preferred one pocket, and 4-FBA the other, the less well-accepted substrate 3-hydroxybenzaldehyde (3-HBA) was caught in limbo with equal preference for the two pockets. This work highlights the value of obtaining crystal structures of evolved enzyme variants, for continued and reliable use of smart library strategies. PMID:27767080

  16. Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases.

    PubMed

    Hindsgaul, O; Kaur, K J; Srivastava, G; Blaszczyk-Thurin, M; Crawley, S C; Heerze, L D; Palcic, M M

    1991-09-25

    The glycosyltransferases controlling the biosynthesis of cell-surface complex carbohydrates transfer glycosyl residues from sugar nucleotides to specific hydroxyl groups of acceptor oligosaccharides. These enzymes represent prime targets for the design of glycosylation inhibitors with the potential to specifically alter the structures of cell-surface glycoconjugates. With the aim of producing such inhibitors, synthetic oligosaccharide substrates were prepared for eight different glycosyltransferases. The enzymes investigated were: A, alpha(1----2, porcine submaxillary gland); B, alpha(1----3/4, Lewis); C, alpha(1----4, mung bean); D, alpha(1----3, Lex)-fucosyltransferases; E, beta(1----4)-galactosyltransferase; F, beta(1----6)-N-acetylglucosaminyltransferase V; G, beta(1----6)-mucin-N-acetylglucosaminyltransferase ("core-2" transferase); and H, alpha(2----3)-sialyltransferase from rat liver. These enzymes all transfer sugar residues from their respective sugar nucleotides (GDP-Fuc, UDP-Gal, UDP-GlcNAc, and CMP-sialic acid) with inversion of configuration at their anomeric centers. The Km values for their synthetic oligosaccharide acceptors were in the range of 0.036-1.3 mM. For each of these eight enzymes, acceptor analogs were next prepared where the hydroxyl group undergoing glycosylation was chemically removed and replaced by hydrogen. The resulting deoxygenated acceptor analogs can no longer be substrates for the corresponding glycosyltransferases and, if still bound by the enzymes, should act as competitive inhibitors. In only four of the eight cases examined (enzymes A, C, F, and G) did the deoxygenated acceptor analogs inhibit their target enzymes, and their Ki values (all competitive) remained in the general range of the corresponding acceptor Km values. No inhibition was observed for the remaining four enzymes even at high concentrations of deoxygenated acceptor analog. For these latter enzymes it is suggested that the reactive acceptor hydroxyl groups are

  17. Photoluminescence study of Be acceptors in GaInNAs epilayers

    NASA Astrophysics Data System (ADS)

    Tsai, Y.; Barman, B.; Scrace, T.; Petrou, A.; Fukuda, M.; Sellers, I. R.; Leroux, M.; Khalfioui, M. A.

    2014-03-01

    We have studied the photoluminescence (PL) spectra from MBE grown GaInNAs epilayers doped p-type with Beryllium acceptors. The measurements were carried out in the 5 K - 70 K temperature range and in magnetic fields (B) up to 7 tesla. The PL spectra contain two features at T = 5 K: The exciton at 1093 meV and a second broader feature at 1058 meV. The intensity of this feature decreases with increasing temperature and disappears completely by 70K while the excitonic feature persists. The emission at 1058meV is identified as the conduction band to Beryllium acceptor transition. If we take into account the binding energy of the exciton [3] we get a value of 23 meV for the Beryllium acceptor binding energy. The acceptor related transition was studied as a function of magnetic field; the energy of this transition has a linear dependence on B with a slope of 055 meV/T. Research supported by Amethyst Research In. through the State of Oklahoma, ONAP program.

  18. Structural and Dynamic Features of F-recruitment Site Driven Substrate Phosphorylation by ERK2

    PubMed Central

    Piserchio, Andrea; Ramakrishan, Venkatesh; Wang, Hsin; Kaoud, Tamer S.; Arshava, Boris; Dutta, Kaushik; Dalby, Kevin N.; Ghose, Ranajeet

    2015-01-01

    The F-recruitment site (FRS) of active ERK2 binds F-site (Phe-x-Phe-Pro) sequences found downstream of the Ser/Thr phospho-acceptor on cellular substrates. Here we apply NMR methods to analyze the interaction between active ERK2 (ppERK2), and a 13-residue F-site-bearing peptide substrate derived from its cellular target, the transcription factor Elk-1. Our results provide detailed insight into previously elusive structural and dynamic features of FRS/F-site interactions and FRS-driven substrate phosphorylation. We show that substrate F-site engagement significantly quenches slow dynamics involving the ppERK2 activation-loop and the FRS. We also demonstrate that the F-site phenylalanines make critical contacts with ppERK2, in contrast to the proline whose cis-trans isomerization has no significant effect on F-site recognition by the kinase FRS. Our results support a mechanism where phosphorylation of the disordered N-terminal phospho-acceptor is facilitated by its increased productive encounters with the ppERK2 active site due to docking of the proximal F-site at the kinase FRS. PMID:26054059

  19. Regulation of Yersinia Protein Kinase A (YpkA) Kinase Activity by Multisite Autophosphorylation and Identification of an N-terminal Substrate-binding Domain in YpkA*

    PubMed Central

    Pha, Khavong; Wright, Matthew E.; Barr, Tasha M.; Eigenheer, Richard A.; Navarro, Lorena

    2014-01-01

    The serine/threonine protein kinase YpkA is an essential virulence factor produced by pathogenic Yersinia species. YpkA is delivered into host mammalian cells via a type III secretion system and localizes to the inner side of the plasma membrane. We have previously shown that YpkA binds to and phosphorylates the α subunit of the heterotrimeric G protein complex, Gαq, resulting in inhibition of Gαq signaling. To identify residues in YpkA involved in substrate binding activity we generated GFP-YpkA N-terminal deletion mutants and performed coimmunoprecipitation experiments. We located a substrate-binding domain on amino acids 40–49 of YpkA, which lies within the previously identified membrane localization domain on YpkA. Deletion of amino acids 40–49 on YpkA interfered with substrate binding, substrate phosphorylation and substrate inhibition. Autophosphorylation regulates the kinase activity of YpkA. To dissect the mechanism by which YpkA transmits signals, we performed nano liquid chromatography coupled to tandem mass spectrometry to map in vivo phosphorylation sites. Multiple serine phosphorylation sites were identified in the secretion/translocation region, kinase domain, and C-terminal region of YpkA. Using site-directed mutagenesis we generated multiple YpkA constructs harboring specific serine to alanine point mutations. Our results demonstrate that multiple autophosphorylation sites within the N terminus regulate YpkA kinase activation, whereas mutation of serine to alanine within the C terminus of YpkA had no effect on kinase activity. YpkA autophosphorylation on multiple sites may be a strategy used by pathogenic Yersinia to prevent inactivation of this important virulence protein by host proteins. PMID:25086045

  20. High Performance Magazine Acceptor Threshold Criteria

    DTIC Science & Technology

    1994-08-01

    detonation transition (DDT). To account for unknown mechanisms the term XDT is also used. Development of a design procedure to prevent SD requires...propagation walls are used to prevent sympathetic detonation between munitions stored in adjacent cells. Design of the walls, and their mitigation...effects, requires sympathetic detonation threshold criteria for acceptor munitions. This paper outlines the procedures being used to develop SD threshold

  1. Biochemical analysis and structure determination of Paucimonas lemoignei poly(3-hydroxybutyrate) (PHB) depolymerase PhaZ7 muteins reveal the PHB binding site and details of substrate-enzyme interactions.

    PubMed

    Jendrossek, Dieter; Hermawan, Siska; Subedi, Bishwa; Papageorgiou, Anastassios C

    2013-11-01

    Five amino acids (Y105, Y176, Y189, Y189, W207) that constitute the substrate binding site of PHB depolymerase PhaZ7 were identified. All residues are located at a single surface-exposed location of PhaZ7. Exchange of these amino acids by less hydrophobic, hydrophilic or negatively charged residues reduced binding of PhaZ7 to PHB. Modifications of other residues at the PhaZ7 surface (F9, Y66, Y103, Y124, Y169, Y172, Y173, F198, Y203, Y204, F251, W252) had no effect on substrate binding. The PhaZ7 wild-type protein, three muteins with single amino acid exchanges (Y105A, Y105E, Y190E), a PhaZ7 variant with deletion of residues 202-208, and PhaZ7 in which the active-site serine had been replaced by alanine (S136A) were crystallized and their structures were determined at 1.6-2.0 Å resolution. The structures were almost identical but revealed flexibility of some regions. Structural analysis of PhaZ7 (S136A) with bound 3-hydroxybutyrate tetramer showed that the substrate binds in a cleft that is composed of Y105, Y176, Y189 and Y190 and thus confirmed the data obtained by site-directed mutagenesis. To the best of our knowledge this is the first example in which the substrate binding site of a PHB depolymerase is documented at a molecular and structural level.

  2. Effects of mutations in the substrate-binding domain of poly[(R)-3-hydroxybutyrate] (PHB) depolymerase from Ralstonia pickettii T1 on PHB degradation.

    PubMed

    Hiraishi, Tomohiro; Hirahara, Yoko; Doi, Yoshiharu; Maeda, Mizuo; Taguchi, Seiichi

    2006-11-01

    Poly[(R)-3-hydroxybutyrate] (PHB) depolymerase from Ralstonia pickettii T1 (PhaZ(RpiT1)) adsorbs to denatured PHB (dPHB) via its substrate-binding domain (SBD) to enhance dPHB degradation. To evaluate the amino acid residues participating in dPHB adsorption, PhaZ(RpiT1) was subjected to a high-throughput screening system consisting of PCR-mediated random mutagenesis targeted to the SBD gene and a plate assay to estimate the effects of mutations in the SBD on dPHB degradation by PhaZ(RpiT1). Genetic analysis of the isolated mutants with lowered activity showed that Ser, Tyr, Val, Ala, and Leu residues in the SBD were replaced by other residues at high frequency. Some of the mutant enzymes, which contained the residues replaced at high frequency, were applied to assays of dPHB degradation and adsorption, revealing that those residues are essential for full activity of both dPHB degradation and adsorption. These results suggested that PhaZ(RpiT1) adsorbs on the surface of dPHB not only via hydrogen bonds between hydroxyl groups of Ser in the enzyme and carbonyl groups in the PHB polymer but also via hydrophobic interaction between hydrophobic residues in the enzyme and methyl groups in the PHB polymer. The L441H enzyme, which displayed lower dPHB degradation and adsorption abilities, was purified and applied to a dPHB degradation assay to compare it with the wild-type enzyme. The kinetic analysis of the dPHB degradation suggested that lowering the affinity of the SBD towards dPHB causes a decrease in the dPHB degradation rate without the loss of its hydrolytic activity for the polymer chain.

  3. Participation of Glutamate-354 of the CP43 Polypeptide in the Ligation of Mn and the Binding of Substrate Water in Photosystem II

    SciTech Connect

    Service, Rachel; Yano, Junko; McConnell, Iain; Hwang, Hong Jin; Niks, Dimitri; Hille, Russ; Wydrzynski, Tom; Burnap, Robert; Hillier, Warwick; Debus, Richard

    2010-09-30

    . The EPR and FTIR data implied that 76 -82 percent of CP43-E354Q PSII centers can achieve the S2 state and that most of these can achieve the S3 state, but no evidence for advancement beyond the S3 state was observed in the FTIR data, at least not in a majority of PSII centers. Although the X-ray absorption and EPR data showed that the CP43-E354Q mutation only subtly perturbs the structure and spin state of the Mn4Ca cluster in the S2 state, the FTIR and H218O exchange data show that the mutation strongly influences other properties of the Mn4Ca cluster, altering the response of numerous carboxylate and amide groups to the increased positive charge that develops on the cluster during the S1 to S2 transition and weakening the binding of both substrate water molecules (or water derived ligands), especially the one that exchanges rapidly in the S3 state. The FTIR data provide evidence that CP43-Glu354 coordinates to the Mn4Ca cluster in the S1 state as a bridging ligand between two metal ions, but provide no compelling evidence that this residue changes its coordination mode during the S1 to S2 transition. The H218O exchange data provide evidence that CP43-Glu354 interacts with the Mn ion that ligates the substrate water molecule (or water-derived ligand) that is in rapid exchange in the S3 state.

  4. The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates

    PubMed Central

    Whitaker, Neal; Chen, Yuqing; Jakubowski, Simon J.; Sarkar, Mayukh K.; Li, Feng

    2015-01-01

    ABSTRACT Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs. IMPORTANCE For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are

  5. Photoionization in micelles: Addition of charged electron acceptors

    NASA Astrophysics Data System (ADS)

    Stenland, Chris; Kevan, Larry

    The relative photoyield of the electron donor N, N, N', N'-tetramethylbenzidine (TMB), solubilized in sodium and lithium dodecyl sulfate micelles with added charged electron acceptors was investigated. It was attempted to control the acceptor distance from a charged micellar interface by differently charged acceptors, cationic dimethyl viologen and anionic ferricyanide. However, back electron transfer from both cationic and anionic acceptors was found to be efficient. Thus simple electrostatic arguments for control of the photoyield do not seem applicable. Salt effects associated with the added ionic acceptors which partially neutralize the ionic micellar interface are suggested to be an important factor.

  6. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    SciTech Connect

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  7. Binomial distribution-based quantitative measurement of multiple-acceptors fluorescence resonance energy transfer by partially photobleaching acceptor

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yu, Huaina; Zhang, Jianwei; Chen, Tongsheng

    2014-06-01

    We report that binomial distribution depending on acceptor photobleaching degree can be used to characterize the proportions of various kinds of FRET (Fluorescence Resonance Energy Transfer) constructs resulted from partial acceptor photobleaching of multiple-acceptors FRET system. On this basis, we set up a rigorous quantitation theory for multiple-acceptors FRET construct named as Mb-PbFRET which is not affected by the imaging conditions and fluorophore properties. We experimentally validate Mb-PbFRET with FRET constructs consisted of one donor and two or three acceptors inside living cells on confocal and wide-field microscopes.

  8. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  9. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.

    PubMed

    Mashimo, Masato; Kato, Jiro; Moss, Joel

    2014-11-01

    ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD(+)) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g., ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g., ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1(-/-) and ARH3(-/-) mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos.

  10. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics.

    PubMed

    Li, Hanying; Fan, Congcheng; Fu, Weifei; Xin, Huolin L; Chen, Hongzheng

    2015-01-12

    Organic single crystals are ideal candidates for high-performance photovoltaics due to their high charge mobility and long exciton diffusion length; however, they have not been largely considered for photovoltaics due to the practical difficulty in making a heterojunction between donor and acceptor single crystals. Here, we demonstrate that extended single-crystalline heterojunctions with a consistent donor-top and acceptor-bottom structure throughout the substrate can be simply obtained from a mixed solution of C60 (acceptor) and 3,6-bis(5-(4-n-butylphenyl)thiophene-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (donor). 46 photovoltaic devices were studied with the power conversion efficiency of (0.255±0.095)% under 1 sun, which is significantly higher than the previously reported value for a vapor-grown organic single-crystalline donor-acceptor heterojunction (0.007%). As such, this work opens a practical avenue for the study of organic photovoltaics based on single crystals.

  11. Crystal Structures of An F420-Dependent Glucose-6-Phosphate Dehydrogenase Fgd1 Involved in the Activation of the Anti-Tb Drug Candidate Pa-824 Reveal the Basis of Coenzyme And Substrate Binding

    SciTech Connect

    Bashiri, G.; Squire, C.J.; Moreland, N.J.; Baker, E.N.

    2009-05-11

    The modified flavin coenzyme F{sub 420} is found in a restricted number of microorganisms. It is widely distributed in mycobacteria, however, where it is important in energy metabolism, and in Mycobacterium tuberculosis (Mtb) is implicated in redox processes related to non-replicating persistence. In Mtb, the F{sub 420}-dependent glucose-6-phosphate dehydrogenase FGD1 provides reduced F{sub 420} for the in vivo activation of the nitroimidazopyran prodrug PA-824, currently being developed for anti-tuberculosis therapy against both replicating and persistent bacteria. The structure of M. tuberculosis FGD1 has been determined by x-ray crystallography both in its apo state and in complex with F{sub 420} and citrate at resolutions of 1.90 and 1.95{angstrom}, respectively. The structure reveals a highly specific F{sub 420} binding mode, which is shared with several other F{sub 420}-dependent enzymes. Citrate occupies the substrate binding pocket adjacent to F{sub 420} and is shown to be a competitive inhibitor (IC{sub 50} 43 {micro}m). Modeling of the binding of the glucose 6-phosphate (G6P) substrate identifies a positively charged phosphate binding pocket and shows that G6P, like citrate, packs against the isoalloxazine moiety of F{sub 420} and helps promote a butterfly bend conformation that facilitates F{sub 420} reduction and catalysis.

  12. Mechanism of phosphoglycolate phosphatase. Studies of hydrolysis and transphosphorylation, substrate analogs, and sulfhydryl inhibition.

    PubMed

    Christeller, J T; Tolbert, N E

    1978-03-25

    Enzymatic hydrolysis of phosphoglycolate proceeds through O-P bond cleavage as determined by reaction in H218O and analysis of the trimethylsilyl derivatives of the reaction products by mass spectrometry. No phosphate, hydroxyl, or carboxyl exchange occurred. End product inhibition was consistent with an ordered release of products, first the alcoholic product, glycolate, then phosphate. Analysis of the data indicated that the phosphate.enzyme complex dissociated very rapidly, and this was confirmed by use of alternative phosphomonoester substrates. Maximum velocity with these alternate substrates was found to be proportional to the pKa of of the corresponding alcoholic product, indicating the rate-limiting step in the reaction was protonation of the bridge oxygen. The use of substrate analogs further suggested that enzymatic specificity residues in exacting steric requirements for binding, and that large alkyl groups were excluded on this basis. Phosphoglycolate phosphatase catalyzed transphorylation to a wide range of acceptors and was inhibited at the active site by diisopropyl-fluorophosphate. The data suggest that the reaction sequence proceeds via a phosphoenzyme intermediate. N-Ethylmaleimide slowly inactivated the enzyme, the rate being greatly increased by P-glycolate, but not by magnesium or phosphate ions. The data suggest a conformational change is necessary to induce the transition state complex and phosphoenzyme formation. This may account for the phosphate acceptor specificity and is consistent with the failure to observe an enzyme-mediated H2O-phosphate oxygen exchange.

  13. Notch-modifying xylosyltransferase-substrate complexes support an SNi-like retaining mechanism

    PubMed Central

    Yu, Hongjun; Takeuchi, Megumi; LeBarron, Jamie; Kantharia, Joshua; London, Erwin; Bakker, Hans; Haltiwanger, Robert S.; Li, Huilin; Takeuchi, Hideyuki

    2015-01-01

    A major remaining question in glycobiology is how a glycosyltransferase (GT) that retains the anomeric linkage of a sugar catalyzes the reaction. Xylosideα1–3 Xylosyltransferase (XXYLT1) is a retaining GT that regulates Notch receptor activation by adding xylose to the Notch extracellular domain. Here, using natural acceptor and donor substrates and active Mus musculus XXYLT1, we report a series of crystallographic snapshots along the reaction, including an unprecedented natural and competent Michaelis reaction complex for retaining enzymes. These structures strongly support the SNi-like reaction as the retaining mechanism for XXYLT1. Unexpectedly the Epidermal Growth Factor-like repeat acceptor substrate undergoes a large conformational change upon binding to the active site, providing a structural basis for substrate specificity. Our improved understanding of this retaining enzyme will accelerate the design of retaining GT inhibitors that can modulate Notch activity in pathological situations where dysregulation of Notch is known to cause cancer or developmental disorders. PMID:26414444

  14. Specificity in substrate binding by protein folding catalysts: tyrosine and tryptophan residues are the recognition motifs for the binding of peptides to the pancreas-specific protein disulfide isomerase PDIp.

    PubMed Central

    Ruddock, L. W.; Freedman, R. B.; Klappa, P.

    2000-01-01

    Using a cross-linking approach, we recently demonstrated that radiolabeled peptides or misfolded proteins specifically interact in vitro with two luminal proteins in crude extracts from pancreas microsomes. The proteins were the folding catalysts protein disulfide isomerase (PDI) and PDIp, a glycosylated, PDI-related protein, expressed exclusively in the pancreas. In this study, we explore the specificity of these proteins in binding peptides and related ligands and show that tyrosine and tryptophan residues in peptides are the recognition motifs for their binding by PDIp. This peptide-binding specificity may reflect the selectivity of PDIp in binding regions of unfolded polypeptide during catalysis of protein folding. PMID:10794419

  15. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  16. Status of the substrate binding sites of ribulose bisphosphate carboxylase as determined with 2-C-carboxyarabinitol 1,5-bisphosphate. [Spinacia oleracea

    SciTech Connect

    Zhu, Genhai; Jensen, R.G. )

    1990-05-01

    The properties of the tight and specific binding of 2-C-carboxy-D-arabinitol 1,5-bisphosphate (CABP), which occurs only to reaction sites of ribulose 1,5-bisphosphate carboxylase (Rubisco) that are activated by CO{sub 2} and Mg{sup 2+}, were studied. With fully active purified spinach (Spinacia oleracea) Rubisco the rate of tight binding of ({sup 14}C)CABP fit a multiple exponential rate equation with half of the sites binding with a rate constant of 40 per minute and the second half of the sites binding at 3.2 per minute. This suggests that after CABP binds to one site of a dimer of Rubisco large subunits, binding to the second site is considerably slower, indicating negative cooperativity as previously reported. The rate of CABP binding to partially activated Rubisco was complete within 2 to 5 minutes, with slower binding to inactive sites as they formed the carbamate and bound Mg{sup 2+}. Addition of ({sup 14}C)CABP and EDTA stopped binding of Mg{sup 2+} and allowed tight binding of the radiolabel only to sites which were CO{sub 2}/Mg{sup 2+}-activated at that moment. The rate of CO{sub 2} fixation was proportional to the CO{sub 2}/Mg{sup 2+}-activated sites. During light-dependent CO{sub 2} fixation with isolated spinach chloroplasts, the amount of carbamylation was proportional to Rubisco activity either initially upon lysis of the plastids or following total activation with Mg{sup 2+} and CO{sub 2}. Lysis of chloroplasts in media with ({sup 14}C)CABP plus EDTA estimated those carbamylated sites having Mg{sup 2+}. The loss of Rubisco activation during illumination was partially due to the lack of Mg{sup 2+} to stabilize the carbamylated sites.

  17. High-throughput screening of dipeptide utilization mediated by the ABC transporter DppBCDF and its substrate-binding proteins DppA1-A5 in Pseudomonas aeruginosa.

    PubMed

    Pletzer, Daniel; Lafon, Corinne; Braun, Yvonne; Köhler, Thilo; Page, Malcolm G P; Mourez, Michael; Weingart, Helge

    2014-01-01

    In this study, we show that the dppBCDF operon of Pseudomonas aeruginosa PA14 encodes an ABC transporter responsible for the utilization of di/tripeptides. The substrate specificity of ABC transporters is determined by its associated substrate-binding proteins (SBPs). Whereas in E. coli only one protein, DppA, determines the specificity of the transporter, five orthologous SBPs, DppA1-A5 are present in P. aeruginosa. Multiple SBPs might broaden the substrate specificity by increasing the transporter capacity. We utilized the Biolog phenotype MicroArray technology to investigate utilization of di/tripeptides in mutants lacking either the transport machinery or all of the five SBPs. This high-throughput method enabled us to screen hundreds of dipeptides with various side-chains, and subsequently, to determine the substrate profile of the dipeptide permease. The substrate spectrum of the SBPs was elucidated by complementation of a penta mutant, deficient of all five SBPs, with plasmids carrying individual SBPs. It became apparent that some dipeptides were utilized with different affinity for each SBP. We found that DppA2 shows the highest flexibility on substrate recognition and that DppA2 and DppA4 have a higher tendency to utilize tripeptides. DppA5 was not able to complement the penta mutant under our screening conditions. Phaseolotoxin, a toxic tripeptide inhibiting the enzyme ornithine carbamoyltransferase, is also transported into P. aeruginosa via the DppBCDF permease. The SBP DppA1, and with much greater extend DppA3, are responsible for delivering the toxin to the permease. Our results provide a first overview of the substrate pattern of the ABC dipeptide transport machinery in P. aeruginosa.

  18. [Relations between the retinoic acid acceptor and teratogenesis of retinoids].

    PubMed

    Li, Zeng-Gang; Sun, Kai-Lai

    2004-09-01

    Retinoic acid can induce teratogenesis of the fetus of many animals including human, and its biological activities are induced by a serious of different retinoic acid accepters and their ligands. The retinoic acid acceptor RAR plays key roles in the teratogenesis, and the ligands of RAR are strong teratogens. The intensity sequence of the relative teratogenesis is ligandalpha, ligandbeta and ligandgamma. The ligands of the retinoic acid acceptor RXR cannot induce teratogenesis, but they can enhance the teratogenesis of the RAR stimulus. The retinoic acid acceptors can also affect the development of the fetus by adjusting the expression of the other genes. The relations between the gene mutation of the retinoic acid acceptor, various retinoic acid acceptors and their ligands and teratogenesis of retinoic acid are summarized in this article. In addition, the regulations of the retinoic acid acceptors to the other genes are also discussed.

  19. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed Central

    Barrett, M C; Dawson, A P

    1975-01-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme. PMID:1218095

  20. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  1. Donor and Acceptor States in GaAs-(Ga, Al)As Quantum Dots:. Effects of Hydrostatic Pressure and AN Intense Laser

    NASA Astrophysics Data System (ADS)

    Miguez, A.; Franco, R.; Silva-Valencia, J.

    We calculated the binding energies of shallow donors and acceptors in a spherical GaAs-Ga1-xAlx As quantum dot under the combined effect of isotropic hydrostatic pressure and an intense laser. We used a variational approach within the effective mass approximation. The binding energy was computed as a function of hydrostatic pressure, dot sizes and laser field amplitude. The results showed that the impurity binding energy increases with pressure and decreases with the laser field amplitude when other parameters are fixed. We also found that the pressure effects are more dramatic for donor than acceptor impurities, especially for quantum dots with small radii.

  2. Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells.

    PubMed

    Wu, Jhong-Sian; Cheng, Sheng-Wen; Cheng, Yen-Ju; Hsu, Chain-Shu

    2015-03-07

    Harvesting solar energy from sunlight to generate electricity is considered as one of the most important technologies to address the future sustainability of humans. Polymer solar cells (PSCs) have attracted tremendous interest and attention over the past two decades due to their potential advantage to be fabricated onto large area and light-weight flexible substrates by solution processing at a lower cost. PSCs based on the concept of bulk heterojunction (BHJ) configuration where an active layer comprises a composite of a p-type (donor) and an n-type (acceptor) material represents the most useful strategy to maximize the internal donor-acceptor interfacial area allowing for efficient charge separation. Fullerene derivatives such as [6,6]-phenyl-C61 or 71-butyric acid methyl ester (PCBM) are the ideal n-type materials ubiquitously used for BHJ solar cells. The major effort to develop photoactive materials is numerously focused on the p-type conjugated polymers which are generally synthesized by polymerization of electron-rich donor and electron-deficient acceptor monomers. Compared to the development of electron-deficient comonomers (acceptor segments), the development of electron-rich donor materials is considerably flourishing. Forced planarization by covalently fastening adjacent aromatic and heteroaromatic subunits leads to the formation of ladder-type conjugated structures which are capable of elongating effective conjugation, reducing the optical bandgap, promoting intermolecular π-π interactions and enhancing intrinsic charge mobility. In this review, we will summarize the recent progress on the development of various well-defined new ladder-type conjugated materials. These materials serve as the superb donor monomers to prepare a range of donor-acceptor semi-ladder copolymers with sufficient solution-processability for solar cell applications.

  3. Inhibition of Multidrug Resistance-Linked P-Glycoprotein (ABCB1) Function by 5′-Fluorosulfonylbenzoyl 5′-Adenosine: Evidence for an ATP Analog That Interacts With Both Drug-Substrate- and Nucleotide-Binding Sites†

    PubMed Central

    Ohnuma, Shinobu; Chufan, Eduardo; Nandigama, Krishnamachary; Miller Jenkins, Lisa M.; Durell, Stewart R.; Appella, Ettore; Sauna, Zuben E.; Ambudkar, Suresh V.

    2011-01-01

    5′-fluorosulfonylbenzonyl 5′-adenosine (FSBA) is an ATP analog that covalently modifies several residues in the nucleotide-binding domains (NBDs) of several ATPases, kinases and other proteins. P-glycoprotein (P-gp, ABCB1) is a member of the ATP-binding cassette (ABC) transporter superfamily that utilizes energy from ATP hydrolysis for the efflux of amphipathic anticancer agents from cancer cells. We investigated the interactions of FSBA with P-gp to study the catalytic cycle of ATP hydrolysis. Incubation of P-gp with FSBA inhibited ATP hydrolysis (IC50= 0.21 mM) and the binding of 8-azido[α–32P]ATP (IC50= 0.68 mM). In addition, 14C-FSBA crosslinks to P-gp, suggesting that FSBA-mediated inhibition of ATP hydrolysis is irreversible due to covalent modification of P-gp. However, when the NBDs were occupied with a saturating concentration of ATP prior to treatment, FSBA stimulated ATP hydrolysis by P-gp. Furthermore, FSBA inhibited the photocrosslinking of P-gp with [125I]-Iodoaryl-azidoprazosin (IAAP; IC50 = 0.17 mM). As IAAP is a transport substrate for P-gp, this suggests that FSBA affects not only the NBDs, but also the transport-substrate site in the transmembrane domains. Consistent with these results, FSBA blocked efflux of rhodamine 123 from P-gp-expressing cells. Additionally, mass spectrometric analysis identified FSBA crosslinks to residues within or nearby the NBDs but not in the transmembrane domains and docking of FSBA in a homology model of human P-gp NBDs supports the biochemical studies. Thus, FSBA is an ATP analog that interacts with both the drug-binding and ATP-binding sites of P-gp, but fluorosulfonyl-mediated crosslinking is observed only at the NBDs. PMID:21452853

  4. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    SciTech Connect

    Mynbaev, K. D.; Shilyaev, A. V. Bazhenov, N. L.; Izhnin, A. I.; Izhnin, I. I.; Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A.

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  5. Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis.

    PubMed

    Genz, Maika; Vickers, Clare; van den Bergh, Tom; Joosten, Henk-Jan; Dörr, Mark; Höhne, Matthias; Bornscheuer, Uwe T

    2015-11-11

    To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5'-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions.

  6. Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis

    PubMed Central

    Genz, Maika; Vickers, Clare; van den Bergh, Tom; Joosten, Henk-Jan; Dörr, Mark; Höhne, Matthias; Bornscheuer, Uwe T.

    2015-01-01

    To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5′-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions. PMID:26569229

  7. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-03-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  8. Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin

    PubMed Central

    Eudes, Aymerick; Pereira, Jose H.; Yogiswara, Sasha; Wang, George; Teixeira Benites, Veronica; Baidoo, Edward E.K.; Lee, Taek Soon; Adams, Paul D.; Keasling, Jay D.; Loqué, Dominique

    2016-01-01

    Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity to acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels. PMID:26858288

  9. Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin.

    PubMed

    Eudes, Aymerick; Pereira, Jose H; Yogiswara, Sasha; Wang, George; Teixeira Benites, Veronica; Baidoo, Edward E K; Lee, Taek Soon; Adams, Paul D; Keasling, Jay D; Loqué, Dominique

    2016-03-01

    Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity to acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels.

  10. Evolution of function in the "two dinucleotide binding domains" flavoproteins.

    PubMed

    Ojha, Sunil; Meng, Elaine C; Babbitt, Patricia C

    2007-07-01

    Structural and biochemical constraints force some segments of proteins to evolve more slowly than others, often allowing identification of conserved structural or sequence motifs that can be associated with substrate binding properties, chemical mechanisms, and molecular functions. We have assessed the functional and structural constraints imposed by cofactors on the evolution of new functions in a superfamily of flavoproteins characterized by two-dinucleotide binding domains, the "two dinucleotide binding domains" flavoproteins (tDBDF) superfamily. Although these enzymes catalyze many different types of oxidation/reduction reactions, each is initiated by a stereospecific hydride transfer reaction between two cofactors, a pyridine nucleotide and flavin adenine dinucleotide (FAD). Sequence and structural analysis of more than 1,600 members of the superfamily reveals new members and identifies details of the evolutionary connections among them. Our analysis shows that in all of the highly divergent families within the superfamily, these cofactors adopt a conserved configuration optimal for stereospecific hydride transfer that is stabilized by specific interactions with amino acids from several motifs distributed among both dinucleotide binding domains. The conservation of cofactor configuration in the active site restricts the pyridine nucleotide to interact with FAD from the re-side, limiting the flow of electrons from the re-side to the si-side. This directionality of electron flow constrains interactions with the different partner proteins of different families to occur on the same face of the cofactor binding domains. As a result, superimposing the structures of tDBDFs aligns not only these interacting proteins, but also their constituent electron acceptors, including heme and iron-sulfur clusters. Thus, not only are specific aspects of the cofactor-directed chemical mechanism conserved across the superfamily, the constraints they impose are manifested in the

  11. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    PubMed

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations.

  12. New acceptor-donor-acceptor (A-D-A) type copolymers for efficient organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Ayachi, S.; Alimi, K.

    2015-01-01

    Three new conjugated systems alternating acceptor-donor-acceptor (