Science.gov

Sample records for acceptor substrate specificity

  1. Structural basis for non-genuine phenolic acceptor substrate specificity of Streptomyces roseochromogenes prenyltransferase CloQ from the ABBA/PT-barrel superfamily

    PubMed Central

    Araya-Cloutier, Carla; Martens, Bianca; Schaftenaar, Gijs; Leipoldt, Franziska; Gruppen, Harry

    2017-01-01

    Acceptor substrate specificity of Streptomyces roseochromogenes prenyltransferase SrCloQ was investigated using different non-genuine phenolic compounds. RP-UHPLC-UV-MSn was used for the tentative annotation and quantification of the prenylated products. Flavonoids, isoflavonoids and stilbenoids with different types of substitution were prenylated by SrCloQ, although with less efficiency than the genuine substrate 4-hydroxyphenylpyruvate. The isoflavan equol, followed by the flavone 7,4’-dihydroxyflavone, were the best non-genuine acceptor substrates. B-ring C-prenylation was in general preferred over A-ring C-prenylation (ratio 5:1). Docking studies of non-genuine acceptor substrates with the B-ring oriented towards the donor substrate dimethylallyl pyrophosphate, showed that the carbonyl group of the C-ring was able to make stabilizing interactions with the residue Arg160, which might determine the preference observed for B-ring prenylation. No reaction products were formed when the acceptor substrate had no phenolic hydroxyl groups. This preference can be explained by the essential hydrogen bond needed between a phenolic hydroxyl group and the residue Glu281. Acceptor substrates with an additional hydroxyl group at the C3’ position (B-ring), were mainly O3’-prenylated (> 80% of the reaction products). This can be explained by the proximity of the C3’ hydroxyl group to the donor substrate at the catalytic site. Flavones were preferred over isoflavones by SrCloQ. Docking studies suggested that the orientation of the B-ring and of the phenolic hydroxyl group at position C7 (A-ring) of flavones towards the residue Tyr233 plays an important role in this observed preference. Finally, the insights obtained on acceptor substrate specificity and regioselectivity for SrCloQ were extended to other prenyltransferases from the CloQ/NhpB family. PMID:28355308

  2. Cap analog substrates reveal three clades of cap guanine-N2 methyltransferases with distinct methyl acceptor specificities.

    PubMed

    Benarroch, Delphine; Jankowska-Anyszka, Marzena; Stepinski, Janusz; Darzynkiewicz, Edward; Shuman, Stewart

    2010-01-01

    The Tgs proteins are structurally homologous AdoMet-dependent eukaryal enzymes that methylate the N2 atom of 7-methyl guanosine nucleotides. They have an imputed role in the synthesis of the 2,2,7-trimethylguanosine (TMG) RNA cap. Here we exploit a collection of cap-like substrates to probe the repertoire of three exemplary Tgs enzymes, from mammalian, protozoan, and viral sources, respectively. We find that human Tgs (hTgs1) is a bona fide TMG synthase adept at two separable transmethylation steps: (1) conversion of m(7)G to m(2,7)G, and (2) conversion of m(2,7)G to m(2,2,7)G. hTgs1 is unable to methylate G or m(2)G, signifying that both steps require an m(7)G cap. hTgs1 utilizes a broad range of m(7)G nucleotides, including mono-, di-, tri-, and tetraphosphate derivatives as well as cap dinucleotides with triphosphate or tetraphosphate bridges. In contrast, Giardia lamblia Tgs (GlaTgs2) exemplifies a different clade of guanine-N2 methyltransferase that synthesizes only a dimethylguanosine (DMG) cap structure and cannot per se convert DMG to TMG under any conditions tested. Methylation of benzyl(7)G and ethyl(7)G nucleotides by hTgs1 and GlaTgs2 underscored the importance of guanine N7 alkylation in providing a key pi-cation interaction in the methyl acceptor site. Mimivirus Tgs (MimiTgs) shares with the Giardia homolog the ability to catalyze only a single round of methyl addition at guanine-N2, but is distinguished by its capacity for guanine-N2 methylation in the absence of prior N7 methylation. The relaxed cap specificity of MimiTgs is revealed at alkaline pH. Our findings highlight both stark and subtle differences in acceptor specificity and reaction outcomes among Tgs family members.

  3. Levansucrases from Pseudomonas syringae pv. tomato and P. chlororaphis subsp. aurantiaca: substrate specificity, polymerizing properties and usage of different acceptors for fructosylation.

    PubMed

    Visnapuu, Triinu; Mardo, Karin; Mosoarca, Cristina; Zamfir, Alina D; Vigants, Armands; Alamäe, Tiina

    2011-09-20

    Levansucrases of Pseudomonas syringae pv. tomato DC3000 (Lsc3) and Pseudomonas chlororaphis subsp. aurantiaca (also Pseudomonas aurantiaca) (LscA) have 73% identity of protein sequences, similar substrate specificity and kinetic properties. Both enzymes produce levan and fructooligosaccharides (FOS) of varied length from sucrose, raffinose and sugar beet molasses. A novel high-throughput chip-based nanoelectrospray mass spectrometric method was applied to screen alternative fructosyl acceptors for levansucrases. Lsc3 and LscA could both transfructosylate D-xylose, D-fucose, L- and D-arabinose, D-ribose, D-sorbitol, xylitol, xylobiose, D-mannitol, D-galacturonic acid and methyl-α-D-glucopyranoside and heterooligofructans with degree of polymerization up to 5 were detected. The ability of D-sorbitol, xylobiose, D-galacturonic acid, D-mannitol, xylitol and methyl-α-D-glucopyranoside to serve as fructosyl acceptors for levansucrases is shown for the first time. Expectedly, site-directed mutagenesis of His321 in Lsc3 to Arg, Lys, Leu and Ser resulted in proteins with decreased catalytic activity, affinity for sucrose and polymerizing ability. Random mutagenesis yielded a Lsc3 mutant Thr302Pro with reduced synthesis of levan and long-chain FOS. Thr302 is located in conserved DQTERP region of levansucrases adjacent to predicted acid-base catalyst Glu303. Thr302 and His321 are predicted to belong to +1 subsite of the substrate binding region of Lsc3.

  4. Acceptor specificity in the transglycosylation reaction using Endo-M.

    PubMed

    Tomabechi, Yusuke; Odate, Yuki; Izumi, Ryuko; Haneda, Katsuji; Inazu, Toshiyuki

    2010-11-22

    To determine the structural specificity of the glycosyl acceptor of the transglycosylation reaction using endo-β-N-acetylglucosaminidase (ENGase) (EC 3.2.1.96) from Mucor hiemalis (Endo-M), several acceptor derivatives were designed and synthesized. The narrow regions of the 1,3-diol structure from the 4- to 6-hydroxy functions of GlcNAc were found to be essential for the transglycosylation reaction using Endo-M. Furthermore, it was determined that Endo-M strictly recognizes a 1,3-diol structure consisting of primary and secondary hydroxyl groups.

  5. Engineered oligosaccharyltransferases with greatly relaxed acceptor site specificity

    PubMed Central

    Ollis, Anne A.; Zhang, Sheng; Fisher, Adam C.; DeLisa, Matthew P.

    2015-01-01

    The Campylobacter jejuni protein glycosylation locus (pgl) encodes machinery for asparagine-linked (N-linked) glycosylation and serves as the archetype for bacterial N-glycosylation. This machinery has been functionally transferred into Escherichia coli, thereby enabling convenient mechanistic dissection of the N-glycosylation process in this genetically tractable host. Here, we sought to identify sequence determinants in the oligosaccharyltransferase PglB that restrict its specificity to only those glycan acceptor sites containing a negatively charged residue at the −2 position relative to asparagine. This involved creation of a genetic assay named glycoSNAP (glycosylation of secreted N-linked acceptor proteins) that facilitates high-throughput screening of glycophenotypes in E. coli. Using this assay, we isolated several C. jejuni PglB variants that were capable of glycosylating an array of noncanonical acceptor sequences including one in a eukaryotic N-glycoprotein. Collectively, these results underscore the utility of glycoSNAP for shedding light on poorly understood aspects of N-glycosylation and for engineering designer N-glycosylation biocatalysts. PMID:25129029

  6. Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases.

    PubMed

    Hindsgaul, O; Kaur, K J; Srivastava, G; Blaszczyk-Thurin, M; Crawley, S C; Heerze, L D; Palcic, M M

    1991-09-25

    The glycosyltransferases controlling the biosynthesis of cell-surface complex carbohydrates transfer glycosyl residues from sugar nucleotides to specific hydroxyl groups of acceptor oligosaccharides. These enzymes represent prime targets for the design of glycosylation inhibitors with the potential to specifically alter the structures of cell-surface glycoconjugates. With the aim of producing such inhibitors, synthetic oligosaccharide substrates were prepared for eight different glycosyltransferases. The enzymes investigated were: A, alpha(1----2, porcine submaxillary gland); B, alpha(1----3/4, Lewis); C, alpha(1----4, mung bean); D, alpha(1----3, Lex)-fucosyltransferases; E, beta(1----4)-galactosyltransferase; F, beta(1----6)-N-acetylglucosaminyltransferase V; G, beta(1----6)-mucin-N-acetylglucosaminyltransferase ("core-2" transferase); and H, alpha(2----3)-sialyltransferase from rat liver. These enzymes all transfer sugar residues from their respective sugar nucleotides (GDP-Fuc, UDP-Gal, UDP-GlcNAc, and CMP-sialic acid) with inversion of configuration at their anomeric centers. The Km values for their synthetic oligosaccharide acceptors were in the range of 0.036-1.3 mM. For each of these eight enzymes, acceptor analogs were next prepared where the hydroxyl group undergoing glycosylation was chemically removed and replaced by hydrogen. The resulting deoxygenated acceptor analogs can no longer be substrates for the corresponding glycosyltransferases and, if still bound by the enzymes, should act as competitive inhibitors. In only four of the eight cases examined (enzymes A, C, F, and G) did the deoxygenated acceptor analogs inhibit their target enzymes, and their Ki values (all competitive) remained in the general range of the corresponding acceptor Km values. No inhibition was observed for the remaining four enzymes even at high concentrations of deoxygenated acceptor analog. For these latter enzymes it is suggested that the reactive acceptor hydroxyl groups are

  7. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    SciTech Connect

    Roch, Christina; Kuhn, Joachim; Kleesiek, Knut; Goetting, Christian

    2010-01-01

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that K{sub m} and V{sub max} values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  8. Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea.

    PubMed

    Hiromoto, Takeshi; Honjo, Eijiro; Noda, Naonobu; Tamada, Taro; Kazuma, Kohei; Suzuki, Masahiko; Blaber, Michael; Kuroki, Ryota

    2015-03-01

    UDP-glucose: anthocyanidin 3-O-glucosyltransferase (UGT78K6) from Clitoria ternatea catalyzes the transfer of glucose from UDP-glucose to anthocyanidins such as delphinidin. After the acylation of the 3-O-glucosyl residue, the 3'- and 5'-hydroxyl groups of the product are further glucosylated by a glucosyltransferase in the biosynthesis of ternatins, which are anthocyanin pigments. To understand the acceptor-recognition scheme of UGT78K6, the crystal structure of UGT78K6 and its complex forms with anthocyanidin delphinidin and petunidin, and flavonol kaempferol were determined to resolutions of 1.85 Å, 2.55 Å, 2.70 Å, and 1.75 Å, respectively. The enzyme recognition of unstable anthocyanidin aglycones was initially observed in this structural determination. The anthocyanidin- and flavonol-acceptor binding details are almost identical in each complex structure, although the glucosylation activities against each acceptor were significantly different. The 3-hydroxyl groups of the acceptor substrates were located at hydrogen-bonding distances to the Nε2 atom of the His17 catalytic residue, supporting a role for glucosyl transfer to the 3-hydroxyl groups of anthocyanidins and flavonols. However, the molecular orientations of these three acceptors are different from those of the known flavonoid glycosyltransferases, VvGT1 and UGT78G1. The acceptor substrates in UGT78K6 are reversely bound to its binding site by a 180° rotation about the O1-O3 axis of the flavonoid backbones observed in VvGT1 and UGT78G1; consequently, the 5- and 7-hydroxyl groups are protected from glucosylation. These substrate recognition schemes are useful to understand the unique reaction mechanism of UGT78K6 for the ternatin biosynthesis, and suggest the potential for controlled synthesis of natural pigments.

  9. Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea

    PubMed Central

    Hiromoto, Takeshi; Honjo, Eijiro; Noda, Naonobu; Tamada, Taro; Kazuma, Kohei; Suzuki, Masahiko; Blaber, Michael; Kuroki, Ryota

    2015-01-01

    UDP-glucose: anthocyanidin 3-O-glucosyltransferase (UGT78K6) from Clitoria ternatea catalyzes the transfer of glucose from UDP-glucose to anthocyanidins such as delphinidin. After the acylation of the 3-O-glucosyl residue, the 3′- and 5′-hydroxyl groups of the product are further glucosylated by a glucosyltransferase in the biosynthesis of ternatins, which are anthocyanin pigments. To understand the acceptor-recognition scheme of UGT78K6, the crystal structure of UGT78K6 and its complex forms with anthocyanidin delphinidin and petunidin, and flavonol kaempferol were determined to resolutions of 1.85 Å, 2.55 Å, 2.70 Å, and 1.75 Å, respectively. The enzyme recognition of unstable anthocyanidin aglycones was initially observed in this structural determination. The anthocyanidin- and flavonol-acceptor binding details are almost identical in each complex structure, although the glucosylation activities against each acceptor were significantly different. The 3-hydroxyl groups of the acceptor substrates were located at hydrogen-bonding distances to the Nε2 atom of the His17 catalytic residue, supporting a role for glucosyl transfer to the 3-hydroxyl groups of anthocyanidins and flavonols. However, the molecular orientations of these three acceptors are different from those of the known flavonoid glycosyltransferases, VvGT1 and UGT78G1. The acceptor substrates in UGT78K6 are reversely bound to its binding site by a 180° rotation about the O1–O3 axis of the flavonoid backbones observed in VvGT1 and UGT78G1; consequently, the 5- and 7-hydroxyl groups are protected from glucosylation. These substrate recognition schemes are useful to understand the unique reaction mechanism of UGT78K6 for the ternatin biosynthesis, and suggest the potential for controlled synthesis of natural pigments. PMID:25556637

  10. Fluorescent mannosides serve as acceptor substrates for glycosyltransferase and sugar-1-phosphate transferase activities in Euglena gracilis membranes.

    PubMed

    Ivanova, Irina M; Nepogodiev, Sergey A; Saalbach, Gerhard; O'Neill, Ellis C; Urbaniak, Michael D; Ferguson, Michael A J; Gurcha, Sudagar S; Besra, Gurdyal S; Field, Robert A

    2017-01-13

    Synthetic hexynyl α-D-mannopyranoside and its α-1,6-linked disaccharide counterpart were fluorescently labelled through CuAAC click chemistry with 3-azido-7-hydroxycoumarin. The resulting triazolyl-coumarin adducts, which were amenable to analysis by TLC, HPLC and mass spectrometry, proved to be acceptor substrates for α-1,6-ManT activities in mycobacterial membranes, as well as α- and β-GalT activities in trypanosomal membranes, benchmarking the potential of the fluorescent acceptor approach against earlier radiochemical assays. Following on to explore the glycobiology of the benign protozoan alga Euglena gracilis, α-1,3- and α-1,2-ManT activities were detected in membrane preparations, along with GlcT, Glc-P-T and GlcNAc-P-T activities. These studies serve to demonstrate the potential of readily accessible fluorescent glycans as substrates for exploring carbohydrate active enzymes.

  11. Substrate specificity of FUT8 and chemoenzymatic synthesis of core-fucosylated asymmetric N-glycans.

    PubMed

    Calderon, Angie D; Liu, Yunpeng; Li, Xu; Wang, Xuan; Chen, Xi; Li, Lei; Wang, Peng G

    2016-04-26

    Substrate specificity studies of human FUT8 using 77 structurally-defined N-glycans as acceptors showed a strict requirement towards the α1,3-mannose branch, but a great promiscuity towards the α1,6-mannose branch. Accordingly, a chemoenzymatic strategy was developed for the efficient synthesis of core-fucosylated asymmetric N-glycans.

  12. 5'-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping.

    PubMed

    Ogino, Minako; Ogino, Tomoaki

    2017-03-15

    The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5'-phospho-RNA (pRNA) from 5'-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5'-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m(7)G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m(7)GpppA (cap 0), respectively. Furthermore, either the 2'- or 3'-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5'-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups of GDP as

  13. Endogenous glycosphingolipid acceptor specificity of sialosyltransferase systems in intact golgi membranes, synaptosomes, and synaptic plasma membranes from rat brain

    SciTech Connect

    Durrie, R.; Saito, M.; Rosenberg, A.

    1988-05-17

    Preparations highly enriched in Golgi complex membranes, synaptosomes, and synaptic plasma membranes (SPM) by marker enzyme analysis and electron microscopic morphology were made from the brains of 28-day-old rats. These were incubated with cytidine 5'-monophosphate-N-acetyl(/sup 14/C)neuraminic acid (CMP-NeuAc) in a physiologic buffer, without detergents. Glycolipid sialosyltransferase activities (SATs) were measured by analyzing incorporation of radiolabeled NeuAc into endogenous membrane gangliosides. Golgi SAT was diversified in producing all the various molecular species of labeled gangliosides. Synaptosomal SAT exhibited a lower activity, but it was highly specific in its labeling pattern, with a marked preference for labeling NeuAc..cap alpha..2 ..-->.. 8NeuAc..cap alpha..2 ..-->.. 3Gal..beta..1 ..-->.. 4Glc..beta..1 ..-->.. 1Cer (GD3 ganglioside). SPM prepared from the synaptosomes retained the GD3-related SAT (or SAT-2), and the total specific activity increased, which suggests that the location of the synaptosomal activity is in the SPM. These results indicate that SAT activity in Golgi membranes differs from that in synaptosomes with regard to endogenous acceptor substrate specificity and SAT activity of synaptosomes should be located in the synaptosomal plasma membrane. This SAT could function as an ectoenzyme in concert with ecto-sialidase to modulate the GD3 and other ganglioside population in situ at the SPM of the central nervous system.

  14. Stimulation of the ATPase activity of rat brain protein kinase C by phospho acceptor substrates of the enzyme.

    PubMed

    O'Brian, C A; Ward, N E

    1991-03-05

    We recently reported that autophosphorylated rat brain protein kinase C (PKC) catalyzes a Ca2(+)- and phosphatidylserine- (PS-) dependent ATPase reaction. The Ca2(+)- and PS-dependent ATPase and histone kinase reactions of PKC each had a Km app(ATP) of 6 microM. Remarkably, the catalytic fragment of PKC lacked detectable ATPase activity. In this paper, we show that subsaturating concentrations of protein substrates accelerate the ATPase reaction catalyzed by PKC and that protein and peptide substrates of PKC induce ATPase catalysis by the catalytic fragment. At subsaturating concentrations, histone III-S and protamine sulfate each accelerated the ATPase activity of PKC in the presence of Ca2+ and PS by as much as 1.5-fold. At saturating concentrations, the protein substrates were inhibitory. Poly(L-lysine) failed to accelerate the ATPase activity, indicating that the acceleration observed with histone III-S and protamine sulfate was not simply a result of their gross physical properties. Furthermore, histone III-S induced the ATPase activity of the catalytic fragment of PKC, at both subsaturating and saturating histone concentrations. The induction of ATPase activity was also elicited by the peptide substrate Arg-Arg-Lys-Ala-Ser-Gly-Pro-Pro-Val, when the peptide was present at concentrations near its Km app. The induction of the ATPase activity by the nonapeptide provides strong evidence that the binding of phospho acceptor substrates to the active site of PKC can stimulate ATP hydrolysis. Taken together, our results indicate that PKC-catalyzed protein phosphorylation is inefficient, since it is accompanied by Pi production.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Substrate Specificity of Prostate-Specific Membrane Antigen

    PubMed Central

    Anderson, Marc O.; Wu, Lisa Y.; Santiago, Nicholas M.; Moser, Jamie M.; Rowley, Jennifer A.; Bolstad, Erin S. D.; Berkman, Clifford E.

    2007-01-01

    A series of putative dipeptide substrates of prostate specific membrane antigen (PSMA) was prepared that explored α- and β/γ-linked acidic residues at the P1 position and various chromophores at the P2 position, while keeping the P1’ residue constant as L-Glu. Four chromophores were examined, including 4-phenylazobenzoyl, 1-pyrenebutyrl, 9-anthracenylcarboxyl-γ-aminobutyrl, and 4-nitrophenylbutyryl. When evaluating these chromophores, it was found that a substrate containing 4-phenylazobenzoyl at the P2 position was consumed most efficiently. Substitution at the P1 position with acidic residues showed that only γ-linked L-Glu and D-Glu were recognized by the enzyme, with the former being more readily proteolyzed. Lastly, binding modes of endogenous substrates and our best synthetic substrate (4-phenylazobenzoyl-Glu-γ-Glu) were proposed by computational docking studies into an X-ray crystal structure of the PSMA extracellular domain. PMID:17764959

  16. Temperature- and acceptor-specificity of cell-free vesicular transfer from transitional endoplasmic reticulum to the cis Golgi apparatus.

    PubMed Central

    Dunkle, S; Reust, T; Nowack, D D; Waits, L; Paulik, M; Morre, D M; Morre, D J

    1992-01-01

    The temperature dependence and specificity of transfer of membrane constituents from donor transitional endoplasmic reticulum to the cis Golgi apparatus were investigated using a cell-free system from rat liver. The radiolabelled transitional endoplasmic reticulum donors were prepared from slices of rat liver prelabelled with [14C]leucine. The acceptor Golgi apparatus elements were unlabelled and immobilized on nitrocellulose. When Golgi apparatus stacks were separated by preparative free-flow electrophoresis into subfractions enriched in cisternae derived from the cis, medial and trans portions of the stack respectively, efficient specific transfer was observed only to cis elements. Trans elements were devoid of specific acceptor capacity. Similarly, when transfer was determined as a function of temperature, a transition was observed in transfer activity between 12 degrees C and 18 degrees C similar to that seen in vivo for formation of the so-called 16 degrees C cis Golgi-located membrane compartment. Transfer at temperatures below 16 degrees C and transfer to trans Golgi apparatus compartments at temperatures either above or below 16 degrees C was similar and unspecific. The unspecific transfer at low temperature was pH independent, whereas specific transfer was greatest at the physiological pH of 7, and was reduced to 10% and 18% of that occurring at pH 8 and pH 5.5 respectively. These findings show that the cell-free system derived from rat liver exhibits a high degree of fidelity to transfer in vivo, an efficiency approaching that observed in vivo, and a nearly absolute acceptor specificity for cis Golgi apparatus. The acceptor-, temperature- and pH-specificity of the cell-free transfer, as well as the saturation kinetics exhibited with respect to acceptor Golgi apparatus, support the concept of transition-vesicle-specific docking sites of finite number associated with cis Golgi apparatus cisternae. Images Fig. 4. PMID:1472010

  17. Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1.

    PubMed

    Dewitte, Griet; Walmagh, Maarten; Diricks, Margo; Lepak, Alexander; Gutmann, Alexander; Nidetzky, Bernd; Desmet, Tom

    2016-09-10

    UDP-glycosyltransferases (UGTs) are a promising class of biocatalysts that offer a sustainable alternative for chemical glycosylation of natural products. In this study, we aimed to characterize plant-derived UGTs from the GT-1 family with an emphasis on their acceptor promiscuity and their potential application in glycosylation processes. Recombinant expression in E. coli provided sufficient amounts of enzyme for the in-depth characterization of the salicylic acid UGT from Capsella rubella (UGT-SACr) and the stevia UGT from Stevia rebaudiana (UGT-76G1Sr). The latter was found to have a remarkably broad specificity with activities on a wide diversity of structures, from aliphatic and branched alcohols, over small phenolics to larger flavonoids, terpenoids and even higher glycoside compounds. As an example for its industrial potential, the glycosylation of curcumin was thoroughly evaluated. Under optimized conditions, 96% of curcumin was converted within 24h into the corresponding curcumin β-glycosides. In addition, the reaction was performed in a coupled system with sucrose synthase from Glycine max, to enable the cost-efficient (re)generation of UDP-Glc from sucrose as abundant and renewable resource.

  18. Signal Peptidase Enzymology and Substrate Specificity Profiling.

    PubMed

    Dalbey, R E; Pei, D; Ekici, Ö D

    2017-01-01

    Signal peptidases are membrane proteases that play crucial roles in the protein transport pathway of bacteria. They cleave off the signal peptide from precursor proteins that are membrane inserted by the SecYEG or Tat translocons. Signal peptide cleavage releases the translocated protein from the inner membrane allowing the protein to be exported to the periplasm, outer membrane, or secreted into the medium. Signal peptidases are very important proteins to study. They are unique serine proteases with a Ser-Lys dyad, catalyze cleavage at the membrane surface, and are promising potential antibacterial drug targets. This chapter will focus on the isolation of signal peptidases and the preprotein substrates, as well as describe a peptide library approach for characterizing the substrate specificity.

  19. Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II.

    PubMed

    Han, Qian; Cai, Tao; Tagle, Danilo A; Robinson, Howard; Li, Jianyong

    2008-08-01

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested alpha-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with alpha-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

  20. Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II

    PubMed Central

    HAN, Qian; CAI, Tao; TAGLE, Danilo A.; ROBINSON, Howard; LI, Jianyong

    2008-01-01

    Synopsis KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-d-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to α-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested α-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with α-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity. PMID:18620547

  1. Substrate Specificity and Structure of Human aminoadipate aminotransferase/kynurenine aminotransferase II

    SciTech Connect

    Han, Q.; Cai, T; Tagle, D; Robinson, H; Li, J

    2009-01-01

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested alpha-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with alpha-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

  2. Substrate Specificity and Structure of Human Aminoadipate Aminotransferase/kynurenine Aminotransferase II

    SciTech Connect

    Han,Q.; Cai, T.; Tagle, D.; Robinson, H.; Li, J.

    2008-01-01

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to a-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested a-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with a-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

  3. Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families.

    PubMed

    Poreba, Marcin; Szalek, Aleksandra; Rut, Wioletta; Kasperkiewicz, Paulina; Rutkowska-Wlodarczyk, Izabela; Snipas, Scott J; Itoh, Yoshifumi; Turk, Dusan; Turk, Boris; Overall, Christopher M; Kaczmarek, Leszek; Salvesen, Guy S; Drag, Marcin

    2017-02-23

    Internally quenched fluorescent (IQF) peptide substrates originating from FRET (Förster Resonance Energy Transfer) are powerful tool for examining the activity and specificity of proteases, and a variety of donor/acceptor pairs are extensively used to design individual substrates and combinatorial libraries. We developed a highly sensitive and adaptable donor/acceptor pair that can be used to investigate the substrate specificity of cysteine proteases, serine proteases and metalloproteinases. This novel pair comprises 7-amino-4-carbamoylmethylcoumarin (ACC) as the fluorophore and 2,4-dinitrophenyl-lysine (Lys(DNP)) as the quencher. Using caspase-3, caspase-7, caspase-8, neutrophil elastase, legumain, and two matrix metalloproteinases (MMP2 and MMP9), we demonstrated that substrates containing ACC/Lys(DNP) exhibit 7 to 10 times higher sensitivity than conventional 7-methoxy-coumarin-4-yl acetic acid (MCA)/Lys(DNP) substrates; thus, substantially lower amounts of substrate and enzyme can be used for each assay. We therefore propose that the ACC/Lys(DNP) pair can be considered a novel and sensitive scaffold for designing substrates for any group of endopeptidases. We further demonstrate that IQF substrates containing unnatural amino acids can be used to investigate protease activities/specificities for peptides containing post-translationally modified amino acids. Finally, we used IQF substrates to re-investigate the P1-Asp characteristic of caspases, thus demonstrating that some human caspases can also hydrolyze substrates after glutamic acid.

  4. Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families

    PubMed Central

    Poreba, Marcin; Szalek, Aleksandra; Rut, Wioletta; Kasperkiewicz, Paulina; Rutkowska-Wlodarczyk, Izabela; Snipas, Scott J.; Itoh, Yoshifumi; Turk, Dusan; Turk, Boris; Overall, Christopher M.; Kaczmarek, Leszek; Salvesen, Guy S.; Drag, Marcin

    2017-01-01

    Internally quenched fluorescent (IQF) peptide substrates originating from FRET (Förster Resonance Energy Transfer) are powerful tool for examining the activity and specificity of proteases, and a variety of donor/acceptor pairs are extensively used to design individual substrates and combinatorial libraries. We developed a highly sensitive and adaptable donor/acceptor pair that can be used to investigate the substrate specificity of cysteine proteases, serine proteases and metalloproteinases. This novel pair comprises 7-amino-4-carbamoylmethylcoumarin (ACC) as the fluorophore and 2,4-dinitrophenyl-lysine (Lys(DNP)) as the quencher. Using caspase-3, caspase-7, caspase-8, neutrophil elastase, legumain, and two matrix metalloproteinases (MMP2 and MMP9), we demonstrated that substrates containing ACC/Lys(DNP) exhibit 7 to 10 times higher sensitivity than conventional 7-methoxy-coumarin-4-yl acetic acid (MCA)/Lys(DNP) substrates; thus, substantially lower amounts of substrate and enzyme can be used for each assay. We therefore propose that the ACC/Lys(DNP) pair can be considered a novel and sensitive scaffold for designing substrates for any group of endopeptidases. We further demonstrate that IQF substrates containing unnatural amino acids can be used to investigate protease activities/specificities for peptides containing post-translationally modified amino acids. Finally, we used IQF substrates to re-investigate the P1-Asp characteristic of caspases, thus demonstrating that some human caspases can also hydrolyze substrates after glutamic acid. PMID:28230157

  5. Cloning a neutral protease of Clostridium histolyticum, determining its substrate specificity, and designing a specific substrate.

    PubMed

    Maeda, Hiroshi; Nakagawa, Kanako; Murayama, Kazutaka; Goto, Masafumi; Watanabe, Kimiko; Takeuchi, Michio; Yamagata, Youhei

    2015-12-01

    Islet transplantation is a prospective treatment for restoring normoglycemia in patients with type 1 diabetes. Islet isolation from pancreases by decomposition with proteolytic enzymes is necessary for transplantation. Two collagenases, collagenase class I (ColG) and collagenase class II (ColH), from Clostridium histolyticum have been used for islet isolation. Neutral proteases have been added to the collagenases for human islet isolation. A neutral protease from C. histolyticum (NP) and thermolysin from Bacillus thermoproteolyicus has been used for the purpose. Thermolysin is an extensively studied enzyme, but NP is not well known. We therefore cloned the gene encoding NP and constructed a Bacillus subtilis overexpression strain. The expressed enzyme was purified, and its substrate specificity was examined. We observed that the substrate specificity of NP was higher than that of thermolysin, and that the protein digestion activities of NP, as determined by colorimetric methods, were lower than those of thermolysin. It seems that decomposition using NP does not negatively affect islets during islet preparation from pancreases. Furthermore, we designed a novel substrate that allows the measurement of NP activity specifically in the enzyme mixture for islet preparation and the culture broth of C. histolyticum. The activity of NP can also be monitored during islet isolation. We hope the purified enzyme and this specific substrate contribute to the optimization of islet isolation from pancreases and that it leads to the success of islet transplantation and the improvement of the quality of life (QOL) for diabetic patients.

  6. Substrate specificity of fucosyltransferase purified from human parotid saliva.

    PubMed

    Tamagawa, H; Iwakura, K; Amano, A; Shizukuishi, S; Tsunemitsu, A

    1987-03-01

    The purified fucosyltransferase from human parotid saliva was shown to transfer fucose from GDP-fucose onto the oligosaccharide chains containing the Gal beta 1----3GlcNAc or Gal beta 1----4GlcNAc/Glc sequences. Competition studies between asialotransferrin and either lacto-N-fucopentaose 1 or 2'-fucosyllactose provided evidence that both the substrates competed for a common enzyme active site. These results suggest that the fucosyltransferase activities for the three acceptors may be catalyzed by the same enzyme.

  7. A systematic analysis of acceptor specificity and reaction kinetics of five human α(2,3)sialyltransferases: Product inhibition studies illustrates reaction mechanism for ST3Gal-I

    PubMed Central

    Gupta, Rohitesh; Matta, Khushi L.; Neelamegham, Sriram

    2016-01-01

    Sialyltransferases (STs) catalyze the addition of sialic acids to the non-reducing ends of glycoproteins and glycolipids. In this work, we examined the acceptor specificity of five human α(2,3)sialyltransferases, namely ST3Gal-I, -II, -III, -IV and -VI. KM values for each of these enzymes is presented using radioactivity for acceptors containing Type-I (Galβ1,3GlcNAc), Type-II (Galβ1,4GlcNAc), Type-III (Galβ1,3GalNAc) and Core-2 (Galβ1,3(GlcNAcβ1,6)GalNAc) reactive groups. Several variants of acceptors inhibited ST3Gal activity emphasizing structural role of acceptor in enzyme-catalyzed reactions. In some cases, mass spectrometry was performed for structural verification. The results demonstrate human ST3Gal-I catalysis towards Type-III and Core-2 acceptors with KM = 5–50μM and high VMax values. The KM for ST3Gal-I and ST3Gal-II was 100 and 30-fold lower, respectively, for Type-III compared to Type-I acceptors. Variants of Type-I and Type-II structures characterized ST3Gal-III, -IV and -VI for their catalytic specificity. This manuscript also estimates KM for human ST3Gal-VI using Type-I and Type-II substrates. Together, these findings built a platform for designing inhibitors of STs having therapeutic potential. PMID:26692484

  8. A systematic analysis of acceptor specificity and reaction kinetics of five human α(2,3)sialyltransferases: Product inhibition studies illustrate reaction mechanism for ST3Gal-I.

    PubMed

    Gupta, Rohitesh; Matta, Khushi L; Neelamegham, Sriram

    2016-01-15

    Sialyltransferases (STs) catalyze the addition of sialic acids to the non-reducing ends of glycoproteins and glycolipids. In this work, we examined the acceptor specificity of five human α(2,3)sialyltransferases, namely ST3Gal -I, -II, -III, -IV and -VI. KM values for each of these enzymes is presented using radioactivity for acceptors containing Type-I (Galβ1,3GlcNAc), Type-II (Galβ1,4GlcNAc), Type-III (Galβ1,3GalNAc) and Core-2 (Galβ1,3(GlcNAcβ1,6)GalNAc) reactive groups. Several variants of acceptors inhibited ST3Gal activity emphasizing structural role of acceptor in enzyme-catalyzed reactions. In some cases, mass spectrometry was performed for structural verification. The results demonstrate human ST3Gal-I catalysis towards Type-III and Core-2 acceptors with KM = 5-50 μM and high VMax values. The KM for ST3Gal-I and ST3Gal-II was 100 and 30-fold lower, respectively, for Type-III compared to Type-I acceptors. Variants of Type-I and Type-II structures characterized ST3Gal-III, -IV and -VI for their catalytic specificity. This manuscript also estimates KM for human ST3Gal-VI using Type-I and Type-II substrates. Together, these findings built a platform for designing inhibitors of STs having therapeutic potential.

  9. Reactions of the cumyloxyl and benzyloxyl radicals with strong hydrogen bond acceptors. Large enhancements in hydrogen abstraction reactivity determined by substrate/radical hydrogen bonding.

    PubMed

    Salamone, Michela; DiLabio, Gino A; Bietti, Massimo

    2012-12-07

    A kinetic study on hydrogen abstraction from strong hydrogen bond acceptors such as DMSO, HMPA, and tributylphosphine oxide (TBPO) by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out in acetonitrile. The reactions with CumO(•) were described in terms of a direct hydrogen abstraction mechanism, in line with the kinetic deuterium isotope effects, k(H)/k(D), of 2.0 and 3.1 measured for reaction of this radical with DMSO/DMSO-d(6) and HMPA/HMPA-d(18). Very large increases in reactivity were observed on going from CumO(•) to BnO(•), as evidenced by k(H)(BnO(•))/k(H)(CumO(•)) ratios of 86, 4.8 × 10(3), and 1.6 × 10(4) for the reactions with HMPA, TBPO, and DMSO, respectively. The k(H)/k(D) of 0.91 and 1.0 measured for the reactions of BnO(•) with DMSO/DMSO-d(6) and HMPA/HMPA-d(18), together with the k(H)(BnO(•))/k(H)(CumO(•)) ratios, were explained on the basis of the formation of a hydrogen-bonded prereaction complex between the benzyloxyl α-C-H and the oxygen atom of the substrates followed by hydrogen abstraction. This is supported by theoretical calculations that show the formation of relatively strong prereaction complexes. These observations confirm that in alkoxyl radical reactions specific hydrogen bond interactions can dramatically influence the hydrogen abstraction reactivity, pointing toward the important role played by structural and electronic effects.

  10. Probing the Donor and Acceptor Substrate Specificity of the Gamma-Glutamyl Transpeptidase

    DTIC Science & Technology

    2012-01-17

    1× phosphate-buffered saline (PBS) (pH 7.4), 5% glycerol , 0.3 mg/mL lysozyme, and 0.05 mg/mL DNAase and sonicated. Biochemistry Article dx.doi.org...sodium chloride (0 to 1.0 M). The protein was concentrated, and the buffer was exchanged into 1× PBS (pH 7.4) and 50% glycerol and stored at −20 °C...For assays, the glycerol was removed using a PD-10 column equilibrated with assay buffer. Expression of B. anthracis CapD Protein and Purification of

  11. Substrate specificity and some properties of phenol sulfotransferase from human intestinal Caco-2 cells

    SciTech Connect

    Baranczyk-Kuzma, A.; Garren, J.A.; Hidalgo, I.J.; Borchardt, R.T. )

    1991-01-01

    The phase 2 metabolic reactions, sulfation and glucuronidation, were studied in a human colon carcinoma cell line (Caco-2), which has been developed as a model of intestinal enterocytes. Phenol sulfotransferase was isolated from Caco-2 cells cultured for 7, 14 and 21 days. The enzyme catalyzed the sulfation of both p-nitrophenol and catecholamines as well as most catecholamine metabolites. The affinity (K{sub m}) of PST for dopamine was much higher than for p-nitrophenol, and the specific activity of PST with both substrates increased with the age of the cells. The thermal stability of Caco-2 PST increased with cell age and was not dependent on the acceptor substrate used. The thermolabile PST from 7-day old cells was more sensitive to NEM than was the thermostable enzyme from 21-day old cells. No UDP-glucuronyltransferase activity was detected in 7-, 14- and 21-day old Caco-2 cells with any of the methods used.

  12. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity

    SciTech Connect

    Sayer, Christopher; Isupov, Michail N.; Westlake, Aaron; Littlechild, Jennifer A.

    2013-04-01

    The X-ray structures of two ω-aminotransferases from P. aeruginosa and C. violaceum in complex with an inhibitor offer the first detailed insight into the structural basis of the substrate specificity of these industrially important enzymes. The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases.

  13. Distinct Substrate Specificity and Catalytic Activity of the Pseudoglycosyltransferase VldE

    PubMed Central

    Abuelizz, Hatem A.; Mahmud, Taifo

    2015-01-01

    SUMMARY The pseudoglycosyltransferase (PsGT) VldE is a glycosyltransferase-like protein that is similar to trehalose 6-phosphate synthase (OtsA). However, in contrast to OtsA, which catalyzes condensation between UDP-glucose and glucose 6-phosphate, VldE couples two pseudosugars to give a product with an α,α-N-pseudoglycosidic linkage. Despite their unique catalytic activity and important role in natural products biosynthesis, little is known about the molecular basis governing their substrate specificity and catalysis. Here, we report comparative biochemical and kinetic studies using recombinant OtsA, VldE, and their chimeric proteins with a variety of sugar and pseudosugar substrates. We found that the chimeric enzymes can produce hybrid pseudo-(amino)disaccharides and an amino group in the acceptor is necessary to facilitate a coupling reaction with a pseudosugar donor. Furthermore, we found that the N-terminal domains of the enzymes not only play a major role in selecting the acceptors, but also control the type of nucleotidyl diphosphate moiety of the donors. PMID:26051218

  14. Cushing's syndrome mutant PKAL205R exhibits altered substrate specificity

    DOE PAGES

    Lubner, Joshua M.; Dodge-Kafka, Kimberly L.; Carlson, Cathrine R.; ...

    2017-02-01

    The PKAL205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKAWT and PKA L205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKAL205R loss-of-function signaling. Through these results, we suggest that substratemore » rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.« less

  15. Mode of binding of methyl acceptor substrates to the adrenaline-synthesizing enzyme phenylethanolamine N-methyltransferase: implications for catalysis.

    PubMed

    Gee, Christine L; Tyndall, Joel D A; Grunewald, Gary L; Wu, Qian; McLeish, Michael J; Martin, Jennifer L

    2005-12-27

    Here we report three crystal structure complexes of human phenylethanolamine N-methyltransferase (PNMT), one bound with a substrate that incorporates a flexible ethanolamine side chain (p-octopamine), a second bound with a semirigid analogue substrate [cis-(1R,2S)-2-amino-1-tetralol, cis-(1R,2S)-AT], and a third with trans-(1S,2S)-2-amino-1-tetralol [trans-(1S,2S)-AT] that acts as an inhibitor of PNMT rather than a substrate. A water-mediated interaction between the critical beta-hydroxyl of the flexible ethanolamine group of p-octopamine and an acidic residue, Asp267, is likely to play a key role in positioning the side chain correctly for methylation to occur at the amine. A second interaction with Glu219 may play a lesser role. Catalysis likely occurs via deprotonation of the amine through the action of Glu185; mutation of this residue significantly reduced the kcat without affecting the Km. The mode of binding of cis-(1R,2S)-AT supports the notion that this substrate is a conformationally restrained analogue of flexible PNMT substrates, in that it forms interactions with the enzyme similar to those observed for p-octopamine. By contrast, trans-(1S,2S)-AT, an inhibitor rather than a substrate, binds in an orientation that is flipped by 180 degrees compared with cis-(1R,2S)-AT. A consequence of this flipped binding mode is that the interactions between the hydroxyl and Asp267 and Glu219 are lost. However, the amines of inhibitor trans-(1S,2S)-AT and substrate cis-(1R,2S)-AT are both within methyl transfer distance of the cofactor. These results suggest that PNMT catalyzes transfer of methyl to ligand amines only when "anchor" interactions, such as those identified for the beta-hydroxyls of p-octopamine and cis-AT, are present.

  16. Human plasma lecithin:cholesterol acyltransferase. On the substrate efficiency of cholest-5-ene-3 beta-thiol as a fatty acyl acceptor.

    PubMed

    Zhou, G; Dolphin, P J

    1995-09-14

    Lecithin:cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyses cholesteryl ester formation from lecithin and cholesterol present in the surface of plasma lipoproteins. Sterol fatty acid acceptors have previously been shown to require the presence of a trans conformation of the A/B ring and a 3 beta-OH group. Our laboratory has, however, demonstrated that two thiol sites within LCAT can become fatty acylated following lecithin cleavage although this does not appear to be essential for catalysis. In order to assess the ability of LCAT to donate a fatty acid derived from the sn-2 position of lecithin and present as an acyl enzyme intermediate (linked via an oxyester bond to Ser-181) to a sulfhydryl residue, we evaluated the ability of cholest-5-ene-3 beta-thiol to act as a substrate for cholesterol ester formation by LCAT. Thiocholesterol was a good terminal fatty acyl acceptor when incorporated into synthetic proteoliposomes containing lecithin/thiocholesterol/apo A-I in the molar ratios of 250:15:0.8. The Km for thiocholesterol was 203.6 microM with a Vmax of 5.3 nmol thiocholesteryl ester formed/h per microgram. The Km for cholesterol when substituted for thiocholesterol in the proteoliposomes was 29.5 microM with a Vmax of 8.8 nmol cholesteryl ester formed/h per microgram. Thiocholesterol and cholesterol were shown to occupy the same catalytic site in LCAT. Thus, thiocholesterol exhibits approx. 10% of the substrate efficiency of cholesterol when incubated with pure human LCAT. We conclude that LCAT can transacylate a fatty acyl moiety from the sn-2 position of lecithin to the 3 beta-SH group of thiocholesterol forming a cholesteryl thioester. Although the 3 beta-SH group is not as good a terminal acceptor as the 3 beta-OH group of cholesterol, LCAT is clearly capable of transacylating a fatty acid esterified via an oxyester linkage to one containing a thioester.

  17. Characterizing Protease Specificity: How Many Substrates Do We Need?

    PubMed

    Schauperl, Michael; Fuchs, Julian E; Waldner, Birgit J; Huber, Roland G; Kramer, Christian; Liedl, Klaus R

    2015-01-01

    Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4') with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design.

  18. Characterizing Protease Specificity: How Many Substrates Do We Need?

    PubMed Central

    Schauperl, Michael; Fuchs, Julian E.; Waldner, Birgit J.; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.

    2015-01-01

    Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4’) with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design. PMID:26559682

  19. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity.

    PubMed

    Sayer, Christopher; Isupov, Michail N; Westlake, Aaron; Littlechild, Jennifer A

    2013-04-01

    The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases.

  20. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity

    PubMed Central

    Sayer, Christopher; Isupov, Michail N.; Westlake, Aaron; Littlechild, Jennifer A.

    2013-01-01

    The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-­aminotransferases. PMID:23519665

  1. Functional characterization of Ost3p. Loss of the 34-kD subunit of the Saccharomyces cerevisiae oligosaccharyltransferase results in biased underglycosylation of acceptor substrates

    PubMed Central

    1995-01-01

    Within the lumen of the rough endoplasmic reticulum, oligosaccharyltransferase catalyzes the en bloc transfer of a high mannose oligosaccharide moiety from the lipid-linked oligosaccharide donor to asparagine acceptor sites in nascent polypeptides. The Saccharomyces cerevisiae oligosaccharyltransferase was purified as a heteroligomeric complex consisting of six subunits (alpha-zeta) having apparent molecular masses of 64 kD (Ost1p), 45 kD (Wbp1p), 34 kD, 30 kD (Swp1p), 16 kD, and 9 kD. Here we report a structural and functional characterization of Ost3p which corresponds to the 34-kD gamma-subunit of the oligosaccharyltransferase. Unlike Ost1p, Wbp1p, and Swp1p, expression of Ost3p is not essential for viability of yeast. Instead, ost3 null mutant yeast grow at wild-type rates on solid or in liquid media irrespective of culture temperature. Nonetheless, detergent extracts prepared from ost3 null mutant membranes are twofold less active than extracts prepared from wild-type membranes in an in vitro oligosaccharyltransferase assay. Furthermore, loss of Ost3p is accompanied by significant underglycosylation of soluble and membrane- bound glycoproteins in vivo. Compared to the previously characterized ost1-1 mutant in the oligosaccharyltransferase, and the alg5 mutant in the oligosaccharide assembly pathway, ost3 null mutant yeast appear to be selectively impaired in the glycosylation of several membrane glycoproteins. The latter observation suggests that Ost3p may enhance oligosaccharide transfer in vivo to a subset of acceptor substrates. PMID:7622558

  2. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases

    PubMed Central

    Zhao, Bryan M.; Keasey, Sarah L.; Tropea, Joseph E.; Lountos, George T.; Dyas, Beverly K.; Cherry, Scott; Raran-Kurussi, Sreejith; Waugh, David S.; Ulrich, Robert G.

    2015-01-01

    Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs) are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P) residue, but also the Ser(P) and Thr(P) residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined. We investigated the interactions of peptide substrates with select DUSPs of four types: MAP kinases (DUSP1 and DUSP7), atypical (DUSP3, DUSP14, DUSP22 and DUSP27), viral (variola VH1), and Cdc25 (A-C). Phosphatase recognition sites were experimentally determined by measuring dephosphorylation of 6,218 microarrayed Tyr(P) peptides representing confirmed and theoretical phosphorylation motifs from the cellular proteome. A broad continuum of dephosphorylation was observed across the microarrayed peptide substrates for all phosphatases, suggesting a complex relationship between substrate sequence recognition and optimal activity. Further analysis of peptide dephosphorylation by hierarchical clustering indicated that DUSPs could be organized by substrate sequence motifs, and peptide-specificities by phylogenetic relationships among the catalytic domains. The most highly dephosphorylated peptides represented proteins from 29 cell-signaling pathways, greatly expanding the list of potential targets of DUSPs. These newly identified DUSP substrates will be important for examining structure-activity relationships with physiologically relevant targets. PMID:26302245

  3. Enzyme Substrate Specificity Conferred by Distinct Conformational Pathways.

    PubMed

    Rago, Florencia; Saltzberg, Daniel; Allen, Karen N; Tolan, Dean R

    2015-11-04

    Substrate recognition is one of the hallmarks of enzyme catalysis. Enzyme conformational changes have been linked to selectivity between substrates with little direct evidence. Aldolase, a glycolytic enzyme, must distinguish between two physiologically important substrates, fructose 1-phosphate and fructose 1,6-bisphosphate, and provides an excellent model system for the study of this question. Previous work has shown that isozyme specific residues (ISRs) distant from the active site are responsible for kinetic distinction between these substrates. Notably, most of the ISRs reside in a cluster of five surface α-helices, and the carboxyl-terminal region (CTR), and cooperative interactions among these helices have been demonstrated. To test the hypothesis that conformational changes are at the root of these changes, single surface-cysteine variants were created with the cysteine located on helices of the cluster and CTR. This allowed for site-specific labeling with an environmentally sensitive fluorophore, and subsequent monitoring of conformational changes by fluorescence emission spectrophotometry. These labeled variants revealed different spectra in the presence of saturating amounts of each substrate, which suggested the occurrence of different conformations. Emission spectra collected at various substrate concentrations showed a concentration dependence of the fluorescence spectra, consistent with binding events. Lastly, stopped-flow fluorescence spectrophotometry showed that the rate of these fluorescence changes was on the same time-scale as catalysis, thus suggesting a link between the different fluorescence changes and events during catalysis. On the basis of these results, we propose that different conformational changes may be a common mechanism for dictating substrate specificity in other enzymes with multiple substrates.

  4. Archaeal Mo-Containing Glyceraldehyde Oxidoreductase Isozymes Exhibit Diverse Substrate Specificities through Unique Subunit Assemblies

    PubMed Central

    Miyake, Masayuki; Fushinobu, Shinya

    2016-01-01

    Archaea use glycolytic pathways distinct from those found in bacteria and eukaryotes, where unique enzymes catalyze each reaction step. In this study, we isolated three isozymes of glyceraldehyde oxidoreductase (GAOR1, GAOR2 and GAOR3) from the thermoacidophilic archaeon Sulfolobus tokodaii. GAOR1–3 belong to the xanthine oxidoreductase superfamily, and are composed of a molybdo-pyranopterin subunit (L), a flavin subunit (M), and an iron-sulfur subunit (S), forming an LMS hetero-trimer unit. We found that GAOR1 is a tetramer of the STK17810/STK17830/STK17820 hetero-trimer, GAOR2 is a dimer of the STK23390/STK05620/STK05610 hetero-trimer, and GAOR3 is the STK24840/STK05620/STK05610 hetero-trimer. GAOR1–3 exhibited diverse substrate specificities for their electron donors and acceptors, due to their different L-subunits, and probably participate in the non-phosphorylative Entner-Doudoroff glycolytic pathway. We determined the crystal structure of GAOR2, as the first three-dimensional structure of an archaeal molybdenum-containing hydroxylase, to obtain structural insights into their substrate specificities and subunit assemblies. The gene arrangement and the crystal structure suggested that the M/S-complex serves as a structural scaffold for the binding of the L-subunit, to construct the three enzymes with different specificities. Collectively, our findings illustrate a novel principle of a prokaryotic multicomponent isozyme system. PMID:26808202

  5. Substrate specificity of the neuraminidase of different mumps virus strains.

    PubMed

    Klamm, H; Pollex, G

    1984-11-01

    The hydrolysis of neuraminlactose, fetuin, ovomucoid, kappa-caseinglycopeptide and mucine from the bovine submaxillary gland with the neuraminidase (NA) of mumps virus strains Jeryl Lynn, Enders and Berlin 9/76 was investigated to determine the pH-dependence of the reaction with the different substrates. The corresponding curves showed splitting into several peaks with reaction maxima ranging from pH 4.7 to pH 6.7. This occurred probably due to the heterogeneity of the virus samples. The NA of each virus strain had the best reaction affinity to neuraminlactose followed by decreasing affinities to ovomucoid, fetuin and kappa-caseinglycopeptide. The mucine from bovine submaxillary gland was not digested at all. The highest hydrolysis of each substrate was found with the Jeryl Lynn strain, which also possessed the lowest substrate specificity. It was followed by that of strain Enders and finally by isolate Berlin 9/76 which, in turn, had the highest substrate specificity. The lower substrate specificity of mumps virus NA seemed to correlate with a lower degree of its cytopathogenicity for hamster ependyma cells.

  6. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures.

    PubMed

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Skerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Strisovsky, Kvido

    2014-10-16

    The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the 'water retention site', suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG.

  7. Specificity determinants for the two tRNA substrates of the cyclodipeptide synthase AlbC from Streptomyces noursei

    PubMed Central

    Moutiez, Mireille; Seguin, Jérôme; Fonvielle, Matthieu; Belin, Pascal; Jacques, Isabelle Béatrice; Favry, Emmanuel; Arthur, Michel; Gondry, Muriel

    2014-01-01

    Cyclodipeptide synthases (CDPSs) use two aminoacyl-tRNA substrates in a sequential ping-pong mechanism to form a cyclodipeptide. The crystal structures of three CDPSs have been determined and all show a Rossmann-fold domain similar to the catalytic domain of class-I aminoacyl-tRNA synthetases (aaRSs). Structural features and mutational analyses however suggest that CDPSs and aaRSs interact differently with their tRNA substrates. We used AlbC from Streptomyces noursei that mainly produces cyclo(l-Phe-l-Leu) to investigate the interaction of a CDPS with its substrates. We demonstrate that Phe-tRNAPhe is the first substrate accommodated by AlbC. Its binding to AlbC is dependent on basic residues located in the helix α4 that form a basic patch at the surface of the protein. AlbC does not use all of the Leu-tRNALeu isoacceptors as a second substrate. We show that the G1-C72 pair of the acceptor stem is essential for the recognition of the second substrate. Substitution of D163 located in the loop α6–α7 or D205 located in the loop β6–α8 affected Leu-tRNALeu isoacceptors specificity, suggesting the involvement of these residues in the binding of the second substrate. This is the first demonstration that the two substrates of CDPSs are accommodated in different binding sites. PMID:24782519

  8. Probing ADAMTS13 substrate specificity using phage display.

    PubMed

    Desch, Karl C; Kretz, Colin; Yee, Andrew; Gildersleeve, Robert; Metzger, Kristin; Agrawal, Nidhi; Cheng, Jane; Ginsburg, David

    2015-01-01

    Von Willebrand factor (VWF) is a large, multimeric protein that regulates hemostasis by tethering platelets to the subendothelial matrix at sites of vascular damage. The procoagulant activity of plasma VWF correlates with the length of VWF multimers, which is proteolytically controlled by the metalloprotease ADAMTS13. To probe ADAMTS13 substrate specificity, we created phage display libraries containing randomly mutated residues of a minimal ADAMTS13 substrate fragment of VWF, termed VWF73. The libraries were screened for phage particles displaying VWF73 mutant peptides that were resistant to proteolysis by ADAMTS13. These peptides exhibited the greatest mutation frequency near the ADAMTS13 scissile residues. Kinetic assays using mutant and wild-type substrates demonstrated excellent agreement between rates of cleavage for mutant phage particles and the corresponding mutant peptides. Cleavage resistance of selected mutations was tested in vivo using hydrodynamic injection of corresponding full-length expression plasmids into VWF-deficient mice. These studies confirmed the resistance to cleavage resulting from select amino acid substitutions and uncovered evidence of alternate cleavage sites and recognition by other proteases in the circulation of ADAMTS13 deficient mice. Taken together, these studies demonstrate the key role of specific amino acids residues including P3-P2' and P11', for substrate specificity and emphasize the importance in flowing blood of other ADAMTS13-VWF exosite interactions outside of VWF73.

  9. Substrate Specificity within a Family of Outer Membrane Carboxylate Channels

    SciTech Connect

    Eren, Elif; Vijayaraghavan, Jagamya; Liu, Jiaming; Cheneke, Belete R.; Touw, Debra S.; Lepore, Bryan W.; Indic, Mridhu; Movileanu, Liviu; van den Berg, Bert; Dutzler, Raimund

    2012-01-17

    Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM) that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  10. Cracking the phosphatase code: docking interactions determine substrate specificity.

    PubMed

    Roy, Jagoree; Cyert, Martha S

    2009-12-08

    Phosphoserine- and phosphothreonine-directed phosphatases display remarkable substrate specificity, yet the sites that they dephosphorylate show little similarity in amino acid sequence. Studies reveal that docking interactions are key for the recognition of substrates and regulators by two conserved phosphatases, protein phosphatase 1 (PP1) and the Ca2+-calmodulin-dependent phosphatase calcineurin. In each case, a small degenerate sequence motif in the interacting protein directs low-affinity binding to a docking surface on the phosphatase that is distinct from the active site; several such interactions combine to confer overall binding specificity. Some docking surfaces are conserved, such as a hydrophobic groove on a face opposite the active site that serves as a major recognition surface for the "RVxF" motif of proteins that interact with PP1 and the "PxIxIT" motif of substrates of calcineurin. Secondary motifs combine with this primary targeting sequence to specify phosphatase binding. A comprehensive interactome for mammalian PP1 was described, analysis of which defines several PP1-binding motifs. Studies of "LxVP," a secondary calcineurin-binding sequence, establish that this motif is a conserved feature of calcineurin substrates and that the immunosuppressants FK506 and cyclosporin A inhibit the phosphatase by interfering with LxVP-mediated docking.

  11. Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates.

    PubMed

    Perz, Veronika; Bleymaier, Klaus; Sinkel, Carsten; Kueper, Ulf; Bonnekessel, Melanie; Ribitsch, Doris; Guebitz, Georg M

    2016-03-25

    The enzymatic hydrolysis of the biodegradable polyester ecoflex and of a variety of oligomeric and polymeric ecoflex model substrates was investigated. For this purpose, substrate specificities of two enzymes of typical compost inhabitants, namely a fungal cutinase from Humicola insolens (HiC) and a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) were compared. Model substrates were systematically designed with variations of the chain length of the alcohol and the acid as well as with varying content of the aromatic constituent terephthalic acid (Ta). HPLC/MS identification and quantification of the hydrolysis products terephthalic acid (Ta), benzoic acid (Ba), adipic acid (Ada), mono(4-hydroxybutyl) terephthalate (BTa), mono-(2-hydroxyethyl) terephthalate (ETa), mono-(6-hydroxyhexyl) terephthalate (HTa) and bis(4-hydroxybutyl) terephthalate (BTaB) indicated that these enzymes indeed hydrolyze the tested esters. Shorter terminal chain length acids but longer chain length alcohols in oligomeric model substrates were generally hydrolyzed more efficiently. Thc_Cut1 hydrolyzed aromatic ester bonds more efficiently than HiC resulting in up to 3-fold higher concentrations of the monomeric hydrolysis product Ta. Nevertheless, HiC exhibited a higher overall hydrolytic activity on the tested polyesters, resulting in 2-fold higher concentration of released molecules. Thermogravimetry and differential scanning calorimetry (TG-DSC) of the polymeric model substrates revealed a general trend that a lower difference between melting temperature (Tm) and the temperature at which the enzymatic degradation takes place resulted in higher susceptibility to enzymatic hydrolysis.

  12. Mechanism of substrate specificity of phosphatidylinositol phosphate kinases

    PubMed Central

    Muftuoglu, Yagmur; Xue, Yi; Gao, Xiang; Wu, Dianqing; Ha, Ya

    2016-01-01

    The phosphatidylinositol phosphate kinase (PIPK) family of enzymes is primarily responsible for converting singly phosphorylated phosphatidylinositol derivatives to phosphatidylinositol bisphosphates. As such, these kinases are central to many signaling and membrane trafficking processes in the eukaryotic cell. The three types of phosphatidylinositol phosphate kinases are homologous in sequence but differ in catalytic activities and biological functions. Type I and type II kinases generate phosphatidylinositol 4,5-bisphosphate from phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate, respectively, whereas the type III kinase produces phosphatidylinositol 3,5-bisphosphate from phosphatidylinositol 3-phosphate. Based on crystallographic analysis of the zebrafish type I kinase PIP5Kα, we identified a structural motif unique to the kinase family that serves to recognize the monophosphate on the substrate. Our data indicate that the complex pattern of substrate recognition and phosphorylation results from the interplay between the monophosphate binding site and the specificity loop: the specificity loop functions to recognize different orientations of the inositol ring, whereas residues flanking the phosphate binding Arg244 determine whether phosphatidylinositol 3-phosphate is exclusively bound and phosphorylated at the 5-position. This work provides a thorough picture of how PIPKs achieve their exquisite substrate specificity. PMID:27439870

  13. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.

    SciTech Connect

    Boernke, W. E.; Millard, C. S.; Stevens, P. W.; Kakar, S. N.; Stevens, F. J.; Donnelly, M. I.; Nebraska Wesleyan Univ.

    1995-09-10

    Malate dehydrogenase and lactate dehydrogenase are members of the structurally and functionally homologous family of 2-ketoacid dehydrogenases. Both enzymes display high specificity for their respective keto substrates, oxaloacetate and pyruvate. Closer analysis of their specificity, however, reveals that the specificity of malate dehydrogenase is much stricter and less malleable than that of lactate dehydrogenase. Site-specific mutagenesis of the two enzymes in an attempt to reverse their specificity has met with contrary results. Conversion of a specific active-site glutamine to arginine in lactate dehydrogenase from Bacillus stearothermophilus generated an enzyme that displayed activity toward oxaloacetate equal to that of the native enzyme toward pyruvate (H. M. Wilks et al. (1988) Science 242, 1541-1544). We have constructed a series of mutants in the mobile, active site loop of the Escherichia coli malate dehydrogenase that incorporate the complementary change, conversion of arginine 81 to glutamine, to evaluate the role of charge distribution and conformational flexibility within this loop in defining the substrate specificity of these enzymes. Mutants incorporating the change R81Q all had reversed specificity, displaying much higher activity toward pyruvate than to the natural substrate, oxaloacetate. In contrast to the mutated lactate dehydrogenase, these reversed-specificity mutants were much less active than the native enzyme. Secondary mutations within the loop of the E. coli enzyme (A80N, A80P, A80P/M85E/D86T) had either no or only moderately beneficial effects on the activity of the mutant enzyme toward pyruvate. The mutation A80P, which can be expected to reduce the overall flexibility of the loop, modestly improved activity toward pyruvate. The possible physiological relevance of the stringent specificity of malate dehydrogenase was investigated. In normal strains of E. coli, fermentative metabolism was not affected by expression of the mutant

  14. Mechanisms of Yersinia YopO kinase substrate specificity

    PubMed Central

    Lee, Wei Lin; Singaravelu, Pavithra; Wee, Sheena; Xue, Bo; Ang, Khay Chun; Gunaratne, Jayantha; Grimes, Jonathan M.; Swaminathan, Kunchithapadam; Robinson, Robert C.

    2017-01-01

    Yersinia bacteria cause a range of human diseases, including yersiniosis, Far East scarlet-like fever and the plague. Yersiniae modulate and evade host immune defences through injection of Yersinia outer proteins (Yops) into phagocytic cells. One of the Yops, YopO (also known as YpkA) obstructs phagocytosis through disrupting actin filament regulation processes - inhibiting polymerization-promoting signaling through sequestration of Rac/Rho family GTPases and by using monomeric actin as bait to recruit and phosphorylate host actin-regulating proteins. Here we set out to identify mechanisms of specificity in protein phosphorylation by YopO that would clarify its effects on cytoskeleton disruption. We report the MgADP structure of Yersinia enterocolitica YopO in complex with actin, which reveals its active site architecture. Using a proteome-wide kinase-interacting substrate screening (KISS) method, we identified that YopO phosphorylates a wide range of actin-modulating proteins and located their phosphorylation sites by mass spectrometry. Using artificial substrates we clarified YopO’s substrate length requirements and its phosphorylation consensus sequence. These findings provide fresh insight into the mechanism of the YopO kinase and demonstrate that YopO executes a specific strategy targeting actin-modulating proteins, across multiple functionalities, to compete for control of their native phospho-signaling, thus hampering the cytoskeletal processes required for macrophage phagocytosis. PMID:28051168

  15. Substrate Specificity of Atrazine Chlorohydrolase and Atrazine-Catabolizing Bacteria

    PubMed Central

    Seffernick, Jennifer L.; Johnson, Gilbert; Sadowsky, Michael J.; Wackett, Lawrence P.

    2000-01-01

    Bacterial atrazine catabolism is initiated by the enzyme atrazine chlorohydrolase (AtzA) in Pseudomonas sp. strain ADP. Other triazine herbicides are metabolized by bacteria, but the enzymological basis of this is unclear. Here we begin to address this by investigating the catalytic activity of AtzA by using substrate analogs. Purified AtzA from Pseudomonas sp. strain ADP catalyzed the hydrolysis of an atrazine analog that was substituted at the chlorine substituent by fluorine. AtzA did not catalyze the hydrolysis of atrazine analogs containing the pseudohalide azido, methoxy, and cyano groups or thiomethyl and amino groups. Atrazine analogs with a chlorine substituent at carbon 2 and N-alkyl groups, ranging in size from methyl to t-butyl, all underwent dechlorination by AtzA. AtzA catalyzed hydrolytic dechlorination when one nitrogen substituent was alkylated and the other was a free amino group. However, when both amino groups were unalkylated, no reaction occurred. Cell extracts were prepared from five strains capable of atrazine dechlorination and known to contain atzA or closely homologous gene sequences: Pseudomonas sp. strain ADP, Rhizobium strain PATR, Alcaligenes strain SG1, Agrobacterium radiobacter J14a, and Ralstonia picketti D. All showed identical substrate specificity to purified AtzA from Pseudomonas sp. strain ADP. Cell extracts from Clavibacter michiganensis ATZ1, which also contains a gene homologous to atzA, were able to transform atrazine analogs containing pseudohalide and thiomethyl groups, in addition to the substrates used by AtzA from Pseudomonas sp. strain ADP. This suggests that either (i) another enzyme(s) is present which confers the broader substrate range or (ii) the AtzA itself has a broader substrate range. PMID:11010866

  16. Determination of substrate specificity of polyamine transporters in roseobacter species

    NASA Astrophysics Data System (ADS)

    Madhuri, S.; Mou, X.

    2012-12-01

    Polyamines, such as cadaverine, putrescine, spermidine, spermine and norspermine are a class of dissolved organic nitrogen (DON) that is ubiquitously found in marine environments. Intracellular polyamines are important in a variety of biological reactions, such as nucleic acid synthesis and protein synthesis. Free polyamines in seawater can be transported into bacterial cells by ABC transporter systems, each of which consists of four components including one substrate binding protein, one ATPase and two permeases. In silico analysis of marine bacterial genomes has revealed that roseobacter, a numerically and ecologically important taxa of marine bacteria, have at least two sets of polyamine transporter genes. This study was to examine the potential preference of roseobacter to different polyamine compounds and the substrate specificity of different polyamine transporters. Eleven roseobacter species, which genomes have been sequenced, were grown in defined media supplied with single polyamine compound as the sole carbon and nitrogen source. Growth assay showed a small number of roseobacter isolates to be generalist showing no preference among the tested polyamines (Ruegeria pomeroyi DSS-3, Roseovarius sp. TM1035, Roseovarius nubinhibens ISM, Jannaschia sp. CCS1 and Sagittula stellata E-37), whereas other isolates were specilists and were specific on polyamine compounds (Roseobacter sp. CCS2 and Roseobacter denitrificans OCh 114). Primers that probe poly-1 and pot-D genes, the two genes that encode common polyamine-binding genes of polyamine transporter systems were designed using net primer and primer design program. The specificity of the primers was validated by PCR followed by amplicon sequencing. Single step reverse transcription quantitative polymerase chain reactions (RT-qPCR) was performed to investigate substrate specificity of poly-1 and pot-D genes. Key-words Roseobacter, polyamine, polyamine transporter, dissolved organic nitrogen

  17. Unique substrate specificity of ornithine aminotransferase from Toxoplasma gondii.

    PubMed

    Astegno, Alessandra; Maresi, Elena; Bertoldi, Mariarita; La Verde, Valentina; Paiardini, Alessandro; Dominici, Paola

    2017-03-07

    Toxoplasma gondii is a protozoan parasite of medical and veterinary relevance responsible for toxoplasmosis in humans. As an efficacious vaccine remains a challenge, chemotherapy is still the most effective way to combat the disease. In search of novel druggable targets, we performed a thorough characterization of the putative pyridoxal 5'-phosphate (PLP)-dependent enzyme ornithine aminotransferase from T. gondii ME49 (TgOAT). We overexpressed the protein in Escherichia coli and analysed its molecular and kinetic properties by UV-visible absorbance, fluorescence and CD spectroscopy, in addition to kinetic studies of both the steady state and pre-steady state. TgOAT is largely similar to OATs from other species regarding its general transamination mechanism and spectral properties of PLP; however, it does not show a specific ornithine aminotransferase activity like its human homologue, but exhibits both N-acetylornithine and γ-aminobutyric acid (GABA) transaminase activity in vitro, suggesting a role in both arginine and GABA metabolism in vivo The presence of Val79 in the active site of TgOAT in place of Tyr, as in its human counterpart, provides the necessary room to accommodate N-acetylornithine and GABA, resembling the active site arrangement of GABA transaminases. Moreover, mutation of Val79 to Tyr results in a change of substrate preference between GABA, N-acetylornithine and L-ornithine, suggesting a key role of Val79 in defining substrate specificity. The findings that TgOAT possesses parasite-specific structural features as well as differing substrate specificity from its human homologue make it an attractive target for anti-toxoplasmosis inhibitor design that can be exploited for chemotherapeutic intervention.

  18. Structural determinants of tobacco vein mottling virus protease substrate specificity.

    PubMed

    Sun, Ping; Austin, Brian P; Tözsér, József; Waugh, David S

    2010-11-01

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-Å resolution. As observed in several crystal structures of TEV protease, the C-terminus (∼20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by ∼10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1' position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k(cat) and K(m) for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.

  19. Structural determinants of tobacco vein mottling virus protease substrate specificity

    SciTech Connect

    Sun, Ping; Austin, Brian P.; Tozer, Jozsef; Waugh, David

    2010-10-28

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-{angstrom} resolution. As observed in several crystal structures of TEV protease, the C-terminus ({approx}20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by {approx}10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1{prime} position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k{sub cat} and K{sub m} for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.

  20. Structural and functional basis of protein phosphatase 5 substrate specificity.

    PubMed

    Oberoi, Jasmeen; Dunn, Diana M; Woodford, Mark R; Mariotti, Laura; Schulman, Jacqualyn; Bourboulia, Dimitra; Mollapour, Mehdi; Vaughan, Cara K

    2016-08-09

    The serine/threonine phosphatase protein phosphatase 5 (PP5) regulates hormone- and stress-induced cellular signaling by association with the molecular chaperone heat shock protein 90 (Hsp90). PP5-mediated dephosphorylation of the cochaperone Cdc37 is essential for activation of Hsp90-dependent kinases. However, the details of this mechanism remain unknown. We determined the crystal structure of a Cdc37 phosphomimetic peptide bound to the catalytic domain of PP5. The structure reveals PP5 utilization of conserved elements of phosphoprotein phosphatase (PPP) structure to bind substrate and provides a template for many PPP-substrate interactions. Our data show that, despite a highly conserved structure, elements of substrate specificity are determined within the phosphatase catalytic domain itself. Structure-based mutations in vivo reveal that PP5-mediated dephosphorylation is required for kinase and steroid hormone receptor release from the chaperone complex. Finally, our data show that hyper- or hypoactivity of PP5 mutants increases Hsp90 binding to its inhibitor, suggesting a mechanism to enhance the efficacy of Hsp90 inhibitors by regulation of PP5 activity in tumors.

  1. Directed evolution of the substrate specificity of biotin ligase.

    PubMed

    Lu, Wei-Cheng; Levy, Matthew; Kincaid, Rodney; Ellington, Andrew D

    2014-06-01

    We have developed selection scheme for directing the evolution of Escherichia coli biotin protein ligase (BPL) via in vitro compartmentalization, and have used this scheme to alter the substrate specificity of the ligase towards the utilization of the biotin analogue desthiobiotin. In this scheme, a peptide substrate (BAP) was conjugated to a DNA library encoding BirA, emulsified such that there was a single template per compartment, and protein variants were transcribed and translated in vitro. Those variants that could efficiently desthiobiotinylate their corresponding peptide:DNA conjugate were subsequently captured and amplified. Following just six rounds of selection and amplification several variants that demonstrated higher activity with desthiobiotin were identified. The best variants from Round 6, BirA6-40 and BirA6-47 , showed 17-fold and 10-fold higher activity, respectively, their abilities to use desthiobiotin as a substrate. While selected enzymes contained a number of substitutions, a single mutation, M157T, proved sufficient to provide much greater activity with desthiobiotin. Further characterization of BirA6-40 and the single substitution variant BirAM157T revealed that they had twoto threefold higher kcat values for desthiobiotin. These variants had also lost much of their ability to utilize biotin, resulting in orthogonal enzymes that in conjunction with streptavidin variants that can utilize desthiobiotin may prove to be of great use in developing additional, robust conjugation handles for a variety of biological and biotechnological applications.

  2. Mechanism of substrate selection by a highly specific CRISPR endoribonuclease.

    PubMed

    Sternberg, Samuel H; Haurwitz, Rachel E; Doudna, Jennifer A

    2012-04-01

    Bacteria and archaea possess adaptive immune systems that rely on small RNAs for defense against invasive genetic elements. CRISPR (clustered regularly interspaced short palindromic repeats) genomic loci are transcribed as long precursor RNAs, which must be enzymatically cleaved to generate mature CRISPR-derived RNAs (crRNAs) that serve as guides for foreign nucleic acid targeting and degradation. This processing occurs within the repetitive sequence and is catalyzed by a dedicated Cas6 family member in many CRISPR systems. In Pseudomonas aeruginosa, crRNA biogenesis requires the endoribonuclease Csy4 (Cas6f), which binds and cleaves at the 3' side of a stable RNA stem-loop structure encoded by the CRISPR repeat. We show here that Csy4 recognizes its RNA substrate with an ~50 pM equilibrium dissociation constant, making it one of the highest-affinity protein:RNA interactions of this size reported to date. Tight binding is mediated exclusively by interactions upstream of the scissile phosphate that allow Csy4 to remain bound to its product and thereby sequester the crRNA for downstream targeting. Substrate specificity is achieved by RNA major groove contacts that are highly sensitive to helical geometry, as well as a strict preference for guanosine adjacent to the scissile phosphate in the active site. Collectively, our data highlight diverse modes of substrate recognition employed by Csy4 to enable accurate selection of CRISPR transcripts while avoiding spurious, off-target RNA binding and cleavage.

  3. Involvement of Tyr24 and Trp108 in substrate binding and substrate specificity of glycolate oxidase.

    PubMed

    Stenberg, K; Clausen, T; Lindqvist, Y; Macheroux, P

    1995-03-01

    Tyr24 and Trp108 are located in the active site of spinach glycolate oxidase. To elucidate their function in substrate binding and catalysis, they were replaced by phenylalanine and serine, respectively. The [Y24F]glycolate oxidase mutant enzyme showed a tenfold higher Km value for glycolate. L-lactate and DL-2-hydroxybutyrate also showed higher Km values, however, the substrate specificity was unchanged as compared to the wild-type enzyme (Km increases in the order glycolate < DL-2-hydroxybutyrate < L-lactate < L-mandelate). The turnover number and the rate of reduction, found to be rate limiting in catalysis, were only slightly affected by the deletion of the hydroxyl group. These findings suggest that Tyr24 is mostly involved in substrate binding. The spectral features of the [Y24F]glycolate oxidase suggest that a fraction (50-80%) of the protein bears a flavin N(5) adduct instead of the oxidized cofactor. Crystals obtained from the isolated [Y24F]glycolate oxidase mutant protein allowed the determination of the three-dimensional structure. Although the structure was low resolution (0.3 nm), it is evident that the structure determined is that of the N(5) adduct species. In addition to the lacking hydroxyl group of Tyr24, we also observed movements of the amino acid side chains of Arg164 and Trp108, the latter replacing a water molecule in the substrate-binding pocket. Other features predominantly found in the class of flavoprotein oxidases, such as stabilization of the covalent N(5)-sulfite adduct and of the paraquinoid form of 8-mercapto-FMN, were found to be conserved. [W108S]Glycolate oxidase, in contrast, showed dramatic effects on both the Km of substrates as well as the turnover number. The Km for glycolate was increased some hundred fold and the turnover number was decreased 500-fold. In addition, it was found that the higher homologs of glycolate, L-lactate and DL-2-hydroxybutyrate had turnover numbers similar to those found with the wild-type enzyme

  4. Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: distinctive binding affinity for purine and pyrimidine nucleotides.

    PubMed

    Chu, Hsing-Mao; Ko, Tzu-Ping; Wang, Andrew H-J

    2010-03-01

    Cytokinins are important plant hormones, and their biosynthesis most begins with the transfer of isopentenyl group from dimethylallyl diphosphate (DMAPP) to the N6-amino group of adenine by either adenylate isopentenyltransferase (AIPT) or tRNA-IPT. Plant AIPTs use ATP/ADP as an isopentenyl acceptor and bacterial AIPTs prefer AMP, whereas tRNA-IPTs act on specific sites of tRNA. Here, we present the crystal structure of an AIPT-ATP complex from Humulus lupulus (HlAIPT), which is similar to the previous structures of Agrobacterium AIPT and yeast tRNA-IPT. The enzyme is structurally homologous to the NTP-binding kinase family of proteins but forms a solvent-accessible channel that binds to the donor substrate DMAPP, which is directed toward the acceptor substrate ATP/ADP. When measured with isothermal titration calorimetry, some nucleotides displayed different binding affinities to HlAIPT with an order of ATP > dATP approximately ADP > GTP > CTP > UTP. Two basic residues Lys275 and Lys220 in HlAIPT interact with the beta and gamma-phosphate of ATP. By contrast, the interactions are absent in Agrobacterium AIPT because they are replaced by the acidic residues Asp221 and Asp171. Despite its structural similarity to the yeast tRNA-IPT, HlAIPT has evolved with a different binding strategy for adenylate.

  5. Biotransformation of Chloroaromatics: the Impact of Bioavailability and Substrate Specificity

    PubMed Central

    Randazzo, Demetrio; Ferraroni, Marta; Scozzafava, Andrea; Golovleva, Ludmila

    2004-01-01

    The effect of surfactants on the biodegradation of mono-aromatic hydrocarbons such as benzene, chlorobenzene and 1,2-dichlorobenzene by an Escherichia coli JMI09(MI) recombinant strain, carrying a gene cluster containing the genes for benzene dioxygenase, cis-benzene dihydrodiol dehydrogenase, and catechol 2,3-dioxygenase from Pseudomonas putida ML2, has been investigated. We observed that the efficiency of the benzene dioxygenase catalyzed conversions to cis-dihydrodiols depends on the balance among real substrate specificity, bioavailability, and toxicity effects of highly concentrated aromatic hydrocarbons. The utilization of non ionic surfactants makes it possible to partly overcome the limiting step of biodegradation processes for scarcely water soluble hydrocarbons hindered by their limited bioavailability. Furthermore the cis-benzene dihydrodiol dehydrogenase and the extradiol catechol 2,3-dioxygenase, which in the presently analyzed biodegradative pathway should further degrade the pollutants, are known, the first to be selectively specific for the (lR,2R)-dihydrodiol derivative which is not produced by the benzene dioxygenase, the second, to be dead-end inhibited by the corresponding chlorinated catechois. In the present example this results in the accumulation of the corresponding chlorinated cis-dihydrodiols which can be useful for asymmetric synthesis. On the other hand the practical utilization of the system for bioremediation purposes requires the efficient conversion of the chlorinated catechols by specific intradiol ring-cleaving dioxygenases, the crystal structures of some of these last enzymes are currently under analysis in our laboratory to understand the structuralfunctional correlations. Preliminary data show overall structures similar to the catechol 1,2-dioxygenase from Acinetobacter sp. ADP1 thus suggesting that the substrate specificity differences are mainly related to subtle differences in the catalytic site. PMID:18365077

  6. Molecular Determinants of Substrate Specificity in Plant 5-Methylthioadenosine Nucleosidases

    SciTech Connect

    Siu,K.; Lee, J.; Sufrin, J.; Moffatt, B.; McMillan, M.; Cornell, K.; Isom, C.; Howell, L.

    2008-01-01

    5?-Methylthioadenosine (MTA)/S-adenosylhomocysteine (SAH) nucleosidase (MTAN) is essential for cellular metabolism and development in many bacterial species. While the enzyme is found in plants, plant MTANs appear to select for MTA preferentially, with little or no affinity for SAH. To understand what determines substrate specificity in this enzyme, MTAN homologues from Arabidopsis thaliana (AtMTAN1 and AtMTAN2, which are referred to as AtMTN1 and AtMTN2 in the plant literature) have been characterized kinetically. While both homologues hydrolyze MTA with comparable kinetic parameters, only AtMTAN2 shows activity towards SAH. AtMTAN2 also has higher catalytic activity towards other substrate analogues with longer 5?-substituents. The structures of apo AtMTAN1 and its complexes with the substrate- and transition-state-analogues, 5?-methylthiotubercidin and formycin A, respectively, have been determined at 2.0-1.8 Angstroms resolution. A homology model of AtMTAN2 was generated using the AtMTAN1 structures. Comparison of the AtMTAN1 and AtMTAN2 structures reveals that only three residues in the active site differ between the two enzymes. Our analysis suggests that two of these residues, Leu181/Met168 and Phe148/Leu135 in AtMTAN1/AtMTAN2, likely account for the divergence in specificity of the enzymes. Comparison of the AtMTAN1 and available Escherichia coli MTAN (EcMTAN) structures suggests that a combination of differences in the 5?-alkylthio binding region and reduced conformational flexibility in the AtMTAN1 active site likely contribute to its reduced efficiency in binding substrate analogues with longer 5?-substituents. In addition, in contrast to EcMTAN, the active site of AtMTAN1 remains solvated in its ligand-bound forms. As the apparent pKa of an amino acid depends on its local environment, the putative catalytic acid Asp225 in AtMTAN1 may not be protonated at physiological pH and this suggests the transition state of AtMTAN1, like human MTA phosphorylase and

  7. Substrate specificity and enzyme recycling using chitosan immobilized laccase.

    PubMed

    Skoronski, Everton; Fernandes, Mylena; Magalhães, Maria de Lourdes Borba; da Silva, Gustavo Felippe; João, Jair Juarez; Soares, Carlos Henrique Lemos; Júnior, Agenor Fúrigo

    2014-10-17

    The immobilization of laccase (Aspergillus sp.) on chitosan by cross-linking and its application in bioconversion of phenolic compounds in batch reactors were studied. Investigation was performed using laccase immobilized via chemical cross-linking due to the higher enzymatic operational stability of this method as compared to immobilization via physical adsorption. To assess the influence of different substrate functional groups on the enzyme's catalytic efficiency, substrate specificity was investigated using chitosan-immobilized laccase and eighteen different phenol derivatives. It was observed that 4-nitrophenol was not oxidized, while 2,5-xylenol, 2,6-xylenol, 2,3,5-trimethylphenol, syringaldazine, 2,6-dimetoxyphenol and ethylphenol showed reaction yields up 90% at 40 °C. The kinetic of process, enzyme recyclability and operational stability were studied. In batch reactors, it was not possible to reuse the enzyme when it was applied to syringaldazne bioconversion. However, when the enzyme was applied to bioconversion of 2,6-DMP, the activity was stable for eight reaction batches.

  8. Tocopherol Cyclases—Substrate Specificity and Phylogenetic Relations

    PubMed Central

    Dłużewska, Jolanta; Szymańska, Renata; Gabruk, Michal; Kós, Peter B.; Nowicka, Beatrycze; Kruk, Jerzy

    2016-01-01

    In the present studies, we focused on substrate specificity of tocopherol cyclase, the key enzyme in the biosynthesis of the tocopherols and plastochromanol-8, the main plant lipid antioxidants, with special emphasis on the preference for tocopherols and plastochromanol-8 precursors, taking advantage of the recombinant enzyme originating from Arabidopsis thaliana and isolated plastoglobules, thylakoids and various model systems like micelles and thylakoids. Plastoglobules and triacylglycerol micelles were the most efficient reaction environment for the cyclase. In various investigated systems, synthesis of γ-tocopherol proceeded considerably faster than that of plastochromanol-8, probably mainly due to different localization of the corresponding substrates in the analyzed lipid structures. Moreover, our study was complemented by bioinformatics analysis of the phylogenetic relations of the cyclases and sequence motifs, crucial for the enzyme activity, were proposed. The analysis revealed also a group of tocopherol cyclase-like proteins in a number of heterotrophic bacterial species, with a conserved region common with photosynthetic organisms, that might be engaged in the catalytic activity of both groups of organisms. PMID:27462710

  9. Engineering a substrate-specific cold-adapted subtilisin.

    PubMed

    Tindbaek, Nikolaj; Svendsen, Allan; Oestergaard, Peter Rahbek; Draborg, Henriette

    2004-02-01

    One region predicted to be highly flexible for a psychrophilic enzyme, TA39 subtilisin (S39), was transferred in silico to the mesophilic subtilisin, savinase (EC 3.4.21.62), from Bacillus lentus (clausii). The engineered hybrid and savinase were initially investigated by molecular dynamic simulations at 300 K to show binding region and global flexibility. The predicted S39 region consists of 12 residues, which due to homology between the subtilisins, results in a total change of eight residues. By site-directed modifications, the region was transferred to the binding region of savinase, thus a savinase-S39 hybrid, named H5, was constructed. The designed hybrid showed the same temperature optimum and pH profile as savinase, but H5 had higher specific activity on the synthetic substrate N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (AAPF) at all temperatures measured and, at the same time, H5 showed a decrease in thermostability. The H5 hybrid showed broader substrate specificity, measured at room temperature, due to an increase in catalytic efficiency on AAPF, AAPA and FAAF compared with savinase (N-succinyl-XXXX-pNA; XXXX = AAPF, AAPA and FAAF). The H5 hybrid showed increased activity at low temperature, increased binding region and global flexibility, as investigated by molecular dynamic simulations, and global destabilization from differential scanning calorimetry measurements. These psychrophilic characteristics indicated an increase in binding site flexibility, probably due to the modifications P129S, S130G, P131E, and thus we show that it is possible to increase low temperature activity and global flexibility by engineered flexibility in the binding region.

  10. Identity and Substrate Specificity of Reductive Dehalogenases Expressed in Dehalococcoides-Containing Enrichment Cultures Maintained on Different Chlorinated Ethenes

    PubMed Central

    Liang, Xiaoming; Molenda, Olivia; Tang, Shuiquan

    2015-01-01

    Many reductive dehalogenases (RDases) have been identified in organohalide-respiring microorganisms, and yet their substrates, specific activities, and conditions for expression are not well understood. We tested whether RDase expression varied depending on the substrate-exposure history of reductive dechlorinating communities. For this purpose, we used the enrichment culture KB-1 maintained on trichloroethene (TCE), as well as subcultures maintained on the intermediates cis-dichloroethene (cDCE) and vinyl chloride (VC). KB-1 contains a TCE-to-cDCE dechlorinating Geobacter and several Dehalococcoides strains that together harbor many of the known chloroethene reductases. Expressed RDases were identified using blue native polyacrylamide gel electrophoresis, enzyme assays in gel slices, and peptide sequencing. As anticipated but never previously quantified, the RDase from Geobacter was only detected transiently at the beginning of TCE dechlorination. The Dehalococcoides RDase VcrA and smaller amounts of TceA were expressed in the parent KB-1 culture during complete dechlorination of TCE to ethene regardless of time point or amended substrate. The Dehalococcoides RDase BvcA was only detected in enrichments maintained on cDCE as growth substrates, in roughly equal abundance to VcrA. Only VcrA was detected in subcultures enriched on VC. Enzyme assays revealed that 1,1-DCE, a substrate not used for culture enrichment, afforded the highest specific activity. trans-DCE was substantially dechlorinated only by extracts from cDCE enrichments expressing BvcA. RDase gene distribution indicated enrichment of different strains of Dehalococcoides as a function of electron acceptor TCE, cDCE, or VC. Each chloroethene reductase has distinct substrate preferences leading to strain selection in mixed communities. PMID:25934625

  11. New substrate specificity of modified porcine pancreatic alpha-amylase.

    PubMed

    Ishikawa, K; Hirata, H

    1989-08-01

    Conversion of the substrate specificity of porcine pancreatic alpha-amylase (PPA) was studied using chemical modification of His residues. Diethyl pyrocarbonate modified His residues in PPA and the activity of the modified PPA for the hydrolysis of the alpha-D-(1,4)glucoside bond in starch or oligosaccharides decreased to less than 1% of that of the native enzyme. However, the activity for the hydrolysis of the bond between p-nitrophenol and oligosaccharides in p-nitrophenyl oligosaccharides was increased by chemical modification. When the modified PPA was incubated with a proteinaceous alpha-amylase inhibitor (Mr 60,000) purified from white kidney bean (Phaseolus vulgaris), it bound to the inhibitor. As a result, the remaining less than 1% hydrolytic activity of the modified PPA for starch disappeared completely but that for p-nitrophenyl oligosaccharides remained unaltered. The hydrolytic activity of the native PPA for the alpha-D-(1,4)glucoside bond in oligosaccharides was stronger than that between p-nitrophenyl and oligosaccharides in p-nitrophenyl oligosaccharides. Therefore, when p-nitrophenyl oligosaccharides (three to five glucose residues) were used as substrates for the native PPA, the alpha-D-(1,4)glucoside bonds in the oligosaccharides were hydrolyzed. However, the modified PPA-inhibitor complex hydrolyzed only the bond between p-nitrophenol and oligosaccharides in p-nitrophenyl oligosaccharides. The above results reveal that, by chemical modification with diethyl pyrocarbonate and biochemical modification with an amylase inhibitor, amylase can be converted to a new exo-type enzyme which hydrolyzes only the bond between p-nitrophenol and oligosaccharides in p-nitrophenyl oligosaccharides.

  12. Substrate specificity of Rhbg: ammonium and methyl ammonium transport

    PubMed Central

    Abdulnour-Nakhoul, Solange M.; Boulpaep, Emile L.; Rabon, Edd; Schmidt, Eric; Hamm, L. Lee

    2010-01-01

    Rhbg is a nonerythroid membrane glycoprotein belonging to the Rh antigen family. In the kidney, Rhbg is expressed at the basolateral membrane of intercalated cells of the distal nephron and is involved in NH4+ transport. We investigated the substrate specificity of Rhbg by comparing transport of NH3/NH4+ with that of methyl amine (hydrochloride) (MA/MA+), often used to replace NH3/NH4+, in oocytes expressing Rhbg. Methyl amine (HCl) in solution exists as neutral methyl amine (MA) in equilibrium with the protonated methyl ammonium (MA+). To assess transport, we used ion-selective microelectrodes and voltage-clamp experiments to measure NH3/NH4+- and MA/MA+-induced intracellular pH (pHi) changes and whole cell currents. Our data showed that in Rhbg oocytes, NH3/NH4+ caused an inward current and decrease in pHi consistent with electrogenic NH4+ transport. These changes were significantly larger than in H2O-injected oocytes. The NH3/NH4+-induced current was not inhibited in the presence of barium or in the absence of Na+. In Rhbg oocytes, MA/MA+ caused an inward current but an increase (rather than a decrease) in pHi. MA/MA+ did not cause any changes in H2O-injected oocytes. The MA/MA+-induced current and pHi increase were saturated at higher concentrations of MA/MA+. Amiloride inhibited MA/MA+-induced current and the increase in pHi in oocytes expressing Rhbg but had no effect on control oocytes. These results indicate that MA/MA+ is transported by Rhbg but differently than NH3/NH4+. The protonated MA+ is likely a direct substrate whose transport resembles that of NH4+. Transport of electroneutral MA is also enhanced by expression of Rhbg. PMID:20592240

  13. Substrate specificity of Rhbg: ammonium and methyl ammonium transport.

    PubMed

    Nakhoul, Nazih L; Abdulnour-Nakhoul, Solange M; Boulpaep, Emile L; Rabon, Edd; Schmidt, Eric; Hamm, L Lee

    2010-09-01

    Rhbg is a nonerythroid membrane glycoprotein belonging to the Rh antigen family. In the kidney, Rhbg is expressed at the basolateral membrane of intercalated cells of the distal nephron and is involved in NH4+ transport. We investigated the substrate specificity of Rhbg by comparing transport of NH3/NH4+ with that of methyl amine (hydrochloride) (MA/MA+), often used to replace NH3/NH4+, in oocytes expressing Rhbg. Methyl amine (HCl) in solution exists as neutral methyl amine (MA) in equilibrium with the protonated methyl ammonium (MA+). To assess transport, we used ion-selective microelectrodes and voltage-clamp experiments to measure NH3/NH4+- and MA/MA+-induced intracellular pH (pH(i)) changes and whole cell currents. Our data showed that in Rhbg oocytes, NH3/NH4+ caused an inward current and decrease in pH(i) consistent with electrogenic NH4+ transport. These changes were significantly larger than in H2O-injected oocytes. The NH3/NH4+-induced current was not inhibited in the presence of barium or in the absence of Na+. In Rhbg oocytes, MA/MA+ caused an inward current but an increase (rather than a decrease) in pH(i). MA/MA+ did not cause any changes in H2O-injected oocytes. The MA/MA+-induced current and pH(i) increase were saturated at higher concentrations of MA/MA+. Amiloride inhibited MA/MA+-induced current and the increase in pH(i) in oocytes expressing Rhbg but had no effect on control oocytes. These results indicate that MA/MA+ is transported by Rhbg but differently than NH3/NH4+. The protonated MA+ is likely a direct substrate whose transport resembles that of NH4+. Transport of electroneutral MA is also enhanced by expression of Rhbg.

  14. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases.

    PubMed

    Dunn, Briana J; Khosla, Chaitan

    2013-08-06

    Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active 'unnatural' natural products.

  15. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases

    PubMed Central

    Dunn, Briana J.; Khosla, Chaitan

    2013-01-01

    Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active ‘unnatural’ natural products. PMID:23720536

  16. Substrate-specific kinetics of Dicer-catalyzed RNA processing.

    PubMed

    Chakravarthy, Srinivas; Sternberg, Samuel H; Kellenberger, Colleen A; Doudna, Jennifer A

    2010-12-03

    The specialized ribonuclease Dicer plays a central role in eukaryotic gene expression by producing small regulatory RNAs-microRNAs (miRNAs) and short interfering RNAs (siRNAs)-from larger double-stranded RNA (dsRNA) substrates. Although Dicer will cleave both imperfectly base-paired hairpin structures (pre-miRNAs) and perfect duplexes (pre-siRNAs) in vitro, it has not been clear whether these are mechanistically equivalent substrates and how dsRNA binding proteins such as trans-activation response (TAR) RNA binding protein (TRBP) influence substrate selection and RNA processing efficiency. We show here that human Dicer is much faster at processing a pre-miRNA substrate compared to a pre-siRNA substrate under both single and multiple turnover conditions. Maximal cleavage rates (V(max)) calculated by Michaelis-Menten analysis differed by more than 100-fold under multiple turnover conditions. TRBP was found to enhance dicing of both substrates to similar extents, and this stimulation required the two N-terminal dsRNA binding domains of TRBP. These results demonstrate that multiple factors influence dicing kinetics. While TRBP stimulates dicing by enhancing the stability of Dicer-substrate complexes, Dicer itself generates product RNAs at rates determined at least in part by the structural properties of the substrate.

  17. Substrate-Specific Reduction of Tetrazolium Salts by Isolated Mitochondria, Tissues, and Leukocytes.

    PubMed

    Fedotcheva, N I; Litvinova, E G; Zakharchenko, M V; Khunderyakova, N V; Fadeev, R S; Teplova, V V; Fedotcheva, T A; Beloborodova, N V; Kondrashova, M N

    2017-02-01

    Tetrazolium salts are commonly used in cytochemical and biochemical studies as indicators of metabolic activity of cells. Formazans, formed by reduction of tetrazolium salts, behave as pseudo-solutions during initial incubation, which allows monitoring their optical density throughout incubation. The criteria and conditions for measuring oxidative activity of mitochondria and dehydrogenase activity in reduction of nitroblue tetrazolium (NBT) and methyl thiazolyl tetrazolium (MTT) in suspensions of isolated mitochondria, tissue homogenates, and leukocytes were investigated in this work. We found that the reduction of these two acceptors depended on the oxidized substrate - NBT was reduced more readily during succinate oxidation, while MTT - during oxidation of NAD-dependent substrates. Reduction of both acceptors was more sensitive to dehydrogenase inhibitors that to respiratory chain inhibitors. The reduction of NBT in isolated mitochondria, in leukocytes in the presence of digitonin, and in liver and kidney homogenates was completely blocked by succinate dehydrogenase inhibitors - malonate and TTFA. Based on these criteria, activation of succinate oxidation was revealed from the increase in malonate-sensitive fraction of the reduced NBT under physiological stress. The effect of progesterone and its synthetic analogs on oxidation of NAD-dependent substrates by mitochondria was investigated using MTT. Both acceptors are also reduced by superoxide anion; the impact of this reaction is negligible or completely absent under physiological conditions, but can become detectable on generation of superoxide induced by inhibitors of individual enzyme complexes or in the case of mitochondrial dysfunction. The results indicate that the recording of optical density of reduced NBT and MTT is a highly sensitive method for evaluation of metabolic activity of mitochondria applicable for different incubation conditions, it offers certain advantages in comparison with other methods

  18. MTH1 Substrate Recognition—An Example of Specific Promiscuity

    PubMed Central

    Nissink, J. Willem M.; Bista, Michal; Breed, Jason; Carter, Nikki; Embrey, Kevin; Read, Jonathan; Winter-Holt, Jon J.

    2016-01-01

    MTH1 (NUDT1) is an oncologic target involved in the prevention of DNA damage. We investigate the way MTH1 recognises its substrates and present substrate-bound structures of MTH1 for 8-oxo-dGTP and 8-oxo-rATP as examples of novel strong and weak binding substrate motifs. Investigation of a small set of purine-like fragments using 2D NMR resulted in identification of a fragment with weak potency. The protein-ligand X-Ray structure of this fragment provides insight into the role of water molecules in substrate selectivity. Wider fragment screening by NMR resulted in three new protein structures exhibiting alternative binding configurations to the key Asp-Asp recognition element of the protein. These inhibitor binding modes demonstrate that MTH1 employs an intricate yet promiscuous mechanism of substrate anchoring through its Asp-Asp pharmacophore. The structures suggest that water-mediated interactions convey selectivity towards oxidized substrates over their non-oxidised counterparts, in particular by stabilization of a water molecule in a hydrophobic environment through hydrogen bonding. These findings may be useful in the design of inhibitors of MTH1. PMID:26999531

  19. MTH1 Substrate Recognition--An Example of Specific Promiscuity.

    PubMed

    Nissink, J Willem M; Bista, Michal; Breed, Jason; Carter, Nikki; Embrey, Kevin; Read, Jonathan; Winter-Holt, Jon J

    2016-01-01

    MTH1 (NUDT1) is an oncologic target involved in the prevention of DNA damage. We investigate the way MTH1 recognises its substrates and present substrate-bound structures of MTH1 for 8-oxo-dGTP and 8-oxo-rATP as examples of novel strong and weak binding substrate motifs. Investigation of a small set of purine-like fragments using 2D NMR resulted in identification of a fragment with weak potency. The protein-ligand X-Ray structure of this fragment provides insight into the role of water molecules in substrate selectivity. Wider fragment screening by NMR resulted in three new protein structures exhibiting alternative binding configurations to the key Asp-Asp recognition element of the protein. These inhibitor binding modes demonstrate that MTH1 employs an intricate yet promiscuous mechanism of substrate anchoring through its Asp-Asp pharmacophore. The structures suggest that water-mediated interactions convey selectivity towards oxidized substrates over their non-oxidised counterparts, in particular by stabilization of a water molecule in a hydrophobic environment through hydrogen bonding. These findings may be useful in the design of inhibitors of MTH1.

  20. Origin and evolution of transporter substrate specificity within the NPF family

    PubMed Central

    Jørgensen, Morten Egevang; Xu, Deyang; Crocoll, Christoph; Ramírez, David; Motawia, Mohammed Saddik; Olsen, Carl Erik; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann

    2017-01-01

    Despite vast diversity in metabolites and the matching substrate specificity of their transporters, little is known about how evolution of transporter substrate specificities is linked to emergence of substrates via evolution of biosynthetic pathways. Transporter specificity towards the recently evolved glucosinolates characteristic of Brassicales is shown to evolve prior to emergence of glucosinolate biosynthesis. Furthermore, we show that glucosinolate transporters belonging to the ubiquitous NRT1/PTR FAMILY (NPF) likely evolved from transporters of the ancestral cyanogenic glucosides found across more than 2500 species outside of the Brassicales. Biochemical characterization of orthologs along the phylogenetic lineage from cassava to A. thaliana, suggests that alterations in the electrogenicity of the transporters accompanied changes in substrate specificity. Linking the evolutionary path of transporter substrate specificities to that of the biosynthetic pathways, exemplify how transporter substrate specificities originate and evolve as new biosynthesis pathways emerge. DOI: http://dx.doi.org/10.7554/eLife.19466.001 PMID:28257001

  1. Origin and evolution of transporter substrate specificity within the NPF family.

    PubMed

    Jørgensen, Morten Egevang; Xu, Deyang; Crocoll, Christoph; Ramírez, David; Motawia, Mohammed Saddik; Olsen, Carl Erik; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann

    2017-03-03

    Despite vast diversity in metabolites and the matching substrate specificity of their transporters, little is known about how evolution of transporter substrate specificities is linked to emergence of substrates via evolution of biosynthetic pathways. Transporter specificity towards the recently evolved glucosinolates characteristic of Brassicales is shown to evolve prior to emergence of glucosinolate biosynthesis. Furthermore, we show that glucosinolate transporters belonging to the ubiquitous NRT1/PTR FAMILY (NPF) likely evolved from transporters of the ancestral cyanogenic glucosides found across more than 2500 species outside of the Brassicales. Biochemical characterization of orthologs along the phylogenetic lineage from cassava to A. thaliana, suggests that alterations in the electrogenicity of the transporters accompanied changes in substrate specificity. Linking the evolutionary path of transporter substrate specificities to that of the biosynthetic pathways, exemplify how transporter substrate specificities originate and evolve as new biosynthesis pathways emerge.

  2. Understanding the Specificity and Random Collision of Enzyme-Substrate Interaction

    ERIC Educational Resources Information Center

    Kin, Ng Hong; Ling, Tan Aik

    2016-01-01

    The concept of specificity of enzyme action can potentially be abstract for some students as they fail to appreciate how the three-dimensional configuration of enzymes and the active sites confer perfect fit for specific substrates. In science text books, the specificity of enzyme-substrate binding is typically likened to the action of a lock and…

  3. Substrate specificity of an actively assembling amyloid catalyst.

    PubMed

    Heier, Jason L; Mikolajczak, Dorian J; Böttcher, Christoph; Koksch, Beate

    2017-01-01

    In the presence of Zn(2+) , the catalytic, amyloid-forming peptide Ac-IHIHIQI-NH2 , was found to exhibit enhanced selectivity for hydrophobic p-nitrophenyl ester substrates while in the process of self-assembly. As opposed to the substrate p-nitrophenyl acetate, which was more effectively hydrolyzed with Ac-IHIHIQI-NH2 in its fully fibrillar state, the hydrophobic substrate Z-L-Phe-ONp was converted with a second-order rate constant more than 11-times greater when the catalyst was actively assembling. Under such conditions, Z-L-Phe-ONp hydrolysis proceeded at a greater velocity than the more hydrophilic and otherwise more labile ester Boc-L-Asn-ONp. When assembling, the catalyst also showed increased selectivity for the L-enantiomer of Z-Phe-ONp. These findings suggest the occurrence of increased interactions of hydrophobic moieties of the substrate with exposed hydrophobic surfaces of the assembling peptides and present valuable features for future de novo design consideration.

  4. Definition of the extended substrate specificity determinants for beta-tryptases I and II.

    PubMed

    Harris, J L; Niles, A; Burdick, K; Maffitt, M; Backes, B J; Ellman, J A; Kuntz, I; Haak-Frendscho, M; Craik, C S

    2001-09-14

    Tryptases betaI and betaII were heterologously expressed and purified in yeast to functionally characterize the substrate specificity of each enzyme. Three positional scanning combinatorial tetrapeptide substrate libraries were used to determine the primary and extended substrate specificity of the proteases. Both enzymes have a strict primary preference for cleavage after the basic amino acids, lysine and arginine, with only a slight preference for lysine over arginine. betaI and betaII tryptase share similar extended substrate specificity, with preference for proline at P4, preference for arginine or lysine at P3, and P2 showing a slight preference for asparagine. Measurement of kinetic constants with multiple substrates designed for beta-tryptases reveal that selectivity is highly dependent on ground state substrate binding. Coupled with the functional determinants, structural determinants of tryptase substrate specificity were identified. Molecular docking of the preferred substrate sequence to the three-dimensional tetrameric tryptase structure reveals a novel extended substrate binding mode that involves interactions from two adjacent protomers, including P4 Thr-96', P3 Asp-60B' and Glu-217, and P1 Asp-189. Based on the determined substrate information, a mechanism-based tetrapeptide-chloromethylketone inhibitor was designed and shown to be a potent tryptase inhibitor. Finally, the cleavage sites of several physiologically relevant substrates of beta-tryptases show consistency with the specificity data presented here.

  5. Universal Common Communication Substrate (UCCS) Specification; Universal Common Communication Substrate (UCCS) Implementation

    SciTech Connect

    2014-08-22

    Universal Common Communication Substrate (UCCS) is a low-level communication substrate that exposes high-performance communication primitives, while providing network interoperability. It is intended to support multiple upper layer protocol (ULPs) or programming models including SHMEM,UPC,Titanium,Co-Array Fortran,Global Arrays,MPI,GASNet, and File I/O. it provides various communication operations including one-sided and two-sided point-to-point, collectives, and remote atomic operations. In addition to operations for ULPs, it provides an out-of-band communication channel required typically required to wire-up communication libraries.

  6. Switching substrate specificity of AMT/MEP/ Rh proteins

    PubMed Central

    Neuhäuser, Benjamin; Dynowski, Marek; Ludewig, Uwe

    2014-01-01

    In organisms from all kingdoms of life, ammonia and its conjugated ion ammonium are transported across membranes by proteins of the AMT/Rh family. Efficient and successful growth often depends on sufficient ammonium nutrition. The proteins mediating this transport, the so called Ammonium Transporter (AMT) or Rhesus like (Rh) proteins, share a very similar trimeric overall structure and a high sequence similarity even throughout the kingdoms. Even though structural components of the transport mechanism, like an external substrate recruitment site, an essential twin histidine pore motif, a phenylalanine gate and the hydrophobic pore are strongly conserved and have been analyzed in detail by molecular dynamic simulations and mutational studies, the substrate(s), which pass the central pores of the AMT/Rh subunits, NH4+, NH3 + H+, NH4+ + H+ or NH3, are still a matter of debate for most proteins, including the best characterized AmtB protein from Escherichia coli. The lack of a robust expression system for functional analysis has hampered proof of structural and mutational studies, although the NH3 transport function for Rh-like proteins is rarely disputed. In plant transporters belonging to the subfamily AMT1, transport is associated with electrical currents, while some plant transporters, notably of the AMT2 type, were suggested to transport NH3 across the membrane, without associated ionic currents. Here we summarize data in favor of each substrate for the distinct AMT/Rh classes, discuss mutants and how they differ in structure and functionality. A common mechanism with deprotonation and subsequent NH3 transport through the central subunit pore is suggested. PMID:25483282

  7. Differences in substrate specificities of five bacterial wax ester synthases.

    PubMed

    Barney, Brett M; Wahlen, Bradley D; Garner, EmmaLee; Wei, Jiashi; Seefeldt, Lance C

    2012-08-01

    Wax esters are produced in certain bacteria as a potential carbon and energy storage compound. The final enzyme in the biosynthetic pathway responsible for wax ester production is the bifunctional wax ester synthase/acyl-coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT), which utilizes a range of fatty alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. We report here the isolation and substrate range characterization for five WS/DGAT enzymes from four different bacteria: Marinobacter aquaeolei VT8, Acinetobacter baylyi, Rhodococcus jostii RHA1, and Psychrobacter cryohalolentis K5. The results from kinetic studies of isolated enzymes reveal a differential activity based on the order of substrate addition and reveal subtle differences between the substrate selectivity of the different enzymes. These in vitro results are compared to the wax ester and triacylglyceride product profiles obtained from each organism grown under neutral lipid accumulating conditions, providing potential insights into the role that the WS/DGAT enzyme plays in determining the final wax ester products that are produced under conditions of nutrient stress in each of these bacteria. Further, the analysis revealed that one enzyme in particular from M. aquaeolei VT8 showed the greatest potential for future study based on rapid purification and significantly higher activity than was found for the other isolated WS/DGAT enzymes. The results provide a framework to test prospective differences between these enzymes for potential biotechnological applications such as high-value petrochemicals and biofuel production.

  8. [Liver monoamine oxidase activity of the lamprey Lampetra fluviatilis. the substrate-inhibitory specificity].

    PubMed

    Iagodina, O V; Basova, I N

    2013-01-01

    Based on data of substrate-inhibitory analysis with use of specific inhibitors--deprenyl, chlorgi-lin--and specific substrates--serotonin, noradrenalin, benzylamine, beta-phenylethylamine, and N-methylhistamine--a suggestion is put forward about the possible existence of one molecular form of monoamine oxidase (MAO) in liver of mature individuals of the European lamprey Lampetra fluviatilis. There are determined kinetic parameters of monoamine oxidase deamination of eight substrates, which indicates the large spectrum of substrate specificity of the lamprey liver MAO. The studied enzyme does not deaminate histamine and putrescine and is not sensitive to 10(-2) M semicarbaside. Results of study of the substrate-inhibitor specificity allow us to suggest some resemblance of catalytic properties of the lamprey liver MAO and the mammalian form A MAO. The revealed low activity of the enzyme at deamination of all used substrates seems to be connected with low detoxational functional of the lamprey liver.

  9. Lipid substrate specificity of phosphatidylethanolamine N-methyltransferase of Tetrahymena

    SciTech Connect

    Smith, J.D.

    1986-05-01

    The ciliate protozoan Tetrahymena thermophila forms about 60% of its phosphatidylcholine by methylation of phosphatidylethanolamine with S-adenosylmethionine using the enzyme phosphatidylethanolamine N-methyltransferase. Analogues of ethanolamine or of ethanolamine phosphate are incorporated into the phospholipids of Tetrahymena when cells are cultured in their presence. These compounds, 3-amino-1-propanol, 2-aminoethylphosphonate, 3-aminopropylphosphonate and N,N-dimethylaminoethylphosphonate replace from 50 to 75% of the ethanolamine phosphate in phosphatidylethanolamine. However, analysis of the phospholipids of lipid-altered Tetrahymena showed that none of the phosphatidylethanolamine analogues had been converted to the corresponding phosphatidylcholine analogue. No incorration of (/sup 14/C-CH/sub 3/)methionine into the phosphatidylcholine analogues could be demonstrated in vivo, nor was label from (/sup 3/H-CH/sub 3/)S-adenosylmethionine incorporated in virto. Thus, only phosphatidylethanolamine and its monomethyl and dimethyl derivatives have been found to be substrates for the phosphatidylethanoiamine N-methyltransferase. The enzyme therefore requires a phospholipid substrate containing an ester linkage between the alkylamine and phosphorus, with the amino group required to be ..beta.. to the alcohol.

  10. Substrate specificity of the sialic acid biosynthetic pathway

    SciTech Connect

    Jacobs, Christina L.; Goon, Scarlett; Yarema, Kevin J.; Hinderlich, Stephan; Hang, Howard C.; Chai, Diana H.; Bertozzi, Carolyn R.

    2001-07-18

    Unnatural analogs of sialic acid can be delivered to mammalian cell surfaces through the metabolic transformation of unnatural N-acetylmannosamine (ManNAc) derivatives. In previous studies, mannosamine analogs bearing simple N-acyl groups up to five carbon atoms in length were recognized as substrates by the biosynthetic machinery and transformed into cell-surface sialoglycoconjugates [Keppler, O. T., et al. (2001) Glycobiology 11, 11R-18R]. Such structural alterations to cell surface glycans can be used to probe carbohydrate-dependent phenomena. This report describes our investigation into the extent of tolerance of the pathway toward additional structural alterations of the N-acyl substituent of ManNAc. A panel of analogs with ketone-containing N-acyl groups that varied in the lengthor steric bulk was chemically synthesized and tested for metabolic conversion to cell-surface glycans. We found that extension of the N-acyl chain to six, seven, or eight carbon atoms dramatically reduced utilization by the biosynthetic machinery. Likewise, branching from the linear chain reduced metabolic conversion. Quantitation of metabolic intermediates suggested that cellular metabolism is limited by the phosphorylation of the N-acylmannosamines by ManNAc 6-kinase in the first step of the pathway. This was confirmed by enzymatic assay of the partially purified enzyme with unnatural substrates. Identification of ManNAc 6-kinase as a bottleneck for unnatural sialic acid biosynthesis provides a target for expanding the metabolic promiscuity of mammalian cells.

  11. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    PubMed Central

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  12. A chromogenic substrate for phosphatidylinositol-specific phospholipase C: 4-nitrophenyl myo-inositol-1-phosphate.

    PubMed

    Shashidhar, M S; Volwerk, J J; Griffith, O H; Keana, J F

    1991-12-01

    A chromogenic water-soluble substrate for phosphatidylinositol-specific phospholipase C was synthesized starting from myo-inositol employing isopropylidene and 4-methoxytetrahydropyranyl protecting groups. In this analogue of phosphatidylinositol, 4-nitrophenol replaces the diacylglycerol moiety, resulting in synthetic, racemic 4-nitrophenyl myo-inositol-1-phosphate. Using this synthetic substrate a rapid, convenient and sensitive spectrophotometric assay for the phosphatidylinositol-specific phospholipase C from Bacillus cereus was developed. Initial rates of the cleavage of the nitrophenol substrate were linear with time and the amount of enzyme used. At pH 7.0, specific activities for the B. cereus enzyme were 77 and 150 mumol substrate cleaved min-1 (mg protein)-1 at substrate concentrations of 1 and 2 mM, respectively. Under these conditions, less than 50 ng quantities of enzyme were easily detected. The chromogenic substrate was stable during long term storage (6 months) as a solid at -20 degrees C.

  13. Substrate Specificity and Enantioselectivity of 4-Hydroxyacetophenone Monooxygenase

    PubMed Central

    Kamerbeek, Nanne M.; Olsthoorn, Arjen J. J.; Fraaije, Marco W.; Janssen, Dick B.

    2003-01-01

    The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also substrates for this flavin-containing monooxygenase. On the other hand, several carbonyl compounds that are substrates for other Baeyer-Villiger monooxygenases (BVMOs) are not converted by HAPMO. In addition to performing Baeyer-Villiger reactions with aromatic ketones and aldehydes, the enzyme was also able to catalyze sulfoxidation reactions by using aromatic sulfides. Furthermore, several heterocyclic and aliphatic carbonyl compounds were also readily converted by this BVMO. To probe the enantioselectivity of HAPMO, the conversion of bicyclohept-2-en-6-one and two aryl alkyl sulfides was studied. The monooxygenase preferably converted (1R,5S)-bicyclohept-2-en-6-one, with an enantiomeric ratio (E) of 20, thus enabling kinetic resolution to obtain the (1S,5R) enantiomer. Complete conversion of both enantiomers resulted in the accumulation of two regioisomeric lactones with moderate enantiomeric excess (ee) for the two lactones obtained [77% ee for (1S,5R)-2 and 34% ee for (1R,5S)-3]. Using methyl 4-tolyl sulfide and methylphenyl sulfide, we found that HAPMO is efficient and highly selective in the asymmetric formation of the corresponding (S)-sulfoxides (ee > 99%). The biocatalytic properties of HAPMO described here show the potential of this enzyme for biotechnological applications. PMID:12514023

  14. Definition and redesign of the extended substrate specificity of granzyme B.

    PubMed

    Harris, J L; Peterson, E P; Hudig, D; Thornberry, N A; Craik, C S

    1998-10-16

    Granzyme B is a protease involved in the induction of rapid target cell death by cytotoxic lymphocytes. Definition of the substrate specificity of granzyme B allows for the identification of in vivo substrates in this process. By using the combinatorial methods of synthetic substrate libraries and substrate-phage display, an optimal substrate for granzyme B that spans over six subsites was determined to be Ile-Glu-Xaa-(Asp downward arrowXaa)-Gly, with cleavage of the Asp downward arrowXaa peptide bond. Granzyme B proteolysis was shown to be highly dependent on the length and sequence of the substrate, supporting the role of granzyme B as a regulatory protease. Arginine 192 was identified as a determinant of P3-Glu and P1-Asp substrate specificity. Mutagenesis of arginine 192 to glutamate reversed the preference for negatively charged amino acids at P3 to positively charged amino acids. The preferred substrate sequence matches the activation sites of caspase 3 and caspase 7 and thus is consistent with the role of granzyme B in activation of these proteases during apoptosis. The caspase substrate poly(ADP)-ribose polymerase is cleaved by granzyme B in a cell-free assay at two sites that resemble the granzyme B specificity determined by the combinatorial methods. Many caspase substrates contain granzyme B cleavage sites and are proposed as potential granzyme B targets, suggesting a redundant function with certain caspases.

  15. Specificity profiling of dual specificity phosphatase vaccinia VH1-related (VHR) reveals two distinct substrate binding modes.

    PubMed

    Luechapanichkul, Rinrada; Chen, Xianwen; Taha, Hashem A; Vyas, Shubham; Guan, Xiaoyan; Freitas, Michael A; Hadad, Christopher M; Pei, Dehua

    2013-03-01

    Vaccinia VH1-related (VHR) is a dual specificity phosphatase that consists of only a single catalytic domain. Although several protein substrates have been identified for VHR, the elements that control the in vivo substrate specificity of this enzyme remain unclear. In this work, the in vitro substrate specificity of VHR was systematically profiled by screening combinatorial peptide libraries. VHR exhibits more stringent substrate specificity than classical protein-tyrosine phosphatases and recognizes two distinct classes of Tyr(P) peptides. The class I substrates are similar to the Tyr(P) motifs derived from the VHR protein substrates, having sequences of (D/E/ϕ)(D/S/N/T/E)(P/I/M/S/A/V)pY(G/A/S/Q) or (D/E/ϕ)(T/S)(D/E)pY(G/A/S/Q) (where ϕ is a hydrophobic amino acid and pY is phosphotyrosine). The class II substrates have the consensus sequence of (V/A)P(I/L/M/V/F)X1-6pY (where X is any amino acid) with V/A preferably at the N terminus of the peptide. Site-directed mutagenesis and molecular modeling studies suggest that the class II peptides bind to VHR in an opposite orientation relative to the canonical binding mode of the class I substrates. In this alternative binding mode, the Tyr(P) side chain binds to the active site pocket, but the N terminus of the peptide interacts with the carboxylate side chain of Asp(164), which normally interacts with the Tyr(P) + 3 residue of a class I substrate. Proteins containing the class II motifs are efficient VHR substrates in vitro, suggesting that VHR may act on a novel class of yet unidentified Tyr(P) proteins in vivo.

  16. Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities

    PubMed Central

    Kumano, Takuto; Richard, Stéphane B.; Noel, Joseph P.; Nishiyama, Makoto; Kuzuyama, Tomohisa

    2010-01-01

    NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon–carbon-based and carbon–oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism. PMID:18682327

  17. Robust substrate profiling method reveals striking differences in specificities of serum and lung fluid proteases.

    PubMed

    Watson, Douglas S; Jambunathan, Kalyani; Askew, David S; Kodukula, Krishna; Galande, Amit K

    2011-08-01

    Proteases are candidate biomarkers and therapeutic targets for many diseases. Sensitive and robust techniques are needed to quantify proteolytic activities within the complex biological milieu. We hypothesized that a combinatorial protease substrate library could be used effectively to identify similarities and differences between serum and bronchoalveolar lavage fluid (BALF), two body fluids that are clinically important for developing targeted therapies and diagnostics. We used a concise library of fluorogenic probes to map the protease substrate specificities of serum and BALF from guinea pigs. Differences in the proteolytic fingerprints of the two fluids were striking: serum proteases cleaved substrates containing cationic residues and proline, whereas BALF proteases cleaved substrates containing aliphatic and aromatic residues. Notably, cleavage of proline-containing substrates dominated all other protease activities in both human and guinea pig serum. This substrate profiling approach provides a foundation for quantitative comparisons of protease specificities between complex biological samples.

  18. CROSS-STREAM COMPARISON OF SUBSTRATE-SPECIFIC DENITRIFICATION POTENTIAL

    SciTech Connect

    Findlay, Stuart; Mulholland, Patrick J; Hamilton, Stephen; Tank, Jennifer; Bernot, Melody; Burgin, Amy; Crenshaw, Chelsea; Grimm, Nancy; McDowell, William; Potter, Jody; Sobota, Daniel

    2011-01-01

    Headwater streams have a demonstrated ability to denitrify a portion of their nitrate (NO(3) (-)) load but there has not been an extensive consideration of where in a stream this process is occurring and how various habitats contribute to total denitrification capability. As part of the Lotic Intersite Nitrogen Experiment II (LINX II) we measured denitrification potential in 65 streams spanning eight regions of the US and draining three land-use types. In each stream, potential denitrification rates were measured in common substrate types found across many streams as well as locations unique to particular streams. Overall, habitats from streams draining urban and agricultural land-uses showed higher potential rates of denitrification than reference streams draining native vegetation. This difference among streams was probably driven by higher ambient nitrate concentrations found in urban or agricultural streams. Within streams, sandy habitats and accumulations of fine benthic organic matter contributed more than half of the total denitrification capacity (mg N removed m(-2) h(-1)). A particular rate of potential denitrification per unit area could be achieved either by high activity per unit organic matter or lower activities associated with larger standing stocks of organic matter. We found that both small patches with high rates (hot spots) or more widespread but less active areas (cool matrix) contributed significantly to whole stream denitrification capacity. Denitrification estimated from scaled-up denitrification enzyme assay (DEA) potentials were not always dramatically higher than in situ rates of denitrification measured as (15)N gas generation following 24-h (15)N-NO(3) tracer additions. In general, headwater streams draining varying land-use types have significant potential to remove nitrate via denitrification and some appear to be functioning near their maximal capacity.

  19. Insight into the Role of Substrate-binding Residues in Conferring Substrate Specificity for the Multifunctional Polysaccharide Lyase Smlt1473

    PubMed Central

    MacDonald, Logan C.; Berger, Bryan W.

    2014-01-01

    Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly

  20. Insight into the role of substrate-binding residues in conferring substrate specificity for the multifunctional polysaccharide lyase Smlt1473.

    PubMed

    MacDonald, Logan C; Berger, Bryan W

    2014-06-27

    Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly

  1. Engineering substrate preference in subtilisin: structural and kinetic analysis of a specificity mutant.

    PubMed

    Ruan, Biao; London, Viktoriya; Fisher, Kathryn E; Gallagher, D Travis; Bryan, Philip N

    2008-06-24

    Bacillus subtilisin has been a popular model protein for engineering altered substrate specificity. Although some studies have succeeded in increasing the specificity of subtilisin, they also demonstrate that high specificity is difficult to achieve solely by engineering selective substrate binding. In this paper, we analyze the structure and transient state kinetic behavior of Sbt160, a subtilisin engineered to strongly prefer substrates with phenylalanine or tyrosine at the P4 position. As in previous studies, we measure improvements in substrate affinity and overall specificity. Structural analysis of an inactive version of Sbt160 in complex with its cognate substrate reveals improved interactions at the S4 subsite with a P4 tyrosine. Comparison of transient state kinetic behavior against an optimal sequence (DFKAM) and a similar, but suboptimal, sequence (DVRAF) reveals the kinetic and thermodynamic basis for increased specificity, as well as the limitations of this approach. While highly selective substrate binding is achieved in Sbt160, several factors cause sequence specificity to fall short of that observed with natural processing subtilisins. First, for substrate sequences which are nearly optimal, the acylation reaction becomes faster than substrate dissociation. As a result, the level of discrimination among these substrates diminishes due to the coupling between substrate binding and the first chemical step (acylation). Second, although Sbt160 has 24-fold higher substrate affinity for the optimal substrate DFKAM than for DVRAF, the increased substrate binding energy is not translated into improved transition state stabilization of the acylation reaction. Finally, as interactions at subsites become stronger, the rate-determining step in peptide hydrolysis changes from acylation to product release. Thus, the release of the product becomes sluggish and leads to a low k(cat) for the reaction. This also leads to strong product inhibition of substrate

  2. Molecular Basis of Substrate Specific Acetylation by N-Terminal Acetyltransferase NatB.

    PubMed

    Hong, Haiyan; Cai, Yongfei; Zhang, Shijun; Ding, Hongyan; Wang, Haitao; Han, Aidong

    2017-04-04

    The NatB N-terminal acetyltransferase specifically acetylates the N-terminal group of substrate protein peptides starting with Met-Asp/Glu/Asn/Gln. How NatB recognizes and acetylates these substrates remains unknown. Here, we report crystal structures of a NatB holoenzyme from Candida albicans in the presence of its co-factor CoA and substrate peptides. The auxiliary subunit Naa25 of NatB forms a horseshoe-like deck to hold specifically its catalytic subunit Naa20. The first two amino acids Met and Asp of a substrate peptide mediate the major interactions with the active site in the Naa20 subunit. The hydrogen bonds between the substrate Asp and pocket residues of Naa20 are essential to determine the NatB substrate specificity. Moreover, a hydrogen bond between the amino group of the substrate Met and a carbonyl group in the Naa20 active site directly anchors the substrate toward acetyl-CoA. Together, these structures define a unique molecular mechanism of specific N-terminal acetylation acted by NatB.

  3. Substrate specificity characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate identification within the Nudix family

    PubMed Central

    Nguyen, Vi N.; Park, Annsea; Xu, Anting; Srouji, John R.

    2016-01-01

    ABSTRACT The nearly 50,000 known Nudix proteins have a diverse array of functions, of which the most extensively studied is the catalyzed hydrolysis of aberrant nucleotide triphosphates. The functions of 171 Nudix proteins have been characterized to some degree, although physiological relevance of the assayed activities has not always been conclusively demonstrated. We investigated substrate specificity for eight structurally characterized Nudix proteins, whose functions were unknown. These proteins were screened for hydrolase activity against a 74‐compound library of known Nudix enzyme substrates. We found substrates for four enzymes with k cat/K m values >10,000 M−1 s−1: Q92EH0_LISIN of Listeria innocua serovar 6a against ADP‐ribose, Q5LBB1_BACFN of Bacillus fragilis against 5‐Me‐CTP, and Q0TTC5_CLOP1 and Q0TS82_CLOP1 of Clostridium perfringens against 8‐oxo‐dATP and 3'‐dGTP, respectively. To ascertain whether these identified substrates were physiologically relevant, we surveyed all reported Nudix hydrolytic activities against NTPs. Twenty‐two Nudix enzymes are reported to have activity against canonical NTPs. With a single exception, we find that the reported k cat/K m values exhibited against these canonical substrates are well under 105 M−1 s−1. By contrast, several Nudix enzymes show much larger k cat/K m values (in the range of 105 to >107 M−1 s−1) against noncanonical NTPs. We therefore conclude that hydrolytic activities exhibited by these enzymes against canonical NTPs are not likely their physiological function, but rather the result of unavoidable collateral damage occasioned by the enzymes' inability to distinguish completely between similar substrate structures. Proteins 2016; 84:1810–1822. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27618147

  4. Kinetic and Structural Analysis of Substrate Specificity in Two Copper Amine Oxidases from Hansenula polymorpha

    SciTech Connect

    Chang, Cindy M.; Klema, Valerie J.; Johnson, Bryan J.; Mure, Minae; Klinman, Judith P.; Wilmot, Carrie M.

    2010-04-26

    The structural underpinnings of enzyme substrate specificity are investigated in a pair of copper amine oxidases (CAOs) from Hansenula polymorpha (HPAO-1 and HPAO-2). The X-ray crystal structure (to 2.0 {angstrom} resolution) and steady state kinetic data of the second copper amine oxidase (HPAO-2) are presented for comparison to those of HPAO-1. Despite 34% sequence identity and superimposable active site residues implicated in catalysis, the enzymes vary considerably in their substrate entry channel. The previously studied CAO, HPAO-1, has a narrow substrate channel. In contrast, HPAO-2 has a wide funnel-shaped substrate channel, which also contains a side chamber. In addition, there are a number of amino acid changes within the channels of HPAO-2 and HPAO-1 that may sterically impact the ability of substrates to form covalent Schiff base catalytic intermediates and to initiate chemistry. These differences can partially explain the greatly different substrate specificities as characterized by k{sub cat}/K{sub m} value differences. In HPAO-1, the k{sub cat}/K{sub m} for methylamine is 330-fold greater than for benzylamine, whereas in HPAO-2, it is benzylamine that is the better substrate by 750-fold. In HPAO-2, an inflated {sup D}k{sub cat}/K{sub m}(methylamine) in relation to {sup D}k{sub cat}/K{sub m}(benzylamine) indicates that proton abstraction has been impeded more than substrate release. In HPAO-1, {sup D}k{sub cat}/K{sub m}(S) changes little with the slow substrate and indicates a similar increase in the energy barriers that control both substrate binding and subsequent catalysis. In neither case is k{sub cat}/K{sub m} for the second substrate, O{sub 2}, significantly altered. These results reinforce the modular nature of the active sites of CAOs and show that multiple factors contribute to substrate specificity and catalytic efficiency. In HPAO-1, the enzyme with the smaller substrate binding pocket, both initial substrate binding and proton loss are

  5. Possible role of a histidine residue in the substrate specificity of yeast d-aspartate oxidase.

    PubMed

    Takahashi, Shouji; Shimada, Kozue; Nozawa, Shunsuke; Goto, Masaru; Abe, Katsumasa; Kera, Yoshio

    2016-03-01

    D-Aspartate oxidase (DDO) catalyzes the oxidative deamination of acidic D-amino acids, whereas neutral and basic D-amino acids are substrates of D-amino acid oxidase (DAO). DDO of the yeast Cryptococcus humicola (ChDDO) has much higher substrate specificity to D-aspartate, but the structural features that confer this specificity have not been elucidated. A three-dimensional model of ChDDO suggested that a histidine residue (His56) in the active site might be involved in the unique substrate specificity, possibly through the interaction with the substrate side chain in the active site. His56 mutants with several different amino acid residues (H56A, H56D, H56F, H56K and H56N) exhibited no significant activity toward acidic D-amino acids, but H56A and H56N mutants gained the ability to utilize neutral D-amino acids as substrates, such as D-methionine, D-phenylalanine and D-glutamine, showing the conversion of ChDDO to DAO by these mutations. This conversion was also demonstrated by the sensitivity of these mutants to competitive inhibitors of DAO. These results and kinetic properties of the mutants show that His56 is involved in the substrate specificity of ChDDO and possibly plays a role in the higher substrate specificity toward D-aspartate.

  6. Combining structure and sequence information allows automated prediction of substrate specificities within enzyme families.

    PubMed

    Röttig, Marc; Rausch, Christian; Kohlbacher, Oliver

    2010-01-08

    An important aspect of the functional annotation of enzymes is not only the type of reaction catalysed by an enzyme, but also the substrate specificity, which can vary widely within the same family. In many cases, prediction of family membership and even substrate specificity is possible from enzyme sequence alone, using a nearest neighbour classification rule. However, the combination of structural information and sequence information can improve the interpretability and accuracy of predictive models. The method presented here, Active Site Classification (ASC), automatically extracts the residues lining the active site from one representative three-dimensional structure and the corresponding residues from sequences of other members of the family. From a set of representatives with known substrate specificity, a Support Vector Machine (SVM) can then learn a model of substrate specificity. Applied to a sequence of unknown specificity, the SVM can then predict the most likely substrate. The models can also be analysed to reveal the underlying structural reasons determining substrate specificities and thus yield valuable insights into mechanisms of enzyme specificity. We illustrate the high prediction accuracy achieved on two benchmark data sets and the structural insights gained from ASC by a detailed analysis of the family of decarboxylating dehydrogenases. The ASC web service is available at http://asc.informatik.uni-tuebingen.de/.

  7. Protease specificity determination by using cellular libraries of peptide substrates (CLiPS).

    PubMed

    Boulware, Kevin T; Daugherty, Patrick S

    2006-05-16

    We report a general combinatorial approach to identify optimal substrates of a given protease by using quantitative kinetic screening of cellular libraries of peptide substrates (CLiPS). A whole-cell protease activity assay was developed by displaying fluorescent reporter substrates on the surface of Escherichia coli as N-terminal fusions. This approach enabled generation of substrate libraries of arbitrary amino acid composition and length that are self-renewing. Substrate hydrolysis by a target protease was measured quantitatively via changes in whole-cell fluorescence by using FACS. FACS enabled efficient screening to identify optimal substrates for a given protease and characterize their cleavage kinetics. The utility of CLiPS was demonstrated by determining the substrate specificity of two unrelated proteases, caspase-3 and enteropeptidase (or enterokinase). CLiPS unambiguously identified the caspase-3 consensus cleavage sequence DXVDG. Enteropeptidase was unexpectedly promiscuous, but exhibited a preference for substrates with the motif (D/E)RM, which were cleaved substantially faster than the canonical DDDDK recognition sequence, widely used for protein purification. CLiPS provides a straightforward and versatile approach to determine protease specificity and discover optimal substrates on the basis of cleavage kinetics.

  8. High and stable substrate specificities of microorganisms in enhanced biological phosphorus removal plants.

    PubMed

    Kindaichi, Tomonori; Nierychlo, Marta; Kragelund, Caroline; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2013-06-01

    Microbial communities are typically characterized by conditions of nutrient limitation so the availability of the resources is likely a key factor in the niche differentiation across all species and in the regulation of the community structure. In this study we have investigated whether four species exhibit any in situ short-term changes in substrate uptake pattern when exposed to variations in substrate and growth conditions. Microautoradiography was combined with fluorescence in situ hybridization to investigate in situ cell-specific substrate uptake profiles of four probe-defined coexisting species in a wastewater treatment plant with enhanced biological phosphorus removal. These were the filamentous 'Candidatus Microthrix' and Caldilinea (type 0803), the polyphosphate-accumulating organism 'Candidatus Accumulibacter', and the denitrifying Azoarcus. The experimental conditions mimicked the conditions potentially encountered in the respective environment (starvation, high/low substrate concentration, induction with specific substrates, and single/multiple substrates). The results showed that each probe-defined species exhibited very distinct and constant substrate uptake profile in time and space, which hardly changed under any of the conditions tested. Such niche partitioning implies that a significant change in substrate composition will be reflected in a changed community structure rather than the substrate uptake response from the different species.

  9. Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface Display

    PubMed Central

    Zhang, Keya; Nelson, Kathryn M.; Bhuripanyo, Karan; Grimes, Kimberly D.; Zhao, Bo; Aldrich, Courtney C.; Yin, Jun

    2013-01-01

    SUMMARY The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in kcat/Km with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in kcat/Km values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the “nonribosomal code” of A-domains. PMID:23352143

  10. Reprogramming caspase-7 specificity by regio-specific mutations and selection provides alternate solutions for substrate recognition

    SciTech Connect

    Hill, Maureen E.; MacPherson, Derek J.; Wu, Peng; Julien, Olivier; Wells, James A.; Hardy, Jeanne A.

    2016-03-31

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. In this paper, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7 was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. Finally, this approach to specificity reprogramming should also be generalizable across a wide range of proteases.

  11. Reprogramming caspase-7 specificity by regio-specific mutations and selection provides alternate solutions for substrate recognition

    DOE PAGES

    Hill, Maureen E.; MacPherson, Derek J.; Wu, Peng; ...

    2016-03-31

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. In this paper, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7more » was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. Finally, this approach to specificity reprogramming should also be generalizable across a wide range of proteases.« less

  12. Structural Basis of the Substrate Specificity and Enzyme Catalysis of a Papaver somniferum Tyrosine Decarboxylase.

    PubMed

    Guan, Huai; Song, Shuaibao; Robinson, Howard; Liang, Jing; Ding, Haizhen; Li, Jianyong; Han, Qian

    2017-01-01

    Tyrosine decarboxylase (TyDC), a type II pyridoxal 5'-phosphate decarboxylase, catalyzes the decarboxylation of tyrosine. Due to a generally high sequence identity to other aromatic amino acid decarboxylases (AAADs), primary sequence information is not enough to understand substrate specificities with structural information. In this study, we selected a typical TyDC from Papaver somniferum as a model to study the structural basis of AAAD substrate specificities. Analysis of the native P. somniferum TyDC crystal structure and subsequent molecular docking and dynamics simulation provide some structural bases that explain substrate specificity for tyrosine. The result confirmed the previous proposed mechanism for the enzyme selectivity of indolic and phenolic substrates. Additionally, this study yields the first crystal structure for a plant type II pyridoxal-5'-phosphate decarboxylase.

  13. Substrate Specificity of Equine and Human Influenza A Virus Sialidase to Molecular Species of Sialic Acid.

    PubMed

    Takahashi, Tadanobu; Unuma, Saori; Kawagishi, Sawako; Kurebayashi, Yuuki; Takano, Maiko; Yoshino, Hiroki; Minami, Akira; Yamanaka, Takashi; Otsubo, Tadamune; Ikeda, Kiyoshi; Suzuki, Takashi

    2016-01-01

    Most equine influenza A viruses (IAVs) show strong binding to glycoconjugates containing N-glycolylneuraminic acid (Neu5Gc) as well as N-acetylneuraminic acid (Neu5Ac). Therefore, the progeny of equine IAV is thought to be released from the infected cell surface through removal of sialic acids by the viral sialidase. In the present study, equine IAV sialidases showed significantly lower substrate affinity than that of human IAV sialidases to artificial and natural Neu5Gc-conjugated substrates. The substrate specificity of equine IAV sialidases is in disagreement with their binding specificity to molecular species of sialic acid. The results suggest that substrate specificity of equine IAV sialidase for Neu5Ac, rather than for Neu5Gc, is important for an advantage at the early infection stage and the process of progeny virus release from the surface of infected cells.

  14. Structural Basis of the Substrate Specificity and Enzyme Catalysis of a Papaver somniferum Tyrosine Decarboxylase

    PubMed Central

    Guan, Huai; Song, Shuaibao; Robinson, Howard; Liang, Jing; Ding, Haizhen; Li, Jianyong; Han, Qian

    2017-01-01

    Tyrosine decarboxylase (TyDC), a type II pyridoxal 5′-phosphate decarboxylase, catalyzes the decarboxylation of tyrosine. Due to a generally high sequence identity to other aromatic amino acid decarboxylases (AAADs), primary sequence information is not enough to understand substrate specificities with structural information. In this study, we selected a typical TyDC from Papaver somniferum as a model to study the structural basis of AAAD substrate specificities. Analysis of the native P. somniferum TyDC crystal structure and subsequent molecular docking and dynamics simulation provide some structural bases that explain substrate specificity for tyrosine. The result confirmed the previous proposed mechanism for the enzyme selectivity of indolic and phenolic substrates. Additionally, this study yields the first crystal structure for a plant type II pyridoxal-5'-phosphate decarboxylase. PMID:28232911

  15. Substrate specificity characterization of recombinant metallo oligo-peptidases thimet oligopeptidase and neurolysin.

    PubMed

    Oliveira, V; Campos, M; Melo, R L; Ferro, E S; Camargo, A C; Juliano, M A; Juliano, L

    2001-04-10

    We report a systematic and detailed analysis of recombinant neurolysin (EC 3.4.24.16) specificity in parallel with thimet oligopeptidase (TOP, EC 3.4.24.15) using Bk sequence and its C- and N-terminal extensions as in human kininogen as motif for synthesis of internally quenched fluorescent substrates. The influence of the substrate size was investigated, and the longest peptide susceptible to TOP and neurolysin contains 17 amino acids. The specificities of both oligopeptidases to substrate sites P(4) to P(3)' were also characterized in great detail using seven series of peptides based on Abz-GFSPFRQ-EDDnp taken as reference substrate. Most of the peptides were hydrolyzed at the bond corresponding to P(4)-F(5) in the reference substrate and some of them were hydrolyzed at this bond or at F(2)-S(3) bond. No restricted specificity was found for P(1)' as found in thermolysin as well for P(1) substrate position, however the modifications at this position (P(1)) showed to have large influence on the catalytic constant and the best substrates for TOP contained at P(1), Phe, Ala, or Arg and for neurolysin Asn or Arg. Some amino acid residues have large influence on the K(m) constants independently of its position. On the basis of these results, we are hypothesizing that some amino acids of the substrates can bind to different sub-sites of the enzyme fitting P-F or F-S bond, which requires rapid interchange for the different forms of interaction and convenient conformations of the substrate in order to expose and fit the cleavage bonds in correct position for an efficient hydrolysis. Finally, this plasticity of interaction with the substrates can be an essential property for a class of cytosolic oligopeptidases that are candidates to participate in the selection of the peptides to be presented by the MHC class I.

  16. Evolution of Bacterial Protein-Tyrosine Kinases and Their Relaxed Specificity Toward Substrates

    PubMed Central

    Shi, Lei; Kolar-Znika, Lorena; Boskovic, Ana; Jadeau, Fanny; Combet, Christophe; Grangeasse, Christophe; Franjevic, Damjan; Talla, Emmanuel; Mijakovic, Ivan

    2014-01-01

    It has often been speculated that bacterial protein-tyrosine kinases (BY-kinases) evolve rapidly and maintain relaxed substrate specificity to quickly adopt new substrates when evolutionary pressure in that direction arises. Here, we report a phylogenomic and biochemical analysis of BY-kinases, and their relationship to substrates aimed to validate this hypothesis. Our results suggest that BY-kinases are ubiquitously distributed in bacterial phyla and underwent a complex evolutionary history, affected considerably by gene duplications and horizontal gene transfer events. This is consistent with the fact that the BY-kinase sequences represent a high level of substitution saturation and have a higher evolutionary rate compared with other bacterial genes. On the basis of similarity networks, we could classify BY kinases into three main groups with 14 subgroups. Extensive sequence conservation was observed only around the three canonical Walker motifs, whereas unique signatures proposed the functional speciation and diversification within some subgroups. The relationship between BY-kinases and their substrates was analyzed using a ubiquitous substrate (Ugd) and some Firmicute-specific substrates (YvyG and YjoA) from Bacillus subtilis. No evidence of coevolution between kinases and substrates at the sequence level was found. Seven BY-kinases, including well-characterized and previously uncharacterized ones, were used for experimental studies. Most of the tested kinases were able to phosphorylate substrates from B. subtilis (Ugd, YvyG, and YjoA), despite originating from very distant bacteria. Our results are consistent with the hypothesis that BY-kinases have evolved relaxed substrate specificity and are probably maintained as rapidly evolving platforms for adopting new substrates. PMID:24728941

  17. Identification of a substrate domain that determines system specificity in mycobacterial type VII secretion systems

    PubMed Central

    Phan, Trang H.; Ummels, Roy; Bitter, Wilbert; Houben, Edith N. G.

    2017-01-01

    Type VII secretion (T7S) systems are specialized machineries used by mycobacterial pathogens to transport important virulence factors across their highly hydrophobic cell envelope. There are up to five mycobacterial T7S systems, named ESX-1 to ESX-5, at least three of which specifically secrete a different subset of substrates. The T7S substrates or substrate complexes are defined by the general secretion motif YxxxD/E. However this motif does not determine system specificity. Here, we show that the substrate domain recognized by the EspG chaperone is the determinant factor for this specificity. We first show that the introduction of point mutations into the EspG1-binding domain of the ESX-1 substrate pair PE35/PPE68_1 affects their secretion. Subsequently, we demonstrate that replacing this domain by the EspG5-binding domain of the ESX-5 substrate PPE18 resulted in EspG5 dependence and exclusive rerouting to the ESX-5 system. This rerouting of PE35/PPE68_1 to the ESX-5 system had a negative effect on the secretion of endogenous ESX-5 substrates. PMID:28205541

  18. Steady-state substrate specificity and O₂-coupling efficiency of mouse cysteine dioxygenase.

    PubMed

    Li, Wei; Pierce, Brad S

    2015-01-01

    Cysteine dioxygenase (CDO) is a non-heme mononuclear iron enzyme that catalyzes the oxygen-dependent oxidation of L-cysteine (Cys) to produce L-cysteine sulfinic acid (CSA). Sequence alignment of mammalian CDO with recently discovered thiol dioxygenase enzymes suggests that the mononuclear iron site within all enzymes in this class share a common 3-His first coordination sphere. This implies a similar mechanistic paradigm among thiol dioxygenase enzymes. Although steady-state studies were first reported for mammalian CDO over 45 years ago, detailed analysis of the specificity for alternative thiol-bearing substrates and their oxidative coupling efficiencies have not been reported for this enzyme. Assuming a similar mechanistic theme among this class of enzymes, characterization of the CDO substrate specificity may provide valuable insight into substrate-active site intermolecular during thiol oxidation. In this work, the substrate-specificity for wild-type Mus musculus CDO was investigated using NMR spectroscopy and LC-MS for a variety of thiol-bearing substrates. Tandem mass spectrometry was used to confirm dioxygenase activity for each non-native substrate investigated. Steady-state Michaelis-Menten parameters for sulfinic acid product formation and O₂-consumption were compared to establish the coupling efficiency for each reaction. In light of these results, the minimal substrate requirements for CDO catalysis and O₂-activation are discussed.

  19. Structures of substrate- and nucleotide-bound propionate kinase from Salmonella typhimurium: substrate specificity and phosphate-transfer mechanism.

    PubMed

    Murthy, Ambika Mosale Venkatesh; Mathivanan, Subashini; Chittori, Sagar; Savithri, Handanahal Subbarao; Murthy, Mathur Ramabhadrashastry Narasimha

    2015-08-01

    Kinases are ubiquitous enzymes that are pivotal to many biochemical processes. There are contrasting views on the phosphoryl-transfer mechanism in propionate kinase, an enzyme that reversibly transfers a phosphoryl group from propionyl phosphate to ADP in the final step of non-oxidative catabolism of L-threonine to propionate. Here, X-ray crystal structures of propionate- and nucleotide-bound Salmonella typhimurium propionate kinase are reported at 1.8-2.0 Å resolution. Although the mode of nucleotide binding is comparable to those of other members of the ASKHA superfamily, propionate is bound at a distinct site deeper in the hydrophobic pocket defining the active site. The propionate carboxyl is at a distance of ∼ 5 Å from the γ-phosphate of the nucleotide, supporting a direct in-line transfer mechanism. The phosphoryl-transfer reaction is likely to occur via an associative SN2-like transition state that involves a pentagonal bipyramidal structure with the axial positions occupied by the nucleophile of the substrate and the O atom between the β- and the γ-phosphates, respectively. The proximity of the strictly conserved His175 and Arg236 to the carboxyl group of the propionate and the γ-phosphate of ATP suggests their involvement in catalysis. Moreover, ligand binding does not induce global domain movement as reported in some other members of the ASKHA superfamily. Instead, residues Arg86, Asp143 and Pro116-Leu117-His118 that define the active-site pocket move towards the substrate and expel water molecules from the active site. The role of Ala88, previously proposed to be the residue determining substrate specificity, was examined by determining the crystal structures of the propionate-bound Ala88 mutants A88V and A88G. Kinetic analysis and structural data are consistent with a significant role of Ala88 in substrate-specificity determination. The active-site pocket-defining residues Arg86, Asp143 and the Pro116-Leu117-His118 segment are also likely to

  20. Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors.

    PubMed Central

    Frébortová, Jitka; Fraaije, Marco W; Galuszka, Petr; Sebela, Marek; Pec, Pavel; Hrbác, Jan; Novák, Ondrej; Bilyeu, Kristin D; English, James T; Frébort, Ivo

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors. PMID:14965342

  1. Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis.

    PubMed

    Polic, Vanja; Auclair, Karine

    2014-10-15

    P450 enzymes (P450s) are well known for their ability to oxidize unactivated CH bonds with high regio- and stereoselectivity. Hence, there is emerging interest in exploiting P450s as potential biocatalysts. Although bacterial P450s typically show higher activity than their mammalian counterparts, they tend to be more substrate selective. Most drug-metabolizing P450s on the other hand, display remarkable substrate promiscuity, yet product prediction remains challenging. Protein engineering is one established strategy to overcome these issues. A less explored, yet promising alternative involves substrate engineering. This review discusses the use of small molecules for controlling the substrate specificity and product selectivity of P450s. The focus is on two approaches, one taking advantage of non-covalent decoy molecules, and the other involving covalent substrate modifications.

  2. Substrate specificity of lipoprotein lipase and endothelial lipase: studies of lid chimeras.

    PubMed

    Griffon, Nathalie; Budreck, Elaine C; Long, Christopher J; Broedl, Uli C; Marchadier, Dawn H L; Glick, Jane M; Rader, Daniel J

    2006-08-01

    The triglyceride (TG) lipase gene subfamily, consisting of LPL, HL, and endothelial lipase (EL), plays a central role in plasma lipoprotein metabolism. Compared with LPL and HL, EL is relatively more active as a phospholipase than as a TG lipase. The amino acid loop or "lid" covering the catalytic site has been implicated as the basis for the difference in substrate specificity between HL and LPL. To determine the role of the lid in the substrate specificity of EL, we studied EL in comparison with LPL by mutating specific residues of the EL lid and exchanging their lids. Mutation studies showed that amphipathic properties of the lid contribute to substrate specificity. Exchanging lids between LPL and EL only partially shifted the substrate specificity of the enzymes. Studies of a double chimera possessing both the lid and the C-terminal domain (C-domain) of EL in the LPL backbone showed that the role of the lid in determining substrate specificity does not depend on the nature of the C-domain of the lipase. Using a kinetic assay, we showed an additive effect of the EL lid on the apparent affinity for HDL(3) in the presence of the EL C-domain.

  3. Global identification and analysis of isozyme-specific possible substrates crosslinked by transglutaminases using substrate peptides in mouse liver fibrosis

    PubMed Central

    Tatsukawa, Hideki; Tani, Yuji; Otsu, Risa; Nakagawa, Haruka; Hitomi, Kiyotaka

    2017-01-01

    The transglutaminase (TG) family comprises eight isozymes that form the isopeptide bonds between glutamine and lysine residues and contribute to the fibrotic diseases via crosslinking-mediated stabilization of ECM and the activation of TGF-β in several tissues. However, despite a growing body of evidence implicating TG2 as a key enzyme in fibrosis, the causative role of TG2 and the involvement of the other isozymes have not yet been fully elucidated. Therefore, here we clarified the distributions of TG isozymes and their in situ activities and identified the isozyme-specific possible substrates for both TG1 and TG2 using their substrate peptides in mouse fibrotic liver. We found that TG1 activity was markedly enhanced intracellularly over a widespread area, whereas TG2 activity increased in the extracellular space. In total, 43 and 42 possible substrates were identified for TG1 and TG2, respectively, as involved in chromatin organization and cellular component morphogenesis. These included keratin 18, a biomarker for hepatic injury, which was accumulated in the fibrotic liver and showed the partly similar distribution with TG1 activity. These findings suggest that TG1 activity may be involved in the functional modification of intracellular proteins, whereas TG2 activity contributes to the stabilization of extracellular proteins during liver fibrosis. PMID:28327670

  4. Global identification and analysis of isozyme-specific possible substrates crosslinked by transglutaminases using substrate peptides in mouse liver fibrosis.

    PubMed

    Tatsukawa, Hideki; Tani, Yuji; Otsu, Risa; Nakagawa, Haruka; Hitomi, Kiyotaka

    2017-03-22

    The transglutaminase (TG) family comprises eight isozymes that form the isopeptide bonds between glutamine and lysine residues and contribute to the fibrotic diseases via crosslinking-mediated stabilization of ECM and the activation of TGF-β in several tissues. However, despite a growing body of evidence implicating TG2 as a key enzyme in fibrosis, the causative role of TG2 and the involvement of the other isozymes have not yet been fully elucidated. Therefore, here we clarified the distributions of TG isozymes and their in situ activities and identified the isozyme-specific possible substrates for both TG1 and TG2 using their substrate peptides in mouse fibrotic liver. We found that TG1 activity was markedly enhanced intracellularly over a widespread area, whereas TG2 activity increased in the extracellular space. In total, 43 and 42 possible substrates were identified for TG1 and TG2, respectively, as involved in chromatin organization and cellular component morphogenesis. These included keratin 18, a biomarker for hepatic injury, which was accumulated in the fibrotic liver and showed the partly similar distribution with TG1 activity. These findings suggest that TG1 activity may be involved in the functional modification of intracellular proteins, whereas TG2 activity contributes to the stabilization of extracellular proteins during liver fibrosis.

  5. KDAC8 substrate specificity quantified by a biologically relevant, label-free deacetylation assay.

    PubMed

    Toro, Tasha B; Watt, Terry J

    2015-12-01

    Analysis of the human proteome has identified thousands of unique protein sequences that contain acetylated lysine residues in vivo. These modifications regulate a variety of biological processes and are reversed by the lysine deacetylase (KDAC) family of enzymes. Despite the known prevalence and importance of acetylation, the details of KDAC substrate recognition are not well understood. While several methods have been developed to monitor protein deacetylation, none are particularly suited for identifying enzyme-substrate pairs of label-free substrates across the entire family of lysine deacetylases. Here, we present a fluorescamine-based assay which is more biologically relevant than existing methods and amenable to probing substrate specificity. Using this assay, we evaluated the activity of KDAC8 and other lysine deacetylases, including a sirtuin, for several peptides derived from known acetylated proteins. KDAC8 showed clear preferences for some peptides over others, indicating that the residues immediately surrounding the acetylated lysine play an important role in substrate specificity. Steady-state kinetics suggest that the sequence surrounding the acetylated lysine affects binding affinity and catalytic rate independently. Our results provide direct evidence that potential KDAC8 substrates previously identified through cell based experiments can be directly deacetylated by KDAC8. Conversely, the data from this assay did not correlate well with predictions from previous screens for KDAC8 substrates using less biologically relevant substrates and assay conditions. Combining results from our assay with mass spectrometry-based experiments and cell-based experiments will allow the identification of specific KDAC-substrate pairs and lead to a better understanding of the biological consequences of these interactions.

  6. Broad Substrate Specificity of the Loading Didomain of the Lipomycin Polyketide Synthase

    SciTech Connect

    Yuzawa, S; Eng, CH; Katz, L; Keasling, JD

    2013-06-04

    LipPks1, a polyketide synthase subunit of the lipomycin synthase, is believed to catalyze the polyketide chain initiation reaction using isobutyryl-CoA as a substrate, followed by an elongation reaction with methylmalonyl-CoA to start the biosynthesis of antibiotic alpha-lipomycin in Streptomyces aureofaciens Tu117. Recombinant LipPks1, containing the thioesterase domain from the 6-deoxyerythronolide B synthase, was produced in Escherichia coli, and its substrate specificity was investigated in vitro. Surprisingly, several different acyl-CoAs, including isobutyryl-CoA, were accepted as the starter substrates, while no product was observed with acetyl-CoA. These results demonstrate the broad substrate specificity of LipPks1 and may be applied to producing new antibiotics.

  7. Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems.

    PubMed

    Parales, R E; Emig, M D; Lynch, N A; Gibson, D T

    1998-05-01

    Bacterial three-component dioxygenase systems consist of reductase and ferredoxin components which transfer electrons from NAD(P)H to a terminal oxygenase. In most cases, the oxygenase consists of two different subunits (alpha and beta). To assess the contributions of the alpha and beta subunits of the oxygenase to substrate specificity, hybrid dioxygenase enzymes were formed by coexpressing genes from two compatible plasmids in Escherichia coli. The activities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenases containing four different beta subunits were tested with four substrates (indole, naphthalene, 2,4-dinitrotoluene, and 2-nitrotoluene). In the active hybrids, replacement of small subunits affected the rate of product formation but had no effect on the substrate range, regiospecificity, or enantiomeric purity of oxidation products with the substrates tested. These studies indicate that the small subunit of the oxygenase is essential for activity but does not play a major role in determining the specificity of these enzymes.

  8. Substrate specificity of xenobiotic metabolizing esterases in the liver of two catfish species

    SciTech Connect

    Jaiswal, R.G.; Huang, T.L.; Obih, P.O.

    1994-12-31

    The preliminary studies were conducted on the characterization of substrate specificity in the liver microsomes and cytosol of two catfish species, Ictalurus punctatus and Ictalurus natalie. A series of five esters of p-nitrophenol were used as calorimetric substrates to assay the carboxylesterases. The substrate specificity of liver microsomal and cytosolic carboxylesterases were remarkably different from each other. The valerate ester of p-nitrophenol was most rapidly hydrolyzed by the microsomal carboxylesterases, whereas the prioponate ester was the best substrate for cytosolic carboxylesterases. The Ictalurus natalie catfish species were obtained from the Devil Swamp site of the Mississippi River Basin which is known to be heavily contaminated with toxic and hazardous industrial wastes. These results will be discussed in relation to the responses of xenobiotic metabolizing esterases to environmental pollutants and their possible use as biomarkers.

  9. The crystal structure of seabream antiquitin reveals the structural basis of its substrate specificity.

    PubMed

    Tang, Wai-Kwan; Wong, Kam-Bo; Lam, Yuk-Man; Cha, Sun-Shin; Cheng, Christopher H K; Fong, Wing-Ping

    2008-09-03

    The crystal structure of seabream antiquitin in complex with the cofactor NAD(+) was solved at 2.8A resolution. The mouth of the substrate-binding pocket is guarded by two conserved residues, Glu120 and Arg300. To test the role of these two residues, we have prepared the two mutants E120A and R300A. Our model and kinetics data suggest that antiquitin's specificity towards the substrate alpha-aminoadipic semialdehyde is contributed mainly by Glu120 which interacts with the alpha-amino group of the substrate. On the other hand, Arg300 does not have any specific interaction with the alpha-carboxylate group of the substrate, but is important in maintaining the active site conformation.

  10. A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C]tyrosine.

    PubMed

    Ibarrola, Nieves; Molina, Henrik; Iwahori, Akiko; Pandey, Akhilesh

    2004-04-16

    Proteomic studies to find substrates of tyrosine kinases generally rely on identification of protein bands that are "pulled down" by antiphosphotyrosine antibodies from ligand-stimulated samples. One can obtain erroneous results from such experiments because of two major reasons. First, some proteins might be basally phosphorylated on tyrosine residues in the absence of ligand stimulation. Second, proteins can bind non-specifically to the antibodies or the affinity matrix. Induction of phosphorylation of proteins by ligand must therefore be confirmed by a different approach, which is not always feasible. We have developed a novel proteomic approach to identify substrates of tyrosine kinases in signaling pathways studies based on in vivo labeling of proteins with "light" (12C-labeled) or "heavy" (13C-labeled) tyrosine. This stable isotope labeling in cell culture method enables the unequivocal identification of tyrosine kinase substrates, as peptides derived from true substrates give rise to a unique signature in a mass spectrometry experiment. By using this approach, from a single experiment, we have successfully identified several known substrates of insulin signaling pathway and a novel substrate, polymerase I and transcript release factor, a protein that is implicated in the control of RNA metabolism and regulation of type I collagen promoters. This approach is amenable to high throughput global studies as it simplifies the specific identification of substrates of tyrosine kinases as well as serine/threonine kinases using mass spectrometry.

  11. A mesoscopic stochastic model for the specific consumption rate in substrate-limited microbial growth

    PubMed Central

    2017-01-01

    The specific consumption rate of substrate, as well as the associated specific growth rate, is an essential parameter in the mathematical description of substrate-limited microbial growth. In this paper we develop a completely new kinetic model of substrate transport, based on recent knowledge on the structural biology of transport proteins, which correctly describes very accurate experimental results at near-zero substrate concentration values found in the literature, where the widespread Michaelis-Menten model fails. Additionally, our model converges asymptotically to Michaelis-Menten predictions as substrate concentration increases. Instead of the single active site enzymatic reaction of Michaelis-Menten type, the proposed model assumes a multi-site kinetics, simplified as an apparent all-or-none mechanism for the transport, which is controlled by means of the local substrate concentration in the close vicinity of the transport protein. Besides, the model also assumes that this local concentration is not equal to the mean substrate concentration experimentally determined in the culture medium. Instead, we propose that it fluctuates with a mostly exponential distribution of Weibull type. PMID:28187189

  12. Structural insights into the broad substrate specificity of carboxypeptidase T from Thermoactinomyces vulgaris.

    PubMed

    Akparov, Valery Kh; Timofeev, Vladimir I; Khaliullin, Ilyas G; Švedas, Vytas; Chestukhina, Galina G; Kuranova, Inna P

    2015-04-01

    The crystal structures of carboxypeptidase T (CpT) complexes with phenylalanine and arginine substrate analogs - benzylsuccinic acid and (2-guanidinoethylmercapto)succinic acid - were determined by the molecular replacement method at resolutions of 1.57 Å and 1.62 Å to clarify the broad substrate specificity profile of the enzyme. The conservative Leu211 and Leu254 residues (also present in both carboxypeptidase A and carboxypeptidase B) were shown to be structural determinants for recognition of hydrophobic substrates, whereas Asp263 was for recognition of positively charged substrates. Mutations of these determinants modify the substrate profile: the CpT variant Leu211Gln acquires carboxypeptidase B-like properties, and the CpT variant Asp263Asn the carboxypeptidase A-like selectivity. The Pro248-Asp258 loop interacting with Leu254 and Tyr255 was shown to be responsible for recognition of the substrate's C-terminal residue. Substrate binding at the S1' subsite leads to the ligand-dependent shift of this loop, and Leu254 side chain movement induces the conformation rearrangement of the Glu277 residue crucial for catalysis. This is a novel insight into the substrate selectivity of metallocarboxypeptidases that demonstrates the importance of interactions between the S1' subsite and the catalytic center.

  13. Substrate Specificity and Diastereoselectivity of Strictosidine Glucosidase, a Key Enzyme in Monoterpene Indole Alkaloid Biosynthesis

    PubMed Central

    Yerkes, Nancy; Wu, Jia; McCoy, Elizabeth; Galan, M. Carmen; Chen, Shi; O’Connor, Sarah E.

    2008-01-01

    Strictosidine glucosidase (SGD) from Catharanthus roseus catalyzes the deglycosylation of strictosidine, an intermediate from which thousands of monoterpene indole alkaloids are derived. The steady state kinetics of SGD with a variety of strictosidine analogs revealed the substrate preferences of this enzyme at two key positions of the strictosidine substrate. Additionally, SGD from C. roseus turns over both strictosidine and its stereoisomer vincoside, indicating that although this enzyme prefers the naturally occurring diastereomer, the enzyme is not completely diastereoselective. The implications of the substrate specificity of SGD in metabolic engineering efforts of C. roseus are highlighted. PMID:18061449

  14. Substrate specificity and diastereoselectivity of strictosidine glucosidase, a key enzyme in monoterpene indole alkaloid biosynthesis.

    PubMed

    Yerkes, Nancy; Wu, Jia Xin; McCoy, Elizabeth; Galan, M Carmen; Chen, Shi; O'Connor, Sarah E

    2008-05-15

    Strictosidine glucosidase (SGD) from Catharanthus roseus catalyzes the deglycosylation of strictosidine, an intermediate from which thousands of monoterpene indole alkaloids are derived. The steady-state kinetics of SGD with a variety of strictosidine analogs revealed the substrate preferences of this enzyme at two key positions of the strictosidine substrate. Additionally, SGD from C. roseus turns over both strictosidine and its stereoisomer vincoside, indicating that although this enzyme prefers the naturally occurring diastereomer, the enzyme is not completely diastereoselective. The implications of the substrate specificity of SGD in metabolic engineering efforts of C. roseus are highlighted.

  15. Selective inhibition of dipeptidyl peptidase 4 by targeting a substrate-specific secondary binding site.

    PubMed

    Kühn-Wache, Kerstin; Bär, Joachim W; Hoffmann, Torsten; Wolf, Raik; Rahfeld, Jens-Ulrich; Demuth, Hans-Ulrich

    2011-03-01

    Dipeptidyl peptidase 4/CD26 (DP4) is a multifunctional serine protease liberating dipeptide from the N-terminus of (oligo)peptides which can modulate the activity of these peptides. The enzyme is involved in physiological processes such as blood glucose homeostasis and immune response. DP4 substrate specificity is characterized in detail using synthetic dipeptide derivatives. The specificity constant k(cat)/K(m) strongly depends on the amino acid in P₁-position for proline, alanine, glycine and serine with 5.0 x 10⁵ M⁻¹ s⁻¹, 1.8 x 10⁴ M⁻¹ s⁻¹, 3.6 x 10² M⁻¹ s⁻¹, 1.1 x 10² M⁻¹ s⁻¹, respectively. By contrast, kinetic investigation of larger peptide substrates yields a different pattern. The specific activity of DP4 for neuropeptide Y (NPY) cleavage comprising a proline in P₁-position is the same range as the k(cat)/K(m) values of NPY derivatives containing alanine or serine in P₁-position with 4 x 10⁵ M⁻¹ s⁻¹, 9.5 x 10⁵ M⁻¹ s⁻¹ and 2.1 x 10⁵ M⁻¹ s⁻¹, respectively. The proposed existence of an additional binding region outside the catalytic center is supported by measurements of peptide substrates with extended chain length. This 'secondary' binding site interaction depends on the amino acid sequence in P₄'-P₈'-position. Interactions with this binding site could be specifically blocked for substrates of the GRF/glucagon peptide family. By contrast, substrates not belonging to this peptide family and dipeptide derivative substrates that only bind to the catalytic center of DP4 were not inhibited. This more selective inhibition approach allows, for the first time, to distinguish between substrate families by substrate-discriminating inhibitors.

  16. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase.

    PubMed

    Silva, A; Almeida, B; Sampaio-Marques, B; Reis, M I R; Ohlmeier, S; Rodrigues, F; Vale, A do; Ludovico, P

    2011-12-01

    Yeast metacaspase (Yca1p) is required for the execution of apoptosis upon a wide range of stimuli. However, the specific degradome of this yeast protease has not been unraveled so far. By combining different methodologies described as requisites for a protein to be considered a protease substrate, such as digestome analysis, cleavage of recombinant GAPDH by metacaspase and evaluation of protein levels in vivo, we show that upon H(2)O(2)-induced apoptosis, the metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific target of metacaspase. Nitric oxide (NO) signaling, which mediates H(2)O(2)-induced apoptosis, is required for metacaspase specific GAPDH cleavage. In conclusion, in this work we identified GAPDH as the first direct yeast metacaspase substrate described so far. Although mammalian caspases and yeast metacaspase apparently have distinct target cleavage sites, GAPDH arises as a common substrate for these proteases.

  17. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures

    PubMed Central

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Škerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Strisovsky, Kvido

    2014-01-01

    The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the ‘water retention site’, suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG. PMID:25216680

  18. Use of intein-mediated phosphoprotein arrays to study substrate specificity of protein phosphatases.

    PubMed

    Kochinyan, Samvel; Sun, Luo; Ghosh, Inca; Barshevsky, Tanya; Xu, Jie; Xu, Ming-Qun

    2007-01-01

    Synthetic peptides incorporating various chemical moieties, for example, phosphate groups, are convenient tools for investigating protein modification enzymes, such as protein phosphatases (PPs). However, short peptides are sometimes poor substrates, and their binding to commonly used matrices is unpredictable and variable. In general, protein substrates for PPs are superior for enzymatic assays, binding to various matrices, and Western blot analysis. The preparation and characterization of phosphoproteins, however can be difficult and technically demanding. In this study, the intein-mediated protein ligation (IPL) technique was used to readily generate phosphorylated protein substrates by ligating a synthetic phosphopeptide to an intein-generated carrier protein (CP) possessing a carboxyl-terminal thioester with a one-to-one stoichiometry. The ligated phosphoprotein (LPP) substrate was treated with a PP and subsequently subjected to array or Western blot analysis with a phospho-specific antibody. This approach is highly effective in producing arrays of protein substrates containing phosphorylated amino acid residues and has been applied for screening of PPs with specificity toward phosphorylated tyrosine, serine, or threonine residues, resulting in an approximately 240-fold increase in sensitivity in dot blot analysis compared with the use of synthetic peptides. The IPL technique overcomes the disadvantages of current methods and is a versatile system for the facile production of protein substrates containing well-defined structural motifs for the study of protein modification enzymes.

  19. [Substrate specificity of carotenoid 3',4'-desaturase from Deinococcus radiodurans].

    PubMed

    Sun, Zongtao; Tian, Bing; Shen, Shaochuan; Hu, Yuejin

    2010-10-01

    To examine the substrate specificity of carotenoid 3',4'-desaturase (DR2250) from Deinococcus radiodurans, we amplified the dr2250 gene by using PCR methods. The PCR products were digested by Hind III-BamH I and ligated into the vector pUC19, yielding recombinant vector pUC-CRTD. We analyzed the carotenoids of E. coli transformants containing pACCRT-EBI(Eu) and (or) pRK-CRTC and (or) pUC-CRTD. Our results demonstrated that DR2250 had substrate specificity on the carotenoids with hydroxyl group at C1 (1').

  20. On the levels of enzymatic substrate specificity: Implications for the early evolution of metabolic pathways

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Diaz-Villagomez, E.; Mills, T.; Oro, J.

    1995-01-01

    The most frequently invoked explanation for the origin of metabolic pathways is the retrograde evolution hypothesis. In contrast, according to the so-called 'patchwork' theory, metabolism evolved by the recruitment of relatively inefficient small enzymes of broad specificity that could react with a wide range of chemically related substrates. In this paper it is argued that both sequence comparisons and experimental results on enzyme substrate specificity support the patchwork assembly theory. The available evidence supports previous suggestions that gene duplication events followed by a gradual neoDarwinian accumulation of mutations and other minute genetic changes lead to the narrowing and modification of enzyme function in at least some primordial metabolic pathways.

  1. Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.

    PubMed

    Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd

    2013-08-16

    α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.

  2. Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility

    SciTech Connect

    Ju, Xiaohui; Grego, Courtnee; Zhang, Xiao

    2013-09-01

    To clarify the specific effect of biomass substrate surface area on its enzymatic digestibility, factors of fiber size reduction and swelling changes were investigated by using poplar substrates with controlled morphological and chemical properties after modified chemical pulping. Results showed that fiber size changes had insignificant influence on enzymatic hydrolysis, although the external surface area increased up to 41% with the reduction of fiber size. Swelling changes caused by increased biomass fiber porosities after PFI refining showed a significant influence on the efficiency of enzymatic hydrolysis. It is also found that chemical properties such as xylan and lignin content can influence the swelling effect. Xylan is confirmed to facilitate substrate hydrolysability by swelling, while lignin restricts swelling effect and thus minimizes the enzyme accessibility to substrates.

  3. Dephosphorylation of purine mononucleotides by alkaline phosphatases. Substrate specificity and inhibition patterns.

    PubMed

    Jensen, M H

    1979-11-09

    Three purine mononucleotides, adenosine-, inosine- and guanosine monophosphate, were used as substrates at pH 7.4 and at 10.4 for three alkaline phosphatases (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.1) containing similar phosphate-binding serine groups at their esteratic sites. Substrate specificity was found for the enzymes from calf intestine and bovine liver. Alkaline phosphatase from Escherichia coli was nonspecific. A substrate-dependent and pronounced inhibition with the purine analogue 1,3-dimethyl xanthine was found for the enzymes from intestine and liver, but not for alkaline phosphatase from E. coli. A substrate-independent and pronounced inhibition was found for all three enzymes with the phosphomonoester p-nitrophenol phosphate as the inhibitor. Alkaline phosphatases may play an important role in the regulation of the intracellular content of purine mononucleotides.

  4. The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins.

    PubMed

    Thoms, Matthias; Thomson, Emma; Baßler, Jochen; Gnädig, Marén; Griesel, Sabine; Hurt, Ed

    2015-08-27

    The exosome regulates the processing, degradation, and surveillance of a plethora of RNA species. However, little is known about how the exosome recognizes and is recruited to its diverse substrates. We report the identification of adaptor proteins that recruit the exosome-associated helicase, Mtr4, to unique RNA substrates. Nop53, the yeast homolog of the tumor suppressor PICT1, targets Mtr4 to pre-ribosomal particles for exosome-mediated processing, while a second adaptor Utp18 recruits Mtr4 to cleaved rRNA fragments destined for degradation by the exosome. Both Nop53 and Utp18 contain the same consensus motif, through which they dock to the "arch" domain of Mtr4 and target it to specific substrates. These findings show that the exosome employs a general mechanism of recruitment to defined substrates and that this process is regulated through adaptor proteins.

  5. Control of Substrate Specificity by Active-Site Residues in Nitrobenzene Dioxygenase

    PubMed Central

    Ju, Kou-San; Parales, Rebecca E.

    2006-01-01

    Nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765 catalyzes the initial reaction in nitrobenzene degradation, forming catechol and nitrite. The enzyme also oxidizes the aromatic rings of mono- and dinitrotoluenes at the nitro-substituted carbon, but the basis for this specificity is not understood. In this study, site-directed mutagenesis was used to modify the active site of nitrobenzene dioxygenase, and the contribution of specific residues in controlling substrate specificity and enzyme performance was evaluated. The activities of six mutant enzymes indicated that the residues at positions 258, 293, and 350 in the α subunit are important for determining regiospecificity with nitroarene substrates and enantiospecificity with naphthalene. The results provide an explanation for the characteristic specificity with nitroarene substrates. Based on the structure of nitrobenzene dioxygenase, substitution of valine for the asparagine at position 258 should eliminate a hydrogen bond between the substrate nitro group and the amino group of asparagine. Up to 99% of the mononitrotoluene oxidation products formed by the N258V mutant were nitrobenzyl alcohols rather than catechols, supporting the importance of this hydrogen bond in positioning substrates in the active site for ring oxidation. Similar results were obtained with an I350F mutant, where the formation of the hydrogen bond appeared to be prevented by steric interference. The specificity of enzymes with substitutions at position 293 varied depending on the residue present. Compared to the wild type, the F293Q mutant was 2.5 times faster at oxidizing 2,6-dinitrotoluene while retaining a similar Km for the substrate based on product formation rates and whole-cell kinetics. PMID:16517627

  6. Alternansucrase acceptor products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regioselectivity of alternansucrase (EC 2.4.1.140) differs from dextransucrase (EC 2.4.1.5) in ways that can be useful for the synthesis of novel oligosaccharide structures. For example, it has been recently shown that the major oligosaccharides produced when maltose is the acceptor include one...

  7. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray.

    PubMed

    Cornett, E M; Dickson, B M; Vaughan, R M; Krishnan, S; Trievel, R C; Strahl, B D; Rothbart, S B

    2016-01-01

    The dynamic addition and removal of covalent posttranslational modifications (PTMs) on histone proteins serves as a major mechanism regulating chromatin-templated biological processes in eukaryotic genomes. Histone PTMs and their combinations function by directly altering the physical structure of chromatin and as rheostats for effector protein interactions. In this chapter, we detail microarray-based methods for analyzing the substrate specificity of lysine methyltransferase and demethylase enzymes on immobilized synthetic histone peptides. Consistent with the "histone code" hypothesis, we reveal a strong influence of adjacent and, surprisingly, distant histone PTMs on the ability of histone-modifying enzymes to methylate or demethylate their substrates. This platform will greatly facilitate future investigations into histone substrate specificity and mechanisms of PTM signaling that regulate the catalytic properties of histone-modifying enzymes.

  8. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray

    PubMed Central

    Cornett, E.M.; Dickson, B.M.; Vaughan, R.M.; Krishnan, S.; Trievel, R.C.; Strahl, B.D.; Rothbart, S.B.

    2017-01-01

    The dynamic addition and removal of covalent posttranslational modifications (PTMs) on histone proteins serves as a major mechanism regulating chromatin-templated biological processes in eukaryotic genomes. Histone PTMs and their combinations function by directly altering the physical structure of chromatin and as rheostats for effector protein interactions. In this chapter, we detail microarray-based methods for analyzing the substrate specificity of lysine methyltransferase and demethylase enzymes on immobilized synthetic histone peptides. Consistent with the “histone code” hypothesis, we reveal a strong influenceof adjacent and,surprisingly,distant histonePTMs onthe ability of histone-modifying enzymes to methylate or demethylate their substrates. This platform will greatly facilitate future investigations into histone substrate specificity and mechanisms of PTM signaling that regulate the catalytic properties of histone-modifying enzymes. PMID:27423856

  9. Molecular mechanisms of substrate recognition and specificity of New Delhi metallo-β-lactamase.

    PubMed

    Chiou, Jiachi; Leung, Thomas Yun-Chung; Chen, Sheng

    2014-09-01

    Carbapenems are one of the last lines of defense for Gram-negative pathogens, such as members of the Enterobacteriaceae. Despite the fact that most carbapenems are resistant to extended-spectrum β-lactamase (ESBL), emerging metallo-β-lactamases (MBLs), including New Delhi metallo-β-lactamase 1 (NDM-1), that can hydrolyze carbapenems have become prevalent and are frequently associated with the so-called "superbugs," for which treatments are extremely limited. Crystallographic study sheds light on the modes of antibiotic binding to NDM-1, yet the mechanisms governing substrate recognition and specificity are largely unclear. This study provides a connection between crystallographic study and the functional significance of NDM-1, with an emphasis on the substrate specificity and catalysis of various β-lactams. L1 loop residues L59, V67, and W87 were important for the activity of NDM-1, most likely through maintaining the partial folding of the L1 loop or active site conformation through hydrophobic interaction with the R groups of β-lactams or the β-lactam ring. Substitution of alanine for L59 showed greater reduction of MICs to ampicillin and selected cephalosporins, whereas substitutions of alanine for V67 had more impact on the MICs of carbapenems. K224 and N233 on the L3 loop played important roles in the recognition of substrate and contributed to substrate hydrolysis. These data together with the structure comparison of the B1 and B2 subclasses of MBLs revealed that the broad substrate specificity of NDM-1 could be due to the ability of its wide active site cavity to accommodate a wide range of β-lactams. This study provides insights into the development of efficient inhibitors for NDM-1 and offers an efficient tactic with which to study the substrate specificities of other β-lactamases.

  10. Production and characterization of monoclonal antibodies against substrate specific loop region of Plasmodium falciparum lactate dehydrogenase.

    PubMed

    Kaushal, Nuzhat A; Kaushal, Deep C

    2014-01-01

    Plasmodial lactate dehydrogenase, terminal enzyme of the glycolytic pathway, has been shown to be biochemically, immunologically and structurally different from the mammalian enzyme. The substrate specific loop region of plasmodial lactate dehydrogenase (pLDH) has 5 amino acids insert (DKEWN) important for anti-malarial drug targeting. In the present study, we have produced six monoclonal antibodies, which are against three different epitopes of Plasmodium falciparum LDH (PfLDH). Two of these monoclonal antibodies (10C4D5 and 10D3G2) are against the substrate specific loop region of PfLDH (residues 98-109, AGFTKAPGKSDKEWNR). The 10C4D5 and 10D3G2 monoclonals bind to substrate specific loop region resulting in inhibition of PfLDH activity. A Microplate Sandwich ELISA was developed employing high affinity non-inhibitory (10A5H5, Kaff 1.272 ± 0.057 nM) and inhibitory (10C4D5, Kaff 0.306 ± 0.011 nM) monoclonal antibodies and evaluated using gossypol, a well known inhibitor of pLDH. The binding of gossypol to substrate specific loop region resulted in inhibition of binding of 10C4D5 monoclonal. This Microplate Sandwich ELISA can be utilized for identification of compounds inhibitory to PfLDH (binding to substrate specific loop region of parasite LDH) from combinatory chemical libraries or medicinal plants extracts. The Microplate Sandwich ELISA has also shown potential for specific diagnosis of malaria using finger prick blood samples.

  11. Determination of CK2 specificity and substrates by proteome-derived peptide libraries.

    PubMed

    Wang, Chunli; Ye, Mingliang; Bian, Yangyang; Liu, Fangjie; Cheng, Kai; Dong, Mingming; Dong, Jing; Zou, Hanfa

    2013-08-02

    Understanding the specificity of kinases enables prediction of their substrates and uncovering kinase functions in signaling pathways. Traditionally synthesized peptide libraries are used to determine the kinase specificity. In this study, a proteomics-based method was developed to determine the specificity of kinase by taking the advantages of proteome-derived peptide libraries and quantitative proteomics. Proteome-derived peptide libraries were constructed by digesting proteins in total cell lysate followed with dephosphorylation of the resulting peptides. After incubating the peptide libraries with/without CK2 for in vitro kinase assay, stable isotopic labeling based quantitative phosphoproteomics was applied to distinguish the in vitro phosphosites generated by CK2. By using the above approach, 404 CK2 in vitro phosphosites were identified by 1D LC-MS/MS. Those sites allowed the statistic determination of the CK2 specificity. In addition to the easy construction of the proteome-derived peptide library, another significant advantage of this method over the method with synthesized peptide libraries is that the identified phosphosites could be directly mapped to proteins for the screening of putative kinase substrates. It was found that the confidence for substrate identification could be significantly improved by comparing the in vitro CK2 sites with the in vivo sites identified by phosphoproteomics analysis of the same cell lines. By applying this integrated strategy, 138 phosphosites from 105 putative CK2 substrates of high confidence were determined.

  12. Substrate specificity of mitochondrial intermediate peptidase analysed by a support-bound peptide library

    PubMed Central

    Marcondes, M.F.M.; Alves, F.M.; Assis, D.M.; Hirata, I.Y.; Juliano, L.; Oliveira, V.; Juliano, M.A.

    2015-01-01

    The substrate specificity of recombinant human mitochondrial intermediate peptidase (hMIP) using a synthetic support-bound FRET peptide library is presented. The collected fluorescent beads, which contained the hydrolysed peptides generated by hMIP, were sequenced by Edman degradation. The results showed that this peptidase presents a remarkable preference for polar uncharged residues at P1 and P1′ substrate positions: Ser = Gln > Thr at P1 and Ser > Thr at P1′. Non-polar residues were frequent at the substrate P3, P2, P2′ and P3′ positions. Analysis of the predicted MIP processing sites in imported mitochondrial matrix proteins shows these cleavages indeed occur between polar uncharged residues. Previous analysis of these processing sites indicated the importance of positions far from the MIP cleavage site, namely the presence of a hydrophobic residue (Phe or Leu) at P8 and a polar uncharged residue (Ser or Thr) at P5. To evaluate this, additional kinetic analyses were carried out, using fluorogenic substrates synthesized based on the processing sites attributed to MIP. The results described here underscore the importance of the P1 and P1′ substrate positions for the hydrolytic activity of hMIP. The information presented in this work will help in the design of new substrate-based inhibitors for this peptidase. PMID:26082885

  13. Human cathepsin H: deletion of the mini-chain switches substrate specificity from aminopeptidase to endopeptidase.

    PubMed

    Dodt, Johannes; Reichwein, Jörg

    2003-09-01

    The mini-chain of human cathepsin H has been identified as the major structural element determining the protease's substrate specificity. A genetically engineered mutant of human cathepsin H lacking the mini-chain, des[Glu(-18)-Thr(-11)]-cathepsin H, exhibits endopeptidase activity towards the synthetic substrate Z-Phe-Arg-NH-Mec (kcat = 0.4 s(-1), Km = 92 microM, kcat/Km = 4348 M(-1) s(-1)) which is not cleaved by r-wt cathepsin H. However, the mutant enzyme shows only minimal aminopeptidase activity for H-Arg-NH-Mec (kcat = 0.8 s(-1), Km = 3.6 mM, kcat/Km = 222 M(-1) s(-1)) which is one of the best known substrates for native human cathepsin H (kcat = 2.5 s(-1), Km = 150 microM, kcat/Km = 16666 M(-1) s(-1)). Inhibition studies with chicken egg white cystatin and E-64 suggest that the mini-chain normally restricts access of inhibitors to the active site. The kinetic data on substrates hydrolysis and enzyme inhibition point out the role of the mini-chain as a structural framework for transition state stabilization of free alpha-amino groups of substrates and as a structural barrier for endopeptidase-like substrate cleavage.

  14. Study of substrate specificity of human aromatase by site directed mutagenesis.

    PubMed

    Auvray, P; Nativelle, C; Bureau, R; Dallemagne, P; Séralini, G-E; Sourdaine, P

    2002-03-01

    Human aromatase is responsible for estrogen biosynthesis and is implicated, in particular, in reproduction and estrogen-dependent tumor proliferation. The molecular structure model is largely derived from the X-ray structure of bacterial cytochromes sharing only 15-20% identities with hP-450arom. In the present study, site directed mutagenesis experiments were performed to examine the role of K119, C124, I125, K130, E302, F320, D309, H475, D476, S470, I471 and I474 of aromatase in catalysis and for substrate binding. The catalytic properties of mutants, transfected in 293 cells, were evaluated using androstenedione, testosterone or nor-testosterone as substrates. In addition, inhibition profiles for these mutants with indane or indolizinone derivatives were obtained. Our results, together with computer modeling, show that catalytic properties of mutants vary in accordance with the substrate used, suggesting possible differences in substrates positioning within the active site. In this respect, importance of residues H475, D476 and K130 was discussed. These results allow us to hypothesize that E302 could be involved in the aromatization mechanism with nor-androgens, whereas D309 remains involved in androgen aromatization. This study highlights the flexibility of the substrate-enzyme complex conformation, and thus sheds new light on residues that may be responsible for substrate specificity between species or aromatase isoforms.

  15. Nucleoside Analogue Triphosphates Allosterically Regulate Human Ribonucleotide Reductase and Identify Chemical Determinants That Drive Substrate Specificity.

    PubMed

    Knappenberger, Andrew J; Ahmad, Md Faiz; Viswanathan, Rajesh; Dealwis, Chris G; Harris, Michael E

    2016-10-18

    Class I ribonucleotide reductase (RR) maintains balanced pools of deoxyribonucleotide substrates for DNA replication by converting ribonucleoside diphosphates (NDPs) to 2'-deoxyribonucleoside diphosphates (dNDPs). Binding of deoxynucleoside triphosphate (dNTP) effectors (ATP/dATP, dGTP, and dTTP) modulates the specificity of class I RR for CDP, UDP, ADP, and GDP substrates. Crystal structures of bacterial and eukaryotic RRs show that dNTP effectors and NDP substrates bind on either side of a flexible nine-amino acid loop (loop 2). Interactions with the effector nucleobase alter loop 2 geometry, resulting in changes in specificity among the four NDP substrates of RR. However, the functional groups proposed to drive specificity remain untested. Here, we use deoxynucleoside analogue triphosphates to determine the nucleobase functional groups that drive human RR (hRR) specificity. The results demonstrate that the 5-methyl, O4, and N3 groups of dTTP contribute to specificity for GDP. The O6 and protonated N1 of dGTP direct specificity for ADP. In contrast, the unprotonated N1 of adenosine is the primary determinant of ATP/dATP-directed specificity for CDP. Structural models from X-ray crystallography of eukaryotic RR suggest that the side chain of D287 in loop 2 is involved in binding of dGTP and dTTP, but not dATP/ATP. This feature is consistent with experimental results showing that a D287A mutant of hRR is deficient in allosteric regulation by dGTP and dTTP, but not ATP/dATP. Together, these data define the effector functional groups that are the drivers of human RR specificity and provide constraints for evaluating models of allosteric regulation.

  16. A DNA Sequence Recognition Loop on APOBEC3A Controls Substrate Specificity

    PubMed Central

    Dhuey, Erica; Zhang, Ruonan; Cao, Ping; Herate, Cecile; Chauveau, Lise; Hubbard, Stevan R.; Landau, Nathaniel R.

    2014-01-01

    APOBEC3A (A3A), one of the seven-member APOBEC3 family of cytidine deaminases, lacks strong antiviral activity against lentiviruses but is a potent inhibitor of adeno-associated virus and endogenous retroelements. In this report, we characterize the biochemical properties of mammalian cell-produced and catalytically active E. coli-produced A3A. The enzyme binds to single-stranded DNA with a Kd of 150 nM and forms dimeric and monomeric fractions. A3A, unlike APOBEC3G (A3G), deaminates DNA substrates nonprocessively. Using a panel of oligonucleotides that contained all possible trinucleotide contexts, we identified the preferred target sequence as TC (A/G). Based on a three-dimensional model of A3A, we identified a putative binding groove that contains residues with the potential to bind substrate DNA and to influence target sequence specificity. Taking advantage of the sequence similarity to the catalytic domain of A3G, we generated A3A/A3G chimeric proteins and analyzed their target site preference. We identified a recognition loop that altered A3A sequence specificity, broadening its target sequence preference. Mutation of amino acids in the predicted DNA binding groove prevented substrate binding, confirming the role of this groove in substrate binding. These findings shed light on how APOBEC3 proteins bind their substrate and determine which sites to deaminate. PMID:24827831

  17. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    PubMed

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  18. Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis.

    PubMed

    Liu, Shijia; Shao, Shangjin; Li, Linlin; Cheng, Zhi; Tian, Li; Gao, Peiji; Wang, Lushan

    2015-12-11

    Chitinases and chitosanases, referred to as chitinolytic enzymes, are two important categories of glycoside hydrolases (GH) that play a key role in degrading chitin and chitosan, two naturally abundant polysaccharides. Here, we investigate the active site architecture of the major chitosanase (GH8, GH46) and chitinase families (GH18, GH19). Both charged (Glu, His, Arg, Asp) and aromatic amino acids (Tyr, Trp, Phe) are observed with higher frequency within chitinolytic active sites as compared to elsewhere in the enzyme structure, indicating significant roles related to enzyme function. Hydrogen bonds between chitinolytic enzymes and the substrate C2 functional groups, i.e. amino groups and N-acetyl groups, drive substrate recognition, while non-specific CH-π interactions between aromatic residues and substrate mainly contribute to tighter binding and enhanced processivity evident in GH8 and GH18 enzymes. For different families of chitinolytic enzymes, the number, type, and position of substrate atoms bound in the active site vary, resulting in different substrate-binding specificities. The data presented here explain the synergistic action of multiple enzyme families at a molecular level and provide a more reasonable method for functional annotation, which can be further applied toward the practical engineering of chitinases and chitosanases.

  19. Mammalian folylpoly-. gamma. -glutamate synthetase. 2. Substrate specificity and kinetic properties

    SciTech Connect

    Cichowicz, D.J.; Shane, B.

    1987-01-27

    The specificity of hog liver folylpolyglutamate synthetase for folate substrates and for nucleotide and L-(/sup 14/C)glutamate substrates and analogues has been investigated. The kinetic mechanism, determined by using aminopterin as the folate substrate, is ordered Ter-Ter with MgATP binding first, folate second, and glutamate last. This mechanism precludes the sequential addition of glutamate moieties to enzyme-bound folate. Folate, dihydrofolate, and tetrahydrofolate possess the optimal configurations for catalysis while 5- and 10-position substitutions of the folate molecule impair catalysis. k/sub cat/ values decrease with increasing glutamate chain length, and the rate of decrease varies depending on the state of reduction and substitution of the folate molecule. Folate binding, as assessed by on rates, is slow. Dihydrofolate exhibits the fastest rate, and the rates are slightly reduced for tetrahydrofolate and 10-formyltetrahydrofolate and greatly reduced for 5-methyltetrahydrofolate and folic acid. Tetrahydrofolate polyglutamates are the only long glutamate chain length folates with detectable substrate activity. The specificity of the L-glutamate binding site is very narrow. L-Homocysteate and 4-threo-fluoroglutamate are alternate substrates and act as chain termination inhibitors in that their addition to the folate molecule prevents or severely retards the further addition of glutamate moieties. The K/sub m/ for glutamate is dependent on the folate substrate used. MgATP is the preferred nucleotide substrate, and ..beta..,..gamma..-methylene-ATP, ..beta..,..gamma..-imido-ATP, adenosine 5'-O-(3-thiotriphosphate), P/sup 1/,P/sup 5/-di(adenosine-5') pentaphosphate, and free ATP/sup 4 -/ are potent inhibitors of the reaction.

  20. The Human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities.

    PubMed

    Popuri, Venkateswarlu; Bachrati, Csanád Z; Muzzolini, Laura; Mosedale, Georgina; Costantini, Silvia; Giacomini, Elisa; Hickson, Ian D; Vindigni, Alessandro

    2008-06-27

    RecQ helicases maintain chromosome stability by resolving a number of highly specific DNA structures that would otherwise impede the correct transmission of genetic information. Previous studies have shown that two human RecQ helicases, BLM and WRN, have very similar substrate specificities and preferentially unwind noncanonical DNA structures, such as synthetic Holliday junctions and G-quadruplex DNA. Here, we extend this analysis of BLM to include new substrates and have compared the substrate specificity of BLM with that of another human RecQ helicase, RECQ1. Our findings show that RECQ1 has a distinct substrate specificity compared with BLM. In particular, RECQ1 cannot unwind G-quadruplexes or RNA-DNA hybrid structures, even in the presence of the single-stranded binding protein, human replication protein A, that stimulates its DNA helicase activity. Moreover, RECQ1 cannot substitute for BLM in the regression of a model replication fork and is very inefficient in displacing plasmid D-loops lacking a 3'-tail. Conversely, RECQ1, but not BLM, is able to resolve immobile Holliday junction structures lacking an homologous core, even in the absence of human replication protein A. Mutagenesis studies show that the N-terminal region (residues 1-56) of RECQ1 is necessary both for protein oligomerization and for this Holliday junction disruption activity. These results suggest that the N-terminal domain or the higher order oligomer formation promoted by the N terminus is essential for the ability of RECQ1 to disrupt Holliday junctions. Collectively, our findings highlight several differences between the substrate specificities of RECQ1 and BLM (and by inference WRN) and suggest that these enzymes play nonoverlapping functions in cells.

  1. A measure of the broad substrate specificity of enzymes based on 'duplicate' catalytic residues.

    PubMed

    Chakraborty, Sandeep; Ásgeirsson, Bjarni; Rao, Basuthkar J

    2012-01-01

    The ability of an enzyme to select and act upon a specific class of compounds with unerring precision and efficiency is an essential feature of life. Simultaneously, these enzymes often catalyze the reaction of a range of similar substrates of the same class, and also have promiscuous activities on unrelated substrates. Previously, we have established a methodology to quantify promiscuous activities in a wide range of proteins. In the current work, we quantitatively characterize the active site for the ability to catalyze distinct, yet related, substrates (BRASS). A protein with known structure and active site residues provides the framework for computing 'duplicate' residues, each of which results in slightly modified replicas of the active site scaffold. Such spatial congruence is supplemented by Finite difference Poisson Boltzmann analysis which filters out electrostatically unfavorable configurations. The congruent configurations are used to compute an index (BrassIndex), which reflects the broad substrate profile of the active site. We identify an acetylhydrolase and a methyltransferase as having the lowest and highest BrassIndex, respectively, from a set of non-homologous proteins extracted from the Catalytic Site Atlas. The acetylhydrolase, a regulatory enzyme, is known to be highly specific for platelet-activating factor. In the methyltransferase (PDB: 1QAM), various combinations of glycine (Gly38/40/42), asparagine (Asn101/11) and glutamic acid (Glu59/36) residues having similar spatial and electrostatic profiles with the specified scaffold (Gly38, Asn101 and Glu59) exemplifies the broad substrate profile such an active site may provide. 'Duplicate' residues identified by relaxing the spatial and/or electrostatic constraints can be the target of directed evolution methodologies, like saturation mutagenesis, for modulating the substrate specificity of proteins.

  2. [Substrate specificity and kinetic properties of a soluble nucleoside triphosphatase from bovine kidneys].

    PubMed

    Sivuk, V F; Rusina, I M; Luchko, T A; Makarchikov, A F

    2008-01-01

    Soluble nucleoside triphosphatase differing in its properties from all known proteins with NTPase activity was partially purified from bovine kidneys. The enzyme has pH optimum of 7.5, molecular mass of 60 kDa, as estimated by gel chromatography, and shows an absolute dependence on divalent metal ions. NTPase obeyed Michaelis-Menten kinetics in the range of substrate concentration tested from 45 to 440 microM; the apparent Km for inosine-5'-triphosphate was calculated to be 23.3 microM. The enzyme was found to possess a broad substrate specificity, being capable of hydrolyzing various nucleoside-5'-tri- as well as diphosphates.

  3. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.

    PubMed

    Van Etten, R L; Waymack, P P

    1991-08-01

    The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.

  4. Structure of Human Dual Specificity Protein Phosphatase 23, VHZ, Enzyme-Substrate/Product Complex

    SciTech Connect

    Agarwal,R.; Burley, S.; Swaminathan, S.

    2008-01-01

    Protein phosphorylation plays a crucial role in mitogenic signal transduction and regulation of cell growth and differentiation. Dual specificity protein phosphatase 23 (DUSP23) or VHZ mediates dephosphorylation of phospho-tyrosyl (pTyr) and phospho-seryl/threonyl (pSer/pThr) residues in specific proteins. In vitro, it can dephosphorylate p44ERK1 but not p54SAPK-{beta} and enhance activation of c-Jun N-terminal kinase (JNK) and p38. Human VHZ, the smallest of the catalytically active protein-tyrosine phosphatases (PTP) reported to date (150 residues), is a class I Cys-based PTP and bears the distinctive active site signature motif HCXXGXXRS(T). We present the crystal structure of VHZ determined at 1.93 angstrom resolution. The polypeptide chain adopts the typical a{beta}a PTP fold, giving rise to a shallow active site cleft that supports dual phosphorylated substrate specificity. Within our crystals, the Thr-135-Tyr-136 from a symmetry-related molecule bind in the active site with a malate ion, where they mimic the phosphorylated TY motif of the MAPK activation loop in an enzyme-substrate/product complex. Analyses of intermolecular interactions between the enzyme and this pseudo substrate/product along with functional analysis of Phe-66, Leu-97, and Phe-99 residues provide insights into the mechanism of substrate binding and catalysis in VHZ.

  5. Prediction and experimental validation of enzyme substrate specificity in protein structures.

    PubMed

    Amin, Shivas R; Erdin, Serkan; Ward, R Matthew; Lua, Rhonald C; Lichtarge, Olivier

    2013-11-05

    Structural Genomics aims to elucidate protein structures to identify their functions. Unfortunately, the variation of just a few residues can be enough to alter activity or binding specificity and limit the functional resolution of annotations based on sequence and structure; in enzymes, substrates are especially difficult to predict. Here, large-scale controls and direct experiments show that the local similarity of five or six residues selected because they are evolutionarily important and on the protein surface can suffice to identify an enzyme activity and substrate. A motif of five residues predicted that a previously uncharacterized Silicibacter sp. protein was a carboxylesterase for short fatty acyl chains, similar to hormone-sensitive-lipase-like proteins that share less than 20% sequence identity. Assays and directed mutations confirmed this activity and showed that the motif was essential for catalysis and substrate specificity. We conclude that evolutionary and structural information may be combined on a Structural Genomics scale to create motifs of mixed catalytic and noncatalytic residues that identify enzyme activity and substrate specificity.

  6. Prediction and experimental validation of enzyme substrate specificity in protein structures

    PubMed Central

    Amin, Shivas R.; Erdin, Serkan; Ward, R. Matthew; Lua, Rhonald C.; Lichtarge, Olivier

    2013-01-01

    Structural Genomics aims to elucidate protein structures to identify their functions. Unfortunately, the variation of just a few residues can be enough to alter activity or binding specificity and limit the functional resolution of annotations based on sequence and structure; in enzymes, substrates are especially difficult to predict. Here, large-scale controls and direct experiments show that the local similarity of five or six residues selected because they are evolutionarily important and on the protein surface can suffice to identify an enzyme activity and substrate. A motif of five residues predicted that a previously uncharacterized Silicibacter sp. protein was a carboxylesterase for short fatty acyl chains, similar to hormone-sensitive-lipase–like proteins that share less than 20% sequence identity. Assays and directed mutations confirmed this activity and showed that the motif was essential for catalysis and substrate specificity. We conclude that evolutionary and structural information may be combined on a Structural Genomics scale to create motifs of mixed catalytic and noncatalytic residues that identify enzyme activity and substrate specificity. PMID:24145433

  7. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

    PubMed

    Wlodarski, Tomasz; Kutner, Jan; Towpik, Joanna; Knizewski, Lukasz; Rychlewski, Leszek; Kudlicki, Andrzej; Rowicka, Maga; Dziembowski, Andrzej; Ginalski, Krzysztof

    2011-01-01

    Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.

  8. Substrate specificity determinants of the methanogen homoaconitase enzyme: structure and function of the small subunit.

    PubMed

    Jeyakanthan, Jeyaraman; Drevland, Randy M; Gayathri, Dasara Raju; Velmurugan, Devadasan; Shinkai, Akeo; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Graham, David E

    2010-03-30

    The aconitase family of hydro-lyase enzymes includes three classes of proteins that catalyze the isomerization of alpha-hydroxy acids to beta-hydroxy acids. Besides aconitase, isopropylmalate isomerase (IPMI) proteins specifically catalyze the isomerization of alpha,beta-dicarboxylates with hydrophobic gamma-chain groups, and homoaconitase (HACN) proteins catalyze the isomerization of tricarboxylates with variable chain length gamma-carboxylate groups. These enzymes' stereospecific hydro-lyase activities make them attractive catalysts to produce diastereomers from unsaturated precursors. However, sequence similarity and convergent evolution among these proteins lead to widespread misannotation and uncertainty about gene function. To find the substrate specificity determinants of homologous IPMI and HACN proteins from Methanocaldococcus jannaschii, the small-subunit HACN protein (MJ1271) was crystallized for X-ray diffraction. The structural model showed characteristic residues in a flexible loop region between alpha2 and alpha3 that distinguish HACN from IPMI and aconitase proteins. Site-directed mutagenesis of MJ1271 produced loop-region variant proteins that were reconstituted with wild-type MJ1003 large-subunit protein. The heteromers formed promiscuous hydro-lyases with reduced activity but broader substrate specificity. Both R26K and R26V variants formed relatively efficient IPMI enzymes, while the T27A variant had uniformly lower specificity constants for both IPMI and HACN substrates. The R26V T27Y variant resembles the MJ1277 IPMI small subunit in its flexible loop sequence but demonstrated the broad substrate specificity of the R26V variant. These mutations may reverse the evolution of HACN activity from an ancestral IPMI gene, demonstrating the evolutionary potential for promiscuity in hydro-lyase enzymes. Understanding these specificity determinants enables the functional reannotation of paralogous HACN and IPMI genes in numerous genome sequences. These

  9. Structural insights into the substrate specificity of two esterases from the thermophilic Rhizomucor miehei

    PubMed Central

    Yang, Shaoqing; Qin, Zhen; Duan, Xiaojie; Yan, Qiaojuan; Jiang, Zhengqiang

    2015-01-01

    Two hormone-sensitive lipase (HSL) family esterases (RmEstA and RmEstB) from the thermophilic fungus Rhizomucor miehei, exhibiting distinct substrate specificity, have been recently reported to show great potential in industrial applications. In this study, the crystal structures of RmEstA and RmEstB were determined at 2.15 Å and 2.43 Å resolutions, respectively. The structures of RmEstA and RmEstB showed two distinctive domains, a catalytic domain and a cap domain, with the classical α/β-hydrolase fold. Catalytic triads consisting of residues Ser161, Asp262, and His292 in RmEstA, and Ser164, Asp261, and His291 in RmEstB were found in the respective canonical positions. Structural comparison of RmEstA and RmEstB revealed that their distinct substrate specificity might be attributed to their different substrate-binding pockets. The aromatic amino acids Phe222 and Trp92, located in the center of the substrate-binding pocket of RmEstB, blocked this pocket, thus narrowing its catalytic range for substrates (C2–C8). Two mutants (F222A and W92F in RmEstB) showing higher catalytic activity toward long-chain substrates further confirmed the hypothesized interference. This is the first report of HSL family esterase structures from filamentous fungi.jlr The information on structure-function relationships could open important avenues of exploration for further industrial applications of esterases. PMID:26108223

  10. Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs

    PubMed Central

    Gayatri, Sitaram; Cowles, Martis W.; Vemulapalli, Vidyasiri; Cheng, Donghang; Sun, Zu-Wen; Bedford, Mark T.

    2016-01-01

    Signal transduction in response to stimuli relies on the generation of cascades of posttranslational modifications that promote protein-protein interactions and facilitate the assembly of distinct signaling complexes. Arginine methylation is one such modification, which is catalyzed by a family of nine protein arginine methyltransferases, or PRMTs. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the use of Oriented Peptide Array Libraries (OPALs) to methodically dissect the preferred methylation motifs for three of these enzymes – PRMT1, CARM1 and PRMT9. In parallel, we show that an OPAL platform with a fixed methylarginine residue can be used to validate the methyl-specific and sequence-specific properties of antibodies that have been generated against different PRMT substrates, and can also be used to confirm the pan nature of some methylarginine-specific antibodies. PMID:27338245

  11. Structural Basis for Broad Substrate Specificity in Higher Plant β-d-Glucan Glucohydrolases

    PubMed Central

    Hrmova, Maria; De Gori, Ross; Smith, Brian J.; Fairweather, Jon K.; Driguez, Hugues; Varghese, Joseph N.; Fincher, Geoffrey B.

    2002-01-01

    Family 3 β-d-glucan glucohydrolases are distributed widely in higher plants. The enzymes catalyze the hydrolytic removal of β-d-glucosyl residues from nonreducing termini of a range of β-d-glucans and β-d-oligoglucosides. Their broad specificity can be explained by x-ray crystallographic data obtained from a barley β-d-glucan glucohydrolase in complex with nonhydrolyzable S-glycoside substrate analogs and by molecular modeling of enzyme/substrate complexes. The glucosyl residue that occupies binding subsite −1 is locked tightly into a fixed position through extensive hydrogen bonding with six amino acid residues near the bottom of an active site pocket. In contrast, the glucosyl residue at subsite +1 is located between two Trp residues at the entrance of the pocket, where it is constrained less tightly. The relative flexibility of binding at subsite +1, coupled with the projection of the remainder of bound substrate away from the enzyme's surface, means that the overall active site can accommodate a range of substrates with variable spatial dispositions of adjacent β-d-glucosyl residues. The broad specificity for glycosidic linkage type enables the enzyme to perform diverse functions during plant development. PMID:12034895

  12. Investigating Commercial Cellulase Performances Toward Specific Biomass Recalcitrance Factors Using Reference Substrates

    SciTech Connect

    Ju, Xiaohui; Bowden, Mark E.; Engelhard, Mark H.; Zhang, Xiao

    2014-04-01

    Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulose enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulose performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

  13. Roles of s3 site residues of nattokinase on its activity and substrate specificity.

    PubMed

    Wu, Shuming; Feng, Chi; Zhong, Jin; Huan, Liandong

    2007-09-01

    Nattokinase (Subtilisin NAT, NK) is a bacterial serine protease with high fibrinolytic activity. To probe their roles on protease activity and substrate specificity, three residues of S3 site (Gly(100), Ser(101) and Leu(126)) were mutated by site-directed mutagenesis. Kinetics parameters of 20 mutants were measured using tetrapeptides as substrates, and their fibrinolytic activities were determined by fibrin plate method. Results of mutation analysis showed that Gly(100) and Ser(101) had reverse steric and electrostatic effects. Residues with bulky or positively charged side chains at position 100 decreased the substrate binding and catalytic activity drastically, while residues with the same characters at position 101 could obviously enhance protease and fibrinolytic activity of NK. Mutation of Leu(126) might impair the structure of the active cleft and drastically decreased the activity of NK. Kinetics studies of the mutants showed that S3 residues were crucial to keep protease activity while they moderately affected substrate specificity of NK. The present study provided some original insight into the P3-S3 interaction in NK and other subtilisins, as well as showed successful protein engineering cases to improve NK as a potential therapeutic agent.

  14. A protease substrate profiling method that links site-specific proteolysis with antibiotic resistance.

    PubMed

    Sandersjöö, Lisa; Kostallas, George; Löfblom, John; Samuelson, Patrik

    2014-01-01

    Proteases are involved in many biological processes and have become important tools in biomedical research and industry. Technologies for engineering and characterization of, for example, proteolytic activity and specificity are essential in protease research. Here, we present a novel method for assessment of site-specific proteolysis. The assay utilizes plasmid-encoded reporters that, upon processing by a co-expressed protease, confer antibiotic resistance to bacteria in proportion to the cleavage efficiency. We have demonstrated that cells co-expressing cleavable reporters together with tobacco etch virus protease (TEVp) could be discriminated from cells with non-cleavable reporters by growth in selective media. Importantly, the resistance to antibiotics proved to correlate with the substrate processing efficiency. Thus, by applying competitive growth of a mock library in antibiotic-containing medium, we could show that the substrate preferred by TEVp was enriched relative to less-efficient substrates. We believe that this simple methodology will facilitate protease substrate identification, and hold great promise for directed evolution of proteases and protease recognition sequences towards improved or even new functionality.

  15. Molecular basis of substrate recognition and specificity revealed in family 12 glycoside hydrolases.

    PubMed

    Calzado, Felipe; Prates, Erica T; Gonçalves, Thiago A; Rubio, Marcelo V; Zubieta, Mariane P; Squina, Fabio M; Skaf, Munir S; Damásio, André R L

    2016-12-01

    Fungal GH12 enzymes are classified as xyloglucanases when they specifically target xyloglucans, or promiscuous endoglucanases when they exhibit catalytic activity against xyloglucan and β-glucan chains. Several structural and functional studies involving GH12 enzymes tried to explain the main patterns of xyloglucan activity, but what really determines xyloglucanase specificity remains elusive. Here, three fungal GH12 enzymes from Aspergillus clavatus (AclaXegA), A. zonatus (AspzoGH12), and A. terreus (AtEglD) were studied to unveil the molecular basis for substrate specificity. Using functional assays, site-directed mutagenesis, and molecular dynamics simulations, we demonstrated that three main regions are responsible for substrate selectivity: (i) the YSG group in loop 1; (ii) the SST group in loop 2; and (iii) loop A3-B3 and neighboring residues. Functional assays and sequence alignment showed that while AclaXegA is specific to xyloglucan, AtEglD cleaves β-glucan, and xyloglucan. However, AspzoGH12 was also shown to be promiscuous contrarily to a sequence alignment-based prediction. We find that residues Y111 and R93 in AtEglD harbor the substrate in an adequate orientation for hydrolysis in the catalytic cleft entrance and that residues Y19 in AclaXegA and Y30 in AspzoGH12 partially compensate the absence of the YSG segment, typically found in promiscuous enzymes. The results point out the multiple structural factors underlying the substrate specificity of GH12 enzymes. Biotechnol. Bioeng. 2016;113: 2577-2586. © 2016 Wiley Periodicals, Inc.

  16. A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution.

    PubMed

    Yang, Weili; Simpson, Jeffrey P; Li-Beisson, Yonghua; Beisson, Fred; Pollard, Mike; Ohlrogge, John B

    2012-10-01

    Arabidopsis (Arabidopsis thaliana) has eight glycerol-3-phosphate acyltransferase (GPAT) genes that are members of a plant-specific family with three distinct clades. Several of these GPATs are required for the synthesis of cutin or suberin. Unlike GPATs with sn-1 regiospecificity involved in membrane or storage lipid synthesis, GPAT4 and -6 are unique bifunctional enzymes with both sn-2 acyltransferase and phosphatase activity resulting in 2-monoacylglycerol products. We present enzymology, pathway organization, and evolutionary analysis of this GPAT family. Within the cutin-associated clade, GPAT8 is demonstrated as a bifunctional sn-2 acyltransferase/phosphatase. GPAT4, -6, and -8 strongly prefer C16:0 and C18:1 ω-oxidized acyl-coenzyme As (CoAs) over unmodified or longer acyl chain substrates. In contrast, suberin-associated GPAT5 can accommodate a broad chain length range of ω-oxidized and unsubstituted acyl-CoAs. These substrate specificities (1) strongly support polyester biosynthetic pathways in which acyl transfer to glycerol occurs after oxidation of the acyl group, (2) implicate GPAT specificities as one major determinant of cutin and suberin composition, and (3) argue against a role of sn-2-GPATs (Enzyme Commission 2.3.1.198) in membrane/storage lipid synthesis. Evidence is presented that GPAT7 is induced by wounding, produces suberin-like monomers when overexpressed, and likely functions in suberin biosynthesis. Within the third clade, we demonstrate that GPAT1 possesses sn-2 acyltransferase but not phosphatase activity and can utilize dicarboxylic acyl-CoA substrates. Thus, sn-2 acyltransferase activity extends to all subbranches of the Arabidopsis GPAT family. Phylogenetic analyses of this family indicate that GPAT4/6/8 arose early in land-plant evolution (bryophytes), whereas the phosphatase-minus GPAT1 to -3 and GPAT5/7 clades diverged later with the appearance of tracheophytes.

  17. Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general

    PubMed Central

    Peleh, Valentina; Riemer, Jan; Dancis, Andrew; Herrmann, Johannes M.

    2014-01-01

    In most cellular compartments cysteine residues are predominantly reduced. However, in the bacterial periplasm, the ER and the mitochondrial intermembrane space (IMS), sulfhydryl oxidases catalyze the formation of disulfide bonds. Nevertheless, many IMS proteins contain reduced cysteines that participate in binding metal- or heme-cofactors. In this study, we addressed the substrate specificity of the mitochondrial protein oxidation machinery. Dre2 is a cysteine-rich protein that is located in the cytosol. A large fraction of Dre2 bound to the cytosolic side of the outer membrane of mitochondria. Even when Dre2 is artificially targeted to the IMS, its cysteine residues remain in the reduced state. This indicates that protein oxidation in the IMS of mitochondria is not a consequence of the apparent oxidizing environment in this compartment but rather is substrate-specific and determined by the presence of Mia40-binding sites. PMID:28357226

  18. Qualitative and Quantitative In Vitro Analysis of Phosphatidylinositol Phosphatase Substrate Specificity.

    PubMed

    Ip, Laura Ren Huey; Gewinner, Christina Anja

    2016-01-01

    Phosphoinositides compromise a family of eight membrane lipids which play important roles in many cellular signaling pathways. Signaling through phosphoinositides has been shown in a variety of cellular functions such cell proliferation, cell growth, apoptosis, and vesicle trafficking. Phospholipid phosphatases regulate cell signaling by modifying the concentration of phosphoinositides and their dephosphorylated products. To understand the role of individual lipid phosphatases in phosphoinositide turnover and functional signaling, it is crucial to determine the substrate specificity of the lipid phosphatase of interest. In this chapter we describe how the substrate specificity of an individual lipid phosphatase can be qualitatively and quantitatively measured in an in vitro radiometric assay. In addition, we specify the different expression systems and purification methods required to produce the necessary yield and functionality in order to further characterize these enzymes. The outstanding versatility and sensitivity of this assay system are yet unmatched and are therefore currently considered the standard of the field.

  19. Biochemical properties and substrate specificities of alkaline and histidine acid phytases.

    PubMed

    Oh, B-C; Choi, W-C; Park, S; Kim, Y-o; Oh, T-K

    2004-01-01

    Phytases are a special class of phosphatase that catalyze the sequential hydrolysis of phytate to less-phosphorylated myo-inositol derivatives and inorganic phosphate. Phytases are added to animal feedstuff to reduce phosphate pollution in the environment, since monogastric animals such as pigs, poultry, and fish are unable to metabolize phytate. Based on biochemical properties and amino acid sequence alignment, phytases can be categorized into two major classes, the histidine acid phytases and the alkaline phytases. The histidine acid phosphatase class shows broad substrate specificity and hydrolyzes metal-free phytate at the acidic pH range and produces myo-inositol monophosphate as the final product. In contrast, the alkaline phytase class exhibits strict substrate specificity for the calcium-phytate complex and produces myo-inositol trisphosphate as the final product. This review describes recent findings that present novel viewpoints concerning the molecular basis of phytase classification.

  20. Determinants of tyrosylprotein sulfation coding and substrate specificity of tyrosylprotein sulfotransferases in metazoans.

    PubMed

    Hartmann-Fatu, Cristina; Bayer, Peter

    2016-11-25

    This short review likes to give a historical view on the discovery of metazoan Tyrosylprotein Sulfotransferases (TPSTs) setting its focus on the determinants of substrate specificity of these enzymes and on the hitherto knowledge of the sulfation coding mechanism. Weak points of the to-date models of sulfation coding will be outlined and a more detailed and complex view on tyrosylprotein-sulfation coding will be presented with respect to recent cellular investigations on TPSTs.

  1. Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer.

    PubMed

    Noda-García, Lianet; Camacho-Zarco, Aldo R; Medina-Ruíz, Sofía; Gaytán, Paul; Carrillo-Tripp, Mauricio; Fülöp, Vilmos; Barona-Gómez, Francisco

    2013-09-01

    Despite the prominent role of horizontal gene transfer (HGT) in shaping bacterial metabolism, little is known about the impact of HGT on the evolution of enzyme function. Specifically, what is the influence of a recently acquired gene on the function of an existing gene? For example, certain members of the genus Corynebacterium have horizontally acquired a whole l-tryptophan biosynthetic operon, whereas in certain closely related actinobacteria, for example, Mycobacterium, the trpF gene is missing. In Mycobacterium, the function of the trpF gene is performed by a dual-substrate (βα)8 phosphoribosyl isomerase (priA gene) also involved in l-histidine (hisA gene) biosynthesis. We investigated the effect of a HGT-acquired TrpF enzyme upon PriA's substrate specificity in Corynebacterium through comparative genomics and phylogenetic reconstructions. After comprehensive in vivo and enzyme kinetic analyses of selected PriA homologs, a novel (βα)8 isomerase subfamily with a specialized function in l-histidine biosynthesis, termed subHisA, was confirmed. X-ray crystallography was used to reveal active-site mutations in subHisA important for narrowing of substrate specificity, which when mutated to the naturally occurring amino acid in PriA led to gain of function. Moreover, in silico molecular dynamic analyses demonstrated that the narrowing of substrate specificity of subHisA is concomitant with loss of ancestral protein conformational states. Our results show the importance of HGT in shaping enzyme evolution and metabolism.

  2. Molecularly Imprinted Plasmonic Substrates for Specific and Ultrasensitive Immunoassay of Trace Glycoproteins in Biological Samples.

    PubMed

    Muhammad, Pir; Tu, Xueying; Liu, Jia; Wang, Yijia; Liu, Zhen

    2017-04-05

    Assays of glycoproteins hold significant biological importance and clinical values, for which immunoassay has been the workhorse tool. As immunoassays are associated with disadvantages such as poor availability of high-specificity antibodies, limited stability of biological reagents, and tedious procedure, innovative alternatives that can overcome these drawbacks are highly desirable. Plasmonic immunosandwich assay (PISA) has emerged as an appealing alternative to immunoassay for fast and sensitive determination of trace glycoproteins in biosamples. Plasmonic substrates play key roles in PISA, not only in determining the specificity but also in greatly influencing the detection sensitivity. Herein, we report a new type of molecularly imprinted plasmonic substrates for rapid and ultrasensitive PISA assay of trace glycoproteins in complex real samples. The substrates were fabricated from glass slides, first coated with self-assembled monolayer (SAM) of gold nanoparticles (AuNPs) and then molecularly imprinted with organo-siloxane polymer in the presence of template glycoproteins. The prepared molecularly imprinted substrates exhibited not only a significant plasmonic effect but also excellent binding properties, ensuring the sensitivity as well as the specificity of the assay. Alkaline phosphatase (ALP) and α-fetoprotein (AFP), glycoproteins that are routinely used as disease markers in clinical diagnosis, were used as representative targets. The limit of detection (LOD) was 3.1 × 10(-12) M for ALP and 1.5 × 10(-14) M for AFP, which is the best among the PISA approaches reported. The sample volume required was only 5 μL, and the total time required was within 30 min for each assay. Specific and ultrasensitive determination of ALP and AFP in human serum was demonstrated. Because many disease biomarkers are glycoproteins, the developed PISA approach holds great promise in disease diagnostics.

  3. Substrate specificity of platypus venom L-to-D-peptide isomerase.

    PubMed

    Bansal, Paramjit S; Torres, Allan M; Crossett, Ben; Wong, Karen K Y; Koh, Jennifer M S; Geraghty, Dominic P; Vandenberg, Jamie I; Kuchel, Philip W

    2008-04-04

    The L-to-D-peptide isomerase from the venom of the platypus (Ornithorhyncus anatinus) is the first such enzyme to be reported for a mammal. In delineating its catalytic mechanism and broader roles in the animal, its substrate specificity was explored. We used N-terminal segments of defensin-like peptides DLP-2 and DLP-4 and natriuretic peptide OvCNP from the venom as substrates. The DLP analogues IMFsrs and ImFsrs (srs is a solubilizing chain; lowercase letters denote D-amino acid) were effective substrates for the isomerase; it appears to recognize the N-terminal tripeptide sequence Ile-Xaa-Phe-. A suite of 26 mutants of these hexapeptides was synthesized by replacing the second residue (Met) with another amino acid, viz. Ala, alpha-aminobutyric acid, Ile, Leu, Lys, norleucine, Phe, Tyr, and Val. It was shown that mutant peptides incorporating norleucine and Phe are substrates and exhibit L- or D-amino acid isomerization, but mutant peptides that contain residues with shorter, beta-branched or long side chains with polar terminal groups, viz. Ala, alpha-aminobutyric acid, Ile, Val, Leu, Lys, and Tyr, respectively, are not substrates. It was demonstrated that at least three N-terminal amino acid residues are absolutely essential for L-to-D-isomerization; furthermore, the third amino acid must be a Phe residue. None of the hexapeptides based on LLH, the first three residues of OvCNP, were substrates. A consistent 2-base mechanism is proposed for the isomerization; abstraction of a proton by 1 base is concomitant with delivery of a proton by the conjugate acid of a second base.

  4. Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode.

    PubMed Central

    Blankenfeldt, W.; Nowicki, C.; Montemartini-Kalisz, M.; Kalisz, H. M.; Hecht, H. J.

    1999-01-01

    The crystal structure of tyrosine aminotransferase (TAT) from the parasitic protozoan Trypanosoma cruzi, which belongs to the aminotransferase subfamily Igamma, has been determined at 2.5 A resolution with the R-value R = 15.1%. T. cruzi TAT shares less than 15% sequence identity with aminotransferases of subfamily Ialpha but shows only two larger topological differences to the aspartate aminotransferases (AspATs). First, TAT contains a loop protruding from the enzyme surface in the larger cofactor-binding domain, where the AspATs have a kinked alpha-helix. Second, in the smaller substrate-binding domain, TAT has a four-stranded antiparallel beta-sheet instead of the two-stranded beta-sheet in the AspATs. The position of the aromatic ring of the pyridoxal-5'-phosphate cofactor is very similar to the AspATs but the phosphate group, in contrast, is closer to the substrate-binding site with one of its oxygen atoms pointing toward the substrate. Differences in substrate specificities of T. cruzi TAT and subfamily Ialpha aminotransferases can be attributed by modeling of substrate complexes mainly to this different position of the cofactor-phosphate group. Absence of the arginine, which in the AspATs fixes the substrate side-chain carboxylate group by a salt bridge, contributes to the inability of T. cruzi TAT to transaminate acidic amino acids. The preference of TAT for tyrosine is probably related to the ability of Asn17 in TAT to form a hydrogen bond to the tyrosine side-chain hydroxyl group. PMID:10595543

  5. Chronophin dimerization is required for proper positioning of its substrate specificity loop.

    PubMed

    Kestler, Christian; Knobloch, Gunnar; Tessmer, Ingrid; Jeanclos, Elisabeth; Schindelin, Hermann; Gohla, Antje

    2014-01-31

    Mammalian phosphatases of the haloacid dehalogenase (HAD) superfamily have emerged as important regulators of physiology and disease. Many of these enzymes are stable homodimers; however, the role of their dimerization is largely unknown. Here, we explore the function of the obligatory homodimerization of chronophin, a mammalian HAD phosphatase known to dephosphorylate pyridoxal 5'-phosphate (PLP) and serine/threonine-phosphorylated proteins. The exchange of two residues in the murine chronophin homodimerization interface (chronophin(A194K,A195K)) yields a constitutive monomer both in vitro and in cells. The catalytic activity of monomeric chronophin toward PLP is strongly impaired. X-ray crystallographic studies of chronophin(A194K,A195K) revealed that dimer formation is essential for an intermolecular arginine-arginine-tryptophan stacking interaction that positions a critical histidine residue in the substrate specificity loop of chronophin for PLP coordination. Analysis of all available crystal structures of HAD hydrolases that are grouped together with chronophin in the C2a-type structural subfamily uncovered a highly conserved mode of dimerization that results in intermolecular contacts involving the substrate specificity loop. Our results explain how the dimerization of HAD hydrolases contributes to their catalytic efficiency and substrate specificity.

  6. Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum

    SciTech Connect

    Kino, Kuniki . E-mail: kkino@waseda.jp; Kuratsu, Shoko; Noguchi, Atsushi; Kokubo, Masahiro; Nakazawa, Yuji; Arai, Toshinobu; Yagasaki, Makoto; Kirimura, Kohtaro

    2007-01-12

    Glutathione (GSH) is synthesized by {gamma}-glutamylcysteine synthetase ({gamma}-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed {gamma}-GCS-GS catalyzing both {gamma}-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the {gamma}-GCS activity, S. agalactiae {gamma}-GCS-GS had different substrate specificities from those of Escherichia coli {gamma}-GCS. Furthermore, S. agalactiae {gamma}-GCS-GS synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-X{sub aa}-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding {gamma}-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae {gamma}-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed {gamma}-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-Cys-X{sub aa}. Whereas the substrate specificities of {gamma}-GCS domain protein and GS domain protein of S. agalactiae {gamma}-GCS-GS were the same as those of S. agalactiae {gamma}-GCS-GS.

  7. A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity

    PubMed Central

    St John, Franz J.; Dietrich, Diane; Crooks, Casey; Pozharski, Edwin; González, Javier M.; Bales, Elizabeth; Smith, Kennon; Hurlbert, Jason C.

    2014-01-01

    Endoxylanases classified into glycoside hydrolase family 30 subfamily 8 (GH30-8) are known to hydrolyze the hemicellulosic polysaccharide glucuronoxylan (GX) but not arabinoxylan or neutral xylooligosaccharides. This is owing to the specificity of these enzymes for the α-1,2-linked glucuronate (GA) appendage of GX. Limit hydrolysis of this substrate produces a series of aldouronates each containing a single GA substituted on the xylose penultimate to the reducing terminus. In this work, the structural and biochemical characterization of xylanase 30A from Clostridium papyro­solvens (CpXyn30A) is presented. This xylanase possesses a high degree of amino-acid identity to the canonical GH30-8 enzymes, but lacks the hallmark β8–α8 loop region which in part defines the function of this GH30 subfamily and its role in GA recognition. CpXyn30A is shown to have a similarly low activity on all xylan substrates, while hydrolysis of xylohexaose revealed a competing transglycosylation reaction. These findings are directly compared with the model GH30-8 enzyme from Bacillus subtilis, XynC. Despite its high sequence identity to the GH30-8 enzymes, CpXyn30A does not have any apparent specificity for the GA appendage. These findings confirm that the typically conserved β8–α8 loop region of these enzymes influences xylan substrate specificity but not necessarily β-1,4-xylanase function. PMID:25372685

  8. Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis.

    PubMed

    Luttgeharm, Kyle D; Cahoon, Edgar B; Markham, Jonathan E

    2016-03-01

    Ceramide makes up the acyl-backbone of sphingolipids and plays a central role in determining the function of these essential membrane lipids. In Arabidopsis, the varied chemical composition of ceramide is determined by the specificity of three different isoforms of ceramide synthase, denoted LAG one homologue 1, -2 and -3 (LOH1, LOH2 and LOH3), for a range of long-chain base (LCB) and acyl-CoA substrates. The contribution of each of these isoforms to the synthesis of ceramide was investigated by in vitro ceramide synthase assays. The plant LCB phytosphingosine was efficiently used by the LOH1 and LOH3 isoforms, with LOH1 having the lowest Km for the LCB substrate of the three isoforms. In contrast, sphinganine was used efficiently only by the LOH2 isoform. Acyl-CoA specificity was also distinguished between the three isoforms with LOH2 almost completely specific for palmitoyl-CoA whereas the LOH1 isoform showed greatest activity with lignoceroyl- and hexacosanoyl-CoAs. Interestingly, unsaturated acyl-CoAs were not used efficiently by any isoform whereas unsaturated LCB substrates were preferred by LOH2 and 3. Fumonisin B1 (FB1) is a general inhibitor of ceramide synthases but LOH1 was found to have a much lower Ki than the other isoforms pointing towards the origin of FB1 sensitivity in plants. Overall, the data suggest distinct roles and modes of regulation for each of the ceramide synthases in Arabidopsis sphingolipid metabolism.

  9. Substrate specificity of plant and fungi pectin methylesterases: Identification of novel inhibitors of PMEs.

    PubMed

    L'Enfant, Mélanie; Domon, Jean-Marc; Rayon, Catherine; Desnos, Thierry; Ralet, Marie-Christine; Bonnin, Estelle; Pelloux, Jérôme; Pau-Roblot, Corinne

    2015-11-01

    Pectin methylesterases (PMEs) play a central role in pectin remodeling during plant development. They are also present in phytopathogens such as bacteria and fungi. We investigated the substrate specificity and pH dependence of plant and fungi PMEs using tailor-made pectic substrates. For this purpose, we used two plant PMEs (from orange peel: Citrus sinensis and from Arabidopsis thaliana) and one fungal PME (from Botrytis cinerea). We showed that plant and fungi PMEs differed in their substrate specificity and pH dependence, and that there were some differences between plant PMEs. We further investigated the inhibition of these enzyme activities using characterized polyphenols such as catechins and tannic acid. We showed that PMEs differed in their sensitivity to chemical compounds. In particular, fungal PME was not sensitive to inhibition. Finally, we screened for novel chemical inhibitors of PMEs using a chemical library of ∼3600 compounds. We identified a hundred new inhibitors of plant PMEs, but none had an effect on the fungal enzyme. This study sheds new light on the specificity of pectin methylesterases and provides new tools to modulate their activity.

  10. Rapid analysis of protein farnesyltransferase substrate specificity using peptide libraries and isoprenoid diphosphate analogues.

    PubMed

    Wang, Yen-Chih; Dozier, Jonathan K; Beese, Lorena S; Distefano, Mark D

    2014-08-15

    Protein farnesytransferase (PFTase) catalyzes the farnesylation of proteins with a carboxy-terminal tetrapeptide sequence denoted as a Ca1a2X box. To explore the specificity of this enzyme, an important therapeutic target, solid-phase peptide synthesis in concert with a peptide inversion strategy was used to prepare two libraries, each containing 380 peptides. The libraries were screened using an alkyne-containing isoprenoid analogue followed by click chemistry with biotin azide and subsequent visualization with streptavidin-AP. Screening of the CVa2X and CCa2X libraries with Rattus norvegicus PFTase revealed reaction by many known recognition sequences as well as numerous unknown ones. Some of the latter occur in the genomes of bacteria and viruses and may be important for pathogenesis, suggesting new targets for therapeutic intervention. Screening of the CVa2X library with alkyne-functionalized isoprenoid substrates showed that those prepared from C10 or C15 precursors gave similar results, whereas the analogue synthesized from a C5 unit gave a different pattern of reactivity. Lastly, the substrate specificities of PFTases from three organisms (R. norvegicus, Saccharomyces cerevisiae, and Candida albicans) were compared using CVa2X libraries. R. norvegicus PFTase was found to share more peptide substrates with S. cerevisiae PFTase than with C. albicans PFTase. In general, this method is a highly efficient strategy for rapidly probing the specificity of this important enzyme.

  11. Structural basis for substrate specificity of Helicobacter pylori M17 aminopeptidase.

    PubMed

    Modak, Joyanta K; Rut, Wioletta; Wijeyewickrema, Lakshmi C; Pike, Robert N; Drag, Marcin; Roujeinikova, Anna

    2016-02-01

    The M17 aminopeptidase from the carcinogenic gastric bacterium Helicobacter pylori (HpM17AP) is an important housekeeping enzyme involved in catabolism of endogenous and exogenous peptides. It is implicated in H. pylori defence against the human innate immune response and in the mechanism of metronidazole resistance. Bestatin inhibits HpM17AP and suppresses H. pylori growth. To address the structural basis of catalysis and inhibition of this enzyme, we have established its specificity towards the N-terminal amino acid of peptide substrates and determined the crystal structures of HpM17AP and its complex with bestatin. The position of the D-phenylalanine moiety of the inhibitor with respect to the active-site metal ions, bicarbonate ion and with respect to other M17 aminopeptidases suggested that this residue binds to the S1 subsite of HpM17AP. In contrast to most characterized M17 aminopeptidases, HpM17AP displays preference for L-Arg over L-Leu residues in peptide substrates. Compared to very similar homologues from other bacteria, a distinguishing feature of HpM17AP is a hydrophilic pocket at the end of the S1 subsite that is likely to accommodate the charged head group of the L-Arg residue of the substrate. The pocket is flanked by a sodium ion (not present in M17 aminopeptidases that show preference for L-Leu) and its coordinating water molecules. In addition, the structure suggests that variable loops at the entrance to, and in the middle of, the substrate-binding channel are important determinants of substrate specificity of M17 aminopeptidases.

  12. Identification of Crucial Amino Acids in Mouse Aldehyde Oxidase 3 That Determine Substrate Specificity

    PubMed Central

    Mahro, Martin; Brás, Natércia F.; Cerqueira, Nuno M. F. S. A.; Teutloff, Christian; Coelho, Catarina; Romão, Maria João; Leimkühler, Silke

    2013-01-01

    In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3). The sequence alignment of different aldehyde oxidase (AOX) isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR). Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD) was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis. PMID:24358164

  13. Accumulation of acyl-enzyme in DD-peptidase-catalysed reactions with analogues of peptide substrates.

    PubMed Central

    Jamin, M; Adam, M; Damblon, C; Christiaens, L; Frère, J M

    1991-01-01

    Thioester substrates can be used to study the hydrolysis and transfer reactions catalysed by beta-lactamases and DD-peptidases. With the latter enzymes, accumulation of the acyl-enzyme can be detected directly. The efficiency of various amines as acceptor substrates was in excellent agreement with previous results obtained with peptide substrates of the DD-peptidases. The results indicated the presence of a specific binding site for the acceptor substrates. Although most of the results agreed well with a simple partition model, more elaborate hypotheses will be needed to account for all the data presented. PMID:1747125

  14. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    SciTech Connect

    Han, Q.; Ding, H; Robinson, H; Christensen, B; Li, J

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  15. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    SciTech Connect

    Crosby, Heidi A; Pelletier, Dale A; Hurst, Gregory {Greg} B; Escalante-Semerena, Jorge C

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  16. Solubilization, molecular forms, purification and substrate specificity of two acetylcholinesterases in the medicinal leech (Hirudo medicinalis).

    PubMed Central

    Talesa, V; Grauso, M; Giovannini, E; Rosi, G; Toutant, J P

    1995-01-01

    Two acetylcholinesterases (AChE) differing in substrate and inhibitor specificities have been characterized in the medical leech (Hirudo medicinalis). A 'spontaneously-soluble' portion of AChE activity (SS-AChE) was recovered from haemolymph and from tissues dilacerated in low-salt buffer. A second portion of AChE activity was obtained after extraction of tissues in low-salt buffer alone or containing 1% Triton X-100 [detergent-soluble (DS-) AChE). Both enzymes were purified to homogeneity by affinity chromatography on edrophonium- and concanavalin A-Sepharose columns. Denaturing SDS/PAGE under reducing conditions gave one band at 30 kDa for purified SS-AChE and 66 kDa for DS-AChE. Sephadex G-200 chromatography indicated a molecular mass of 66 kDa for native SS-AChE and of 130 kDa for DS-AChE. SS-AChE showed a single peak sedimenting at 5.0 S in sucrose gradients with or without Triton X-100, suggesting that it was a hydrophylic monomer (G1). DS-AChE sedimented as a single 6.1-6.5 S peak in the presence of Triton X-100 and aggregated in the absence of detergent. A treatment with phosphatidylinositol-specific phospholipase C suppressed aggregation and gave a 7 S peak. DS-AChE was thus an amphiphilic glycolipid-anchored dimer. Substrate specificities were studied using p-nitrophenyl esters (acetate, propionate and butyrate) and corresponding thiocholine esters as substrates. SS-AChE displayed only limited variations in Km values with charged and uncharged substrates, suggesting a reduced influence of electrostatic interactions in the enzyme substrate affinity. By contrast, DS-AChE displayed higher Km values with uncharged than with charged substrates. SS-AChE was more sensitive to eserine and di-isopropyl fluorophosphate (IC50 5 x 10(-8) and 10(-8) M respectively) than DS-AChE (5 x 10(-7) and 5 x 10(-5) M. Images Figure 2 Figure 3 Figure 4 PMID:7702560

  17. Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies.

    PubMed

    Li, Yanhong; Cao, Hongzhi; Yu, Hai; Chen, Yi; Lau, Kam; Qu, Jingyao; Thon, Vireak; Sugiarto, Go; Chen, Xi

    2011-04-01

    Aberrant expression of human sialidases has been shown to associate with various pathological conditions. Despite the effort in the sialidase inhibitor design, less attention has been paid to designing specific inhibitors against human sialidases and characterizing the substrate specificity of different sialidases regarding diverse terminal sialic acid forms and sialyl linkages. This is mainly due to the lack of sialoside probes and efficient screening methods, as well as limited access to human sialidases. A low cellular expression level of the human sialidase NEU2 hampers its functional and inhibitory studies. Here we report the successful cloning and expression of the human sialidase NEU2 in E. coli. About 11 mg of soluble active NEU2 was routinely obtained from 1 L of E. coli cell culture. Substrate specificity studies of the recombinant human NEU2 using twenty p-nitrophenol (pNP)-tagged α2-3- or α2-6-linked sialyl galactosides containing different terminal sialic acid forms including common N-acetylneuraminic acid (Neu5Ac), non-human N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn), or their C5-derivatives in a microtiter plate-based high-throughput colorimetric assay identified a unique structural feature specifically recognized by the human NEU2 but not two bacterial sialidases. The results obtained from substrate specificity studies were used to guide the design of a sialidase inhibitor that was selective against human NEU2. The selectivity of the inhibitor was revealed by the comparison of sialidase crystal structures and inhibitor docking studies.

  18. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.

    PubMed

    Mashimo, Masato; Kato, Jiro; Moss, Joel

    2014-11-01

    ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD(+)) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g., ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g., ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1(-/-) and ARH3(-/-) mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos.

  19. Dynamics Govern Specificity of a Protein-Protein Interface: Substrate Recognition by Thrombin.

    PubMed

    Fuchs, Julian E; Huber, Roland G; Waldner, Birgit J; Kahler, Ursula; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R

    2015-01-01

    Biomolecular recognition is crucial in cellular signal transduction. Signaling is mediated through molecular interactions at protein-protein interfaces. Still, specificity and promiscuity of protein-protein interfaces cannot be explained using simplistic static binding models. Our study rationalizes specificity of the prototypic protein-protein interface between thrombin and its peptide substrates relying solely on binding site dynamics derived from molecular dynamics simulations. We find conformational selection and thus dynamic contributions to be a key player in biomolecular recognition. Arising entropic contributions complement chemical intuition primarily reflecting enthalpic interaction patterns. The paradigm "dynamics govern specificity" might provide direct guidance for the identification of specific anchor points in biomolecular recognition processes and structure-based drug design.

  20. A Polysaccharide Lyase from Stenotrophomonas maltophilia with a Unique, pH-regulated Substrate Specificity*

    PubMed Central

    MacDonald, Logan C.; Berger, Bryan W.

    2014-01-01

    Polysaccharide lyases (PLs) catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. PLs also play important roles in microbial pathogenesis, participating in bacterial invasion and toxin spread into the host tissue via degradation of the host extracellular matrix, or in microbial biofilm formation often associated with enhanced drug resistance. Stenotrophomonas maltophilia is a Gram-negative bacterium that is among the emerging multidrug-resistant organisms associated with chronic lung infections as well as with cystic fibrosis patients. A putative alginate lyase (Smlt1473) from S. maltophilia was heterologously expressed in Escherichia coli, purified in a one-step fashion via affinity chromatography, and activity as well as specificity determined for a range of polysaccharides. Interestingly, Smlt1473 catalyzed the degradation of not only alginate, but poly-β-d-glucuronic acid and hyaluronic acid as well. Furthermore, the pH optimum for enzymatic activity is substrate-dependent, with optimal hyaluronic acid degradation at pH 5, poly-β-d-glucuronic acid degradation at pH 7, and alginate degradation at pH 9. Analysis of the degradation products revealed that each substrate was cleaved endolytically into oligomers comprised predominantly of even numbers of sugar groups, with lower accumulation of trimers and pentamers. Collectively, these results imply that Smlt1473 is a multifunctional PL that exhibits broad substrate specificity, but utilizes pH as a mechanism to achieve selectivity. PMID:24257754

  1. Cloning, Heterologous Expression, and Distinct Substrate Specificity of Protein Farnesyltransferase from Trypanosoma brucei*

    PubMed Central

    Buckner, Frederick S.; Yokoyama, Kohei; Nguyen, Lisa; Grewal, Anita; Erdjument-Bromage, Hediye; Tempst, Paul; Strickland, Corey L.; Xiao, Li; Van Voorhis, Wesley C.; Gelb, Michael H.

    2010-01-01

    Protein prenylation occurs in the protozoan that causes African sleeping sickness (Trypanosoma brucei), and the protein farnesyltransferase appears to be a good target for developing drugs. We have cloned the α- and β-subunits of T. brucei protein farnesyltransferase (TB-PFT) using nucleic acid probes designed from partial amino acid sequences obtained from the enzyme purified from insect stage parasites. TB-PFT is expressed in both bloodstream and insect stage parasites. Enzymatically active TB-PFT was produced by heterologous expression in Escherichia coli. Compared with mammalian protein farnesyltransferases, TB-PFT contains a number of inserts of >25 residues in both subunits that reside on the surface of the enzyme in turns linking adjacent α-helices. Substrate specificity studies with a series of 20 peptides SSCALX (where X indicates a naturally occurring amino acid) show that the recombinant enzyme behaves identically to the native enzyme and displays distinct specificity compared with mammalian protein farnesyltransferase. TB-PFT prefers Gln and Met at the X position but not Ser, Thr, or Cys, which are good substrates for mammalian protein farnesyltransferase. A structural homology model of the active site of TB-PFT provides a basis for understanding structure-activity relations among substrates and CAAX mimetic inhibitors. PMID:10749864

  2. Mutational analysis of the CitA citrate transporter from Salmonella typhimurium: altered substrate specificity.

    PubMed

    Shimamoto, T; Negishi, K; Tsuda, M; Tsuchiya, T

    1996-09-13

    The CitA citrate transporter in Salmonella typhimurium is encoded by the citA gene and consists of 434 amino acid residues that probably include 12 membrane-spanning segments [Shimamoto. T., et al. (1991) J. Biochem. 110, 22-28]. CitA mutants with altered substrate specificities were isolated by in vitro mutagenesis using nitrous acid. The mutants could grow on isocitrate as a sole carbon source which normally cannot be transported well by the CitA transporter of S. typhimurium. The mutation sites in the citA gene of the nine mutants were determined to involve single residues at seven sites (one mutation per mutant). The original amino acid residues at these sites (Arg-19, Ala-38, Glu-51, Gly-132, Ala-169, Pro-262 and Leu-271) were identified to be responsible for the altered substrate specificity. All these amino acid residues were conserved in four other homologous citrate transporters from Escherichia coli, Citrobacter amalonaticus and Klebsiella pneumoniae and are suggested to be involved in substrate recognition by the CitA transporter.

  3. Phylogenetic and Functional Substrate Specificity for Endolithic Microbial Communities in Hyper-Arid Environments.

    PubMed

    Crits-Christoph, Alexander; Robinson, Courtney K; Ma, Bing; Ravel, Jacques; Wierzchos, Jacek; Ascaso, Carmen; Artieda, Octavio; Souza-Egipsy, Virginia; Casero, M Cristina; DiRuggiero, Jocelyne

    2016-01-01

    Under extreme water deficit, endolithic (inside rock) microbial ecosystems are considered environmental refuges for life in cold and hot deserts, yet their diversity and functional adaptations remain vastly unexplored. The metagenomic analyses of the communities from two rock substrates, calcite and ignimbrite, revealed that they were dominated by Cyanobacteria, Actinobacteria, and Chloroflexi. The relative distribution of major phyla was significantly different between the two substrates and biodiversity estimates, from 16S rRNA gene sequences and from the metagenomic data, all pointed to a higher taxonomic diversity in the calcite community. While both endolithic communities showed adaptations to extreme aridity and to the rock habitat, their functional capabilities revealed significant differences. ABC transporters and pathways for osmoregulation were more diverse in the calcite chasmoendolithic community. In contrast, the ignimbrite cryptoendolithic community was enriched in pathways for secondary metabolites, such as non-ribosomal peptides (NRP) and polyketides (PK). Assemblies of the metagenome data produced population genomes for the major phyla found in both communities and revealed a greater diversity of Cyanobacteria population genomes for the calcite substrate. Draft genomes of the dominant Cyanobacteria in each community were constructed with more than 93% estimated completeness. The two annotated proteomes shared 64% amino acid identity and a significantly higher number of genes involved in iron update, and NRPS gene clusters, were found in the draft genomes from the ignimbrite. Both the community-wide and genome-specific differences may be related to higher water availability and the colonization of large fissures and cracks in the calcite in contrast to a harsh competition for colonization space and nutrient resources in the narrow pores of the ignimbrite. Together, these results indicated that the habitable architecture of both lithic substrates

  4. Phylogenetic and Functional Substrate Specificity for Endolithic Microbial Communities in Hyper-Arid Environments

    PubMed Central

    Crits-Christoph, Alexander; Robinson, Courtney K.; Ma, Bing; Ravel, Jacques; Wierzchos, Jacek; Ascaso, Carmen; Artieda, Octavio; Souza-Egipsy, Virginia; Casero, M. Cristina; DiRuggiero, Jocelyne

    2016-01-01

    Under extreme water deficit, endolithic (inside rock) microbial ecosystems are considered environmental refuges for life in cold and hot deserts, yet their diversity and functional adaptations remain vastly unexplored. The metagenomic analyses of the communities from two rock substrates, calcite and ignimbrite, revealed that they were dominated by Cyanobacteria, Actinobacteria, and Chloroflexi. The relative distribution of major phyla was significantly different between the two substrates and biodiversity estimates, from 16S rRNA gene sequences and from the metagenomic data, all pointed to a higher taxonomic diversity in the calcite community. While both endolithic communities showed adaptations to extreme aridity and to the rock habitat, their functional capabilities revealed significant differences. ABC transporters and pathways for osmoregulation were more diverse in the calcite chasmoendolithic community. In contrast, the ignimbrite cryptoendolithic community was enriched in pathways for secondary metabolites, such as non-ribosomal peptides (NRP) and polyketides (PK). Assemblies of the metagenome data produced population genomes for the major phyla found in both communities and revealed a greater diversity of Cyanobacteria population genomes for the calcite substrate. Draft genomes of the dominant Cyanobacteria in each community were constructed with more than 93% estimated completeness. The two annotated proteomes shared 64% amino acid identity and a significantly higher number of genes involved in iron update, and NRPS gene clusters, were found in the draft genomes from the ignimbrite. Both the community-wide and genome-specific differences may be related to higher water availability and the colonization of large fissures and cracks in the calcite in contrast to a harsh competition for colonization space and nutrient resources in the narrow pores of the ignimbrite. Together, these results indicated that the habitable architecture of both lithic substrates

  5. Structural basis for substrate specificity differences of horse liver alcohol dehydrogenase isozymes.

    PubMed

    Adolph, H W; Zwart, P; Meijers, R; Hubatsch, I; Kiefer, M; Lamzin, V; Cedergren-Zeppezauer, E

    2000-10-24

    A structure determination in combination with a kinetic study of the steroid converting isozyme of horse liver alcohol dehydrogenase, SS-ADH, is presented. Kinetic parameters for the substrates, 5beta-androstane-3beta,17beta-ol, 5beta-androstane-17beta-ol-3-one, ethanol, and various secondary alcohols and the corresponding ketones are compared for the SS- and EE-isozymes which differ by nine amino acid substitutions and one deletion. Differences in substrate specificity and stereoselectivity are explained on the basis of individual kinetic rate constants for the underlying ordered bi-bi mechanism. SS-ADH was crystallized in complex with 3alpha,7alpha,12alpha-trihydroxy-5beta-cholan -24-acid (cholic acid) and NAD(+), but microspectrophotometric analysis of single crystals proved it to be a mixed complex containing 60-70% NAD(+) and 30-40% NADH. The crystals belong to the space group P2(1) with cell dimensions a = 55.0 A, b = 73.2 A, c = 92.5 A, and beta = 102.5 degrees. A 98% complete data set to 1.54-A resolution was collected at 100 K using synchrotron radiation. The structure was solved by the molecular replacement method utilizing EE-ADH as the search model. The major structural difference between the isozymes is a widening of the substrate channel. The largest shifts in C(alpha) carbon positions (about 5 A) are observed in the loop region, in which a deletion of Asp115 is found in the SS isozyme. SS-ADH easily accommodates cholic acid, whereas steroid substrates of similar bulkiness would not fit into the EE-ADH substrate site. In the ternary complex with NAD(+)/NADH, we find that the carboxyl group of cholic acid ligates to the active site zinc ion, which probably contributes to the strong binding in the ternary NAD(+) complex.

  6. Structure of tomato wound-induced leucine aminopeptidase sheds light on substrate specificity.

    PubMed

    Duprez, Kevin; Scranton, Melissa A; Walling, Linda L; Fan, Li

    2014-06-01

    The acidic leucine aminopeptidase (LAP-A) from tomato is induced in response to wounding and insect feeding. Although LAP-A shows in vitro peptidase activity towards peptides and peptide analogs, it is not clear what kind of substrates LAP-A hydrolyzes in vivo. In the current study, the crystal structure of LAP-A was determined to 2.20 Å resolution. Like other LAPs in the M17 peptidase family, LAP-A is a dimer of trimers containing six monomers of bilobal structure. Each monomer contains two metal ions bridged by a water or a hydroxyl ion at the active site. Modeling of different peptides or peptide analogs in the active site of LAP-A reveals a spacious substrate-binding channel that can bind peptides of five or fewer residues with few geometric restrictions. The sequence specificity of the bound peptide is likely to be selected by the structural and chemical restrictions on the amino acid at the P1 and P1' positions because these two amino acids have to bind perfectly at the active site for hydrolysis of the first peptide bond to occur. The hexameric assembly results in the merger of the open ends of the six substrate-binding channels from the LAP-A monomers to form a spacious central cavity allowing the hexameric LAP-A enzyme to simultaneously hydrolyze six peptides containing up to six amino acids each. The hexameric LAP-A enzyme may also hydrolyze long peptides or proteins if only one such substrate is bound to the hexamer because the substrate can extend through the central cavity and the two major solvent channels between the two LAP-A trimers.

  7. Aurora-A site specificity: a study with synthetic peptide substrates

    PubMed Central

    2005-01-01

    AurA (Aurora-A) is a ubiquitous protein kinase regulating entry into mitosis and shown to promote transformation upon overexpression. In order to gain information on the structural features determining its substrate specificity, we assayed human recombinant AurA on a variety of phosphoacceptor peptide substrates including a series of properly modified derivatives of the Kemptide (ALRRASLGAA). The data presented here show that AurA is a basophilic Ser/Thr protein kinase recognizing the consensus R/K/N-R-X-S/T-B, where B denotes any hydrophobic residue with the exception of Pro. We show that the presence of a Pro at position n+1 fully abrogates phosphorylation of the peptide substrate. Although the consensus for AurA is reminiscent of that of PKA (protein kinase A), it significantly differs from the latter for a much more stringent dependence on the hydrophobic residue at n+1 and for its tolerance of residues other than Arg at position n−3. Based on the finding that the peptide ALKRASLGAA is not a substrate of PKA while still providing a sensitive assay of AurA activity, we suggest that this peptide may be used for differential screening of the two kinases. We have further validated the AurA consensus by generating a peptide (APSSRRTT288LCGT) that comprises the main AurA autophosphorylation site and by showing that AurA phosphorylated this peptide exclusively at one site fulfilling its consensus (Thr288). Moreover, we show that AurA could autophosphorylate at Thr288 through an intermolecular mechanism of reaction and that, in vivo, PKA was not involved with Thr288 phosphorylation. The evidence obtained in the present study provides a rational tool for predicting AurA sites in potential substrates of physiological significance. PMID:16083426

  8. Substrate Specificity of the Citrate Transporter CitP of Lactococcus lactis

    PubMed Central

    Pudlik, Agata M.

    2012-01-01

    The citrate transporter CitP of lactic acid bacteria catalyzes electrogenic precursor-product exchange of citrate versus l-lactate during citrate-glucose cometabolism. In the absence of sugar, l-lactate is replaced by the metabolic intermediates/end products pyruvate, α-acetolactate, and acetate. In this study, the binding and translocation properties of CitP were analyzed systematically for a wide variety of mono- and dicarboxylates of the form X-CR2-COO−, where X represents OH (2-hydroxy acid), O (2-keto acid), or H (acid) and R groups differ in size, hydrophobicity, and composition. It follows that CitP is a very promiscuous carboxylate transporter. A carboxylate group is both essential and sufficient for recognition by the transporter. A C-2 atom is not essential, formate is a substrate, and C-2 may be part of a ring structure, as in benzoate. The R group may be as bulky as an indole ring structure. For all monocarboxylates of the form X-CHR-COO−, the hydroxy (X = OH) analogs were the preferred substrates. The preference for keto (X = O) or acid (X = H) analogs was dependent on the bulkiness of the R group, such that the acid was preferred for small R groups and the 2-ketoacid was preferred for more bulky R groups. The C4 to C6 dicarboxylates succinate, glutarate, and adipate were also substrates of CitP. The broad substrate specificity is discussed in the context of a model of the binding site of CitP. Many of the substrates of CitP are intermediates or products of amino acid metabolism, suggesting that CitP may have a broader physiological function than its role in citrate fermentation alone. PMID:22563050

  9. No significant difference in antigenicity or tissue transglutaminase substrate specificity of Irish and US wheat gliadins.

    PubMed

    Keaveny, A P; Offner, G D; Bootle, E; Nunes, D P

    2000-04-01

    The prevalence of clinical celiac disease has been shown to vary both across time and between genetically similar populations. Differences in wheat antigenicity and transglutaminase substrate properties are a possible explanation for these differences. This study assessed the antigenicity and transglutaminase substrate specificities of gliadins from regions of high and low celiac disease prevalence. Gliadin was extracted from three commercial US wheat sources and two Irish sources. SDS-PAGE and western blotting revealed minor, but significant variations in the gliadin extracts. However, ELISA showed no difference in the antigenicity of these gliadins. Transglutaminase pretreatment of gliadin resulted in no significant change in gliadin antigenicity and kinetic studies showed that the Kms of the various gliadins were very similar. Purified IgA and IgG had no effect on transglutaminase activity. In summary, minor variations in wheat gliadins are unlikely to explain the observed differences in disease expression across genetically similar populations.

  10. Using Bacteria to Determine Protein Kinase Specificity and Predict Target Substrates

    PubMed Central

    Lubner, Joshua M.; Church, George M.; Husson, Robert N.; Schwartz, Daniel

    2012-01-01

    The identification of protein kinase targets remains a significant bottleneck for our understanding of signal transduction in normal and diseased cellular states. Kinases recognize their substrates in part through sequence motifs on substrate proteins, which, to date, have most effectively been elucidated using combinatorial peptide library approaches. Here, we present and demonstrate the ProPeL method for easy and accurate discovery of kinase specificity motifs through the use of native bacterial proteomes that serve as in vivo libraries for thousands of simultaneous phosphorylation reactions. Using recombinant kinases expressed in E. coli followed by mass spectrometry, the approach accurately recapitulated the well-established motif preferences of human basophilic (Protein Kinase A) and acidophilic (Casein Kinase II) kinases. These motifs, derived for PKA and CK II using only bacterial sequence data, were then further validated by utilizing them in conjunction with the scan-x software program to computationally predict known human phosphorylation sites with high confidence. PMID:23300758

  11. EGF-receptor specificity for phosphotyrosine-primed substrates provides signal integration with Src.

    PubMed

    Begley, Michael J; Yun, Cai-hong; Gewinner, Christina A; Asara, John M; Johnson, Jared L; Coyle, Anthony J; Eck, Michael J; Apostolou, Irina; Cantley, Lewis C

    2015-12-01

    Aberrant activation of the EGF receptor (EGFR) contributes to many human cancers by activating the Ras-MAPK pathway and other pathways. EGFR signaling is augmented by Src-family kinases, but the mechanism is poorly understood. Here, we show that human EGFR preferentially phosphorylates peptide substrates that are primed by a prior phosphorylation. Using peptides based on the sequence of the adaptor protein Shc1, we show that Src mediates the priming phosphorylation, thus promoting subsequent phosphorylation by EGFR. Importantly, the doubly phosphorylated Shc1 peptide binds more tightly than singly phosphorylated peptide to the Ras activator Grb2; this binding is a key step in activating the Ras-MAPK pathway. Finally, a crystal structure of EGFR in complex with a primed Shc1 peptide reveals the structural basis for EGFR substrate specificity. These results provide a molecular explanation for the integration of Src and EGFR signaling with downstream effectors such as Ras.

  12. Evolution of substrate specificity in a retained enzyme driven by gene loss.

    PubMed

    Juárez-Vázquez, Ana Lilia; Edirisinghe, Janaka E; Verduzco-Castro, Ernesto A; Michalska, Karolina; Wu, Chenggang; Noda-García, Lianet; Babnigg, Gyorgy; Endres, Michael; Medina-Ruíz, Sofía; Santoyo-Flores, Julián; Carrillo-Tripp, Mauricio; Ton-That, Hung; Joachimiak, Andrzej; Henry, Christopher S; Barona-Gómez, Francisco

    2017-03-31

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Our results show how gene loss can drive the evolution of substrate specificity from retained enzymes.

  13. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    SciTech Connect

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E.

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  14. Molecular mechanism of substrate specificity in the bacterial neutral amino acid transporter LeuT.

    PubMed

    Noskov, Sergei Y

    2008-12-01

    The recently published X-ray structure of LeuT, a Na(+)/Cl(-)-dependent neurotransmitter transporter, has provided fresh impetus to efforts directed at understanding the molecular principles governing specific neurotransmitter transport. The combination of the LeuT crystal structure with the results of molecular simulations enables the functional data on specific binding and transport to be related to molecular structure. All-atom FEP and molecular dynamics (MD) simulations of LeuT embedded in an explicit membrane were performed alongside a decomposition analysis to dissect the molecular determinants of the substrate specificity of LeuT. It was found that the ligand must be in a zwitterionic (ZW) form to bind tightly to the transporter. The theoretical results on the absolute binding-free energies for leucine, alanine, and glycine show that alanine can be a potent substrate for LeuT, although leucine is preferred, which is consistent with the recent experimental data (Singh et al., Nature 2007;448:952-956). Furthermore, LeuT displays robust specificity for leucine over glycine. Interestingly, the ability of LeuT to discriminate between substrates relies on the dynamics of residues that form its binding pocket (e.g., F253 and Q250) and the charged side chains (R30-D404) from a second coordination shell. The water-mediated R30-D404 salt bridge is thought to be part of the extracellular (EC) gate of LeuT. The introduction of a polar ligand such as glycine to the water-depleted binding pocket of LeuT gives rise to structural rearrangements of the R30-D404-Q250 hydrogen-bonding network and leads to increased hydration of the binding pocket. Conformational changes associated with the broken hydrogen bond between Q250 and R30 are shown to be important for tight and selective ligand binding to LeuT.

  15. Substrate specificity and the effect of calcium on Trypanosoma brucei metacaspase 2

    PubMed Central

    Machado, Maurício F.M.; Marcondes, Marcelo F.; Juliano, Maria A.; McLuskey, Karen; Mottram, Jeremy C.; Moss, Catherine X.; Juliano, Luiz; Oliveira, Vitor

    2013-01-01

    Metacaspases are cysteine peptidases found only in yeast, plants and lower eukaryotes, including the protozoa. To investigate the extended substrate specificity and effects of Ca2+ on the activation of these enzymes, detailed kinetic, biochemical and structural analyses were carried out on metacaspase 2 from Trypanosoma brucei (TbMCA2). These results reveal that TbMCA2 has is an unambiguous preference for basic amino acids at the P1 position of peptide substrates and that this is most likely a result of hydrogen bonding from the P1 residue to Asp95 and Asp211 in TbMCA2. In addition, TbMCA2 also has a preference for charged residues at the P2 and P3 positions and for small residues at the prime-side of a peptide substrate. Studies into the effects of Ca2+ on the enzyme revealed the presence of two calcium-binding sites and a reversible structural modification of the enzyme upon Ca2+-binding. In addition, the concentration of Ca2+ used for activation of TbMCA2 was found to produce a differential effect on the activity of TbMCA2, but only when a series of peptides that differed in P2 were examined, suggesting that Ca2+ activation of TbMCA2 has a structural effect on the enzyme in the vicinity of the S2 binding pocket. Collectively, these data give new insights into the substrate specificity, and Ca2+ activation of TbMCA2. This provides important functional details and leads to a better understanding of metacaspases, which are known to play an important role in trypanosomes, and make attractive drug targets due to their absence in humans. PMID:23506317

  16. Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae.

    PubMed

    Romagnoli, Gabriele; Luttik, Marijke A H; Kötter, Peter; Pronk, Jack T; Daran, Jean-Marc

    2012-11-01

    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols.

  17. Substrate specificity and the effect of calcium on Trypanosoma brucei metacaspase 2.

    PubMed

    Machado, Maurício F M; Marcondes, Marcelo F; Juliano, Maria A; McLuskey, Karen; Mottram, Jeremy C; Moss, Catherine X; Juliano, Luiz; Oliveira, Vitor

    2013-06-01

    Metacaspases are cysteine peptidases found only in yeast, plants and lower eukaryotes, including the protozoa. To investigate the extended substrate specificity and effects of Ca(2+) on the activation of these enzymes, detailed kinetic, biochemical and structural analyses were carried out on metacaspase 2 from Trypanosoma brucei (TbMCA2). These results reveal that TbMCA2 has an unambiguous preference for basic amino acids at the P1 position of peptide substrates and that this is most probably a result of hydrogen bonding from the P1 residue to Asp95 and Asp211 in TbMCA2. In addition, TbMCA2 also has a preference for charged residues at the P2 and P3 positions and for small residues at the prime side of a peptide substrate. Studies into the effects of Ca(2+) on the enzyme revealed the presence of two Ca(2+) binding sites and a reversible structural modification of the enzyme upon Ca(2+) binding. In addition, the concentration of Ca(2+) used for activation of TbMCA2 was found to produce a differential effect on the activity of TbMCA2, but only when a series of peptides that differed in P2 were examined, suggesting that Ca(2+) activation of TbMCA2 has a structural effect on the enzyme in the vicinity of the S2 binding pocket. Collectively, these data give new insights into the substrate specificity and Ca(2+) activation of TbMCA2. This provides important functional details and leads to a better understanding of metacaspases, which are known to play an important role in trypanosomes and make attractive drug targets due to their absence in humans.

  18. Molecular dynamics investigations of BioH protein substrate specificity for biotin synthesis.

    PubMed

    Xue, Qiao; Cui, Ying-Lu; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-05-01

    BioH, an enzyme of biotin synthesis, plays an important role in fatty acid synthesis which assembles the pimelate moiety. Pimeloyl-acyl carrier protein (ACP) methyl ester, which is long known to be a biotin precursor, is the physiological substrate of BioH. Azelayl methyl ester, which has a longer chain than pimeloyl methyl ester, conjugated to ACP is also indeed accepted by BioH with very low rate of hydrolysis. To date, the substrate specificity for BioH and the molecular origin for the experimentally observed rate changes of hydrolysis by the chain elongation have remained elusive. To this end, we have investigated chain elongation effects on the structures by using the fully atomistic molecular dynamics simulations combined with binding free energy calculations. The results indicate that the substrate specificity is determined by BioH together with ACP. The added two methylenes would increase the structural flexibility by protein motions at the interface of ACP and BioH, instead of making steric clashes with the side chains of the BioH hydrophobic cavity. On the other hand, the slower hydrolysis of azelayl substrate is suggested to be associated with the loose of contacts between BioH and ACP, and with the lost electrostatic interactions of two ionic/hydrogen bonding networks at the interface of the two proteins. The present study provides important insights into the structure-function relationships of the complex of BioH with pimeloyl-ACP methyl ester, which could contribute to further understanding about the mechanism of the biotin synthetic pathway, including the catalytic role of BioH.

  19. Substrate Specificity of Thiamine Pyrophosphate-Dependent 2-Oxo-Acid Decarboxylases in Saccharomyces cerevisiae

    PubMed Central

    Romagnoli, Gabriele; Luttik, Marijke A. H.; Kötter, Peter; Pronk, Jack T.

    2012-01-01

    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols. PMID:22904058

  20. Iron-Sulfur Cluster Engineering Provides Insight into the Evolution of Substrate Specificity among Sulfonucleotide Reductases

    PubMed Central

    Bhave, Devayani P.; Hong, Jiyoung A.; Keller, Rebecca L.; Krebs, Carsten; Carroll, Kate S.

    2011-01-01

    Assimilatory sulfate reduction supplies prototrophic organisms with reduced sulfur that is required for the biosynthesis of all sulfur-containing metabolites, including cysteine and methionine. The reduction of sulfate requires its activation via an ATP-dependent activation to form adenosine-5′-phosphosulfate (APS). Depending on the species, APS can be reduced directly to sulfite by APS reductase (APR) or undergo a second phosphorylation to yield 3′-phosphoadenosine-5′-phosphosulfate (PAPS), the substrate for PAPS reductase (PAPR). These essential enzymes have no human homolog, rendering them attractive targets for the development of novel antibacterial drugs. APR and PAPR share sequence and structure homology as well as a common catalytic mechanism, but the enzymes are distinguished by two features, namely, the amino acid sequence of the phosphate-binding loop (P-loop) and an iron-sulfur cofactor in APRs. Based on the crystal structures of APR and PAPR, two P-loop residues are proposed to determine substrate specificity; however, this hypothesis has not been tested. In contrast to this prevailing view, we report here that the P-loop motif has a modest effect on substrate discrimination. Instead, by means of metalloprotein engineering, spectroscopic and kinetic analyses, we demonstrate that the iron-sulfur cluster cofactor enhances APS reduction by nearly 1000-fold, thereby playing a pivotal role in substrate specificity and catalysis. These findings offer new insights into the evolution of this enzyme family, and extend the known functions of protein-bound iron-sulfur clusters. PMID:22023093

  1. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    NASA Astrophysics Data System (ADS)

    Nakanishi, Jun; Nakayama, Hidekazu; Yamaguchi, Kazuo; Garcia, Andres J.; Horiike, Yasuhiro

    2011-08-01

    The development of methods for the off-on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs) of three disulfide compounds containing (i) a photocleavable poly(ethylene glycol) (PEG), (ii) nitrilotriacetic acid (NTA) and (iii) hepta(ethylene glycol) (EG7). Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag) sequences in its Ni2+-ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG7 underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII7-10) to the irradiated regions. In contrast, when bovine serum albumin—a major serum protein—was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII7-10 was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  2. Changing the substrate specificity of penicillin G acylase from Kluyvera citrophila through selective pressure.

    PubMed Central

    Roa, A; Garcia, J L; Salto, F; Cortes, E

    1994-01-01

    Escherichia coli (muT, mutD, Leu-) cells transformed with plasmid pYKD59 harbouring the pac gene encoding penicillin acylase (PA) from Kluyvera citrophila ATCC 21285 were exposed to environmental conditions that made expression of this enzyme essential for growth. Under these conditions, spontaneous mutants were isolated that used adipyl-L-leucine as the sole source of L-leucine. DNA sequencing of the mutant pac genes identified a transversion mutation of thymine to guanine at position 1163. This mutation was located in the beta-subunit of the enzyme and resulted in conversion of Phe-360 to valine. The assignment of this mutation to the shift in substrate specificity was further confirmed by site-directed mutagenesis. Secondary-structure prediction of the region surrounding Phe-360 suggests that this mutation should not produce any significant structural change. The purified mutant acylase was able to hydrolyse adipyl-, glutaryl-, valeryl-, caproyl-, heptanoyl- and phenoxyacetyl-L-leucine at pH 5 with greater efficiency than the wild-type enzyme. However, the mutant enzyme was not able to hydrolyse glutaryl-7-aminocephalosporanic acid and had lost 90% and 50% of activity on penicillin G and phenylacetyl-L-leucine respectively. Nevertheless, mutant PA retained its original activity on 6-nitro-3-phenylacetamidobenzoate and p-nitrophenylphenylacetate, suggesting that the binding specificity of PA by the acyl and amine moieties of the substrate are not independent phenomena. The small differences observed between the c.d. spectra of the mutant enzyme recorded at pH 5 and 8 suggest the existence of different conformational states at the two pH values, but these differences were indistinguishable from those observed in the native enzyme and cannot be correlated with the shift in substrate specificity. Our results demonstrate that it is possible to change the specificity of PA by laboratory evolution and use it to identify the amino acids involved in substrate recognition

  3. Dynamics Govern Specificity of a Protein-Protein Interface: Substrate Recognition by Thrombin

    PubMed Central

    Fuchs, Julian E.; Huber, Roland G.; Waldner, Birgit J.; Kahler, Ursula; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R.

    2015-01-01

    Biomolecular recognition is crucial in cellular signal transduction. Signaling is mediated through molecular interactions at protein-protein interfaces. Still, specificity and promiscuity of protein-protein interfaces cannot be explained using simplistic static binding models. Our study rationalizes specificity of the prototypic protein-protein interface between thrombin and its peptide substrates relying solely on binding site dynamics derived from molecular dynamics simulations. We find conformational selection and thus dynamic contributions to be a key player in biomolecular recognition. Arising entropic contributions complement chemical intuition primarily reflecting enthalpic interaction patterns. The paradigm “dynamics govern specificity” might provide direct guidance for the identification of specific anchor points in biomolecular recognition processes and structure-based drug design. PMID:26496636

  4. Alteration of substrate specificity of rat neurolysin from matrix metalloproteinase-2/9-type to -3-type specificity by comprehensive mutation.

    PubMed

    Kadonosono, Tetsuya; Kato-Murai, Michiko; Ueda, Mitsuyoshi

    2008-08-01

    The substrate specificity of rat brain neurolysin was rapidly modified by semirational mutagenesis coupled with a yeast molecular display system. Neurolysin mainly recognizes substrates with sequential six residues close to the scissile bond in polypeptides, cleaving a peptide bond in the center position of the six residues. To alter the recognition of the P2' amino acid of substrates by neurolysin, six residues of neurolysin, Asp467, Arg470, Glu510, Tyr606, Tyr610 and Tyr611, which might be involved in the formation of the neurolysin S2' subsite, were individually and comprehensively substituted. The protein libraries of mutant neurolysins comprising 120 species were displayed on the yeast cell surface and screening was carried out using two fluorescence-quenching peptides, the matrix metalloproteinase-2/9- (MMPs-2/9-) and MMP-3-specific substrates, which consisted of similar amino acids, except for alanine (for MMPs-2/9) or glutamic acid (for MMP-3) at the P2' amino acid position. Among mutant neurolysins, the Y610L mutant neurolysin exhibited a marked change in substrate specificity. Steady-state kinetic analysis of the purified Y610L mutant neurolysin revealed that the binding efficiency toward the MMP-3-specific substrate was about 3-fold higher than that toward the MMP-2/9-specific substrate. These results indicate that Tyr610 of neurolysin is the important residue to recognize the P2' amino acid of substrates.

  5. Processing of metacaspase 2 from Trypanosoma brucei (TbMCA2) broadens its substrate specificity.

    PubMed

    Gilio, Joyce M; Marcondes, Marcelo F; Ferrari, Débora; Juliano, Maria A; Juliano, Luiz; Oliveira, Vitor; Machado, Maurício F M

    2017-04-01

    Metacaspases are members of the cysteine peptidase family and may be implicated in programmed cell death in plants and lower eukaryotes. These proteases exhibit calcium-dependent activity and specificity for arginine residues at P1. In contrast to caspases, they do not require processing or dimerization for activity. Indeed, unprocessed metacaspase-2 of Trypanosoma brucei (TbMCA2) is active; however, it has been shown that cleavages at Lys(55) and Lys(268) increase TbMCA2 hydrolytic activity on synthetic substrates. The processed TbMCA2 comprises 3 polypeptide chains that remain attached by non-covalent bonds. Replacement of Lys(55) and Lys(268) with Gly via site-directed mutagenesis results in non-processed but enzymatically active mutant, TbMCA2 K55/268G. To investigate the importance of this processing for the activity and specificity of TbMCA2, we performed activity assays comparing the non-processed mutant (TbMCA2 K55/268G) with the processed TbMCA2 form. Significant differences between TbMCA2 WT (processed form) and TbMCA2 K55/268G (non-processed form) were observed. Specifically, we verified that although non-processed TbMCA2 is active when assayed with small synthetic substrates, the TbMCA2 form does not exhibit hydrolytic activity on large substrates such as azocasein, while processed TbMCA2 is able to readily digest this protein. Such differences can be relevant for understanding the physiological regulation and function of TbMCA2.

  6. Substrate Specificity of Purified Recombinant Chicken β-Carotene 9',10'-Oxygenase (BCO2).

    PubMed

    Dela Seña, Carlo; Sun, Jian; Narayanasamy, Sureshbabu; Riedl, Kenneth M; Yuan, Yan; Curley, Robert W; Schwartz, Steven J; Harrison, Earl H

    2016-07-08

    Provitamin A carotenoids are oxidatively cleaved by β-carotene 15,15'-dioxygenase (BCO1) at the central 15-15' double bond to form retinal (vitamin A aldehyde). Another carotenoid oxygenase, β-carotene 9',10'-oxygenase (BCO2) catalyzes the oxidative cleavage of carotenoids at the 9'-10' bond to yield an ionone and an apo-10'-carotenoid. Previously published substrate specificity studies of BCO2 were conducted using crude lysates from bacteria or insect cells expressing recombinant BCO2. Our attempts to obtain active recombinant human BCO2 expressed in Escherichia coli were unsuccessful. We have expressed recombinant chicken BCO2 in the strain E. coli BL21-Gold (DE3) and purified the enzyme by cobalt ion affinity chromatography. Like BCO1, purified recombinant chicken BCO2 catalyzes the oxidative cleavage of the provitamin A carotenoids β-carotene, α-carotene, and β-cryptoxanthin. Its catalytic activity with β-carotene as substrate is at least 10-fold lower than that of BCO1. In further contrast to BCO1, purified recombinant chicken BCO2 also catalyzes the oxidative cleavage of 9-cis-β-carotene and the non-provitamin A carotenoids zeaxanthin and lutein, and is inactive with all-trans-lycopene and β-apocarotenoids. Apo-10'-carotenoids were detected as enzymatic products by HPLC, and the identities were confirmed by LC-MS. Small amounts of 3-hydroxy-β-apo-8'-carotenal were also consistently detected in BCO2-β-cryptoxanthin reaction mixtures. With the exception of this activity with β-cryptoxanthin, BCO2 cleaves specifically at the 9'-10' bond to produce apo-10'-carotenoids. BCO2 has been shown to function in preventing the excessive accumulation of carotenoids, and its broad substrate specificity is consistent with this.

  7. Baculovirus envelope protein ODV-E66 is a novel chondroitinase with distinct substrate specificity.

    PubMed

    Sugiura, Nobuo; Setoyama, Yuka; Chiba, Mie; Kimata, Koji; Watanabe, Hideto

    2011-08-19

    Chondroitin sulfate is a linear polysaccharide of alternating D-glucuronic acid and N-acetyl-D-galactosamine residues with sulfate groups at various positions of the sugars. It interacts with and regulates cytokine and growth factor signal transduction, thus influencing development, organ morphogenesis, inflammation, and infection. We found chondroitinase activity in medium conditioned by baculovirus-infected insect cells and identified a novel chondroitinase. Sequence analysis revealed that the enzyme was a truncated form of occlusion-derived virus envelope protein 66 (ODV-E66) of Autographa californica nucleopolyhedrovirus. The enzyme was a novel chondroitin lyase with distinct substrate specificity. The enzyme was active over a wide range of pH (pH 4-9) and temperature (30-60 °C) and was unaffected by divalent metal ions. The ODV-E66 truncated protein digested chondroitin most efficiently followed by chondroitin 6-sulfate. It degraded hyaluronan to a minimal extent but did not degrade dermatan sulfate, heparin, and N-acetylheparosan. Further analysis using chemo-enzymatically synthesized substrates revealed that the enzyme specifically acted on glucuronate residues in non-sulfated and chondroitin 6-sulfate structures but not in chondroitin 4-sulfate structures. These results suggest that this chondroitinase is useful for detailed structural and compositional analysis of chondroitin sulfate, preparation of specific chondroitin oligosaccharides, and study of baculovirus infection mechanism.

  8. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    SciTech Connect

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E.

    2012-10-08

    Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2{prime}-deoxy)nucleosides, generating the corresponding free base and (2{prime}-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2-1.4 {angstrom}). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  9. Gamma-Glutamyl Compounds: Substrate Specificity of Gamma-Glutamyl Transpeptidase Enzymes

    PubMed Central

    Wickham, Stephanie; West, Matthew B.; Cook, Paul F.; Hanigan, Marie H.

    2011-01-01

    Gamma-glutamyl compounds include antioxidants, inflammatory molecules, drug metabolites and neuroactive compounds. Two cell surface enzymes have been identified that metabolize gamma-glutamyl compounds, gamma-glutamyl transpeptidase (GGT1) and gamma-glutamyl leukotrienase (GGT5). There is controversy in the literature regarding the substrate specificity of these enzymes. To address this issue, we have developed a method for comprehensive kinetics analysis of compounds as substrates for GGT enzymes. Our assay is sensitive, quantitative and is conducted at physiologic pH. We evaluated a series of gamma-glutamyl compounds as substrates for human GGT1 and human GGT5. The Kms for reduced glutathione were 11μM for both GGT1 and GGT5. However, the Km for oxidized glutathione was 9μM for GGT1 and 43μM for GGT5. Our data show that the Kms for leukotriene C4 are equivalent for GGT1 and GGT5 at 10.8μM and 10.2μM, respectively. This assay was also used to evaluate serine-borate, a well-known inhibitor of GGT1, which was 8-fold more potent in inhibiting GGT1 than inhibiting GGT5. These data provide essential information regarding the target enzymes for developing treatments for inflammatory diseases such as asthma and cardiovascular disease in humans. This assay is invaluable for studies of oxidative stress, drug metabolism and other pathways that involve gamma-glutamyl compounds. PMID:21447318

  10. A Chaperonin Subunit with Unique Structures Is Essential for Folding of a Specific Substrate

    PubMed Central

    Peng, Lianwei; Fukao, Yoichiro; Myouga, Fumiyoshi; Motohashi, Reiko; Shinozaki, Kazuo; Shikanai, Toshiharu

    2011-01-01

    Type I chaperonins are large, double-ring complexes present in bacteria (GroEL), mitochondria (Hsp60), and chloroplasts (Cpn60), which are involved in mediating the folding of newly synthesized, translocated, or stress-denatured proteins. In Escherichia coli, GroEL comprises 14 identical subunits and has been exquisitely optimized to fold its broad range of substrates. However, multiple Cpn60 subunits with different expression profiles have evolved in chloroplasts. Here, we show that, in Arabidopsis thaliana, the minor subunit Cpn60β4 forms a heterooligomeric Cpn60 complex with Cpn60α1 and Cpn60β1–β3 and is specifically required for the folding of NdhH, a subunit of the chloroplast NADH dehydrogenase-like complex (NDH). Other Cpn60β subunits cannot complement the function of Cpn60β4. Furthermore, the unique C-terminus of Cpn60β4 is required for the full activity of the unique Cpn60 complex containing Cpn60β4 for folding of NdhH. Our findings suggest that this unusual kind of subunit enables the Cpn60 complex to assist the folding of some particular substrates, whereas other dominant Cpn60 subunits maintain a housekeeping chaperonin function by facilitating the folding of other obligate substrates. PMID:21483722

  11. Novel {alpha}-glucosidase from human gut microbiome : substrate specificities and their switch.

    SciTech Connect

    Tan, K.; Tesar, C.; Wilton, R.; Keigher, L.; Babnigg, G.; Joachimiak, A.; Biosciences Division

    2010-01-01

    The human intestine harbors a large number of microbes forming a complex microbial community that greatly affects the physiology and pathology of the host. In the human gut microbiome, the enrichment in certain protein gene families appears to be widespread. They include enzymes involved in carbohydrate metabolism such as glucoside hydrolases of dietary polysaccharides and glycoconjugates. We report the crystal structures (wild type, 2 mutants, and a mutant/substrate complex) and the enzymatic activity of a recombinant {alpha}-glucosidase from human gut bacterium Ruminococcus obeum. The first ever protein structures from this bacterium reveal a structural homologue to human intestinal maltase-glucoamylase with a highly conserved catalytic domain and reduced auxiliary domains. The {alpha}-glucosidase, a member of GH31 family, shows substrate preference for {alpha}(1-6) over {alpha}(1-4) glycosidic linkages and produces glucose from isomaltose as well as maltose. The preference can be switched by a single mutation at its active site, suggestive of widespread adaptation to utilization of a variety of polysaccharides by intestinal micro-organisms as energy resources. Novel {alpha}-glucosidase from human gut microbiome: substrate specificities and their switch.

  12. Peptide substrate specificities and protein cleavage sites of human endometase/matrilysin-2/matrix metalloproteinase-26.

    PubMed

    Park, Hyun I; Turk, Benjamin E; Gerkema, Ferry E; Cantley, Lewis C; Sang, Qing-Xiang Amy

    2002-09-20

    Human endometase/matrilysin-2/matrix metalloproteinase-26 (MMP-26) is a novel epithelial and cancer-specific metalloproteinase. Peptide libraries were used to profile the substrate specificity of MMP-26 from the P4-P4' sites. The optimal cleavage motifs for MMP-26 were Lys-Pro-Ile/Leu-Ser(P1)-Leu/Met(P1')-Ile/Thr-Ser/Ala-Ser. The strongest preference was observed at the P1' and P2 sites where hydrophobic residues were favored. Proline was preferred at P3, and Serine was preferred at P1. The overall specificity was similar to that of other MMPs with the exception that more flexibility was observed at P1, P2', and P3'. Accordingly, synthetic inhibitors of gelatinases and collagenases inhibited MMP-26 with similar efficacy. A pair of stereoisomers had only a 40-fold difference in K(i)(app) values against MMP-26 compared with a 250-fold difference against neutrophil collagenase, indicating that MMP-26 is less stereoselective for its inhibitors. MMP-26 autodigested itself during the folding process. Two of the major autolytic sites were Leu(49)-Thr(50) and Ala(75)-Leu(76), which still left the cysteine switch sequence (PHC(82)GVPD) intact. This suggests that Cys(82) may not play a role in the latency of the zymogen. Interestingly, inhibitor titration studies revealed that only approximately 5% of the total MMP-26 molecules was catalytically active, indicating that the thiol groups of Cys(82) in the active molecules may be dissociated or removed from the active site zinc ions. MMP-26 cleaved Phe(352)-Leu(353) and Pro(357)-Met(358) in the reactive loop of alpha(1)-proteinase inhibitor and His(140)-Val(141) in insulin-like growth factor-binding protein-1, probably rendering these substrates inactive. Among the fluorescent peptide substrates analyzed, Mca-Pro-Leu-Ala-Nva-Dpa-Ala-Arg-NH(2) displayed the highest specificity constant (30,000/molar second) with MMP-26. This report proposes a working model for the future studies of pro-MMP-26 activation, the design of inhibitors

  13. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    PubMed

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  14. Substrate and product specificities of cis-type undecaprenyl pyrophosphate synthase.

    PubMed

    Chen, Annie P-C; Chang, Sing-Yang; Lin, Yu-Chung; Sun, Yang-Sheng; Chen, Chao-Tsen; Wang, Andrew H-J; Liang, Po-Huang

    2005-02-15

    UPPS (undecaprenyl pyrophosphate synthase) catalyses consecutive condensation reactions of FPP (farnesyl pyrophosphate) with eight isopentenyl pyrophosphates to generate C55 UPP, which serves as a lipid carrier for bacterial peptidoglycan biosynthesis. We reported the co-crystal structure of Escherichia coli UPPS in complex with FPP. Its phosphate head-group is bound to positively charged arginine residues and the hydrocarbon moiety interacts with hydrophobic amino acids including L85, L88 and F89, located on the alpha3 helix of UPPS. We now show that the monophosphate analogue of FPP binds UPPS with an eight times lower affinity (K(d)=4.4 microM) compared with the pyrophosphate analogue, a result of a larger dissociation rate constant (k(off)=192 s(-1)). Farnesol (1 mM) lacking the pyrophosphate does not inhibit the UPPS reaction. GGPP (geranylgeranyl pyrophosphate) containing a larger C20 hydrocarbon tail is an equally good substrate (K(m)=0.3 microM and kcat=2.1 s(-1)) compared with FPP. The shorter C10 GPP (geranyl pyrophosphate) displays a 90-fold larger K(m) value (36.0+/-0.1 microM) but similar kcat value (1.7+/-0.1 s(-1)) compared with FPP. Replacement of L85, L88 or F89 with Ala increases FPP and GGPP K(m) values by the same amount, indicating that these amino acids are important for substrate binding, but do not determine substrate specificity. With GGPP as a substrate, UPPS still catalyses eight isopentenyl pyrophosphate condensation reactions to synthesize C60 product. Computer modelling suggests that the upper portion of the active-site tunnel, where cis double bonds of the product reside, may be critical for determining the final product chain length.

  15. Altered substrate specificity of the Pterygoplichthys sp. (Loricariidae) CYP1A enzyme.

    PubMed

    Parente, Thiago E M; Urban, Philippe; Pompon, Denis; Rebelo, Mauro F

    2014-09-01

    Ethoxyresorufin is a classical substrate for vertebrate CYP1A enzymes. In Pterygoplichthys sp. (Loricariidae) this enzyme possesses 48 amino acids substitutions compared to CYP1A sequences from other vertebrate species. These substitutions or a certain subset substitution are responsible for the non-detection of the EROD reaction in this species liver microsomes. In the present study, we investigated the catalytic activity of Pterygoplichthys sp. CYP1A toward 15 potential substrates in order to understand the substrate preferences of this modified CYP1A. The fish gene was expressed in yeast and the accumulation of the protein was confirmed by both the characteristic P450-CO absorbance spectra and by detection with monoclonal antibodies. Catalytic activities were assayed with yeast microsomes and four resorufin ethers, six coumarin derivates, three flavones, resveratrol and ethoxyfluoresceinethylester. Results demonstrated that the initial velocity pattern of this enzyme for the resorufin derivatives is different from the one described for most vertebrate CYP1As. The initial velocity for the activity with the coumarin derivatives is several orders of magnitude higher than with the resorufins, i.e. the turnover number (kcat) for ECOD is 400× higher than for EROD. Nonetheless, the specificity constant (kcat/km) for EROD is only slightly higher than for ECOD. EFEE is degraded at a rate comparable to the resorufins. Pterygoplichthys sp. CYP1A also degrades 7-methoxyflavone and β-naphthoflavone but not resveratrol and chrysin. These results indicate a divergent substrate preference for Pterygoplichthys sp. CYP1A, which may be involved in the adaptation of Loricariidae fish to their particular environment and feeding habits.

  16. Transglucosylation with 6'-chloro-6'-deoxysucrose and immobilized isomaltulose-producing microorganisms using 2,2-dimethyl-1,3-dioxolane-4-methanol and its related compounds as acceptors. Steric and chemical requirement of the glucosyl acceptor.

    PubMed

    Kakinuma, H; Tsuchiya, Y; Tanaka, M; Horito, S; Hashimoto, H

    1994-11-15

    Enantioselective and diastereoselective alpha-D-glucosylation of 2,3-O-isopropylidene-erythritol was observed in transglucosylation with a synthetic donor using three kinds of immobilized isomaltulose-producing microorganisms. Several related compounds, including an 2,3-O-isopropylidenated aldotetrose dimethyl dithioacetal and an aldotetronic acid ester were also glucosylated in moderate or good yield, depending on the microorganism utilized. Steric as well as functional group factors are discussed in relation to the substrate specificity of the glucosyl acceptor.

  17. Prediction of substrate specificity in NS3/4A serine protease by biased sequence search threading.

    PubMed

    Ozdemir Isik, Gonca; Ozer, A Nevra

    2017-04-01

    Proteases recognize specific substrate sequences and catalyze the hydrolysis of targeted peptide bonds to activate or degrade them. It is particularly important to identify the recognition and binding mechanisms of protease-substrate complex structures in studies of drug development. Cleavage specificity in protease systems is generally determined by the amino acid profile, structural features, and distinct molecular interactions. In this work, substrate variability and substrate specificity of the NS3/4A serine protease encoded by the hepatitis C virus (HCV) was investigated by the biased sequence search threading (BSST) methodology. The available crystal structures of peptide-bound protease were used as templates as well as new complex structures that were generated via docking calculations. Threading various binding and nonbinding sequences as starting sequences over multiple templates, the potential sequence space was efficiently explored by a low-resolution knowledge-based scoring potential. The low-energy substrate sequences generated by the biased search are correlated with the natural substrates with conserved amino acid preferences, although some positions exhibit variability. Specifically, the amino acids which play essential roles in cleavage are mostly preferred. Potential substrate sequences were predicted by statistical probability approaches that consider the pairwise and triplewise interdependencies among residue positions in the low-energy sequences. The predicted substrate sequences also reproduce most of the natural substrate sequences, implying the complex interdependence between the different substrate residues. Consequently, the BSST seems to provide a powerful methodology for predicting the substrate specificity for the NS3/4A protease, which is a target in drug discovery studies for HCV.

  18. Substrate Stereo-specificity in Tryptophan dioxygenase and Indoleamine 2,3- dioxygenase

    PubMed Central

    Capece, L.; Arrar, M.; Roitberg, A. E.; Yeh, Syun-Ru; Marti, M. A.; Estrin, D. A.

    2010-01-01

    The first and rate-limiting step of the kynurenine pathway, in which tryptophan (Trp) is converted to N-formylkynurenine is catalyzed by two heme-containing proteins, Indoleamine 2,3-dioxygenase (IDO) and Tryptophan 2,3-dioxygenase (TDO). In mammals, TDO is found exclusively in liver tissue, IDO is found ubiquitously in all tissues. IDO has become increasingly popular in pharmaceutical research as it was found to be involved in many physiological situations, including immune escape of cancer. More importantly, small-molecule inhibitors of IDO are currently utilized in cancer therapy. One of the main concerns for the design of human IDO (hIDO) inhibitors is that they should be selective enough to avoid inhibition of TDO. In this work we have used a combination of classical molecular dynamics (MD) and hybrid quantum-classical (QM/MM) methodologies to establish the structural basis that determine the differences in a) the interactions of TDO and IDO with small ligands (CO/O2) and b) the substrate stereo-specificity in hIDO and TDO. Our results indicate that the differences in small ligand bound structures of IDO and TDO arise from slight differences in the structure of the bound substrate complex. The results also show that substrate stereo-specificity of TDO is achieved by the perfect fit of L-Trp, but not D-Trp, which exhibits weaker interactions with the protein matrix-. For hIDO, the presence of multiple stable binding conformations for L/D-Trp reveal the presence of a large and dynamic active site. Taken together, our data allow determination of key interactions useful for the future design of more potent hIDO-selective inhibitors. PMID:20715188

  19. Swapping the substrate specificities of the neuropeptidases neurolysin and thimet oligopeptidase.

    PubMed

    Lim, Eun Jeong; Sampath, Sowmya; Coll-Rodriguez, Jerry; Schmidt, Jack; Ray, Kallol; Rodgers, David W

    2007-03-30

    Thimet oligopeptidase (EC 3.4.24.15) and neurolysin (EC 3.4.24.16) are closely related zinc-dependent metallopeptidases that metabolize small bioactive peptides. They cleave many substrates at the same sites, but they recognize different positions on others, including neurotensin, a 13-residue peptide involved in modulation of dopaminergic circuits, pain perception, and thermoregulation. On the basis of crystal structures and previous mapping studies, four sites (Glu-469/Arg-470, Met-490/Arg-491, His-495/Asn-496, and Arg-498/Thr-499; thimet oligopeptidase residues listed first) in their substrate-binding channels appear positioned to account for differences in specificity. Thimet oligopeptidase mutated so that neurolysin residues are at all four positions cleaves neurotensin at the neurolysin site, and the reverse mutations in neurolysin switch hydrolysis to the thimet oligopeptidase site. Using a series of constructs mutated at just three of the sites, it was determined that mutations at only two (Glu-469/Arg-470 and Arg-498/Thr-499) are required to swap specificity, a result that was confirmed by testing the two-mutant constructs. If only either one of the two sites is mutated in thimet oligopeptidase, then the enzyme cleaves almost equally at the two hydrolysis positions. Crystal structures of both two-mutant constructs show that the mutations do not perturb local structure, but side chain conformations at the Arg-498/Thr-499 position differ from those of the mimicked enzyme. A model for differential recognition of neurotensin based on differences in surface charge distribution in the substrate binding sites is proposed. The model is supported by the finding that reducing the positive charge on the peptide results in cleavage at both hydrolysis sites.

  20. Ara12 subtilisin-like protease from Arabidopsis thaliana: purification, substrate specificity and tissue localization.

    PubMed

    Hamilton, John M U; Simpson, David J; Hyman, Stefan C; Ndimba, Bongani K; Slabas, Antoni R

    2003-02-15

    A C-terminal portion of Ara12 subtilisin-like protease (residues 542-757) was expressed in Escherichia coli cells as a fusion protein bound to maltose binding protein. Polyclonal antisera raised against the expressed protein were used to examine the tissue specificity and subcellular localization of Ara12. The protease was found predominantly in the silique and stem of plants, but was hardly detectable in leaf and not seen in root tissue. The distribution observed using immunological techniques is different from that seen by an RNA analysis study, which demonstrated similar mRNA abundance in the stem and leaves. Using immunogold labelling, Ara12 was shown to have an extracellular localization and was found in the intercellular spaces in stem tissue. Ara12 protease was purified to homogeneity from Arabidopsis thaliana cell suspension cultures by anion exchange and hydrophobic interaction chromatography. Proteolytic activity of Ara12 was inhibited by a number of serine protease inhibitors, but was almost unaffected by inhibitors of other catalytic classes of proteases. Optimal proteolytic activity was displayed under acidic conditions (pH 5.0). Ara12 activity was relatively thermostable and was stimulated in the presence of Ca2+ ions. Substrate specificity studies were conducted using a series of internally quenched fluorogenic peptide substrates. At the P1 position of substrates, hydrophobic residues, such as Phe and Ala, were preferred to Arg, whilst at the P1' position, Asp, Leu and Ala were most favoured. Possible functions of Ara12 are discussed in the light of the involvement of a number of plant subtilisin-like proteases in morphogenesis.

  1. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition.

    PubMed

    Wienk, Hans; Slootweg, Jack C; Speerstra, Sietske; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2013-07-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition.

  2. 2,4-Dichlorophenol hydroxylase for chlorophenol removal: Substrate specificity and catalytic activity.

    PubMed

    Ren, Hejun; Li, Qingchao; Zhan, Yang; Fang, Xuexun; Yu, Dahai

    2016-01-01

    Chlorophenols (CPs) are common environmental pollutants. As such, different treatments have been assessed to facilitate their removal. In this study, 2,4-dichlorophenol (2,4-DCP) hydroxylase was used to systematically investigate the activity and removal ability of 19CP congeners at 25 and 0 °C. Results demonstrated that 2,4-DCP hydroxylase exhibited a broad substrate specificity to CPs. The activities of 2,4-DCP hydroxylase against specific CP congeners, including 3-CP, 2,3,6-trichlorophenol, 2-CP, and 2,3-DCP, were higher than those against 2,4-DCP, which is the preferred substrate of previously reported 2,4-DCP hydroxylase. To verify whether cofactors are necessary to promote hydroxylase activity against CP congeners, we added FAD and found that the added FAD induced a 1.33-fold to 5.13-fold significant increase in hydroxylase activity against different CP congeners. The metabolic pathways of the CP degradation in the enzymatic hydroxylation step were preliminarily proposed on the basis of the analyses of the enzymatic activities against 19CP congeners. We found that the high activity and removal rate of 2,4-DCP hydroxylase against CPs at 0 °C enhance the low-temperature-adaptability of this enzyme to the CP congeners; as such, the proposed removal process may be applied to biochemical, bioremediation, and industrial processes, particularly in cold environments.

  3. Carotenoids in Rhodoplanes species: variation of compositions and substrate specificity of predicted carotenogenesis enzymes.

    PubMed

    Takaichi, Shinichi; Sasikala, Ch; Ramana, Ch V; Okamura, Keiko; Hiraishi, Akira

    2012-08-01

    Phototrophic bacteria necessarily contain carotenoids for photosynthesis, and accumulate unusual carotenoids in some cases. The carotenoids in all established species of Rhodoplanes (Rpl.), a representative of phototrophic genera, were identified using spectroscopic methods. The major carotenoid was spirilloxanthin in Rpl. roseus and Rpl. serenus, and rhodopin in "Rpl. cryptolactis". Rpl. elegans contained rhodopin, anhydrorhodovibrin, and spirilloxanthin. Rpl. pokkaliisoli contained not only rhodopin but also 1,1'-dihydroxylycopene and 3,4,3',4'-tetrahydrospirilloxanthin. These variations in carotenoid composition suggested that Rpl. roseus and Rpl. serenus had normal substrate specificity of the carotenogenesis enzymes of CrtC (acyclic carotene 1,2-hydratase), CrtD (acyclic carotenoid 3,4-desaturase), and CrtF (acyclic 1-hydroxycarotenoid methyltransferase). On the other hand, CrtC of Rpl. elegans, CrtD of "Rpl. cryptolactis", and CrtC, CrtD, and CrtF of Rpl. pokkaliisoli might have different characteristics from the usual activity of these normal enzymes in the normal spirilloxanthin pathway. These results suggest that the variation of carotenoids among the species of Rhodoplanes results from modified substrate specificity of the carotenogenesis enzymes involved.

  4. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities.

    PubMed

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-06-15

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po(lpo)) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po(lpo)-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po(lpo) allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.

  5. Structural basis for substrate specificity of alphavirus nsP2 proteases.

    PubMed

    Russo, Andrew T; Malmstrom, Robert D; White, Mark A; Watowich, Stanley J

    2010-08-24

    The alphavirus nsP2 protease is essential for correct processing of the alphavirus nonstructural polyprotein (nsP1234) and replication of the viral genome. We have combined molecular dynamics simulations with our structural studies to reveal features of the nsP2 protease catalytic site and S1'-S4 subsites that regulate the specificity of the protease. The catalytic mechanism of the nsP2 protease appears similar to the papain-like cysteine proteases, with the conserved catalytic dyad forming a thiolate-imidazolium ion pair in the nsP2-activated state. Substrate binding likely stabilizes this ion pair. Analysis of bimolecular complexes of Venezuelan equine encephalitis virus (VEEV) nsP2 protease with each of the nsP1234 cleavage sites identified protease residues His(510), Ser(511), His(546) and Lys(706) as critical for cleavage site recognition. Homology modelling and molecular dynamics simulations of diverse alphaviruses and their cognate cleavage site sequences revealed general features of substrate recognition that operate across alphavirus strains as well as strain specific covariance between binding site and cleavage site residues. For instance, compensatory changes occurred in the P3 and S3 subsite residues to maintain energetically favourable complementary binding surfaces. These results help explain how alphavirus nsP2 proteases recognize different cleavage sites within the nonstructural polyprotein and discriminate between closely related cleavage targets.

  6. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities

    PubMed Central

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L.; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-01-01

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1–4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Polpo) and aldehyde oxidase-1 (Aldox-1n1) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Polpo-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Polpo allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1n1 phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays. PMID:24737760

  7. Broad-substrate screen as a tool to identify substrates for bacterial Gcn5-related N-acetyltransferases with unknown substrate specificity.

    PubMed

    Kuhn, Misty L; Majorek, Karolina A; Minor, Wladek; Anderson, Wayne F

    2013-02-01

    Due to a combination of efforts from individual laboratories and structural genomics centers, there has been a surge in the number of members of the Gcn5-related acetyltransferasesuperfamily that have been structurally determined within the past decade. Although the number of three-dimensional structures is increasing steadily, we know little about the individual functions of these enzymes. Part of the difficulty in assigning functions for members of this superfamily is the lack of information regarding how substrates bind to the active site of the protein. The majority of the structures do not show ligand bound in the active site, and since the substrate-binding domain is not strictly conserved, it is difficult to predict the function based on structure alone. Additionally, the enzymes are capable of acetylating a wide variety of metabolites and many may exhibit promiscuity regarding their ability to acetylate multiple classes of substrates, possibly having multiple functions for the same enzyme. Herein, we present an approach to identify potential substrates for previously uncharacterized members of the Gcn5-related acetyltransferase superfamily using a variety of metabolites including polyamines, amino acids, antibiotics, peptides, vitamins, catecholamines, and other metabolites. We have identified potential substrates for eight bacterial enzymes of this superfamily. This information will be used to further structurally and functionally characterize them.

  8. Substrate specificity of rat brain neurolysin disclosed by molecular display system and putative substrates in rat tissues.

    PubMed

    Kadonosono, Tetsuya; Kato, Michiko; Ueda, Mitsuyoshi

    2007-07-01

    To search for the substrates, other than neurotensin, of rat brain neurolysin, a novel method of determining peptidase activity was developed using a yeast molecular display system. This is a useful and convenient method of handling homogenously pure proteins to evaluate the properties of neurolysin. The neurolysin gene was ligated to the C-terminal half of the alpha-agglutinin gene with a FLAG tag sequence and a yeast cell-surface molecular displaying plasmid was constructed. Display of neurolysin with correct folding and appropriate activity was verified by immunofluorescence staining and activity measurement of a bradykinin-related peptide. The cleavage sites of peptides were determined by high-performance liquid chromatography (HPLC) and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The results showed the amino acid preferences of hydrophobic, aromatic, and basic residues, which were the same as those of soluble neurolysin. Moreover, this method clearly showed the presence of two recognition motifs in neurolysin. By using these motifs, novel substrate candidates of neurolysin in rat tissues were screened, and several bioactive peptides that regulate feeding were found. We also discussed the ubiquitous distribution of neurolysin in rat tissues and the functions of substrate candidate peptides.

  9. Differences in the P1' substrate specificities of pepsin A and chymosin.

    PubMed

    Kageyama, Hakuto; Ueda, Hiroshi; Tezuka, Takafumi; Ogasawara, Asami; Narita, Yuichi; Kageyama, Takashi; Ichinose, Masao

    2010-02-01

    Porcine pepsin A and bovine chymosin are typical models of aspartic proteinases. The hydrolytic specificities of these proteinases, along with those of human pepsin A and monkey chymosin, were investigated with 29 peptide substrates that included various P1' variants of seven parent peptides. From these peptides, AFPLEF downward arrow FREL was preferred by pepsin A and chymosin, while its P1' variant, AFPLEF downward arrow EREL was preferred by bovine chymosin. Porcine and human pepsin A showed similar hydrolytic specificities, strongly preferring a hydrophobic/aromatic residue at P1' of any type of peptide. This specificity is well explained by the very hydrophobic nature of the S1' subsite that consists of Tyr(189), Ile(213), Ile(300), Met(289), Val/Leu(291) and Leu(298). The first three residues are well conserved in pepsin family enzymes. Although bovine and monkey chymosin showed similar P1' specificity, bovine chymosin preferred peptides having Glu at P1', while monkey chymosin preferred peptides having Lys at P1'. The dual characteristics of chymosin are due to the occurrence of polar/charged residues in the S1' subsite, such as Glu/Asp(289), Gln(298) and Lys/Gln(299), which are different from the S1' subsite of pepsin A. Molecular models suggest that Glu in position 289 of bovine chymosin and Asp in position 289 of monkey chymosin are responsible for the difference in P1' specificities between the chymosins.

  10. Role of S'1 loop residues in the substrate specificities of pepsin A and chymosin.

    PubMed

    Kageyama, Takashi

    2004-12-07

    Proteolytic specificities of human pepsin A and monkey chymosin were investigated with a variety of oligopeptides as substrates. Human pepsin A had a strict preference for hydrophobic/aromatic residues at P'1, while monkey chymosin showed a diversified preferences accommodating charged residues as well as hydrophobic/aromatic ones. A comparison of residues forming the S'1 subsite between mammalian pepsins A and chymosins demonstrated the presence of conservative residues including Tyr(189), Ile(213), and Ile(300) and group-specific residues in the 289-299 loop region near the C terminus. The group-specific residues consisted of hydrophobic residues in pepsin A (Met(289), Leu/Ile/Val(291), and Leu(298)) and charged or polar residues in chymosins (Asp/Glu(289) and Gln/His/Lys(298)). Because the residues in the loop appeared to be involved in the unique specificities of respective types of enzymes, site-directed mutagenesis was undertaken to replace pepsin-A-specific residues by chymosin-specific ones and vice versa. A yeast expression vector for glutathione-S-transferase fusion protein was newly developed for expression of mutant proteins. The specificities of pepsin-A mutants could be successfully altered to the chymosin-like preference and those of chymosin mutants, to pepsin-like specificities, confirming residues in the S'1 loop to be essential for unique proteolytic properties of the enzymes. An increase in preference for charged residues at P'1 in pepsin-A mutants might have been due to an increase in the hydrogen-bonding interactions. In chymosin mutants, the reverse is possible. The changes in the catalytic efficiency for peptides having charged residues at P'1 were dominated by k(cat) rather than K(m) values.

  11. Molecular Determinants of Substrate Specificity in Plant 5′-Methylthioadenosine Nucleosidases

    PubMed Central

    Siu, Karen K. W.; Lee, Jeffrey E.; Sufrin, Janice R.; Moffatt, Barbara A.; McMillan, Martin; Cornell, Kenneth A.; Isom, Chelsea; Howell, P. Lynne

    2010-01-01

    5′-Methylthioadenosine (MTA)/S-adenosylhomocysteine (SAH) nucleosidase (MTAN) is essential for cellular metabolism and development in many bacterial species. While the enzyme is found in plants, plant MTANs appear to select for MTA preferentially, with little or no affinity for SAH. To understand what determines substrate specificity in this enzyme, MTAN homologues from Arabidopsis thaliana (AtMTAN1 and AtMTAN2, which are referred to as AtMTN1 and AtMTN2 in the plant literature) have been characterized kinetically. While both homologues hydrolyze MTA with comparable kinetic parameters, only AtMTAN2 shows activity towards SAH. AtMTAN2 also has higher catalytic activity towards other substrate analogues with longer 5′-substituents. The structures of apo AtMTAN1 and its complexes with the substrate- and transition-state-analogues, 5′-methylthiotubercidin and formycin A, respectively, have been determined at 2.0–1.8 Å resolution. A homology model of AtMTAN2 was generated using the AtMTAN1 structures. Comparison of the AtMTAN1 and AtMTAN2 structures reveals that only three residues in the active site differ between the two enzymes. Our analysis suggests that two of these residues, Leu181/Met168 and Phe148/Leu135 in AtMTAN1/AtMTAN2, likely account for the divergence in specificity of the enzymes. Comparison of the AtMTAN1 and available Escherichia coli MTAN (EcMTAN) structures suggests that a combination of differences in the 5′-alkylthio binding region and reduced conformational flexibility in the AtMTAN1 active site likely contribute to its reduced efficiency in binding substrate analogues with longer 5′-substituents. In addition, in contrast to EcMTAN, the active site of AtMTAN1 remains solvated in its ligand-bound forms. As the apparent pKa of an amino acid depends on its local environment, the putative catalytic acid Asp225 in AtMTAN1 may not be protonated at physiological pH and this suggests the transition state of AtMTAN1, like human MTA

  12. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    SciTech Connect

    Mynbaev, K. D.; Shilyaev, A. V. Bazhenov, N. L.; Izhnin, A. I.; Izhnin, I. I.; Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A.

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  13. Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis.

    PubMed

    Genz, Maika; Vickers, Clare; van den Bergh, Tom; Joosten, Henk-Jan; Dörr, Mark; Höhne, Matthias; Bornscheuer, Uwe T

    2015-11-11

    To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5'-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions.

  14. Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis

    PubMed Central

    Genz, Maika; Vickers, Clare; van den Bergh, Tom; Joosten, Henk-Jan; Dörr, Mark; Höhne, Matthias; Bornscheuer, Uwe T.

    2015-01-01

    To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5′-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions. PMID:26569229

  15. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    PubMed

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases.

  16. Substrate specificity of a recombinant D-lyxose isomerase from Providencia stuartii for monosaccharides.

    PubMed

    Kwon, Hyun-Jung; Yeom, Soo-Jin; Park, Chang-Su; Oh, Deok-Kun

    2010-07-01

    The specific activity and catalytic efficiency (k(cat)/K(m)) of the recombinant putative protein from Providencia stuartii was the highest for D-lyxose among the aldose substrates, indicating that it is a D-lyxose isomerase. Gel filtration analysis suggested that the native enzyme is a dimer with a molecular mass of 44 kDa. The maximal activity for D-lyxose isomerization was observed at pH 7.5 and 45 degrees C in the presence of 1 mM Mn(2+). The enzyme exhibited high isomerization activity for aldose substrates with the C2 and C3 hydroxyl groups in the left-hand configuration, such as D-lyxose, D-mannose, L-ribose, D-talose, and L-allose (listed in decreasing order of activity). The enzyme exhibited the highest activity for D-xylulose among all pentoses and hexoses. Thus, D-lyxose was produced at 288 g/l from 500 g/l D-xylulose by D-lyxose isomerase at pH 7.5 and 45 degrees C for 2 h, with a conversion yield of 58% and a volumetric productivity of 144 g l(-1) h(-1). The observed k(cat)/K(m) (920 mM(-1) s(-1)) of P. stuartiid-lyxose isomerase for D-xylulose is higher than any of the k(cat)/K(m) values previously reported for sugar and sugar phosphate isomerases with monosaccharide substrates. These results suggest that the enzyme will be useful as an industrial producer of D-lyxose.

  17. Inhibition of phosphatidylinositol-specific phospholipase C: studies on synthetic substrates, inhibitors and a synthetic enzyme.

    PubMed

    Vizitiu, D; Kriste, A G; Campbell, A S; Thatcher, G R

    1996-01-01

    Enzyme inhibition studies on phosphatidylinositol-specific phospholipase C (PI-PLC) from B. Cereus were performed in order to gain an understanding of the mechanism of the PI-PLC family of enzymes and to aid inhibitor design. Inhibition studies on two synthetic cyclic phosphonate analogues (1,2) of inositol cyclic-1:2-monophosphate (cIP), glycerol-2-phosphate and vanadate were performed using natural phosphatidylinositol (PI) substrate in Triton X100 co-micelles and an NMR assay. Further inhibition studies on PI-PLC from B. Cereus were performed using a chromogenic, synthetic PI analogue (DPG-PI), an HPLC assay and Aerosol-OT (AOT), phytic acid and vanadate as inhibitors. For purposes of comparison, a model PI-PLC enzyme system was developed employing a synthetic Cu(II)-metallomicelle and a further synthetic PI analogue (IPP-PI). The studies employing natural PI substrate in Triton X100 co-micelles and synthetic DPG-PI in the absence of surfactant indicate three classes of PI-PLC inhibitors: (1) active-site directed inhibitors (e.g. 1,2); (2) water-soluble polyanions (e.g. tetravanadate, phytic acid); (3) surfactant anions (e.g. AOT). Three modes of molecular recognition are indicated to be important: (1) active site molecular recognition; (2) recognition at an anion-recognition site which may be the active site, and; (3) interfacial (or hydrophobic) recognition which may be exploited to increase affinity for the anion-recognition site in anionic surfactants such as AOT. The most potent inhibition of PI-PLC was observed by tetravanadate and AOT. The metallomicelle model system was observed to mimic PI-PLC in reproducing transesterification of the PI analogue substrate to yield cIP as product and in showing inhibition by phytic acid and AOT.

  18. Investigation of Structural Determinants for the Substrate Specificity in the Zinc-Dependent Alcohol Dehydrogenase CPCR2 from Candida parapsilosis.

    PubMed

    Loderer, Christoph; Dhoke, Gaurao V; Davari, Mehdi D; Kroutil, Wolfgang; Schwaneberg, Ulrich; Bocola, Marco; Ansorge-Schumacher, Marion B

    2015-07-06

    Zinc-dependent alcohol dehydrogenases (ADHs) are a class of enzymes applied in different biocatalytic processes ranging from lab to industrial scale. However, one drawback is the limited substrate range, necessitating a whole array of different ADHs for the relevant substrate classes. In this study, we investigated structural determinants of the substrate spectrum in the zinc-dependent ADH carbonyl reductase 2 from Candida parapsilosis (CPCR2), combining methods of mutational analysis with in silico substrate docking. Assigned active site residues were genetically randomized, and the resulting mutant libraries were screened with a selection of challenging carbonyl substrates. Three variants (C57A, W116K, and L119M) with improved activities toward different substrates were detected at neighboring positions in the active site. Thus, all possible combinations of the mutations were generated and characterized for their substrate specificity, yielding several improved variants. The most interesting were a C57A variant, with a 27-fold increase in specific activity for 4'-acetamidoacetophenone, and the double mutant CPCR2 B16-(C57A, L119M), with a 45-fold improvement in the kcat ⋅KM (-1) value. The obtained variants were further investigated by in silico docking experiments. The results indicate that the mentioned residues are structural determinants of the substrate specificity of CPCR2, being major players in the definition of the active site. Comparison of these results with closely related enzymes suggests that these might even be transferred to other ADHs.

  19. A structural account of substrate and inhibitor specificity differences between two Naphthol reductases

    SciTech Connect

    Liao, D.-I.; Thompson, J.E.; Fahnestock, S.; Valent, B.; Jordan, D.B.

    2010-03-08

    Two short chain dehydrogenase/reductases mediate naphthol reduction reactions in fungal melanin biosynthesis. An X-ray structure of 1,3,6,8-tetrahydroxynaphthalene reductase (4HNR) complexed with NADPH and pyroquilon was determined for examining substrate and inhibitor specificities that differ from those of 1,3,8-trihydroxynaphthalene reductase (3HNR). The 1.5 {angstrom} resolution structure allows for comparisons with the 1.7 {angstrom} resolution structure of 3HNR complexed with the same ligands. The sequences of the two proteins are 46% identical, and they have the same fold. The 30-fold lower affinity of the 4HNR-NADPH complex for pyroquilon (a commercial fungicide that targets 3HNR) in comparison to that of the 3HNR-NADPH complex can be explained by unfavorable interactions between the anionic carboxyl group of the C-terminal Ile282 of 4HNR and CH and CH{sub 2} groups of the inhibitor that are countered by favorable inhibitor interactions with 3HNR. 1,3,8-Trihydroxynaphthalene (3HN) and 1,3,6,8-tetrahydroxynaphthalene (4HN) were modeled onto the cyclic structure of pyroquilon in the 4HNR-NADPH-pyroquilon complex to examine the 300-fold preference of the enzyme for 4HN over 3HN. The models suggest that the C-terminal carboxyl group of Ile282 has a favorable hydrogen bonding interaction with the C6 hydroxyl group of 4HN and an unfavorable interaction with the C6 CH group of 3HN. Models of 3HN and 4HN in the 3HNR active site suggest a favorable interaction of the sulfur atom of the C-terminal Met283 with the C6 CH group of 3HN and an unfavorable one with the C6 hydroxyl group of 4HN, accounting for the 4-fold difference in substrate specificities. Thus, the C-terminal residues of the two naphthol reductase are determinants of inhibitor and substrate specificities.

  20. Substrate specificity of the acyl transferase domains of EpoC from the epothilone polyketide synthase.

    PubMed

    Petković, Hrvoje; Sandmann, Axel; Challis, Iain R; Hecht, Hans-Jürgen; Silakowski, Barbara; Low, Lindsey; Beeston, Nicola; Kuscer, Enej; Garcia-Bernardo, Jose; Leadlay, Peter F; Kendrew, Steven G; Wilkinson, Barrie; Müller, Rolf

    2008-02-07

    The production of epothilone mixtures is a direct consequence of the substrate tolerance of the module 3 acyltransferase (AT) domain of the epothilone polyketide synthase (PKS) which utilises both malonyl- and methylmalonyl-CoA extender units. Particular amino acid motifs in the active site of AT domains influence substrate selection for methylmalonyl-CoA (YASH) or malonyl-CoA (HAFH). This motif appears in hybrid form (HASH) in epoAT3 and may represent the molecular basis for the relaxed specificity of the domain. To investigate this possibility the AT domains from modules 2 and 3 of the epothilone PKS were examined in the heterologous DEBS1-TE model PKS. Substitution of AT1 of DEBS1-TE by epoAT2 and epoAT3 both resulted in functional PKSs, although lower yields of total products were observed when compared to DEBS1-TE (2% and 11.5% respectively). As expected, epoAT3 was significantly more promiscuous in keeping with its nature during epothilone biosynthesis. When the mixed motif (HASH) of epoAT3 within the hybrid PKS was mutated to HAFH (indicative of malonyl-CoA selection) it resulted in a non-productive PKS. When this mixed motif was converted to YASH (indicative of methylmalonyl-CoA selection) the selectivity of the hybrid PKS for methylmalonyl-CoA showed no statistically significant increase, and was associated with a loss of productivity.

  1. Neutrophil myeloperoxidase and its substrates: formation of specific markers and reactive compounds during inflammation

    PubMed Central

    Kato, Yoji

    2016-01-01

    Myeloperoxidase is an inflammatory enzyme that generates reactive hypochlorous acid in the presence of hydrogen peroxide and chloride ion. However, this enzyme also uses bromide ion or thiocyanate as a substrate to form hypobromous or hypothiocyanous acid, respectively. These species play important roles in host defense against the invasion of microorganisms. In contrast, these enzyme products modify biomolecules in hosts during excess inflammation, indicating that the action of myeloperoxidase is both beneficial and harmful. Myeloperoxidase uses other endogenous compounds, such as serotonin, urate, and l-tyrosine, as substrates. This broad-range specificity may have some biological implications. Target molecules of this enzyme and its products vary, including low-molecular weight thiols, proteins, nucleic acids, and lipids. The modified products represent biomarkers of myeloperoxidase action. Moderate inhibition of this enzyme might be critical for the prevention/modulation of excess, uncontrolled inflammatory events. Some phytochemicals inhibit myeloperoxidase, which might explain the reductive effect caused by the intake of vegetables and fruits on cardiovascular diseases. PMID:27013775

  2. Structural Insight into the Altered Substrate Specificity of Human Cytochrome P450 2A6 Mutants

    PubMed Central

    Sansen, Stefaan; Hsu, Mei-Hui; Stout, C. David; Johnson, Eric F.

    2009-01-01

    Human P450 2A6 displays a small active site that is well adapted for the oxidation of small planar substrates. Mutagenesis of CYP2A6 resulted in an increased catalytic efficiency for indole biotransformation to pigments and conferred a capacity to oxidize substituted indoles (Wu, Z.-L., Podust, L.M. and Guengerich, F.P. (2005) J.Biol.Chem. 49, 41090-41100). Here, we describe the structural basis that underlies the altered metabolic profile of three mutant enzymes, P450 2A6 N297Q, L240C/N297Q and N297Q/I300V. The Asn297 substitution abolishes a potential hydrogen bonding interaction with substrates in the active site, and replaces a structural water molecule between the helix B′-C region and helix I while maintaining structural hydrogen bonding interactions. The structures of the P450 2A6 N297Q/L240C and N297Q/I300V mutants provide clues as to how the protein can adapt to fit the larger substituted indoles in the active site, and enable a comparison with other P450 family 2 enzymes for which the residue at the equivalent position was seen to function in isozyme specificity, structural integrity and protein flexibility. PMID:17540336

  3. [Microbial alpha-amylases: physicochemical properties, substrate specificity and domain structure].

    PubMed

    Avdiiuk, K V; Varbanets', L D

    2013-01-01

    The current literature data on producers, physico-chemical properties and substrate specificity of a-amylases produced by microbes from different taxonomic groups such as bacteria, fungi and yeasts are discussed in the survey. Synthesis of alpha-amylase majority is an inducible process which is stimulated in the presence of starch or products of its hydrolysis. It is possible to increase enzymes activity level by optimization of cultivation conditions of strains-producers. alpha-Amylases, isolated from different sources are distinguished in their physico-chemical properties, particularly in their molecular weights, pH- and thermooptimums, inhibitors and activators. The enzymes hydrolyse soluble starch, amylose, amylopectin, glycogen, maltodextrins, alpha- and beta3-cyclodextrins and other carbohydrate substrates. It is well known that alpha-amylases belong to GH-13 family of glycosyl-hydrolases, which contain the catalytic domain A as (beta/alpha)8-barrel. In addition to domain A, alpha-amylases contain two other domains: B and C, which are localized approximately on opposite sides of (beta/alpha)8-barrel. Most of the known alpha-amylases contain calcium ion, which is located on the surface between domains A and B and plays an important role in stability and activity of the enzyme.

  4. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases

    SciTech Connect

    Horton, John R.; Upadhyay, Anup K.; Qi, Hank H.; Zhang, Xing; Shi, Yang; Cheng, Xiaodong

    2010-04-12

    Combinatorial readout of multiple covalent histone modifications is poorly understood. We provide insights into how an activating histone mark, in combination with linked repressive marks, is differentially 'read' by two related human demethylases, PHF8 and KIAA1718 (also known as JHDM1D). Both enzymes harbor a plant homeodomain (PHD) that binds Lys4-trimethylated histone 3 (H3K4me3) and a jumonji domain that demethylates either H3K9me2 or H3K27me2. The presence of H3K4me3 on the same peptide as H3K9me2 makes the doubly methylated peptide a markedly better substrate of PHF8, whereas the presence of H3K4me3 has the opposite effect, diminishing the H3K9me2 demethylase activity of KIAA1718 without adversely affecting its H3K27me2 activity. The difference in substrate specificity between the two is explained by PHF8 adopting a bent conformation, allowing each of its domains to engage its respective target, whereas KIAA1718 adopts an extended conformation, which prevents its access to H3K9me2 by its jumonji domain when its PHD engages H3K4me3.

  5. Substrate Specificity of the Lanthipeptide Peptidase ElxP and the Oxidoreductase ElxO

    PubMed Central

    2015-01-01

    The final step in lanthipeptide biosynthesis involves the proteolytic removal of an N-terminal leader peptide. In the class I lanthipeptide epilancin 15X, this step is performed by the subtilisin-like serine peptidase ElxP. Bioinformatic, kinetic, and mass spectrometric analysis revealed that ElxP recognizes the stretch of amino acids DLNPQS located near the proteolytic cleavage site of its substrate, ElxA. When the ElxP recognition motif was inserted into the noncognate lanthipeptide precursor NisA, ElxP was able to proteolytically remove the leader peptide from NisA. Proteolytic removal of the leader peptide by ElxP during the biosynthesis of epilancin 15X exposes an N-terminal dehydroalanine on the core peptide of ElxA that hydrolyzes to a pyruvyl group. The short-chain dehydrogenase ElxO reduces the pyruvyl group to a lactyl moiety in the final step of epilancin 15X maturation. Using synthetic peptides, we also investigated the substrate specificity of ElxO and determined the 1.85 Å resolution X-ray crystal structure of the enzyme. PMID:24866416

  6. High specific surface gold electrode on polystyrene substrate: Characterization and application as DNA biosensor.

    PubMed

    Yang, Zhiliu; Liu, Yichen; Lu, Wei; Yuan, Qingpan; Wang, Wei; Pu, Qiaosheng; Yao, Bo

    2016-05-15

    In the past decades, many efforts have been made to improve the sensitivity and specificity of electrochemical DNA biosensors. However, it is still strongly required to develop disposable and reliable DNA biosensors for wide and practical application. In this article, we reported superior electrochemical properties of an integrated plastic-gold electrode (PGE) fabricated in-house by chemical plating on polystyrene substrate. PGEs were found having extremely high capacity of DNA immobilization compared with gold electrodes fabricated by standard sputtering based photolithography. Unique nano-structured surface was observed on PGEs through morphology techniques, which would to some extend give an explanation to higher capacity of DNA immobilization on PGEs. A probable mechanism of carboxylic acid produced on polystyrene substrate after exposure to UV irradiation was proposed and discussed for the first time. This biosensor was applied to detection and manipulate of DNA hybridization. Detection limit of 7.2×10(-11) M and 1-500 nM of linearity range was obtained.

  7. Two dNTP triphosphohydrolases from Pseudomonas aeruginosa possess diverse substrate specificities.

    PubMed

    Mega, Ryosuke; Kondo, Naoyuki; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2009-06-01

    Nucleotide hydrolases are known to hydrolyze not only noncanonical dNTPs to reduce the risk of mutation, but also canonical dNTPs to maintain the dNTP concentrations in the cell. dGTP triphosphohydrolase from Escherichia coli is known as an enzyme that hydrolyzes dGTP. Recently, we identified a triphosphohydrolase from Thermus thermophilus HB8 that hydrolyzes all canonical dNTPs through a complex activation mechanism. These dNTP triphosphohydrolases are widely distributed in eubacteria, but it is difficult to predict whether they possess hydrolytic activity for dGTP or dNTP. To obtain information concerning the structure-function relationships of this protein family, we characterized two dNTP triphosphohydrolases, PA1124 and PA3043, from Pseudomonas aeruginosa. Molecular phylogenic analysis showed that dNTP triphosphohydrolases can be classified into three groups. Experimentally, PA1124 had a preference for dGTP, similar to the E. coli enzyme, whereas PA3043 displayed a broad substrate specificity. Both enzymes hydrolyzed substrates in the absence of additional dNTP as an activating effector. These kinetic data suggest that PA3043 is a novel type distinct from both the E. coli and T. thermophilus enzymes. On the basis of these results, we propose that the dNTP triphosphohydrolase family should be classified into at least three subfamilies.

  8. Substrate and Inhibitor Specificity of the Type II p21-Activated Kinase, PAK6

    PubMed Central

    Gao, Jia; Ha, Byung Hak; Lou, Hua Jane; Morse, Elizabeth M.; Zhang, Rong; Calderwood, David A.; Turk, Benjamin E.; Boggon, Titus J.

    2013-01-01

    The p21-activated kinases (PAKs) are important effectors of Rho-family small GTPases. The PAK family consists of two groups, type I and type II, which have different modes of regulation and signaling. PAK6, a type II PAK, influences behavior and locomotor function in mice and has an ascribed role in androgen receptor signaling. Here we show that PAK6 has a peptide substrate specificity very similar to the other type II PAKs, PAK4 and PAK5 (PAK7). We find that PAK6 catalytic activity is inhibited by a peptide corresponding to its N-terminal pseudosubstrate. Introduction of a melanoma-associated mutation, P52L, into this peptide reduces pseudosubstrate autoinhibition of PAK6, and increases phosphorylation of its substrate PACSIN1 (Syndapin I) in cells. Finally we determine two co-crystal structures of PAK6 catalytic domain in complex with ATP-competitive inhibitors. We determined the 1.4 Å co-crystal structure of PAK6 with the type II PAK inhibitor PF-3758309, and the 1.95 Å co-crystal structure of PAK6 with sunitinib. These findings provide new insights into the structure-function relationships of PAK6 and may facilitate development of PAK6 targeted therapies. PMID:24204982

  9. Development of a Plate-Based Screening Assay to Investigate the Substrate Specificity of the PRMT Family of Enzymes.

    PubMed

    Nguyen, Hao C; Wang, Min; Salsburg, Andrew; Knuckley, Bryan

    2015-09-14

    There are nine protein arginine methyltransferases (PRMTs 1-9) expressed in humans that vary in both subcellular localization and substrate specificity. The variation in substrate specificity between isozymes leads to competing effects that result in either activation or repression of tumor suppressor genes. Current methods used to study substrate specificity for these enzymes utilize radioisotopic labeling of substrates, mass spectrometry analysis of complex samples, or coupled assays that monitor cofactor degradation. Herein, we report the development of a rapid, nonradioactive, and sensitive method for screening multiple peptides in parallel to gain insight into the substrate specificity of PRMT enzymes. Our assay provides a major advantage over other high-throughput screening assays (e.g., ELISA, AlphaScreen chemiluminescence) by eliminating the need for purification of individual peptides and provides a timesaving, cost-effective alternative to the traditional PRMT assays. A one-bead one-compound (OBOC) peptide library was synthesized and subsequently screened against PRMT1 in a 96-well plate. This screen resulted in identification of a novel PRMT1 substrate with kinetic parameters similar to histone H4-21 (e.g., the best-known PRMT1 peptide substrate).

  10. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity

    PubMed Central

    2013-01-01

    Background Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through homologous recombination in T. aotearoense SCUT27. Results T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L of glucose or 10 g/L of xylose as substrate, respectively. The maximum l-lactic acid yield of 0.93 g/g glucose with an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate, which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment after 48 h fermentation. The non-sterilized fermentative production of l-lactic acid was also carried out, achieving values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively. Conclusions Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased l-lactic acid production and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time. In addition, it should be

  11. CTL0511 from Chlamydia trachomatis Is a Type 2C Protein Phosphatase with Broad Substrate Specificity

    PubMed Central

    Claywell, Ja E.

    2016-01-01

    ABSTRACT Protein phosphorylation has become increasingly recognized for its role in regulating bacterial physiology and virulence. Chlamydia spp. encode two validated Hanks'-type Ser/Thr protein kinases, which typically function with cognate protein phosphatases and appear capable of global protein phosphorylation. Consequently, we sought to identify a Ser/Thr protein phosphatase partner for the chlamydial kinases. CTL0511 from Chlamydia trachomatis L2 434/Bu, which has homologs in all sequenced Chlamydia spp., is a predicted type 2C Ser/Thr protein phosphatase (PP2C). Recombinant maltose-binding protein (MBP)-tagged CTL0511 (rCTL0511) hydrolyzed p-nitrophenyl phosphate (pNPP), a generic phosphatase substrate, in a MnCl2-dependent manner at physiological pH. Assays using phosphopeptide substrates revealed that rCTL0511 can dephosphorylate phosphorylated serine (P-Ser), P-Thr, and P-Tyr residues using either MnCl2 or MgCl2, indicating that metal usage can alter substrate preference. Phosphatase activity was unaffected by PP1, PP2A, and PP3 phosphatase inhibitors, while mutation of conserved PP2C residues significantly inhibited activity. Finally, phosphatase activity was detected in elementary body (EB) and reticulate body (RB) lysates, supporting a role for protein dephosphorylation in chlamydial development. These findings support that CTL0511 is a metal-dependent protein phosphatase with broad substrate specificity, substantiating a reversible phosphorylation network in C. trachomatis. IMPORTANCE Chlamydia spp. are obligate intracellular bacterial pathogens responsible for a variety of diseases in humans and economically important animal species. Our work demonstrates that Chlamydia spp. produce a PP2C capable of dephosphorylating P-Thr, P-Ser, and P-Tyr and that Chlamydia trachomatis EBs and RBs possess phosphatase activity. In conjunction with the chlamydial Hanks'-type kinases Pkn1 and PknD, validation of CTL0511 fulfills the enzymatic requirements for a

  12. The structure of phosphoinositide phosphatases: Insights into substrate specificity and catalysis.

    PubMed

    Hsu, FoSheng; Mao, Yuxin

    2015-06-01

    Phosphoinositides (PIs) are a group of key signaling and structural lipid molecules involved in a myriad of cellular processes. PI phosphatases, together with PI kinases, are responsible for the conversion of PIs between distinctive phosphorylation states. PI phosphatases are a large collection of enzymes that are evolved from at least two disparate ancestors. One group is distantly related to endonucleases, which apply divalent metal ions for phosphoryl transfer. The other group is related to protein tyrosine phosphatases, which contain a highly conserved active site motif Cys-X5-Arg (CX5R). In this review, we focus on structural insights to illustrate current understandings of the molecular mechanisms of each PI phosphatase family, with emphasis on their structural basis for substrate specificity determinants and catalytic mechanisms. This article is part of a Special Issue entitled Phosphoinositides.

  13. O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation.

    PubMed

    Vocadlo, David J

    2012-12-01

    The addition of N-acetylglucosamine (GlcNAc) O-linked to serine and threonine residues of proteins is known as O-GlcNAc. This post-translational modification is found within multicellular eukaryotes on hundreds of nuclear and cytoplasmic proteins. O-GlcNAc transferase (OGT) installs O-GlcNAc onto target proteins and O-GlcNAcase (OGA) removes O-GlcNAc. Their combined action makes O-GlcNAc reversible and serves to regulate cellular O-GlcNAc levels. Here I review select recent literature on the catalytic mechanism of these enzymes and studies on the molecular basis by which these enzymes identify and process their substrates. Molecular level understanding of how these enzymes work, and the basis for their specificity, should aid understanding how O-GlcNAc contributes to diverse cellular processes ranging from cellular signaling through to transcriptional regulation.

  14. Structural Basis of Substrate-Binding Specificity of Human Arylamine N-acetyltransferases

    SciTech Connect

    Wu,H.; Dombrovsky, L.; Tempel, W.; Martin, F.; Loppnau, P.; Goodfellow, G.; Grant, D.; Plotnikov, A.

    2007-01-01

    The human arylamine N-acetyltransferases NAT1 and NAT2 play an important role in the biotransformation of a plethora of aromatic amine and hydrazine drugs. They are also able to participate in the bioactivation of several known carcinogens. Each of these enzymes is genetically variable in human populations, and polymorphisms in NAT genes have been associated with various cancers. Here we have solved the high resolution crystal structures of human NAT1 and NAT2, including NAT1 in complex with the irreversible inhibitor 2-bromoacetanilide, a NAT1 active site mutant, and NAT2 in complex with CoA, and have refined them to 1.7-, 1.8-, and 1.9- Angstroms resolution, respectively. The crystal structures reveal novel structural features unique to human NATs and provide insights into the structural basis of the substrate specificity and genetic polymorphism of these enzymes.

  15. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases

    PubMed Central

    Salmon, Melissa; Thimmappa, Ramesha B.; Minto, Robert E.; Melton, Rachel E.; O’Maille, Paul E.; Hemmings, Andrew M.; Osbourn, Anne

    2016-01-01

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  16. Planar substrate-binding site dictates the specificity of ECF-type nickel/cobalt transporters

    PubMed Central

    Yu, You; Zhou, Mingze; Kirsch, Franziska; Xu, Congqiao; Zhang, Li; Wang, Yu; Jiang, Zheng; Wang, Na; Li, Jun; Eitinger, Thomas; Yang, Maojun

    2014-01-01

    The energy-coupling factor (ECF) transporters are multi-subunit protein complexes that mediate uptake of transition-metal ions and vitamins in about 50% of the prokaryotes, including bacteria and archaea. Biological and structural studies have been focused on ECF transporters for vitamins, but the molecular mechanism by which ECF systems transport metal ions from the environment remains unknown. Here we report the first crystal structure of a NikM, TtNikM2, the substrate-binding component (S component) of an ECF-type nickel transporter from Thermoanaerobacter tengcongensis. In contrast to the structures of the vitamin-specific S proteins with six transmembrane segments (TSs), TtNikM2 possesses an additional TS at its N-terminal region, resulting in an extracellular N-terminus. The highly conserved N-terminal loop inserts into the center of TtNikM2 and occludes a region corresponding to the substrate-binding sites of the vitamin-specific S components. Nickel binds to NikM via its coordination to four nitrogen atoms, which are derived from Met1, His2 and His67 residues. These nitrogen atoms form an approximately square-planar geometry, similar to that of the metal ion-binding sites in the amino-terminal Cu2+- and Ni2+-binding (ATCUN) motif. Replacements of residues in NikM contributing to nickel coordination compromised the Ni-transport activity. Furthermore, systematic quantum chemical investigation indicated that this geometry enables NikM to also selectively recognize Co2+. Indeed, the structure of TtNikM2 containing a bound Co2+ ion has almost no conformational change compared to the structure that contains a nickel ion. Together, our data reveal an evolutionarily conserved mechanism underlying the metal selectivity of EcfS proteins, and provide insights into the ion-translocation process mediated by ECF transporters. PMID:24366337

  17. A predicted three-dimensional structure of human cytochrome P450: implications for substrate specificity.

    PubMed

    Zvelebil, M J; Wolf, C R; Sternberg, M J

    1991-02-01

    A three-dimensional structure for human cytochrome P450IA1 was predicted based on the crystal coordinates of cytochrome P450cam from Pseudomonas putida. As there was only 15% residue identity between the two enzymes, additional information was used to establish an accurate sequence alignment that is a prerequisite for model building. Twelve representative eukaryotic sequences were aligned and a net prediction of secondary structure was matched against the known alpha-helices and beta-sheets of P450cam. The cam secondary structure provided a fixed main-chain framework onto which loops of appropriate length from the human P450IA1 structure were added. The model-built structure of the human cytochrome conformed to the requirements for the segregation of polar and nonpolar residues between the core and the surface. The first 44 residues of human cytochrome P450 could not be built into the model and sequence analysis suggested that residues 1-26 formed a single membrane-spanning segment. Examination of the sequences of cytochrome P450s from distinct gene families suggested specific residues that could account for the differences in substrate specificity. A major substrate for P450IA1, 3-methyl-cholanthrene, was fitted into the proposed active site and this planar aromatic molecule could be accommodated into the available cavity. Residues that are likely to interact with the haem were identified. The sequence similarity between 59 eukaryotic enzymes was represented as a dendrogram that in general clustered according to gene family. Until a crystallographic structure is available, this model-building study identifies potential residues in cytochrome P450s important in the function of these enzymes and these residues are candidates for site-directed mutagenesis.

  18. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase

    SciTech Connect

    Adhikary, Suraj; Eichman, Brandt F.

    2014-10-02

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.

  19. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability.

    PubMed

    Svensson, B

    1994-05-01

    Most starch hydrolases and related enzymes belong to the alpha-amylase family which contains a characteristic catalytic (beta/alpha)8-barrel domain. Currently known primary structures that have sequence similarities represent 18 different specificities, including starch branching enzyme. Crystal structures have been reported in three of these enzyme classes: the alpha-amylases, the cyclodextrin glucanotransferases, and the oligo-1,6-glucosidases. Throughout the alpha-amylase family, only eight amino acid residues are invariant, seven at the active site and a glycine in a short turn. However, comparison of three-dimensional models with a multiple sequence alignment suggests that the diversity in specificity arises by variation in substrate binding at the beta-->alpha loops. Designed mutations thus have enhanced transferase activity and altered the oligosaccharide product patterns of alpha-amylases, changed the distribution of alpha-, beta- and gamma-cyclodextrin production by cyclodextrin glucanotransferases, and shifted the relative alpha-1,4:alpha-1,6 dual-bond specificity of neopullulanase. Barley alpha-amylase isozyme hybrids and Bacillus alpha-amylases demonstrate the impact of a small domain B protruding from the (beta/alpha)8-scaffold on the function and stability. Prospects for rational engineering in this family include important members of plant origin, such as alpha-amylase, starch branching and debranching enzymes, and amylomaltase.

  20. Biochemical characterization of plasmepsin V from Plasmodium vivax Thailand isolates: Substrate specificity and enzyme inhibition.

    PubMed

    Sappakhaw, Khomkrit; Takasila, Ratchaneekorn; Sittikul, Pichamon; Wattana-Amorn, Pakorn; Assavalapsakul, Wanchai; Boonyalai, Nonlawat

    2015-12-01

    Plasmepsin V (PMV) is a Plasmodium aspartic protease responsible for the cleavage of the Plasmodium export element (PEXEL) motif, which is an essential step for export of PEXEL containing proteins and crucial for parasite viability. Here we describe the genetic polymorphism of Plasmodium vivax PMV (PvPMV) Thailand isolates, followed by cloning, expression, purification and characterization of PvPMV-Thai, presenting the pro- and mature-form of PvPMV-Thai. With our refolding and purification method, approximately 1mg of PvPMV-Thai was obtained from 1g of washed inclusion bodies. Unlike PvPMV-Ind and PvPMV-Sal-1, PvPMV-Thai contains a four-amino acid insertion (SVSE) at residues 246-249. We have confirmed that this insertion did not interfere with the catalytic activity as it is located in the long loop (R241-E272) pointing away from the substrate-binding pocket. PvPMV-Thai exhibited similar activity to PfPMV counterparts in which PfEMP2 could be hydrolyzed more efficiently than HRPII. Substrate specificity studies at P1' showed that replacing Ser by Val or Glu of the PfEMP2 peptide markedly reduced the enzyme activity of PvPMV similar to that of PfPMV whereas replacing His by Val or Ser of the HRPII peptide increased the cleavage activity. However, the substitution of amino acids at the P2 position with Glu dramatically reduced the cleavage efficiency by 80% in PvPMV in contrast to 30% in PfPMV, indicating subtle differences around the S2 binding pocket of both PfPMV and PvPMV. Four inhibitors were also evaluated for PvPMV-Thai activity including PMSF, pepstatin A, nelfinavir, and menisporopsin A-a macrocyclic polylactone. We are the first to show that menisporopsin A partially inhibits the PvPMV-Thai activity at high concentration. Taken together, these findings provide insights into recombinant production, substrate specificity and inhibition of PvPMV-Thai.

  1. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation

    PubMed Central

    Rawlings, Neil D.

    2016-01-01

    One peptidase can usually be distinguished from another biochemically by its action on proteins, peptides and synthetic substrates. Since 1996, the MEROPS database (http://merops.sanger.ac.uk) has accumulated a collection of cleavages in substrates that now amounts to 66,615 cleavages. The total number of peptidases for which at least one cleavage is known is 1700 out of a total of 2457 different peptidases. This paper describes how the cleavages are obtained from the scientific literature, how they are annotated and how cleavages in peptides and proteins are cross-referenced to entries in the UniProt protein sequence database. The specificity profiles of 556 peptidases are shown for which ten or more substrate cleavages are known. However, it has been proposed that at least 40 cleavages in disparate proteins are required for specificity analysis to be meaningful, and only 163 peptidases (6.6%) fulfil this criterion. Also described are the various displays shown on the website to aid with the understanding of peptidase specificity, which are derived from the substrate cleavage collection. These displays include a logo, distribution matrix, and tables to summarize which amino acids or groups of amino acids are acceptable (or not acceptable) in each substrate binding pocket. For each protein substrate, there is a display to show how it is processed and degraded. Also described are tools on the website to help with the assessment of the physiological relevance of cleavages in a substrate. These tools rely on the hypothesis that a cleavage site that is conserved in orthologues is likely to be physiologically relevant, and alignments of substrate protein sequences are made utilizing the UniRef50 database, in which in each entry sequences are 50% or more identical. Conservation in this case means substitutions are permitted only if the amino acid is known to occupy the same substrate binding pocket from at least one other substrate cleaved by the same peptidase. PMID

  2. Crystal structures of Mycobacterium tuberculosis HspAT and ArAT reveal structural basis of their distinct substrate specificities

    PubMed Central

    Nasir, Nazia; Anant, Avishek; Vyas, Rajan; Biswal, Bichitra Kumar

    2016-01-01

    Aminotransferases of subfamily Iβ, which include histidinol phosphate aminotransferases (HspATs) and aromatic amino acid aminotransferases (ArATs), are structurally similar but possess distinct substrate specificities. This study, encompassing structural and biochemical characterisation of HspAT and ArAT from Mycobacterium tuberculosis demonstrates that the residues lining the substrate binding pocket and N-terminal lid are the primary determinants of their substrate specificities. In mHspAT, hydrophilic residues in the substrate binding pocket and N-terminal lid allow the entry and binding of its preferential substrate, Hsp. On the other hand, the hydrophobic nature of both the substrate binding pocket and the N-terminal lid of mArAT is responsible for the discrimination of a polar substrate such as Hsp, while facilitating the binding of Phe and other aromatic residues such as Tyr and Trp. In addition, the present study delineates the ligand induced conformational rearrangements, providing insights into the plasticity of aminotransferases. Furthermore, the study also demonstrates that the adventitiously bound ligand 2-(N-morpholino)ethanesulfonic acid (MES) is indeed a specific inhibitor of HspAT. These results suggest that previously untapped morpholine-ring scaffold compounds could be explored for the design of new anti-TB agents. PMID:26738801

  3. Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit.

    PubMed

    Tatebe, Hisashi; Murayama, Shinichi; Yonekura, Toshiya; Hatano, Tomoyuki; Richter, David; Furuya, Tomomi; Kataoka, Saori; Furuita, Kyoko; Kojima, Chojiro; Shiozaki, Kazuhiro

    2017-03-07

    The target of rapamycin (TOR) protein kinase forms multi-subunit TOR complex 1 (TORC1) and TOR complex 2 (TORC2), which exhibit distinct substrate specificities. Sin1 is one of the TORC2-specific subunit essential for phosphorylation and activation of certain AGC-family kinases. Here, we show that Sin1 is dispensable for the catalytic activity of TORC2, but its conserved region in the middle (Sin1CRIM) forms a discrete domain that specifically binds the TORC2 substrate kinases. Sin1CRIM fused to a different TORC2 subunit can recruit the TORC2 substrate Gad8 for phosphorylation even in the sin1 null mutant of fission yeast. The solution structure of Sin1CRIM shows a ubiquitin-like fold with a characteristic acidic loop, which is essential for interaction with the TORC2 substrates. The specific substrate-recognition function is conserved in human Sin1CRIM, which may represent a potential target for novel anticancer drugs that prevent activation of the mTORC2 substrates such as AKT.

  4. Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit

    PubMed Central

    Tatebe, Hisashi; Murayama, Shinichi; Yonekura, Toshiya; Hatano, Tomoyuki; Richter, David; Furuya, Tomomi; Kataoka, Saori; Furuita, Kyoko; Kojima, Chojiro; Shiozaki, Kazuhiro

    2017-01-01

    The target of rapamycin (TOR) protein kinase forms multi-subunit TOR complex 1 (TORC1) and TOR complex 2 (TORC2), which exhibit distinct substrate specificities. Sin1 is one of the TORC2-specific subunit essential for phosphorylation and activation of certain AGC-family kinases. Here, we show that Sin1 is dispensable for the catalytic activity of TORC2, but its conserved region in the middle (Sin1CRIM) forms a discrete domain that specifically binds the TORC2 substrate kinases. Sin1CRIM fused to a different TORC2 subunit can recruit the TORC2 substrate Gad8 for phosphorylation even in the sin1 null mutant of fission yeast. The solution structure of Sin1CRIM shows a ubiquitin-like fold with a characteristic acidic loop, which is essential for interaction with the TORC2 substrates. The specific substrate-recognition function is conserved in human Sin1CRIM, which may represent a potential target for novel anticancer drugs that prevent activation of the mTORC2 substrates such as AKT. DOI: http://dx.doi.org/10.7554/eLife.19594.001 PMID:28264193

  5. Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti

    PubMed Central

    Boudko, Dmitri Y.; Tsujimoto, Hitoshi; Rodriguez, Stacy D.; Meleshkevitch, Ella A.; Price, David P.; Drake, Lisa L.; Hansen, Immo A.

    2015-01-01

    Anautogenous mosquitoes depend on vertebrate blood as nutrient source for their eggs. A highly efficient set of membrane transporters mediates the massive movement of nutrient amino acids between mosquito tissues after a blood meal. Here we report the characterization of the amino-acid transporter Slimfast (Slif) from the yellow-fever mosquito Aedes aegypti using codon-optimized heterologous expression. Slif is a well-known component of the target-of-rapamycin signalling pathway and fat body nutrient sensor, but its substrate specificity and transport mechanism were unknown. We found that Slif transports essential cationic and neutral amino acids with preference for arginine. It has an unusual dual-affinity mechanism with only the high affinity being Na+ dependent. Tissue-specific expression and blood meal-dependent regulation of Slif are consistent with conveyance of essential amino acids from gut to fat body. Slif represents a novel transport system and type of transceptor for sensing and transporting essential amino acids during mosquito reproduction. PMID:26449545

  6. Substrate specificity and ion coupling in the Na+/betaine symporter BetP.

    PubMed

    Perez, Camilo; Koshy, Caroline; Ressl, Susanne; Nicklisch, Sascha; Krämer, Reinhard; Ziegler, Christine

    2011-04-06

    BetP is an Na(+)-coupled betaine-specific transporter of the betaine-choline-carnitine (BCC) transporter family involved in the response to hyperosmotic stress. The crystal structure of BetP revealed an overall fold of two inverted structurally related repeats (LeuT-fold) that BetP shares with other sequence-unrelated Na(+)-coupled symporters. Numerous structures of LeuT-fold transporters in distinct conformational states have contributed substantially to our understanding of the alternating access mechanism of transport. Nevertheless, coupling of substrate and co-transported ion fluxes has not been structurally corroborated to the same extent. We converted BetP by a single-point mutation--glycine to aspartate--into an H(+)-coupled choline-specific transporter and solved the crystal structure of this mutant in complex with choline. The structure of BetP-G153D demonstrates a new inward-facing open conformation for BetP. Choline binding to a location close to the second, low-affinity sodium-binding site (Na2) of LeuT-fold transporters is facilitated by the introduced aspartate. Our data confirm the importance of a cation-binding site in BetP, playing a key role in a proposed molecular mechanism of Na(+) and H(+) coupling in BCC transporters.

  7. Starter substrate specificities of wild-type and mutant polyketide synthases from Rutaceae.

    PubMed

    Lukacin, Richard; Schreiner, Stephan; Silber, Katrin; Matern, Ulrich

    2005-02-01

    Chalcone synthases (CHSs) and acridone synthases (ACSs) belong to the superfamily of type III polyketide synthases (PKSs) and condense the starter substrate 4-coumaroyl-CoA or N-methylanthraniloyl-CoA with three malonyl-CoAs to produce flavonoids and acridone alkaloids, respectively. ACSs which have been cloned exclusively from Ruta graveolens share about 75-85% polypeptide sequence homology with CHSs from other plant families, while 90% similarity was observed with CHSs from Rutaceae, i.e., R. graveolens, Citrus sinensis and Dictamnus albus. CHSs cloned from many plants do not accept N-methylanthraniloyl-CoA as a starter substrate, whereas ACSs were shown to possess some side activity with 4-coumaroyl-CoA. The transformation of an ACS to a functional CHS with 10% residual ACS activity was accomplished previously by substitution of three amino acids through the corresponding residues from Ruta-CHS1 (Ser132Thr, Ala133Ser and Val265Phe). Therefore, the reverse triple mutation of Ruta-CHS1 (mutant R2) was generated, which affected only insignificantly the CHS activity and did not confer ACS activity. However, competitive inhibition of CHS activity by N-methylanthraniloyl-CoA was observed for the mutant in contrast to wild-type CHSs. Homology modeling of ACS2 with docking of 1,3-dihydroxy-N-methylacridone suggested that the starter substrates for CHS or ACS reaction are placed in different topographies in the active site pocket. Additional site specific substitutions (Asp205Pro/Thr206Asp/His207Ala or Arg60Thr and Val100Ala/Gly218Ala, respectively) diminished the CHS activity to 75-50% of the wild-type CHS1 without promoting ACS activity. The results suggest that conformational changes in the periphery beyond the active site cavity volumes determine the product formation by ACSs vs. CHSs in R. graveolens. It is likely that ACS has evolved from CHS, but the sole enlargement of the active site pocket as in CHS1 mutant R2 is insufficient to explain this process.

  8. Structures of 5-Methylthioribose Kinase Reveal Substrate Specificity and Unusual Mode of Nucleotide Binding

    SciTech Connect

    Ku,S.; Yip, P.; Cornell, K.; Riscoe, M.; Behr, J.; Guillerm, G.; Howell, P.

    2007-01-01

    The methionine salvage pathway is ubiquitous in all organisms, but metabolic variations exist between bacteria and mammals. 5-Methylthioribose (MTR) kinase is a key enzyme in methionine salvage in bacteria and the absence of a mammalian homolog suggests that it is a good target for the design of novel antibiotics. The structures of the apo-form of Bacillus subtilis MTR kinase, as well as its ADP, ADP-PO4, AMPPCP, and AMPPCP-MTR complexes have been determined. MTR kinase has a bilobal eukaryotic protein kinase fold but exhibits a number of unique features. The protein lacks the DFG motif typically found at the beginning of the activation loop and instead coordinates magnesium via a DXE motif (Asp{sup 250}-Glu{sup 252}). In addition, the glycine-rich loop of the protein, analogous to the 'Gly triad' in protein kinases, does not interact extensively with the nucleotide. The MTR substrate-binding site consists of Asp{sup 233} of the catalytic HGD motif, a novel twin arginine motif (Arg{sup 340}/Arg{sup 341}), and a semi-conserved W-loop, which appears to regulate MTR binding specificity. No lobe closure is observed for MTR kinase upon substrate binding. This is probably because the enzyme lacks the lobe closure/inducing interactions between the C-lobe of the protein and the ribosyl moiety of the nucleotide that are typically responsible for lobe closure in protein kinases. The current structures suggest that MTR kinase has a dissociative mechanism.

  9. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin.

    PubMed Central

    Galea, C. A.; Dalrymple, B. P.; Kuypers, R.; Blakeley, R.

    2000-01-01

    The substrate specificity of porcine pepsin has been altered by site-directed mutagenesis in an attempt to selectively cleave bovine hide collagen at only a few sites, similar to cathepsin D, for the production of high quality gelatin. Kinetic parameters were determined using chromogenic peptide substrates based on the sequence Lys-Pro-Xaa-Yaa-Phe*Nph-Arg-Leu (where Xaa is Ile or Pro, Yaa is Glu. Leu, Gln or Lys, Nph is p-nitrophenylalanine, and * is the site of cleavage). Substitution of Thr222 and Glu287 within the S2 subsite of pepsin by Val and Met, respectively, produced a double mutant with a two- to fourfold higher kcat/Km, compared with wild-type pepsin, for the chromogenic peptides with residues Leu, Gln, and Glu at position P2 (Yaa). The results suggest that the functional group of the P2 side chain may be exposed to solvent, while the aliphatic portion interacts with hydrophobic residues comprising S2. Wild-type pepsin cleaved a peptide corresponding to the carboxy-terminal telopeptide region of bovine type I collagen alpha1 chain, SGGYDLSFLPQPPQE, predominantly at three sites (Asp-Leu, Leu-Ser, and Phe-Leu) and at a significantly lower rate at Ser-Phe. However, Thr222Val/Glu287Met cleaved site Ser-Phe at a rate 20-fold higher than the wild-type. Significantly, enzymes containing the double substitution Phe111Thr/Leu112Phe cleaved this peptide predominantly at one site Leu-Ser (similar to cathepsin D) and at a rate 23-fold higher than the wild-type. These mutants can potentially enhance the rate of solubilization of bovine hide collagen under conditions mild enough to maintain the triple helix structure and hence minimize the rate of subsequent denaturation and proteolytic cleavage. PMID:11106168

  10. Structural and Kinetic Studies of the Human Nudix Hydrolase MTH1 Reveal the Mechanism for Its Broad Substrate Specificity*

    PubMed Central

    Waz, Shaimaa; Nakamura, Teruya; Hirata, Keisuke; Koga-Ogawa, Yukari; Chirifu, Mami; Arimori, Takao; Tamada, Taro; Ikemizu, Shinji; Nakabeppu, Yusaku; Yamagata, Yuriko

    2017-01-01

    The human MutT homolog 1 (hMTH1, human NUDT1) hydrolyzes oxidatively damaged nucleoside triphosphates and is the main enzyme responsible for nucleotide sanitization. hMTH1 recently has received attention as an anticancer target because hMTH1 blockade leads to accumulation of oxidized nucleotides in the cell, resulting in mutations and death of cancer cells. Unlike Escherichia coli MutT, which shows high substrate specificity for 8-oxoguanine nucleotides, hMTH1 has broad substrate specificity for oxidized nucleotides, including 8-oxo-dGTP and 2-oxo-dATP. However, the reason for this broad substrate specificity remains unclear. Here, we determined crystal structures of hMTH1 in complex with 8-oxo-dGTP or 2-oxo-dATP at neutral pH. These structures based on high quality data showed that the base moieties of two substrates are located on the similar but not the same position in the substrate binding pocket and adopt a different hydrogen-bonding pattern, and both triphosphate moieties bind to the hMTH1 Nudix motif (i.e. the hydrolase motif) similarly and align for the hydrolysis reaction. We also performed kinetic assays on the substrate-binding Asp-120 mutants (D120N and D120A), and determined their crystal structures in complex with the substrates. Analyses of bond lengths with high-resolution X-ray data and the relationship between the structure and enzymatic activity revealed that hMTH1 recognizes the different oxidized nucleotides via an exchange of the protonation state at two neighboring aspartate residues (Asp-119 and Asp-120) in its substrate binding pocket. To our knowledge, this mechanism of broad substrate recognition by enzymes has not been reported previously and may have relevance for anticancer drug development strategies targeting hMTH1. PMID:28035004

  11. Structural and Kinetic Studies of the Human Nudix Hydrolase MTH1 Reveal the Mechanism for Its Broad Substrate Specificity.

    PubMed

    Waz, Shaimaa; Nakamura, Teruya; Hirata, Keisuke; Koga-Ogawa, Yukari; Chirifu, Mami; Arimori, Takao; Tamada, Taro; Ikemizu, Shinji; Nakabeppu, Yusaku; Yamagata, Yuriko

    2017-02-17

    The human MutT homolog 1 (hMTH1, human NUDT1) hydrolyzes oxidatively damaged nucleoside triphosphates and is the main enzyme responsible for nucleotide sanitization. hMTH1 recently has received attention as an anticancer target because hMTH1 blockade leads to accumulation of oxidized nucleotides in the cell, resulting in mutations and death of cancer cells. Unlike Escherichia coli MutT, which shows high substrate specificity for 8-oxoguanine nucleotides, hMTH1 has broad substrate specificity for oxidized nucleotides, including 8-oxo-dGTP and 2-oxo-dATP. However, the reason for this broad substrate specificity remains unclear. Here, we determined crystal structures of hMTH1 in complex with 8-oxo-dGTP or 2-oxo-dATP at neutral pH. These structures based on high quality data showed that the base moieties of two substrates are located on the similar but not the same position in the substrate binding pocket and adopt a different hydrogen-bonding pattern, and both triphosphate moieties bind to the hMTH1 Nudix motif (i.e. the hydrolase motif) similarly and align for the hydrolysis reaction. We also performed kinetic assays on the substrate-binding Asp-120 mutants (D120N and D120A), and determined their crystal structures in complex with the substrates. Analyses of bond lengths with high-resolution X-ray data and the relationship between the structure and enzymatic activity revealed that hMTH1 recognizes the different oxidized nucleotides via an exchange of the protonation state at two neighboring aspartate residues (Asp-119 and Asp-120) in its substrate binding pocket. To our knowledge, this mechanism of broad substrate recognition by enzymes has not been reported previously and may have relevance for anticancer drug development strategies targeting hMTH1.

  12. Ketoreduction in mycolactone biosynthesis: insight into substrate specificity and stereocontrol from studies of discrete ketoreductase domains in vitro.

    PubMed

    Bali, Shilpa; Weissman, Kira J

    2006-12-01

    Mycolactone, a polyketide toxin responsible for the extensive tissue destruction seen in Buruli ulcer, is assembled on a modular polyketide synthase (PKS). Despite operating on structurally different intermediates during synthesis, many of the ketoreductase (KR) domains of the mycolactone (MLS) PKS have identical sequences. This suggests that these enzymes might exhibit an unusually high level of substrate promiscuity. However, we show here that when recombinant mycolactone KR domains are tested with a range of surrogate substrates, their specificity closely matches that of KR domains derived from other PKS systems. In addition, our findings reinforce the role of substrate tethering for achieving stereochemical control in modular PKSs by affecting the delicate energetics of ketoreduction.

  13. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    SciTech Connect

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H.

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  14. Crystal structures of Physcomitrella patens AOC1 and AOC2: insights into the enzyme mechanism and differences in substrate specificity.

    PubMed

    Neumann, Piotr; Brodhun, Florian; Sauer, Kristin; Herrfurth, Cornelia; Hamberg, Mats; Brinkmann, Jens; Scholz, Julia; Dickmanns, Achim; Feussner, Ivo; Ficner, Ralf

    2012-11-01

    In plants, oxylipins regulate developmental processes and defense responses. The first specific step in the biosynthesis of the cyclopentanone class of oxylipins is catalyzed by allene oxide cyclase (AOC) that forms cis(+)-12-oxo-phytodienoic acid. The moss Physcomitrella patens has two AOCs (PpAOC1 and PpAOC2) with different substrate specificities for C₁₈- and C₂₀-derived substrates, respectively. To better understand AOC's catalytic mechanism and to elucidate the structural properties that explain the differences in substrate specificity, we solved and analyzed the crystal structures of 36 monomers of both apo and ligand complexes of PpAOC1 and PpAOC2. From these data, we propose the following intermediates in AOC catalysis: (1) a resting state of the apo enzyme with a closed conformation, (2) a first shallow binding mode, followed by (3) a tight binding of the substrate accompanied by conformational changes in the binding pocket, and (4) initiation of the catalytic cycle by opening of the epoxide ring. As expected, the substrate dihydro analog cis-12,13S-epoxy-9Z,15Z-octadecadienoic acid did not cyclize in the presence of PpAOC1; however, when bound to the enzyme, it underwent isomerization into the corresponding trans-epoxide. By comparing complex structures of the C₁₈ substrate analog with in silico modeling of the C₂₀ substrate analog bound to the enzyme allowed us to identify three major molecular determinants responsible for the different substrate specificities (i.e. larger active site diameter, an elongated cavity of PpAOC2, and two nonidentical residues at the entrance of the active site).

  15. Structural Analysis of Saccharomyces cerevisiae α-Galactosidase and Its Complexes with Natural Substrates Reveals New Insights into Substrate Specificity of GH27 Glycosidases*

    PubMed Central

    Fernández-Leiro, Rafael; Pereira-Rodríguez, Ángel; Cerdán, M. Esperanza; Becerra, Manuel; Sanz-Aparicio, Juliana

    2010-01-01

    α-Galactosidases catalyze the hydrolysis of terminal α-1,6-galactosyl units from galacto-oligosaccharides and polymeric galactomannans. The crystal structures of tetrameric Saccharomyces cerevisiae α-galactosidase and its complexes with the substrates melibiose and raffinose have been determined to 1.95, 2.40, and 2.70 Å resolution. The monomer folds into a catalytic (α/β)8 barrel and a C-terminal β-sandwich domain with unassigned function. This pattern is conserved with other family 27 glycosidases, but this enzyme presents a unique 45-residue insertion in the β-sandwich domain that folds over the barrel protecting it from the solvent and likely explaining its high stability. The structure of the complexes and the mutational analysis show that oligomerization is a key factor in substrate binding, as the substrates are located in a deep cavity making direct interactions with the adjacent subunit. Furthermore, docking analysis suggests that the supplementary domain could be involved in binding sugar units distal from the scissile bond, therefore ascribing a role in fine-tuning substrate specificity to this domain. It may also have a role in promoting association with the polymeric substrate because of the ordered arrangement that the four domains present in one face of the tetramer. Our analysis extends to other family 27 glycosidases, where some traits regarding specificity and oligomerization can be formulated on the basis of their sequence and the structures available. These results improve our knowledge on the activity of this important family of enzymes and give a deeper insight into the structural features that rule modularity and protein-carbohydrate interactions. PMID:20592022

  16. KINETIC AND STRUCTURAL INVESTIGATIONS INTO THE ALLOSTERIC AND PH EFFECT ON SUBSTRATE SPECIFICITY OF HUMAN EPITHELIAL 15-LIPOXYGENASE-2

    PubMed Central

    Joshi, Netra; Hoobler, Eric K.; Perry, Steven; Diaz, Giovanni; Fox, Brian; Holman, Theodore R.

    2013-01-01

    Lipoxygenases, important enzymes in inflammation, can regulate their substrate specificity by allosteric interactions with its own hydroperoxide products. In the current work, addition of both 13-(S) hydroxy-9Z,11E-octadecadienoic acid (13-(S)-HODE) and 13-(S)-hydroperoxy-6Z,9Z,11E-octadecatrienoic acid (13-(S)-HOTrE) to human epithelial 15-lipoxygenase-2 (15-LOX-2) increases the kcat/KM substrate specificity ratio of arachidonic acid (AA) and (γ)-linolenic acid (GLA) by 4-fold. 13-(S)-HODE achieves this change by activating kcat/KM AA but inhibiting kcat/KM GLA, which indicates that the allosteric structural changes at the active site discriminates between the length and unsaturation differences of AA and GLA to achieve opposite kinetics effects. The substrate specificity ratio is further increased, 11-fold total, by increasing pH, suggesting mechanistic differences between the pH and allosteric effects. Interestingly, the loss of the PLAT domain affects substrate specificity, but does not eliminate the allosteric properties of 15-LOX-2, indicating that the allosteric site is located in the catalytic domain. However, the removal of the PLAT domain does change the magnitude of the allosteric effect. These data suggest that the PLAT domain moderates the communication pathway between the allosteric and catalytic sites, thus affecting substrate specificity. These results are discussed in the context of protein dimerization and other structural changes. PMID:24171444

  17. Structure and Substrate Specificity of a Eukaryotic Fucosidase from Fusarium graminearum*

    PubMed Central

    Cao, Hongnan; Walton, Jonathan D.; Brumm, Phil; Phillips, George N.

    2014-01-01

    The secreted glycoside hydrolase family 29 (GH29) α-l-fucosidase from plant pathogenic fungus Fusarium graminearum (FgFCO1) actively releases fucose from the xyloglucan fragment. We solved crystal structures of two active-site conformations, i.e. open and closed, of apoFgFCO1 and an open complex with product fucose at atomic resolution. The closed conformation supports catalysis by orienting the conserved general acid/base Glu-288 nearest the predicted glycosidic position, whereas the open conformation possibly represents an unreactive state with Glu-288 positioned away from the catalytic center. A flexible loop near the substrate binding site containing a non-conserved GGSFT sequence is ordered in the closed but not the open form. We also identified a novel C-terminal βγ-crystallin domain in FgFCO1 devoid of calcium binding motif whose homologous sequences are present in various glycoside hydrolase families. N-Glycosylated FgFCO1 adopts a monomeric state as verified by solution small angle x-ray scattering in contrast to reported multimeric fucosidases. Steady-state kinetics shows that FgFCO1 prefers α1,2 over α1,3/4 linkages and displays minimal activity with p-nitrophenyl fucoside with an acidic pH optimum of 4.6. Despite a retaining GH29 family fold, the overall specificity of FgFCO1 most closely resembles inverting GH95 α-fucosidase, which displays the highest specificity with two natural substrates harboring the Fucα1-2Gal glycosidic linkage, a xyloglucan-derived nonasaccharide, and 2′-fucosyllactose. Furthermore, FgFCO1 hydrolyzes H-disaccharide (lacking a +2 subsite sugar) at a rate 103-fold slower than 2′-fucosyllactose. We demonstrated the structurally dynamic active site of FgFCO1 with flexible general acid/base Glu, a common feature shared by several bacterial GH29 fucosidases to various extents. PMID:25086049

  18. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles

    PubMed Central

    Zhuang, Min; Wiita, Arun P.; O’Donoghue, Anthony J.; Knudsen, Giselle M.; Craik, Charles S.; Wells, James A.

    2016-01-01

    Proteases constitute the largest enzyme family, yet their biological roles are obscured by our rudimentary understanding of their cellular substrates. There are 12 human caspases that play crucial roles in inflammation and cell differentiation and drive the terminal stages of cell death. Recent N-terminomics technologies have begun to enumerate the diverse substrates individual caspases can cleave in complex cell lysates. It is clear that many caspases have shared substrates; however, few data exist about the catalytic efficiencies (kcat/KM) of these substrates, which is critical to understanding their true substrate preferences. In this study, we use quantitative MS to determine the catalytic efficiencies for hundreds of natural protease substrates in cellular lysate for two understudied members: caspase-2 and caspase-6. Most substrates are new, and the cleavage rates vary up to 500-fold. We compare the cleavage rates for common substrates with those found for caspase-3, caspase-7, and caspase-8, involved in apoptosis. There is little correlation in catalytic efficiencies among the five caspases, suggesting each has a unique set of preferred substrates, and thus more specialized roles than previously understood. We synthesized peptide substrates on the basis of protein cleavage sites and found similar catalytic efficiencies between the protein and peptide substrates. These data suggest the rates of proteolysis are dominated more by local primary sequence, and less by the tertiary protein fold. Our studies highlight that global quantitative rate analysis for posttranslational modification enzymes in complex milieus for native substrates is critical to better define their functions and relative sequence of events. PMID:27006500

  19. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles.

    PubMed

    Julien, Olivier; Zhuang, Min; Wiita, Arun P; O'Donoghue, Anthony J; Knudsen, Giselle M; Craik, Charles S; Wells, James A

    2016-04-05

    Proteases constitute the largest enzyme family, yet their biological roles are obscured by our rudimentary understanding of their cellular substrates. There are 12 human caspases that play crucial roles in inflammation and cell differentiation and drive the terminal stages of cell death. Recent N-terminomics technologies have begun to enumerate the diverse substrates individual caspases can cleave in complex cell lysates. It is clear that many caspases have shared substrates; however, few data exist about the catalytic efficiencies (kcat/KM) of these substrates, which is critical to understanding their true substrate preferences. In this study, we use quantitative MS to determine the catalytic efficiencies for hundreds of natural protease substrates in cellular lysate for two understudied members: caspase-2 and caspase-6. Most substrates are new, and the cleavage rates vary up to 500-fold. We compare the cleavage rates for common substrates with those found for caspase-3, caspase-7, and caspase-8, involved in apoptosis. There is little correlation in catalytic efficiencies among the five caspases, suggesting each has a unique set of preferred substrates, and thus more specialized roles than previously understood. We synthesized peptide substrates on the basis of protein cleavage sites and found similar catalytic efficiencies between the protein and peptide substrates. These data suggest the rates of proteolysis are dominated more by local primary sequence, and less by the tertiary protein fold. Our studies highlight that global quantitative rate analysis for posttranslational modification enzymes in complex milieus for native substrates is critical to better define their functions and relative sequence of events.

  20. Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2′-deoxyadenosine substrates†

    PubMed Central

    Cobb, Steven L.; Deng, Hai; McEwan, Andrew R.; Naismith, James H.; O’Hagan, David; Robinson, David A.

    2012-01-01

    The fluorinase enzyme from Streptomyces cattleya displays an unusual ability in biocatalysis in that it forms a C–F bond. We now report that the enzyme will accept 2′-deoxyadenosine in place of adenosine substrates, and structural evidence reveals a reorganisation in hydrogen bonding to accommodate this substrate series. It emerges from this study that the enzyme does not require a planar ribose conformation of the substrate to catalyse C–F bond formation. PMID:16604208

  1. Comparative modeling and molecular docking of orphan human CYP4V2 protein with fatty acid substrates: Insights into substrate specificity.

    PubMed

    Kumar, Suresh

    2011-01-01

    Cytochromes P450 (CYPs) are a super family of heme-containing enzymes well-known for their monooxgenase reaction. There are 57 CYP isoenzymes found in human which exhibit specific physiological functions. Thirteen members of this super family are classified as "orphan" CYP because of their unknown enzymatic functions. CYP4V2 is found to be a potential drug target for Bietti crystalline corneoretinal dystrophy (BCD). However, three-dimensional structure, the active site topology and substrate binding modes of CYP4V2 remain unclear. In this study, the three-dimensional model of CYP4V2 was constructed using the homology modeling method. Four possible fatty acid substrates namely, caprylic, lauric, myrisitc and palmitic acids were optimized and evaluated for drug likeness using Lipinski's rule of five. Further, these substrates were docked into active sites of CYP4V2 and several key residues responsible for substrate binding were identified. These findings will be helpful for the structure-based drug design and detailed characterization of the biological roles of CYP4V2.

  2. Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass

    PubMed Central

    Eichorst, Stephanie A.; Joshua, Chijioke; Sathitsuksanoh, Noppadon; Singh, Seema; Simmons, Blake A.

    2014-01-01

    Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction. PMID:25261509

  3. Porin OmpP2 of Haemophilus influenzae shows specificity for nicotinamide-derived nucleotide substrates.

    PubMed

    Andersen, Christian; Maier, Elke; Kemmer, Gabrielle; Blass, Julia; Hilpert, Anna-Karina; Benz, Roland; Reidl, Joachim

    2003-07-04

    Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks all biosynthetic enzymes necessary for de novo synthesis of that cofactor. Therefore, growth in vitro requires the presence of NAD itself, NMN, or nicotinamide riboside (NR). To address uptake abilities of these compounds, we investigated outer membrane proteins. By analyzing ompP2 knockout mutants, we found that NAD and NMN uptake was prevented, whereas NR uptake was not. Through investigation of the properties of purified OmpP2 in artificial lipid membrane systems, the substrate specificity of OmpP2 for NAD and NMN was determined, with KS values of approximately 8 and 4mm, respectively, in 0.1 m KCl, whereas no interaction was detected for the nucleoside NR and other purine or pyrimidine nucleotide or nucleoside species. Based on our analysis, we assume that an intrinsic binding site within OmpP2 exists that facilitates diffusion of these compounds across the outer membrane, recognizing carbonyl and exposed phosphate groups. Because OmpP2 was formerly described as a general diffusion porin, an additional property of acting as a facilitator for nicotinamide-based nucleotide transport may have evolved to support and optimize utilization of the essential cofactor sources NAD and NMN in H. influenzae.

  4. Substrate-specific gene expression in Batrachochytrium dendrobatidis, the chytrid pathogen of amphibians.

    PubMed

    Rosenblum, Erica Bree; Poorten, Thomas J; Joneson, Suzanne; Settles, Matthew

    2012-01-01

    Determining the mechanisms of host-pathogen interaction is critical for understanding and mitigating infectious disease. Mechanisms of fungal pathogenicity are of particular interest given the recent outbreaks of fungal diseases in wildlife populations. Our study focuses on Batrachochytrium dendrobatidis (Bd), the chytrid pathogen responsible for amphibian declines around the world. Previous studies have hypothesized a role for several specific families of secreted proteases as pathogenicity factors in Bd, but the expression of these genes has only been evaluated in laboratory growth conditions. Here we conduct a genome-wide study of Bd gene expression under two different nutrient conditions. We compare Bd gene expression profiles in standard laboratory growth media and in pulverized host tissue (i.e., frog skin). A large proportion of genes in the Bd genome show increased expression when grown in host tissue, indicating the importance of studying pathogens on host substrate. A number of gene classes show particularly high levels of expression in host tissue, including three families of secreted proteases (metallo-, serine- and aspartyl-proteases), adhesion genes, lipase-3 encoding genes, and a group of phylogenetically unusual crinkler-like effectors. We discuss the roles of these different genes as putative pathogenicity factors and discuss what they can teach us about Bd's metabolic targets, host invasion, and pathogenesis.

  5. Characterization of MTMR3. an inositol lipid 3-phosphatase with novel substrate specificity.

    PubMed

    Walker, D M; Urbé, S; Dove, S K; Tenza, D; Raposo, G; Clague, M J

    2001-10-16

    Inositol lipids play key roles in many fundamental cellular processes that include growth, cell survival, motility, and membrane trafficking. Recent studies on the PTEN and Myotubularin proteins have underscored the importance of inositol lipid 3-phosphatases in cell function. Inactivating mutations in the genes encoding PTEN and Myotubularin are key steps in the progression of some cancers and in the onset of X-linked myotubular myopathy, respectively. Myotubularin-related protein 3 (MTMR3) shows extensive homology to Myotubularin, including the catalytic domain, but additionally possesses a C-terminal extension that includes a FYVE domain. We show that MTMR3 is an inositol lipid 3-phosphatase, with a so-far-unique substrate specificity. It is able to hydrolyze PtdIns3P and PtdIns3,5P2, both in vitro and when heterologously expressed in S. cerevisiae, and to thereby provide the first clearly defined route for the cellular production of PtdIns5P. Overexpression of a catalytically dead MTMR3 (C413S) in mammalian cells induces a striking formation of vacuolar compartments that enclose membranous structures that are highly concentrated in mutant proteins.

  6. Complexes of Thermotoga maritima S-adenosylmethionine decarboxylase provide insights into substrate specificity

    SciTech Connect

    Bale, Shridhar; Baba, Kavita; McCloskey, Diane E.; Pegg, Anthony E.; Ealick, Steven E.

    2010-06-25

    The polyamines putrescine, spermidine and spermine are ubiquitous aliphatic cations and are essential for cellular growth and differentiation. S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical pyruvoyl-dependent enzyme in the polyamine-biosynthetic pathway. The crystal structures of AdoMetDC from humans and plants and of the AdoMetDC proenzyme from Thermotoga maritima have been obtained previously. Here, the crystal structures of activated T. maritima AdoMetDC (TmAdoMetDC) and of its complexes with S-adenosylmethionine methyl ester and 5{prime}-deoxy-5{prime}-dimethylthioadenosine are reported. The results demonstrate for the first time that TmAdoMetDC autoprocesses without the need for additional factors and that the enzyme contains two complete active sites, both of which use residues from both chains of the homodimer. The complexes provide insights into the substrate specificity and ligand binding of AdoMetDC in prokaryotes. The conservation of the ligand-binding mode and the active-site residues between human and T. maritima AdoMetDC provides insight into the evolution of AdoMetDC.

  7. Substrate specificity and inhibitor sensitivity of rabbit 20α-hydroxysteroid dehydrogenase.

    PubMed

    Endo, Satoshi; Arai, Yuki; Hara, Akira; Kitade, Yukio; Bunai, Yasuo; El-Kabbani, Ossama; Matsunaga, Toshiyuki

    2013-01-01

    In this study, we examined the substrate specificity and inhibitor sensitivity of rabbit 20α-hydroxysteroid dehydrogenase (AKR1C5), which plays a role in the termination of pregnancy by progesterone inactivation. AKR1C5 moderately reduced the 3-keto group of only 5α-dihydrosteroids with 17β- or 20α/β-hydroxy group among 3-ketosteroids. In contrast, the enzyme reversibly and efficiently catalyzed the reduction of various 17- and 20-ketosteroids, including estrogen precursors (dehydroepiandrosterone, estrone and 5α-androstan-3β-ol-17-one) and tocolytic 5β-pregnane-3,20-dione. In addition to the progesterone inactivation, the formation of estrogens and metabolism of the tocolytic steroid by AKR1C5 may be related to its role in rabbit parturition. AKR1C5 also reduced various non-steroidal carbonyl compounds, including isatin, an antagonist of the C-type natriuretic peptide receptor, and 4-oxo-2-nonenal, suggesting its roles in controlling the bioactive isatin and detoxification of cytotoxic aldehydes. AKR1C5 was potently and competitively inhibited by flavonoids such as kaempferol and quercetin, suggesting that its activity is affected by ingested flavonoids.

  8. Human DEAD-box ATPase DDX3 shows a relaxed nucleoside substrate specificity.

    PubMed

    Franca, Raffaella; Belfiore, Amalia; Spadari, Silvio; Maga, Giovanni

    2007-06-01

    Human DDX3 (hDDX3) is a DEAD-box protein shown to possess RNA-unwinding and adenosine triphosphatase (ATPase) activities. The hDDX3 protein has been implicated in nuclear mRNA export, cell growth control, and cancer progression. In addition, a role of this protein in the replication of human immunodeficiency virus Type 1 and in the pathogenesis of hepatitis C virus has been recently proposed. Its enzymological properties, however, are largely unknown. In this work, we characterized its ATPase activity. We show that hDDX3 ATPase activity is stimulated by various ribo- and deoxynucleic acids. Comparative analysis with different nucleoside triphosphate analogs showed that the hDDX3 ATPase couples high catalytic efficiency to a rather relaxed substrate specificity, both in terms of base selection and sugar selection. In addition, its ability to recognize the L-stereoisomers of both 3' deoxy- and 2',3' dideoxy-ribose, points to a relaxed stereoselectivity. On the basis of these results, we hypothesize the presence of structural determinants on both the base and the sugar moieties, critical for nucleoside binding to the enzyme. Our results expand the knowledge about the DEAD-box RNA helicases in general and can be used for rational design of selective inhibitors of hDDX3, to be tested as potential antitumor and antiviral agents.

  9. Structural and Functional Basis for Substrate Specificity and Catalysis of Levan Fructotransferase*

    PubMed Central

    Park, Jinseo; Kim, Myung-Il; Park, Young-Don; Shin, Inchul; Cha, Jaeho; Kim, Chul Ho; Rhee, Sangkee

    2012-01-01

    Levan is β-2,6-linked polymeric fructose and serves as reserve carbohydrate in some plants and microorganisms. Mobilization of fructose is usually mediated by enzymes such as glycoside hydrolase (GH), typically releasing a monosaccharide as a product. The enzyme levan fructotransferase (LFTase) of the GH32 family catalyzes an intramolecular fructosyl transfer reaction and results in production of cyclic difructose dianhydride, thus exhibiting a novel substrate specificity. The mechanism by which LFTase carries out these functions via the structural fold conserved in the GH32 family is unknown. Here, we report the crystal structure of LFTase from Arthrobacter ureafaciens in apo form, as well as in complexes with sucrose and levanbiose, a difructosacchride with a β-2,6-glycosidic linkage. Despite the similarity of its two-domain structure to members of the GH32 family, LFTase contains an active site that accommodates a difructosaccharide using the −1 and −2 subsites. This feature is unique among GH32 proteins and is facilitated by small side chain residues in the loop region of a catalytic β-propeller N-domain, which is conserved in the LFTase family. An additional oligosaccharide-binding site was also characterized in the β-sandwich C-domain, supporting its role in carbohydrate recognition. Together with functional analysis, our data provide a molecular basis for the catalytic mechanism of LFTase and suggest functional variations from other GH32 family proteins, notwithstanding the conserved structural elements. PMID:22810228

  10. Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2)[S

    PubMed Central

    Lionarons, Daniël A.; Boyer, James L.; Cai, Shi-Ying

    2012-01-01

    The apical Na+-dependent bile salt transporter (ASBT/SLC10A2) is essential for maintaining the enterohepatic circulation of bile salts. It is not known when Slc10a2 evolved as a bile salt transporter or how it adapted to substantial changes in bile salt structure during evolution. We characterized ASBT orthologs from two primitive vertebrates, the lamprey that utilizes early 5α-bile alcohols and the skate that utilizes structurally different 5β-bile alcohols, and compared substrate specificity with ASBT from humans who utilize modern 5β-bile acids. Everted gut sacs of skate but not the more primitive lamprey transported 3H-taurocholic acid (TCA), a modern 5β-bile acid. However, molecular cloning identified ASBT orthologs from both species. Cell-based assays using recombinant ASBT/Asbt's indicate that lamprey Asbt has high affinity for 5α-bile alcohols, low affinity for 5β-bile alcohols, and lacks affinity for TCA, whereas skate Asbt showed high affinity for 5α- and 5β-bile alcohols but low affinity for TCA. In contrast, human ASBT demonstrated high affinity for all three bile salt types. These findings suggest that ASBT evolved from the earliest vertebrates by gaining affinity for modern bile salts while retaining affinity for older bile salts. Also, our results indicate that the bile salt enterohepatic circulation is conserved throughout vertebrate evolution. PMID:22669917

  11. Substrate specificity and reaction kinetics of an X-motif ribozyme

    PubMed Central

    LAZAREV, DENIS; PUSKARZ, IZABELA; BREAKER, RONALD R.

    2003-01-01

    The X-motif is an in vitro-selected ribozyme that catalyzes RNA cleavage by an internal phosphoester transfer reaction. This ribozyme class is distinguished by the fact that it emerged as the dominant clone among at least 12 different classes of ribozymes when in vitro selection was conducted to favor the isolation of high-speed catalysts. We have examined the structural and kinetic properties of the X-motif in order to provide a framework for its application as an RNA-cleaving agent and to explore how this ribozyme catalyzes phosphoester transfer with a predicted rate constant that is similar to those exhibited by the four natural self-cleaving ribozymes. The secondary structure of the X-motif includes four stem elements that form a central unpaired junction. In a bimolecular format, two of these base-paired arms define the substrate specificity of the ribozyme and can be changed to target different RNAs for cleavage. The requirements for nucleotide identity at the cleavage site are GD, where D = G, A, or U and cleavage occurs between the two nucleotides. The ribozyme has an absolute requirement for a divalent cation cofactor and exhibits kinetic behavior that is consistent with the obligate binding of at least two metal ions. PMID:12756327

  12. Altering the substrate specificity of methyl parathion hydrolase with directed evolution.

    PubMed

    Ng, Tee-Kheang; Gahan, Lawrence R; Schenk, Gerhard; Ollis, David L

    2015-05-01

    Many organophosphates (OPs) are used as pesticides in agriculture. They pose a severe health hazard due to their inhibitory effect on acetylcholinesterase. Therefore, detoxification of water and soil contaminated by OPs is important. Metalloenzymes such as methyl parathion hydrolase (MPH) from Pseudomonas sp. WBC-3 hold great promise as bioremediators as they are able to hydrolyze a wide range of OPs. MPH is highly efficient towards methyl parathion (1 × 10(6) s(-1) M(-1)), but its activity towards other OPs is more modest. Thus, site saturation mutagenesis (SSM) and DNA shuffling were performed to find mutants with improved activities on ethyl paraxon (6.1 × 10(3) s(-1) M(-1)). SSM was performed on nine residues lining the active site. Several mutants with modest activity enhancement towards ethyl paraoxon were isolated and used as templates for DNA shuffling. Ultimately, 14 multiple-site mutants with enhanced activity were isolated. One mutant, R2F3, exhibited a nearly 100-fold increase in the kcat/Km value for ethyl paraoxon (5.9 × 10(5) s(-1) M(-1)). These studies highlight the 'plasticity' of the MPH active site that facilitates the fine-tuning of its active site towards specific substrates with only minor changes required. MPH is thus an ideal candidate for the development of an enzyme-based bioremediation system.

  13. Multiple Phospholipid N-Methyltransferases with Distinct Substrate Specificities Are Encoded in Bradyrhizobium japonicum▿

    PubMed Central

    Hacker, Stephanie; Sohlenkamp, Christian; Aktas, Meriyem; Geiger, Otto; Narberhaus, Franz

    2008-01-01

    Phosphatidylcholine (PC) is the major phospholipid in eukaryotic membranes. In contrast, it is found in only a few prokaryotes including members of the family Rhizobiaceae. In these bacteria, PC is required for pathogenic and symbiotic plant-microbe interactions, as shown for Agrobacterium tumefaciens and Bradyrhizobium japonicum. At least two different phospholipid N-methyltransferases (PmtA and PmtX) have been postulated to convert phosphatidylethanolamine (PE) to PC in B. japonicum by three consecutive methylation reactions. However, apart from the known PmtA enzyme, we identified and characterized three additional pmt genes (pmtX1, pmtX3, and pmtX4), which can be functionally expressed in Escherichia coli, showing different substrate specificities. B. japonicum expressed only two of these pmt genes (pmtA and pmtX1) under all conditions tested. PmtA predominantly converts PE to monomethyl PE, whereas PmtX1 carries out both subsequent methylation steps. B. japonicum is the first bacterium known to use two functionally different Pmts. It also expresses a PC synthase, which produces PC via condensation of CDP-diacylglycerol and choline. Our study shows that PC biosynthesis in bacteria can be much more complex than previously anticipated. PMID:17993534

  14. Conferring substrate specificity to DNA helicases: role of the RecQ HRDC domain.

    PubMed

    Bernstein, Douglas A; Keck, James L

    2005-08-01

    RecQ DNA helicases are multidomain enzymes that play pivotal roles in genome maintenance pathways. While the ATPase and helicase activities of these enzymes can be attributed to the conserved catalytic core domain, the role of the Helicase-and-RNase-D-C-terminal (HRDC) domain in RecQ function has yet to be elucidated. Here, we report the crystal structure of the E. coli RecQ HRDC domain, revealing a globular fold that resembles known DNA binding domains. We show that this domain preferentially binds single-stranded DNA and identify its DNA binding surface. HRDC domain mutations in full-length RecQ lead to surprising differences in its structure-specific DNA binding properties. These data support a model in which naturally occurring variations in DNA binding residues among diverse RecQ homologs serve to target these enzymes to distinct substrates and provide insight into a mechanism whereby RecQ enzymes have evolved distinct functions in organisms that encode multiple recQ genes.

  15. Amino acid residues that contribute to substrate specificity of class A beta-lactamase SME-1.

    PubMed

    Majiduddin, Fahd K; Palzkill, Timothy

    2005-08-01

    Carbapenem antibiotics are used as antibiotics of last resort because they possess a broad spectrum of antimicrobial activity and are not easily hydrolyzed by beta-lactamases. Recently, class A enzymes, such as the SME-1, NMC-A, and IMI-1 beta-lactamases, have been identified with the capacity to hydrolyze carbapenem antibiotics. Traditional class A beta-lactamases, such as TEM-1 and SHV-1, are unable to hydrolyze carbapenem antibiotics and exhibit some differences in sequence from those that are able to hydrolyze carbapenem antibiotics. The positions that differ may contribute to the unique substrate specificity of the class A carbapenemase SME-1. Codons in the SME-1 gene representing residues 104, 105, 132, 167, 237, and 241 were randomized by site-directed mutagenesis, and functional mutants were selected for the ability to hydrolyze imipenem, ampicillin, or cefotaxime. Although several positions are important for hydrolysis of beta-lactam antibiotics, no single position was found to uniquely contribute to carbapenem hydrolysis. The results of this study support a model whereby the carbapenemase activity of SME-1 is due to a highly distributed set of interactions that subtly alter the structure of the active-site pocket.

  16. Modification of the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering.

    PubMed

    Yuan, L; Voelker, T A; Hawkins, D J

    1995-11-07

    The plant acyl-acyl carrier protein (ACP) thioesterases (TEs) are of biochemical interest because of their roles in fatty acid synthesis and their utilities in the bioengineering of plant seed oils. When the FatB1 cDNA encoding a 12:0-ACP TE (Uc FatB1) from California bay, Umbellularia californica (Uc) was expressed in Escherichia coli and in developing oilseeds of the plants Arabidopsis thaliana and Brassica napus, large amounts of laurate (12:0) and small amounts of myristate (14:0) were accumulated. We have isolated a TE cDNA from camphor (Cinnamomum camphorum) (Cc) seeds that shares 92% amino acid identity with Uc FatB1. This TE, Cc FatB1, mainly hydrolyzes 14:0-ACP as shown by E. coli expression. We have investigated the roles of the N- and C-terminal regions in determining substrate specificity by constructing two chimeric enzymes, in which the N-terminal portion of one protein is fused to the C-terminal portion of the other. Our results show that the C-terminal two-thirds of the protein is critical for the specificity. By site-directed mutagenesis, we have replaced several amino acids in Uc FatB1 by using the Cc FatB1 sequence as a guide. A double mutant, which changes Met-197 to an Arg and Arg-199 to a His (M197R/R199H), turns Uc FatB1 into a 12:0/14:0 TE with equal preference for both substrates. Another mutation, T231K, by itself does not effect the specificity. However, when it is combined with the double mutant to generate a triple mutant (M197R/R199H/T231K), Uc FatB1 is converted to a 14:0-ACP TE. Expression of the double-mutant cDNA in E. coli K27, a strain deficient in fatty acid degradation, results in accumulation of similar amounts of 12:0 and 14:0. Meanwhile the E. coli expressing the triple-mutant cDNA produces predominantly 14:0 with very small amounts of 12:0. Kinetic studies indicate that both wild-type Uc FatB1 and the triple mutant have similar values of Km,app with respect to 14:0-ACP. Inhibitory studies also show that 12:0-ACP is a good

  17. D-Amino acid dipeptide production utilizing D-alanine-D-alanine ligases with novel substrate specificity.

    PubMed

    Sato, Masaru; Kirimura, Kohtaro; Kino, Kuniki

    2005-06-01

    D-Alanine-D-alanine ligase (Ddl) is an important enzyme in the synthesis of bacterial peptidoglycan. The genes encoding Ddls from Escherichia coli K12 (EcDdlB), Oceanobacillus iheyensis JCM 11309 (OiDdl), Synechocystis sp. PCC 6803 (SsDdl) and Thermotoga maritima ATCC 43589 (TmDdl), the genomic DNA sequences of which have been determined, were cloned and the substrate specificities of these recombinant Ddls were investigated. Although OiDdl had a high substrate specificity for D-alanine; EcDdlB, SsDdl and TmDdl showed broad substrate specificities for D-serine, D-threonine, D-cysteine and glycine, in addition to D-alanine. Four D-amino acid dipeptides were produced using EcDdlB, and D-amino acid homo-dipeptides were successfully produced at high yields except for D-threonyl-D-threonine.

  18. Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis

    PubMed Central

    Pathak, Deepika; Bhat, Aadil Hussain; Sapehia, Vandana; Rai, Jagdish; Rao, Alka

    2016-01-01

    Nα-acetylation is a naturally occurring irreversible modification of N-termini of proteins catalyzed by Nα-acetyltransferases (NATs). Although present in all three domains of life, it is little understood in bacteria. The functional grouping of NATs into six types NatA - NatF, in eukaryotes is based on subunit requirements and stringent substrate specificities. Bacterial orthologs are phylogenetically divergent from eukaryotic NATs, and only a couple of them are characterized biochemically. Accordingly, not much is known about their substrate specificities. Rv3420c of Mycobacterium tuberculosis is a NAT ortholog coding for RimIMtb. Using in vitro peptide-based enzyme assays and mass-spectrometry methods, we provide evidence that RimIMtb is a protein Nα-acetyltransferase of relaxed substrate specificity mimicking substrate specificities of eukaryotic NatA, NatC and most competently that of NatE. Also, hitherto unknown acetylation of residues namely, Asp, Glu, Tyr and Leu by a bacterial NAT (RimIMtb) is elucidated, in vitro. Based on in vivo acetylation status, in vitro assay results and genetic context, a plausible cellular substrate for RimIMtb is proposed. PMID:27353550

  19. Substrate Specificity of Lymphoid-specific Tyrosine Phosphatase (Lyp) and Identification of Src Kinase-associated Protein of 55 kDa Homolog (SKAP-HOM) as a Lyp Substrate

    SciTech Connect

    Yu, Xiao; Chen, Ming; Zhang, Sheng; Yu, Zhi-Hong; Sun, Jin-Peng; Wang, Lina; Liu, Sijiu; Imasaki, Tsuyoshi; Takagi, Yuichiro; Zhang, Zhong-Yin

    2012-02-08

    A missense single-nucleotide polymorphism in the gene encoding the lymphoid-specific tyrosine phosphatase (Lyp) has been identified as a causal factor in a wide spectrum of autoimmune diseases. Interestingly, the autoimmune-predisposing variant of Lyp appears to represent a gain-of-function mutation, implicating Lyp as an attractive target for the development of effective strategies for the treatment of many autoimmune disorders. Unfortunately, the precise biological functions of Lyp in signaling cascades and cellular physiology are poorly understood. Identification and characterization of Lyp substrates will help define the chain of molecular events coupling Lyp dysfunction to diseases. In the current study, we identified consensus sequence motifs for Lyp substrate recognition using an 'inverse alanine scanning' combinatorial library approach. The intrinsic sequence specificity data led to the discovery and characterization of SKAP-HOM, a cytosolic adaptor protein required for proper activation of the immune system, as a bona fide Lyp substrate. To determine the molecular basis for Lyp substrate recognition, we solved crystal structures of Lyp in complex with the consensus peptide as well as the phosphopeptide derived from SKAP-HOM. Together with the biochemical data, the structures define the molecular determinants for Lyp substrate specificity and provide a solid foundation upon which novel therapeutics targeting Lyp can be developed for multiple autoimmune diseases.

  20. Substrate specificities and activities of AZAP family Arf GAPs in vivo.

    PubMed

    Cuthbert, Ellen J; Davis, Kathryn K; Casanova, James E

    2008-01-01

    The ADP-ribosylation factor (Arf) GTPases are important regulators of vesicular transport in eukaryotic cells. Like other GTPases, the Arfs require guanine nucleotide exchange factors to facilitate GTP loading and GTPase-activating proteins (GAPs) to promote GTP hydrolysis. Whereas there are only six mammalian Arfs, the human genome encodes over 20 proteins containing Arf GAP domains. A subset of these, referred to as AZAPs (Randazzo PA, Hirsch DS. Cell Signal 16: 401-413, 2004), are characterized by the presence of at least one NH(2)-terminal pleckstrin homology domain and two or more ankyrin repeats following the GAP domain. The substrate specificities of these proteins have been previously characterized by using in vitro assay systems. However, a limitation of such assays is that they may not accurately represent intracellular conditions, including posttranslational modifications, or subcellular compartmentalization. Here we present a systematic analysis of the GAP activity of seven AZAPs in vivo, using an assay for measurement of cellular Arf-GTP (Santy LC, Casanova JE. J Cell Biol 154: 599-610, 2001). In agreement with previous in vitro results, we found that ACAP1 and ACAP2 have robust, constitutive Arf6 GAP activity in vivo, with little activity toward Arf1. In contrast, although ARAP1 was initially reported to be an Arf1 GAP, we found that it acts primarily on Arf6 in vivo. Moreover, this activity appears to be regulated through a mechanism involving the NH(2)-terminal sterile-alpha motif. AGAP1 is unique among the AZAPs in its specificity for Arf1, and this activity is dependent on its NH(2)-terminal GTPase-like domain. Finally, we found that expression of AGAP1 induces a surprising reciprocal activation of Arf6, which suggests that regulatory cross talk exists among Arf isoforms.

  1. Enhancing Phospholipid Fatty Acid Profiling of Soil Bacterial Communities via Substrate- Specific 13C-labelling

    NASA Astrophysics Data System (ADS)

    Evershed, R. P.; Maxfield, P. J.; Bingham, E. M.; Dildar, N.; Brennand, E. L.; Hornibrook, E.

    2008-12-01

    A range of culture-independent methods, has recently emerged to study environmental microorganisms in situ[1]. One such method is phospholipid fatty acid (PLFA) analysis, wherein these ubiquitous membrane lipids provide a powerful tool for the study of unculturable soil microorganisms. PLFA analyses have been used to investigate the impacts of a wide range of environmental factors on the soil microbial community. An acknowledged shortcoming of the PLFAs approach is the lack the chemotaxonoic specificity, which restricts the ability of the method to probe the activities of specific functional groups of the microbial community selectively. However, the selectivity of PLFAs analyses can be enhanced by incubating soils with 13C- labelled substrates followed by gas chromatography-combustion-isotope ratio mass spectrometry to reveal the specific PLFAs incorporating the 13C-label. The application of this approach will be demonstrated through our recent work on methanotrophic bacteria in soils. We applied this approach initially to mineral soils[2] and then extended chemotaxonomic assessments by using a combination of 13C-labelled PLFAs and hopanoids [3]. We have used this approach to explore the properties of high affinity methanotrophs in a range of environments, investigating the relationship between methane oxidation rates and the nature and magnitude of the methanotrophic community for the first time[4,5] More recently we extended the technique using a novel time series 13C-labelling of PLFAs[6] to estimate the rate and progression of 13C- label incorporation and turnover of methanotrophic populations. This modified approach has been used to investigate the impacts of various environmental variables, e.g. soil type, vegetation cover and land use, on the methanotrophic biomass[7.8]. The unique nature of the 13CH4 as a gaseous substate/carbon source means that can be readily introduced into soils via a specific subset of the soil microbial biomass, thereby offering many

  2. Comparative rates of transfer of N-acetylneuraminic acid to acceptors bearing one or more Gal(beta 1-4)GlcNAc terminus by the Gal(beta 1-4)GlcNAc(NeuAc-Gal) (alpha 2-6)-sialyltransferase from embryonic chicken liver. Utilization of oligosaccharides as acceptors in sialyltransferase assays.

    PubMed Central

    Bendiak, B; Cook, G M

    1983-01-01

    Using a number of branched and unbranched oligosaccharides, glycoproteins and artificial glycoproteins bearing Gal(beta 1-4)GlcNAc-R termini as acceptors (where R represents H, oligosaccharide, oligosaccharide-protein or fatty acid-protein), the comparative rates of transfer of NeuAc by the Gal(beta 1-4)GlcNAc(NeuAc-Gal) (alpha 2-6)-sialyltransferase of embryonic chicken liver were determined. Acceptor substrates were utilized at levels approximating physiological, near the Km value of the best acceptor, desialylated alpha 1 acid glycoprotein. The sialyltransferase has a marked preference for multi-branched acceptors. From the specificity data, it is concluded that the enzyme binds at least two Gal(beta 1-4)GlcNAc termini of an acceptor molecule, and that the relative orientation of the branches is an important factor determining the rate of catalysis by the enzyme. The use of oligosaccharides as acceptors to study sialyltransferase catalyses is emphasized. Results are discussed in the context of the mode of assembly of sialoside termini of known glycoprotein structures in vivo. Images Fig. 2. PMID:6615429

  3. A dynamic method based on the specific substrate uptake rate to set up a feeding strategy for Pichia pastoris

    PubMed Central

    2011-01-01

    Background Pichia pastoris is one of the most important host organisms for the recombinant production of proteins in industrial biotechnology. To date, strain specific parameters, which are needed to set up feeding profiles for fed batch cultivations, are determined by time-consuming continuous cultures or consecutive fed batch cultivations, operated at different parameter sets. Results Here, we developed a novel approach based on fast and easy to do batch cultivations with methanol pulses enabling a more rapid determination of the strain specific parameters specific substrate uptake rate qs, specific productivity qp and the adaption time (Δtimeadapt) of the culture to methanol. Based on qs, an innovative feeding strategy to increase the productivity of a recombinant Pichia pastoris strain was developed. Higher specific substrate uptake rates resulted in increased specific productivity, which also showed a time dependent trajectory. A dynamic feeding strategy, where the setpoints for qs were increased stepwise until a qs max of 2.0 mmol·g-1·h-1 resulted in the highest specific productivity of 11 U·g-1·h-1. Conclusions Our strategy describes a novel and fast approach to determine strain specific parameters of a recombinant Pichia pastoris strain to set up feeding profiles solely based on the specific substrate uptake rate. This approach is generic and will allow application to other products and other hosts. PMID:21371310

  4. Measuring specificity in multi-substrate/product systems as a tool to investigate selectivity in vivo.

    PubMed

    Kuo, Yin-Ming; Henry, Ryan A; Andrews, Andrew J

    2016-01-01

    Multiple substrate enzymes present a particular challenge when it comes to understanding their activity in a complex system. Although a single target may be easy to model, it does not always present an accurate representation of what that enzyme will do in the presence of multiple substrates simultaneously. Therefore, there is a need to find better ways to both study these enzymes in complicated systems, as well as accurately describe the interactions through kinetic parameters. This review looks at different methods for studying multiple substrate enzymes, as well as explores options on how to most accurately describe an enzyme's activity within these multi-substrate systems. Identifying and defining this enzymatic activity should help clear the way to using in vitro systems to accurately predicting the behavior of multi-substrate enzymes in vivo. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.

  5. Specific association between an endoribonucleolytic sequence from a satellite RNA and a substrate analogue containing a 2'-5' phosphodiester.

    PubMed Central

    Feldstein, P A; Buzayan, J M; van Tol, H; deBear, J; Gough, G R; Gilham, P T; Bruening, G

    1990-01-01

    Both polarities of the satellite RNA of tobacco ringspot virus are sources of self-cleaving sequences. RNA of the less abundant, negative polarity, designated sTobRV-(-)RNA, has cleaving activity that was mapped previously to two noncontiguous regions of the polyribonucleotide chain. Endoribonucleolytic oligoribonucleotides (E) corresponding to the larger of the two regions cleaved smaller substrate oligoribonucleotides, at the ApG phosphodiester that is cleaved in sTobRV(-)RNA. An analogue of the substrate, which has a 2'-5' ApG phosphodiester, was not cleaved by E but acted as a competitive inhibitor of the cleavage of substrate. The analogue served as a primer, and E served as template, for reverse transcriptase-catalyzed copying of specific E sequences. The sequences transcribed suggest base pairing between the 5' region of E and a portion of the substrate that is located 3' to, but does not include, the ApG phosphodiester. Results from other experiments indicate this base pairing is a part of the functional cleavage complex. The association of the ends of E and substrate anticipates a second, 4-base-pair association between E and a portion of substrate that is 5' to, but does not include, the ApG phosphodiester. The effects of compensating mutations in E and substrate oligoribonucleotides support the existence of this second association in the active cleavage complex. Images PMID:1690890

  6. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates

    SciTech Connect

    Khadempour, Lily; Burnum-Johnson, Kristin E.; Baker, Erin S.; Nicora, Carrie D.; Webb-Robertson, Bobbie-Jo M.; White, Richard A.; Monroe, Matthew E.; Huang, Eric L.; Smith, Richard D.; Currie, Cameron R.

    2016-10-26

    Herbivores use symbiotic microbes to help gain access to energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, having tremendous impact on their ecosystems as dominant generalist herbivores through cultivation of a fungus, Leucoagaricus gongylophorous. Here we examine how this mutualism could facilitate the flexible substrate incorporation of the ants by providing leaf-cutter ant subcolonies four substrate types: leaves, flowers, oats, and a mixture of all three. Through metaproteomic analysis of the fungus gardens, we were able to identify and quantify 1766 different fungal proteins, including 161 biomass-degrading enzymes. This analysis revealed that fungal protein profiles were significantly different between subcolonies fed different substrates with the highest abundance of cellulolytic enzymes observed in the leaf and flower treatments. When the fungus garden is provided with leaves and flowers, which contain the majority of their energy in recalcitrant material, it increases its production of proteins that break down cellulose: endoglucanases, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, the mixed treatment closely resembled the treatment with oats alone. This suggests that when provided a mixture of substrates, the fungus garden preferentially produces enzymes necessary for breakdown of simpler, more digestible substrates. This flexible, substrate-specific response of the fungal cultivar allows the leaf-cutter ants to derive energy from a wide range of substrates, which may contribute to their ability to be dominant generalist herbivores.

  7. Structure of putrescine aminotransferase from Escherichia coli provides insights into the substrate specificity among class III aminotransferases.

    PubMed

    Cha, Hyung Jin; Jeong, Jae-Hee; Rojviriya, Catleya; Kim, Yeon-Gil

    2014-01-01

    YgjG is a putrescine aminotransferase enzyme that transfers amino groups from compounds with terminal primary amines to compounds with an aldehyde group using pyridoxal-5'-phosphate (PLP) as a cofactor. Previous biochemical data show that the enzyme prefers primary diamines, such as putrescine, over ornithine as a substrate. To better understand the enzyme's substrate specificity, crystal structures of YgjG from Escherichia coli were determined at 2.3 and 2.1 Å resolutions for the free and putrescine-bound enzymes, respectively. Sequence and structural analyses revealed that YgjG forms a dimer that adopts a class III PLP-dependent aminotransferase fold. A structural comparison between YgjG and other class III aminotransferases revealed that their structures are similar. However, YgjG has an additional N-terminal helical structure that partially contributes to a dimeric interaction with the other subunit via a helix-helix interaction. Interestingly, the YgjG substrate-binding site entrance size and charge distribution are smaller and more hydrophobic than other class III aminotransferases, which suggest that YgjG has a unique substrate binding site that could accommodate primary aliphatic diamine substrates, including putrescine. The YgjG crystal structures provide structural clues to putrescine aminotransferase substrate specificity and binding.

  8. [Use of kenaf fibre in the elaboration of specific substrates for Pleurotus ostreatus (Jacq. ex Fr.) Kummer cultivation].

    PubMed

    Pardo Giménez, Arturo; Perona Zamora, Ma Aquilina; Pardo Núñez, José

    2008-03-01

    In this study, the viability of the kenaf fibre use, alone or combined with cereal straw, vine shoots and olive mill dried waste, in the elaboration of specific substrates for the cultivation of Pleurotus ostreatus (Jacq. ex Fr.) Kummer, second mushroom in importance cultivated in Spain, is described. Furthermore, three different methods of preparation of the substrate have been considered in order to obtain selectivity for the growth and later fruiting of Pleurotus sporophore. As for the production parameters, the best results have been provided by the substrates that combined kenaf with straw and with vine shoots, being unfavourable the substrates based in just kenaf or combined with olive mill dried waste. As for the treatment applied to the materials, the immersion in water alone and subsequent pasteurization and thermophilic conditioning, together with the semi-anaerobic fermentation, has been favoured in front of the immersion in water with fungicide and later pasteurization.

  9. Specificity and versatility of substrate binding sites in four catalytic domains of human N-terminal acetyltransferases.

    PubMed

    Grauffel, Cédric; Abboud, Angèle; Liszczak, Glen; Marmorstein, Ronen; Arnesen, Thomas; Reuter, Nathalie

    2012-01-01

    Nt-acetylation is among the most common protein modifications in eukaryotes. Although thought for a long time to protect proteins from degradation, the role of Nt-acetylation is still debated. It is catalyzed by enzymes called N-terminal acetyltransferases (NATs). In eukaryotes, several NATs, composed of at least one catalytic domain, target different substrates based on their N-terminal sequences. In order to better understand the substrate specificity of human NATs, we investigated in silico the enzyme-substrate interactions in four catalytic subunits of human NATs (Naa10p, Naa20p, Naa30p and Naa50p). To date hNaa50p is the only human subunit for which X-ray structures are available. We used the structure of the ternary hNaa50p/AcCoA/MLG complex and a structural model of hNaa10p as a starting point for multiple molecular dynamics simulations of hNaa50p/AcCoA/substrate (substrate=MLG, EEE, MKG), hNaa10p/AcCoA/substrate (substrate=MLG, EEE). Nine alanine point-mutants of the hNaa50p/AcCoA/MLG complex were also simulated. Homology models of hNaa20p and hNaa30p were built and compared to hNaa50p and hNaa10p. The simulations of hNaa50p/AcCoA/MLG reproduce the interactions revealed by the X-ray data. We observed strong hydrogen bonds between MLG and tyrosines 31, 138 and 139. Yet the tyrosines interacting with the substrate's backbone suggest that their role in specificity is limited. This is confirmed by the simulations of hNaa50p/AcCoA/EEE and hNaa10p/AcCoA/MLG, where these hydrogen bonds are still observed. Moreover these tyrosines are all conserved in hNaa20p and hNaa30p. Other amino acids tune the specificity of the S1' sites that is different for hNaa10p (acidic), hNaa20p (hydrophobic/basic), hNaa30p (basic) and hNaa50p (hydrophobic). We also observe dynamic correlation between the ligand binding site and helix [Formula: see text] that tightens under substrate binding. Finally, by comparing the four structures we propose maps of the peptide-enzyme interactions

  10. Determinants for substrate specificity of the bacterial PP2C protein phosphatase tPphA from Thermosynechococcus elongatus.

    PubMed

    Su, Jiyong; Forchhammer, Karl

    2013-01-01

    Members of the Mg(2+)- or Mn(2+)-dependent protein phosphatases/PP2C-like serine/threonine phosphatases (PPM/PP2C) are abundant and widely distributed in prokaryotes and eukaryotes, where they regulate diverse signal transduction pathways. Despite low sequence conservation, the structure of their catalytic core is highly conserved except for a flexible loop termed the flap subdomain. Bacterial PPM/PP2C members without C- or N-terminal regulatory domains still recognize their substrates. Based on the crystal structure of tPphA (a PPM/PP2C member from the cyanobacterium Thermosynechococcus elongatus), variants of tPphA were generated by site-directed mutagenesis to identify substrate specificity determinants. Furthermore, a PPM/PP2C chimera containing the tPphA catalytic core and the flap subdomain of human PP2Cα was also generated. tPphA variants and the chimera were tested towards different artificial substrates and native phosphorylated P(II). A binding assay combining chemical crosslinking and pull-down was designed to analyze the binding of the various phosphatase variants to phosphoprotein P(II) . Together, these data showed that the metal 1-metal 2 cluster in the catalytic center, but not the catalytically active metal 3, is required for the binding of phosphorylated substrate. Residues outside the catalytic center are pivotal for the recognition and turnover of phosphorylated protein substrate. In particular, a histidine residue (His39) of tPphA was identified to play a specific role in protein substrate dephosphorylation. Furthermore, mutations in the variable flap subdomain can affect enzyme activity as well as substrate specificity.

  11. Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics.

    PubMed

    Dizdaroglu, Miral; Coskun, Erdem; Jaruga, Pawel

    Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.

  12. Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: Cometabolic inactivation of ammonia monooxygenase and substrate specificity

    SciTech Connect

    Rasche, M.E.; Hyman, M.R.; Arp, D.J. )

    1991-10-01

    The soil nitrifying bacterium Nitrosomonas europaea is capable of degrading trichloroethylene (TCE) and other halogenated hydrocarbons. TCE cometabolism by N. europaea resulted in an irreversible loss of TCE biodegradative capacity, ammonia-oxidizing activity, and ammonia-dependent O{sub 2} uptake by the cells. Inactivation was not observed in the presence of allylthiourea, a specific inhibitor of enzyme ammonia monooxygenase, or under anaerobic conditions, indicating that the TCE-mediated inactivation required ammonia monooxygenase activity. When N. europaea cells were incubated with ({sup 14}C)TCE under conditions which allowed turnover of ammonia monooxygenase, a number of cellular proteins were covalently labeled with {sup 14}C. Treatment of cells with allylthiourea or acetylene prior to incubation with ({sup 14}C)TCE prevented incorporation of {sup 14}C into proteins. The ammonia-oxidizing activity of cells inactivated in the presence of TCE could be recovered through a process requiring de novo protein synthesis. In addition to TCE, a series of chlorinated methanes, ethanes, and other ethylenes were screened as substrates for ammonia monooxygenase and for their ability to inactivate the ammonia-oxidizing system of N. europaea. The chlorocarbons would be divided into three classes depending on their biodegradability and inactivating potential: (1) compounds which were not biodegradable by N. europaea and which had no toxic effect on the cells (2) compounds which were cooxidized by N. europaea and had little or no toxic effect on the cells; and (3) compounds which were cooxidized and produced a turnover-dependent inactivation of ammonia oxidation by N. europaea.

  13. The molecular analysis of Trypanosoma cruzi metallocarboxypeptidase 1 provides insight into fold and substrate specificity.

    PubMed

    Niemirowicz, Gabriela; Fernández, Daniel; Solà, Maria; Cazzulo, Juan J; Avilés, Francesc X; Gomis-Rüth, F Xavier

    2008-11-01

    Trypanosoma cruzi is the aetiological agent of Chagas' disease, a chronic infection that affects millions in Central and South America. Proteolytic enzymes are involved in the development and progression of this disease and two metallocarboxypeptidases, isolated from T. cruzi CL Brener clone, have recently been characterized: TcMCP-1 and TcMCP-2. Although both are cytosolic and closely related in sequence, they display different temporary expression patterns and substrate preferences. TcMCP-1 removes basic C-terminal residues, whereas TcMCP-2 prefers hydrophobic/aromatic residues. Here we report the three-dimensional structure of TcMCP-1. It resembles an elongated cowry, with a long, deep, narrow active-site cleft mimicking the aperture. It has an N-terminal dimerization subdomain, involved in a homodimeric catalytically active quaternary structure arrangement, and a proteolytic subdomain partitioned by the cleft into an upper and a lower moiety. The cleft accommodates a catalytic metal ion, most likely a cobalt, which is co-ordinated by residues included in a characteristic zinc-binding sequence, HEXXH and a downstream glutamate. The structure of TcMCP-1 shows strong topological similarity with archaeal, bacterial and mammalian metallopeptidases including angiotensin-converting enzyme, neurolysin and thimet oligopeptidase. A crucial residue for shaping the S(1') pocket in TcMCP-1, Met-304, was mutated to the respective residue in TcMCP-2, an arginine, leading to a TcMCP-1 variant with TcMCP-2 specificity. The present studies pave the way for a better understanding of a potential target in Chagas' disease at the molecular level and provide a template for the design of novel therapeutic approaches.

  14. l-Selective Amidase with Extremely Broad Substrate Specificity from Ochrobactrum anthropi NCIMB 40321

    PubMed Central

    Sonke, Theo; Ernste, Sandra; Tandler, Renate F.; Kaptein, Bernard; Peeters, Wilco P. H.; van Assema, Friso B. J.; Wubbolts, Marcel G.; Schoemaker, Hans E.

    2005-01-01

    An industrially attractive l-specific amidase was purified to homogeneity from Ochrobactrum anthropi NCIMB 40321 wild-type cells. The purified amidase displayed maximum initial activity between pH 6 and 8.5 and was fully stable for at least 1 h up to 60°C. The purified enzyme was strongly inhibited by the metal-chelating compounds EDTA and 1,10-phenanthroline. The activity of the EDTA-treated enzyme could be restored by the addition of Zn2+ (to 80%), Mn2+ (to 400%), and Mg2+ (to 560%). Serine and cysteine protease inhibitors did not influence the purified amidase. This enzyme displayed activity toward a broad range of substrates consisting of α-hydrogen- and (bulky) α,α-disubstituted α-amino acid amides, α-hydroxy acid amides, and α-N-hydroxyamino acid amides. In all cases, only the l-enantiomer was hydrolyzed, resulting in E values of more than 150. Simple aliphatic amides, β-amino and β-hydroxy acid amides, and dipeptides were not converted. The gene encoding this l-amidase was cloned via reverse genetics. It encodes a polypeptide of 314 amino acids with a calculated molecular weight of 33,870. Since the native enzyme has a molecular mass of about 66 kDa, it most likely has a homodimeric structure. The deduced amino acid sequence showed homology to a few other stereoselective amidases and the acetamidase/formamidase family of proteins (Pfam FmdA_AmdA). Subcloning of the gene in expression vector pTrc99A enabled efficient heterologous expression in Escherichia coli. Altogether, this amidase has a unique set of properties for application in the fine-chemicals industry. PMID:16332774

  15. Substrate specificity and sequence-dependent activity of the Saccharomyces cerevisiae 3-methyladenine DNA glycosylase (Mag).

    PubMed

    Lingaraju, Gondichatnahalli M; Kartalou, Maria; Meira, Lisiane B; Samson, Leona D

    2008-06-01

    DNA glycosylases initiate base excision repair by first binding, then excising aberrant DNA bases. Saccharomyces cerevisiae encodes a 3-methyladenine (3MeA) DNA glycosylase, Mag, that recognizes 3MeA and various other DNA lesions including 1,N6-ethenoadenine (epsilon A), hypoxanthine (Hx) and abasic (AP) sites. In the present study, we explore the relative substrate specificity of Mag for these lesions and in addition, show that Mag also recognizes cisplatin cross-linked adducts, but does not catalyze their excision. Through competition binding and activity studies, we show that in the context of a random DNA sequence Mag binds epsilon A and AP-sites the most tightly, followed by the cross-linked 1,2-d(ApG) cisplatin adduct. While epsilon A binding and excision by Mag was robust in this sequence context, binding and excision of Hx was extremely poor. We further studied the recognition of epsilon A and Hx by Mag, when these lesions are present at different positions within A:T and G:C tracts. Overall, epsilon A was slightly less well excised from each position within the A:T and G:C tracts compared to excision from the random sequence, whereas Hx excision was greatly increased in these sequence contexts (by up to 7-fold) compared to the random sequence. However, given most sequence contexts, Mag had a clear preference for epsilon A relative to Hx, except in the TTXTT (X=epsilon A or Hx) sequence context from which Mag removed both lesions with almost equal efficiency. We discuss how DNA sequence context affects base excision by various 3MeA DNA glycosylases.

  16. Substrate Specificities and Intracellular Distributions of Three N-glycan Processing Enzymes Functioning at a Key Branch Point in the Insect N-Glycosylation Pathway*

    PubMed Central

    Geisler, Christoph; Jarvis, Donald L.

    2012-01-01

    Man(α1–6)[GlcNAc(β1–2)Man(α1–3)]ManGlcNAc2 is a key branch point intermediate in the insect N-glycosylation pathway because it can be either trimmed by a processing β-N-acetylglucosaminidase (FDL) to produce paucimannosidic N-glycans or elongated by N-acetylglucosaminyltransferase II (GNT-II) to produce complex N-glycans. N-Acetylglucosaminyltransferase I (GNT-I) contributes to branch point intermediate production and can potentially reverse the FDL trimming reaction. However, there has been no concerted effort to evaluate the relationships among these three enzymes in any single insect system. Hence, we extended our previous studies on Spodoptera frugiperda (Sf) FDL to include GNT-I and -II. Sf-GNT-I and -II cDNAs were isolated, the predicted protein sequences were analyzed, and both gene products were expressed and their acceptor substrate specificities and intracellular localizations were determined. Sf-GNT-I transferred N-acetylglucosamine to Man5GlcNAc2, Man3GlcNAc2, and GlcNAc(β1–2)Man(α1–6)[Man(α1–3)]ManGlcNAc2, demonstrating its role in branch point intermediate production and its ability to reverse FDL trimming. Sf-GNT-II only transferred N-acetylglucosamine to Man(α1–6)[GlcNAc(β1–2)Man(α1–3)]ManGlcNAc2, demonstrating that it initiates complex N-glycan production, but cannot use Man3GlcNAc2 to produce hybrid or complex structures. Fluorescently tagged Sf-GNT-I and -II co-localized with an endogenous Sf Golgi marker and Sf-FDL co-localized with Sf-GNT-I and -II, indicating that all three enzymes are Golgi resident proteins. Unexpectedly, fluorescently tagged Drosophila melanogaster FDL also co-localized with Sf-GNT-I and an endogenous Drosophila Golgi marker, indicating that it is a Golgi resident enzyme in insect cells. Thus, the substrate specificities and physical juxtapositioning of GNT-I, GNT-II, and FDL support the idea that these enzymes function at the N-glycan processing branch point and are major factors determining the

  17. Purification and substrate specificities of a fructanase from Kluyveromyces marxianus isolated from the fermentation process of Mezcal.

    PubMed

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2011-02-01

    A fructanase, produced by a Kluyveromyces marxianus strain isolated during the fermentation step of the elaboration process of "Mezcal de Guerrero" was purified and biochemically characterized. The active protein was a glycosylated dimer with a molecular weight of approximately 250 kDa. The specific enzymatic activity of the protein was determined for different substrates: sucrose, inulin, Agave tequilana fructan, levan and Actilight® and compared with the activity of Fructozyme®. The hydrolysis profile of the different substrates analyzed by HPAEC-PAD showed that the enzyme has different affinities over the substrates tested with a sucrose/inulin enzymatic activity ratio (S/I) of 125. For the hydrolysis of Agave tequilana fructans, the enzyme also showed a higher enzymatic activity and specificity than Fructozyme®, which is important for its potential application in the tequila industry.

  18. PEGylated substrates of NSP4 protease: A tool to study protease specificity

    NASA Astrophysics Data System (ADS)

    Wysocka, Magdalena; Gruba, Natalia; Grzywa, Renata; Giełdoń, Artur; Bąchor, Remigiusz; Brzozowski, Krzysztof; Sieńczyk, Marcin; Dieter, Jenne; Szewczuk, Zbigniew; Rolka, Krzysztof; Lesner, Adam

    2016-03-01

    Herein we present the synthesis of a novel type of peptidomimetics composed of repeating diaminopropionic acid residues modified with structurally diverse heterobifunctional polyethylene glycol chains (abbreviated as DAPEG). Based on the developed compounds, a library of fluorogenic substrates was synthesized. Further library deconvolution towards human neutrophil serine protease 4 (NSP4) yielded highly sensitive and selective internally quenched peptidomimetic substrates. In silico analysis of the obtained peptidomimetics revealed the presence of an interaction network with distant subsites located on the enzyme surface.

  19. Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity*

    PubMed Central

    Borisova, Anna S.; Isaksen, Trine; Dimarogona, Maria; Kognole, Abhishek A.; Mathiesen, Geir; Várnai, Anikó; Røhr, Åsmund K.; Payne, Christina M.; Sørlie, Morten; Sandgren, Mats; Eijsink, Vincent G. H.

    2015-01-01

    The recently discovered lytic polysaccharide monooxygenases (LPMOs) carry out oxidative cleavage of polysaccharides and are of major importance for efficient processing of biomass. NcLPMO9C from Neurospora crassa acts both on cellulose and on non-cellulose β-glucans, including cellodextrins and xyloglucan. The crystal structure of the catalytic domain of NcLPMO9C revealed an extended, highly polar substrate-binding surface well suited to interact with a variety of sugar substrates. The ability of NcLPMO9C to act on soluble substrates was exploited to study enzyme-substrate interactions. EPR studies demonstrated that the Cu2+ center environment is altered upon substrate binding, whereas isothermal titration calorimetry studies revealed binding affinities in the low micromolar range for polymeric substrates that are due in part to the presence of a carbohydrate-binding module (CBM1). Importantly, the novel structure of NcLPMO9C enabled a comparative study, revealing that the oxidative regioselectivity of LPMO9s (C1, C4, or both) correlates with distinct structural features of the copper coordination sphere. In strictly C1-oxidizing LPMO9s, access to the solvent-facing axial coordination position is restricted by a conserved tyrosine residue, whereas access to this same position seems unrestricted in C4-oxidizing LPMO9s. LPMO9s known to produce a mixture of C1- and C4-oxidized products show an intermediate situation. PMID:26178376

  20. Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-'A' from Rhodococcus ruber DSM 44541.

    PubMed

    Karabec, Martin; Łyskowski, Andrzej; Tauber, Katharina C; Steinkellner, Georg; Kroutil, Wolfgang; Grogan, Gideon; Gruber, Karl

    2010-09-14

    The structure of the alcohol dehydrogenase ADH-'A' from Rhodococcus ruber reveals possible reasons for its remarkable tolerance to organic co-solvents and suggests new directions for structure-informed mutagenesis to produce enzymes of altered substrate specificity or improved selectivity.

  1. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  2. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  3. Substrate and/or substrate-driven changes in the abundance of methanogenic archaea cause seasonal variation of methane production potential in species-specific freshwater wetlands.

    PubMed

    Liu, Deyan; Ding, Weixin; Yuan, Junji; Xiang, Jian; Lin, Yongxin

    2014-05-01

    There are large temporal and spatial variations of methane (CH4) emissions from natural wetlands. To understand temporal changes of CH4 production potential (MPP), soil samples were collected from a permanently inundated Carex lasiocarpa marsh and a summer inundated Calamagrostis angustifolia marsh over the period from June to October of 2011. MPP, dissolved organic carbon (DOC) concentration, abundance and community structure of methanogenic archaea were assessed. In the C. lasiocarpa marsh, DOC concentration, MPP and the methanogen population showed similar seasonal variations and maximal values in September. MPP and DOC in the C. angustifolia marsh exhibited seasonal variations and values peaked during August, while the methanogen population decreased with plant growth. Methanogen abundance correlated significantly (P = 0.02) with DOC only for the C. lasiocarpa marsh. During the sampling period, the dominant methanogens were the Methanosaetaceae and Zoige cluster I (ZC-Ι) in the C. angustifolia marsh, and Methanomicrobiales and ZC-Ι in the C. lasiocarpa marsh. MPP correlated significantly (P = 0.04) with DOC and methanogen population in the C. lasiocarpa marsh but only with DOC in the C. angustifolia marsh. Addition of C. lasiocarpa litter enhanced MPP more effectively than addition of C. angustifolia litter, indicating that temporal variation of substrates is controlled by litter deposition in the C. lasiocarpa marsh while living plant matter is more important in the C. angustifolia marsh. This study indicated that there was no apparent shift in the dominant types of methanogen during the growth season in the species-specific freshwater wetlands. Temporal variation of MPP is controlled by substrates and substrate-driven changes in the abundance of methanogenic archaea in the C. lasiocarpa marsh, while MPP depends only on substrate availability derived from root exudates or soil organic matter in the C. angustifolia marsh.

  4. Structural insights into the substrate specificity of (s)-ureidoglycolate amidohydrolase and its comparison with allantoate amidohydrolase.

    PubMed

    Shin, Inchul; Han, Kitae; Rhee, Sangkee

    2014-08-26

    In plants, the ureide pathway is a metabolic route that converts the ring nitrogen atoms of purine into ammonia via sequential enzymatic reactions, playing an important role in nitrogen recovery. In the final step of the pathway, (S)-ureidoglycolate amidohydrolase (UAH) catalyzes the conversion of (S)-ureidoglycolate into glyoxylate and releases two molecules of ammonia as by-products. UAH is homologous in structure and sequence with allantoate amidohydrolase (AAH), an upstream enzyme in the pathway with a similar function as that of an amidase but with a different substrate. Both enzymes exhibit strict substrate specificity and catalyze reactions in a concerted manner, resulting in purine degradation. Here, we report three crystal structures of Arabidopsis thaliana UAH (bound with substrate, reaction intermediate, and product) and a structure of Escherichia coli AAH complexed with allantoate. Structural analyses of UAH revealed a distinct binding mode for each ligand in a bimetal reaction center with the active site in a closed conformation. The ligand directly participates in the coordination shell of two metal ions and is stabilized by the surrounding residues. In contrast, AAH, which exhibits a substrate-binding site similar to that of UAH, requires a larger active site due to the additional ureido group in allantoate. Structural analyses and mutagenesis revealed that both enzymes undergo an open-to-closed conformational transition in response to ligand binding and that the active-site size and the interaction environment in UAH and AAH are determinants of the substrate specificities of these two structurally homologous enzymes.

  5. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12.

    PubMed

    Butterfield, Cristina N; Tebo, Bradley M

    2017-02-22

    Manganese(ii) oxidation in the environment is thought to be driven by bacteria because enzymatic catalysis is many orders of magnitude faster than the abiotic processes. The heterologously purified Mn oxidase (Mnx) from marine Bacillus sp. PL-12 is made up of the multicopper oxidase (MCO) MnxG and two small Cu and heme-binding proteins of unknown function, MnxE and MnxF. Mnx binds Cu and oxidizes both Mn(ii) and Mn(iii), generating Mn(iv) oxide minerals that resemble those found on the Bacillus spore surface. Spectroscopic techniques have illuminated details about the metallo-cofactors of Mnx, but very little is known about their requirement for catalytic activity, and even less is known about the substrate specificity of Mnx. Here we quantify the canonical MCO Cu and persistent peripheral Cu bound to Mnx, and test Mnx oxidizing ability toward different substrates at varying pH. Mn(ii) appears to be the best substrate in terms of kcat, but its oxidation does not follow Michaelis-Menten kinetics, instead showing a sigmoidal cooperative behavior. Mnx also oxidizes Fe(ii) substrate, but in a Michaelis-Menten manner and with a decreased activity, as well as organic substrates. The reduced metals are more rapidly consumed than the larger organic substrates, suggesting the hypothesis that the Mnx substrate site is small and tuned for metal oxidation. Of biological relevance is the result that Mnx has the highest catalytic efficiency for Mn(ii) at the pH of sea water, especially when the protein is loaded with greater than the requisite four MCO copper atoms, suggesting that the protein has evolved specifically for Mn oxidation.

  6. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.

    PubMed Central

    Lowther, W. T.; Majer, P.; Dunn, B. M.

    1995-01-01

    Rhizopuspepsin and other fungal aspartic proteinases are distinct from the mammalian enzymes in that they are able to cleave substrates with lysine in the P1 position. Sequence and structural comparisons suggest that two aspartic acid residues, Asp 30 and Asp 77 (pig pepsin numbering), may be responsible for generating this unique specificity. Asp 30 and Asp 77 were changed to the corresponding residues in porcine pepsin, Ile 30 and Thr 77, to create single and double mutants. The zymogen forms of the wild-type and mutant enzymes were overexpressed in Escherichia coli as inclusion bodies. Following solubilization, denaturation, refolding, activation, and purification to homogeneity, structural and kinetic comparisons were made. The mutant enzymes exhibited a high degree of structural similarity to the wild-type recombinant protein and a native isozyme. The catalytic activities of the recombinant proteins were analyzed with chromogenic substrates containing lysine in the P1, P2, or P3 positions. Mutation of Asp 77 resulted in a loss of 7 kcal mol-1 of transition-state stabilization energy in the hydrolysis of the substrate containing lysine in P1. An inhibitor containing the positively charged P1-lysine side chain inhibited only the enzymes containing Asp 77. Inhibition of the Asp 77 mutants of rhizopuspepsin and several mammalian enzymes was restored upon acetylation of the lysine side chain. These results suggest that an exploitation of the specific electrostatic interaction of Asp 77 in the active site of fungal enzymes may lead to the design of compounds that preferentially inhibit a variety of related Candida proteinases in immunocompromised patients. PMID:7613467

  7. Structural limits of specificity of methylcholanthrene-repressible nitrosamine N-dealkylases. Inhibition by analog substrates.

    PubMed

    Arcos, J C; Bryant, G M; Pastor, K M; Argus, M F

    1976-06-15

    The dealkylation of dimethyl-, diethyl- and dipropylnitrosamine by hepatic microsomes of Sprague-Dawley rats is repressed by pretreatment of the animals with 3-methylcholanthrene (MC), and this repression progressively decreases with the increase of alkyl chain length. In contrast to its effect on the demethylation of dimethylnitrosamine (DMN), in vivo phenobarbital induces rather than represses the deethylation of diethylnitrosamine. The rates of demethylation of the DMN analog substrates (dimethylformamide, dimethylacetamide, dimethylpropionamide, and dimethylbutyramide), although low as compared to DMN, increase with the acyl chain length. These analogs are potent in vitro inhibitors of Dmn demethylation when used in combination with DMN as substrates, and the inhibition decreases with the length of the acyl chain. Dimethylaminoacetone, which corresponds to the insertion of a CH2 group between the N atom and the carbonyl group in dimethylacetamide, is not an in vitro inhibitor of DMN demethylation; the demethylation rates are additive when theis compound is used as substrate in combination with DMN. The rate of demethylation of dimethylaminoacetone is substantially higher than the rates of the dimethylacylamides, and is significantly repressed by MC-pretreatment. The rate of demethylation of methylphenylnitrosamine is not influenced by MC-pretreatment; the compound is, however, a potent inhibitor of demethylation when used as substrate in combination with DMN. The demethylation rates of 1,1-dimethylhydrazine (the reduction product of DMN) and dimethylaniline are not influenced by MC-pretreatment; neither do they affect the overall rate of demethylation when used as substrate in combination with DMN.

  8. Alteration of Substrate Specificity: The Variable N-Terminal Domain of Tobacco Ca2+-Dependent Protein Kinase Is Important for Substrate Recognition[W

    PubMed Central

    Ito, Takeshi; Nakata, Masaru; Fukazawa, Jutarou; Ishida, Sarahmi; Takahashi, Yohsuke

    2010-01-01

    Protein kinases are major signaling molecules that are involved in a variety of cellular processes. However, the molecular mechanisms whereby protein kinases discriminate specific substrates are still largely unknown. Ca2+-dependent protein kinases (CDPKs) play central roles in Ca2+ signaling in plants. Previously, we found that a tobacco (Nicotiana tabacum) CDPK1 negatively regulated the transcription factor REPRESSION OF SHOOT GROWTH (RSG), which is involved in gibberellin feedback regulation. Here, we found that the variable N-terminal domain of CDPK1 is necessary for the recognition of RSG. A mutation (R10A) in the variable N-terminal domain of CDPK1 reduced both RSG binding and RSG phosphorylation while leaving kinase activity intact. Furthermore, the R10A mutation suppressed the in vivo function of CDPK1. The substitution of the variable N-terminal domain of an Arabidopsis thaliana CDPK, At CPK9, with that of Nt CDPK1 conferred RSG kinase activities. This chimeric CDPK behaved according to the identity of the variable N-terminal domain in transgenic plants. Our results open the possibility of engineering the substrate specificity of CDPK by manipulation of the variable N-terminal domain, enabling a rational rewiring of cellular signaling pathways. PMID:20442373

  9. Detection of specific DNA using a microfluidic device featuring tethered poly(N-isopropylacrylamide) on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Chen, Jem-Kun; Li, Jun-Yan

    2010-08-01

    In this study, we grafted thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) onto a Si substrate as the medium in a microfluidic device to detect specific DNA molecules [human genomic DNA (hgDNA528), 528 bp] at extremely low concentrations (down to 2 ng/μl). After using the polymerase chain reaction to amplify the released human gDNA signal from the tethered PNIPAAm on the substrate, the amplified human gDNA molecules were characterized through agarose gel electrophoresis. The tethered PNIPAAm in the fluid device allowed the precise detection of the human gDNA.

  10. Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis.

    PubMed

    Abeldenov, Sailau; Talhaoui, Ibtissam; Zharkov, Dmitry O; Ishchenko, Alexander A; Ramanculov, Erlan; Saparbaev, Murat; Khassenov, Bekbolat

    2015-09-01

    Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3'→5' exonuclease activities. However, it remains unclear whether these enzymes hold 3'-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3'-repair phosphodiesterase and 3'-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37 °C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3'-blocking sugar-phosphate and 3'-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM=440 and 1280 μM(-1)∙min(-1), respectively), while MtbNfo exhibits much lower 3'-repair activities (kcat/KM=0.26 and 0.65 μM(-1)∙min(-1), respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role

  11. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    PubMed Central

    Xu, Qingping; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.

    2015-01-01

    ABSTRACT Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (or dl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminal l-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation. PMID:26374125

  12. Structural Comparison, Substrate Specificity, and Inhibitor Binding of AGPase Small Subunit from Monocot and Dicot: Present Insight and Future Potential

    PubMed Central

    Choudhury, Manabendra D.; Modi, Mahendra K.

    2014-01-01

    ADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide. PMID:25276800

  13. Structural comparison, substrate specificity, and inhibitor binding of AGPase small subunit from monocot and dicot: present insight and future potential.

    PubMed

    Sarma, Kishore; Sen, Priyabrata; Barooah, Madhumita; Choudhury, Manabendra D; Roychoudhury, Shubhadeep; Modi, Mahendra K

    2014-01-01

    ADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide.

  14. Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes

    PubMed Central

    Zur, Amit; Brandeis, Michael

    2002-01-01

    The anaphase promoting complex/cyclosome (APC/C), activated by fzy and fzr, degrades cell cycle proteins that carry RXXL or KEN destruction boxes (d-boxes). APC/C substrates regulate sequential events and must be degraded in the correct order during mitosis and G1. We studied how d-boxes determine APC/Cfzy/APC/Cfzr specificity and degradation timing. Cyclin B1 has an RXXL box and is degraded by both APC/Cfzy and APC/Cfzr; fzy has a KEN box and is degraded by APC/Cfzr only. We characterized the degradation of substrates with swapped d-boxes. Cyclin B1 with KEN was degraded by APC/Cfzr only. Fzy with RXXL could be degraded by APC/Cfzy and APC/Cfzr. Interestingly, APC/Cfzy- but not APC/Cfzr-specific degradation is highly dependent on the location of RXXL. We studied degradation of tagged substrates in real time and observed that APC/Cfzr is activated in early G1. These observations demonstrate how d-box specificities of APC/Cfzy and APC/Cfzr, and the successive activation of APC/C by fzy and fzr, establish the temporal degradation pattern. Our observations can explain further why some endogenous RXXL substrates are degraded by APC/Cfzy, while others are restricted to APC/Cfzr. PMID:12198152

  15. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1

    SciTech Connect

    Gerritse, J.; Drzyzga, O.; Kloetstra, G.; Keijmel, M.; Wiersum, L.P.; Hutson, R.; Collins, M.D.; Gottschal, J.C.

    1999-12-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethane (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 {micro}m and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35 C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H{sub 2}, format, L-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except format and H{sub 2}) are oxidized to acetate and CO{sub 2}. when L-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher. Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumate or nitrate.

  16. Substrate orientation and specificity in xanthine oxidase: crystal structures of the enzyme in complex with indole-3-acetaldehyde and guanine.

    PubMed

    Cao, Hongnan; Hall, James; Hille, Russ

    2014-01-28

    Xanthine oxidase is a molybdenum-containing hydroxylase that catalyzes the hydroxylation of sp(2)-hybridized carbon centers in a variety of aromatic heterocycles as well as aldehydes. Crystal structures of the oxidase form of the bovine enzyme in complex with a poor substrate indole-3-acetaldehyde and the nonsubstrate guanine have been determined, both at a resolution of 1.6 Å. In each structure, a specific and unambiguous orientation of the substrate in the active site is observed in which the hydroxylatable site is oriented away from the active site molybdenum center. The orientation seen with indole-3-acetaldehyde has the substrate positioned with the indole ring rather than the exocyclic aldehyde nearest the molybdenum center, indicating that the substrate must rotate some 30° in the enzyme active site to permit hydroxylation of the aldehyde group (as observed experimentally), accounting for the reduced reactivity of the enzyme toward this substrate. The principal product of hydroxylation of indole-3-acetaldehyde by the bovine enzyme is confirmed to be indole-3-carboxylic acid based on its characteristic UV-vis spectrum, and the kinetics of enzyme reduction are reported. With guanine, the dominant orientation seen crystallographically has the C-8 position that might be hydroxylated pointed away from the active site molybdenum center, in a configuration resembling that seen previously with hypoxanthine (a substrate that is effectively hydroxylated at position 2). The ∼180° reorientation required to permit reaction is sterically prohibited, indicating that substrate (mis)orientation in the active site is a major factor precluding formation of the highly mutagenic 8-hydroxyguanine.

  17. Human and rodent carboxylesterases: immunorelatedness, overlapping substrate specificity, differential sensitivity to serine enzyme inhibitors, and tumor-related expression.

    PubMed

    Xie, Mingxing; Yang, Dongfang; Liu, Lan; Xue, Bob; Yan, Bingfang

    2002-05-01

    Carboxylesterases hydrolyze numerous endogenous and foreign compounds with diverse structures. Humans and rodents express multiple forms of carboxylesterases, which share a high degree of sequence identity (approximately 70%). Alignment analyses locate in carboxylesterases several functional subsites such the catalytic triad as seen in acetylcholinesterase. The aim of this study was to determine among human and rodent carboxylesterases the immunorelatedness, overlapping substrate specificity, differential sensitivity to serine enzyme inhibitors, tissue distribution, and tumor-related expression. Six antibodies against whole carboxylesterases or synthetic peptides were tested for their reactivity toward 11 human or rodent recombinant carboxylesterases. The antibodies against whole proteins generally exhibited a broader cross-reactivity than the anti-peptide antibodies. All carboxylesterases hydrolyzed para-nitrophenylacetate and para-nitrophenylbutyrate. However, the relative activity varied markedly from enzyme to enzyme (>20-fold), and some carboxylesterases showed a clear substrate preference. Carboxylesterases with the same functional subsites had a similar profile on substrate specificity and sensitivity toward phenylmethylsulfonyl fluoride (PMSF) and paraoxon, suggesting that these subsites play determinant roles in the recognition of substrates and inhibitors. Among three human carboxylesterases, HCE-1 hydrolyzed both substrates to a similar extent, whereas HCE-2 and HCE-3 showed an opposite substrate preference. All three enzymes were inhibited by PMSF and paraoxon, but they showed a marked difference in relative sensitivities. Based on immunoblotting analyses, HCE-1 was present in all tissues examined, whereas HCE-2 and HCE-3 were expressed in a tissue-restricted pattern. Colon carcinomas expressed slightly higher levels of HCE-1 and HCE-2 than the adjacent normal tissues, whereas the opposite was true with HCE-3.

  18. Structural Basis for the Activity and Substrate Specificity of Fluoroacetyl-CoA Thioesterase FlK

    PubMed Central

    Dias, Marcio V. B.; Huang, Fanglu; Chirgadze, Dimitri Y.; Tosin, Manuela; Spiteller, Dieter; Dry, Emily F. V.; Leadlay, Peter F.; Spencer, Jonathan B.; Blundell, Tom L.

    2010-01-01

    The thioesterase FlK from the fluoroacetate-producing Streptomyces cattleya catalyzes the hydrolysis of fluoroacetyl-coenzyme A. This provides an effective self-defense mechanism, preventing any fluoroacetyl-coenzyme A formed from being further metabolized to 4-hydroxy-trans-aconitate, a lethal inhibitor of the tricarboxylic acid cycle. Remarkably, FlK does not accept acetyl-coenzyme A as a substrate. Crystal structure analysis shows that FlK forms a dimer, in which each subunit adopts a hot dog fold as observed for type II thioesterases. Unlike other type II thioesterases, which invariably utilize either an aspartate or a glutamate as catalytic base, we show by site-directed mutagenesis and crystallography that FlK employs a catalytic triad composed of Thr42, His76, and a water molecule, analogous to the Ser/Cys-His-acid triad of type I thioesterases. Structural comparison of FlK complexed with various substrate analogues suggests that the interaction between the fluorine of the substrate and the side chain of Arg120 located opposite to the catalytic triad is essential for correct coordination of the substrate at the active site and therefore accounts for the substrate specificity. PMID:20430898

  19. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    SciTech Connect

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  20. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; ...

    2015-09-15

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting ofmore » two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show

  1. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    SciTech Connect

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu -Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc -André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60

  2. Specific and non-specific effects of potassium cations on substrate-protein interactions in cytochromes P450cam and P450lin.

    PubMed

    Deprez, Eric; Gill, Edward; Helms, Volkhard; Wade, Rebecca C; Hui Bon Hoa, Gaston

    2002-09-20

    Substrate binding to cytochrome P450cam is generally considered to be a two-step process. The first step corresponds to the entrance of the substrate, camphor, into the heme pocket. The second step corresponds to a spin transition (low spin-->high spin) of the iron in the protein-substrate complex. This spin transition is related to the mobility of the substrate inside the active site [Biochim Biophys Acta 1338 (1997) 77]. Potassium cations (K(+)) have a specific effect on the spin equilibrium. This is generally attributed to the K(+) ion-induced conformational change of tyrosine 96, the hydroxyl group of which is hydrogen bonded to the keto group of camphor and results in optimum substrate orientation and reduced mobility of this substrate in the active site. In the present paper, we show that K(+) not only affects the substrate-Tyr 96 couple, but acts more globally since K(+) effects are also observed in the Tyr96Phe mutant as well as in complexes with camphor-analogues. Large compounds, that fit well in the heme pocket and bind with higher affinity than camphor, display high spin contents that are less dependent on the presence of K(+). In contrast, K(+) has a significant effect on the high spin content of substrate-cytochrome P450cam complexes with looser interactions. We conclude that large compounds with higher affinities than camphor have more van der Waals contacts with the active site residues. Their mobilities are then reduced and less dependent on the presence of K(+). In this study, we also explored, for comparison, the K(+) effect on the spin transition state of another member of the P450 superfamily, cytochrome P450lin. This effect is not as strong as those observed for cytochrome P450cam. Even though the spin equilibrium does not change dramatically in the presence of K(+) or Na(+), the value of the dissociation constant (K(d)) for linalool binding is significantly affected by ionic strength. Analysis of the thermodynamic parameters for the linalool

  3. Measurements of weak interactions between truncated substrates and a hammerhead ribozyme by competitive kinetic analyses: implications for the design of new and efficient ribozymes with high sequence specificity

    PubMed Central

    Kasai, Yasuhiro; Shizuku, Hideki; Takagi, Yasuomi; Warashina, Masaki; Taira, Kazunari

    2002-01-01

    Exploitation of ribozymes in a practical setting requires high catalytic activity and strong specificity. The hammerhead ribozyme R32 has considerable potential in this regard since it has very high catalytic activity. In this study, we have examined how R32 recognizes and cleaves a specific substrate, focusing on the mechanism behind the specificity. Comparing rates of cleavage of a substrate in a mixture that included the correct substrate and various substrates with point mutations, we found that R32 cleaved the correct substrate specifically and at a high rate. To clarify the source of this strong specificity, we quantified the weak interactions between R32 and various truncated substrates, using truncated substrates as competitive inhibitors since they were not readily cleaved during kinetic measurements of cleavage of the correct substrate, S11. We found that the strong specificity of the cleavage reaction was due to a closed form of R32 with a hairpin structure. The self-complementary structure within R32 enabled the ribozyme to discriminate between the correct substrate and a mismatched substrate. Since this hairpin motif did not increase the Km (it did not inhibit the binding interaction) or decrease the kcat (it did not decrease the cleavage rate), this kind of hairpin structure might be useful for the design of new ribozymes with strong specificity and high activity. PMID:12034825

  4. Molecular evolution of the substrate specificity of ent-kaurene synthases to adapt to gibberellin biosynthesis in land plants.

    PubMed

    Shimane, Manami; Ueno, Yohei; Morisaki, Keiko; Oogami, Shingo; Natsume, Masahiro; Hayashi, Ken-Ichiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2014-09-15

    ent-Kaurene is a key intermediate in the biosynthesis of the plant hormone gibberellin. In ent-kaurene biosynthesis in flowering plants, two diterpene cyclases (DTCs), ent-copalyl diphosphate (ent-CDP) synthase (ent-CPS) and ent-kaurene synthase (KS), catalyse the cyclization of geranylgeranyl diphosphate to ent-CDP and ent-CDP to ent-kaurene, respectively. In contrast, the moss Physcomitrella patens has a bifunctional ent-CPS/KS (PpCPS/KS) that catalyses both cyclization reactions. To gain more insight into the functional diversity of ent-kaurene biosynthetic enzymes in land plants, we focused on DTCs in the lycophyte Selaginella moellendorffii. The present paper describes the characterization of two S. moellendorffii DTCs (SmKS and SmDTC3) in vitro. SmDTC3 converted ent-CDP into ent-16α-hydroxykaurane and also used other CDP stereoisomers as substrate. Remarkably, SmKS, which produces ent-kaurene from ent-CDP, showed similar substrate selectivity: both SmKS and SmDTC3 synthesized sandaracopimaradiene from normal CDP. Therefore, the diversity of substrate recognition among KSs from other plants was investigated. PpCPS/KS could use normal CDP and syn-CDP as well as ent-CDP as substrate. In contrast, lettuce KS showed high specificity for ent-CDP, and rice KS recognized only ent-CDP. Our studies imply that ancient KS having low substrate specificity has evolved to be specific for ent-CDP to the biosynthesis of gibberellin.

  5. Prediction of substrate specificity and preliminary kinetic characterization of the hypothetical protein PVX_123945 from Plasmodium vivax.

    PubMed

    Srinivasan, Bharath; Kempaiah Nagappa, Lakshmeesha; Shukla, Arpit; Balaram, Hemalatha

    2015-01-01

    Members of the haloacid dehalogenase (HAD) superfamily are emerging as an important group of enzymes by virtue of their role in diverse chemical reactions. In different Plasmodium species their number varies from 16 to 21. One of the HAD superfamily members, PVX_123945, a hypothetical protein from Plasmodium vivax, was selected for examining its substrate specificity. Based on distant homology searches and structure comparisons, it was predicted to be a phosphatase. Thirty-eight metabolites were screened to identify potential substrates. Further, to validate the prediction, biochemical and kinetic studies were carried out that showed that the protein was a monomer with high catalytic efficiency for β-glycerophosphate followed by pyridoxal 5'-phosphate. The enzyme also exhibited moderate catalytic efficiencies for α-glycerophosphate, xanthosine 5'-monophosphate and adenosine 5'-monophosphate. It also hydrolyzed the artificial substrate p-nitrophenyl phosphate (pNPP). Mg(2+) was the most preferred divalent cation and phosphate inhibited the enzyme activity. The study is the first attempt at understanding the substrate specificity of a hypothetical protein belonging to HAD superfamily from the malarial parasite P. vivax.

  6. An organic donor/acceptor lateral superlattice at the nanoscale.

    PubMed

    Otero, Roberto; Ecija, David; Fernandez, Gustavo; Gallego, José María; Sanchez, Luis; Martín, Nazario; Miranda, Rodolfo

    2007-09-01

    A precise control of the nanometer-scale morphology in systems containing mixtures of donor/acceptor molecules is a key factor to improve the efficiency of organic photovoltaic devices. Here we report on a scanning tunneling microscopy study of the first stages of growth of 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole, as electron donor, and phenyl-C61-butyric acid methyl ester, as electron acceptor, on a Au(111) substrate under ultrahigh vacuum conditions. Due to differences in bonding strength with the substrate and different interactions with the Au(111) herringbone surface reconstruction, mixed thin films spontaneously segregate into a lateral superlattice of interdigitated nanoscale stripes with a characteristic width of about 10-20 nm, a morphology that has been predicted to optimize the efficiency of organic solar cells.

  7. Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member

    SciTech Connect

    Lim, Kap; Pullalarevu, Sadhana; Surabian, Karen Talin; Howard, Andrew; Suzuki, Tomohiko; Moult, John; Herzberg, Osnat

    2010-03-12

    a heterodimer emerged as the physiological form of the enzyme. As a consequence, the homodimer interface (either solely {alpha} or solely {beta} chains) has been corrupted. In the unbound state, GK exhibits an open conformation analogous to that observed with ligand-free CK or AK. Upon binding the transition state analogue, both subunits of GK undergo the same closure motion that clasps the transition state analogue, in contrast to the transition state analogue complexes of CK, where the corresponding transition state analogue occupies only one subunit, which undergoes domain closure. The active site environments of the GK, CK, and AK at the bound states reveal the structural determinants of substrate specificity. Despite the equivalent binding in both active sites of the GK dimer, the conformational asymmetry of the N-termini is retained. Thus, the coupling between the structural asymmetry and negative cooperativity previously proposed for CK is not supported in the case of GK.

  8. Structural insights into substrate specificity of Feruloyl-CoA 6’-Hydroxylase from Arabidopsis thaliana

    DOE PAGES

    Sun, Xinxiao; Zhou, Dayong; Kandavelu, Palani; ...

    2015-05-20

    Coumarins belong to an important class of plant secondary metabolites. Feruloyl-CoA 6’-hydroxylase (F6’H), a 2-oxoglutarate dependent dioxygenase (2OGD), catalyzes a pivotal step in the biosynthesis of a simple coumarin scopoletin. In this study, we determined the 3-dimensional structure of the F6’H1 apo enzyme by X-ray crystallography. It is the first reported structure of a 2OGD enzyme involved in coumarin biosynthesis and closely resembles the structure of Arabidopsis thaliana anthocyanidin synthase. To better understand the mechanism of enzyme catalysis and substrate specificity, we also generated a homology model of a related ortho-hydroxylase (C2’H) from sweet potato. By comparing these two structures,more » we targeted two amino acid residues and verified their roles in substrate binding and specificity by site-directed mutagenesis.« less

  9. Crystal Structure of Human Myotubularin-Related Protein 1 Provides Insight into the Structural Basis of Substrate Specificity.

    PubMed

    Bong, Seoung Min; Son, Kka-bi; Yang, Seung-Won; Park, Jae-Won; Cho, Jea-Won; Kim, Kyung-Tae; Kim, Hackyoung; Kim, Seung Jun; Kim, Young Jun; Lee, Byung Il

    2016-01-01

    Myotubularin-related protein 1 (MTMR1) is a phosphatase that belongs to the tyrosine/dual-specificity phosphatase superfamily. MTMR1 has been shown to use phosphatidylinositol 3-monophosphate (PI(3)P) and/or phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) as substrates. Here, we determined the crystal structure of human MTMR1. The refined model consists of the Pleckstrin homology (PH)-GRAM and phosphatase (PTP) domains. The overall structure was highly similar to the previously reported MTMR2 structure. Interestingly, two phosphate molecules were coordinated by strictly conserved residues located in the C(X)5R motif of the active site. Additionally, our biochemical studies confirmed the substrate specificity of MTMR1 for PI(3)P and PI(3,5)P2 over other phosphatidylinositol phosphates. Our structural and enzymatic analyses provide insight into the catalytic mechanism and biochemical properties of MTMR1.

  10. TMG-chitotriomycin as a probe for the prediction of substrate specificity of β-N-acetylhexosaminidases.

    PubMed

    Shiota, Hiroto; Kanzaki, Hiroshi; Hatanaka, Tadashi; Nitoda, Teruhiko

    2013-06-28

    TMG-chitotriomycin (1) produced by the actinomycete Streptomyces annulatus NBRC13369 was examined as a probe for the prediction of substrate specificity of β-N-acetylhexosaminidases (HexNAcases). According to the results of inhibition assays, 14 GH20 HexNAcases from various organisms were divided into 1-sensitive and 1-insensitive enzymes. Three representatives of each group were investigated for their substrate specificity. The 1-sensitive HexNAcases hydrolyzed N-acetylchitooligosaccharides but not N-glycan-type oligosaccharides, whereas the 1-insensitive enzymes hydrolyzed N-glycan-type oligosaccharides but not N-acetylchitooligosaccharides, indicating that TMG-chitotriomycin can be used as a molecular probe to distinguish between chitin-degrading HexNAcases and glycoconjugate-processing HexNAcases.

  11. Structural Insights into Substrate Specificity of Feruloyl-CoA 6’-Hydroxylase from Arabidopsis thaliana

    PubMed Central

    Sun, Xinxiao; Zhou, Dayong; Kandavelu, Palani; Zhang, Hua; Yuan, Qipeng; Wang, Bi-Cheng; Rose, John; Yan, Yajun

    2015-01-01

    Coumarins belong to an important class of plant secondary metabolites. Feruloyl-CoA 6’-hydroxylase (F6’H), a 2-oxoglutarate dependent dioxygenase (2OGD), catalyzes a pivotal step in the biosynthesis of a simple coumarin scopoletin. In this study, we determined the 3-dimensional structure of the F6’H1 apo enzyme by X-ray crystallography. It is the first reported structure of a 2OGD enzyme involved in coumarin biosynthesis and closely resembles the structure of Arabidopsis thaliana anthocyanidin synthase. To better understand the mechanism of enzyme catalysis and substrate specificity, we also generated a homology model of a related ortho-hydroxylase (C2’H) from sweet potato. By comparing these two structures, we targeted two amino acid residues and verified their roles in substrate binding and specificity by site-directed mutagenesis. PMID:25993561

  12. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase

    SciTech Connect

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-07-11

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases.

  13. Small molecules that dramatically alter multidrug resistance phenotype by modulating the substrate specificity of P-glycoprotein

    PubMed Central

    Kondratov, Roman V.; Komarov, Pavel G.; Becker, Yigal; Ewenson, Ariel; Gudkov, Andrei V.

    2001-01-01

    By screening a chemical library for the compounds protecting cells from adriamycin (Adr), a series of small molecules was isolated that interfered with the accumulation of Adr in mouse fibroblasts by enhancing efflux of the drug. Isolated compounds also stimulated efflux of Rhodamine 123 (Rho-123), another substrate of multidrug transporters. Stimulation of drug efflux was detectable in the cells expressing P-glycoprotein (P-gp), but not in their P-gp-negative variants, and was completely reversible by the P-gp inhibitors. A dramatic stimulation of P-gp activity against Adr and Rho-123 by the identified compounds was accompanied by suppression of P-gp-mediated efflux of other substrates, such as Taxol (paclitaxel) or Hoechst 33342, indicating that they act as modulators of substrate specificity of P-gp. Consistently, P-gp modulators dramatically altered the pattern of cross-resistance of P-gp-expressing cells to different P-gp substrates: an increase in resistance to Adr, daunorubicin, and etoposide was accompanied by cell sensitization to Vinca alkaloids, gramicidin D, and Taxol with no effect on cell sensitivity to colchicine, actinomycin D, puromycin, and colcemid, as well as to several non-P-gp substrates. The relative effect of P-gp modulators against different substrates varied among the isolated compounds that can be used as fine tools for analyzing mechanisms of drug selectivity of P-gp. These results raise the possibility of a rational control over cell sensitivity to drugs and toxins through modulation of P-gp activity by small molecules. PMID:11707575

  14. Probing the molecular basis of substrate specificity, stereospecificity, and catalysis in the class II pyruvate aldolase, BphI.

    PubMed

    Baker, Perrin; Carere, Jason; Seah, Stephen Y K

    2011-05-03

    BphI, a pyruvate-specific class II aldolase found in the polychlorinated biphenyls (PCBs) degradation pathway, catalyzes the reversible C-C bond cleavage of (4S)-hydroxy-2-oxoacids to form pyruvate and an aldehyde. Mutations were introduced into bphI to probe the contribution of active site residues to substrate recognition and catalysis. In contrast to the wild-type enzyme that has similar specificities for acetaldehyde and propionaldehyde, the L87A variant exhibited a 40-fold preference for propionaldehyde over acetaldehyde. The specificity constant of the L89A variant in the aldol addition reaction using pentaldehyde is increased ∼50-fold, making it more catalytically efficient for pentaldehyde utilization compared to the wild-type utilization of the natural substrate, acetaldehyde. Replacement of Tyr-290 with phenylalanine or serine resulted in a loss of stereochemical control as the variants were able to utilize substrates with both R and S configurations at C4 with similar kinetic parameters. Aldol cleavage and pyruvate α-proton exchange activity were undetectable in the R16A variant, supporting the role of Arg-16 in stabilizing a pyruvate enolate intermediate. The pH dependence of the enzyme is consistent with a single deprotonation by a catalytic base with pK(a) values of approximately 7. In H20A and H20S variants, pH profiles show the dependence of enzyme activity on hydroxide concentration. On the basis of these results, a catalytic mechanism is proposed.

  15. The role of substrate specificity and metal binding in defining the activity and structure of an intracellular subtilisin.

    PubMed

    Gamble, Michael; Künze, Georg; Brancale, Andrea; Wilson, Keith S; Jones, D Dafydd

    2012-01-01

    The dimeric intracellular subtilisin proteases (ISPs) found throughout Gram-positive bacteria are a structurally distinct class of the subtilase family. Unlike the vast majority of subtilisin-like proteases, the ISPs function exclusively within the cell, contributing the majority of observed cellular proteolytic activity. Given that they are active within the cell, little is known about substrate specificity and the role of stress signals such as divalent metal ions in modulating ISP function. We demonstrate that both play roles in defining the proteolytic activity of Bacillus clausii ISP and propose the molecular basis of their effects. Enzyme kinetics reveal that one particular synthetic tetrapeptide substrate, Phe-Ala-Ala-Phe-pNA, is hydrolysed with a catalytic efficiency ∼100-fold higher than any other tested. Heat-denatured whole proteins were found to be better substrates for ISP than the native forms. Substrate binding simulations suggest that the S1, S2 and S4 sites form defined binding pockets. The deep S1 cavity and wide S4 site are fully occupied by the hydrophobic aromatic side-chains of Phe. Divalent metal ions, probably Ca(2+), are proposed to be important for ISP activity through structural changes. The presence of >0.01 mM EDTA inactivates ISP, with CD and SEC suggesting that the protein becomes less structured and potentially monomeric. Removal of Ca(2+) at sites close to the dimer interface and the S1 pocket are thought to be responsible for the effect. These studies provide a new insight into the potential physiological function of ISPs, by reconciling substrate specificity and divalent metal binding to associate ISP with the unfolded protein response under stress conditions.

  16. The role of substrate specificity and metal binding in defining the activity and structure of an intracellular subtilisin

    PubMed Central

    Gamble, Michael; Künze, Georg; Brancale, Andrea; Wilson, Keith S.; Jones, D. Dafydd

    2012-01-01

    The dimeric intracellular subtilisin proteases (ISPs) found throughout Gram-positive bacteria are a structurally distinct class of the subtilase family. Unlike the vast majority of subtilisin-like proteases, the ISPs function exclusively within the cell, contributing the majority of observed cellular proteolytic activity. Given that they are active within the cell, little is known about substrate specificity and the role of stress signals such as divalent metal ions in modulating ISP function. We demonstrate that both play roles in defining the proteolytic activity of Bacillus clausii ISP and propose the molecular basis of their effects. Enzyme kinetics reveal that one particular synthetic tetrapeptide substrate, Phe-Ala-Ala-Phe-pNA, is hydrolysed with a catalytic efficiency ∼100-fold higher than any other tested. Heat-denatured whole proteins were found to be better substrates for ISP than the native forms. Substrate binding simulations suggest that the S1, S2 and S4 sites form defined binding pockets. The deep S1 cavity and wide S4 site are fully occupied by the hydrophobic aromatic side-chains of Phe. Divalent metal ions, probably Ca2+, are proposed to be important for ISP activity through structural changes. The presence of >0.01 mM EDTA inactivates ISP, with CD and SEC suggesting that the protein becomes less structured and potentially monomeric. Removal of Ca2+ at sites close to the dimer interface and the S1 pocket are thought to be responsible for the effect. These studies provide a new insight into the potential physiological function of ISPs, by reconciling substrate specificity and divalent metal binding to associate ISP with the unfolded protein response under stress conditions. PMID:23650602

  17. Bacterial Anabaena variabilis phenylalanine ammonia lyase: a biocatalyst with broad substrate specificity.

    PubMed

    Lovelock, Sarah L; Turner, Nicholas J

    2014-10-15

    Phenylalanine ammonia lyases (PALs) catalyse the regio- and stereoselective hydroamination of cinnamic acid analogues to yield optically enriched α-amino acids. Herein, we demonstrate that a bacterial PAL from Anabaena variabilis (AvPAL) displays significantly higher activity towards a series of non-natural substrates than previously described eukaryotic PALs. Biotransformations performed on a preparative scale led to the synthesis of the 2-chloro- and 4-trifluoromethyl-phenylalanine derivatives in excellent ee, highlighting the enormous potential of bacterial PALs as biocatalysts for the synthesis of high value, non-natural amino acids.

  18. Probing the substrate specificity of the bacterial Pnkp/Hen1 RNA repair system using synthetic RNAs.

    PubMed

    Zhang, Can; Chan, Chio Mui; Wang, Pei; Huang, Raven H

    2012-02-01

    Ribotoxins cleave essential RNAs involved in protein synthesis as a strategy for cell killing. RNA repair systems exist in nature to counteract the lethal actions of ribotoxins, as first demonstrated by the RNA repair system from bacteriophage T4 25 yr ago. Recently, we found that two bacterial proteins, named Pnkp and Hen1, form a stable complex and are able to repair ribotoxin-cleaved tRNAs in vitro. However, unlike the well-studied T4 RNA repair system, the natural RNA substrates of the bacterial Pnkp/Hen1 RNA repair system are unknown. Here we present comprehensive RNA repair assays with the recombinant Pnkp/Hen1 proteins from Anabaena variabilis using a total of 33 different RNAs as substrates that might mimic various damaged forms of RNAs present in living cells. We found that unlike the RNA repair system from bacteriophage T4, the bacterial Pnkp/Hen1 RNA repair system exhibits broad substrate specificity. Based on the experimental data presented here, a model of preferred RNA substrates of the Pnkp/Hen1 repair system is proposed.

  19. Design of Peptide Substrate for Sensitively and Specifically Detecting Two Aβ-Degrading Enzymes: Neprilysin and Angiotensin-Converting Enzyme.

    PubMed

    Chen, Po-Ting; Chen, Chao-Long; Lin, Lilian Tsai-Wei; Lo, Chun-Hsien; Hu, Chaur-Jong; Chen, Rita P-Y; Wang, Steven S-S

    2016-01-01

    Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer's disease (AD). This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12-16)AAC (with the sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12-16)AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12-16)AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE), but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1-7)C [which is sensitive to NEP and insulin-degrading enzyme (IDE)], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1-7)C and qf-Aβ(12-16)AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells.

  20. Design of Peptide Substrate for Sensitively and Specifically Detecting Two Aβ-Degrading Enzymes: Neprilysin and Angiotensin-Converting Enzyme

    PubMed Central

    Chen, Po-Ting; Chen, Chao-Long; Lin, Lilian Tsai-Wei; Lo, Chun-Hsien; Hu, Chaur-Jong; Chen, Rita P.-Y.; Wang, Steven S.-S.

    2016-01-01

    Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer’s disease (AD). This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12–16)AAC (with the sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12–16)AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12–16)AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE), but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1–7)C [which is sensitive to NEP and insulin-degrading enzyme (IDE)], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1–7)C and qf-Aβ(12–16)AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells. PMID:27096746

  1. The Structure of Allophanate Hydrolase from Granulibacter bethesdensis Provides Insights into Substrate Specificity in the Amidase Signature Family

    SciTech Connect

    Lin, Yi; Maurice, Martin

    2013-01-02

    Allophanate hydrolase (AH) catalyzes the hydrolysis of allophanate, an intermediate in atrazine degradation and urea catabolism pathways, to NH3 and CO2. AH belongs to the amidase signature family, which is characterized by a conserved block of 130 amino acids rich in Gly and Ser and a Ser-cis-Ser-Lys catalytic triad. In this study, the first structures of AH fromGranulibacter bethesdensis were determined, with and without the substrate analogue malonate, to 2.2 and 2.8 Å, respectively. The structures confirm the identity of the catalytic triad residues and reveal an altered dimerization interface that is not conserved in the amidase signature family. The structures also provide insights into previously unrecognized substrate specificity determinants in AH. Two residues, Tyr299 and Arg307, are within hydrogen bonding distance of a carboxylate moiety of malonate. Both Tyr299 and Arg307 were mutated, and the resulting modified enzymes revealed >3 order of magnitude reductions in both catalytic efficiency and substrate stringency. It is proposed that Tyr299 and Arg307 serve to anchor and orient the substrate for attack by the catalytic nucleophile, Ser172. The structure further suggests the presence of a unique C-terminal domain in AH. While this domain is conserved, it does not contribute to catalysis or to the structural integrity of the core domain, suggesting that it may play a role in mediating transient and specific interactions with the urea carboxylase component of urea amidolyase. Analysis of the AH active site architecture offers new insights into common determinants of catalysis and specificity among divergent members of the amidase signature family.

  2. A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity

    PubMed Central

    Rivera-Perez, Crisalejandra; Nyati, Pratik; Noriega, Fernando G.

    2015-01-01

    Farnesyl diphosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis, it catalyzes the head-to-tail condensation of dimethylallyl diphosphate (DMAPP) with two molecules of isopentenyl diphosphate (IPP) to generate farnesyl diphosphate (FPP), a precursor of juvenile hormone (JH). In this study, we functionally characterized an Aedes aegypti FPPS (AaFPPS) expressed in the corpora allata. AaFPPS is the only FPPS gene present in the genome of the yellow fever mosquito, it encodes a 49.6 kDa protein exhibiting all the characteristic conserved sequence domains on prenyltransferases. AaFPPS displays its activity in the presence of metal cofactors; and the product condensation is dependent of the divalent cation. Mg2+ ions lead to the production of FPP, while the presence of Co2+ ions lead to geranyl diphosphate (GPP) production. In the presence of Mg2+ the AaFPPS affinity for allylic substrates is GPP>DMAPP>IPP. These results suggest that AaFPPS displays “catalytic promiscuity”, changing the type and ratio of products released (GPP or FPP) depending on allylic substrate concentrations and the presence of different metal cofactors. This metal ion-dependent regulatory mechanism allows a single enzyme to selectively control the metabolites it produces, thus potentially altering the flow of carbon into separate metabolic pathways. PMID:26188328

  3. A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity.

    PubMed

    Rivera-Perez, Crisalejandra; Nyati, Pratik; Noriega, Fernando G

    2015-09-01

    Farnesyl diphosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis, it catalyzes the head-to-tail condensation of dimethylallyl diphosphate (DMAPP) with two molecules of isopentenyl diphosphate (IPP) to generate farnesyl diphosphate (FPP), a precursor of juvenile hormone (JH). In this study, we functionally characterized an Aedes aegypti FPPS (AaFPPS) expressed in the corpora allata. AaFPPS is the only FPPS gene present in the genome of the yellow fever mosquito, it encodes a 49.6 kDa protein exhibiting all the characteristic conserved sequence domains on prenyltransferases. AaFPPS displays its activity in the presence of metal cofactors; and the product condensation is dependent of the divalent cation. Mg(2+) ions lead to the production of FPP, while the presence of Co(2+) ions lead to geranyl diphosphate (GPP) production. In the presence of Mg(2+) the AaFPPS affinity for allylic substrates is GPP > DMAPP > IPP. These results suggest that AaFPPS displays "catalytic promiscuity", changing the type and ratio of products released (GPP or FPP) depending on allylic substrate concentrations and the presence of different metal cofactors. This metal ion-dependent regulatory mechanism allows a single enzyme to selectively control the metabolites it produces, thus potentially altering the flow of carbon into separate metabolic pathways.

  4. Engineering the substrate specificity of a thermophilic penicillin acylase from thermus thermophilus.

    PubMed

    Torres, Leticia L; Cantero, Angel; del Valle, Mercedes; Marina, Anabel; López-Gallego, Fernando; Guisán, José M; Berenguer, José; Hidalgo, Aurelio

    2013-03-01

    A homologue of the Escherichia coli penicillin acylase is encoded in the genomes of several thermophiles, including in different Thermus thermophilus strains. Although the natural substrate of this enzyme is not known, this acylase shows a marked preference for penicillin K over penicillin G. Three-dimensional models were created in which the catalytic residues and the substrate binding pocket were identified. Through rational redesign, residues were replaced to mimic the aromatic binding site of the E. coli penicillin G acylase. A set of enzyme variants containing between one and four amino acid replacements was generated, with altered catalytic properties in the hydrolyses of penicillins K and G. The introduction of a single phenylalanine residue in position α188, α189, or β24 improved the K(m) for penicillin G between 9- and 12-fold, and the catalytic efficiency of these variants for penicillin G was improved up to 6.6-fold. Structural models, as well as docking analyses, can predict the positioning of penicillins G and K for catalysis and can demonstrate how binding in a productive pose is compromised when more than one bulky phenylalanine residue is introduced into the active site.

  5. Substrate specificity of mammalian N-terminal α-amino methyltransferase

    PubMed Central

    Petkowski, Janusz J.; Schaner Tooley, Christine E.; Anderson, Lissa C.; Shumilin, Igor A.; Balsbaugh, Jeremy L.; Shabanowitz, Jeffrey; Hunt, Donald F.; Minor, Wladek; Macara, Ian G.

    2012-01-01

    N-terminal methylation of free α-amino-groups is a post-translational modification of proteins that has been known for 30 years but has been very little studied. In this modification, the initiating M residue is cleaved and the exposed α-amino group is mono- di- or trimethylated by NRMT, a recently identified N-terminal methyltransferase. Currently, all known eukaryotic α-aminomethylated proteins have a unique N-terminal motif, M-X-P-K, where X is A, P, or S. NRMT can also methylate artificial substrates in vitro in which X is G, F, Y, C, M, K, R, N, Q or H. Methylation efficiencies of N-terminal amino acids are variable with respect to the identity of X. Here we use in vitro peptide methylation assays and substrate immunoprecipitations to show that the canonical M-X-P-K methylation motif is not the only one recognized by NRMT. We predict that N-terminal methylation is a widespread post-translational modification, and that there is interplay between N-terminal acetylation and N-terminal methylation. We also use isothermal calorimetry experiments to demonstrate that NRMT can efficiently recognize and bind to its fully methylated products. PMID:22769851

  6. Molecular Characterization and Substrate Specificity of Nitrobenzene Dioxygenase from Comamonas sp. Strain JS765

    PubMed Central

    Lessner, Daniel J.; Johnson, Glenn R.; Parales, Rebecca E.; Spain, Jim C.; Gibson, David T.

    2002-01-01

    Comamonas sp. strain JS765 can grow with nitrobenzene as the sole source of carbon, nitrogen, and energy. We report here the sequence of the genes encoding nitrobenzene dioxygenase (NBDO), which catalyzes the first step in the degradation of nitrobenzene by strain JS765. The components of NBDO were designated ReductaseNBZ, FerredoxinNBZ, OxygenaseNBZα, and OxygenaseNBZβ, with the gene designations nbzAa, nbzAb, nbzAc, and nbzAd, respectively. Sequence analysis showed that the components of NBDO have a high level of homology with the naphthalene family of Rieske nonheme iron oxygenases, in particular, 2-nitrotoluene dioxygenase from Pseudomonas sp. strain JS42. The enzyme oxidizes a wide range of substrates, and relative reaction rates with partially purified OxygenaseNBZ revealed a preference for 3-nitrotoluene, which was shown to be a growth substrate for JS765. NBDO is the first member of the naphthalene family of Rieske nonheme iron oxygenases reported to oxidize all of the isomers of mono- and dinitrotoluenes with the concomitant release of nitrite. PMID:11823201

  7. Partial purification and substrate specificity of a ubiquitin hydrolase from Saccharomyces cerevisiae.

    PubMed Central

    Agell, N; Ryan, C; Schlesinger, M J

    1991-01-01

    A ubiquitin hydrolase that removes ubiquitin from a multi-ubiquitinated protein has been purified 600-fold from Saccharomyces cerevisiae. Four different ubiquitin-protein conjugates were assayed as substrates during the purification procedure. Enzymic activities that removed ubiquitin from ubiquitinated histone H2A, a ubiquitin-ubiquitin dimer and a ubiquitin-ribosomal fusion protein were separated during the purification from an activity that removed a single ubiquitin molecule linked by an isopeptide bond to a ubiquitinated protein. The size of the native enzyme was 160 kDa, based on its sedimentation in a sucrose gradient, and the subunit molecular mass was estimated to be 160 kDa, based on a profile of proteins eluted in different fractions by thiol-affinity chromatography. The partially purified hydrolase was not inhibited by a variety of protease inhibitors, except for thiol-blocking reagents. The natural substrate for this enzyme may be the polyubiquitin chain containing ubiquitin molecules bound to each other in isopeptide bonds, with one of them linked to a lysine residue of a protein targeted for intracellular proteolysis. Images Fig. 1. Fig. 3. PMID:1847617

  8. The structure and substrate specificity of human Cdk12/Cyclin K

    PubMed Central

    Bösken, Christian A.; Farnung, Lucas; Hintermair, Corinna; Merzel Schachter, Miriam; Vogel-Bachmayr, Karin; Blazek, Dalibor; Anand, Kanchan; Fisher, Robert P.; Eick, Dirk; Geyer, Matthias

    2014-01-01

    Phosphorylation of the RNA polymerase II C-terminal domain (CTD) by cyclin-dependent kinases is important for productive transcription. Here we determine the crystal structure of Cdk12/CycK and analyse its requirements for substrate recognition. Active Cdk12/CycK is arranged in an open conformation similar to that of Cdk9/CycT but different from those of cell cycle kinases. Cdk12 contains a C-terminal extension that folds onto the N- and C-terminal lobes thereby contacting the ATP ribose. The interaction is mediated by an HE motif followed by a polybasic cluster that is conserved in transcriptional CDKs. Cdk12/CycK showed the highest activity on a CTD substrate prephosphorylated at position Ser7, whereas the common Lys7 substitution was not recognized. Flavopiridol is most potent towards Cdk12 but was still 10-fold more potent towards Cdk9. T-loop phosphorylation of Cdk12 required coexpression with a Cdk-activating kinase. These results suggest the regulation of Pol II elongation by a relay of transcriptionally active CTD kinases. PMID:24662513

  9. Altering the Substrate Specificity of Organophosphorus Hydrolase for Enhanced Hydrolysis of Chlorpyrifos

    PubMed Central

    Cho, Catherine Mee-Hie; Mulchandani, Ashok; Chen, Wilfred

    2004-01-01

    Chlorpyrifos is one of the most popular pesticides used for agriculture crop protection, and widespread contamination is a potential concern. However, chlorpyrifos is hydrolyzed almost 1,000-fold slower than the preferred substrate, paraoxon, by organophosphorus hydrolase (OPH), an enzyme that can degrade a broad range of organophosphate pesticides. We have recently demonstrated that directed evolution can be used to generate OPH variants with up to 25-fold improvement in hydrolysis of methyl parathion. The obvious question and challenge are whether similar success could be achieved with this poorly hydrolyzed substrate, chlorpyrifos. For this study, five improved variants were selected from two rounds of directed evolution based on the formation of clear haloes on Luria-Bertani plates overlaid with chlorpyrifos. One variant, B3561, exhibited a 725-fold increase in the kcat/Km value for chlorpyrifos hydrolysis as well as enhanced hydrolysis rates for several other OP compounds tested. Considering that wild-type OPH hydrolyzes paraoxon at a rate close to the diffusion control limit, the 39-fold improvement in hydrolysis of paraoxon by B3561 suggests that this variant is one of the most efficient enzymes available to attack a wide spectrum of organophosphate nerve agents. PMID:15294802

  10. Comparative Analysis of the Substrate Specificity of trans- versus cis-Acyltransferases of Assembly Line Polyketide Synthases

    PubMed Central

    2015-01-01

    Due to their pivotal role in extender unit selection during polyketide biosynthesis, acyltransferase (AT) domains are important engineering targets. A subset of assembly line polyketide synthases (PKSs) are serviced by discrete, trans-acting ATs. Theoretically, these trans-ATs can complement an inactivated cis-AT, promoting introduction of a noncognate extender unit. This approach requires a better understanding of the substrate specificity and catalytic mechanism of naturally occurring trans-ATs. We kinetically analyzed trans-ATs from the disorazole and kirromycin synthases and compared them to a representative cis-AT from the 6-deoxyerythronolide B synthase (DEBS). During transacylation, the disorazole AT favored malonyl-CoA over methylmalonyl-CoA by >40000-fold, whereas the kirromycin AT favored ethylmalonyl-CoA over methylmalonyl-CoA by 20-fold. Conversely, the disorazole AT had broader specificity than its kirromycin counterpart for acyl carrier protein (ACP) substrates. The presence of the ACP had little effect on the specificity (kcat/KM) of the cis-AT domain for carboxyacyl-CoA substrates but had a marked influence on the corresponding specificity parameters for the trans-ATs, suggesting that these enzymes do not act strictly by a canonical ping-pong mechanism. To investigate the relevance of the kinetic analysis of isolated ATs in the context of intact PKSs, we complemented an in vitro AT-null DEBS assembly line with either trans-AT. Whereas the disorazole AT efficiently complemented the mutant PKS at substoichiometric protein ratios, the kirromycin AT was considerably less effective. Our findings suggest that knowledge of both carboxyacyl-CoA and ACP specificity is critical to the choice of a trans-AT in combination with a mutant PKS to generate novel polyketides. PMID:24871074

  11. Acceptor conductivity in bulk zinc oxide (0001) crystals

    NASA Astrophysics Data System (ADS)

    Adekore, Bababunmi Tolu

    ZnO is a promising wide bandgap semiconductor. Its renowned and prominent properties as its bandgap of 3.37eV at 4.2K; its very high excitonic binding energy, 60meV; its high melting temperature, 2248K constitute the basis for the recently renewed and sustained scientific interests in the material. In addition to the foregoing, the availability of bulk substrates of industrially relevant sizes provides important opportunities such as homoepitaxial deposition of the material which is a technological asset in the production of efficient optoelectronic and electronic devices. The nemesis of wide bandgap materials cannot be more exemplified than in ZnO. The notorious limitation of asymmetric doping and the haunting plague of electrically active point defects dim the bright future of the material. In this case, the search for reliable and consistent acceptor conductivity in bulk substrates has been hitherto, unsuccessful. In the dissertation that now follows, our efforts have been concerted in the search for a reliable acceptor. We have carefully investigated the science of point defects in the material, especially those responsible for the high donor conductivity. We also investigated and herein report variety of techniques of introducing acceptors into the material. We employ the most relevant and informative characterization techniques in verifying both the intended conductivity and the response of intrinsic crystals to variation in temperature and strain. And finally we explain deviations, where they exist, from ideal acceptor characteristics. Our work on reliable acceptor has been articulated in four papers. The first establishing capacitance based methods of monitoring electrically active donor defects. The second investigates the nature of anion acceptors on the oxygen sublattice. A study similar to the preceding study was conducted for cation acceptors on the zinc sublattice and reported in the third paper. Finally, an analysis of the response of the crystal to

  12. Structural and mutational analyses of dipeptidyl peptidase 11 from Porphyromonas gingivalis reveal the molecular basis for strict substrate specificity

    PubMed Central

    Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Inaka, Koji; Tanaka, Hiroaki; Yamada, Mitsugu; Ohta, Kazunori; Gouda, Hiroaki; Nonaka, Takamasa; Ogasawara, Wataru; Tanaka, Nobutada

    2015-01-01

    The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to the S46 family of serine peptidases and preferentially cleaves substrates with Asp/Glu at the P1 position. The molecular mechanism underlying the substrate specificity of PgDPP11, however, is unknown. Here, we report the crystal structure of PgDPP11. The enzyme contains a catalytic domain with a typical double β-barrel fold and a recently identified regulatory α-helical domain. Crystal structure analyses, docking studies, and biochemical studies revealed that the side chain of Arg673 in the S1 subsite is essential for recognition of the Asp/Glu side chain at the P1 position of the bound substrate. Because S46 peptidases are not found in mammals and the Arg673 is conserved among DPP11s, we anticipate that DPP11s could be utilised as targets for antibiotics. In addition, the present structure analyses could be useful templates for the design of specific inhibitors of DPP11s from pathogenic organisms. PMID:26057589

  13. Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity.

    PubMed

    Nageshwar, Y V D; Sheelu, Gurrala; Shambhu, Rekha Rao; Muluka, Hemalatha; Mehdi, Nooreen; Malik, M Shaheer; Kamal, Ahmed

    2011-06-01

    Microbial nitrilases are biocatalysts of interest and the enzyme produced using various inducers exhibits altered substrate specificity, which is of great interest in bioprocess development. The aim of the present study is to investigate the nitrilase-producing Alcaligenes faecalis MTCC 10757 (IICT-A3) for its ability to transform various nitriles in the presence of different inducers after optimization of various parameters for maximum enzyme production and activity. The production of A. faecalis MTCC 10757 (IICT-A3) nitrilase was optimum with glucose (1.0%), acrylonitrile (0.1%) at pH 7.0. The nitrilase activity of A. faecalis MTCC 10757 (IICT-A3) was optimum at 35 °C, pH 8.0 and the enzyme was stable up to 6 h at 50 °C. The nitrilase enzyme produced using different inducers was investigated for substrate specificity. The enzyme hydrolyzed aliphatic, heterocyclic and aromatic nitriles with different substitutions. Acrylonitrile was the most preferred substrate (~40 U) as well as inducer. Benzonitrile was hydrolyzed with almost twofold higher relative activity than acrylonitrile when it was used as an inducer. The versatile nitrilase-producing A. faecalis MTCC 10757 (IICT-A3) exhibits efficient conversion of both aliphatic and aromatic nitriles. The aromatic nitriles, which show not much or no affinity towards nitrilase from A. faecalis, are hydrolyzed effectively with this nitrilase-producing organism. Studies are in progress to exploit this organism for synthesis of industrially important compounds.

  14. Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans

    PubMed Central

    Nakajima, Masahiro; Tanaka, Nobukiyo; Furukawa, Nayuta; Nihira, Takanori; Kodutsumi, Yuki; Takahashi, Yuta; Sugimoto, Naohisa; Miyanaga, Akimasa; Fushinobu, Shinya; Taguchi, Hayao; Nakai, Hiroyuki

    2017-01-01

    Glycoside phosphorylases catalyze the phosphorolysis of oligosaccharides into sugar phosphates. Recently, we found a novel phosphorylase acting on β-1,2-glucooligosaccharides with degrees of polymerization of 3 or more (1,2-β-oligoglucan phosphorylase, SOGP) in glycoside hydrolase family (GH) 94. Here, we characterized SOGP from Lachnoclostridium phytofermentans (LpSOGP) and determined its crystal structure. LpSOGP is a monomeric enzyme that contains a unique β-sandwich domain (Ndom1) at its N-terminus. Unlike the dimeric GH94 enzymes possessing catalytic pockets at their dimer interface, LpSOGP has a catalytic pocket between Ndom1 and the catalytic domain. In the complex structure of LpSOGP with sophorose, sophorose binds at subsites +1 to +2. Notably, the Glc moiety at subsite +1 is flipped compared with the corresponding ligands in other GH94 enzymes. This inversion suggests the great distortion of the glycosidic bond between subsites −1 and +1, which is likely unfavorable for substrate binding. Compensation for this disadvantage at subsite +2 can be accounted for by the small distortion of the glycosidic bond in the sophorose molecule. Therefore, the binding mode at subsites +1 and +2 defines the substrate specificity of LpSOGP, which provides mechanistic insights into the substrate specificity of a phosphorylase acting on β-1,2-glucooligosaccharides. PMID:28198470

  15. Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity.

    PubMed

    Barbeyron, Tristan; Brillet-Guéguen, Loraine; Carré, Wilfrid; Carrière, Cathelène; Caron, Christophe; Czjzek, Mirjam; Hoebeke, Mark; Michel, Gurvan

    2016-01-01

    Sulfatases cleave sulfate groups from various molecules and constitute a biologically and industrially important group of enzymes. However, the number of sulfatases whose substrate has been characterized is limited in comparison to the huge diversity of sulfated compounds, yielding functional annotations of sulfatases particularly prone to flaws and misinterpretations. In the context of the explosion of genomic data, a classification system allowing a better prediction of substrate specificity and for setting the limit of functional annotations is urgently needed for sulfatases. Here, after an overview on the diversity of sulfated compounds and on the known sulfatases, we propose a classification database, SulfAtlas (http://abims.sb-roscoff.fr/sulfatlas/), based on sequence homology and composed of four families of sulfatases. The formylglycine-dependent sulfatases, which constitute the largest family, are also divided by phylogenetic approach into 73 subfamilies, each subfamily corresponding to either a known specificity or to an uncharacterized substrate. SulfAtlas summarizes information about the different families of sulfatases. Within a family a web page displays the list of its subfamilies (when they exist) and the list of EC numbers. The family or subfamily page shows some descriptors and a table with all the UniProt accession numbers linked to the databases UniProt, ExplorEnz, and PDB.

  16. High substrate specificity of ipsdienol dehydrogenase (IDOLDH), a short-chain dehydrogenase from Ips pini bark beetles.

    PubMed

    Figueroa-Teran, Rubi; Pak, Heidi; Blomquist, Gary J; Tittiger, Claus

    2016-09-01

    Ips spp. bark beetles use ipsdienol, ipsenol, ipsdienone and ipsenone as aggregation pheromone components and pheromone precursors. For Ips pini, the short-chain oxidoreductase ipsdienol dehydrogenase (IDOLDH) converts (-)-ipsdienol to ipsdienone, and thus likely plays a role in determining pheromone composition. In order to further understand the role of IDOLDH in pheromone biosynthesis, we compared IDOLDH to its nearest functionally characterized ortholog with a solved structure: human L-3-hydroxyacyl-CoA dehydrogenase type II/ amyloid-β binding alcohol dehydrogenase (hHADH II/ABAD), and conducted functional assays of recombinant IDOLDH to determine substrate and product ranges and structural characteristics. Although IDOLDH and hHADH II/ABAD had only 35% sequence identity, their predicted tertiary structures had high identity. We found IDOLDH is a functional homo-tetramer. In addition to oxidizing (-)-ipsdienol, IDOLDH readily converted racemic ipsenol to ipsenone, and stereo-specifically reduced both ketones to their corresponding (-)-alcohols. The (+)-enantiomers were never observed as products. Assays with various substrate analogs showed IDOLDH had high substrate specificity for (-)-ipsdienol, ipsenol, ipsenone and ipsdienone, supporting that IDOLDH functions as a pheromone-biosynthetic enzyme. These results suggest that different IDOLDH orthologs and or activity levels contribute to differences in Ips spp. pheromone composition.

  17. Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity

    PubMed Central

    Barbeyron, Tristan; Brillet-Guéguen, Loraine; Carré, Wilfrid; Carrière, Cathelène; Caron, Christophe; Czjzek, Mirjam; Hoebeke, Mark; Michel, Gurvan

    2016-01-01

    Sulfatases cleave sulfate groups from various molecules and constitute a biologically and industrially important group of enzymes. However, the number of sulfatases whose substrate has been characterized is limited in comparison to the huge diversity of sulfated compounds, yielding functional annotations of sulfatases particularly prone to flaws and misinterpretations. In the context of the explosion of genomic data, a classification system allowing a better prediction of substrate specificity and for setting the limit of functional annotations is urgently needed for sulfatases. Here, after an overview on the diversity of sulfated compounds and on the known sulfatases, we propose a classification database, SulfAtlas (http://abims.sb-roscoff.fr/sulfatlas/), based on sequence homology and composed of four families of sulfatases. The formylglycine-dependent sulfatases, which constitute the largest family, are also divided by phylogenetic approach into 73 subfamilies, each subfamily corresponding to either a known specificity or to an uncharacterized substrate. SulfAtlas summarizes information about the different families of sulfatases. Within a family a web page displays the list of its subfamilies (when they exist) and the list of EC numbers. The family or subfamily page shows some descriptors and a table with all the UniProt accession numbers linked to the databases UniProt, ExplorEnz, and PDB. PMID:27749924

  18. Synthesis and physical characterization of a P1 arginine combinatorial library, and its application to the determination of the substrate specificity of serine peptidases.

    PubMed

    Furlong, Stephen T; Mauger, Russell C; Strimpler, Anne M; Liu, Yi-Ping; Morris, Frank X; Edwards, Philip D

    2002-11-01

    Serine peptidases are a large, well-studied, and medically important class of peptidases. Despite the attention these enzymes have received, details concerning the substrate specificity of even some of the best known enzymes in this class are lacking. One approach to rapidly characterizing substrate specificity for peptidases is the use of positional scanning combinatorial substrate libraries. We recently synthesized such a library for enzymes with a preference for arginine at P1 and demonstrated the use of this library with thrombin (Edwards et al. Bioorg. Med. Chem. Lett. 2000, 10, 2291). In the present work, we extend these studies by demonstrating good agreement between the theroretical and measured content of portions of this library and by showing that the library permits rapid characterization of the substrate specificity of additional SA clan serine peptidases including factor Xa, tryptase, and trypsin. These results were consistent both with cleavage sites in natural substrates and cleavage of commercially available synthetic substrates. We also demonstrate that pH or salt concentration have a quantitative effect on the rate of cleavage of the pooled library substrates but that correct prediction of optimal substrates for the enzymes studied appeared to be independent of these parameters. These studies provide new substrate specificity data on an important class of peptidases and are the first to provide physical characterization of a peptidase substrate library.

  19. Alteration of substrate specificity by a naturally-occurring aldolase B mutation (Ala337-->Val) in fructose intolerance.

    PubMed

    Rellos, P; Ali, M; Vidailhet, M; Sygusch, J; Cox, T M

    1999-05-15

    A molecular analysis of human aldolase B genes in two newborn infants and a 4-year-old child with hereditary fructose intolerance, the offspring of a consanguineous union, has identified the novel mutation Ala337-->Val in homozygous form. This mutation was also detected independently in two other affected individuals who were compound heterozygotes for the prevalent aldolase B allele, Ala149-->Pro, indicating that the mutation causes aldolase B deficiency. To test for the effect of the mutation, catalytically active wild-type human aldolase B and the Val337 variant enzyme were expressed in Escherichia coli. The specific activities of the wild-type recombinant enzyme were 4.8 units/mg and 4.5 units/mg towards fructose 1,6-bisphosphate (FBP) and fructose 1-phosphate (F-1-P) as substrates with Michaelis constants of 4 microM and 2.4 mM respectively. The specific activities of purified tetrameric Val337 aldolase B, which affects an invariant residue in the C-terminal region, were 4.2 units/mg and 2.6 units/mg towards FBP and F-1-P as substrates respectively; the corresponding Michaelis constants were 22 microM and 24 mM. The FBP-to-F-1-P substrate activity ratios were 0.98 and 1.63 for wild-type and Val337 variant enzymes respectively. The Val337 mutant aldolase had an increased susceptibility to proteolytic cleavage in E. coli and rapidly lost activity on storage. Comparative CD determinations showed that the Val337 protein had a distinct thermal denaturation profile with markedly decreased enthalpy, indicating that the mutant protein is partly unfolded. The undegraded mutant had preferentially decreased affinity and activity towards its specific F-1-P substrate and maintained appreciable activity towards FBP. In contrast, fluorescence studies of the mutant showed an increased binding affinity for products of the aldolase reaction, indicating a role for the C-terminus in mediating product release. These findings in a rare but widespread naturally occurring mutant

  20. PrpZ, a Salmonella enterica serovar Typhi serine/threonine protein phosphatase 2C with dual substrate specificity.

    PubMed

    Lai, Sio Mei; Le Moual, Hervé

    2005-04-01

    Genes encoding eukaryotic-type protein kinases and phosphatases are present in many bacterial genomes. An ORF encoding a polypeptide with homology to protein phosphatases 2C (PP2Cs) was identified in the genomes of Salmonella enterica serovar Typhi strains CT18 and Ty2. This protein, termed PrpZ, is the first PP2C to be identified in enterobacteria. Analysis of the amino acid sequence revealed two distinct domains: the N-terminal segment containing motifs of the catalytic domain of PP2Cs and the C-terminal segment with unknown function. PrpZ was expressed in Escherichia coli as a histidine-tagged fusion protein (PrpZ(His)) and the purified protein was analysed for its ability to dephosphorylate various substrates. Using p-nitrophenyl phosphate as a substrate, optimal PrpZ(His) activity was observed at pH 9.5, with a strong preference for Mn(2+) over Mg(2+). Activity of PrpZ(His) was inhibited by EDTA, sodium fluoride, sodium phosphate and sodium pyrophosphate but unaffected by okadaic acid, indicating that PrpZ is a PP2C. Using synthetic phosphopeptides as substrates, PrpZ(His) could hydrolyse phosphorylated serine, threonine or tyrosine residues, with the highest catalytic efficiency (k(cat)/K(m)) for the threonine phosphopeptide. With phosphorylated myelin basic protein (MBP) as the substrate, Mn(2+) was only twofold more efficient than Mg(2+) in stimulating PrpZ(His) activity at pH 8.0. The ability of PrpZ(His) to remove the phosphoryl group from phosphotyrosine residues was confirmed by measuring the release of inorganic phosphate from phospho-Tyr MBP. Together, these data indicate that PrpZ has all the features of a PP2C with dual substrate specificity in vitro.

  1. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications.

    PubMed

    Stalder, Romain; Xie, Dongping; Islam, Ashraful; Han, Liyuan; Reynolds, John R; Schanze, Kirk S

    2014-06-11

    We report on a sexithienyl and two donor-acceptor-donor oligothiophenes, employing benzothiadiazole and isoindigo as electron-acceptors, each functionalized with a phosphonic acid group for anchoring onto TiO2 substrates as light-harvesting molecules for dye sensitized solar cells (DSSCs). These dyes absorb light to wavelengths as long as 700 nm, as their optical HOMO/LUMO energy gaps are reduced from 2.40 to 1.77 eV with increasing acceptor strength. The oligomers were adsorbed onto mesoporous TiO2 films on fluorine doped tin oxide (FTO)/glass substrates and incorporated into DSSCs, which show AM1.5 power conversion efficiencies (PCEs) ranging between 2.6% and 6.4%. This work demonstrates that the donor-acceptor-donor (D-A-D) molecular structures coupled to phosphonic acid anchoring groups, which have not been used in DSSCs, can lead to high PCEs.

  2. An evolutionary model encompassing substrate specificity and reactivity of type I polyketide synthase thioesterases.

    PubMed

    Hari, Taylor P A; Labana, Puneet; Boileau, Meaghan; Boddy, Christopher N

    2014-12-15

    Bacterial polyketides are a rich source of chemical diversity and pharmaceutical agents. Understanding the biochemical basis for their biosynthesis and the evolutionary driving force leading to this diversity is essential to take advantage of the enzymes as biocatalysts and to access new chemical diversity for drug discovery. Biochemical characterization of the thioesterase (TE) responsible for 6-deoxyerythronolide macrocyclization shows that a small, evolutionarily accessible change to the substrate can increase the chemical diversity of products, including macrodiolide formation. We propose an evolutionary model in which TEs are by nature non-selective for the type of chemistry they catalyze, producing a range of metabolites. As one metabolite becomes essential for improving fitness in a particular environment, the TE evolves to enrich for that corresponding reactivity. This hypothesis is supported by our phylogenetic analysis, showing convergent evolution of macrodiolide-forming TEs.

  3. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity.

    PubMed

    Maddock, Danielle J; Patrick, Wayne M; Gerth, Monica L

    2015-08-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2'-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary-secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2'-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme-cofactor interactions.

  4. The Trail Making Test elucidates neural substrates of specific post-stroke executive dysfunctions

    PubMed Central

    Muir, Ryan T.; Lam, Benjamin; Honjo, Kie; Harry, Robin D.; McNeely, Alicia A.; Gao, Fu-Qiang; Ramirez, Joel; Scott, Christopher J.M; Ganda, Anoop; Zhao, Jiali; Zhou, X. Joe; Graham, Simon J.; Rangwala, Novena; Gibson, Erin; Lobaugh, Nancy J.; Kiss, Alex; Stuss, Donald T.; Nyenhuis, David L.; Lee, Byung-Chul; Kang, Yeonwook; Black, Sandra E.

    2015-01-01

    Background and Purpose Post-stroke cognitive impairment (PSCI) is typified by prominent deficits in processing speed and executive function. However, the underlying neuroanatomical substrates of executive deficits are not well understood and further elucidation is needed. There may be utility in fractionating executive functions to delineate neural substrates. Methods One test amenable to fine delineation is the Trail Making Test (TMT), which emphasizes processing speed (TMT-A) and set-shifting (TMT-B-A difference, proportion, quotient scores and TMT-B set-shifting errors). The TMT was administered to two overt ischemic stroke cohorts from a multinational study: (i) a chronic stroke cohort (N=61) and (ii) an acute-sub-acute stroke cohort (N=45). Volumetric quantification of ischemic stroke and White Matter HyperIntensities (WMH) was done on MRI, along with ratings of involvement of cholinergic projections, using the previously published Cholinergic Hyperintensities Projections Scale (CHIPS). Damage to the superior longitudinal fasciculus (SLF), which co-localizes with some cholinergic projections, was also documented. Results Multiple linear regression analyses were completed. While larger infarcts (β=0.37, p<0.0001) were associated with slower processing speed, CHIPS severity (β=0.39, p<0.0001) was associated with all metrics of set shifting. Left SLF damage, however, was only associated with the difference score (β=0.17, p=0.03). These findings were replicated in both cohorts. Patients with ≥2 TMT-B set shifting errors also had greater CHIPS severity. Conclusions In this multinational stroke cohort study, damage to lateral cholinergic pathways and the SLF emerged as significant neuroanatomical correlates for executive deficits in set shifting. PMID:26382176

  5. A chlorogenic acid esterase with a unique substrate specificity from Ustilago maydis.

    PubMed

    Nieter, Annabel; Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G

    2015-03-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM(-1) s(-1), 7.63 mM(-1) s(-1), 3.83 mM(-1) s(-1) and 3.75 mM(-1) s(-1), respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme.

  6. Substrate Specificity and Colorimetric Assay for Recombinant TrzN Derived from Arthrobacter aurescens TC1

    PubMed Central

    Shapir, Nir; Rosendahl, Charlotte; Johnson, Gilbert; Andreina, Marco; Sadowsky, Michael J.; Wackett, Lawrence P.

    2005-01-01

    The TrzN protein, which is involved in s-triazine herbicide catabolism by Arthrobacter aurescens TC1, was cloned and expressed in Escherichia coli as a His-tagged protein. The recombinant protein was purified via nickel column chromatography. The purified TrzN protein was tested with 31 s-triazine and pyrimidine ring compounds; 22 of the tested compounds were substrates. TrzN showed high activity with sulfur-substituted s-triazines and the highest activity with ametryn sulfoxide. Hydrolysis of ametryn sulfoxide by TrzN, both in vitro and in vivo, yielded a product(s) that reacted with 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) to generate a diagnostic blue product. Atrazine chlorohydrolase, AtzA, did not hydrolyze ametryn sulfoxide, and no color was formed by amending those enzyme incubations with NBD-Cl. TrzN and AtzA could also be distinguished by reaction with ametryn. TrzN, but not AtzA, hydrolyzed ametryn to methylmercaptan. Methylmercaptan reacted with NBD-Cl to produce a diagnostic yellow product having an absorption maximum at 420 nm. The yellow color with ametryn was shown to selectively demonstrate the presence of TrzN, but not AtzA or other enzymes, in whole microbial cells. The present study was the first to purify an active TrzN protein in recombinant form and develop a colorimetric test for determining TrzN activity, and it significantly extends the known substrate range for TrzN. PMID:15870302

  7. Fluorescent, internally quenched, peptides for exploring the pH-dependent substrate specificity of cathepsin B.

    PubMed

    Ruzza, Paolo; Quintieri, Luigi; Osler, Alessio; Calderan, Andrea; Biondi, Barbara; Floreani, Maura; Guiotto, Andrea; Borin, Gianfranco

    2006-07-01

    Cathepsin B is a cysteine protease that in tumor tissues is localized in both acidic lysosomes and extracellular spaces. It can catalyze the cleavage of peptide bonds by two mechanisms: endoproteolytic attack with a pH optimum around 7.4, and attack from the C-terminus with a pH optimum at 4.5-5.5. In this work, seven fluorescent, internally quenched, decapeptides have been synthesized using the prototypical cathepsin B selective substrate Z-Phe-Arg-AMC as a lead, and used to identify the structural factors determining the susceptibility of peptides to hydrolysis at acidic and neutral pH values. Each peptide differs from the others in one amino acid (residue 6) and contains a highly fluorescent Nma group linked to the alpha-amino function of the N-terminal Orn residue and a Dnp group linked to the side chain of the Lys(8) residue acting as a quencher. Proteolytic cleavage was monitored by measuring the increase of fluorescence at 440 nm upon excitation at 340 nm, and the cleavage sites were determined by HPLC followed by ESI-MS analysis. Peptides containing Ala or Phe at position 6 are good substrates for the enzyme at both pH 5.0 and 7.4. By contrast, those containing Glu, Asp, Lys or Val are not cleaved at all by cathepsin B at pH 7.4, and are poorly hydrolyzed at pH 5.0. These findings provide new information for the rational design of cathepsin B-activated peptide-containing anticancer drugs.

  8. Learning selectively increases protein kinase C substrate phosphorylation in specific regions of the chick brain.

    PubMed Central

    Sheu, F S; McCabe, B J; Horn, G; Routtenberg, A

    1993-01-01

    The effect of imprinting, an early form of exposure learning, on the phosphorylation state of the protein kinase C substrates myristoylated alanine-rich C-kinase substrate (MARCKS) and protein F1/43-kDa growth-associated protein (F1/GAP-43) was studied in two regions of the chick forebrain. One region, the intermediate and medial part of the hyperstriatum ventrale (IMHV), is probably a site of long-term memory; the other, the wulst, contains somatic sensory and visual projection areas. After imprinting, a significant increase in MARCKS protein phosphorylation was observed in the left IMHV but not the right IMHV. No significant alteration in F1/GAP-43 was observed in IMHV. MARCKS was resolved into two acidic components of pI approximately 5.0 and approximately 4.0. Phosphorylation of the pI approximately 5.0 MARCKS but not the pI approximately 4.0 MARCKS was significantly altered by imprinting. The partial correlation between preference score (an index of learning) and phosphorylation, holding constant the effect of approach activity during training, was significant only for the pI approximately 5.0 MARCKS in the left IMHV. A significant negative partial correlation between preference score and F1/GAP-43 phosphorylation in the right wulst was observed. Because the imprinting-induced alteration in MARCKS is selective with respect to phosphoprotein moiety, hemispheric location, and brain region, we propose that these alterations may be central to the learning process. Images Fig. 1 Fig. 2 Fig. 3 PMID:8464879

  9. A Chlorogenic Acid Esterase with a Unique Substrate Specificity from Ustilago maydis

    PubMed Central

    Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G.

    2014-01-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM−1 s−1, 7.63 mM−1 s−1, 3.83 mM−1 s−1 and 3.75 mM−1 s−1, respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme. PMID:25548041

  10. Structural And Biochemical Studies of Botulinum Neurotoxin Serotype C1 Light Chain Protease: Implications for Dual Substrate Specificity

    SciTech Connect

    Jin, R.; Sikorra, S.; Stegmann, C.M.; Pich, A.; Binz, T.; Brunger, A.T.

    2009-06-01

    Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote a-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the a-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.

  11. Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida#

    PubMed Central

    Huynh, Nhung; Aye, Aye; Li, Yanhong; Yu, Hai; Cao, Hongzhi; Tiwari, Vinod Kumar; Shin, Don-Wook; Chen, Xi; Fisher, Andrew J.

    2013-01-01

    N -Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac, the most common form of sialic acid) to form pyruvate and N-acetyl-D-mannosamine (ManNAc). Although equilibrium favors sialic acid cleavage, these enzymes can be used for high-yield chemoenzymatic synthesis of structurally diverse sialic acids in the presence of excess pyruvate. Engineering these enzymes to synthesize structurally modified natural sialic acids and their non-natural derivatives holds promise in creating novel therapeutic agents. Atomic resolution structures of these enzymes will greatly assist in guiding mutagenic and modeling studies to engineer enzymes with altered substrate specificity. We report here the crystal structures of wild-type Pasteurella multocida N-acetylneuraminate lyase and its K164A mutant. Like other bacterial lyases, it assembles into a homotetramer with each monomer folding into a classic (β/α)8 TIM barrel. Two wild-type structures were determined; in the absence of substrates, and trapped in a Schiff base intermediate between Lys164 and pyruvate, respectively. Three structures of the K164A variant were determined: one in the absence of substrates and two binary complexes with N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), respectively. Both sialic acids bind to the active site in the open-chain ketone form of the monosaccharide. The structures reveal that every hydroxyl group of the linear sugars makes hydrogen bond interactions with the enzyme and the residues that determine specificity were identified. Additionally, the structures lend some clues in explaining the natural discrimination of sialic acid substrates between the P. multocida and E. coli NALs. PMID:24152047

  12. Insect chymotrypsins: chloromethyl ketone inactivation and substrate specificity relative to possible coevolutional adaptation of insects and plants.

    PubMed

    Lopes, Adriana R; Sato, Paloma M; Terra, Walter R

    2009-03-01

    Insect digestive chymotrypsins are present in a large variety of insect orders but their substrate specificity still remains unclear. Four insect chymotrypsins from 3 different insect orders (Dictyoptera, Coleoptera, and two Lepidoptera) were isolated using affinity chromatography. Enzymes presented molecular masses in the range of 20 to 31 kDa and pH optima in the range of 7.5 to 10.0. Kinetic characterization using different colorimetric and fluorescent substrates indicated that insect chymotrypsins differ from bovine chymotrypsin in their primary specificity toward small substrates (like N-benzoyl-L-Tyr p-nitroanilide) rather than on their preference for large substrates (exemplified by Succynil-Ala-Ala-Pro-Phe p-nitroanilide). Chloromethyl ketones (TPCK, N- alpha-tosyl-L-Phe chloromethyl ketone and Z-GGF-CK, N- carbobenzoxy-Gly-Gly-Phe-CK) inactivated all chymotrypsins tested. Inactivation rates follow apparent first-order kinetics with variable second order rates (TPCK, 42 to 130 M(-1) s(-1); Z-GGF-CK, 150 to 450 M(-1) s(-1)) that may be remarkably low for S. frugiperda chymotrypsin (TPCK, 6 M(-1) s(-1); Z-GGF-CK, 6.1 M(-1) s(-1)). Homology modelling and sequence alignment showed that in lepidopteran chymotrypsins, differences in the amino acid residues in the neighborhood of the catalytic His 57 may affect its pKa value. This is proposed as the cause of the decrease in His 57 reactivity toward chloromethyl ketones. Such amino acid replacement in the active site is proposed to be an adaptation to the presence of dietary ketones.

  13. N-(cyclohexanecarboxyl)-O-phospho-l-serine, a minimal substrate for the dual-specificity protein phosphatase IphP.

    PubMed

    Savle, P S; Shelton, T E; Meadows, C A; Potts, M; Gandour, R D; Kennelly, P J

    2000-04-15

    Three dual-specific phosphatases [DSPs], IphP, VHR, and Cdc14, and three protein-tyrosine phosphatases [PTPs], PTP-1B, PTP-H1, and Tc-PTPa, were challenged with a set of low molecular weight phosphoesters to probe the factors underlying the distinct substrate specificities displayed by these two mechanistically homologous families of protein phosphatases. It was observed that beta-naphthyl phosphate represented an excellent general substrate for both PTPs and DSPs. While DSPs tended to hydrolyze alpha-naphthyl phosphate at rates comparable to that of the beta-isomer, the PTPs PTP-1B and Tc-PTPa did not. PTP-H1, however, displayed high alpha-naphthyl phosphatase activity. Intriguingly, PTP-H1 also displayed much higher protein-serine phosphatase activity in vitro, 0.2-0.3% that toward equivalent tyrosine phosphorylated proteins, than did PTP-1B or Tc-PTPa. The latter two PTPs discriminated between the serine- and tyrosine-phosphorylated forms of two test proteins by factors of >/=10(4)-10(6). While free phosphoserine represented an extremely poor substrate for all of the DSPs examined, the addition of a hydrophobic "handle" to form N-(cyclohexanecarboxyl)-O-phospho-l-serine produced a compound that was hydrolyzed by IphP with high efficiency, i.e., at a rate comparable to that of free phosphotyrosine or p-nitrophenyl phosphate. VHR also hydrolyzed N-(cyclohexanecarboxyl)-O-phospho-l-serine (1 mM) at a rate approximately one-tenth that of beta-naphthyl phosphate. None of the PTPs tested exhibited significant activity against this compound. However, N-(cyclohexanecarboxyl)-O-phospho-l-serine did not prove to be a universal substrate for DSPs as Cdc14 displayed little propensity to hydrolyze it.

  14. A Land-Plant-Specific Glycerol-3-Phosphate Acyltransferase Family in Arabidopsis: Substrate Specificity, sn-2 Preference, and Evolution1[W][OA

    PubMed Central

    Yang, Weili; Simpson, Jeffrey P.; Li-Beisson, Yonghua; Beisson, Fred; Pollard, Mike; Ohlrogge, John B.

    2012-01-01

    Arabidopsis (Arabidopsis thaliana) has eight glycerol-3-phosphate acyltransferase (GPAT) genes that are members of a plant-specific family with three distinct clades. Several of these GPATs are required for the synthesis of cutin or suberin. Unlike GPATs with sn-1 regiospecificity involved in membrane or storage lipid synthesis, GPAT4 and -6 are unique bifunctional enzymes with both sn-2 acyltransferase and phosphatase activity resulting in 2-monoacylglycerol products. We present enzymology, pathway organization, and evolutionary analysis of this GPAT family. Within the cutin-associated clade, GPAT8 is demonstrated as a bifunctional sn-2 acyltransferase/phosphatase. GPAT4, -6, and -8 strongly prefer C16:0 and C18:1 ω-oxidized acyl-coenzyme As (CoAs) over unmodified or longer acyl chain substrates. In contrast, suberin-associated GPAT5 can accommodate a broad chain length range of ω-oxidized and unsubstituted acyl-CoAs. These substrate specificities (1) strongly support polyester biosynthetic pathways in which acyl transfer to glycerol occurs after oxidation of the acyl group, (2) implicate GPAT specificities as one major determinant of cutin and suberin composition, and (3) argue against a role of sn-2-GPATs (Enzyme Commission 2.3.1.198) in membrane/storage lipid synthesis. Evidence is presented that GPAT7 is induced by wounding, produces suberin-like monomers when overexpressed, and likely functions in suberin biosynthesis. Within the third clade, we demonstrate that GPAT1 possesses sn-2 acyltransferase but not phosphatase activity and can utilize dicarboxylic acyl-CoA substrates. Thus, sn-2 acyltransferase activity extends to all subbranches of the Arabidopsis GPAT family. Phylogenetic analyses of this family indicate that GPAT4/6/8 arose early in land-plant evolution (bryophytes), whereas the phosphatase-minus GPAT1 to -3 and GPAT5/7 clades diverged later with the appearance of tracheophytes. PMID:22864585

  15. A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals.

    PubMed

    Loscos, Jorge; Naya, Loreto; Ramos, Javier; Clemente, Maria R; Matamoros, Manuel A; Becana, Manuel

    2006-04-01

    Phytochelatin synthases (PCS) catalyze phytochelatin (PC) synthesis from glutathione (GSH) in the presence of certain metals. The resulting PC-metal complexes are transported into the vacuole, avoiding toxic effects on metabolism. Legumes have the unique capacity to partially or completely replace GSH by homoglutathione (hGSH) and PCs by homophytochelatins (hPCs). However, the synthesis of hPCs has received little attention. A search for PCS genes in the model legume Lotus (Lotus japonicus) resulted in the isolation of a cDNA clone encoding a protein (LjPCS1) highly homologous to a previously reported homophytochelatin synthase (hPCS) of Glycine max (GmhPCS1). Recombinant LjPCS1 and Arabidopsis (Arabidopsis thaliana) PCS1 (AtPCS1) were affinity purified and their polyhistidine-tags removed. AtPCS1 catalyzed hPC synthesis from hGSH alone at even higher rates than did LjPCS1, indicating that GmhPCS1 is not a genuine hPCS and that a low ratio of hPC to PC synthesis is an inherent feature of PCS1 enzymes. For both enzymes, hGSH is a good acceptor, but a poor donor, of gamma-glutamylcysteine units. Purified AtPCS1 and LjPCS1 were activated (in decreasing order) by Cd2+, Zn2+, Cu2+, and Fe3+, but not by Co2+ or Ni2+, in the presence of 5 mm GSH and 50 microm metal ions. Activation of both enzymes by Fe3+ was proven by the complete inhibition of PC synthesis by the iron-specific chelator desferrioxamine. Plants of Arabidopsis and Lotus accumulated (h)PCs only in response to a large excess of Cu2+ and Zn2+, but to a much lower extent than did with Cd2+, indicating that (h)PC synthesis does not significantly contribute in vivo to copper, zinc, and iron detoxification.

  16. Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase

    PubMed Central

    2016-01-01

    Oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into formate and carbon dioxide in a remarkable reaction that requires manganese and dioxygen. Previous studies have shown that replacing an active-site loop segment Ser161-Glu162-Asn163-Ser164 in the N-terminal domain of OxDC with the cognate residues Asp161-Ala162-Ser-163-Asn164 of an evolutionarily related, Mn-dependent oxalate oxidase gives a chimeric variant (DASN) that exhibits significantly increased oxidase activity. The mechanistic basis for this change in activity has now been investigated using membrane inlet mass spectrometry (MIMS) and isotope effect (IE) measurements. Quantitative analysis of the reaction stoichiometry as a function of oxalate concentration, as determined by MIMS, suggests that the increased oxidase activity of the DASN OxDC variant is associated with only a small fraction of the enzyme molecules in solution. In addition, IE measurements show that C–C bond cleavage in the DASN OxDC variant proceeds via the same mechanism as in the wild-type enzyme, even though the Glu162 side chain is absent. Thus, replacement of the loop residues does not modulate the chemistry of the enzyme-bound Mn(II) ion. Taken together, these results raise the possibility that the observed oxidase activity of the DASN OxDC variant arises from an increased level of access of the solvent to the active site during catalysis, implying that the functional role of Glu162 is to control loop conformation. A 2.6 Å resolution X-ray crystal structure of a complex between oxalate and the Co(II)-substituted ΔE162 OxDC variant, in which Glu162 has been deleted from the active site loop, reveals the likely mode by which the substrate coordinates the catalytically active Mn ion prior to C–C bond cleavage. The “end-on” conformation of oxalate observed in the structure is consistent with the previously published V/K IE data and provides an empty coordination site for the dioxygen ligand that is thought to

  17. Substrate specificity engineering of beta-mannosidase and beta-glucosidase from Pyrococcus by exchange of unique active site residues.

    PubMed

    Kaper, Thijs; van Heusden, Hester H; van Loo, Bert; Vasella, Andrea; van der Oost, John; de Vos, Willem M

    2002-03-26

    A beta-mannosidase gene (PH0501) was identified in the Pyrococcus horikoshii genome and cloned and expressed in E. coli. The purified enzyme (BglB) was most specific for the hydrolysis of p-nitrophenyl-beta-D-mannopyranoside (pNP-Man) (Km: 0.44 mM) with a low turnover rate (kcat: 4.3 s(-1)). The beta-mannosidase has been classified as a member of family 1 of glycoside hydrolases. Sequence alignments and homology modeling showed an apparent conservation of its active site region with, remarkably, two unique active site residues, Gln77 and Asp206. These residues are an arginine and asparagine residue in all other known family 1 enzymes, which interact with the catalytic nucleophile and equatorial C2-hydroxyl group of substrates, respectively. The unique residues of P. horikoshii BglB were introduced in the highly active beta-glucosidase CelB of Pyrococcus furiosus and vice versa, yielding two single and one double mutant for each enzyme. In CelB, both substitutions R77Q and N206D increased the specificity for mannosides and reduced hydrolysis rates 10-fold. In contrast, BglB D206N showed 10-fold increased hydrolysis rates and 35-fold increased affinity for the hydrolysis of glucosides. In combination with inhibitor studies, it was concluded that the substituted residues participate in the ground-state binding of substrates with an equatorial C2-hydroxyl group, but contribute most to transition-state stabilization. The unique activity profile of BglB seems to be caused by an altered interaction between the enzyme and C2-hydroxyl of the substrate and a specifically increased affinity for mannose that results from Asp206.

  18. The Benzyl Ester Group of Amino Acid Monomers Enhances Substrate Affinity and Broadens the Substrate Specificity of the Enzyme Catalyst in Chemoenzymatic Copolymerization.

    PubMed

    Ageitos, Jose Manuel; Yazawa, Kenjiro; Tateishi, Ayaka; Tsuchiya, Kousuke; Numata, Keiji

    2016-01-11

    The chemoenzymatic polymerization of amino acid monomers by proteases involves a two-step reaction: the formation of a covalent acyl-intermediate complex between the protease and the carboxyl ester group of the monomer and the subsequent deacylation of the complex by aminolysis to form a peptide bond. Although the initiation with the ester group of the monomer is an important step, the influence of the ester group on the polymerization has not been studied in detail. Herein, we studied the effect of the ester groups (methyl, ethyl, benzyl, and tert-butyl esters) of alanine and glycine on the synthesis of peptides using papain as the catalyst. Alanine and glycine were selected as monomers because of their substantially different affinities toward papain. The efficiency of the polymerization of alanine and glycine benzyl esters was much greater than that of the other esters. The benzyl ester group therefore allowed papain to equally polymerize alanine and glycine, even though the affinity of alanine toward papain is substantially higher. The characterization of the copolymers of alanine and glycine in terms of the secondary structure and thermal properties revealed that the thermal stability of the peptides depends on the amino acid composition and resultant secondary structure. The current results indicate that the nature of the ester group drastically affects the polymerization efficiency and broadens the substrate specificity of the protease.

  19. Specificity of a defined substrate method used to monitor balneability of tropical coastal waters impacted by polluted stormwater.

    PubMed

    Sousa, Oscarina V; Evangelista-Barreto, Norma S; Catter, Karla M; Fonteles-Filho, Antonio A; Macrae, Andrew; Fernandes Vieira, Regine Helena S

    2010-09-01

    Defined substrate (DS) is an alternative technique to monitoring the water quality based on species-specific enzyme activity. Although more sensitive and more specific than traditional media, there is some controversy over use in the warmer waters of tropical and subtropical environments, rich in organic matter and microorganism groups capable of interfering with results. The aim of this study was to test the specificity of DS method (Colilert, IDEXX) for detection of coliforms and Escherichia coli in stormwater seawater samples from a coastal city (Fortaleza, Brazil) compared to findings obtained with the multiple tube fermentation (MTF) method. The samples were collected from stormsewers and adjacent seashore locations. The most probable number (MPN) of total coliforms (TC), thermotolerant coliforms (TtC) and E. coli was determined and the selectivity of the enzymatic substrate medium in the seawater samples was tested. The MTF method showed samples from sampling points 1, 2 and 3 to be 13.3, 13.3 and 46.7%, respectively, above the legal cut-off value for coastal balneability. With the DS method, the corresponding figures were 60, 53.3 and 80% for E. coli. Overall, coliform levels were higher with the DS medium. Vibrios and aeromonads were isolated from E. coli-positive DS tubes.

  20. Mixed-Linkage Glucan Oligosaccharides Produced by Automated Glycan Assembly Serve as Tools To Determine the Substrate Specificity of Lichenase.

    PubMed

    Dallabernardina, Pietro; Schuhmacher, Frank; Seeberger, Peter H; Pfrengle, Fabian

    2017-03-02

    The mixed-linkage (1→3),(1→4)-d-glucan (MLG) specific glycosyl hydrolase lichenase is an important biochemical tool for the structural characterization of MLGs. It holds potential for application in the brewery, animal feed, and biofuel industries. Several defined MLG oligosaccharides obtained by automated glycan assembly are used to analyze the substrate specificities of Bacillus subtilis lichenase. Two glucose building blocks (BBs), equipped with a temporary fluorenylmethyloxycarbonyl chloride (Fmoc) protecting group in the C-3 or C-4 position, served to assemble different oligosaccharides by using an automated oligosaccharide synthesizer. Light-induced cleavage of the glycan products from the solid support followed by global deprotection provided seven MLG oligosaccharides of different length and connectivity. After incubation of the MLG oligosaccharides with lichenase, the digestion products were analyzed by HPLC-MS. These digestion experiments provided insights into the enzyme's active site that is in line with other recent evidence suggesting that the substrate specificity of lichenases has to be reconsidered. These results demonstrate that synthetic MLG oligosaccharides are useful tools to analyze mixed-linkage β-glucanases.

  1. The human DNA-activated protein kinase, DNA-PK: Substrate specificity

    SciTech Connect

    Anderson, C.W.; Connelly, M.A.; Zhang, H.; Sipley, J.A.; Lees-Miller, S.P.; Lintott, L.G.; Sakaguchi, Kazuyasu; Appella, E.

    1994-11-05

    Although much has been learned about the structure and function of p53 and the probable sequence of subsequent events that lead to cell cycle arrest, little is known about how DNA damage is detected and the nature of the signal that is generated by DNA damage. Circumstantial evidence suggests that protein kinases may be involved. In vitro, human DNA-PK phosphorylates a variety of nuclear DNA-binding, regulatory proteins including the tumor suppressor protein p53, the single-stranded DNA binding protein RPA, the heat shock protein hsp90, the large tumor antigen (TAg) of simian virus 40, a variety of transcription factors including Fos, Jun, serum response factor (SRF), Myc, Sp1, Oct-1, TFIID, E2F, the estrogen receptor, and the large subunit of RNA polymerase II (reviewed in Anderson, 1993; Jackson et al., 1993). However, for most of these proteins, the sites that are phosphorylated by DNA-PK are not known. To determine if the sites that were phosphorylated in vitro also were phosphorylated in vivo and if DNA-PK recognized a preferred protein sequence, the authors identified the sites phosphorylated by DNA-PK in several substrates by direct protein sequence analysis. Each phosphorylated serine or threonine is followed immediately by glutamine in the polypeptide chain; at no other positions are the amino acid residues obviously constrained.

  2. Bacillus licheniformis trehalose-6-phosphate hydrolase structures suggest keys to substrate specificity.

    PubMed

    Lin, Min Guan; Chi, Meng Chun; Naveen, Vankadari; Li, Yi Ching; Lin, Long Liu; Hsiao, Chwan Deng

    2016-01-01

    Trehalose-6-phosphate hydrolase (TreA) belongs to glycoside hydrolase family 13 (GH13) and catalyzes the hydrolysis of trehalose 6-phosphate (T6P) to yield glucose and glucose 6-phosphate. The products of this reaction can be further metabolized by the energy-generating glycolytic pathway. Here, crystal structures of Bacillus licheniformis TreA (BlTreA) and its R201Q mutant complexed with p-nitrophenyl-α-D-glucopyranoside (R201Q-pPNG) are presented at 2.0 and 2.05 Å resolution, respectively. The overall structure of BlTreA is similar to those of other GH13 family enzymes. However, detailed structural comparisons revealed that the catalytic site of BlTreA contains a long loop that adopts a different conformation from those of other GH13 family members. Unlike the homologous regions of Bacillus cereus oligo-1,6-glucosidase (BcOgl) and Erwinia rhapontici isomaltulose synthase (NX-5), the surface potential of the BlTreA active site exhibits a largely positive charge contributed by the four basic residues His281, His282, Lys284 and Lys292. Mutation of these residues resulted in significant decreases in the enzymatic activity of BlTreA. Strikingly, the (281)HHLK(284) motif and Lys292 play critical roles in substrate discrimination by BlTreA.

  3. Specificities of a chemically modified laccase from Trametes hirsuta on soluble and cellulose-bound substrates.

    PubMed

    Schroeder, M; Heumann, S; Silva, C J S M; Cavaco-Paulo, A; Guebitz, G M

    2006-05-01

    Laccases could prevent fabrics and garments from re-deposition of dyes during washing and finishing processes by degrading the solubilized dye. However, laccase action must be restricted to solubilized dye molecules thereby avoiding decolorization of fabrics. Chemical modification of enzymes can provide a powerful tool to change the adsorption behaviour of enzymes on water insoluble polymers. Polyethylene glycol (PEG) was covalently attached onto a laccase from Trametes hirsuta. Different molecular weights of the synthetic polymer were tested in terms of adsorption behaviour and retained laccase activity. Covalent attachment of PEG onto the laccase resulted in enhanced enzyme stability while with increasing molecular weight of attached PEG the substrate affinity for the laccase conjugate decreased. The activity of the modified laccases on fibre bound dye was drastically reduced decreasing the adsorption of the enzyme on various fabrics. Compared to the 5 kDa PEG laccase conjugate (K/S value 47.60) the K/S value decreased much more (47.96-46.35) after the treatment of dyed cotton fabrics with native laccase.

  4. Elucidation of Substrate Specificity in Aspergillus nidulans UDP-Galactose-4-Epimerase

    PubMed Central

    Dalrymple, Sean A.; Ko, John; Sheoran, Inder; Kaminskyj, Susan G. W.; Sanders, David A. R.

    2013-01-01

    The frequency of invasive fungal infections has rapidly increased in recent years. Current clinical treatments are experiencing decreased potency due to severe host toxicity and the emergence of fungal drug resistance. As such, new targets and their corresponding synthetic pathways need to be explored for drug development purposes. In this context, galactofuranose residues, which are employed in fungal cell wall construction, but are notably absent in animals, represent an appealing target. Herein we present the structural and biochemical characterization of UDP-galactose-4-epimerase from Aspergillus nidulans which produces the precursor UDP-galactopyranose required for galactofuranose synthesis. Examination of the structural model revealed both NAD+ and UDP-glucopyranose were bound within the active site cleft in a near identical fashion to that found in the Human epimerase. Mutational studies on the conserved catalytic motif support a similar mechanism to that established for the Human counterpart is likely operational within the A. nidulans epimerase. While the Km and kcat for the enzyme were determined to be 0.11 mM and 12.8 s-1, respectively, a single point mutation, namely L320C, activated the enzyme towards larger N-acetylated substrates. Docking studies designed to probe active site affinity corroborate the experimentally determined activity profiles and support the kinetic inhibition results. PMID:24116166

  5. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH.

    PubMed Central

    Rossignol, M; Kolb-Cheynel, I; Egly, J M

    1997-01-01

    The transcription/DNA repair factor TFIIH consists of nine subunits, several exhibiting known functions: helicase/ATPase, kinase activity and DNA binding. Three subunits of TFIIH, cdk7, cyclin H and MAT1, form a ternary complex, cdk-activating kinase (CAK), found either on its own or as part of TFIIH. In the present work, we demonstrate that purified human CAK complex (free CAK) and recombinant CAK (rCAK) produced in insect cells exhibit a strong preference for the cyclin-dependent kinase 2 (cdk2) over a ctd oligopeptide substrate (which mimics the carboxy-terminal domain of the RNA polymerase II). In contrast, TFIIH preferentially phosphorylates the ctd as well as TFIIE alpha, but not cdk2. TFIIH was resolved into four subcomplexes: the kinase complex composed of cdk7, cyclin H and MAT1; the core TFIIH which contains XPB, p62, p52, p44 and p34; and two other subcomplexes in which XPD is found associated with either the kinase complex or with the core TFIIH. Using these fractions, we demonstrate that TFIIH lacking the CAK subcomplex completely recovers its transcriptional activity in the presence of free CAK. Furthermore, studies examining the interactions between TFIIH subunits provide evidence that CAK is integrated within TFIIH via XPB and XPD. PMID:9130708

  6. Gene cloning, expression, and substrate specificity of an imidase from the strain Pseudomonas putida YZ-26.

    PubMed

    Shi, Ya-wei; Cui, Li-fang; Yuan, Jing-ming

    2007-07-01

    A gene-encoding imidase was isolated from Pseudomonas putdia YZ-26 genomic DNA using a combination of polymerase chain reaction and activity screening the recombinant. Analysis of the nucleotide sequence revealed that an open reading frame (ORF) of 879 bp encoded a protein of 293 amino acids with a calculated molecular weight of 33712.6 kDa. The deduced amino-acid sequence showed 78% identity with the imidase from Alcaligenes eutrophus 112R4 and 80% identity with N-terminal 20 amino-acid imidase from Blastobacter sp. A17p-4. Next, the ORF was subcloned into vector pET32a to form recombinant plasmid pEI. The enzyme was overexpressed in Escherichia coli and purified to homogeneity by Ni(2+)-NTA column, with 75% activity recovery. The subunit molecular mass of the recombinant imidase as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approximately 36 kDa, whereas its functional unit was approximately 141 kDa with four identical subunits determined by size-exclusion chromatography. The purified enzyme showed the highest activity and affinity toward succinimide, and some other substrates, such as dihydrouracil, hydantoin, succinimide, and maleimde, were investigated.

  7. An adenosine triphosphate-dependent deoxyribonuclease from Bacillus laterosporus. Improved purification, subunit structure and substrate specificity.

    PubMed

    Fujiyoshi, T; Anai, M

    1981-04-01

    The ATP-dependent deoxyribonuclease from Bacillus laterosporus has been purified to near homogeneity by a procedure involving ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephadex G-150 gel filtration, DEAE-Sephadex A-25 chromatography and DNA-cellulose affinity chromatography. The purified enzyme has a molecular weight of 210,000 +/- 8,000 as determined by sucrose gradient sedimentation. It is composed of two nonidentical polypeptide chains with close molecular weights of around 110,000. The substrate preference of the pure enzyme is essentially identical with the previous result obtained with the partially purified enzyme preparation (Anai, M., Mihara, T., Yamanaka, M., Shibata, T., & Takagi, Y. (1975) J. Biochem. 78, 105-114). Thus, the enzyme degrades double-stranded DNA about 100 times faster than heat-denatured DNA in the presence of ATP. Double-stranded DNA is not degraded to any measurable extent in the absence of ATP, but the enzyme exhibits activity toward denatured DNA in the absence of ATP. Furthermore, no endonuclease activity is observed on covalently closed circular duplex DNA and open circular duplex DNA.

  8. Differences in the substrate specificity of glycosyltransferases involved in landomycins A and E biosynthesis.

    PubMed

    Erb, Annette; Krauth, Christine; Luzhetskyy, Andriy; Bechthold, Andreas

    2009-07-01

    A lanGT4 mutant of the landomycin A producer Streptomyces cyanogenus S136 was constructed, leading to the production of landomycin D with two deoxy sugars in the side chain and proving that LanGT4 is responsible for attaching the third deoxy sugar of the hexasaccharide side chain. Heterologous expression of lndGT4 of the landomycin E producer Streptomyces globisporus 1912 in the lanGT4 mutant restored landomycin A production, indicating that LndGT4, like LanGT4, also has the ability to work iteratively. A S. cyanogenus S136 mutant with a mutation in lanGT1, encoding a D: -olivosyltransferase, was shown to produce landomycin I with one deoxy sugar and, surprisingly, a new landomycin derivative (landomycin L) containing a D: -olivose followed by an L: -rhodinose. Heterologous expression of lndGT1 of S. globisporus 1912 in the lanGT1 mutant did not restore landomycin A production but led to the formation of a second new landomycin derivative (landomycin K) containing an unusual pentasaccharide chain (D: -olivose-D: -olivose-L: -rhodinose-D: -olivose-L: -rhodinose). The formation of landomycin L and landomycin K is most probably attributed to the high substrate flexibility of the rhodinosyltransferase LanGT4.

  9. Analysis of 51 cyclodipeptide synthases reveals the basis for substrate specificity.

    PubMed

    Jacques, Isabelle B; Moutiez, Mireille; Witwinowski, Jerzy; Darbon, Emmanuelle; Martel, Cécile; Seguin, Jérôme; Favry, Emmanuel; Thai, Robert; Lecoq, Alain; Dubois, Steven; Pernodet, Jean-Luc; Gondry, Muriel; Belin, Pascal

    2015-09-01

    Cyclodipeptide synthases (CDPSs) constitute a family of peptide bond-forming enzymes that use aminoacyl-tRNAs for the synthesis of cyclodipeptides. Here, we describe the activity of 41 new CDPSs. We also show that CDPSs can be classified into two main phylogenetically distinct subfamilies characterized by specific functional subsequence signatures, named NYH and XYP. All 11 previously characterized CDPSs belong to the NYH subfamily, suggesting that further special features may be yet to be discovered in the other subfamily. CDPSs synthesize a large diversity of cyclodipeptides made up of 17 proteinogenic amino acids. The identification of several CDPSs having the same specificity led us to determine specificity sequence motifs that, in combination with the phylogenetic distribution of CDPSs, provide a first step toward being able to predict the cyclodipeptides synthesized by newly discovered CDPSs. The determination of the activity of ten more CDPSs with predicted functions constitutes a first experimental validation of this predictive approach.

  10. Substrate specificity, substrate channeling, and allostery in BphJ: an acylating aldehyde dehydrogenase associated with the pyruvate aldolase BphI.

    PubMed

    Baker, Perrin; Carere, Jason; Seah, Stephen Y K

    2012-06-05

    BphJ, a nonphosphorylating acylating aldehyde dehydrogenase, catalyzes the conversion of aldehydes to form acyl-coenzyme A in the presence of NAD(+) and coenzyme A (CoA). The enzyme is structurally related to the nonacylating aldehyde dehydrogenases, aspartate-β-semialdehyde dehydrogenase and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Cys-131 was identified as the catalytic thiol in BphJ, and pH profiles together with site-specific mutagenesis data demonstrated that the catalytic thiol is not activated by an aspartate residue, as previously proposed. In contrast to the wild-type enzyme that had similar specificities for two- or three-carbon aldehydes, an I195A variant was observed to have a 20-fold higher catalytic efficiency for butyraldehyde and pentaldehyde compared to the catalytic efficiency of the wild type toward its natural substrate, acetaldehyde. BphJ forms a heterotetrameric complex with the class II aldolase BphI that channels aldehydes produced in the aldol cleavage reaction to the dehydrogenase via a molecular tunnel. Replacement of Ile-171 and Ile-195 with bulkier amino acid residues resulted in no more than a 35% reduction in acetaldehyde channeling efficiency, showing that these residues are not critical in gating the exit of the channel. Likewise, the replacement of Asn-170 in BphJ with alanine and aspartate did not substantially alter aldehyde channeling efficiencies. Levels of activation of BphI by BphJ N170A, N170D, and I171A were reduced by ≥3-fold in the presence of NADH and ≥4.5-fold when BphJ was undergoing turnover, indicating that allosteric activation of the aldolase has been compromised in these variants. The results demonstrate that the dehydrogenase coordinates the catalytic activity of BphI through allostery rather than through aldehyde channeling.

  11. Expression and characterization of a glucose-tolerant β-1,4-glucosidase with wide substrate specificity from Cytophaga hutchinsonii.

    PubMed

    Zhang, Cong; Wang, Xifeng; Zhang, Weican; Zhao, Yue; Lu, Xuemei

    2017-03-01

    Cytophaga hutchinsonii is a gram-negative bacterium that can efficiently degrade crystalline cellulose by a novel strategy without cell-free cellulases or cellulosomes. Genomic analysis implied that C. hutchinsonii had endoglucanases and β-glucosidases but no exoglucanases which could processively digest cellulose and produce cellobiose. In this study, BglA was functionally expressed in Escherichia coli and found to be a β-glucosidase with wide substrate specificity. It can hydrolyze pNPG, pNPC, cellobiose, and cellodextrins. Moreover, unlike most β-glucosidases whose activity greatly decreases with increasing length of the substrate chains, BglA has similar activity on cellobiose and larger cellodextrins. The K m values of BglA on cellobiose, cellotriose, and cellotetraose were calculated to be 4.8 × 10(-2), 5.6 × 10(-2), and 5.3 × 10(-2) mol/l, respectively. These properties give BglA a great advantage to cooperate with endoglucanases in C. hutchinsonii in cellulose degradation. We proposed that C. hutchinsonii could utilize a simple cellulase system which consists of endoglucanases and β-glucosidases to completely digest amorphous cellulose into glucose. Moreover, BglA was also found to be highly tolerant to glucose as it retained 40 % activity when the concentration of glucose was 100 times higher than that of the substrate, showing potential application in the bioenergy industry.

  12. An Escherichia coli system for assay of F1p site-specific recombination on substrate plasmids.

    PubMed

    Snaith, M R; Kilby, N J; Murray, J A

    1996-11-21

    We have developed an Escherichia coli system for testing the behaviour of plasmids carrying target sites for the F1p site-specific recombinase. The E. coli strain BL-FLP is described, which carries a chromosomally integrated bacteriophage T7 RNA polymerase gene expressed from a lac promoter, and harbours the plasmid pMS40.pMS40 has the features: (i) it carries the FLP recombinase gene under the control of a bacteriophage T7 promoter, (ii) it confers kanamycin resistance, and (iii) it uses an R6K origin of replication; these two latter features make it compatible with most conventional cloning vectors. Substrate plasmids carrying F1p-recognition targets (FRT) are transformed into BL-FLP, and the consequences of F1p-mediated recombination can be analysed after subsequent extraction of plasmid DNA. We show that this system is capable of base-perfect F1p-mediated recombination on plasmid substrates. We also present a corrected sequence of the commonly used F1p substrate plasmid, pNEO beta GAL (O'Gorman et al. (1991) Science 251, 1351-1355).

  13. Ligand-bound Structures and Site-directed Mutagenesis Identify the Acceptor and Secondary Binding Sites of Streptomyces coelicolor Maltosyltransferase GlgE*

    PubMed Central

    Syson, Karl; Stevenson, Clare E. M.; Miah, Farzana; Barclay, J. Elaine; Tang, Minhong; Gorelik, Andrii; Rashid, Abdul M.; Lawson, David M.; Bornemann, Stephen

    2016-01-01

    GlgE is a maltosyltransferase involved in α-glucan biosynthesis in bacteria that has been genetically validated as a target for tuberculosis therapies. Crystals of the Mycobacterium tuberculosis enzyme diffract at low resolution so most structural studies have been with the very similar Streptomyces coelicolor GlgE isoform 1. Although the donor binding site for α-maltose 1-phosphate had been previously structurally defined, the acceptor site had not. Using mutagenesis, kinetics, and protein crystallography of the S. coelicolor enzyme, we have now identified the +1 to +6 subsites of the acceptor/product, which overlap with the known cyclodextrin binding site. The sugar residues in the acceptor subsites +1 to +5 are oriented such that they disfavor the binding of malto-oligosaccharides that bear branches at their 6-positions, consistent with the known acceptor chain specificity of GlgE. A secondary binding site remote from the catalytic center was identified that is distinct from one reported for the M. tuberculosis enzyme. This new site is capable of binding a branched α-glucan and is most likely involved in guiding acceptors toward the donor site because its disruption kinetically compromises the ability of GlgE to extend polymeric substrates. However, disruption of this site, which is conserved in the Streptomyces venezuelae GlgE enzyme, did not affect the growth of S. venezuelae or the structure of the polymeric product. The acceptor subsites +1 to +4 in the S. coelicolor enzyme are well conserved in the M. tuberculosis enzyme so their identification could help inform the design of inhibitors with therapeutic potential. PMID:27531751

  14. Person- and place-selective neural substrates for entity-specific semantic access.

    PubMed

    Fairhall, Scott L; Anzellotti, Stefano; Ubaldi, Silvia; Caramazza, Alfonso

    2014-07-01

    Object-category has a pronounced effect on the representation of objects in higher level visual cortex. However, the influence of category on semantic/conceptual processes is less well characterized. In the present study, we conduct 2 fMRI experiments to investigate the semantic processing of information specific to individual people and places (entities). First, during picture presentation, we determined which brain regions show category-selective increases during access to entity-specific semantic information (i.e., nationality) in comparison to general-category discrimination (person vs. place). In the second experiment, we presented either words or pictures to assess the independence of entity-specific category-selective semantic representations from the processes used to access those representations. Convergent results from these 2 experiments show that brain regions exhibiting a category-selective increase during entity-specific semantic access are the same as those that show a supramodal (word/picture) category-selective response during the same task. These responses were different from classical "perceptual" category-selective responses and were evident in the medial precuneus for people and in the retrosplenial complex as well as anterior/superior sections of the transverse occipital sulcus and parahippocampal gyrus for places. These results reveal the pervasive influence of object-category in cortical organization, which extends to aspects of semantic knowledge arbitrarily related to physical/perceptual properties.

  15. Substrate specificity of the agonist-stimulated release of polyunsaturated fatty acids from vascular endothelial cells

    SciTech Connect

    Rosenthal, M.D.; Garcia, M.C.; Sprecher, H. )

    1989-11-01

    Stimulation of vascular endothelial cells with agonists such as histamine and thrombin results in release of arachidonic acid from membrane lipids and subsequent eicosanoid synthesis. As shown previously, the agonist-stimulated deacylation is specific for arachidonate, eicosapentaenoate, and 5,8,11-eicosatrienoate. This study has utilized radiolabeled fatty acids differing in chain length and position of double bonds to further elucidate the fatty acyl specificity of agonist-stimulated deacylation. Replicate wells of confluent human umbilical vein endothelial cells were incubated with 14C-labeled fatty acids and then challenged with histamine, thrombin, or the calcium ionophore A23187. Comparison of the results obtained with isomeric eicosatetraenoic fatty acids with initial double bonds at carbons 4, 5, or 6 indicated that the deacylation induced by all three agonists exhibited marked specificity for the cis-5 double bond. Lack of stringent chain length specificity wa