Science.gov

Sample records for acceptors including feiii

  1. Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the electron acceptor Fe(iii) citrate studied by NMR.

    PubMed

    Ferreira, Marisa R; Dantas, Joana M; Salgueiro, Carlos A

    2017-02-14

    Proteomic and genetic studies have identified a family of five triheme cytochromes (PpcA-E) that are essential in the iron respiratory pathways of Geobacter sulfurreducens. These include the reduction of Fe(iii) soluble chelated forms or Fe(iii) oxides, which can be used as terminal acceptors by G. sulfurreducens. The relevance of these cytochromes in the respiratory pathways of soluble or insoluble forms of iron is quite distinct. In fact, while PpcD had a higher abundance in the Fe(iii) oxides supplanted G. sulfurreducens cultures, PpcA, PpcB and PpcE were important in Fe(iii) citrate supplanted cultures. Based on these observations we probed the molecular interactions between these cytochromes and Fe(iii) citrate by NMR spectroscopy. NMR spectra were recorded for natural abundance and (15)N-enriched PpcA, PpcB or PpcE samples at increasing amounts of Fe(iii) citrate. The addition of this molecule caused pronounced perturbations on the line width of the protein's NMR signals, which were used to map the interaction region between each cytochrome and the Fe(iii) citrate molecule. The perturbations on the NMR signals corresponding to the backbone NH and heme methyl substituents showed that complex interfaces consist of a well-defined patch, which surrounds the more solvent-exposed heme IV methyl groups in each cytochrome. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between Fe(iii) citrate and G. sulfurreducens triheme cytochromes, shown to be crucial in this respiratory pathway.

  2. Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a Thermus Isolate

    SciTech Connect

    Kieft, T. L.; Fredrickson, J. K.; Onstott, T. C.; Gorby, Y. A.; Kostandarithes, H. M.; Bailey, T. J.; Kennedy, D. W.; Li, S. W.; Plymale, A. E.; Spadoni, C. M.; Gray, M. S.

    1995-10-25

    A thermophilic bacterium that could use O{sub 2}, NO{sub 3}{sup -}, Fe(III), or S{sup o} as terminal electron acceptors for growth was isolated from groundwater sampled at 3.2 km depth in a South African gold mine. This organism, designated SA-01, clustered most closely with members of the genus Thermus, as determined by 16S rDNA gene sequence analysis. The 16S rDNA sequence of SA-01 was >98% similar to that of Thermus strain NMX2 A.1, which was previously isolated by other investigators from a thermal spring in New Mexico. Strain NMX2 A.1 was also able to reduce Fe(III) and other electron acceptors, whereas Thermus aquaticus (ATCC 25104) and Thermus filiformis (ATCC 43280) did not reduce NO{sub 3}{sup -} or Fe(III). Neither SA-01 nor NMX2 A.1 grew fermentatively, i.e., addition of an external electron acceptor was required for anaerobic growth. Thermus SA-01 reduced soluble Fe(III) complexed with citrate or nitrilotriacetic acid (NTA); however, it could only reduce relatively small quantities (0.5 mM) of hydrous ferric oxide (HFO) except when the humic acid analog 2,6-anthraquinone disulfonate (AQDS) was added as an electron shuttle, in which case 10 mM Fe(III) was reduced. Fe(III)-NTA was reduced quantitatively to Fe(II), was coupled to the oxidation of lactate, and could support growth through three consecutive transfers. Suspensions of Thermus SA-01 cells also reduced Mn(IV), Co(III)-EDTA, Cr(VI), and AQDS. Mn(IV)-oxide was reduced in the presence of either lactate or H{sub 2}. Both strains were also able to mineralize NTA to CO{sub 2} and to couple its oxidation to Fe(III) reduction and growth. The optimum temperature for growth and Fe(III) reduction by Thermus SA-01 and NMX2 A.1 is approximately 65 C; optimum pH is 6.5 to 7.0. This is the first report of a Thermus sp. being able to couple the oxidation of organic compounds to the reduction of Fe, Mn or S.

  3. Bioavailability of Fe(III) in Loess Sediments: An Important Source of Electron Acceptors

    SciTech Connect

    Bishop, Michael E.; Jaisi, Deb P.; Dong, Hailiang; Kukkadapu, Ravi K.; Ji, Junfeng

    2010-08-01

    A quantitative study was conducted to understand if Fe (III) in loess sediments is available for microbial respiration by using a common metal reducing bacterium, Shewanella putrefaciens, CN32. The loess samples were collected from three different sites: St. Louis (Peoria), Missouri, USA; Huanxia (HX) and Yanchang (YCH), Shanxi Province of China. Wet chemical analyses indicated that the total Fe concentration for the three samples was 1.69%, 2.76%, and 3.29%, respectively, of which 0.48%, 0.67%, and 1.27% was Fe(III). All unreduced loess sediments contained iron oxides and phyllosilicates (smectite, illite, chlorite, vermiculite), in addition to common minerals such as quartz, feldspar, plagioclase, calcite, and dolomite. Bioreduction experiments were performed at a loess concentration of 20 mg/mL using lactate as the sole electron donor, Fe(III) in loess as the sole electron acceptor in the presence and absence of anthraquinone-2, 6-disulfonate (AQDS) as an electron shuttle. Experiments were performed in non-growth (bicarbonate buffer) and growth (M1) media with a cell concentration of ~2.8 x 107 and 2.1 x 107 cells/mL, respectively. The unreduced and bioreduced solids were analyzed by X-ray diffraction (XRD), Mössbauer spectroscopy, diffuse reflection spectroscopy (DRS), and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods. Despite many similarities among the three loess samples, the extent and rate of Fe (III) reduction varied significantly. For example, in presence of AQDS the extent of reduction in the non-growth experiment was 25% in HX, 34% in Peoria, and 38% in YCH. The extent of reduction in the growth experiment was 72% in HX, 94% in Peoria, and 56% in YCH. The extent of bioreduction was lower in absence of AQDS. Overall, AQDS and the M1 growth medium significantly enhanced the rate and extent of bioreduction. Fe(III) in iron oxides and Fe(III)-containing phyllosilicates was bioreduced. Biogenic illite, siderite, and

  4. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov.

    PubMed

    Kashefi, Kazem; Holmes, Dawn E; Reysenbach, Anna-Louise; Lovley, Derek R

    2002-04-01

    It has recently been recognized that the ability to use Fe(III) as a terminal electron acceptor is a highly conserved characteristic in hyperthermophilic microorganisms. This suggests that it may be possible to recover as-yet-uncultured hyperthermophiles in pure culture if Fe(III) is used as an electron acceptor. As part of a study of the microbial diversity of the Obsidian Pool area in Yellowstone National Park, Wyo., hot sediment samples were used as the inoculum for enrichment cultures in media containing hydrogen as the sole electron donor and poorly crystalline Fe(III) oxide as the electron acceptor. A pure culture was recovered on solidified, Fe(III) oxide medium. The isolate, designated FW-1a, is a hyperthermophilic anaerobe that grows exclusively by coupling hydrogen oxidation to the reduction of poorly crystalline Fe(III) oxide. Organic carbon is not required for growth. Magnetite is the end product of Fe(III) oxide reduction under the culture conditions evaluated. The cells are rod shaped, about 0.5 microm by 1.0 to 1.2 microm, and motile and have a single flagellum. Strain FW-1a grows at circumneutral pH, at freshwater salinities, and at temperatures of between 65 and 100 degrees C with an optimum of 85 to 90 degrees C. To our knowledge this is the highest temperature optimum of any organism in the Bacteria. Analysis of the 16S ribosomal DNA (rDNA) sequence of strain FW-1a places it within the Bacteria, most closely related to abundant but uncultured microorganisms whose 16S rDNA sequences have been previously recovered from Obsidian Pool and a terrestrial hot spring in Iceland. While previous studies inferred that the uncultured microorganisms with these 16S rDNA sequences were sulfate-reducing organisms, the physiology of the strain FW-1a, which does not reduce sulfate, indicates that these organisms are just as likely to be Fe(III) reducers. These results further demonstrate that Fe(III) may be helpful for recovering as-yet-uncultured microorganisms

  5. Siderophores are not involved in Fe(III) solubilization during anaerobic Fe(III) respiration by Shewanella oneidensis MR-1.

    PubMed

    Fennessey, Christine M; Jones, Morris E; Taillefert, Martial; DiChristina, Thomas J

    2010-04-01

    Shewanella oneidensis MR-1 respires a wide range of anaerobic electron acceptors, including sparingly soluble Fe(III) oxides. In the present study, S. oneidensis was found to produce Fe(III)-solubilizing organic ligands during anaerobic Fe(III) oxide respiration, a respiratory strategy postulated to destabilize Fe(III) and produce more readily reducible soluble organic Fe(III). In-frame gene deletion mutagenesis, siderophore detection assays, and voltammetric techniques were combined to determine (i) if the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration were synthesized via siderophore biosynthesis systems and (ii) if the Fe(III)-siderophore reductase was required for respiration of soluble organic Fe(III) as an anaerobic electron acceptor. Genes predicted to encode the siderophore (hydroxamate) biosynthesis system (SO3030 to SO3032), the Fe(III)-hydroxamate receptor (SO3033), and the Fe(III)-hydroxamate reductase (SO3034) were identified in the S. oneidensis genome, and corresponding in-frame gene deletion mutants were constructed. DeltaSO3031 was unable to synthesize siderophores or produce soluble organic Fe(III) during aerobic respiration yet retained the ability to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. DeltaSO3034 retained the ability to synthesize siderophores during aerobic respiration and to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. These findings indicate that the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration are not synthesized via the hydroxamate biosynthesis system and that the Fe(III)-hydroxamate reductase is not essential for respiration of Fe(III)-citrate or Fe(III)-nitrilotriacetic acid (NTA) as an anaerobic electron acceptor.

  6. Siderophores Are Not Involved in Fe(III) Solubilization during Anaerobic Fe(III) Respiration by Shewanella oneidensis MR-1▿ †

    PubMed Central

    Fennessey, Christine M.; Jones, Morris E.; Taillefert, Martial; DiChristina, Thomas J.

    2010-01-01

    Shewanella oneidensis MR-1 respires a wide range of anaerobic electron acceptors, including sparingly soluble Fe(III) oxides. In the present study, S. oneidensis was found to produce Fe(III)-solubilizing organic ligands during anaerobic Fe(III) oxide respiration, a respiratory strategy postulated to destabilize Fe(III) and produce more readily reducible soluble organic Fe(III). In-frame gene deletion mutagenesis, siderophore detection assays, and voltammetric techniques were combined to determine (i) if the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration were synthesized via siderophore biosynthesis systems and (ii) if the Fe(III)-siderophore reductase was required for respiration of soluble organic Fe(III) as an anaerobic electron acceptor. Genes predicted to encode the siderophore (hydroxamate) biosynthesis system (SO3030 to SO3032), the Fe(III)-hydroxamate receptor (SO3033), and the Fe(III)-hydroxamate reductase (SO3034) were identified in the S. oneidensis genome, and corresponding in-frame gene deletion mutants were constructed. ΔSO3031 was unable to synthesize siderophores or produce soluble organic Fe(III) during aerobic respiration yet retained the ability to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. ΔSO3034 retained the ability to synthesize siderophores during aerobic respiration and to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. These findings indicate that the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration are not synthesized via the hydroxamate biosynthesis system and that the Fe(III)-hydroxamate reductase is not essential for respiration of Fe(III)-citrate or Fe(III)-nitrilotriacetic acid (NTA) as an anaerobic electron acceptor. PMID:20190086

  7. Mechanisms Involved in Fe(III) Respiration by the Hyperthermophilic Archaeon Ferroglobus placidus

    PubMed Central

    Smith, Jessica A.; Aklujkar, Muktak; Risso, Carla; Leang, Ching; Giloteaux, Ludovic

    2015-01-01

    The hyperthermophilic archaeon Ferroglobus placidus can utilize a wide variety of electron donors, including hydrocarbons and aromatic compounds, with Fe(III) serving as an electron acceptor. In Fe(III)-reducing bacteria that have been studied to date, this process is mediated by c-type cytochromes and type IV pili. However, there currently is little information available about how this process is accomplished in archaea. In silico analysis of the F. placidus genome revealed the presence of 30 genes coding for putative c-type cytochrome proteins (more than any other archaeon that has been sequenced to date), five of which contained 10 or more heme-binding motifs. When cell extracts were analyzed by SDS-PAGE followed by heme staining, multiple bands corresponding to c-type cytochromes were detected. Different protein expression patterns were observed in F. placidus cells grown on soluble and insoluble iron forms. In order to explore this result further, transcriptomic studies were performed. Eight genes corresponding to multiheme c-type cytochromes were upregulated when F. placidus was grown with insoluble Fe(III) oxide compared to soluble Fe(III) citrate as an electron acceptor. Numerous archaella (archaeal flagella) also were observed on Fe(III)-grown cells, and genes coding for two type IV pilin-like domain proteins were differentially expressed in Fe(III) oxide-grown cells. This study provides insight into the mechanisms for dissimilatory Fe(III) respiration by hyperthermophilic archaea. PMID:25662973

  8. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    PubMed Central

    2010-01-01

    Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen) and acceptors (Fe(III), fumarate) was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III) as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III) as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III), while growth in the presence of Fe(III) and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production. PMID:21092215

  9. Fe(III) and S0 reduction by Pelobacter carbinolicus

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.; Widma, P.K.

    1995-01-01

    There is a close phylogenetic relationship between Pelobacter species and members of the genera Desulfuromonas and Geobacter, and yet there has been a perplexing lack of physiological similarities. Pelobacter species have been considered to have a fermentative metabolism. In contrast, Desulfuromonas and Geobacter species have a respiratory metabolism with Fe(III) serving as the common terminal electron acceptor in all species. However, the ability of Pelobacter species to reduce Fe(III) had not been previously evaluated. When a culture of Pelobacter carbinolicus that had grown by fermentation of 2,3- butanediol was inoculated into the same medium supplemented with Fe(III), the Fe(III) was reduced. There was less accumulation of ethanol and more production of acetate in the presence of Fe(III). P. carbinolicus grew with ethanol as the sole electron donor and Fe(III) as the sole electron acceptor. Ethanol was metabolized to acetate. Growth was also possible on Fe(III) with the oxidation of propanol to propionate or butanol to butyrate if acetate was provided as a carbon source. P. carbinolicus appears capable of conserving energy to support growth from Fe(III) respiration as it also grew with H2 or formate as the electron donor and Fe(III) as the electron acceptor. Once adapted to Fe(III) reduction, P. carbinolicus could also grow on ethanol or H2 with S0 as the electron acceptor. P. carbinolicus did not contain detectable concentrations of the c-type cytochromes that previous studies have suggested are involved in electron transport to Fe(III) in other organisms that conserve energy to support growth from Fe(III) reduction. These results demonstrate that P. carbinolicus may survive in some sediments as an Fe(III) or S0 reducer rather than growing fermentatively on rare substrates or syntrophically as an ethanol-oxidizing acetogen. These studies also suggest that the ability to use Fe(III) as a terminal electron acceptor may be an important unifying feature of the

  10. Mechanisms for Fe(III) oxide reduction in sedimentary environments

    USGS Publications Warehouse

    Nevin, Kelly P.; Lovely, Derek R.

    2002-01-01

    Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary

  11. Microbial reduction of Fe(III) under alkaline conditions relevant to geological disposal.

    PubMed

    Williamson, Adam J; Morris, Katherine; Shaw, Sam; Byrne, James M; Boothman, Christopher; Lloyd, Jonathan R

    2013-06-01

    To determine whether biologically mediated Fe(III) reduction is possible under alkaline conditions in systems of relevance to geological disposal of radioactive wastes, a series of microcosm experiments was set up using hyperalkaline sediments (pH ~11.8) surrounding a legacy lime working site in Buxton, United Kingdom. The microcosms were incubated for 28 days and held at pH 10. There was clear evidence for anoxic microbial activity, with consumption of lactate (added as an electron donor) concomitant with the reduction of Fe(III) as ferrihydrite (added as the electron acceptor). The products of microbial Fe(III) reduction were black and magnetic, and a range of analyses, including X-ray diffraction, transmission electron microscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism confirmed the extensive formation of biomagnetite in this system. The addition of soluble exogenous and endogenous electron shuttles such as the humic analogue anthraquinone-2,6-disulfonate and riboflavin increased both the initial rate and the final extent of Fe(III) reduction in comparison to the nonamended experiments. In addition, a soluble humic acid (Aldrich) also increased both the rate and the extent of Fe(III) reduction. These results show that microbial Fe(III) reduction can occur in conditions relevant to a geological disposal facility containing cement-based wasteforms that has evolved into a high pH environment over prolonged periods of time (>100,000 years). The potential impact of such processes on the biogeochemistry of a geological disposal facility is discussed, including possible coupling to the redox conditions and solubility of key radionuclides.

  12. Microbial Reduction of Fe(III) under Alkaline Conditions Relevant to Geological Disposal

    PubMed Central

    Williamson, Adam J.; Morris, Katherine; Shaw, Sam; Byrne, James M.; Boothman, Christopher

    2013-01-01

    To determine whether biologically mediated Fe(III) reduction is possible under alkaline conditions in systems of relevance to geological disposal of radioactive wastes, a series of microcosm experiments was set up using hyperalkaline sediments (pH ∼11.8) surrounding a legacy lime working site in Buxton, United Kingdom. The microcosms were incubated for 28 days and held at pH 10. There was clear evidence for anoxic microbial activity, with consumption of lactate (added as an electron donor) concomitant with the reduction of Fe(III) as ferrihydrite (added as the electron acceptor). The products of microbial Fe(III) reduction were black and magnetic, and a range of analyses, including X-ray diffraction, transmission electron microscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism confirmed the extensive formation of biomagnetite in this system. The addition of soluble exogenous and endogenous electron shuttles such as the humic analogue anthraquinone-2,6-disulfonate and riboflavin increased both the initial rate and the final extent of Fe(III) reduction in comparison to the nonamended experiments. In addition, a soluble humic acid (Aldrich) also increased both the rate and the extent of Fe(III) reduction. These results show that microbial Fe(III) reduction can occur in conditions relevant to a geological disposal facility containing cement-based wasteforms that has evolved into a high pH environment over prolonged periods of time (>100,000 years). The potential impact of such processes on the biogeochemistry of a geological disposal facility is discussed, including possible coupling to the redox conditions and solubility of key radionuclides. PMID:23524677

  13. Dissimilatory Fe(III) and Mn(IV) reduction.

    PubMed Central

    Lovley, D R

    1991-01-01

    The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process. PMID:1886521

  14. Mechanisms of electron acceptor utilization: Implications for simulating anaerobic biodegradation

    USGS Publications Warehouse

    Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr, J.M.

    2004-01-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum- contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  15. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.

    PubMed

    Taillefert, Martial; Beckler, Jordon S; Carey, Elizabeth; Burns, Justin L; Fennessey, Christine M; DiChristina, Thomas J

    2007-11-01

    The mechanism of Fe(III) reduction was investigated using voltammetric techniques in anaerobic incubations of Shewanella putrefaciens strain 200 supplemented with Fe(III) citrate or a suite of Fe(III) oxides as terminal electron acceptor. Results indicate that organic complexes of Fe(III) are produced during the reduction of Fe(III) at rates that correlate with the reactivity of the Fe(III) phase and bacterial cell density. Anaerobic Fe(III) solubilization activity is detected with either Fe(III) oxides or Fe(III) citrate, suggesting that the organic ligand produced is strong enough to destabilize Fe(III) from soluble or solid Fe(III) substrates. Results also demonstrate that Fe(III) oxide dissolution is not controlled by the intrinsic chemical reactivity of the Fe(III) oxides. Instead, the chemical reaction between the endogenous organic ligand is only affected by the number of reactive surface sites available to S. putrefaciens. This report describes the first application of voltammetric techniques to demonstrate production of soluble organic-Fe(III) complexes by any Fe(III)-reducing microorganism and is the first report of a Fe(III)-solubilizing ligand generated by a metal-reducing member of the genus Shewanella.

  16. Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella oneidensis MR-1

    SciTech Connect

    Shi, Liang; Rosso, Kevin M.; Clarke, Thomas A.; Richardson, David J.; Zachara, John M.; Fredrickson, Jim K.

    2012-02-15

    In the absence of O2 and other electron acceptors, the Gram-negative bacterium Shewanella oneidensis MR-1 can use ferric [Fe(III)] (oxy)(hydr)oxide minerals as the terminal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence of strong complexing ligands, Fe(III) oxides are relatively insoluble and thus are external to the bacterial cells. S. oneidensis MR-1 and related strains of metal-reducing Shewanella have evolved the machinery (i.e., metal-reducing or Mtr pathway) for transferring electrons from the inner-membrane, through the periplasm and across the outer-membrane to the surface of extracellular Fe(III) oxides. The protein components identified to date for the Mtr pathway include CymA, MtrA, MtrB, MtrC and OmcA. CymA is an inner-membrane tetraheme c-type cytochrome (c-Cyt) that belongs to the NapC/NrfH family of quinol dehydrogenases. It is proposed that CymA oxidizes the quinol in the inner-membrane and transfers the released electrons to redox proteins in the periplasm. Although the periplasmic proteins receiving electrons from CymA during Fe(III) oxidation have not been identified, they are believed to relay the electrons in the periplasm to MtrA. A decaheme c-Cyt, MtrA is thought to be embedded in the trans outer-membrane and porin-like protein MtrB. Together, MtrAB deliver the electrons through the outer-membrane to the MtrC and OmcA on the outmost bacterial surface. MtrC and OmcA are the outer-membrane decaheme c-Cyts that are translocated across the outer-membrane by the bacterial type II secretion system. Functioning as terminal reductases, MtrC and OmcA can bind the surface of Fe(III) oxides and transfer electrons directly to these minerals via their solvent-exposed hemes. To increase their reaction rates, MtrC and OmcA can use the flavins secreted by S. oneidensis MR-1 cells as diffusible co-factors for reduction of Fe(III) oxides. Because of their extracellular location and broad redox potentials, MtrC and OmcA can

  17. Advanced experimental analysis of controls on microbial Fe(III) oxide reduction. First year progress report

    SciTech Connect

    Roden, E.E.; Urrutia, M.M.

    1997-07-01

    'The authors have made considerable progress toward a number of project objectives during the first several months of activity on the project. An exhaustive analysis was made of the growth rate and biomass yield (both derived from measurements of cell protein production) of two representative strains of Fe(III)-reducing bacteria (Shewanellaalga strain BrY and Geobactermetallireducens) growing with different forms of Fe(III) as an electron acceptor. These two fundamentally different types of Fe(III)-reducing bacteria (FeRB) showed comparable rates of Fe(III) reduction, cell growth, and biomass yield during reduction of soluble Fe(III)-citrate and solid-phase amorphous hydrous ferric oxide (HFO). Intrinsic growth rates of the two FeRB were strongly influenced by whether a soluble or a solid-phase source of Fe(III) was provided: growth rates on soluble Fe(III) were 10--20 times higher than those on solid-phase Fe(III) oxide. Intrinsic FeRB growth rates were comparable during reduction of HF0 and a synthetic crystalline Fe(III) oxide (goethite). A distinct lag phase for protein production was observed during the first several days of incubation in solid-phase Fe(III) oxide medium, even though Fe(III) reduction proceeded without any lag. No such lag between protein production and Fe(III) reduction was observed during growth with soluble Fe(III). This result suggested that protein synthesis coupled to solid-phase Fe(III) oxide reduction in batch culture requires an initial investment of energy (generated by Fe(III) reduction), which is probably needed for synthesis of materials (e.g. extracellular polysaccharides) required for attachment of the cells to oxide surfaces. This phenomenon may have important implications for modeling the growth of FeRB in subsurface sedimentary environments, where attachment and continued adhesion to solid-phase materials will be required for maintenance of Fe(III) reduction activity. Despite considerable differences in the rate and pattern

  18. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans

    USGS Publications Warehouse

    Roden, E.E.; Lovley, D.R.

    1993-01-01

    The ability of the marine microorganism Desulfuromonas acetoxidans to reduce Fe(III) was investigated because of its close phylogenetic relationship with the freshwater dissimilatory Fe(III) reducer Geobacter metallireducens. Washed cell suspensions of the type strain of D. acetoxidans reduced soluble Fe(III)-citrate and Fe(III) complexed with nitriloacetic acid. The c-type cytochrome(s) of D. acetoxidans was oxidized by Fe(III)- citrate and Mn(IV)-oxalate, as well as by two electron acceptors known to support growth, colloidal sulfur and malate. D. acetoxidans grew in defined anoxic, bicarbonate-buffered medium with acetate as the sole electron donor and poorly crystalline Fe(III) or Mn(IV) as the sole electron acceptor. Magnetite (Fe3O4) and siderite (FeCO3) were the major end products of Fe(III) reduction, whereas rhodochrosite (MnCO3) was the end product of Mn(IV) reduction. Ethanol, propanol, pyruvate, and butanol also served as electron donors for Fe(III) reduction. In contrast to D. acetoxidans, G. metallireducens could only grow in freshwater medium and it did not conserve energy to support growth from colloidal S0 reduction. D. acetoxidans is the first marine microorganism shown to conserve energy to support growth by coupling the complete oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). Thus, D. acetoxidans provides a model enzymatic mechanism for Fe(III) or Mn(IV) oxidation of organic compounds in marine and estuarine sediments. These findings demonstrate that 16S rRNA phylogenetic analyses can suggest previously unrecognized metabolic capabilities of microorganisms.

  19. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a

  20. Alternansucrase acceptor products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regioselectivity of alternansucrase (EC 2.4.1.140) differs from dextransucrase (EC 2.4.1.5) in ways that can be useful for the synthesis of novel oligosaccharide structures. For example, it has been recently shown that the major oligosaccharides produced when maltose is the acceptor include one...

  1. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism

    USGS Publications Warehouse

    Coates, J.D.; Councell, T.; Ellis, D.J.; Lovley, D.R.

    1998-01-01

    An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, Gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO-3, Mn(IV), U(VI), fumarate, malate, S2O32-, and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process.

  2. Importance of clay size minerals for Fe(III) respiration in a petroleum-contaminated aquifer

    USGS Publications Warehouse

    Shelobolina, Evgenya S.; Anderson, Robert T.; Vodyanitskii, Yury N.; Sivtsov, Anatolii V.; Yuretich, Richard; Lovely, Derek R.

    2004-01-01

    (III)-bearing clay size minerals were essential for microbial Fe(III) reduction and suggested that both potential sources of ‘bio-available’ Fe(III) in the clay size fraction, poorly crystalline Fe(III) hydroxides and structural Fe(III) of phyllosilicates, were important sources of electron acceptor for indigenous iron-reducing microorganisms in this aquifer.

  3. Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens.

    PubMed

    Smith, Jessica A; Lovley, Derek R; Tremblay, Pier-Luc

    2013-02-01

    Geobacter species are important Fe(III) reducers in a diversity of soils and sediments. Mechanisms for Fe(III) oxide reduction have been studied in detail in Geobacter sulfurreducens, but a number of the most thoroughly studied outer surface components of G. sulfurreducens, particularly c-type cytochromes, are not well conserved among Geobacter species. In order to identify cellular components potentially important for Fe(III) oxide reduction in Geobacter metallireducens, gene transcript abundance was compared in cells grown on Fe(III) oxide or soluble Fe(III) citrate with whole-genome microarrays. Outer-surface cytochromes were also identified. Deletion of genes for c-type cytochromes that had higher transcript abundance during growth on Fe(III) oxides and/or were detected in the outer-surface protein fraction identified six c-type cytochrome genes, that when deleted removed the capacity for Fe(III) oxide reduction. Several of the c-type cytochromes which were essential for Fe(III) oxide reduction in G. metallireducens have homologs in G. sulfurreducens that are not important for Fe(III) oxide reduction. Other genes essential for Fe(III) oxide reduction included a gene predicted to encode an NHL (Ncl-1-HT2A-Lin-41) repeat-containing protein and a gene potentially involved in pili glycosylation. Genes associated with flagellum-based motility, chemotaxis, and pili had higher transcript abundance during growth on Fe(III) oxide, consistent with the previously proposed importance of these components in Fe(III) oxide reduction. These results demonstrate that there are similarities in extracellular electron transfer between G. metallireducens and G. sulfurreducens but the outer-surface c-type cytochromes involved in Fe(III) oxide reduction are different.

  4. Particle Aggregation During Fe(III) Bioreduction in Nontronite

    NASA Astrophysics Data System (ADS)

    Jaisi, D. P.; Dong, H.; Hi, Z.; Kim, J.

    2005-12-01

    This study was performed to evaluate the rate and mechanism of particle aggregation during bacterial Fe (III) reduction in different size fractions of nontronite and to investigate the role of different factors contributing to particle aggregation. To achieve this goal, microbial Fe(III) reduction experiments were performed with lactate as an electron donor, Fe(III) in nontronite as an electron acceptor, and AQDS as an electron shuttle in bicarbonate buffer using Shewanella putrefaceins CN32. These experiments were performed with and without Na- pyrophosphate as a dispersant in four size fractions of nontronite (0.12-0.22, 0.41-0.69, 0.73-0.96 and 1.42-1.8 mm). The rate of nontronite aggregation during the Fe(III) bioreduction was measured by analyzing particle size distribution using photon correlation spectroscopy (PCS) and SEM images analysis. Similarly, the changes in particle morphology during particle aggregation were determined by analyses of SEM images. Changes in particle surface charge were measured with electrophoretic mobility analyzer. The protein and carbohydrate fraction of EPS produced by cells during Fe(III) bioreduction was measured using Bradford and phenol-sulfuric acid extraction method, respectively. In the presence of the dispersant, the extent of Fe(III) bioreduction was 11.5-12.2% within the first 56 hours of the experiment. There was no measurable particle aggregation in control experiments. The PCS measurements showed that the increase in the effective diameter (95% percentile) was by a factor of 3.1 and 1.9 for particle size of 0.12-0.22 mm and 1.42-1.80 mm, respectively. The SEM image analyses also gave the similar magnitude of increase in particle size. In the absence of the dispersant, the extent of Fe(III) bioreduction was 13.4-14.5% in 56 hours of the experiment. The rate of aggregation was higher than that in the presence of the dispersant. The increase in the effective diameter (95% percentile) was by a factor of 13.6 and 4.1 for

  5. Purification to homogeneity and partial amino acid sequence of a fragment which includes the methyl acceptor site of the human DNA repair protein for O6-methylguanine.

    PubMed

    Major, G N; Gardner, E J; Carne, A F; Lawley, P D

    1990-03-25

    DNA repair by O6-methylguanine-DNA methyltransferase (O6-MT) is accomplished by removal by the enzyme of the methyl group from premutagenic O6-methylguanine-DNA, thereby restoring native guanine in DNA. The methyl group is transferred to an acceptor site cysteine thiol group in the enzyme, which causes the irreversible inactivation of O6-MT. We detected a variety of different forms of the methylated, inactivated enzyme in crude extracts of human spleen of molecular weights higher and lower than the usually observed 21-24kDa for the human O6-MT. Several apparent fragments of the methylated form of the protein were purified to homogeneity following reaction of partially-purified extract enzyme with O6-[3H-CH3]methylguanine-DNA substrate. One of these fragments yielded amino acid sequence information spanning fifteen residues, which was identified as probably belonging to human methyltransferase by virtue of both its significant sequence homology to three procaryote forms of O6-MT encoded by the ada, ogt (both from E. coli) and dat (B. subtilis) genes, and sequence position of the radiolabelled methyl group which matched the position of the conserved procaryote methyl acceptor site cysteine residue. Statistical prediction of secondary structure indicated good homologies between the human fragment and corresponding regions of the constitutive form of O6-MT in procaryotes (ogt and dat gene products), but not with the inducible ada protein, indicating the possibility that we had obtained partial amino acid sequence for a non-inducible form of the human enzyme. The identity of the fragment sequence as belonging to human methyltransferase was more recently confirmed by comparison with cDNA-derived amino acid sequence from the cloned human O6-MT gene from HeLa cells (1). The two sequences compared well, with only three out of fifteen amino acids being different (and two of them by only one nucleotide in each codon).

  6. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens.

    PubMed

    Aklujkar, M; Coppi, M V; Leang, C; Kim, B C; Chavan, M A; Perpetua, L A; Giloteaux, L; Liu, A; Holmes, D E

    2013-03-01

    Whole-genome microarray analysis of Geobacter sulfurreducens grown on insoluble Fe(III) oxide or Mn(IV) oxide versus soluble Fe(III) citrate revealed significantly different expression patterns. The most upregulated genes, omcS and omcT, encode cell-surface c-type cytochromes, OmcS being required for Fe(III) and Mn(IV) oxide reduction. Other electron transport genes upregulated on both metal oxides included genes encoding putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc4 and Cbc5, periplasmic c-type cytochromes Dhc2 and PccF, outer membrane c-type cytochromes OmcC, OmcG and OmcV, multicopper oxidase OmpB, the structural components of electrically conductive pili, PilA-N and PilA-C, and enzymes that detoxify reactive oxygen/nitrogen species. Genes upregulated on Fe(III) oxide encode putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc3 and Cbc6, periplasmic c-type cytochromes, including PccG and PccJ, and outer membrane c-type cytochromes, including OmcA, OmcE, OmcH, OmcL, OmcN, OmcO and OmcP. Electron transport genes upregulated on Mn(IV) oxide encode periplasmic c-type cytochromes PccR, PgcA, PpcA and PpcD, outer membrane c-type cytochromes OmaB/OmaC, OmcB and OmcZ, multicopper oxidase OmpC and menaquinone-reducing enzymes. Genetic studies indicated that MacA, OmcB, OmcF, OmcG, OmcH, OmcI, OmcJ, OmcM, OmcV and PccH, the putative Cbc5 complex subunit CbcC and the putative Cbc3 complex subunit CbcV are important for reduction of Fe(III) oxide but not essential for Mn(IV) oxide reduction. Gene expression patterns for Geobacter uraniireducens were similar. These results demonstrate that the physiology of Fe(III)-reducing bacteria differs significantly during growth on different insoluble and soluble electron acceptors and emphasize the importance of c-type cytochromes for extracellular electron transfer in G. sulfurreducens.

  7. Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.

    1996-01-01

    The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.

  8. New Approaches to Characterizing Fe(III) Bioreduction by Hyperthermophiles: Combining Physiological Potential with Mineral Spectroscopies

    NASA Astrophysics Data System (ADS)

    Kashyap, S.; Sklute, E.; Dyar, M. D.; Holden, J. F.

    2015-12-01

    Fe(III) is a widely available electron acceptor in many mildly-reducing deep-sea hydrothermal vents and terrestrial hot springs. Dissimilatory iron reduction, or the extracellular reduction of Fe(III) to Fe(II), is an integral biogeochemical process at these sites. Most of what is known about microbial Fe(III) reduction, however, has been established for mesophiles rather than the hyperthermophiles that are ubiquitous in hot environments. Our study examines the rates and constraints of Fe(III) bioreduction by hyperthermophilic archaea in order to address the types of Fe(III) (oxyhydr)oxides that are favored for growth of hyperthermophiles, the rates of growth and Fe(II) production for these organisms, and the mineralogy of Fe(III) bioreduction and possible variations with electron acceptor. We synthesized a range of nanophase Fe(III) (oxyhydr)oxides (2-line-ferrihydrite, 6-line-ferrihydrite, lepidocrocite, hematite, goethite, maghemite and akaganéite) and examined cell growth and Fe(II) production rates of Pyrodictium sp. Su06 and Pyrobaculum islandicum on the different Fe(III) (oxyhydr)oxides at 90°C and 95°C, respectively. Two different aggregate sizes of 2-line ferrihydrite and one of 6-line ferrihydrite were used to understand the effect of mineral aggregate size and shape on bioreduction. Direct cell counts and ferrozine assays were used to monitor cell growth and Fe(II) production respectively. Transformed mineral products were characterized using Mössbauer and attenuated total reflectance (ATR) spectroscopies. Preliminary results suggest that Pyrodictium sp. Su06 can only utilize 2-line ferrihydrite, producing up to 35 mM Fe(II) for smaller aggregates, and 10 mM Fe(II) for larger aggregates. P. islandicum on the other hand, can reduce 2-line-ferrihydrite, goethite, and lepidocrocite, producing up to 8 mM Fe(II) with ferrihydrite, 7 mM with lepidocrocite, and 2 mM with goethite as an electron acceptor. Initial results from Mössbauer and ATR spectra

  9. Solubility of Fe(III) in seawater

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.

    1998-01-01

    Recently Kuma et al. [K. Kuma, J. Nishioka, K. Matsunaga, Controls on iron (III) hydroxide solubility in seawater: The influence of pH and natural organic chelators, Limnol. Oceanogr. 41 (1996) 396-407] made some careful measurements of the solubility of Fe(III) in UV and non-UV irradiated seawater as a function of pH (5-8). They showed that organic compounds can increase the solubility (32-65%) at pH=8.1, apparently due to the formation of Fe(III) organic complexes. In this paper I have examined how these results can be quantified using a speciation model for Fe(III). The results indicate that the effect of pH (2-9) on coastal and open ocean waters by Kuma et al. and the earlier filtration measurement of Byrne and Kester [R.H. Byrne, D.R. Kester, Solubility of hydrous ferric oxide and iron speciation in sea water, Mar. Chem. 4 (1976) 255-274] can be adequately represented by considering the formation of FeOH 2+ and Fe(OH) 2+ using the hydrolysis constants ( K ∗1=10 -2.62, K ∗2=10 -6.0) determined by Millero et al. [F.J. Millero, W. Yao, J. Aicher, The speciation of Fe(II) and Fe(III) in natural waters, Mar. Chem. 50 (1995) 21-39]. The solubility measurements [Kuma et al., 1996] on unaltered coastal and open ocean waters appear to require the consideration of the formation of Fe(OH) 30 ( K ∗3=10 -13.3-10 -14.3). A more careful look at these measurements indicates that the curvature between pH 7 and 8 can be attributed to the formation of complexes of Fe 3+ with organic ligands (FeL). Model speciation calculations (pH 6-8) yield total ligand concentrations of [L] T=1.2 nM and 0.17 nM for unaltered coastal and open ocean waters, respectively, assuming K' FeL=10 21. These estimates are in good agreement with the values found for ocean waters by voltammetric methods. The model calculations for the solubility of Fe(III) (0.2 nM at pH=8.1 and 0.6 nM at pH=7.65) are in good agreement with measured open ocean surface (0.2 nM) and deep waters (0.6 nM) determined by

  10. Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate.

    PubMed

    Yu, Lei; Wang, Shi; Tang, Qing-Wen; Cao, Ming-Yue; Li, Jia; Yuan, Kun; Wang, Ping; Li, Wen-Wei

    2016-05-01

    Klebsiella oxytoca GS-4-08 is capable of azo dye reduction, but its quinone respiration and Fe(III) reduction abilities have not been reported so far. In this study, the abilities of this strain were reported in detail for the first time. As the biotic reduction of Fe(III) plays an important role in the biogeochemical cycles, two amorphous Fe(III) oxides were tested as the sole electron acceptor during the anaerobic respiration of strain GS-4-08. For the reduction of goethite and hematite, the biogenic Fe(II) concentrations reached 0.06 and 0.15 mM, respectively. Humic acid analog anthraquinone-2-disulfonate (AQS) was found to serve as an electron shuttle to increase the reduction of both methyl orange (MO) and amorphous Fe(III) oxides, and improve the dye tolerance of the strain. However, the formation of Fe(II) was not accelerated by biologically reduced AQS (B-AH2QS) because of the high bioavailability of soluble Fe(III). For the K. oxytoca strain, high soluble Fe(III) concentrations (above 1 mM) limit its growth and decolorization ability, while lower soluble Fe(III) concentrations produce an electron competition with MO initially, and then stimulate the decolorization after the electron couples of Fe(III)/Fe(II) are formed. With the ability to respire both soluble Fe(III) and insoluble Fe(III) oxides, this formerly known azo-reducer may be used as a promising model organism for the study of the interaction of these potentially competing processes in contaminated environments.

  11. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    NASA Astrophysics Data System (ADS)

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice C.; Marshall, Matthew J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2013-04-01

    The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 103 times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 103 times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration.

  12. Molecular analysis of deep subsurface Cretaceous rock indicates abundant Fe(III)- and S(zero)-reducing bacteria in a sulfate-rich environment.

    PubMed

    Kovacik, William P; Takai, Ken; Mormile, Melanie R; McKinley, James P; Brockman, Fred J; Fredrickson, James K; Holben, William E

    2006-01-01

    A multilevel sampler (MLS) was emplaced in a borehole straddling anaerobic, sulfate-rich Cretaceous-era shale and sandstone rock formations approximately 200 m below ground surface at Cerro Negro, New Mexico. Sterile quartzite sand contained in chambers in the sampler allowed in situ colonization and recovery of nucleic acids for molecular analyses. Denaturing gradient gel electrophoresis and 16S rRNA gene cloning results indicated a homogeneously distributed bacterial community across the shale-sandstone interface. delta-Proteobacteria sequences were common at all depths, and were dominated by members of the Geobacteraceae family (Pelobacter, Desulphuromonas and Geobacter). Other members of this group are capable of dissimilatory Fe(III) and/or S degrees reduction, but not sulfate reduction. RNA hybridization data also suggested that Fe(III)-/S degrees -reducing bacteria were predominant. These findings are striking considering the lack of significant concentrations of these electron acceptors in this environment. The next most abundant bacterial group indicated was the sulfate reducers, including Desulfobacterium, Desulfocapsa and Desulfobulbus. Sequences related to fermenters, denitrifiers and acetogens were also recovered. The presence of a phylogenetically and functionally diverse microbial community in this deep subsurface environment likely reflects the complex nature of the primary energy and carbon sources, kerogen associated with the shale.

  13. Molecular analysis of deep subsurface Cretaceous rock indicates abundant Fe(III)- and S°-reducing bacteria in a sulfate-rich environment

    SciTech Connect

    Kovacik, William P.; Takai, Ken; Mormile, Melanie R.; McKinley, James P.; Brockman, Fred J.; Fredrickson, Jim K.; Holben, William E.

    2006-01-01

    A multi-level sampler (MLS) was emplaced in a borehole straddling anaerobic, sulfate-rich Cretaceous-era shale and sandstone rock formations {approx}200 m below ground surface at Cerro Negro, New Mexico. Sterile quartzite sand contained in chambers in the sampler allowed in situ colonization and recovery of nucleic acids for molecular analyses. DGGE and 16S rRNA gene cloning results indicated a homogeneously distributed bacterial community across the shale/sandstone interface. ?-Proteobacteria sequences were common at all depths, and were dominated by members of the Geobacteraceae family (Pelobacter, Desulfuromonas, and Geobacter). Other members of this group are capable of dissimilatory Fe(III) and/or S0 reduction, but not sulfate reduction. RNA hybridization data also suggested that Fe(III)/S0 reducing bacteria were predominant. These findings are striking considering the lack of significant concentrations of these electron acceptors in this environment. The next most abundant bacterial group indicated was the sulfate reducers, including Desulfobacterium, Desulfocapsa and Desulfobulbus. Sequences related to fermenters, denitrifiers and acetogens were also recovered. The presence of a phylogenetically and functionally diverse microbial community in this deep subsurface environment likely reflects the complex nature of the primary energy and carbon sources, kerogen associated with the shale.

  14. Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Dong, Hailiang; Liu, Deng; Agrawal, Abinash

    2013-04-01

    Clay minerals and thermophilic methanogens can co-exist in hot anoxic environments, including the continental subsurface, geysers, terrestrial hot springs, and deep-sea hydrothermal vent systems. However, it is unclear whether thermophilic methanogens are able to reduce structural Fe(III) in clay minerals. In this study, the ability of a thermophilic methanogen Methanothermobacter thermautotrophicus to reduce structural Fe(III) in iron-rich and iron-poor smectites, (nontronite NAu-2 and Wyoming montmorillonite SWy-2) and the relationship between iron reduction and methanogenesis were investigated. M. thermautotrophicus reduced Fe(III) in nontronite NAu-2 and montmorillonite SWy-2 with H2/CO2 as substrate. The extent of bioreduction was 27% for nontronite and 13-15% for montmorillonite. Anthraquinone-2,6-disulfonate (AQDS) did not enhance the extent of bioreduction, but accelerated the rate. When methanogenesis was inhibited via addition of 2-bromoethane sulfonate (BES), the extent of bioreduction decreased to 16% for NAu-2 and 9% for SWy-2. These data suggest that Fe(III) bioreduction and methanogenesis were mutually beneficial. The likely mechanism was that Fe(III) bioreduction lowered the reduction potential of the system so that methanogenesis became favorable, and methanogenesis in turn stimulated the growth of the methanogen, which enhanced Fe(III) bioreduction. NAu-2 was partly dissolved and high charge smectite and biogenic silica formed as a result of bioreduction.

  15. Enhanced natural attenuation of BTEX in the nitrate-reducing environment by different electron acceptors.

    PubMed

    Zhao, Yongsheng; Qu, Dan; Hou, Zhimin; Zhou, Rui

    2015-01-01

    Enhancing natural attenuation of benzene, toluene, ethylbenzene, and xylene (BTEX) in groundwater is a potential remediation technology. This study focused on selecting appropriate electron acceptors to promote BTEX degradation in a nitrate-reducing environment. Nitrate-reducing soil was obtained from simulated BTEX-contaminated column. Enhancing experiments were conducted in the microcosm with nitrate-reducing material and simulated BTEX-polluted groundwater to investigate the promoting feasibility of adding dissolved oxygen (DO), nitrate, chelated Fe(III), and sulphate as electron acceptors. The concentrations of BTEX, electron acceptors, and their reducing products were measured. The order of promoting BTEX degradation with four electron acceptors was nitrate>sulphate>chelated Fe(III)>DO, and the first-order decay coefficients were 0.0432, 0.0333, 0.0240, and 0.0155, respectively. Nitrate, sulphate, and chelated Fe(III) enhanced attenuation. Nitrate was the most effective electron acceptor under nitrate-reducing conditions. Selecting proper electron acceptor is significant in promoting BTEX degradation according to the biogeochemical characteristics of local underground environment.

  16. Global Transcriptome Analysis of Shewanella oneidensis MR-1 Exposed to Different Terminal Electron Acceptors

    SciTech Connect

    Beliaev, Alex S.; Klingeman, Dawn M.; Klappenbach, Joel; Wu, Liyou; Romine, Margaret F.; Tiedje, James M.; Nealson, Kenneth H.; Fredrickson, Jim K.; Zhou, Jizhong

    2005-10-01

    To gain insight into the complex structure of the energy-generating networks in the dissimilatory metal reducer Shewanella oneidensis MR-1, global mRNA patterns were examined in cells exposed to a wide range of metal and non-metal electron acceptors. Gene expression patterns were similar irrespective of which metal ion was used as electron acceptor, with 60% of the differentially expressed genes showing similar induction or repression relative to fumarate- respiring conditions. Several groups of genes exhibited elevated expression levels in the presence of metals, including those encoding putative multidrug efflux transporters, detoxification proteins, extracytoplasmic sigma factors and PAS-domain regulators. Only one of the 42 predicted c-type cytochromes in MR-1, SO3300, displayed significantly elevated transcript levels across all metal-reducing conditions. Genes encoding decaheme cytochromes MtrC and MtrA that were previously linked to the reduction of different forms of Fe(III) and Mn(IV), exhibited only slight decreases in relative mRNA abundances under metal-reducing conditions. In contrast, specific transcriptome responses were displayed to individual non-metal electron acceptors resulting in the identification of unique groups of nitrate-, thiosulfate- and TMAO-induced genes including previously uncharacterized multi-cytochrome gene clusters. Collectively, the gene expression results reflect the fundamental differences between metal and non-metal respiratory pathways of S. oneidensis MR-1, where the coordinate induction of detoxification and stress response genes play a key role in adaptation of this organism under metal-reducing conditions. Moreover, the relative paucity and/or the constitutive nature of genes involved in electron transfer to metals is likely due to the low-specificity and the opportunistic nature of the metal-reducing electron transport pathways.

  17. Shewanella oneidensis MR-1-Induced Fe(III) Reduction Facilitates Roxarsone Transformation

    PubMed Central

    Chen, Guowei; Ke, Zhengchen; Liang, Tengfang; Liu, Li; Wang, Gang

    2016-01-01

    Although microbial activity and associated iron (oxy)hydroxides are known in general to affect the environmental dynamics of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), the mechanistic understanding of the underlying biophysico-chemical processes remains unclear due to limited experimental information. We studied how Shewanella oneidensis MR-1 –a widely distributed metal-reducing bacterium, in the presence of dissolved Fe(III), affects roxarsone transformations and biogeochemical cycling in a model aqueous system. The results showed that the MR-1 strain was able to anaerobically use roxarsone as a terminal electron acceptor and to convert it to a single product, 3-amino-4-hydroxybenzene arsonic acid (AHBAA). The presence of Fe(III) stimulated roxarsone transformation via MR-1-induced Fe(III) reduction, whereby the resulting Fe(II) acted as an efficient reductant for roxarsone transformation. In addition, the subsequent secondary Fe(III)/Fe(II) mineralization created conditions for adsorption of organoarsenic compounds to the yielded precipitates and thereby led to arsenic immobilization. The study provided direct evidence of Shewanella oneidensis MR-1-induced direct and Fe(II)-associated roxarsone transformation. Quantitative estimations revealed a candidate mechanism for the early-stage environmental dynamics of roxarsone in nature, which is essential for understanding the environmental dynamics of roxarsone and successful risk assessment. PMID:27100323

  18. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    SciTech Connect

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice; Marshall, Matthew J.; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David; Clarke, Thomas A.

    2013-04-16

    The mineral respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes brought together inside a transmembrane porin to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system that contains methyl viologen as an internalised electron carrier has been used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally-located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, direct electron transfer from the interior through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The observed rates of conduction through the protein complex were 2 to 3 orders of magnitude higher than that observed in whole cells, demonstrating that direct electron exchange between MtrCAB and Fe(III) oxides is efficient enough to support in-vivo, anaerobic, solid phase iron respiration.

  19. The life cycle of iron Fe(III) oxide: impact of fungi and bacteria

    NASA Astrophysics Data System (ADS)

    Bonneville, Steeve

    2014-05-01

    Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit vast surface areas which bind a large array of trace metals, nutrients and organic molecules hence controlling their mobility/reactivity in the subsurface. In this context, understanding the "life cycle" of iron oxide in soils is paramount to many biogeochemical processes. Soils environments are notorious for their extreme heterogeneity and variability of chemical, physical conditions and biological agents at play. Here, we present studies investigating the role of two biological agents driving iron oxide dynamics in soils, root-associated fungi (mycorrhiza) and bacteria. Mycorrhiza filaments (hypha) grow preferentially around, and on the surface of nutrient-rich minerals, making mineral-fungi contact zones, hot-spots of chemical alteration in soils. However, because of the microscopic nature of hyphae (only ~ 5 µm wide for up to 1 mm long) and their tendency to strongly adhere to mineral surface, in situ observations of this interfacial micro-environment are scarce. In a microcosm, ectomycorrhiza (Paxillus involutus) was grown symbiotically with a pine tree (Pinus sylvestris) in the presence of freshly-cleaved biotite under humid, yet undersaturated, conditions typical of soils. Using spatially-resolved ion milling technique (FIB), transmission electron microscopy and spectroscopy (TEM/STEM-EDS), synchrotron based X-ray microscopy (STXM), we were able to quantify the speciation of Fe at the biotite-hypha interface. The results shows that substantial oxidation of biotite structural-Fe(II) into Fe(III) subdomains occurs at the contact zone between mycorrhiza and biotite. Once formed, iron(III) oxides can reductively dissolve under suboxic conditions via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. We aimed here to understand the role of Fe(III) mineral

  20. Methane Suppression: The Impacts of Fe(III) and Humic Acids on Net Methane Flux from Arctic Tundra Wetlands in Alaska and Finland (Invited)

    NASA Astrophysics Data System (ADS)

    Lipson, D.; Miller, K.; Lai, C.

    2013-12-01

    Arctic soils contain large reservoirs of carbon (C) that are vulnerable to loss from climatic warming. However the potential global impacts of this C depend on whether it is lost primarily in the form of methane (CH4) or carbon dioxide (CO2), two gases with very different greenhouse warming potentials. In anaerobic environments, the relative production of CH4 vs. CO2 may be controlled by the presence of alternative terminal electron acceptors, which allow more thermodynamically favorable anaerobic respiratory pathways to dominate over methanogenesis. This work investigated how the addition of terminal electron acceptors, ferric iron (Fe(III)) and humic acids, affected net CH4 fluxes from high-latitude wetland ecosystems. We conducted two manipulative field experiments in Barrow, Alaska (71° N) and Finnish Lapland (69° N). The ecosystem in Barrow was known from previous studies to be rich in Fe(III) and to harbor a microbial community that is dominated by Fe(III)- and humic acid-reducing microorganisms. The role of these alternative electron acceptors had not previously been studied at the Finnish site. CH4 and CO2 fluxes were measured using a portable trace gas analyzer from experimental plots, before and after amendments with Fe(III) (in the chelated form, ferric nitrilotriacetic acid), humic acids, or water as a control. Both in the ecosystem with permafrost and naturally high levels of soil Fe (Barrow, AK) and in the ecosystem with no permafrost and naturally low levels of soil Fe (Petsikko, Finland), the addition of the alternative electron acceptors Fe(III) and humic acids significantly reduced net CH4 flux. CO2 fluxes were not significantly altered by the treatments. The reduction in CH4 flux persisted for at least several weeks post-treatment. There was no significant difference between the reduction caused by humic acids versus that from Fe(III). These results show that the suppression of CH4 flux by Fe(III) and humic acids is a widespread phenomenon that

  1. Identification and characterization of a novel cytochrome c(3) from Shewanella frigidimarina that is involved in Fe(III) respiration.

    PubMed Central

    Gordon, E H; Pike, A D; Hill, A E; Cuthbertson, P M; Chapman, S K; Reid, G A

    2000-01-01

    Shewanella frigidimarina NCIMB400 is a non-fermenting, facultative anaerobe from the gamma group of proteobacteria. When grown anaerobically this organism produces a wide variety of periplasmic c-type cytochromes, mostly of unknown function. We have purified a small, acidic, low-potential tetrahaem cytochrome with similarities to the cytochromes c(3) from sulphate-reducing bacteria. The N-terminal sequence was used to design PCR primers and the cctA gene encoding cytochrome c(3) was isolated and sequenced. The EPR spectrum of purified cytochrome c(3) indicates that all four haem irons are ligated by two histidine residues, a conclusion supported by the presence of eight histidine residues in the polypeptide sequence, each of which is conserved in a related cytochrome c(3) and in the cytochrome domains of flavocytochromes c(3). All four haems exhibit low midpoint redox potentials that range from -207 to -58 mV at pH 7; these values are not significantly influenced by pH changes. Shewanella cytochrome c(3) consists of a mere 86 amino acid residues with a predicted molecular mass of 11780 Da, including the four attached haem groups. This corresponds closely to the value of 11778 Da estimated by electrospray MS. To examine the function of this novel cytochrome c(3) we constructed a null mutant by gene disruption. S. frigidimarina lacking cytochrome c(3) grows well aerobically and its growth rate under anaerobiosis with a variety of electron acceptors is indistinguishable from that of the wild-type parent strain, except that respiration with Fe(III) as sole acceptor is severely, although not completely, impaired. PMID:10861223

  2. Elucidation of the Fe(III) Gallate Structure in Historical Iron Gall Ink.

    PubMed

    Ponce, Aldo; Brostoff, Lynn B; Gibbons, Sarah K; Zavalij, Peter; Viragh, Carol; Hooper, Joseph; Alnemrat, Sufian; Gaskell, Karen J; Eichhorn, Bryan

    2016-05-17

    Synthetic, structural, spectroscopic and aging studies conclusively show that the main colorant of historical iron gall ink (IGI) is an amorphous form of Fe(III) gallate·xH2O (x = ∼1.5-3.2). Comparisons between experimental samples and historical documents, including an 18th century hand-written manuscript by George Washington, by IR and Raman spectroscopy, XRD, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy confirm the relationship between the model and authentic samples. These studies settle controversy in the cultural heritage field, where an alternative structure for Fe(III) gallate has been commonly cited.

  3. [Relations between the retinoic acid acceptor and teratogenesis of retinoids].

    PubMed

    Li, Zeng-Gang; Sun, Kai-Lai

    2004-09-01

    Retinoic acid can induce teratogenesis of the fetus of many animals including human, and its biological activities are induced by a serious of different retinoic acid accepters and their ligands. The retinoic acid acceptor RAR plays key roles in the teratogenesis, and the ligands of RAR are strong teratogens. The intensity sequence of the relative teratogenesis is ligandalpha, ligandbeta and ligandgamma. The ligands of the retinoic acid acceptor RXR cannot induce teratogenesis, but they can enhance the teratogenesis of the RAR stimulus. The retinoic acid acceptors can also affect the development of the fetus by adjusting the expression of the other genes. The relations between the gene mutation of the retinoic acid acceptor, various retinoic acid acceptors and their ligands and teratogenesis of retinoic acid are summarized in this article. In addition, the regulations of the retinoic acid acceptors to the other genes are also discussed.

  4. Fe Isotope Fractionation During Fe(III) Reduction to Fe(II)

    NASA Astrophysics Data System (ADS)

    Baker, E. A.; Greene, S.; Hardin, E. E.; Hodierne, C. E.; Rosenberg, A.; John, S.

    2014-12-01

    The redox chemistry of Fe(III) and Fe(II) is tied to a variety of earth processes, including biological, chemical, or photochemical reduction of Fe(III) to Fe(II). Each process may fractionate Fe isotopes, but the magnitudes of the kinetic isotope effects have not been greatly explored in laboratory conditions. Here, we present the isotopic fractionation of Fe during reduction experiments under a variety of experimental conditions including photochemical reduction of Fe(III) bound to EDTA or glucaric acid, and chemical reduction of Fe-EDTA by sodium dithionite, hydroxylamine hydrochloride, Mn(II), and ascorbic acid. A variety of temperatures and pHs were tested. In all experiments, Fe(III) bound to an organic ligand was reduced in the presence of ferrozine. Ferrozine binds with Fe(II), forming a purple complex which allows us to measure the extent of reaction. The absorbance of the experimental solutions was measured over time to determine the Fe(II)-ferrozine concentration and thus the reduction rate. After about 5% of the Fe(III) was reduced, Fe(III)-EDTA and Fe(II)-ferrozine were separated using a C-18 column to which Fe(II)-ferrozine binds. The Fe(II) was eluted and purified through anion exchange chromatography for analysis of δ56Fe by MC-ICPMS. Preliminary results show that temperature and pH both affect reduction rate. All chemical reductants tested reduce Fe(III) at a greater rate as temperature increases. The photochemical reductant EDTA reduces Fe(III) at a greater rate under more acidic conditions. Comparison of the two photochemical reductants shows that glucaric acid reduces Fe(III) significantly faster than EDTA. For chemical reduction, the magnitude of isotopic fractionation depends on the reductant used. Temperature and pH also affect the isotopic fractionation of Fe. Experiments using chemical reductants show that an increase in temperature at low temperatures produces lighter 56Fe ratios, while at high temperatures some reductants produce heavier

  5. Nontronite (NAu-1) Structure Associated with Microbial Fe(III) Reduction in Various Redox Conditions

    NASA Astrophysics Data System (ADS)

    Koo, T.; Kim, S.; Kim, J.

    2011-12-01

    Shewanella oneidensis MR-1 respires the structural Fe(III) of smectite and promotes illite formation in O2-free environment (Kostka et al., 1996, Kim et al., 2004). Since S. oneidensis is a facultative iron reducing bacterium, it is crucial to understand the structural changes induced by bio-reduction of structural Fe(III) in various redox conditions. Furthermore, the changes in cation exchange capacity (CEC) of bio-reduced nontronite upon the modification of mineral structure has not been extensively studied in terms of Fe-cycling. In this present study, we reported the evolution of nontronite structure at various time points in various redox conditions and corresponding CEC upon reduction and re-oxidation. S. oneidensis MR-1 was incubated in M1 medium with Na-lactate as the electron donor and Fe in nontronite (NAu-1) as the sole electron acceptor at pH 7 in anaerobic chamber for 3 hrs, 12 hrs, 1 day, 2 days, 4 days, 7 days, 14 days, and 21 days. O2 gas bubbling was then applied to the sample at each time point for 24 hours for re-oxidation. The triplet samples at each time point for both reduction and re-oxidation experiments were prepared. The extent of Fe(III) reduction measured by 1,10-phenanthroline method (Stucki and Anderson, 1981) indicated that the structural Fe(III) was reduced up to 8.8% of total Fe(III) within 21 days. XRD data with various treatments such as air dried, glycolated and lithium-saturated showed that K-nontronite may be formed because no discrete 10-Å illite peak was observed in Li-saturated sample upon glycolation. The CEC increased from 747 meg/kg to 1145 meg/kg during Fe(III) reduction and decreased to 954 meg/kg upon re-oxidation, supporting the possible formation of K-nontronite. The direct observation by electron microscopy verified the structural changes in nontonite in various redox conditions. The long-term experiment for 6 months, is in progress in anaerobic chamber, and results will be discussed. Kim, J. W., Dong, H., Seabaugh

  6. Growth of Strain SES-3 with Arsenate and Other Diverse Electron Acceptors

    PubMed Central

    Laverman, A. M.; Blum, J. S.; Schaefer, J. K.; Phillips, E.; Lovley, D. R.; Oremland, R. S.

    1995-01-01

    The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors. PMID:16535143

  7. Competition between Methane and Alkylbenzenes for Electron Acceptors during Natural Attenuation of Crude Oil in the Subsurface

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Amos, R. T.; Cozzarelli, I.; Voytek, M. A.

    2009-12-01

    At a crude-oil spill site near the town of Bemidji, MN, entrapped oil is present at residual saturations exceeding 10% in the vadose zone and floating at the water table at saturations of 30-60%. The degradable fraction of the light crude oil includes n-alkanes, aromatics, and alkyl-cyclohexanes. Together these compounds constitute a reduced carbon concentration at least 500 times greater than is present in the dissolved hydrocarbon groundwater plume comprised mainly of aromatics. Methanogenic degradation of the stationary oil body has been occurring for at least 20 years providing a continuous supply of methane emanating from the oil. Transport of methane away from the oil body occurs in both the vapor phase through the vadose zone and in the dissolved phase with the groundwater flow. Within the vadose zone the supply of oxygen and other electron acceptors from the surface is completely consumed by the process of methane oxidation in a zone 2-3 meters above the water table. In the groundwater, the 1 ppm contour of the methane plume extends beyond the 0.5 ppb contour for benzene, which is located at the aerobic/anaerobic boundary in the plume approximately 120 m downgradient of the oil body. Between 75 m and 120 m downgradient, methane concentrations decrease steadily from >0.6 mmol/L to <0.06 mmol/L, accompanied by increases in the δ13C-CH4 indicating that methane attenuation occurs through microbially-mediated oxidation. Anaerobic methane oxidation under iron-reducing conditions has recently been demonstrated by Beal et al. (Science, 325, 184, 2009) and is indicated at this site by several lines of evidence. In the methane oxidation zone, values of bioavailable Fe(III) extracted from the sediments averaged 8 mmol/kg (n=16), or >8 times the amount required to degrade 0.5 mmol methane, while all other electron acceptors together can account for complete oxidation of only 0.07 mmol (sulfate <0.06 mmol/L, dissolved oxygen <3 µmol/L, and nitrate <0.02 mmol

  8. Energetic Limitations on Microbial Respiration of Organic Compounds using Aqueous Fe(III) Complexes

    NASA Astrophysics Data System (ADS)

    Naughton, H.; Fendorf, S. E.

    2015-12-01

    Soil organic matter constitutes up to 75% of the terrestrial carbon stock. Microorganisms mediate the breakdown of organic compounds and the return of carbon to the atmosphere, predominantly through respiration. Microbial respiration requires an electron acceptor and an electron donor such as small fatty acids, organic acids, alcohols, sugars, and other molecules that differ in oxidation state of carbon. Carbon redox state affects how much energy is required to oxidize a molecule through respiration. Therefore, different organic compounds should offer a spectrum of energies to respiring microorganisms. However, microbial respiration has traditionally focused on the availability and reduction potential of electron acceptors, ignoring the organic electron donor. We found through incubation experiments that the organic compound serving as electron donor determined how rapidly Shewanella putrefaciens CN32 respires organic substrate and the extent of reduction of the electron acceptor. We simulated a range of energetically favorable to unfavorable electron acceptors using organic chelators bound to Fe(III) with equilibrium stability constants ranging from log(K) of 11.5 to 25.0 for the 1:1 complex, where more stable complexes are less favorable for microbial respiration. Organic substrates varied in nominal oxidation state of carbon from +2 to -2. The most energetically favorable substrate, lactate, promoted up to 30x more rapid increase in percent Fe(II) compared to less favorable substrates such as formate. This increased respiration on lactate was more substantial with less stable Fe(III)-chelate complexes. Intriguingly, this pattern contradicts respiration rate predicted by nominal oxidation state of carbon. Our results suggest that organic substrates will be consumed so long as the energetic toll corresponding to the electron donor half reaction is counterbalanced by the energy available from the electron accepting half reaction. We propose using the chemical

  9. Role of "electron shuttles" in the bioreduction of Fe(III) oxides in humid forest tropical soils.

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T.; Sposito, G.

    2004-12-01

    Dissimilatory iron-reducing bacteria (DIRB) can reduce Fe(III) oxides either by direct contact between the organisms and the oxide surface or by indirect mechanisms not involving contact. These latter mechanisms can include (i) "electron shuttling" or (ii) soluble Fe(III) complexation with subsequent reduction. In the presence of humic substances, indirect Fe(III) reduction occurs, particularly by mechanism (i). Important electron-accepting groups in humic substances include quinone moieties, complexed Fe(III) and conjugated aromatic moieties. A model compound frequently used to study mechanism (i) is anthraquinone-2,6-disulfonate (AQDS), which is believed to function as an "electron shuttle" in a manner similar to humic substances. We are currently investigating Fe(III) reduction in humid tropical forest soils as affected by "electron shuttles," using AQDS and humic substances in our experiments. The soil samples were collected at the bottom of a toposequence in the Luquillo Experimental Forest, Puerto Rico. Development of anaerobic conditions in these soils occurs due to high precipitation and runoff water inputs. Fourteen-day anoxic incubations of soil suspensions amended with AQDS showed enhanced production of both soluble and particulate forms of Fe(II) as compared to non-amended soil suspensions. Our data indicated clearly that DIRB in the soil could utilize added "electron shuttles" effectively to reduce Fe(III). To examine factors controlling Fe(III) reduction by humic acid (HA), three IHSS HA samples (soil, peat and Leonardite) were both abiotically reduced by H2 treatment and microbially reduced by incubation with a filtrate from a soil suspension, then titrated with three different oxidants (iodine, cyanoferrate, and ferric citrate) to provide chemical and biological estimates of electron-accepting capacity at pH 5 and 7. The results will be discussed in terms of the three oxidants used, the properties of the HA samples, pH, and the effects of chemical

  10. 2012 ELECTRON DONOR-ACCEPTOR INTERACTIONS GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect

    McCusker, James

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  11. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.

    PubMed

    Liu, Min; Qiu, Xiaoqing; Miyauchi, Masahiro; Hashimoto, Kazuhito

    2013-07-10

    Photocatalytic reaction rate (R) is determined by the multiplication of light absorption capability (α) and quantum efficiency (QE); however, these two parameters generally have trade-off relations. Thus, increasing α without decreasing QE remains a challenging issue for developing efficient photocatalysts with high R. Herein, using Fe(III) ions grafted Fe(III) doped TiO2 as a model system, we present a novel method for developing visible-light photocatalysts with efficient R, utilizing the concept of energy level matching between surface-grafted Fe(III) ions as co-catalysts and bulk-doped Fe(III) ions as visible-light absorbers. Photogenerated electrons in the doped Fe(III) states under visible-light efficiently transfer to the surface grafted Fe(III) ions co-catalysts, as the doped Fe(III) ions in bulk produced energy levels below the conduction band of TiO2, which match well with the potential of Fe(3+)/Fe(2+) redox couple in the surface grafted Fe(III) ions. Electrons in the surface grafted Fe(III) ions efficiently cause multielectron reduction of adsorbed oxygen molecules to achieve high QE value. Consequently, the present Fe(III)-FexTi1-xO2 nanocomposites exhibited the highest visible-light R among the previously reported photocatalysts for decomposition of gaseous organic compounds. The high R can proceed even under commercial white-light emission diode irradiation and is very stable for long-term use, making it practically useful. Further, this efficient method could be applied in other wide-band gap semiconductors, including ZnO or SrTiO3, and may be potentially applicable for other photocatalysis systems, such as water splitting, CO2 reduction, NOx removal, and dye decomposition. Thus, this method represents a strategic approach to develop new visible-light active photocatalysts for practical uses.

  12. An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors

    PubMed Central

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.

    2014-01-01

    ABSTRACT Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found. PMID:25425235

  13. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE PAGES

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; ...

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  14. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    SciTech Connect

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.

  15. Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition.

    PubMed

    Xu, Xun; Zhao, Qingliang; Wu, Mingsong; Ding, Jing; Zhang, Weixian

    2017-02-01

    To enhance the biodegradation of organic matter in sediment microbial fuel cell (SMFC), Fe(III) oxide, as an alternative electron acceptor, was added into the sediment. Results showed that the SMFC with Fe(III) oxide addition obtained higher removal efficiencies for organics than the SMFC without Fe(III) oxide addition and open circuit bioreactor, and produced a maximum power density (Pmax) of 87.85mW/m(2) with a corresponding maximum voltage (Vmax) of 0.664V. The alteration of UV-254 and specific ultraviolet absorbance (SUVA) also demonstrated the organic matter in sediments can be effectively removed. High-throughput sequencing of anodic microbial communities indicated that bacteria from the genus Geobacter were predominantly detected (21.23%) in the biofilm formed on the anode of SMFCs, while Pseudomonas was the most predominant genus (18.12%) in the presence of Fe(III) oxide. Additionally, compared with the open circuit bioreactor, more electrogenic bacteria attached to the biofilm of anode in SMFCs.

  16. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  17. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  18. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  19. Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1.

    PubMed

    Ma, Chen; Yu, Zhen; Lu, Qin; Zhuang, Li; Zhou, Shun-Gui

    2015-04-01

    In this study, an anaerobic batch experiment was conducted to investigate the humus- and Fe(III)-reducing ability of a novel humus-reducing bacterium, Thauera humireducens SgZ-1. Inhibition tests were also performed to explore the electron transport pathways with various electron acceptors. The results indicate that in anaerobic conditions, strain SgZ-1 possesses the ability to reduce a humus analog, humic acids, soluble Fe(III), and Fe(III) oxides. Acetate, propionate, lactate, and pyruvate were suitable electron donors for humus and Fe(III) reduction by strain SgZ-1, while fermentable sugars (glucose and sucrose) were not. UV-visible spectra obtained from intact cells of strain SgZ-1 showed absorption peaks at 420, 522, and 553 nm, characteristic of c-type cytochromes (cyt c). Dithionite-reduced cyt c was reoxidized by Fe-EDTA and HFO (hydrous ferric oxide), which suggests that cyt c within intact cells of strain SgZ-1 has the ability to donate electrons to extracellular Fe(III) species. Inhibition tests revealed that dehydrogenases, quinones, and cytochromes b/c (cyt b/c) were involved in reduction of AQS (9, 10-anthraquinone-2-sulfonic acid, humus analog) and oxygen. In contrast, only NADH dehydrogenase was linked to electron transport to HFO, while dehydrogenases and cyt b/c were found to participate in the reduction of Fe-EDTA. Thus, various different electron transport pathways are employed by strain SgZ-1 for different electron acceptors. The results from this study help in understanding the electron transport processes and environmental responses of the genus Thauera.

  20. Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III)

    USGS Publications Warehouse

    Ritter, K.; Aiken, G.R.; Ranville, J.F.; Bauer, M. E.; Macalady, D.L.

    2006-01-01

    Dialysis experiments with arsenate and three different NOM samples amended with Fe(III) showed evidence confirming the formation of aquatic arsenate-Fe(III)-NOM associations. A linear relationship was observed between the amount of complexed arsenate and the Fe(III) content of the NOM. The dialysis results were consistent with complex formation through ferric iron cations acting as bridges between the negatively charged arsenate and NOM functional groups and/or a more colloidal association, in which the arsenate is bound by suspended Fe(III)-NOM colloids. Sequential filtration experiments confirmed that a significant proportion of the iron present at all Fe/C ratios used in the dialysis experiments was colloidal in nature. These colloids may include larger NOM species that are coagulated by the presence of chelated Fe(III) and/or NOM-stabilized ferric (oxy)hydroxide colloids, and thus, the solution-phase arsenate-Fe(III)-NOM associations are at least partially colloidal in nature. ?? 2006 American Chemical Society.

  1. Microbial Reduction of Fe(III) in the Fifthian and Muloorina illites: Contrasting extents and rates of bioreduction

    USGS Publications Warehouse

    Seabaugh, J.L.; Dong, H.; Kukkadapu, R.K.; Eberl, D.D.; Morton, J.P.; Kim, J.

    2006-01-01

    Shewanella putrefaciens CN32 reduces Fe(III) within two illites which have different properties: the Fithian bulk fraction and the <0.2 ??m fraction of Muloorina. The Fithian illite contained 4.6% (w/w) total Fe, 81% of which was Fe(III). It was dominated by illite with some jarosite (???32% of the total Fe(III)) and goethite (11% of the total Fe(III)). The Muloorina illite was pure and contained 9.2% Fe, 93% of which was Fe(III). Illite suspensions were buffered at pH 7 and were inoculated with CN32 cells with lactate as the electron donor. Select treatments included anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle. Bioproduction of Fe(II) was determined by ferrozine analysis. The unreduced and bioreduced solids were characterized by Mo??ssbauer spectroscopy, X-ray diffraction and transmission electron microscopy. The extent of Fe(III) reduction in the bulk Fithian illite was enhanced by the presence of AQDS (73%) with complete reduction of jarosite and goethite and partial reduction of illite. Mo??ssbauer spectroscopy and chemical extraction determined that 21-25% of illite-associated Fe(III) was bioreduced. The extent of bioreduction was less in the absence of AQDS (63%) and only jarosite was completely reduced with partial reduction of goethite and illite. The XRD and TEM data revealed no significant illite dissolution or biogenic minerals, suggesting that illite was reduced in the solid state and biogenic Fe(II) from jarosite and goethite was either released to aqueous solution or adsorbed onto residual solid surfaces. In contrast, only 1% of the structural Fe(III) in Muloorina illite was bioreduced. The difference in the extent and rate of bioreduction between the two illites was probably due to the difference in layer charge and the total structural Fe content between the Fithian illite (0.56 per formula) and Muloorina illite (0.87). There may be other factors contributing to the observed differences, such as expandability, surface area and the

  2. Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments

    USGS Publications Warehouse

    Nevin, Kelly P.; Lovely, Derek R.

    2000-01-01

    The potential for various substances to serve as electron shuttles between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides in aquifer sediments was evaluated in order to determine whether abiological mechanisms might play a role in the apparent microbial reduction of Fe(III) in subsurface sediments. Humic substances (humics) and the humics analogue, anthraquinone-2,6-disulfonate (AQDS), which were previously found to stimulate microbial reduction of synthetic poorly crystalline Fe(III) oxide under laboratory conditions, were found to also stimulate the reduction of aquifer Fe(III) oxides by indigenous microorganisms. Electron shuttling via biological reduction of U(VI) or S° followed by abiological reduction of Fe(III) by U(IV) or sulfide enhanced the reduction of synthetic Fe(III) oxide in cell suspensions, but these potential electron shuttles did not stimulate Fe(III) reduction when they were added to aquifer sediments. These results emphasize the importance of evaluating potential mechanisms for Fe(III) reduction with natural Fe(III) oxides, under environmentally relevant conditions. The finding that humics and other extracellular quinones can serve as electron shuttles to the Fe(III) oxides found in subsurface environments suggests that some Fe(III) reduction which was previously considered to be the result of direct enzymatic reduction of Fe(III) oxides may instead result from abiotic reduction of Fe(III) by microbially reduced humics or other microbially generated hydroquinones.

  3. Fullerene-bisadduct acceptors for polymer solar cells.

    PubMed

    Li, Yongfang

    2013-10-01

    Polymer solar cells (PSCs) have drawn great attention in recent years for their simple device structure, light weight, and low-cost fabrication in comparison with inorganic semiconductor solar cells. However, the power-conversion efficiency (PCE) of PSCs needs to be increased for their future application. The key issue for improving the PCE of PSCs is the design and synthesis of high-efficiency conjugated polymer donors and fullerene acceptors for the photovoltaic materials. For the acceptor materials, several fullerene-bisadduct acceptors with high LUMO energy levels have demonstrated excellent photovoltaic performance in PSCs with P3HT as a donor. In this Focus Review, recent progress in high-efficiency fullerene-bisadduct acceptors is discussed, including the bisadduct of PCBM, indene-C60 bisadduct (ICBA), indene-C70 bisadduct (IC70BA), DMPCBA, NCBA, and bisTOQC. The LUMO levels and photovoltaic performance of these bisadduct acceptors with P3HT as a donor are summarized and compared. In addition, the applications of an ICBA acceptor in new device structures and with other conjugated polymer donors than P3HT are also introduced and discussed.

  4. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  5. Dietary iron depletion at weaning imprints low microbiome diversity and this is not recovered with oral Nano Fe(III).

    PubMed

    Pereira, Dora I A; Aslam, Mohamad F; Frazer, David M; Schmidt, Annemarie; Walton, Gemma E; McCartney, Anne L; Gibson, Glenn R; Anderson, Greg J; Powell, Jonathan J

    2015-02-01

    Alterations in the gut microbiota have been recently linked to oral iron. We conducted two feeding studies including an initial diet-induced iron-depletion period followed by supplementation with nanoparticulate tartrate-modified ferrihydrite (Nano Fe(III): considered bioavailable to host but not bacteria) or soluble ferrous sulfate (FeSO4: considered bioavailable to both host and bacteria). We applied denaturing gradient gel electrophoresis and fluorescence in situ hybridization for study-1 and 454-pyrosequencing of fecal 16S rRNA in study-2. In study-1, the within-community microbial diversity increased with FeSO4 (P = 0.0009) but not with Nano Fe(III) supplementation. This was confirmed in study-2, where we also showed that iron depletion at weaning imprinted significantly lower within- and between-community microbial diversity compared to mice weaned onto the iron-sufficient reference diet (P < 0.0001). Subsequent supplementation with FeSO4 partially restored the within-community diversity (P = 0.006 in relation to the continuously iron-depleted group) but not the between-community diversity, whereas Nano Fe(III) had no effect. We conclude that (1) dietary iron depletion at weaning imprints low diversity in the microbiota that is not, subsequently, easily recovered; (2) in the absence of gastrointestinal disease iron supplementation does not negatively impact the microbiota; and (3) Nano Fe(III) is less available to the gut microbiota.

  6. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors.

    PubMed

    Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A

    2015-04-15

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, (1)H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  7. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2015-04-01

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  8. The influence of Fe(III) on oil biodegradation in excessively moistened soils and sediments

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Trofimov, S. Ya.; Shoba, S. A.

    2015-07-01

    Soils are self-purified from oil slowly, in the north, in particular, where hydromorphic conditions and low temperatures hinder the process. Oxidation of oil hydrocarbons depends on the type of electron acceptors and decreases in the following sequence: denitrification > Mn4+ reduction > Fe3+ reduction > sulfate reduction > methanogenesis. Usually, not all of these redox reactions develop in contaminated excessively moistened soils and sediments. Fe(III) reduction and methanogenesis are the most common: the latter is manifested near the contamination source, while the former develops in less contaminated areas. Fe reduction hinders the methanogenesis. In oil-contaminated areas, Fe reduction is also combined with sulfate reduction, the latter intensifying Fe reduction due to the formation of iron sulfides. Concurrently with oil degradation in excessively moistened soils and sediments, the composition of iron compounds changes due to the increasing Fe(II) share magnetite, as well as siderite and ferrocalcite (in calcareous deposits), and iron sulfides (in S-containing medium) are formed.

  9. Dissimilatory reduction of FeIII (EDTA) with microorganisms in the system of nitric oxide removal from the flue gas by metal chelate absorption.

    PubMed

    Ma, Bi-yao; Li, Wei; Jing, Guo-hua; Shi, Yao

    2004-01-01

    In the system of nitric oxide removal from the flue gas by metal chelate absorption, it is an obstacle that ferrous absorbents are easily oxidized by oxygen in the flue gas to ferric counterparts, which are not capable of binding NO. By adding iron metal or electrochemical method, FeIII(EDTA) can be reduced to FeII(EDTA). However, there are various drawbacks associated with these techniques. The dissimilatory reduction of FeIII(EDTA) with microorganisms in the system of nitric oxide removal by metal chelate absorption was investigated. Ammonium salt instead of nitrate was used as the nitrogen source, as nitrates inhibited the reduction of FeIII due to the competition between the two electron acceptors. Supplemental glucose and lactate stimulated the formation of FeII more than ethanol as the carbon sources. The microorganisms cultured at 50 degrees C were not very sensitive to the other experimental temperature, the reduction percentage of FeIII varied little with the temperature range of 30-50 degrees C. Concentrated Na2CO3 solution was added to adjust the solution pH to an optimal pH range of 6-7. The overall results revealed that the dissimilatory ferric reducing microorganisms present in the mix-culture are probably neutrophilic, moderately thermophilic FeIII reducers.

  10. The structure and bonding of iron-acceptor pairs in silicon

    SciTech Connect

    Zhao, S.; Assali, L.V.C.; Kimerling, L.C.

    1995-08-01

    The highly mobile interstitial iron and Group III impurities (B, Al, Ga, In) form iron-acceptor pairs in silicon. Based on the migration kinetics and taking host silicon as a dielectric medium, we have simulated the pairing process in a static silicon lattice. Different from the conventional point charge ionic model, our phenomenological calculations include (1) a correction that takes into account valence electron cloud polarization which adds a short range, attractive interaction in the iron-acceptor pair bonding; and (2) silicon lattice relaxation due to the atomic size difference which causes a local strain field. Our model explains qualitatively (1) trends among the iron-acceptor pairs revealing an increase of the electronic state hole emission energy with increasing principal quantum number of acceptor and decreasing pair separation distance; and (2) the stable and metastable sites and configurational symmetries of the iron-acceptor pairs. The iron-acceptor pairing and bonding mechanism is also discussed.

  11. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials.

    PubMed

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Quan, Xie; Li Puma, Gianluca

    2017-01-05

    The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO4(-)) and dichromate (Cr2O7(2-)) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  12. Donor-acceptor chemistry in the main group.

    PubMed

    Rivard, Eric

    2014-06-21

    This Perspective article summarizes recent progress from our laboratory in the isolation of reactive main group species using a general donor-acceptor protocol. A highlight of this program is the use of carbon-based donors in combination with suitable Lewis acidic acceptors to yield stable complexes of parent Group 14 element hydrides (e.g. GeH2 and H2SiGeH2). It is anticipated that this strategy could be extended to include new synthetic targets from throughout the Periodic Table with possible applications in bottom-up materials synthesis and main group element catalysis envisioned.

  13. Fe(III) and Fe(II) induced photodegradation of nonylphenol polyethoxylate (NPEO) oligomer in aqueous solution and toxicity evaluation of the irradiated solution.

    PubMed

    Wang, Lei; Zhang, Junjie; Duan, Zhenghua; Sun, Hongwen

    2017-06-01

    Photodegradation of nonylphenol tri-ethoxylate (NPEO3) in aqueous solution, and the effects of Fe(III) or Fe(II) were studied. The increasing degradation kinetics of NPEO3 were observed when 500µM Fe(III) or Fe(II) was present in the solutions. Altered formation of NPEO oligomers with shorter EO chains, including nonyphenol (NP), NPEO1 and NPEO2, was observed in water and in solutions containing Fe(III) or Fe(II). The molar percentage yields of NP and NPEO1,2 production from NPEO3 photodegradation were approximately 20% in NPEO3 solution, while NPEO3 solution with Fe(III), this percentage increased to approximately 50%. In solution with Fe(II), the molar balance between the photodegradation of NPEO3 and the production of NP and NPEO1,2 was observed. A luminescent bacterium, Vibrio fischeri, was used to identify changes in the toxicity of NPEO3 solutions during the photodegradation process under different conditions, while dose addition (DA) model was used to estimate the toxicity of products. Toxicity of NPEO3/water solution increased significantly following the irradiation of UVA/UVB mixture. In contrast, obviously decreasing toxicity was observed when NPEO3 underwent photodegradation in the presence of Fe(III).

  14. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination.

    PubMed

    Prakash, Om; Gihring, Thomas M; Dalton, Dava D; Chin, Kuk-Jeong; Green, Stefan J; Akob, Denise M; Wanger, Greg; Kostka, Joel E

    2010-03-01

    An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32(T), was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the Geobacteraceae-specific citrate synthase (gltA) mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus Geobacter and shared 92-98 % 16S rRNA gene and 75-81 % rpoB gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, Geobacter uraniireducens Rf4(T), according to 16S rRNA gene sequence similarity, strain FRC-32(T) showed a DNA-DNA relatedness value of 21 %. Cells of strain FRC-32(T) were Gram-negative, non-spore-forming, curved rods, 1.0-1.5 microm long and 0.3-0.5 microm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus Geobacter. The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 degrees C and pH 6.7-7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the Geobacter group, strain FRC-32(T) conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32(T) was metabolically versatile and, unlike its closest relative, G. uraniireducens, was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with

  15. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.

    PubMed

    Nealson, K H; Moser, D P; Saffarini, D A

    1995-04-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  16. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  17. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-24

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state.

  18. Hexa-peri-hexabenzocoronene with Different Acceptor Units for Tuning Optoelectronic Properties.

    PubMed

    Keerthi, Ashok; Hou, Ian Cheng-Yi; Marszalek, Tomasz; Pisula, Wojciech; Baumgarten, Martin; Narita, Akimitsu

    2016-10-06

    Hexa-peri-hexabenzocoronene (HBC)-based donor-acceptor dyads were synthesized with three different acceptor units, through two pathways: 1) "pre-functionalization" of monobromo-substituted hexaphenylbenzene prior to the cyclodehydrogenation; and 2) "post-functionalization" of monobromo-substituted HBC after the cyclodehydrogenation. The HBC-acceptor dyads demonstrated varying degrees of intramolecular charge-transfer interactions, depending on the attached acceptor units, which allowed tuning of their photophysical and optoelectronic properties, including the energy gaps. The two synthetic pathways described here can be complementary and potentially be applied for the synthesis of nanographene-acceptor dyads with larger aromatic cores, including one-dimensionally extended graphene nanoribbons.

  19. Density and energy level of a deep-level Mg acceptor in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Matsuura, Hideharu; Morine, Tatsuya; Nagamachi, Shinji

    2015-01-01

    Reliably determining the densities and energy levels of deep-level dominant acceptors in heavily doped wide-band-gap semiconductors has been a topic of recent discussion. In these discussions, the focus is on both Hall scattering factors for holes and distribution functions for acceptors. Mg acceptor levels in 4H-SiC seem to be deep, and so here the electrical properties of Mg-implanted 4H-SiC layers are studied by measuring Hall effects. The obtained Hall scattering factors are not reliable because they drop to less than 0.5 at high measurement temperatures. Moreover, the Fermi-Dirac distribution function is unsuitable for examining Mg acceptors because the obtained acceptor density is much higher than the concentration of implanted Mg atoms. However, by using a distribution function that includes the influence of the excited states of a deep-level acceptor, the density and energy level of Mg acceptors can be reliably determined.

  20. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1996-01-01

    Fe(III) chelated to such compounds as EDTA, N-methyliminodiacetie acid, ethanol diglycine, humic acids, and phosphates stimulated benzene oxidation coupled to Fe(III) reduction in anaerobic sediments from a petroleum- contaminated aquifer as effectively as or more effectively than nitrilotriacetic acid did in a previously demonstrated stimulation experiment. These results indicate that many forms of chelated Fe(III) might be applicable to aquifer remediation.

  1. Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.

    1991-01-01

    The potential for nonenzymatic reduction of Fe(III) either by organic compounds or by the development of a low redox potential during microbial metabolism was compared with direct, enzymatic Fe(III) reduction by Fe(III)-reducing microorganisms. At circumneutral pH, very few organic compounds nonenzymatically reduced Fe(III). In contrast, in the presence of the appropriate Fe(IH)-reducing microorganisms, most of the organic compounds examined could be completely oxidized to carbon dioxide with the reduction of Fe(III). Even for those organic compounds that could nonenzymatically reduce Fe(III), microbial Fe(III) reduction was much more extensive. The development of a low redox potential during microbial fermentation did not result in nonenzymatic Fe(III) reduction. Model organic compounds were readily oxidized in Fe(III)-reducing aquifer sediments, but not in sterilized sediments. These results suggest that microorganisms enzymatically catalyze most of the Fe(III) reduction in the Fe(III) reduction zone of aquatic sediments and aquifers.

  2. A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide

    SciTech Connect

    Tremblay, PL; Aklujkar, M; Leang, C; Nevin, KP; Lovley, D

    2011-11-27

    Geobacter metallireducens is an important model organism for many novel aspects of extracellular electron exchange and the anaerobic degradation of aromatic compounds, but studies of its physiology have been limited by a lack of techniques for gene deletion and replacement. Therefore, a genetic system was developed for G. metallireducens by making a number of modifications in the previously described approach for homologous recombination in Geobacter sulfurreducens. Critical modifications included, among others, a 3.5-fold increased in the quantity of electrotransformed linear DNA and the harvesting of cells at early-log. The Cre-lox recombination system was used to remove an antibiotic resistance cassette from the G. metallireducens chromosome permitting the generation of multiple mutations in the same strain. Deletion of the gene fliC, which encodes the flagellin protein, resulted in a strain that did not produce flagella, was non-motile, and was defective for the reduction of insoluble Fe(III). Deletion of pilA, which encodes the structural protein of the type IV pili, inhibited the production of lateral pili as well as Fe(III) oxide reduction and electron transfer to an electrode. These results demonstrate the importance of flagella and pili in the reduction of insoluble Fe(III) by G. metallireducens and provide methods for additional genetic-based approaches for the study of G. metallireducens.

  3. Effect of nitrate enrichment and diatoms on the bioavailability of Fe(III) oxyhydroxide colloids in seawater.

    PubMed

    Liu, Feng-Jiao; Huang, Bang-Qin; Li, Shun-Xing; Zheng, Feng-Ying; Huang, Xu-Guang

    2016-03-01

    The photoconversion of colloidal iron oxyhydroxides was a significant source of bioavailable iron in coastal systems. Diatoms dominate phytoplankton communities in coastal and upwelling regions. Diatoms are often exposed to eutrophication. We investigated the effects of different species of diatom, cell density, illumination period, and nitrate additions on the bioavailability of Fe(III) oxy-hydroxide colloids in seawaters. With the increase of illumination period from 1 to 4 h, the ratios of concentrations of total dissolved Fe (DFe) to colloidal iron oxyhydroxides and Fe(II) to DFe increased up to 24.3% and 23.9% for seawater without coastal diatoms, 45.6% and 30.2% for Skeletonema costatum, 44.3% and 29.7% for Thalassiosira weissflogii, respectively. The photochemical activity of coastal diatoms themselves (excluding the dissolved organic matter secreted by algae) on the species transformation of iron in seawater (including the light-induced dissolution of Fe(III) oxyhydroxide colloids and the photo-reduction of Fe(III) into Fe(II)) was confirmed for the first time. There was no significant difference of the ability of S. costatum and Thalassiosira weissflogii on the photoconversion of colloidal iron oxyhydroxides. The photoproduction of dissolved Fe(II) and DFe in the seawater with or without diatoms could be depressed by the nitrate addition.

  4. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  5. Extracellular Fe(III) reduction by marine diatoms

    SciTech Connect

    Maldonado, M.T.; Price, N.M.

    1995-12-31

    Marine diatoms of the genus Thalassiosira possess membrane proteins that extracellularly reduce Fe(III) in organic complexes as part of an Fe transport mechanism. Iron bound to EDTA, DTPA and to the fungal siderophore, desferrioxamine B, is reduced by these photoautotrophs and used for growth. The rates of reduction are twice as fast in cells grown on NO{sub 3}{sup -} compared to those grown on NH{sub 4}{sup +}, suggesting a link to cellular N metabolism and to NO{sub 3}{sup -} reduction in particular. High concentrations of NO{sub 3}{sup -} (50{mu}M) inhibit Fe(III) reduction rates by 50% and decrease Fe transport rates by an equivalent amount. Ammonium has no effect on Fe reduction or uptake. Under Fe-limiting conditions, reduction rates increase. Because a large fraction of dissolved Fe in the open sea is bound in strong organic complexes, this reductive mechanism may be a critical step in Fe acquisition by phytoplankton.

  6. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.

    PubMed

    Han, Shuping; Naito, Wataru; Masunaga, Shigeki

    To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.

  7. Siderophore-based detection of Fe(III) and microbial pathogens.

    PubMed

    Zheng, Tengfei; Nolan, Elizabeth M

    2012-08-01

    Siderophores are low-molecular-weight iron chelators that are produced and exported by bacteria, fungi and plants during periods of nutrient deprivation. The structures, biosynthetic logic, and coordination chemistry of these molecules have fascinated chemists for decades. Studies of such fundamental phenomena guide the use of siderophores and siderophore conjugates in a variety of medicinal applications that include iron-chelation therapies and drug delivery. Sensing applications constitute another important facet of siderophore-based technologies. The high affinities of siderophores for both ferric ions and siderophore receptors, proteins expressed on the cell surface that are required for ferric siderophore import, indicate that these small molecules may be employed for the selective capture of metal ions, proteins, and live bacteria. This minireview summaries progress in methods that utilize native bacterial and fungal siderophore scaffolds for the detection of Fe(III) or microbial pathogens.

  8. Analysis of Shewanella oneidensis Membrane Protein Expression in Response to Electron Acceptor Availability

    SciTech Connect

    Giometti, Carol S.; Khare, Tripti; Verberkmoes, Nathan; O'Loughlin, Ed; Lindberg, Carl; Thompson, Melissa; Hettich, Robert

    2006-04-05

    Shewanella oneidensis MR-1, a gram negative metal-reducing bacterium, can utilize a large number of electron acceptors. In the natural environment, S. oneidensis utilizes insoluble metal oxides as well as soluble terminal electron acceptors. The purpose of this ERSP project is to identify differentially expressed proteins associated with the membranes of S. oneidensis MR-1 cells grown with different electron acceptors, including insoluble metal oxides. We hypothesize that through the use of surface labeling, subcellular fractionation, and a combination of proteome analysis tools, proteins involved in the reduction of different terminal electron acceptors will be elucidated. We are comparing the protein profiles from cells grown with the soluble electron acceptors oxygen and fumarate and with those from cells grown with the insoluble iron oxides goethite, ferrihydrite and lepidocrocite. Comparison of the cell surface proteins isolated from cells grown with oxygen or anaerobically with fumarate revealed an increase in the abundance of over 25 proteins in anaerobic cells, including agglutination protein and flagellin proteins along with the several hypothetical proteins. In addition, the surface protein composition of cells grown with the insoluble iron oxides varies considerably from the protein composition observed with either soluble electron acceptor as well as between the different insoluble acceptors.

  9. Reaction-based reactive transport modeling of Fe(III)

    SciTech Connect

    Kemner, K.M.; Kelly, S.D.; Burgos, Bill; Roden, Eric

    2006-06-01

    This research project (started Fall 2004) was funded by a grant to Argonne National Laboratory, The Pennsylvania State University, and The University of Alabama in the Integrative Studies Element of the NABIR Program (DE-FG04-ER63914/63915/63196). Dr. Eric Roden, formerly at The University of Alabama, is now at the University of Wisconsin, Madison. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and is directly aligned with the Scheibe et al. NABIR FRC Field Project at Area 2.

  10. Nanowires, Capacitors, and Other Novel Outer-Surface Components Involved in Electron Transfer to Fe(III) Oxides in Geobacter Species

    SciTech Connect

    Lovley, Derek, R.

    2008-12-22

    The overall goal of this project was to better understand the mechanisms by which Geobacter species transfer electrons outside the cell onto Fe(III) oxides. The rationale for this study was that Geobacter species are often the predominant microorganisms involved in in situ uranium bioremediation and the growth and activity of the Geobacter species during bioremediation is primarily supported by electron transfer to Fe(III) oxides. These studies greatly expanded the understanding of electron transfer to Fe(III). Novel concepts developed included the potential role of microbial nanowires for long range electron transfer in Geobacter species and the importance of extracytoplasmic cytochromes functioning as capacitors to permit continued electron transfer during the hunt for Fe(III) oxide. Furthermore, these studies provided target sequences that were then used in other studies to tract the activity of Geobacter species in the subsurface through monitoring the abundance of gene transcripts of the target genes. A brief summary of the major accomplishments of the project is provided.

  11. Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite

    USGS Publications Warehouse

    Jaisi, D.P.; Kukkadapu, R.K.; Eberl, D.D.; Dong, H.

    2005-01-01

    A quantitative study was performed to understand how Fe(III) site occupancy controls Fe(III) bioreduction in nontronite by Shewanella putrefaciens CN32. NAu-1 and NAu-2 were nontronites and contained Fe(III) in different structural sites with 16 and 23% total iron (w/w), respectively, with almost all iron as Fe(III). Mo??ssbauer spectroscopy showed that Fe(III) was present in the octahedral site in NAu-1 (with a small amount of goethite), but in both the tetrahedral and the octahedral sites in NAu-2. Mo??ssbauer data further showed that the octahedral Fe(III) in NAu-2 existed in at least two environments- trans (M1) and cis (M2) sites. The microbial Fe(III) reduction in NAu-1 and NAu-2 was studied in batch cultures at a nontronite concentration of 5 mg/mL in bicarbonate buffer with lactate as the electron donor. The unreduced and bioreduced nontronites were characterized by X-ray diffraction (XRD), Mo??ssbauer spectroscopy, and transmission electron microscopy (TEM). In the presence of an electron shuttle, anthraquinone-2,6-disulfonate (AQDS), the extent of bioreduction was 11%-16% for NAu-1 but 28%-32% for NAu-2. The extent of reduction in the absence of AQDS was only 5%-7% for NAu-1 but 14%-18% for NAu-2. The control experiments with heat killed cells and without cells did not show any appreciable reduction (<2%). The extent of reduction in experiments performed with a dialysis membrane to separate cells from clays (without AQDS) was 2%-3% for NAu-1 but 5%-7% for NAu-2, suggesting that cells probably released an electron shuttling compound and/or Fe(III) chelator. The reduction rate was also faster in NAu-2 than that in NAu-1. Mo??ssbauer data of the bioreduced nontronite materials indicated that the Fe(III) reduction in NAu-1 was mostly from the presence of goethite, whereas the reduction in NAu-2 was due to the presence of the tetrahedral and trans-octahedral Fe(III) in the structure. The measured aqueous Fe(II) was negligible. As a result of bioreduction, the

  12. Selection of bacteria capable of dissimilatory reduction of Fe(III) from a long-term continuous culture on molasses and their use in a microbial fuel cell.

    PubMed

    Sikora, Anna; Wójtowicz-Sieńko, Justyna; Piela, Piotr; Zielenkiewicz, Urszula; Tomczyk-Zak, Karolina; Chojnacka, Aleksandra; Sikora, Radosław; Kowalczyk, Paweł; Grzesiuk, Elzbieta; Błaszczyk, Mieczysław

    2011-03-01

    Ferric ion-respiring microorganisms (FRMs) are a group of prokaryotes that use Fe(III) as well as other metals as terminal electron acceptors in the process of anaerobic respiration. Special attention is paid to a biotechnological significance of FRMs because of their potential role in electricity production in microbial fuel cells (MFCs) where the terminal acceptor of the electrons during anaerobic respiration is not a ferric ion but the anode. One of the best known FRMs is the Shewanellaceae family. Most of the Shewanella species have been isolated from marine environments. In this report, sugar beet molasses and ferric oxide were successfully used in the selection of a bacterial consortium capable of dissimilatory Fe(III) reduction in a long-term continuous culture. The inoculum was a sample of eutrophic lake bottom sediment. Among the bacteria present in this culture were representatives of the Enterobacteriaceae, and the genera Pseudomonas, Arcobacter, and Shewanella. Two non-marine Fe(III)-reducing Shewanella-related clones named POL1 and POL2 were isolated. The abilities of the POL1 and POL2 isolates to metabolize a panel of 190 carbon sources were examined using a BIOLOG assay. The results confirmed the abilities of the shewanellas to utilize a broad range of carbon substrates. The utility of the POL1 and POL2 isolates in H-type MFCs operating on pyruvate or molasses was demonstrated. The operation of the MFC with shewanellas cultured on molasses was shown for the first time. A two-stage character of the fuel cell polarization curves, not previously noted in Shewanella MFC studies, was observed.

  13. Isolation and microbial reduction of Fe(III) phyllosilicates from subsurface sediments

    SciTech Connect

    Wu, Tao; Shelobolina, Evgenya S.; Xu, Huifang; Konishi, Hiromi; Kukkadapu, Ravi K.; Roden, Eric E.

    2012-10-12

    Fe(III)-bearing phyllosilicates can be important sources of Fe(III) for dissimilatory microbial iron reduction in clay-rich anoxic soils and sediments. The goal of this research was to isolate Fe(III) phyllosilicate phases, and if possible, Fe(III) oxide phases, from a weathered shale saprolite sediment in order to permit experimentation with each phase in isolation. Physical partitioning by density gradient centrifugation did not adequately separate phyllosilicate and Fe(III) oxide phases (primarily nanoparticulate goethite). Hence we examined the ability of chemical extraction methods to remove Fe(III) oxides without significantly altering the properties of the phyllosilicates. XRD analysis showed that extraction with oxalate alone or oxalate in the presence of added Fe(II) altered the structure of Fe-bearing phyllosilicates in the saprolite. In contrast, citrate-bicarbonate-dithionite (CBD) extraction at room temperature and 80C led to minimal alteration of phyllosilicate structures. Reoxidation of CDB-extracted sediment with H2O2 restored phyllosilicate structure (i.e. d-spacing) and redox speciation to conditions similar to that in the pristine sediment. The extent of microbial (Geobacter sulfurreducens) reduction of Fe(III) phyllosilicates isolated by CDB extraction (ca. 16 %) was comparable to what took place in pristine sediments as determined by Mossbauer spectroscopy (ca. 18 % reduction). These results suggest that materials isolated by CDB extraction and H2O2 reoxidation are appropriate targets for detailed studies of natural soil/sediment Fe(III) phyllosilicate reduction.

  14. A flow-through fluorescent sensor to determine Fe(III) and total inorganic iron.

    PubMed

    Pulido-Tofiño, P; Moreno, J M; Pérez-Conde, M C

    2000-03-06

    A flow-through fluorescent sensor for the consecutive determination of Fe(III) and total iron is described. The reactive phase of the proposed sensor, which has a high affinity for complexed Fe(III), consists of pyoverdin immobilized on controlled pore glass (CPG) by covalent bonding. This pigment selectively reacts with Fe(III) decreasing its fluorescence emission. Total inorganic iron is determined as Fe(III) after on-line oxidation in a mini-column containing persulphate immobilized on an ion exchange resin. The developed method allows the determination of Fe(III) in the 3-200 (g l(-1) range. The relative standard deviations of 10 determinations of 60 (g l(-1) of Fe(III) and 20 (g l(-1) of Fe(III)+Fe(II) are 3 and 5%, respectively. The sensor has been satisfactorily applied to speciate iron in synthetic, tap and well waters and wines. There were no significant differences for total inorganic iron determination between this new method and the atomic absorption spectroscopy reference method at the 95% confidence level. The sensor allows the concentration of Fe(II) to be calculated as the difference between total inorganic iron and Fe(III). The lifetime of the sensor is at least 3 months in continuous use or the equivalent of 1000 determinations.

  15. Going wireless: Fe(III) oxide reduction without pili by Geobacter sulfurreducens strain JS-1.

    PubMed

    Smith, Jessica A; Tremblay, Pier-Luc; Shrestha, Pravin Malla; Snoeyenbos-West, Oona L; Franks, Ashley E; Nevin, Kelly P; Lovley, Derek R

    2014-07-01

    Previous studies have suggested that the conductive pili of Geobacter sulfurreducens are essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene encoding PilA, the structural pilin protein, in strain KN400 inhibited Fe(III) oxide reduction. However, low rates of Fe(III) reduction were detected after extended incubation (>30 days) in the presence of Fe(III) oxide. After seven consecutive transfers, the PilA-deficient strain adapted to reduce Fe(III) oxide as fast as the wild type. Microarray, whole-genome resequencing, proteomic, and gene deletion studies indicated that this adaptation was associated with the production of larger amounts of the c-type cytochrome PgcA, which was released into the culture medium. It is proposed that the extracellular cytochrome acts as an electron shuttle, promoting electron transfer from the outer cell surface to Fe(III) oxides. The adapted PilA-deficient strain competed well with the wild-type strain when both were grown together on Fe(III) oxide. However, when 50% of the culture medium was replaced with fresh medium every 3 days, the wild-type strain outcompeted the adapted strain. A possible explanation for this is that the necessity to produce additional PgcA, to replace the PgcA being continually removed, put the adapted strain at a competitive disadvantage, similar to the apparent selection against electron shuttle-producing Fe(III) reducers in many anaerobic soils and sediments. Despite increased extracellular cytochrome production, the adapted PilA-deficient strain produced low levels of current, consistent with the concept that long-range electron transport through G. sulfurreducens biofilms is more effective via pili.

  16. Going Wireless: Fe(III) Oxide Reduction without Pili by Geobacter sulfurreducens Strain JS-1

    PubMed Central

    Shrestha, Pravin Malla; Snoeyenbos-West, Oona L.; Franks, Ashley E.; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    Previous studies have suggested that the conductive pili of Geobacter sulfurreducens are essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene encoding PilA, the structural pilin protein, in strain KN400 inhibited Fe(III) oxide reduction. However, low rates of Fe(III) reduction were detected after extended incubation (>30 days) in the presence of Fe(III) oxide. After seven consecutive transfers, the PilA-deficient strain adapted to reduce Fe(III) oxide as fast as the wild type. Microarray, whole-genome resequencing, proteomic, and gene deletion studies indicated that this adaptation was associated with the production of larger amounts of the c-type cytochrome PgcA, which was released into the culture medium. It is proposed that the extracellular cytochrome acts as an electron shuttle, promoting electron transfer from the outer cell surface to Fe(III) oxides. The adapted PilA-deficient strain competed well with the wild-type strain when both were grown together on Fe(III) oxide. However, when 50% of the culture medium was replaced with fresh medium every 3 days, the wild-type strain outcompeted the adapted strain. A possible explanation for this is that the necessity to produce additional PgcA, to replace the PgcA being continually removed, put the adapted strain at a competitive disadvantage, similar to the apparent selection against electron shuttle-producing Fe(III) reducers in many anaerobic soils and sediments. Despite increased extracellular cytochrome production, the adapted PilA-deficient strain produced low levels of current, consistent with the concept that long-range electron transport through G. sulfurreducens biofilms is more effective via pili. PMID:24814783

  17. The Geoglobus acetivorans Genome: Fe(III) Reduction, Acetate Utilization, Autotrophic Growth, and Degradation of Aromatic Compounds in a Hyperthermophilic Archaeon

    PubMed Central

    Mardanov, Andrey V.; Slododkina, Galina B.; Slobodkin, Alexander I.; Beletsky, Alexey V.; Gavrilov, Sergey N.; Kublanov, Ilya V.; Bonch-Osmolovskaya, Elizaveta A.; Skryabin, Konstantin G.

    2014-01-01

    Geoglobus acetivorans is a hyperthermophilic anaerobic euryarchaeon of the order Archaeoglobales isolated from deep-sea hydrothermal vents. A unique physiological feature of the members of the genus Geoglobus is their obligate dependence on Fe(III) reduction, which plays an important role in the geochemistry of hydrothermal systems. The features of this organism and its complete 1,860,815-bp genome sequence are described in this report. Genome analysis revealed pathways enabling oxidation of molecular hydrogen, proteinaceous substrates, fatty acids, aromatic compounds, n-alkanes, and organic acids, including acetate, through anaerobic respiration linked to Fe(III) reduction. Consistent with the inability of G. acetivorans to grow on carbohydrates, the modified Embden-Meyerhof pathway encoded by the genome is incomplete. Autotrophic CO2 fixation is enabled by the Wood-Ljungdahl pathway. Reduction of insoluble poorly crystalline Fe(III) oxide depends on the transfer of electrons from the quinone pool to multiheme c-type cytochromes exposed on the cell surface. Direct contact of the cells and Fe(III) oxide particles could be facilitated by pilus-like appendages. Genome analysis indicated the presence of metabolic pathways for anaerobic degradation of aromatic compounds and n-alkanes, although an ability of G. acetivorans to grow on these substrates was not observed in laboratory experiments. Overall, our results suggest that Geoglobus species could play an important role in microbial communities of deep-sea hydrothermal vents as lithoautotrophic producers. An additional role as decomposers would close the biogeochemical cycle of carbon through complete mineralization of various organic compounds via Fe(III) respiration. PMID:25416759

  18. Engineered oligosaccharyltransferases with greatly relaxed acceptor site specificity

    PubMed Central

    Ollis, Anne A.; Zhang, Sheng; Fisher, Adam C.; DeLisa, Matthew P.

    2015-01-01

    The Campylobacter jejuni protein glycosylation locus (pgl) encodes machinery for asparagine-linked (N-linked) glycosylation and serves as the archetype for bacterial N-glycosylation. This machinery has been functionally transferred into Escherichia coli, thereby enabling convenient mechanistic dissection of the N-glycosylation process in this genetically tractable host. Here, we sought to identify sequence determinants in the oligosaccharyltransferase PglB that restrict its specificity to only those glycan acceptor sites containing a negatively charged residue at the −2 position relative to asparagine. This involved creation of a genetic assay named glycoSNAP (glycosylation of secreted N-linked acceptor proteins) that facilitates high-throughput screening of glycophenotypes in E. coli. Using this assay, we isolated several C. jejuni PglB variants that were capable of glycosylating an array of noncanonical acceptor sequences including one in a eukaryotic N-glycoprotein. Collectively, these results underscore the utility of glycoSNAP for shedding light on poorly understood aspects of N-glycosylation and for engineering designer N-glycosylation biocatalysts. PMID:25129029

  19. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  20. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.

    PubMed

    Wu, Chao; Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Wen-Wei; Li, Dao-Bo; Yu, Han-Qing

    2013-05-01

    Shewanella oneidensis MR-1 is an extensively studied dissimilatory metal-reducing bacterium with a great potential for bioremediation and electricity generation. It secretes flavins as electron shuttles which play an important role in extracellular electron transfer. However, the influence of various environmental factors on the secretion of flavins is largely unknown. Here, the effects of electron acceptors, including fumarate, ferrihydrite, Fe(III)-nitrilotriacetic acid (NTA), nitrate and trimethylamine oxide (TMAO), on the secretion of flavins were investigated. The level of riboflavin and riboflavin-5'-phosphate (FMN) secreted by S. oneidensis MR-1 varied considerably with different electron acceptors. While nitrate and ferrihydrite suppressed the secretion of flavins in relative to fumarate, Fe(III)-NTA and TMAO promoted such a secretion and greatly enhanced ferrihydrite reduction and electricity generation. This work clearly demonstrates that electron acceptors could considerably affect the secretion of flavins and consequent microbial EET. Such impacts of electron acceptors in the environment deserve more attention.

  1. Relationship between P and the most reactive fraction of Fe(III) oxyhydroxide in various aquatic and sedimentary environments

    NASA Astrophysics Data System (ADS)

    Anschutz, Pierre

    2014-05-01

    Phosphorus can experience a series of biogeochemical pathways. Primary P has an igneous origin and occurs mostly as apatite in bedrocks. Once P is dissolved as phosphate ion, it can incorporate organic matter or become adsorbed onto inorganic particles. The liberation of P from organic matter through bacterial respiration produces a subsequent flux back to the biota or a storage in Fe and Al oxyhydroxides, or in authigenic or biogenic phosphate minerals. The adsorption of phosphate on Fe- and Al-oxide and oxyhydroxide has been extensively studied in soil science because phosphorus is a limiting nutrient in terrestrial ecosystems, and sorptive removal of natural or fertilizer phosphorus impacts the production level of crops and forests. Fe(III) oxides/oxyhydroxides are subject to reductive dissolution, and consequently redox conditions play an important role in soil P-bioavailability. The main process of phosphorus removal from the aquatic systems is burial with sediments. Exchange between sediment and overlying water takes place through benthic biogeochemical processes, including organic-P mineralization, redox-driven Fe-P cycling, and benthic phosphorus efflux from sediments. A portion of the pore-water phosphate derived from organic matter mineralization may be adsorbed onto detrital or authigenic iron oxyhydroxides in the oxidized zone of the sediment. Once advected in the reduced zone of sediments through burial or bioturbation, the most reducible fraction of Fe(III) phase can be reduced and solubilized, leading to a release of phosphate. Eventually, P can be buried over long period as relict organic-P, P associated with refractory iron oxides, and apatite. Therefore, Fe-bound P is often the initial sink of P supplied by organic matter, but not the major final sink. Several techniques have been developed to extract P bound to Fe(III) phases. The citrate-dithionite buffered (CDB) solution is one of the most often used solution to measure Fe(III)-bound P. CDB

  2. Release of 226Ra from uranium mill tailings by microbial Fe(III) reduction

    USGS Publications Warehouse

    Landa, E.R.; Phillips, E.J.P.; Lovley, D.R.

    1991-01-01

    Uranium mill tailings were anaerobically incubated in the presence of H2 with Alteromonas putrefaciens, a bacterium known to couple the oxidation of H2 and organic compounds to the reduction of Fe(III) oxides. There was a direct correlation between the extent of Fe(III) reduction and the accumulation of dissolved 226Ra. In sterile tailings in which Fe(III) was not reduced, there was negligible leaching of 226Ra. The behavior of Ba was similar to that of Ra in inoculated and sterile systems. These results demonstrate that under anaerobic conditions, microbial reduction of Fe(III) may result in the release of dissolved 226Ra from uranium mill tailings. ?? 1991.

  3. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5.

    PubMed

    Holmberg, Rebecca J; Burns, Thomas; Greer, Samuel M; Kobera, Libor; Stoian, Sebastian A; Korobkov, Ilia; Hill, Stephen; Bryce, David L; Woo, Tom K; Murugesu, Muralee

    2016-06-01

    Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials.

  4. Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III) reducing bacterium

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Fredrickson, Jim K.; Smith, Steven C.; Gassman, Paul L.

    2001-01-01

    Trace metals associate with Fe(III) oxides as adsorbed or coprecipitated species, and consequently, the biogeochemical cycles of iron and the trace metals are closely linked. This communication investigated the solubilization of coprecipitated Co(III) and Ni(II) from goethite (α-FeOOH) during dissimilatory bacterial iron reduction to provide insights on biogeochemical factors controlling trace-element fluxes in anoxic environments. Suspensions of homogeneously substituted Co-FeOOH (50 mmol/L as Co 0.01Fe 0.99OOH; 57Co-labeled) in eight different buffer/media solutions were inoculated with a facultative, metal-reducing bacteria isolated from groundwater ( Shewanella putrefacians CN32), and incubated under strictly anaerobic conditions for periods up to 32 days. Lactate (30 mmol/L) was provided as an electron donor. Growth and non-growth promoting conditions were established by adding or withholding PO 4 and/or trace metals ( 60Co-labeled) from the incubation media. Anthraquinone disulfonate (AQDS; 100 μmol/L) was added to most suspensions as an electron shuttle to enhance bacterial reduction. Solutions were buffered at circumneutral pH with either PIPES or bicarbonate buffers. Solid and liquid samples were analyzed at intermediate and final time points for aqueous and sorbed/precipitated (by HCl extraction) Fe(II) and Co(II). The bioreduced solids were analyzed by X-ray diffraction and field-emission electron microscopy at experiment termination. Ni-FeOOH (Ni 0.01Fe 0.99OOH) was used for comparison in select experiments. Up to 45% of the metal containing FeOOH was bioreduced; growth-supporting conditions did not enhance reduction. The biogenic Fe(II) strongly associated with the residual Fe(III) oxide as an undefined sorbed phase at low fractional reduction in PIPES buffer, and as siderite (FeCO 3) in bicarbonate buffer or as vivianite [Fe 3(PO 4) 2 · 8H 2O] when P was present. Cobalt(III) was reduced to Co(II) in proportion to its mole ratio in the solid. The

  5. Microbial Fe(III) oxide reduction and Fe cycling in iron-rich freshwater wetland sediments

    SciTech Connect

    Roden, E.E.

    1995-12-31

    The dynamics of Fe cycling and the interaction between microbial Fe(III) oxide reduction and other anaerobic microbial respiratory processes were examined in Fe-rich, sulfate-poor freshwater wetland sediments. Sediment incubation experiments demonstrated that reduction of Fe(III) oxides (amorphous, soluble in dilute HCl) dominated anaerobic carbon mineralization at Fe(III) concentrations in excess of 10 mmol per liter wet sediment. The kinetics of Fe(III) reduction were found to be first-order with respect to the concentration of Fe(III) oxide, although estimated first-order rate constants varied in relation to the absolute rates of Fe(III) reduction, suggesting a co-dependency on the concentration of easily degradable organic carbon. High concentrations of amorphous Fe(III) oxides (10-100 mmol L wet sed {sup -1}) were found in surface sediments (0-3 cm) of unvegetated zones of the wetland and in the rhizosphere (0-10 cm) of emergent aquatic plants, sufficient (based on sediment incubation experiments) to allow Fe(III)-reducing bacteria (FeRB) to dominate anaerobic carbon mineralization. A rapid redox cycling of Fe is apparent in these localized zones based on observed rates of Fe(III) reduction and the abundance/depth distribution of Fe(Ill) oxides. Preliminary culture enrichment studies indicate that FeRB present in these sediments are capable of metabolizing a range of both natural and contaminant aromatic hydrocarbons, which suggests a potential for utilization of natural and/or artificial Fe-rich wetland systems for organic contaminant bioremediation.

  6. Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals.

    PubMed

    Piepenbrock, Annette; Schröder, Christian; Kappler, Andreas

    2014-01-01

    Microbial humic substance (HS) reduction and subsequent abiotic electron transfer from reduced HS to poorly soluble Fe(III) (oxyhydr)oxides, a process named electron shuttling, significantly increases microbial Fe(III) mineral reduction rates. However, the importance of electron shuttling in nature and notably the electron transfer from HS to biogenic Fe(III) (oxyhydr)oxides have thus far not been determined. In this study, we have quantified the rate and extent of electron transfer from reduced and nonreduced Pahokee Peat humic acids (PPHA) and fresh soil organic matter (SOM) extracts to both synthetic and environmentally relevant biogenic Fe(III) (oxyhydr)oxides. We found that biogenic Fe(III) minerals were reduced faster and to an equal or higher degree than their abiogenic counterparts. Differences were attributed to differences in crystallinity and the association of bacterial biomass with biogenic minerals. Compared to purified PPHA, SOM extract transferred fewer electrons per milligram of carbon and electron transfer was observed only to poorly crystalline ferrihydrite but not to more crystalline goethite. This indicates a difference in redox potential distribution of the redox-active functional groups in extracted SOM relative to the purified PPHA. Our results suggest that HS electron shuttling can also contribute to iron redox processes in environments where biogenic Fe(III) minerals are present.

  7. High Performance Magazine Acceptor Threshold Criteria

    DTIC Science & Technology

    1994-08-01

    detonation transition (DDT). To account for unknown mechanisms the term XDT is also used. Development of a design procedure to prevent SD requires...propagation walls are used to prevent sympathetic detonation between munitions stored in adjacent cells. Design of the walls, and their mitigation...effects, requires sympathetic detonation threshold criteria for acceptor munitions. This paper outlines the procedures being used to develop SD threshold

  8. Geothrix fermentans Secretes Two Different Redox-Active Compounds To Utilize Electron Acceptors across a Wide Range of Redox Potentials

    PubMed Central

    Mehta-Kolte, Misha G.

    2012-01-01

    The current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial genera Geobacter and Shewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of the Acidobacteria, Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE), G. fermentans required potentials as high as 0.55 V to respire at its maximum rate. In addition, G. fermentans secreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found in G. fermentans supernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals that Geothrix is able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined to Shewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies of Geothrix and Geobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential. PMID:22843516

  9. Selective transport of Fe(III) using ionic imprinted polymer (IIP) membrane particle

    NASA Astrophysics Data System (ADS)

    Djunaidi, Muhammad Cholid; Jumina, Siswanta, Dwi; Ulbricht, Mathias

    2015-12-01

    The membrane particles was prepared from polyvinyl alcohol (PVA) and polymer IIP with weight ratios of 1: 2 and 1: 1 using different adsorbent templates and casting thickness. The permeability of membrane towards Fe(III) and also mecanism of transport were studied. The selectivity of the membrane for Fe(III) was studied by performing adsorption experiments also with Cr(III) separately. In this study, the preparation of Ionic Imprinted Polymer (IIP) membrane particles for selective transport of Fe (III) had been done using polyeugenol as functional polymer. Polyeugenol was then imprinted with Fe (III) and then crosslinked with PEGDE under alkaline condition to produce polyeugenol-Fe-PEGDE polymer aggregates. The agrregates was then crushed and sieved using mesh size of 80 and the powder was then used to prepare the membrane particles by mixing it with PVA (Mr 125,000) solution in 1-Methyl-2-pyrrolidone (NMP) solvent. The membrane was obtained after casting at a speed of 25 m/s and soaking in NaOH solution overnight. The membrane sheet was then cut and Fe(III) was removed by acid to produce IIP membrane particles. Analysis of the membrane and its constituent was done by XRD, SEM and size selectivity test. Experimental results showed the transport of Fe(III) was faster with the decrease of membrane thickness, while the higher concentration of template ion correlates with higher Fe(III) being transported. However, the transport of Fe(III) was slower for higher concentration of PVA in the membrane. IImparticles works through retarded permeation mechanism, where Fe(III) was bind to the active side of IIP. The active side of IIP membrane was dominated by the -OH groups. The selectivity of all IIP membranes was confirmed as they were all unable to transport Cr (III), while NIP (Non-imprinted Polymer) membrane was able transport Cr (III).

  10. Photoionization in micelles: Addition of charged electron acceptors

    NASA Astrophysics Data System (ADS)

    Stenland, Chris; Kevan, Larry

    The relative photoyield of the electron donor N, N, N', N'-tetramethylbenzidine (TMB), solubilized in sodium and lithium dodecyl sulfate micelles with added charged electron acceptors was investigated. It was attempted to control the acceptor distance from a charged micellar interface by differently charged acceptors, cationic dimethyl viologen and anionic ferricyanide. However, back electron transfer from both cationic and anionic acceptors was found to be efficient. Thus simple electrostatic arguments for control of the photoyield do not seem applicable. Salt effects associated with the added ionic acceptors which partially neutralize the ionic micellar interface are suggested to be an important factor.

  11. Synthesis of a novel heptacoordinated Fe(III) dinuclear complex: experimental and theoretical study of the magnetic properties.

    PubMed

    Craig, Gavin A; Barrios, Leoní A; Sánchez Costa, José; Roubeau, Olivier; Ruiz, Eliseo; Teat, Simon J; Wilson, Chick C; Thomas, Lynne; Aromí, Guillem

    2010-05-28

    A new functionalized bis-pyrazol-pyridine ligand has been prepared by reaction with hydrazine of the corresponding bis-β-diketone precursor, also unprecedented. The aerobic reaction of this ligand with ferrous thiocyanate in the presence of ascorbic or oxalic acid affords the dinuclear complex of seven-coordinate Fe(III), [Fe₂(H₄L2)₂(ox)(NCS)₄] (1), as revealed by single crystal X-ray diffraction. This may represent an entry into a new family of [Fe₂] compounds with heptacoordinate metal centres. The capacity of this unusual chromophore to undergo magnetic super-exchange was investigated by means of bulk magnetization and DFT calculations. Both approaches confirmed the presence of antiferromagnetic interactions within the molecule. The theoretical investigation has served to describe the magnetic orbitals of Fe(III) in this unusual coordination geometry, as well as the exchange mechanism. A brief review of the scarce number of iron heptacoordinate complexes reported in the literature is also included and discussed.

  12. Binomial distribution-based quantitative measurement of multiple-acceptors fluorescence resonance energy transfer by partially photobleaching acceptor

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yu, Huaina; Zhang, Jianwei; Chen, Tongsheng

    2014-06-01

    We report that binomial distribution depending on acceptor photobleaching degree can be used to characterize the proportions of various kinds of FRET (Fluorescence Resonance Energy Transfer) constructs resulted from partial acceptor photobleaching of multiple-acceptors FRET system. On this basis, we set up a rigorous quantitation theory for multiple-acceptors FRET construct named as Mb-PbFRET which is not affected by the imaging conditions and fluorophore properties. We experimentally validate Mb-PbFRET with FRET constructs consisted of one donor and two or three acceptors inside living cells on confocal and wide-field microscopes.

  13. New method for the direct determination of dissolved Fe(III) concentration in acid mine waters

    USGS Publications Warehouse

    To, T.B.; Nordstrom, D.K.; Cunningham, K.M.; Ball, J.W.; McCleskey, R.B.

    1999-01-01

    A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II) >> Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), AI(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2 ??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II)???Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes

  14. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics

    NASA Astrophysics Data System (ADS)

    Roden, Eric E.

    2004-08-01

    Data from studies of dissimilatory bacterial (10 8 cells mL -1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L -1) were analyzed in relation to a generalized rate law for mineral dissolution (J t/m 0 = k'(m/m 0) γ, where J t is the rate of dissolution and/or reduction at time t, m 0 is the initial mass of oxide, and m/m 0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to

  15. Evaluation of anionic surfactant removal in anaerobic reactor with Fe(III) supplementation.

    PubMed

    Delforno, T P; Okada, D Y; Faria, C V; Varesche, M B A

    2016-12-01

    The objective of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) associated with Fe(III) supplementation using an expanded granular sludge bed (EGSB) reactor. The reactor was inoculated with a granular sludge and fed with synthetic wastewater containing a specific LAS load rate (SLLR) of 1.5 mg gVS(-1) d(-1) (∼16.4 mgLAS L(-1) influent) and supplied with 7276 μMol L(-1) of Fe(III). The biomasses from the inoculum and at the end of the EGSB-Fe operation (127 days) were characterized using 16S rRNA Ion Tag sequencing. An increase of 20% in the removal efficiency was observed compared to reactors without Fe(III) supplementation that was reported in the literature, and the LAS removal was approximately 84%. The Fe(III) reduction was dissimilatory (the total iron concentration in the influent and effluent were similar) and reached approximately 64%. The higher Fe(III) reduction and LAS removal were corroborated by the enrichment of genera, such as Shewanella (only EGSB-Fe - 0.5%) and Geobacter (1% - inoculum; 18% - EGSB-Fe). Furthermore, the enrichment of genera that degrade LAS and/or aromatic compounds (3.8% - inoculum; 29.6% - EGSB-Fe of relative abundance) was observed for a total of 20 different genera.

  16. Bioavailability of Fe(III) in natural soils and the impact on mobility of inorganic contaminants

    SciTech Connect

    Kosson, David S.; Cowan, Robert M.; Young, Lily Y.; Hacherl, Eric L.; Scala, David J.

    2002-10-03

    Inorganic contaminants, such as heavy metals and radionuclides, can adhere to insoluble Fe(III) minerals resulting in decreased mobility of these contaminants through subsurface environments. Dissimilatory Fe(III)-reducing bacteria (DIRB), by reducing insoluble Fe(III) to soluble Fe(II), may enhance contaminant mobility. The Savannah River Site, South Carolina (SRS), has been subjected to both heavy metal and radionuclide contamination. The overall objective of this project is to investigate the release of inorganic contaminants such as heavy metals and radionuclides that are bound to solid phase soil Fe complexes and to elucidate the mechanisms for mobilization of these contaminants that can be associated with microbial Fe(III) reduction. This is being accomplished by (i) using uncontaminated and contaminated soils from SRS as prototype systems, (ii) evaluating the diversity of DIRBs within the samples and isolating cultures for further study, (iii) using batch microcosms to evaluate the bioavailability of Fe(III) from pure minerals and SRS soils, (iv) developing kinetic and mass transfer models that reflect the system dynamics, and (v) carrying out soil column studies to elucidate the dynamics and interactions amongst Fe(III) reduction, remineralization and contaminant mobility.

  17. Photodegradation mechanism of sulfadiazine catalyzed by Fe(III), oxalate and algae under UV irradiation.

    PubMed

    Zhang, Junwei; Ma, Li

    2013-01-01

    Photodegradation mechanism of sulfadiazine (SD) in a solution containing Fe(III), oxalate and algae were investigated in this study. The results indicated that the degradation of SD was slow in a solution containing Fe(III) or oxalate, whereas it was markedly enhanced when Fe(III) and oxalate coexisted. The optimal pH for formation of *OH was 4; a higher or lower pH resulted in a decrease in formation of OH. A moderate increase of oxalate concentration was beneficial to the formation of *OH and the degradation of SD, and the algae enhanced the degradation rate of SD in a solution containing Fe(III) and oxalate. Also, the degradation rate of SD rapidly decreased at low initial concentrations but slowly decreased at high initial concentrations, and pseudo-first order kinetics described the degradation process of SD well. A possible reaction mechanism in solution containing Fe(III), oxalate and algae was proposed, and attack by *OH was the main pathway of SD degradation in the photocatalytic reaction.

  18. Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers.

    PubMed

    Lee, E Y; Cho, K S; Ryu, H W; Chang, Y K

    1999-01-01

    Fe(III) impurities, which detract refractoriness and whiteness from porcelain and pottery, could be biologically removed from low-quality clay by indigenous dissimilatory Fe(III)-reducing microorganisms. Insoluble Fe(III) in clay particles was leached out as soluble Fe(II), and the Fe(III) reduction reaction was coupled to the oxidation of sugars such as glucose, maltose and sucrose. A maximum removal of 44-45% was obtained when the relative amount of sugar was 5% (w/w; sugar/clay). By the microbial treatment, the whiteness of the clay was increased from 63.20 to 79.64, whereas the redness was clearly decreased from 13.47 to 3.55.

  19. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls.

    PubMed

    Slawik, Christian; Rickmeyer, Christiane; Brehm, Martin; Böhme, Alexander; Schüürmann, Gerrit

    2017-02-22

    Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functio-nalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft and soft-soft adducts.

  20. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1994-01-01

    Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contaminated aquifers.Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing

  1. The Effect of Microbial FE(III) Reduction on Smectite Flocculation

    DTIC Science & Technology

    2005-01-01

    smectite suspensions. The effects of pH on the clay flocculation were minimal in this study because the value of pH remained nearly constant at pH = 7.0-7.3...rather than the Fe(III) in the observations of suspended particles were made. smectite structure. The pH of the initial aqueous phase was In this...study, the microbiological factor, especially 7.3. No attempt was made to buffer the pH value during the microbial Fe(III) reduction in controlling

  2. A rhodamine-based dual chemosensor for Cu(II) and Fe(III).

    PubMed

    Sikdar, Anindita; Panja, Sujit Sankar; Biswas, Partha; Roy, Swapnadip

    2012-01-01

    An "off-on" rhodamine-based fluorescence probe for the selective signaling of Cu(II) and Fe(III) has been designed and synthesized. The optical properties of this compound have been investigated in acetonitrile-water (1:1) binary solution. Very interestingly, this compound showed sensitivity and selectivity towards Cu(II) during absorption process and towards Fe(III) during emission process. So this is a nice example of an excellent dual chemosensor for two biologically/physiologically very important transition metal ions using only the two very different techniques (absorption and emission); both cases displayed only intensity enhancement.

  3. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed Central

    Barrett, M C; Dawson, A P

    1975-01-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme. PMID:1218095

  4. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  5. Insights on the design and electron-acceptor properties of conjugated organophosphorus materials.

    PubMed

    Baumgartner, Thomas

    2014-05-20

    The development of conjugated organic materials has become a rapidly evolving field of research, particularly with a view toward practical applications in so-called organic electronics that encompass a variety of device types, such as OLEDs, OPVs, and OFETs. Almost all of these devices minimally require the presence of electron-donor and -acceptor components that act as p- and n-type semiconductors, respectively. Research over the past two decades has shown that while there is an abundant resource of organic p-type materials, suitable n-type species are few and far between. To overcome this severe bottleneck for the further development of organic electronics, researchers have identified organo-main-group avenues as valuable alternatives toward organic electron-acceptor materials that may ultimately be used as n-type components in practical devices. One particular element of interest in this context is phosphorus, which at first glance may not necessarily suggest such properties. In this Account, I provide detailed insights on the origin of the electron-acceptor properties of organophosphorus-based conjugated materials and include an overview of important molecular species that have been developed by my group and others. To this end, I explain that the electron-acceptor properties of conjugated organophosphorus materials originate from an interaction known as negative hyperconjugation. While this particular interaction creates a simply inductively withdrawing phosphoryl substituent for π-conjugated scaffolds, incorporation of a phosphorus atom as an integral part of a cyclic substructure within a π-conjugated system provides a much more complex, versatile, and consequently highly valuable tool for the tuning of the electron-acceptor properties of the materials. Notably, the degree of negative hyperconjugation can effectively be tailored in various ways via simple substitution at the phosphorus center. This is now well established for phosphole-based molecular

  6. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    PubMed Central

    2015-01-01

    , forming dimers with a large intramolecular twist, which suppresses both nucleation and crystal growth. The generic design concept of rotationally symmetrical aromatic small molecules with extended π orbital delocalization, including polyaromatic hydrocarbons, phthalocyanines, etc., has also provided some excellent small molecule acceptors. In most cases, additional electron withdrawing functionality, such as imide or ester groups, can be incorporated to stabilize the LUMO and improve properties. New calamitic acceptors have been developed, where molecular orbital hybridization of electron rich and poor segments can be judiciously employed to precisely control energy levels. Conformation and intermolecular associations can be controlled by peripheral functionalization leading to optimization of crystallization length scales. In particular, the use of rhodanine end groups, coupled electronically through short bridged aromatic chains, has been a successful strategy, with promising device efficiencies attributed to high lying LUMO energy levels and subsequently large open circuit voltages. PMID:26505279

  7. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-03-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  8. Improving an organic photodiode by incorporating a tunnel barrier between the donor and acceptor layers

    NASA Astrophysics Data System (ADS)

    Campbell, I. H.; Crone, B. K.

    2012-07-01

    We demonstrate increased photocurrent quantum efficiency in a model donor/acceptor (tetracene/C60) photodiode by incorporating an insulating tunnel barrier between the tetracene and C60 layers. Photodiode efficiency results from the interplay of a number of processes which add to or subtract from the overall device efficiency. The positive rates are those of exciton dissociation and charge separation, the negative rates include exciton and charge transfer complex recombination. We show that by introducing a thin insulating layer between the donor and acceptor layers in a photodiode, we can modify the exciton dissociation and charge transfer complex recombination rates and improve device performance.

  9. Quantum computing with acceptor spins in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  10. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  11. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri

    USGS Publications Warehouse

    Liu, D.; Dong, Hailiang H.; Bishop, M.E.; Wang, Hongfang; Agrawal, A.; Tritschler, S.; Eberl, D.D.; Xie, S.

    2011-01-01

    Clay minerals and methanogens are ubiquitous and co-exist in anoxic environments, yet it is unclear whether methanogens are able to reduce structural Fe(III) in clay minerals. In this study, the ability of methanogen Methanosarcina barkeri to reduce structural Fe(III) in iron-rich smectite (nontronite NAu-2) and the relationship between iron reduction and methanogenesis were investigated. Bioreduction experiments were conducted in growth medium using three types of substrate: H2/CO2, methanol, and acetate. Time course methane production and hydrogen consumption were measured by gas chromatography. M. barkeri was able to reduce structural Fe(III) in NAu-2 with H2/CO2 and methanol as substrate, but not with acetate. The extent of bioreduction, as measured by the 1,10-phenanthroline method, was 7-13% with H2/CO2 as substrate, depending on nontronite concentration (5-10g/L). The extent was higher when methanol was used as a substrate, reaching 25-33%. Methanogenesis was inhibited by Fe(III) reduction in the H2/CO2 culture, but enhanced when methanol was used. High charge smectite and biogenic silica formed as a result of bioreduction. Our results suggest that methanogens may play an important role in biogeochemical cycling of iron in clay minerals and may have important implications for the global methane budget. ?? 2010 Elsevier Ltd.

  12. New acceptor-donor-acceptor (A-D-A) type copolymers for efficient organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Ayachi, S.; Alimi, K.

    2015-01-01

    Three new conjugated systems alternating acceptor-donor-acceptor (A-D-A) type copolymers have been investigated by means of Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) at the 6-31g (d) level of theory. 4,4‧-Dimethoxy-chalcone, also called the 1,3-bis(4-methoxyphenyl)prop-2-en-1-one (BMP), has been used as a common acceptor moiety. It forced intra-molecular S⋯O interactions through alternating oligo-thiophene derivatives: 4-AlkylThiophenes (4-ATP), 4-AlkylBithiophenes (4-ABTP) and 4-Thienylene Vinylene (4-TEV) as donor moieties. The band gap, HOMO and LUMO electron distributions as well as optical properties were analyzed for each molecule. The fully optimized resulting copolymers showed low band gaps (2.2-2.8 eV) and deep HOMO energy levels ranging from -4.66 to -4.86 eV. A broad absorption [300-900 nm] covering the solar spectrum and absorption maxima ranges from 486 to 604 nm. In addition, organic photovoltaic cells (OPCs) based on alternating copolymers in bulk heterojunction (BHJ) composites with the 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6]-C61 (PCBM), as an acceptor, have been optimized. Thus, the band gap decreased to 1.62 eV, the power conversion efficiencies (PCEs) were about 3-5% and the open circuit voltage Voc of the resulting molecules decreased from 1.50 to 1.27 eV.

  13. Efficient organic dye-sensitized solar cells: molecular engineering of donor-acceptor-acceptor cationic dyes.

    PubMed

    Cheng, Ming; Yang, Xichuan; Zhao, Jianghua; Chen, Cheng; Tan, Qin; Zhang, Fuguo; Sun, Licheng

    2013-12-01

    Three metal-free donor-acceptor-acceptor sensitizers with ionized pyridine and a reference dye were synthesized, and a detailed investigation of the relationship between the dye structure and the photophysical and photoelectrochemical properties and the performance of dye-sensitized solar cells (DSSCs) is described. The ionization of pyridine results in a red shift of the absorption spectrum in comparison to that of the reference dye. This is mainly attributable to the ionization of pyridine increasing the electron-withdrawing ability of the total acceptor part. Incorporation of the strong electron-withdrawing units of pyridinium and cyano acrylic acid gives rise to optimized energy levels, resulting in a large response range of wavelengths. When attached to TiO2 film, the conduction band of TiO2 is negatively shifted to a different extent depending on the dye. This is attributed to the electron recombination rate between the TiO2 film and the electrolyte being efficiently suppressed by the introduction of long alkyl chains and thiophene units. DSSCs assembled using these dyes show efficiencies as high as 8.8 %.

  14. Microbial Anaerobic Ammonium Oxidation Under Iron Reducing Conditions, Alternative Electron Acceptors

    NASA Astrophysics Data System (ADS)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2015-12-01

    Autotrophic Acidimicrobiaceae-bacterium named A6 (A6), part of the Actinobacteria phylum have been linked to anaerobic ammonium (NH4+) oxidation under iron reducing conditions. These organisms obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, the TEAs are iron oxides [Fe(III)], which are reduced to Fe(II), this process is known as Feammox. Our studies indicate that alternative forms of TEAs can be used by A6, e.g. iron rich clays (i.e. nontronite) and electrodes in bioelectrochemical systems such as Microbial Electrolysis Cells (MECs), which can sustain NH4+removal and A6 biomass production. Our results show that nontronite can support Feammox and promote bacterial cell production. A6 biomass increased from 4.7 x 104 to 3.9 x 105 cells/ml in 10 days. Incubations of A6 in nontronite resulted in up to 10 times more NH4+ removal and 3 times more biomass production than when ferrihydrite is used as the Fe(III) source. Additionally, Fe in nontronite can be reoxidized by aeration and A6 can reutilize it; however, Fe is still finite in the clay. In contrast, in MECs, A6 harvest electrons from NH4+ and use an anode as an unlimited TEA, as a result current is produced. We operated multiple MECs in parallel using a single external power source, as described by Call & Logan (2011). MECs were run with an applied voltage of 0.7V and different growing mediums always containing initial 5mM NH4+. Results show that current production is favored when anthraquinone-2,6-disulfonate (AQDS), an electron shuttled, is present in the medium as it facilitates the transfer of electrons from the bacterial cell to the anode. Additionally, A6 biomass increased from 1 x 104 to 9.77 x 105cells/ml in 14 days of operation. Due to Acidimicrobiaceae-bacterium A6's ability to use various TEAs, MECs represent an alternative, iron-free form, for optimized biomass production of A6 and its application in NH4

  15. Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III).

    PubMed

    Vandieken, Verona; Knoblauch, Christian; Jørgensen, Bo Barker

    2006-04-01

    Strains 18T, 61T and 77 were isolated from two permanently cold fjord sediments on the west coast of Svalbard. The three psychrotolerant strains, with temperature optima at 20-23 degrees C, were able to grow at the freezing point of sea water, -2 degrees C. The strains oxidized important fermentation products such as hydrogen, formate and lactate with sulfate as the electron acceptor. Sulfate could be replaced by sulfite, thiosulfate or elemental sulfur. Poorly crystalline and soluble Fe(III) compounds were reduced in sulfate-free medium, but no growth occurred under these conditions. In the absence of electron acceptors, fermentative growth was possible. The pH optimum for the strains was around 7.1. The DNA G+C contents were 43.3 and 42.0 mol% for strains 18T and 61T, respectively. Strains 18T, 61T and 77 were most closely related to Desulfovibrio hydrothermalis (95.0-95.7 % 16S rRNA gene sequence similarity). Strains 18T and 77, exhibiting 99.9 % sequence similarity, represent a novel species for which the name Desulfovibrio frigidus sp. nov. is proposed. The type strain is strain 18T (=DSM 17176T = JCM 12924T). Strain 61T was closely related to strains 18T and 77 (97.6 and 97.5 % 16S rRNA gene sequence similarity), but on the basis of DNA-DNA hybridization strain 61T represents a novel species for which the name Desulfovibrio ferrireducens sp. nov. is proposed. The type strain is strain 61T (=DSM 16995T = JCM 12925T).

  16. Simple flow injection method for simultaneous spectrophotometric determination of Fe(II) and Fe(III).

    PubMed

    Kozak, J; Jodłowska, N; Kozak, M; Kościelniak, P

    2011-09-30

    The method is based on spectrophotometric determination of Fe(II) and Fe(III) at a single wavelength (530 nm) with the use of a dedicated reversed-flow injection system. In the system, EDTA solution is injected into a carrier stream (HNO(3)) and then merged with a sample stream containing a mixture of sulfosalicylic acid and 1,10-phenanthroline as indicators. In an acid environment (pH≅3) the indicators form complexes with both Fe(III) and Fe(II), but EDTA replaces sulfosalicylic acid, forming a more stable colourless complex with Fe(III), whereas Fe(II) remains in a complex with 1,10-phenenthroline. As a result, the area and minimum of the characteristic peak can be exploited as measures corresponding to the Fe(III) and Fe(II) concentrations, respectively. The analytes were not found to affect each other's signals, hence two analytical curves were constructed with the use of a set of standard solutions, each containing Fe(II) and Fe(III). Both analytes were determined in synthetic samples within the concentration ranges of 0.05-4.0 and 0.09-6.0 mg L(-1), respectively, with precision less than 1.5 and 2.6% (RSD) and with accuracy less than 4.3 and 5.6% (RE). The method was applied to determination of the analytes in water samples collected from artesian wells and the results of the determination were consistent with those obtained using the ICP-OES technique.

  17. Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation

    USGS Publications Warehouse

    Senko, John M.; Mohamed, Yasser; Dewers , Thomas A.; Krumholz, Lee R.

    2005-01-01

    Microbiological reduction of soluble U(VI) to insoluble U(IV) is a means of preventing the migration of that element in groundwater, but the presence of nitrate in U(IV)-containing sediments leads to U(IV) oxidation and remobilizaton. Nitrite or iron(III) oxyhydroxides may oxidize U(IV) under nitrate-reducing conditions, and we determined the rate and extent of U(IV) oxidation by these compounds. Fe(III) oxidized U(IV) at a greater rate than nitrite (130 and 10 μM U(IV)/day, respectively). In aquifer sediments, Fe(III) may be produced during microbial nitrate reduction by oxidation of Fe(II) with nitrite, or by enzymatic Fe(II) oxidation coupled to nitrate reduction. To determine which of these mechanisms was dominant, we isolated a nitrate-dependent acetate- and Fe(II)-oxidizing bacterium from a U(VI)- and nitrate-contaminated aquifer. This organism oxidized U(IV) at a greater rate and to a greater extent under acetate-oxidizing (where nitrite accumulated to 50 mM) than under Fe(II)-oxidizing conditions. We show that the observed differences in rate and extent of U(IV) oxidation are due to mineralogical differences between Fe(III) produced by reaction of Fe(II) with nitrite (amorphous) and Fe(III) produced enzymatically (goethite or lepidocrocite). Our results suggest the mineralogy and surface area of Fe(III) minerals produced under nitrate-reducing conditions affect the rate and extent of U(IV) oxidation. These results may be useful for predicting the stability of U(IV) in aquifers.

  18. π-Extended rigid triptycene-trisaroylenimidazoles as electron acceptors.

    PubMed

    Menke, Elisabeth H; Lami, Vincent; Vaynzof, Yana; Mastalerz, Michael

    2016-01-18

    Two soluble isomeric acceptor molecules based on a triptycene core, which is connected to three aroylenimidazole units are described. Due to the inherent threefold axis, the molecules are soluble and thus could be fully photophysically characterized in solution and film. Additionally, the preliminary results of these acceptors in organic photovoltaic devices with two different donor materials are reported.

  19. Prediction of the Intrinsic Hydrogen Bond Acceptor Strength of Chemical Substances from Molecular Structure

    NASA Astrophysics Data System (ADS)

    Schwöbel, Johannes; Ebert, Ralf-Uwe; Kühne, Ralph; Schüürmann, Gerrit

    2009-08-01

    Hydrogen bonding affects the partitioning of organic compounds between environmental and biological compartments as well as the three-dimensional shape of macromolecules. Using the semiempirical quantum chemical AM1 level of calculation, we have developed a model to predict the site-specific hydrogen bond (HB) acceptor strength from ground-state properties of the individual compounds. At present, the model parametrization is confined to compounds with one HB acceptor site of the following atom types: N, O, S, F, Cl, and Br that act as lone-pair HB acceptors, and π-electron (aromatic or conjugated) systems with the associated C atoms as particularly weak HB acceptors. The HB acceptor strength is expressed in terms of the Abraham parameter B and calculated from local molecular parameters, taking into account electrostatic, polarizability, and charge transfer contributions according to the Morokuma concept. For a data set of 383 compounds, the squared correlation coefficient r2 is 0.97 when electrostatic potential (ESP) derived net atomic charges are employed, and the root-mean-square (rms) error is 0.04 that is in the range of experimental uncertainty. The model is validated using an extended leave-50%-out approach, and its performance is comparatively analyzed with the ones of earlier introduced ab initio (HF/6-31G**) and density functional theory (B3LYP/6-31G**) models as well as of two increment methods with respect to the total compound set as well as HB acceptor type subsets. The discussion includes an explorative model application to amides and organophosphates that demonstrates the robustness of the approach, and further opportunities for model extensions.

  20. Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor.

    PubMed

    Stoltzfus, Dani M; Donaghey, Jenny E; Armin, Ardalan; Shaw, Paul E; Burn, Paul L; Meredith, Paul

    2016-11-09

    Photocurrent generation in organic bulk heterojunction (BHJ) solar cells is most commonly understood as a process which predominantly involves photoexcitation of the lower ionization potential species (donor) followed by electron transfer to the higher electron affinity material (acceptor) [i.e., photoinduced electron transfer (PET), which we term Channel I]. A mirror process also occurs in which photocurrent is generated through photoexcitation of the acceptor followed by hole transfer to the nonexcited donor or photoinduced hole transfer (PHT), which we term Channel II. The role of Channel II photocurrent generation has often been neglected due to overlap of the individual absorption spectra of the donor and acceptor materials that are commonly used. More recently Channel II charge generation has been explored for several reasons. First, many of the new high-efficiency polymeric donors are used as the minority component in bulk heterojunction blends, and therefore, the acceptor absorption is a significant fraction of the total; second, nonfullerene acceptors have been prepared, which through careful design, allow for spectral separation from the donor material, facilitating fundamental studies on charge generation. In this article, we review the methodologies for investigating the two charge generation channels. We also discuss the factors that affect charge generation via Channel I and II pathways, including energy levels of the materials involved, exciton diffusion, and other considerations. Finally, we take a comprehensive look at the nonfullerene acceptor literature and discuss what information about Channel I and Channel II can be obtained from the experiments conducted and what other experiments could be undertaken to provide further information about the operational efficiencies of Channels I and II.

  1. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO3

    NASA Astrophysics Data System (ADS)

    Putilov, L. P.; Tsidilkovski, V. I.

    2017-03-01

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔHox of oxide is determined by the energy εA of acceptor-bound states along with the formation energy EV of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of εA and EV values corresponding to the positive or negative ΔHox are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth εA: it becomes negligible at εA less than a certain value (at which the acceptor levels are still deep). With increasing εA, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO3 as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the εA magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.

  2. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  3. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    PubMed

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes.

  4. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    PubMed

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  5. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation / Biobarriers- Final Report

    SciTech Connect

    B.D. Wood

    2007-01-01

    Subsurface contamination by metals and radionuclides represent some of the most challenging remediation problems confronting the Department of Energy (DOE) complex. In situ remediation of these contaminants by dissimilatory metal reducing bacteria (DMRB) has been proposed as a potential cost effective remediation strategy. The primary focus of this research is to determine the mechanisms by which the fluxes of electron acceptors, electron donors, and other species can be controlled to maximize the transfer of reductive equivalents to the aqueous and solid phases. The proposed research is unique in the NABIR portfolio in that it focuses on (i) the role of flow and transport in the initiation of biostimulation and the successful sequestration of metals and radionuclides [specifically U(VI)], (ii) the subsequent reductive capacity and stability of the reduced sediments produced by the biostimulation process, and (iii) the potential for altering the growth of biomass in the subsurface by the addition of specific metabolic uncoupling compounds. A scientifically-based understanding of these phenomena are critical to the ability to design successful bioremediation schemes. The laboratory research will employ Shewanella putrefaciens (CN32), a facultative DMRB that can use Fe(III) oxides as a terminal electron acceptor. Sediment-packed columns will be inoculated with this organism, and the reduction of U(VI) by the DMRB will be stimulated by the addition of a carbon and energy source in the presence of Fe(III). Separate column experiments will be conducted to independently examine: (1) the importance of the abiotic reduction of U(VI) by biogenic Fe(II); (2) the influence of the transport process on Fe(III) reduction and U(VI) immobilization, with emphasis on methods for controlling the fluxes of aqueous species to maximize uranium reduction; (3) the reductive capacity of biologically-reduced sediments (with respect to re-oxidation by convective fluxes of O2 and NO3-) and

  6. Donor–Acceptor Oligorotaxanes Made to Order

    SciTech Connect

    Basu, Subhadeep; Coskun, Ali; Friedman, Douglas C.; Olson, Mark A.; Benitez, Diego; Tkatchouk, Ekaterina; Barin, Gokhan; Yang, Jeffrey; Fahrenbach, Albert C.; Goddard, William A.; Stoddart, J. Fraser

    2011-01-01

    Five donor–acceptor oligorotaxanes made up of dumbbells composed of tetraethylene glycol chains, interspersed with three and five 1,5-dioxynaphthalene units, and terminated by 2,6-diisopropylphenoxy stoppers, have been prepared by the threading of discrete numbers of cyclobis(paraquat-p-phenylene) rings, followed by a kinetically controlled stoppering protocol that relies on click chemistry. The well-known copper(I)-catalyzed alkyne–azide cycloaddition between azide functions placed at the ends of the polyether chains and alkyne-bearing stopper precursors was employed during the final kinetically controlled template-directed synthesis of the five oligorotaxanes, which were characterized subsequently by ¹H NMR spectroscopy at low temperature (233 K) in deuterated acetonitrile. The secondary structures, as well as the conformations, of the five oligorotaxanes were unraveled by spectroscopic comparison with the dumbbell and ring components. By focusing attention on the changes in chemical shifts of some key probe protons, obtained from a wide range of low-temperature spectra, a picture emerges of a high degree of folding within the thread protons of the dumbbells of four of the five oligorotaxanes—the fifth oligorotaxane represents a control compound in effect—brought about by a combination of C[BOND]H···O and π–π stacking interactions between the π-electron-deficient bipyridinium units in the rings and the π-electron-rich 1,5-dioxynaphthalene units and polyether chains in the dumbbells. The secondary structures of a foldamer-like nature have received further support from a solid-state superstructure of a related [3]pseudorotaxane and density functional calculations performed thereon.

  7. Intramolecular charge transfer in donor-acceptor molecules

    SciTech Connect

    Slama-Schwok, A.; Blanchard-Desce, M.; Lehn, J.M. )

    1990-05-17

    The photophysical properties of donor-acceptor molecules, push-pull polyenes and carotenoids, have been studied by absorption and fluorescence spectroscopy. The compounds bear various acceptor and donor groups, linked together by chains of different length and structure. The position of the absorption and fluorescence maxima and their variation in solvents of increasing polarity are in agreement with long-distance intramolecular charge-transfer processes, the linker acting as a molecular wire. The effects of the linker length and structure and of the nature of acceptor and donor are presented.

  8. Alteration of cartilage glycosaminoglycan protein acceptor by somatomedin and cortisol.

    PubMed

    Kilgore, B S; McNatt, M L; Meador, S; Lee, J A; Hughes, E R; Elders, M J

    1979-02-01

    The effect of somatomedin and cortisol on embryonic chick cartilage in vitro indicates that somatomedin stimulates 35SO4 uptake while cortisol decreases it with no effect on glycosaminoglycan turnover. Xylosyltransferase activity is increased in crude fractions of somatomedin-treated cartilage but decreased in cortisol-treated cartilage. By using a Smith-degraded proteoglycan as an exogenous acceptor, xylosyltransferase activities from both treatments were equivalent, suggesting that the enzyme was not rate limiting. The results of xylosyltransferase assays conducted by mixing enzyme and endogenous acceptor from control, cortisol-treated and somatomedin-treated cartilage, suggest both effects to be at the level of the acceptor protein.

  9. Efficient organic solar cells with helical perylene diimide electron acceptors.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Wang, Wei; Khlyabich, Petr P; Kumar, Bharat; Xu, Qizhi; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles; Steigerwald, Michael L; Loo, Yueh-Lin; Xiao, Shengxiong; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2014-10-29

    We report an efficiency of 6.1% for a solution-processed non-fullerene solar cell using a helical perylene diimide (PDI) dimer as the electron acceptor. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces, indicating that charge carriers are created from photogenerated excitons in both the electron donor and acceptor phases. Light-intensity-dependent current-voltage measurements suggested different recombination rates under short-circuit and open-circuit conditions.

  10. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  11. Growth of Pseudomonas mendocina on Fe(III) (Hydr)Oxides

    PubMed Central

    Hersman, L. E.; Forsythe, J. H.; Ticknor, L. O.; Maurice, P. A.

    2001-01-01

    Although iron (Fe) is an essential element for almost all living organisms, little is known regarding its acquisition from the insoluble Fe(III) (hydr)oxides in aerobic environments. In this study a strict aerobe, Pseudomonas mendocina, was grown in batch culture with hematite, goethite, or ferrihydrite as a source of Fe. P. mendocina obtained Fe from these minerals in the following order: goethite > hematite > ferrihydrite. Furthermore, Fe release from each of the minerals appears to have occurred in excess, as evidenced by the growth of P. mendocina in the medium above that of the insoluble Fe(III) (hydr)oxide aggregates, and this release was independent of the mineral's surface area. These results demonstrate that an aerobic microorganism was able to obtain Fe for growth from several insoluble Fe minerals and did so with various growth rates. PMID:11571141

  12. Requirement for a microbial consortium to completely oxidize glucose in Fe(III)- reducing sediments

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1989-01-01

    In various sediments in which Fe(III) reduction was the terminal electron-accepting process, [14C]glucose was fermented to 14C-fatty acids in a manner similar to that observed in methanogenic sediments. These results are consistent with the hypothesis that, in Fe(III)-reducing sediments, fermentable substrates are oxidized to carbon dioxide by the combined activity of fermentative bacteria and fatty acid-oxidizing, Fe(III)-reducing bacteria.

  13. Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park.

    PubMed

    Fortney, N W; He, S; Converse, B J; Beard, B L; Johnson, C M; Boyd, E S; Roden, E E

    2016-05-01

    Chocolate Pots hot springs (CP) is a unique, circumneutral pH, iron-rich, geothermal feature in Yellowstone National Park. Prior research at CP has focused on photosynthetically driven Fe(II) oxidation as a model for mineralization of microbial mats and deposition of Archean banded iron formations. However, geochemical and stable Fe isotopic data have suggested that dissimilatory microbial iron reduction (DIR) may be active within CP deposits. In this study, the potential for microbial reduction of native CP Fe(III) oxides was investigated, using a combination of cultivation dependent and independent approaches, to assess the potential involvement of DIR in Fe redox cycling and associated stable Fe isotope fractionation in the CP hot springs. Endogenous microbial communities were able to reduce native CP Fe(III) oxides, as documented by most probable number enumerations and enrichment culture studies. Enrichment cultures demonstrated sustained DIR driven by oxidation of acetate, lactate, and H2 . Inhibitor studies and molecular analyses indicate that sulfate reduction did not contribute to observed rates of DIR in the enrichment cultures through abiotic reaction pathways. Enrichment cultures produced isotopically light Fe(II) during DIR relative to the bulk solid-phase Fe(III) oxides. Pyrosequencing of 16S rRNA genes from enrichment cultures showed dominant sequences closely affiliated with Geobacter metallireducens, a mesophilic Fe(III) oxide reducer. Shotgun metagenomic analysis of enrichment cultures confirmed the presence of a dominant G. metallireducens-like population and other less dominant populations from the phylum Ignavibacteriae, which appear to be capable of DIR. Gene (protein) searches revealed the presence of heat-shock proteins that may be involved in increased thermotolerance in the organisms present in the enrichments as well as porin-cytochrome complexes previously shown to be involved in extracellular electron transport. This analysis offers

  14. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments

    USGS Publications Warehouse

    Snoeyenbos-West, O.L.; Nevin, K.P.; Anderson, R.T.; Lovely, D.R.

    2000-01-01

    Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design.

  15. Applying the Fe(III) binding property of a chemical transferrin mimetic to Ti(IV) anticancer drug design.

    PubMed

    Parks, Timothy B; Cruz, Yahaira M; Tinoco, Arthur D

    2014-02-03

    As an endogenous serum protein binder of Ti(IV), transferrin (Tf) serves as an excellent vehicle to stabilize the hydrolysis prone metal ion and successfully transport it into cells. This transporting role is thought to be central to Ti(IV)'s anticancer function, but efforts to synthesize Ti(IV) compounds targeting transferrin have not produced a drug. Nonetheless, the Ti(IV) transferrin complex (Ti2Tf) greatly informs on a new Ti(IV)-based anticancer drug design strategy. Ti2Tf interferes with cellular uptake of Fe(III), which is particularly detrimental to cancer cells because of their higher requirement for iron. Ti(IV) compounds of chemical transferrin mimetic (cTfm) ligands were designed to facilitate Ti(IV) activity by attenuating Fe(III) intracellular levels. In having a higher affinity for Fe(III) than Ti(IV), these ligands feature the appropriate balance between stability and lability to effectively transport Ti(IV) into cancer cells, release Ti(IV) via displacement by Fe(III), and deplete the intracellular Fe(III) levels. The cTfm ligand N,N'-di(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) was selected to explore the feasibility of the design strategy. Kinetic studies on the Fe(III) displacement process revealed that Ti(IV) can be transported and released into cells by HBED on a physiologically relevant time scale. Cell viability studies using A549 cancerous and MRC5 normal human lung cells and testing the cytotoxicity of HBED and its Ti(IV), Fe(III), and Ga(III) compounds demonstrate the importance of Fe(III) depletion in the proposed drug design strategy and the specificity of the strategy for Ti(IV) activity. The readily derivatized cTfm ligands demonstrate great promise for improved Ti(IV) anticancer drugs.

  16. Investigation of complexes tannic acid and myricetin with Fe(III)

    NASA Astrophysics Data System (ADS)

    Sungur, Şana; Uzar, Atike

    2008-01-01

    The pH dependence of the complexes was determined by both potentiometric and spectrophotometric studies. Stability constants and stoichiometries of the formed complexes were determined using slope ratio method. Fe(III) was formed complexes with tannic acid of various stoichiometries, which in the 1:1 molar ratio at pH < 3, in the 2:1 molar ratio at pH 3-7 and in the 4:1 molar ratio at pH > 7. Fe(III) was formed complexes with myricetin in the 1:2 molar ratio at pH 4 and 5 and in the 1:1 molar ratio at pH 6. Stability constant values were found to be 10 5 to 10 17 and 10 5 to 10 9 for Fe(III)-tannic acid complexes and Fe(III)-myricetin complexes. Both tannic acid and myricetin were possessed minimum affinities to Cu(II) and Zn(II). They had less affinity for Al(III) than for Fe(III).

  17. Nitrogen is a deep acceptor in ZnO

    SciTech Connect

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence band relative to the vacuum level.

  18. Nitrogen is a deep acceptor in ZnO

    DOE PAGES

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  19. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515 nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0 mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55 μg/L, the relative standard deviation (n = 10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5 mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  20. Effect of Oxidation Rate and Fe(II) State on Microbial Nitrate-Dependent Fe(III) Mineral Formation

    PubMed Central

    Senko, John M.; Dewers, Thomas A.; Krumholz, Lee R.

    2005-01-01

    A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems. PMID:16269756

  1. Reduction of Fe(III) chelated with citrate in an NOx scrubber solution by Enterococcus sp. FR-3.

    PubMed

    Li, Wei; Liu, Nan; Cai, Ling-Lin; Jiang, Jin-Lin; Chen, Jian-Meng

    2011-02-01

    Biological reduction of Fe(III) to Fe(II) is a key step in nitrogen oxide (NO(x)) removal by the integrated chemical absorption-biological reduction process. NO(x) removal efficiency strongly depends on the concentration of Fe(II) in the scrubbing liquid. In this study, a newly isolated strain, Enterococcus sp. FR-3, was used to reduce Fe(III) chelated with citrate to Fe(II). Strain FR-3 reduced citrate-chelated Fe(III) with an efficiency of up to 86.9% and an average reduction rate of 0.21 mM h(-1). SO(4)(2-) was not inhibitory whereas NO(2)(-) and SO(3)(2-) inhibited cell growth and thus affected Fe(III) reduction. Models based on the Logistic equation were used to describe the relationship between growth and Fe(III) reduction. These findings provide some useful data for Fe(III) reduction, scrubber solution regeneration and NO(x) removal process design.

  2. Fe(III) nucleation in the presence of bivalent cations and oxyanions leads to subnanoscale 7 Å polymers.

    PubMed

    van Genuchten, Case M; Gadgil, Ashok J; Peña, Jasquelin

    2014-10-21

    Highly disordered Fe(III) phases formed in the presence of bivalent cations and oxyanions represent important components of the global Fe cycle due to their potential for rapid turnover and their critical roles in controlling the speciation of major and trace elements. However, a poor understanding of the formation pathway and structure of these Fe phases has prevented assessments of their thermodynamic properties and biogeochemical reactivity. In this work, we derive structural models for the Fe(III)-As(V)-Ca and Fe(III)-P-Ca polymers formed from Fe(II) oxidation and Fe(III) polymerization in the presence of As(V)/P and Ca. The polymer phase consists of a less than 7 Å coherent network of As(V)/P coordinated to Fe(III) polyhedra, with varying amounts of Ca bound directly and indirectly to the oxyanion. This phase forms at the onset of Fe(II) oxidation and, because of its large oxyanion:Fe solids ratio, depletes the oxyanion concentration with only small amounts of Fe. Our results demonstrate that when a steady supply of Fe(III) is provided from an Fe(II) source, these Fe(III) polymers, which dominate oxyanion uptake, form with little dependence on the initial oxyanion concentration. The formation mechanisms and structures of the oxyanion-rich Fe(III) polymers determined in this study enable future thermodynamic investigations of these phases, which are required to model the interrelated biogeochemical cycles of Fe, As(V)/P, and Ca.

  3. Effect of the oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation

    USGS Publications Warehouse

    Senko, John M.; Dewers , Thomas A.; Krumholz, Lee R.

    2005-01-01

    A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.

  4. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    SciTech Connect

    Lovley, Derek R.

    2015-03-09

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) to insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated

  5. Impact of Different In Vitro Electron Donor/Acceptor Conditions on Potential Chemolithoautotrophic Communities from Marine Pelagic Redoxclines

    PubMed Central

    Labrenz, Matthias; Jost, Günter; Pohl, Christa; Beckmann, Sabrina; Martens-Habbena, Willm; Jürgens, Klaus

    2005-01-01

    Anaerobic or microaerophilic chemolithoautotrophic bacteria have been considered to be responsible for CO2 dark fixation in different pelagic redoxclines worldwide, but their involvement in redox processes is still not fully resolved. We investigated the impact of 17 different electron donor/acceptor combinations in water of pelagic redoxclines from the central Baltic Sea on the stimulation of bacterial CO2 dark fixation as well as on the development of chemolithoautotrophic populations. In situ, the highest CO2 dark fixation rates, ranging from 0.7 to 1.4 μmol liter−1 day−1, were measured directly below the redoxcline. In enrichment experiments, chemolithoautotrophic CO2 dark fixation was maximally stimulated by the addition of thiosulfate, reaching values of up to 9.7 μmol liter−1 CO2 day−1. Chemolithoautotrophic nitrate reduction proved to be an important process, with rates of up to 33.5 μmol liter−1 NO3− day−1. Reduction of Fe(III) or Mn(IV) was not detected; nevertheless, the presence of these potential electron acceptors influenced the development of stimulated microbial assemblages. Potential chemolithoautotrophic bacteria in the enrichment experiments were displayed on 16S ribosomal complementary DNA single-strand-conformation polymorphism fingerprints and identified by sequencing of excised bands. Sequences were closely related to chemolithoautotrophic Thiomicrospira psychrophila and Maorithyas hadalis gill symbiont (both Gammaproteobacteria) and to an uncultured nitrate-reducing Helicobacteraceae bacterium (Epsilonproteobacteria). Our data indicate that this Helicobacteraceae bacterium could be of general importance or even a key organism for autotrophic nitrate reduction in pelagic redoxclines. PMID:16269695

  6. The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors

    PubMed Central

    Vogel, Steven S.; Nguyen, Tuan A.; van der Meer, B. Wieb; Blank, Paul S.

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states. PMID:23152925

  7. Analysis of nonlinear optical properties in donor–acceptor materials

    SciTech Connect

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  8. On the effect of Fe(III) on proliferation of Microcystis aeruginosa at high nitrate and low chlorophyll condition.

    PubMed

    Chen, Rong; Lei, Zhen; Ji, Jiayuan; Wang, Xiaochang; Li, Yu-You; Yang, Yuan; Zhang, Lu; Xue, Tao

    2017-02-01

    The impact of Fe concentrations on the growth of Microcystisaeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density, total and cell chlorophyll-a intracellular Fe content and organic elemental composition of M. aeruginosa to different concentration gradients of Fe(III) in the solutions were analysed. The results showed that the proliferation speeds of M. aeruginosa were: (1) decelerated when the Fe(III) concentration was lower than 50μg/L in the solutions, (2) promoted and positively related to the increase of Fe(III) concentration from 100 to 500μg/L in the solutions over the experimental period, and (3) promoted in the early stage but decelerated in later stages by excess adsorption of Fe by cells when the Fe(III) concentration was higher than 500μg/L in the solutions. The maximum cell density, total and cell chlorophyll-a were all observed at 500μg Fe(III)/L concentration. The organic elemental composition of M. aeruginosa was also affected by the concentration of Fe(III) in the solutions, and the molecular formula of M. aeruginosa should be expressed as C7-7.5H14O0.8-1.3N3.5-5 according to the functions for different Fe(III) concentrations. Cell carbon and oxygen content appeared to increase slightly, while cell nitrogen content appeared to decrease as Fe(III) concentrations increased from 100 to 500μg/L in the solutions. This was attributed to the competition of photosynthesis and nitrogen adsorption under varying cell Fe content.

  9. Effect of phosphate and sulfate on Ni repartitioning during Fe(II)-catalyzed Fe(III) oxide mineral recrystallization

    NASA Astrophysics Data System (ADS)

    Hinkle, Margaret A. G.; Catalano, Jeffrey G.

    2015-09-01

    Dissolved Fe(II) activates coupled oxidative growth and reductive dissolution of Fe(III) oxide minerals, causing recrystallization and the repartitioning of structurally-compatible trace metals. Phosphate and sulfate, two ligands common to natural aquatic systems, alter Fe(II) adsorption onto Fe(III) oxides and affect Fe(III) oxide dissolution and precipitation. However, the effect of these oxoanions on trace metal repartitioning during Fe(II)-catalyzed Fe(III) oxide recrystallization is unclear. The effects of phosphate and sulfate on Ni adsorption and Ni repartitioning during Fe(II)-catalyzed Fe(III) oxide recrystallization were investigated as such repartitioning may be affected by both Fe(II)-oxoanion and metal-oxoanion interactions. In most systems examined, phosphate alters Ni repartitioning during Fe(II)-catalyzed recrystallization to a larger extent than sulfate. Phosphate substantially enhances Ni adsorption onto hematite but decreases (nearly inhibiting) Fe(II)-catalyzed Ni incorporation into and release from this mineral. In the goethite system, however, phosphate suppresses Ni release but enhances Ni incorporation in the presence of aqueous Fe(II). In contrast, sulfate has little effect on macroscopic Ni adsorption and release of Ni from Fe(III) oxides, but substantially enhances Ni incorporation into goethite. This demonstrates that phosphate and sulfate have unique, mineral-specific interactions with Ni during Fe(II)-catalyzed Fe(III) oxide recrystallization. This research suggests that micronutrient bioavailability at redox interfaces in hematite-dominated systems may be especially suppressed by phosphate, while both oxoanions likely have limited effects in goethite-rich soils or sediments. Phosphate may also exert a large control on contaminant fate at redox interfaces, increasing Ni retention on iron oxide surfaces. These results further indicate that trace metal retention by iron oxides during lithification and later repartitioning during

  10. New Light on NO Bonding in Fe(III) Heme Proteins from Resonance Raman Spectroscopy and DFT Modeling

    PubMed Central

    Soldatova, Alexandra V.; Ibrahim, Mohammed; Olson, John S.; Czernuszewicz, Roman S.; Spiro, Thomas G.

    2010-01-01

    Visible and ultraviolet resonance Raman (RR) spectra are reported for FeIII(NO) adducts of myoglobin variants with altered polarity in the distal heme pockets. The stretching frequencies of the FeIII–NO and N–O bonds, νFeN and νNO, are negatively correlated, consistent with backbonding. However, the correlation shifts to lower νNO for variants lacking a distal histidine. DFT modeling reproduces the shifted correlations, and shows the shift to be associated with the loss of a lone-pair donor interaction from the distal histidine that selectively strengthens the N–O bond. However, when the model contains strongly electron-withdrawing substituents at the heme β-positions, νFeN and νNO become positively correlated. This effect results from FeIII–N–O bending, which is induced by lone pair donation to the NNO atom. Other mechanisms for bending are discussed, which likewise lead to a positive νFeN/νNO correlation, including thiolate ligation in heme proteins and electron-donating meso-substituents in heme models. The νFeN/νNO data for the Fe(III) complexes are reporters of heme pocket polarity and the accessibility of lone pair, Lewis base donors. Implications for biologically important processes, including NO binding, reductive nitrosylation and NO reduction, are discussed. PMID:20218710

  11. Formation of Light Absorbing Soluble Secondary Organics and Insoluble Polymeric Particles from the Dark Reaction of Catechol and Guaiacol with Fe(III).

    PubMed

    Slikboer, Samantha; Grandy, Lindsay; Blair, Sandra L; Nizkorodov, Sergey A; Smith, Richard W; Al-Abadleh, Hind A

    2015-07-07

    Transition metals such as iron are reactive components of environmentally relevant surfaces. Here, dark reaction of Fe(III) with catechol and guaiacol was investigated in an aqueous solution at pH 3 under experimental conditions that mimic reactions in the adsorbed phase of water. Using UV-vis spectroscopy, liquid chromatography, mass spectrometry, elemental analysis, dynamic light scattering, and electron microscopy techniques, we characterized the reactants, intermediates, and products as a function of reaction time. The reactions of Fe(III) with catechol and guaiacol produced significant changes in the optical spectra of the solutions due to the formation of light absorbing secondary organics and colloidal organic particles. The primary steps in the reaction mechanism were shown to include oxidation of catechol and guaiacol to hydroxy- and methoxy-quinones. The particles formed within a few minutes of reaction and grew to micron-size aggregates after half an hour reaction. The mass-normalized absorption coefficients of the particles were comparable to those of strongly absorbing brown carbon compounds produced by biomass burning. These results could account for new pathways that lead to atmospheric secondary organic aerosol formation and abiotic polymer formation on environmental surfaces mediated by transition metals.

  12. Designer Metallic Acceptor-Containing Halogen Bonding: General Strategies.

    PubMed

    Zhang, Xinxing; Bowen, Kit H

    2017-03-13

    Being electrostatic interactions in nature, hydrogen bonding (HB) and halogen bonding (XB) are considered to be two parallel worlds. In principle, all the applications that HB has could also be applied to XB. However, there has been no report on a metallic XB acceptor but metal anions have been observed to be good HB acceptors. This missing mosaic piece of XB is because common metal anions are reactive for XB donors. In view of this, we propose two strategies for designing metallic acceptor-containing XB using ab initio calculations. The first one is to utilize a metal cluster anion with a high electron detachment energy, such as the superatom, Al13- as the XB acceptor. The second strategy is to design a ligand passivated/protected metal core while it still can maintain the negative charge; several exotic clusters, such as PtH5-, PtZnH5- and PtMgH5-, are utilized as examples. Based on these two strategies, we anticipate that more metallic acceptor-containing XB will be discovered.

  13. Electron acceptor-dependent respiratory and physiological stratifications in biofilms.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Sun, Guoping; Wu, Wei-Min; Xu, Meiying

    2015-01-06

    Bacterial respiration is an essential driving force in biogeochemical cycling and bioremediation processes. Electron acceptors respired by bacteria often have solid and soluble forms that typically coexist in the environment. It is important to understand how sessile bacteria attached to solid electron acceptors respond to ambient soluble alternative electron acceptors. Microbial fuel cells (MFCs) provide a useful tool to investigate this interaction. In MFCs with Shewanella decolorationis, azo dye was used as an alternative electron acceptor in the anode chamber. Different respiration patterns were observed for biofilm and planktonic cells, with planktonic cells preferred to respire with azo dye while biofilm cells respired with both the anode and azo dye. The additional azo respiration dissipated the proton accumulation within the anode biofilm. There was a large redox potential gap between the biofilms and anode surface. Changing cathodic conditions caused immediate effects on the anode potential but not on the biofilm potential. Biofilm viability showed an inverse and respiration-dependent profile when respiring with only the anode or azo dye and was enhanced when respiring with both simultaneously. These results provide new insights into the bacterial respiration strategies in environments containing multiple electron acceptors and support an electron-hopping mechanism within Shewanella electrode-respiring biofilms.

  14. Sorption of phosphate and Cr(VI) by Fe(III) and Cr(III) hydroxides.

    PubMed

    Tzou, Y M; Wang, M K; Loeppert, R H

    2003-05-01

    Understanding the chemical behavior and interactions of Cr(VI) ( e.g., HCrO(4)(-)) and other anions, such as orthophosphate (P) with insoluble metal hydroxides ( i.e., Cr[III] and Fe[III]) in disposal landfills or in chromite ore processing residue (CORP)-enriched soil is very important in predicting the movement and the fate of Cr(VI). This study evaluates the sorption behavior of P and Cr(VI) by Fe(III) ( i.e., ferrihydrite), Cr(III) ( i.e., Cr[OH](3)), and coprecipitated Fe(III)/Cr(III) hydroxides. These metal hydroxide sorbents were synthesized, and sorption of P and Cr(VI) were conducted at different pH using a batch technology. Our results show that P and Cr(VI) sorption by metal hydroxides decreased with increasing suspension pH. Greater decrease in P sorption was observed when Cr(III) was present in the structures of hydroxides. Following the sorption of low concentration of P ( i.e., 0.5 mM), the sorption of subsequently added Cr(VI) by hydroxides was less influenced. However, Cr(VI) sorption was greatly inhibited when high concentration of P ( i.e., 10 mM) prereacted with hydroxides, particularly in Fe(III) hydroxide system. Results also indicated that high concentration of Cr(VI) (10 mM) could dissolve Cr(III) hydroxide at pH 3 and reprecipitate as an amorphous form of Cr(VI) and Cr(III) compound at pH about 6.5. Although coprecipitation of Cr(VI) with Cr(III) can inhibit Cr(VI) movement through soil profiles, the inhibition seems to be low due to the gradual release of Cr(VI) with increasing pH.

  15. Effect of geometry on the screened acceptor binding energy in a quantum wire

    SciTech Connect

    Shanthi, R. Vijaya Nithiananthi, P.

    2014-04-24

    The effect of various Geometries G(x, y) of the GaAs/Al{sub x}Ga{sub 1−x}As Quantum wire like G{sub 1}: (L, L) {sub 2}: (L, L/2) {sub 3}: (L/2, L/4) on the binding energy of an on-center acceptor impurity has been investigated through effective mass approximation using variational technique. The observations were made including the effect of spatial dependent dielectric screening for different concentration of Al, at T=300K. The influence of spatial dielectric screening on different geometries of the wire has been compared and hence the behavior of the acceptor impurity in GaAs/Al{sub x}Ga{sub 1−x}As Quantum wire has been discussed.

  16. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    PubMed

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations.

  17. Uranium(IV) oxidation during anoxic chemical extractions of natural sediment: Importance of Fe(III)

    NASA Astrophysics Data System (ADS)

    Campbell, K. M.; Davis, J. A.; Fuller, C. C.

    2008-12-01

    In situ reduction of soluble U(VI) to insoluble U(IV) precipitates is one promising solution for the remediation of U-contaminated aquifers. U(VI) reduction can occur upon stimulation of the native microbial community by injection of an electron donor or by the presence of natural organic matter. Contamination from a former U mill tailings repository (Rifle, CO) provides a research site to study the effects of in situ and natural bioreduction. An accurate method for determining solid-phase U oxidation state in sediments with elevated amounts of Fe and organic matter is necessary to evaluate the extent of bioreduction. The oxidation state of U in anaerobic sediment is often measured by a two-step bicarbonate/carbonate chemical extraction when spectroscopic methods are infeasible. In this study, anaerobic sediment samples from Rifle were analyzed for labile U(VI) content by extraction in anoxic conditions (pH 9.4, 14mM NaHCO3, 2.8 mM Na2CO3). A subset of each sediment sample was oxidized by exposure to air for 2 weeks. The extraction was repeated in air, and the amount of U(IV) present in the anaerobic sample was calculated by difference between the anoxic and oxidized extractions. For comparison, the U oxidation state was measured in several preserved samples by collecting X-ray absorption spectra (XANES). The XANES measurement indicated that approximately 90% was present as U(IV) prior to the extraction. In contrast, the extractions suggested evidence of substantial oxidation (<5% as U(IV)) even in an anoxic extraction. This discrepancy was eliminated when the anoxic extractions were repeated at pH 12, suggesting that Fe(III) may be an important oxidant for reduced U species during an anoxic extraction at pH 9.4, since the thermodynamic driving force for this reaction decreases at high pH. The results of an investigation of biogenic uraninite (UO2) oxidation by ferrihydrite in the pH range 7-12 under bicarbonate/carbonate extraction concentrations will be presented

  18. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17.

    PubMed

    Liu, Tongxu; Li, Xiaomin; Zhang, Wei; Hu, Min; Li, Fangbai

    2014-06-01

    Klebsiella pneumoniae L17 is a fermentative bacterium that can reduce iron oxide and generate electricity under anoxic conditions, as previously reported. This study reveals that K. pneumoniae L17 is also capable of dissimilatory nitrate reduction, producing NO2(-), NH4(+), NO and N2O under anoxic conditions. The presence of Fe(III) oxides (i.e., α-FeOOH, γ-FeOOH, α-Fe2O3 and γ-Fe2O3) significantly accelerates the reduction of nitrate and generation of electricity by K. pneumoniae L17, which is similar to a previous report regarding another fermentative bacterium, Bacillus. No significant nitrate reduction was observed upon treatment with Fe(2+) or α-FeOOH+Fe(2+), but a slight facilitation of nitrate reduction and electricity generation was observed upon treatment with L17+Fe(2+). This result suggests that aqueous Fe(II) or mineral-adsorbed Fe(II) cannot reduce nitrate abiotically but that L17 can catalyze the reduction of nitrate and generation of electricity in the presence of Fe(II) (which might exist as cell surface-bound Fe(II)). To rule out the potential effect of Fe(II) produced by L17 during microbial iron reduction, treatments with the addition of TiO2 or Al2O3 instead of Fe(III) oxides also exhibited accelerated microbial nitrate reduction and electricity generation, indicating that cell-mineral sorption did account for the acceleration effect. However, the acceleration caused by Fe(III) oxides is only partially attributed to the cell surface-bound Fe(II) and cell-mineral sorption but may be driven by the iron oxide conduction band-mediated electron transfer from L17 to nitrate or an electrode, as proposed previously. The current study extends the diversity of bacteria of which nitrate reduction and electricity generation can be facilitated by the presence of iron oxides and confirms the positive role of Fe(III) oxides on microbial nitrate reduction and electricity generation by particular fermentative bacteria in anoxic environments.

  19. New opportunities in multiplexed optical bioanalyses using quantum dots and donor-acceptor interactions.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2010-11-01

    This review highlights recent trends in the development of multiplexed bioanalyses using quantum dot bioconjugates and donor-acceptor interactions. In these methods, multiple optical signals are generated in response to biorecognition through modulation of the photoluminescence of populations of quantum dots with different emission colors. The donor-acceptor interactions that have been used include fluorescence resonance energy transfer, bioluminescence resonance energy transfer, charge transfer quenching, and quenching via proximal gold nanoparticles. Assays for the simultaneous detection of between two and eight target analytes have been developed, where spectral deconvolution is an important tool. Target analytes have included small molecules, nucleic acid sequences, and proteases. The unique optical properties of quantum dots offer several potential advantages in multiplexed detection, and a large degree of versatility, for example, one pot multiplexing at the ensemble level, where only wavelength discrimination is required to differentiate between detection channels. These methods are not being developed to compete with array-based technologies in terms of overall multiplexing capacity, but rather to enable new formats for multiplexed bioanalyses. In particular, quantum dot bioprobes based on donor-acceptor interactions are anticipated to provide future opportunities for multiplexed biosensing within living cells.

  20. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    SciTech Connect

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  1. An overview of molecular acceptors for organic solar cells

    NASA Astrophysics Data System (ADS)

    Hudhomme, Piétrick

    2013-07-01

    Organic solar cells (OSCs) have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  2. Electron acceptor taxis and blue light effect on bacterial chemotaxis.

    PubMed

    Taylor, B L; Miller, J B; Warrick, H M; Koshland, D E

    1979-11-01

    Salmonella typhimurium and Escherichia coli from anaerobic cultures displayed tactic responses to gradients of nitrate, fumarate, and oxygen when the appropriate electron transport pathway was present. Such responses were named "electron acceptor taxis" because they are elicited by terminal electron acceptors. Mutant strains of S. typhimurium and E. coli were used to establish that functioning electron transport pathways to nitrate and fumarate are required for taxis to these compounds. Aerotaxis in S. typhimurium was blocked by 1.0 mM KCN, which inhibited oxygen uptake. Similarly, a functioning electron transport pathway was shown to be essential for the tumbling response of S. typhimurium and E. coli to intense light (290 to 530 nm). Some inhibitors and uncouplers of respiration were repellents of S. typhimurium. We propose that behavioral responses to light or electron acceptors involve electron transport-mediated perturbations of the proton motive force.

  3. Gut inflammation provides a respiratory electron acceptor for Salmonella

    PubMed Central

    Winter, Sebastian E.; Thiennimitr, Parameth; Winter, Maria G.; Butler, Brian P.; Huseby, Douglas L.; Crawford, Robert W.; Russell, Joseph M.; Bevins, Charles L.; Adams, L. Garry; Tsolis, Renée M.; Roth, John R.; Bäumler, Andreas J.

    2010-01-01

    Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation reacted with endogenous, luminal sulphur compounds (thiosulfate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to utilize tetrathionate as an electron acceptor produced a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus, the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen. PMID:20864996

  4. Bioavailability of Fe(III) in Natural Soils and the Impact on Mobility of Inorganic Contaminants (Final Report)

    SciTech Connect

    Kosson, David S.; Cowan, Robert M.; Young, Lily Y.; Hatcherl, Eric L.; Scala, David J.

    2005-08-02

    Inorganic contaminants, such as heavy metals and radionuclides, can adhere to insoluble Fe(III) minerals resulting in decreased mobility of these contaminants through subsurface environments. Dissimilatory Fe(III)-reducing bacteria (DIRB), by reducing insoluble Fe(III) to soluble Fe(II), may enhance contaminant mobility. The Savannah River Site, South Carolina (SRS), has been subjected to both heavy metal and radionuclide contamination. The overall objective of this project is to investigate the release of inorganic contaminants such as heavy metals and radionuclides that are bound to solid phase soil Fe complexes and to elucidate the mechanisms for mobilization of these contaminants that can be associated with microbial Fe(III) reduction. This is being accomplished by (i) using uncontaminated and contaminated soils from SRS as prototype systems, (ii) evaluating the diversity of DIRBs within the samples and isolating cultures for further study, (iii) using batch microcosms to evaluate the bioavailability of Fe(III) from pure minerals and SRS soils, (iv) developing kinetic and mass transfer models that reflect the system dynamics, and (v) carrying out soil column studies to elucidate the dynamics and interactions amongst Fe(III) reduction, remineralization and contaminant mobility.

  5. Carbon dots preparation as a fluorescent sensing platform for highly efficient detection of Fe(III) ions in biological systems.

    PubMed

    Hamishehkar, Hamed; Ghasemzadeh, Bahar; Naseri, Abdolhossein; Salehi, Roya; Rasoulzadeh, Farzaneh

    2015-01-01

    Water-soluble carbon dots (CDs) were prepared, using a facile hydrothermal oxidation route of cyclic oligosaccharide α-CD, as carbon sources, and alkali as additives. The successful synthesis of CDs was confirmed by scanning electron microscopy (SEM), dynamic light scattering (DLS), FTIR, UV-visible absorption, and emission fluorescence. The characterizations showed that the prepared CDs are spherical and well-dispersed in water with average diameters of approximately 2 nm. These water-soluble CDs have excellent photo stability towards photo bleaching during 30 days. The obtained CDs showed a strong emission at the wavelength of 450 nm, with an optimum excitation of 360 nm. The fluorescence quenching of CDs in the presence of Fe(III) ions was used as fluorescent probes for quantifying Fe(III) ions in aqueous solution. Under optimum condition, the fluorescence intensity versus Fe(III) concentration gave a linear response, according to Stern-Volmer equation. The linearity range of the calibration curve and the limit of detection were 1.60×10(-5) to 16.6×10(-5) mol L(-1), and 6.05×10(-6) mol L(-1), respectively, which was in the range for serum analysis of Fe(III). It was concluded that the prepared CDs had a great potential as fluorescent probes for applications in analysis of Fe(III) ions in the blood serum samples, which is hardly interfered by other ions.

  6. The interaction of phenolic acids with Fe(III) in the presence of citrate as studied by isothermal titration calorimetry.

    PubMed

    Yang, Senpei; Bai, Guangling; Chen, Lingli; Shen, Qun; Diao, Xianmin; Zhao, Guanghua

    2014-08-15

    Under physiological conditions, exogenous chelators such as polyphenols might interact with non-protein bound ferric complexes, such as Fe(III)-citrate. Additionally, Fe(III) and citrate are widely distributed in various fruits and vegetables which are also rich in phenolic acids. In this study, we focus on the interaction between phenolic acids (gallic acid, methyl gallate and protocatechuic acid) and Fe(III) in the presence of excessive citrate by isothermal titration calorimetry (ITC) for thermodynamic studies, and stopped-flow absorption spectrometry for fast kinetic studies. Results reveal that all of these three phenolic acids can bind to the Fe(III) with the same stoichiometry (3:1). Moreover, the binding constants of these three compounds with Fe(III) are greatly dependent on ligand structure, and are much higher than that of Fe(III)-citrate. Based on their stoichiometry and superhigh binding constants, it is most likely that these three phenolic acids can displace the citrate to bind with one iron(III) ion to form a stable octahedral geometric structure, albeit at different rates. These findings shed light on the interaction between phenolic acids and Fe(III) in the presence of citrate under either physiological conditions or in a food system.

  7. Acceptor specificity in the transglycosylation reaction using Endo-M.

    PubMed

    Tomabechi, Yusuke; Odate, Yuki; Izumi, Ryuko; Haneda, Katsuji; Inazu, Toshiyuki

    2010-11-22

    To determine the structural specificity of the glycosyl acceptor of the transglycosylation reaction using endo-β-N-acetylglucosaminidase (ENGase) (EC 3.2.1.96) from Mucor hiemalis (Endo-M), several acceptor derivatives were designed and synthesized. The narrow regions of the 1,3-diol structure from the 4- to 6-hydroxy functions of GlcNAc were found to be essential for the transglycosylation reaction using Endo-M. Furthermore, it was determined that Endo-M strictly recognizes a 1,3-diol structure consisting of primary and secondary hydroxyl groups.

  8. Bioremediation of BTEX, naphthalene, and phenanthrene in aquifer material using mixed oxygen/nitrate electron acceptor conditions

    SciTech Connect

    Wilson, L.P.; D`Adamo, P.C.; Bouwer, E.J.

    1997-10-01

    The primary goal of this research is to further present understanding of the effect of mixed oxygen/nitrate electron acceptor conditions on the biodegradation of benzene, toluene, ethylbenzene, m-xylene, naphthalene, and phenanthrene. Specific objectives include: (1) identify subsurface microbial cultures with the ability to biodegrade aromatic hydrocarbons under aerobic and anaerobic denitrifying conditions; (2) quantify the stoichiometry and kinetics of biodegradation of aromatic hydrocarbons under aerobic, anaerobic denitrifying and microaerophilic conditions; and (3) simulate various field bioremediation schemes using different nutrient/electron acceptor delivery schemes.

  9. Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (Hydr)oxides.

    PubMed

    Ginder-Vogel, Matthew; Criddle, Craig S; Fendorf, Scott

    2006-06-01

    Uranium mobility in the environment is partially controlled by its oxidation state, where it exists as either U(VI) or U(IV). In aerobic environments, uranium is generally found in the hexavalent form, is quite soluble, and readily forms complexes with carbonate and calcium. Under anaerobic conditions, common metal respiring bacteria can reduce soluble U(VI) species to sparingly soluble UO2 (uraninite); stimulation of these bacteria, in fact, is being explored as an in situ uranium remediation technique. However, the stability of biologically precipitated uraninite within soils and sediments is not well characterized. Here we demonstrate that uraninite oxidation by Fe(III) (hydr)oxides is thermodynamically favorable under limited geochemical conditions. Our analysis reveals that goethite and hematite have a limited capacity to oxidize UO2(biogenic) while ferrihydrite can lead to UO2(biogenic) oxidation. The extent of UO2(biogenic) oxidation by ferrihydrite increases with increasing bicarbonate and calcium concentration, but decreases with elevated Fe(II)(aq) and U(VI)(aq) concentrations. Thus, our results demonstrate that the oxidation of UO2(biogenic) by Fe(III) (hydr)oxides may transpire under mildly reducing conditions when ferrihydrite is present.

  10. Photochemical Formation of Fe(II) in the Aqueous Solutions of Fe(III)- Dicarboxylates

    NASA Astrophysics Data System (ADS)

    Okada, K.; Arakaki, T.

    2007-12-01

    Although there have been many studies reporting the photochemical formation of Fe(II) in various aqueous-phase such as rain, cloud waters, seawater and aerosols, the detailed formation mechanisms are not well understood. To better understand the mechanisms of Fe(II) formation, we attempted to determine the molar absorptivity and the quantum yield of Fe(II) photoformation for individual Fe(III)-dicarboxylate species. The concentrations of Fe(II) and total dissolved Fe were measured by a Ferrozine-HPLC method. The Visual MINTEQ computer program was used to calculate the equilibrium concentrations of chemical species in the solutions of Fe(III)-dicarboxylate complexes. The molar absorptivity and the product of the quantum yield and the molar absorptivity of Fe(III)- dicarboxylate complex can be analysed by UV-VIS spectrophotometer and photochemical experiments, and these experimental data were combined with the calculated equilibrium Fe(III) speciation to determine individual molar absorptivity and quantum yield of Fe(II) photoformation for a specific Fe(III)-dicarboxylate complex. Preliminary results, using an oxalate whose quantum yield has been previously reported, indicate that this approach gives lower quantum yield values in air saturated solutions than previously reported.

  11. His166 is the Schiff base proton acceptor in attractant phototaxis receptor sensory rhodopsin I.

    PubMed

    Sasaki, Jun; Takahashi, Hazuki; Furutani, Yuji; Sineshchekov, Oleg A; Spudich, John L; Kandori, Hideki

    2014-09-23

    Photoactivation of attractant phototaxis receptor sensory rhodopsin I (SRI) in Halobacterium salinarum entails transfer of a proton from the retinylidene chromophore's Schiff base (SB) to an unidentified acceptor residue on the cytoplasmic half-channel, in sharp contrast to other microbial rhodopsins, including the closely related repellent phototaxis receptor SRII and the outward proton pump bacteriorhodopsin, in which the SB proton acceptor is an aspartate residue salt-bridged to the SB in the extracellular (EC) half-channel. His166 on the cytoplasmic side of the SB in SRI has been implicated in the SB proton transfer reaction by mutation studies, and mutants of His166 result in an inverted SB proton release to the EC as well as inversion of the protein's normally attractant phototaxis signal to repellent. Here we found by difference Fourier transform infrared spectroscopy the appearance of Fermi-resonant X-H stretch modes in light-minus-dark difference spectra; their assignment with (15)N labeling and site-directed mutagenesis demonstrates that His166 is the SB proton acceptor during the photochemical reaction cycle of the wild-type SRI-HtrI complex.

  12. Three Redox States of a Diradical Acceptor-Donor-Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization.

    PubMed

    Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume

    2016-06-16

    The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations.

  13. Single peak parameters technique for simultaneous measurements: Spectrophotometric sequential injection determination of Fe(II) and Fe(III).

    PubMed

    Kozak, J; Paluch, J; Węgrzecka, A; Kozak, M; Wieczorek, M; Kochana, J; Kościelniak, P

    2016-02-01

    Spectrophotometric sequential injection system (SI) is proposed to automate the method of simultaneous determination of Fe(II) and Fe(III) on the basis of parameters of a single peak. In the developed SI system, sample and mixture of reagents (1,10-phenanthroline and sulfosalicylic acid) are introduced into a vessel, where in an acid environment (pH≅3) appropriate compounds of Fe(II) and Fe(III) with 1,10-phenanthroline and sulfosalicylic acid are formed, respectively. Then, in turn, air, sample, EDTA and sample again, are introduced into a holding coil. After the flow reversal, a segment of air is removed from the system by an additional valve and as EDTA replaces sulfosalicylic acid forming a more stable colorless compound with Fe(III), a complex signal is registered. Measurements are performed at wavelength 530 nm. The absorbance measured at minimum of the negative peak and the area or the absorbance measured at maximum of the signal can be used as measures corresponding to Fe(II) and Fe(III) concentrations, respectively. The time of the peak registration is about 2 min. Two-component calibration has been applied to analysis. Fe(II) and Fe(III) can be determined within the concentration ranges of 0.04-4.00 and 0.1-5.00 mg L(-1), with precision less than 2.8% and 1.7% (RSD), respectively and accuracy better than 7% (RE). The detection limit is 0.04 and 0.09 mg L(-1) for Fe(II) and Fe(III), respectively. The method was applied to analysis of artesian water samples.

  14. Decarboxylative 1,4-Addition of α-Oxocarboxylic Acids with Michael Acceptors Enabled by Photoredox Catalysis.

    PubMed

    Wang, Guang-Zu; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-10-02

    Enabled by iridium photoredox catalysis, 2-oxo-2-(hetero)arylacetic acids were decarboxylatively added to various Michael acceptors including α,β-unsaturated ester, ketone, amide, aldehyde, nitrile, and sulfone at room temperature. The reaction presents a new type of acyl Michael addition using stable and easily accessible carboxylic acid to formally generate acyl anion through photoredox-catalyzed radical decarboxylation.

  15. Electron Acceptor-Electron Donor Interactions. XV and XVI.

    DTIC Science & Technology

    mixtures exhibit simple eutectic phase diagrams and the thermochromic effect is interpreted as a randomized structure in the liquid , whereas the solid is a...two-phase aggregate of isolated acceptor and onor crystals . The charge-transfer spectra of solutions of tungsten and molybdenum hexafluorides and iodine heptafluoride in n-hexane and cyclohexane were obtained.

  16. Poly(trifluoromethyl)azulenes: structures and acceptor properties.

    PubMed

    Clikeman, Tyler T; Bukovsky, Eric V; Kuvychko, Igor V; San, Long K; Deng, Shihu H M; Wang, Xue-Bin; Chen, Yu-Sheng; Strauss, Steven H; Boltalina, Olga V

    2014-06-14

    Six new poly(trifluoromethyl)azulenes prepared in a single high-temperature reaction exhibit strong electron accepting properties in the gas phase and in solution and demonstrate the propensity to form regular π-stacked columns in donor-acceptor crystals when mixed with pyrene as a donor.

  17. Development of imide- and imidazole-containing electron acceptors for use in donor-acceptor conjugated compounds and polymers

    NASA Astrophysics Data System (ADS)

    Li, Duo

    Conjugated organic compounds and polymers have attracted significant attention due to their potential application in electronic devices as semiconducting materials, such as organic solar cells (OSCs). In order to tune band gaps, donor-acceptor (D-A) structure is widely used, which has been proved to be one of the most effective strategies. This thesis consists of three parts: 1) design, syntheses and characterization of new weak acceptors based on imides and the systematic study of the structure-property relationship; (2) introduction of weak and strong acceptors in one polymer to achieve a broad coverage of light absorption and improve the power conversion efficiency (PCE); (3) modification of benzothiadiazole (BT) acceptor in order to increase the electron withdrawing ability. Imide-based electron acceptors, 4-(5-bromothiophen-2-y1)-2-(2-ethylhexyl)-9- phenyl- 1H-benzo[f]isoindole-1,3(2H)-dione (BIDO-1) and 4,9-bis(5-bromothiophen-2-yl)-2-(2-ethylhexyl)-benzo[f]isoindole-1,3-dione (BIDO-2), were designed and synthesized. In this design, naphthalene is selected as its main core to maintain a planar structure, and thienyl groups are able to facilitate the bromination reaction and lower the band gap. BIDO-1 and BIDO-2 were successfully coupled with different donors by both Suzuki cross-coupling and Stille cross-coupling reactions. Based on the energy levels and band gaps of the BIDO-containing compounds and polymers, BIDO-1 and BIDO-2 are proved to be weak electron acceptors. Pyromellitic diimide (PMDI) was also studied and found to be a stronger electron acceptor than BIDO . In order to obtain broad absorption coverage, both weak acceptor ( BIDO-2) and strong acceptor diketopyrrolopyrrole (DPP) were introduced in the same polymer. The resulting polymers show two absorption bands at 400 and 600 nm and two emission peaks at 500 and 680 nm. The band gaps of the polymers are around 1.6 eV, which is ideal for OSC application. The PCE of 1.17% was achieved. Finally

  18. Acceptor conductivity in bulk zinc oxide (0001) crystals

    NASA Astrophysics Data System (ADS)

    Adekore, Bababunmi Tolu

    ZnO is a promising wide bandgap semiconductor. Its renowned and prominent properties as its bandgap of 3.37eV at 4.2K; its very high excitonic binding energy, 60meV; its high melting temperature, 2248K constitute the basis for the recently renewed and sustained scientific interests in the material. In addition to the foregoing, the availability of bulk substrates of industrially relevant sizes provides important opportunities such as homoepitaxial deposition of the material which is a technological asset in the production of efficient optoelectronic and electronic devices. The nemesis of wide bandgap materials cannot be more exemplified than in ZnO. The notorious limitation of asymmetric doping and the haunting plague of electrically active point defects dim the bright future of the material. In this case, the search for reliable and consistent acceptor conductivity in bulk substrates has been hitherto, unsuccessful. In the dissertation that now follows, our efforts have been concerted in the search for a reliable acceptor. We have carefully investigated the science of point defects in the material, especially those responsible for the high donor conductivity. We also investigated and herein report variety of techniques of introducing acceptors into the material. We employ the most relevant and informative characterization techniques in verifying both the intended conductivity and the response of intrinsic crystals to variation in temperature and strain. And finally we explain deviations, where they exist, from ideal acceptor characteristics. Our work on reliable acceptor has been articulated in four papers. The first establishing capacitance based methods of monitoring electrically active donor defects. The second investigates the nature of anion acceptors on the oxygen sublattice. A study similar to the preceding study was conducted for cation acceptors on the zinc sublattice and reported in the third paper. Finally, an analysis of the response of the crystal to

  19. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  20. Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate.

    PubMed

    Villar-Acevedo, Gloria; Lugo-Mas, Priscilla; Blakely, Maike N; Rees, Julian A; Ganas, Abbie S; Hanada, Erin M; Kaminsky, Werner; Kovacs, Julie A

    2017-01-11

    Cysteinate oxygenation is intimately tied to the function of both cysteine dioxygenases (CDOs) and nitrile hydratases (NHases), and yet the mechanisms by which sulfurs are oxidized by these enzymes are unknown, in part because intermediates have yet to be observed. Herein, we report a five-coordinate bis-thiolate ligated Fe(III) complex, [Fe(III)(S2(Me2)N3(Pr,Pr))](+) (2), that reacts with oxo atom donors (PhIO, IBX-ester, and H2O2) to afford a rare example of a singly oxygenated sulfenate, [Fe(III)(η(2)-S(Me2)O)(S(Me2))N3(Pr,Pr)](+) (5), resembling both a proposed intermediate in the CDO catalytic cycle and the essential NHase Fe-S(O)(Cys114) proposed to be intimately involved in nitrile hydrolysis. Comparison of the reactivity of 2 with that of a more electron-rich, crystallographically characterized derivative, [Fe(III)S2(Me2)N(Me)N2(amide)(Pr,Pr)](-) (8), shows that oxo atom donor reactivity correlates with the metal ion's ability to bind exogenous ligands. Density functional theory calculations suggest that the mechanism of S-oxygenation does not proceed via direct attack at the thiolate sulfurs; the average spin-density on the thiolate sulfurs is approximately the same for 2 and 8, and Mulliken charges on the sulfurs of 8 are roughly twice those of 2, implying that 8 should be more susceptible to sulfur oxidation. Carboxamide-ligated 8 is shown to be unreactive towards oxo atom donors, in contrast to imine-ligated 2. Azide (N3(-)) is shown to inhibit sulfur oxidation with 2, and a green intermediate is observed, which then slowly converts to sulfenate-ligated 5. This suggests that the mechanism of sulfur oxidation involves initial coordination of the oxo atom donor to the metal ion. Whether the green intermediate is an oxo atom donor adduct, Fe-O═I-Ph, or an Fe(V)═O remains to be determined.

  1. A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY.

    PubMed

    Ostroski, Indianara C; Barros, Maria A S D; Silva, Edson A; Dantas, João H; Arroyo, Pedro A; Lima, Oswaldo C M

    2009-01-30

    The uptake capacity of Fe(III) and Zn(II) ions in NaY zeolite was investigated. Experiments were carried out in a fixed bed column at 30 degrees C, pH 3.5 and 4.5 for Fe(III) and Zn(II), respectively, and an average particle size of 0.180 mm. In order to minimize the diffusional resistances the influence of flow rate on the breakthrough curves at feed concentrations of 1.56 meq/L for Fe(III) and 0.844 meq/L for Zn(II) was investigated. Flow rate of the minimal resistance in the bed according to mass transfer parameter were 2.0 mL/min for iron and 8.0 mL/min for zinc ions. Freundlich and Langmuir isotherm models have been used to represent the column equilibrium data. The iron dynamic isotherm was successfully modeled by the Langmuir equation and this mathematical model described well the experimental breakthrough curves for feed concentrations from 0.1 up to 3.5 meq/L. The zinc dynamic isotherm was successfully modeled by the Freundlich equation. This equilibrium model was applied to mathematical model. Experimental breakthrough curves could be predicted. Experiments were also carried out in a batch reactor to investigate the kinetics adsorption of the ions Fe(III) and Zn(II). Langmuir kinetic model fit well both experimental data.

  2. Calix receptor edifice; scrupulous turn off fluorescent sensor for Fe(III), Co(II) and Cu(II).

    PubMed

    Bhatt, Keyur D; Gupte, Hrishikesh S; Makwana, Bharat A; Vyas, Disha J; Maity, Debdeep; Jain, Vinod K

    2012-11-01

    Novel Supramolecular fluorescence receptor derived from calix-system i.e. calix[4]resorcinarene bearing dansylchloride as fluorophore was designed and synthesized. The compound was purified by column chromatography and characterized by elemental analysis, NMR and Mass spectroscopy. Tetradansylated calix[4] resorcinarene (TDCR) shows a boat conformation with C(2)v symmetry. The complexation behaviour of metal cations [Ag(I), Cd(II), Co(II), Fe(III), Hg(II), Cu(II), Pb(II), Zn(II), U(VI) (1 × 10(-4) M)] with tetra dansylated calix[4]resorcinarene (1 × 10(-6) M) was studied by spectophotometry and spectrofluorometry. Red shift in the absorption spectra led us to conclude that there is strong complexation Fe(III), Co(II) and Cu(II) with TDCR. These metal cations also produce quenching with red shifts in the emission spectra. The maximum quenching in emission intensity was observed in the case of Fe(III) and its binding constant was also found to be significantly higher than that of Co(II) and Cu(II). Quantum yield of metal complexes of Fe(III) was found to be lower in comparison with Co(II) and Cu(II) complexes. Stern Volmer analysis indicates that the mechanism of fluorescence quenching is either purely dynamic, or purely static.

  3. Heterocyclic tri-urea isocyanurate bridged groups modified periodic mesoporous organosilica synthesized for Fe(III) adsorption

    SciTech Connect

    Rana, Vijay Kumar; Selvaraj, M.; Parambadath, Surendran; Chu, Sang-Wook; Park, Sung Soo; Mishra, Satyendra; Singh, Raj Pal; Ha, Chang-Sik

    2012-10-15

    To achieve a high level of heavy metal adsorption, 1,1 Prime ,1 Double-Prime -(1,3,5-triazine-2,4,6-triyl)tris(3-(3-(triethoxysilyl)propyl)urea) (TTPU) was synthesized as a novel melamine precursor and incorporated on the silica surface of periodic mesoporous organosilica (PMO). The melamine modified PMOs (MPMOs) were synthesized under acidic conditions using TTPU, tetraethylorthosilicate (TEOS) and Pluronic P123 as a template and the modified PMOs were characterized using the relevant instrumental techniques. The characteristic materials were used as adsorbents for the adsorption of Fe(III) ions. Fe(III) adsorption studies revealed MPMO-7.5 to be a good absorbent with higher adsorption efficiency than other MPMOs. - Graphical Abstract: A new organosilica precursor, TTPU, has been successfully synthesized and characterized to incorporate on the silica surface of periodic mesoporous organosilica (PMO). The melamine modified PMOs (MPMOs), in particular, the MPMO-7.5 was found to exhibit good adsorption efficiency for Fe(III). Highlights: Black-Right-Pointing-Pointer Synthesis of new melamine modified periodic mesoporous organosilicas (MPMOs). Black-Right-Pointing-Pointer A new organosilica precursor, TTPU, has been successfully synthesized for the MPMOs. Black-Right-Pointing-Pointer The MPMOs were characterized by the relevant instrumental techniques. Black-Right-Pointing-Pointer MPMO-7.5 exhibits higher adsorption efficiency for Fe(III) ions than other MPMOs.

  4. Does As(III) interact with Fe(II), Fe(III) and organic matter through ternary complexes?

    PubMed

    Catrouillet, Charlotte; Davranche, Mélanie; Dia, Aline; Bouhnik-Le Coz, Martine; Demangeat, Edwige; Gruau, Gérard

    2016-05-15

    Up until now, only a small number of studies have been dedicated to the binding processes of As(III) with organic matter (OM) via ionic Fe(III) bridges; none was interested in Fe (II). Complexation isotherms were carried out with As(III), Fe(II) or Fe(III) and Leonardite humic acid (HA). Although PHREEQC/Model VI, implemented with OM thiol groups, reproduced the experimental datasets with Fe(III), the poor fit between the experimental and modeled Fe(II) data suggested another binding mechanism for As(III) to OM. PHREEQC/Model VI was modified to take various possible As(III)-Fe(II)-OM ternary complex conformations into account. The complexation of As(III) as a mononuclear bidentate complex to a bidentate Fe(II)-HA complex was evidenced. However, the model needed to be improved since the distribution of the bidentate sites appeared to be unrealistic with regards to the published XAS data. In the presence of Fe(III), As(III) was bound to thiol groups which are more competitive with regards to the low density of formed Fe(III)-HA complexes. Based on the new data and previously published results, we propose a general scheme describing the various As(III)-Fe-MO complexes that are able to form in Fe and OM-rich waters.

  5. Spectroelectrochemistry of Fe(III)- and Co(III)-mimochrome VI artificial enzymes immobilized on mesoporous ITO electrodes.

    PubMed

    Vitale, R; Lista, L; Lau-Truong, S; Tucker, R T; Brett, M J; Limoges, B; Pavone, V; Lombardi, A; Balland, V

    2014-02-21

    UV-visible absorption spectroelectrochemistry elucidated the different redox behaviours of Fe(III)- and Co(III)-mimochrome VI artificial enzymes, adsorbed on mesoporous conductive films of ITO. The reduction of the ferric complex was rapid and reversible, while the cobaltic complex exhibited irreversible processes probably related to multiple coordination states.

  6. New method for simultaneous determination of Fe(II) and Fe(III) in water using flow injection technique.

    PubMed

    Kozak, J; Gutowski, J; Kozak, M; Wieczorek, M; Kościelniak, P

    2010-05-23

    The method exploits the possibilities of flow injection gradient titration in a system of reversed flow with spectrophotometric detection. In the developed approach a small amount of titrant (EDTA) is injected into a stream of sample containing a mixture of indicators (sulfosalicylic acid and 1,10-phenanthroline). In acid environment sulfosalicylic acid forms a complex with Fe(III), whereas 1,10-phenanthroline forms a complex with Fe(II). Measurements are performed at wavelength lambda=530 nm when radiation is absorbed by both complexes. After injection EDTA replaces sulfosalicylic acid and forms with Fe(III) more stable colourless complex. As a result, a characteristic "cut off" peak is registered with a width corresponding to the Fe(III) concentration and with a height corresponding to the Fe(II) concentration. Calibration was performed by titration of four two-component standard solutions of the Fe(II)/Fe(III) concentrations established in accordance with 2(2) factorial plan. The method was tested with the use of synthetic samples and then it was applied to the analysis of water samples taken from artesian wells. Under optimized experimental conditions Fe(II) and Fe(III) were determined with precision less than 0.8 and 2.5% (RSD) and accuracy less than 3.2 and 5.1% (relative error) within the concentration ranges of 0.1-3.0 and 0.9-3.5 mg L(-1) of both analytes, respectively.

  7. Geochemical control of microbial Fe(III) reduction potential in wetlands: Comparison of the rhizosphere to non-rhizosphere soil

    USGS Publications Warehouse

    Weiss, J.V.; Emerson, D.; Megonigal, J.P.

    2004-01-01

    We compared the reactivity and microbial reduction potential of Fe(III) minerals in the rhizosphere and non-rhizosphere soil to test the hypothesis that rapid Fe(III) reduction rates in wetland soils are explained by rhizosphere processes. The rhizosphere was defined as the area immediately adjacent to a root encrusted with Fe(III)-oxides or Fe plaque, and non-rhizosphere soil was 0.5 cm from the root surface. The rhizosphere had a significantly higher percentage of poorly crystalline Fe (66??7%) than non-rhizosphere soil (23??7%); conversely, non-rhizosphere soil had a significantly higher proportion of crystalline Fe (50??7%) than the rhizosphere (18??7%, P<0.05 in all cases). The percentage of poorly crystalline Fe(III) was significantly correlated with the percentage of FeRB (r=0.76), reflecting the fact that poorly crystalline Fe(III) minerals are labile with respect to microbial reduction. Abiotic reductive dissolution consumed about 75% of the rhizosphere Fe(III)-oxide pool in 4 h compared to 23% of the soil Fe(III)-oxide pool. Similarly, microbial reduction consumed 75-80% of the rhizosphere pool in 10 days compared to 30-40% of the non-rhizosphere soil pool. Differences between the two pools persisted when samples were amended with an electron-shuttling compound (AQDS), an Fe(III)-reducing bacterium (Geobacter metallireducens), and organic carbon. Thus, Fe(III)-oxide mineralogy contributed strongly to differences in the Fe(III) reduction potential of the two pools. Higher amounts of poorly crystalline Fe(III) and possibly humic substances, and a higher Fe(III) reduction potential in the rhizosphere compared to the non-rhizosphere soil, suggested the rhizosphere is a site of unusually active microbial Fe cycling. The results were consistent with previous speculation that rapid Fe cycling in wetlands is due to the activity of wetland plant roots. ?? 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  8. Mechanisms of Sb(III) Photooxidation by the Excitation of Organic Fe(III) Complexes.

    PubMed

    Kong, Linghao; He, Mengchang

    2016-07-05

    Organic Fe(III) complexes are widely distributed in the aqueous environment, which can efficiently generate free radicals under light illumination, playing a significant role in heavy metal speciation. However, the potential importance of the photooxidation of Sb(III) by organic Fe(III) complexes remains unclear. Therefore, the photooxidation mechanisms of Sb(III) were comprehensively investigated in Fe(III)-oxalate, Fe(III)-citrate and Fe(III)-fulvic acid (FA) solutions by kinetic measurements and modeling. Rapid photooxidation of Sb(III) was observed in an Fe(III)-oxalate solution over the pH range of 3 to 7. The addition of tert-butyl alcohol (TBA) as an ·OH scavenger quenched the Sb(III) oxidation, suggesting that ·OH is an important oxidant for Sb(III). However, the incomplete quenching of Sb(III) oxidation indicated the existence of other oxidants, presumably an Fe(IV) species in irradiated Fe(III)-oxalate solution. In acidic solutions, ·OH may be formed by the reaction of Fe(II)(C2O4) with H2O2, but a hypothetical Fe(IV) species may be generated by the reaction of Fe(II)(C2O4)2(2-) with H2O2 at higher pH. Kinetic modeling provides a quantitative explanation of the results. Evidence for the existence of ·OH and hypothetical Fe(IV) was also observed in an irradiated Fe(III)-citrate and Fe(III)-FA system. This study demonstrated an important pathway of Sb(III) oxidation in surface waters.

  9. The Impact of Ionizing Radiation on the Microbial Reduction of Fe(III)

    NASA Astrophysics Data System (ADS)

    Brown, A.; Correa, E. S.; Xu, Y.; Vaughan, D. J.; Pimblott, S. M.; Goodacre, R.; Lloyd, J. R.

    2014-12-01

    Biogeochemical processes mediated by Fe(III)-reducing bacteria have the potential to impact on the post-closure evolution of a geological disposal facility (GDF) for radioactive waste. However, the organisms promoting these processes will likely be subject to significant radiation fluxes. Therefore, the impact of acute doses of ionizing radiation on the physiological status of the model Fe(III)-reducing bacterium Shewanella oneidensis was assessed. FT-IR spectroscopy and MALDI-TOF-MS suggested that the metabolic response to radiation is underpinned by alterations to lipids and proteins. Furthermore, the irradiated phenotype exhibits enhanced Fe(III)-reduction. The impact of radiation on the extracellular environment was also assessed. Exposure to gamma radiation caused activation of ferrihydrite and hematite for enzymatic reduction by S. oneidensis. TEM, SAED and Mössbauer spectroscopy revealed that this effect was a result of radiation induced changes to crystallinity leading to an increase in bioavailability of Fe(III) for respiration. To assess the impact of radiation on sediment microbial communities, a series of microcosm experiments were constructed and gamma irradiated over a two month period. Sediments irradiated at a dose rate of 0.5 Gy h-1 exhibited enhanced Fe(III) reduction despite receiving doses potentially lethal to indigenous microorganisms, whilst biogeochemical processes in sediments irradiated with 30 Gy h-1 were only partially restricted. Despite this, 16S rRNA gene pyrosequencing revealed significant dose-dependent shifts in the microbial communities in tandem with changes in microcosm biogeochemical profiles. Collectively, these results indicate that, despite significant total absorbed doses, biogeochemical processes will likely not be restricted by dose rates expected in a deep geological repository. Indeed, electron accepting processes in such environments may even be stimulated by radiation.

  10. Assessment of Fe(III) and Eu(III) complexation by silicate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Patten, James T.; Byrne, Robert H.

    2017-04-01

    Prior investigations of Eu3+ complexation by silicate have led to predictions that rare earth silicate complexes (REESiO(OH)32+) are the dominant species of REEs in deep waters of the Atlantic and Pacific Oceans. The proposed importance of REE-silicate complexes has been used as a foundation to explain oceanic REE profiles. In the present work, we examine the significance of rare earth element complexation by silicate ions. As one fundamental means of assessing prior depictions of REE-silicate formation constant behavior, our work examines the comparative stability constant behavior of Eu(III) and Fe(III). Plots of Eu(III) complexation constants against Fe(III) formation constants, in conjunction with experimental determinations of FeSiO(OH)32+ formation constants, indicate that previously published EuSiO(OH)32+ formation constants are substantially overestimated. Assessment of prior EuSiO(OH)32+ formation constant determinations reveals that results obtained in the presence and absence of silicic acid polymerization are inconsistent. Much larger EuSiO(OH)32+ formation constants are obtained in the presence of polymeric silica. Reanalysis of complexation results obtained under conditions of minimal silicate polymerization leads to a EuSiO(OH)32+ formation constant that is smaller than previously published estimates by as much as a factor of ∼25. The dramatically reduced magnitude of Siβ1(Eu) relative to previously published results indicates that the role of silicate complexation in oceanic REE cycling is much less significant than previously proposed. The spectrophotometric investigations of FeSiO(OH)32+ formation in the present study yield the first characterization of FeSiO(OH)32+ formation constant behavior as a function of ionic strength:

  11. Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells.

    PubMed

    Dai, Shuixing; Zhao, Fuwen; Zhang, Qianqian; Lau, Tsz-Ki; Li, Tengfei; Liu, Kuan; Ling, Qidan; Wang, Chunru; Lu, Xinhui; You, Wei; Zhan, Xiaowei

    2017-01-25

    We design and synthesize four fused-ring electron acceptors based on 6,6,12,12-tetrakis(4-hexylphenyl)-indacenobis(dithieno[3,2-b;2',3'-d]thiophene) as the electron-rich unit and 1,1-dicyanomethylene-3-indanones with 0-2 fluorine substituents as the electron-deficient units. These four molecules exhibit broad (550-850 nm) and strong absorption with high extinction coefficients of (2.1-2.5) × 10(5) M(-1) cm(-1). Fluorine substitution downshifts the LUMO energy level, red-shifts the absorption spectrum, and enhances electron mobility. The polymer solar cells based on the fluorinated electron acceptors exhibit power conversion efficiencies as high as 11.5%, much higher than that of their nonfluorinated counterpart (7.7%). We investigate the effects of the fluorine atom number and position on electronic properties, charge transport, film morphology, and photovoltaic properties.

  12. An organic donor/acceptor lateral superlattice at the nanoscale.

    PubMed

    Otero, Roberto; Ecija, David; Fernandez, Gustavo; Gallego, José María; Sanchez, Luis; Martín, Nazario; Miranda, Rodolfo

    2007-09-01

    A precise control of the nanometer-scale morphology in systems containing mixtures of donor/acceptor molecules is a key factor to improve the efficiency of organic photovoltaic devices. Here we report on a scanning tunneling microscopy study of the first stages of growth of 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole, as electron donor, and phenyl-C61-butyric acid methyl ester, as electron acceptor, on a Au(111) substrate under ultrahigh vacuum conditions. Due to differences in bonding strength with the substrate and different interactions with the Au(111) herringbone surface reconstruction, mixed thin films spontaneously segregate into a lateral superlattice of interdigitated nanoscale stripes with a characteristic width of about 10-20 nm, a morphology that has been predicted to optimize the efficiency of organic solar cells.

  13. Cross-conjugated chromophores: synthesis of iso-polydiacetylenes with Donor/Acceptor substitution

    PubMed

    Ciulei; Tykwinski

    2000-11-16

    The iterative construction of cross-conjugated donor (D), acceptor (A), and donor-acceptor (D-A) substituted iso-polydiacetylene (iso-PDA) oligomers has been achieved utilizing palladium-catalyzed cross-coupling techniques. Structure-property relationships for these compounds have been analyzed for cross-conjugated pi-electronic communication as a result of contributions from donor, acceptor, or donor-acceptor functionalization.

  14. Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors

    SciTech Connect

    Nardes, Alexandre M.; Ferguson, Andrew J.; Wolfer, Pascal; Gui, Kurt; Burn, Paul L.; Meredith, Paul; Kopidakis, Nikos

    2014-03-05

    We present a comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85 % of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. Here, we propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub

  15. Income-generating activities for family planning acceptors.

    PubMed

    1989-07-01

    The Income Generating Activities program for Family Planning Acceptors was introduced in Indonesia in 1979. Capital input by the Indonesian National Family Planning Coordination Board and the UN Fund for Population Activities was used to set up small businesses by family planning acceptors. In 2 years, when the businesses become self-sufficient, the loans are repaid, and the money is used to set up new family planning acceptors in business. The program strengthens family planning acceptance, improves the status of women, and enhances community self-reliance. The increase in household income generated by the program raises the standards of child nutrition, encourages reliance on the survival of children, and decreases the value of large families. Approximately 18,000 Family Planning-Income Generating Activities groups are now functioning all over Indonesia, with financial assistance from the central and local governments, the World Bank, the US Agency for International Development, the UN Population Fund, the Government of the Netherlands, and the Government of Australia through the Association of South East Asian Nations.

  16. Design directed self-assembly of donor-acceptor polymers.

    PubMed

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements.

  17. Quantum dots as FRET acceptors for highly sensitive multiplexing immunoassays

    NASA Astrophysics Data System (ADS)

    Geissler, Daniel; Hildebrandt, Niko; Charbonnière, Loïc J.; Ziessel, Raymond F.; Löhmannsröben, Hans-Gerd

    2009-02-01

    Homogeneous immunoassays have the benefit that they do not require any time-consuming separation steps. FRET is one of the most sensitive homogeneous methods used for immunoassays. Due to their extremely strong absorption over a broad wavelength range the use of quantum dots as FRET acceptors allows for large Foerster radii, an important advantage for assays in the 5 to 10 nm distance range. Moreover, because of their size-tunable emission, quantum dots of different sizes can be used with a single donor for the detection of different analytes (multiplexing). As the use of organic dyes with short fluorescence decay times as donors is known to be inefficient with quantum dot acceptors, lanthanide complexes with long luminescence decays are very efficient alternatives. In this contribution we present the application of commercially available biocompatible CdSe/ZnS core/shell quantum dots as multiplexing FRET acceptors together with a single terbium complex as donor in a homogeneous immunoassay system. Foerster radii of 10 nm and FRET efficiencies of 75 % are demonstrated. The high sensitivity of the terbium-toquantum dot FRET assay is shown by sub-100-femtomolar detection limits for two different quantum dots (emitting at 605 and 655 nm) within the same biotin-streptavidin assay. Direct comparison to the FRET immunoassay "gold standard" (FRET from Eu-TBP to APC) yields a three orders of magnitude sensitivity improvement, demonstrating the big advantages of quantum dots not only for multiplexing but also for highly sensitive nanoscale analysis.

  18. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    PubMed

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  19. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  20. EXAFS study of dopant ions with different charges in nanocrystalline anatase: evidence for space-charge segregation of acceptor ions.

    PubMed

    Knauth, Philippe; Chadwick, Alan V; Lippens, Pierre E; Auer, Gerhard

    2009-06-02

    Nanocrystalline TiO(2) (anatase) is an essential oxide for environment and energy applications. A combination of EXAFS spectroscopy and DFT calculations on a series of dopants with quite similar ion radius, but increasing ion charge, show boundary space charge segregation of acceptor cations. The picture illustrates the Fourier-transformed EXAFS spectrum for Sn(4+)-doped TiO(2).A series of dopants, including acceptor ions (Zn(2+), Y(3+)), isovalent ions (Zr(4+), Sn(4+)) as well as a donor ion (Nb(5+)), were studied by EXAFS spectroscopy in nanocrystalline TiO(2) anatase powders and nanoceramics. Similar results were found for nanocrystalline powders and nanocrystalline ceramics, made by hot-pressing the powders. Boundary segregation was observed for the acceptor ions yttrium and zinc, whereas tin, zirconium and niobium ions were placed on substitutional bulk sites and did not segregate, whatever their concentration. These results can be interpreted based on defect thermodynamics, in the framework of a space charge segregation model with positive boundary core, due to excess oxide ion vacancies, and negative space charge regions, where ionized acceptors are segregated.

  1. Spectrophotometric study of the charge-transfer and ion-pair complexation of methamphetamine with some acceptors.

    PubMed

    Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader

    2008-04-01

    The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 microg ml(-1) for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.

  2. Spectrophotometric study of the charge-transfer and ion-pair complexation of methamphetamine with some acceptors

    NASA Astrophysics Data System (ADS)

    Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader

    2008-04-01

    The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 μg ml -1 for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.

  3. Method for producing and regenerating a synthetic CO[sub 2] acceptor

    DOEpatents

    Lancet, M. S.; Curran, G. P.; Gorin, E.

    1982-05-18

    A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

  4. Method for producing and regenerating a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

    1982-01-01

    A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

  5. Naphthalenediimide-alt-Fused Thiophene D-A Copolymers for the Application as Acceptor in All-Polymer Solar Cells.

    PubMed

    Xue, Lingwei; Yang, Yankang; Zhang, Zhi-Guo; Zhang, Jing; Gao, Liang; Bin, Haijun; Yang, YunXu; Li, Yongfang

    2016-10-06

    Three n-type alternating D-A copolymers based on a naphthalenediimide (NDI) acceptor (A) unit and three different donor (D) units with varied electron-donating strength including thiophene (P(NDI-T)), thieno[3,2-b]thiophene (P(NDI-TT)), and thieno[3,2-b;4,5-b]dithiophene (P(NDI-TDT)), were synthesized, for the application as acceptor materials in all-polymer solar cells (all-PSCs). The effect of the donor units of thiophene, thienothiophene (TT) and thienodithiophene (TDT) on the physicochemical and photovoltaic properties of the n-type D-A copolymers was systematically investigated. It was found that the absorption spectrum is red-shifted and the energy band gap (Eg ) is reduced for the NDI-based D-A copolymers with increasing number of thiophene rings in the thiophene or fused thiophene donor units. All-PSCs were fabricated with the medium band gap conjugated polymer J51 (Eg of ca 1.9 eV) as polymer donor and the n-type D-A copolymers as acceptor. The power conversion efficiency reached 2.59 %, 3.70 % and 5.10 % for the all-PSCs with P(NDI-T), P(NDI-TT), and P(NDI-TDT) as acceptor, respectively. The results indicate that a larger conjugated fused molecular plane with more thiophene rings as donor units in the NDI-based D-A copolymers is beneficial to reduce the band gap, broaden the absorption and enhance the photovoltaic performance of n-type D-A copolymer acceptors.

  6. Fragment charge difference method for estimating donor-acceptor electronic coupling: Application to DNA π-stacks

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Rösch, Notker

    2002-09-01

    The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.

  7. Coordination chemistry and hydrolysis of Fe(III) in a peat humic acid studied by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Karlsson, Torbjörn; Persson, Per

    2010-01-01

    The speciation of iron (Fe) in soils, sediments and surface waters is highly dependent on chemical interactions with natural organic matter (NOM). However, the molecular structure and hydrolysis of the Fe species formed in association with NOM is still poorly described. In this study extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the coordination chemistry and hydrolysis of Fe(III) in solution of a peat humic acid (5010-49,200 μg Fe g -1 dry weight, pH 3.0-7.2). Data were analyzed by both conventional EXAFS data fitting and by wavelet transforms in order to facilitate the identification of the nature of backscattering atoms. Our results show that Fe occurs predominantly in the oxidized form as ferric ions and that the speciation varies with pH and Fe concentration. At low Fe concentrations (5010-9920 μg g -1; pH 3.0-7.2) mononuclear Fe(III)-NOM complexes completely dominates the speciation. The determined bond distances for the Fe(III)-NOM complexes are similar to distances obtained for Fe(III) complexed by desferrioxamine B and oxalate indicating the formation of a five-membered chelate ring structure. At higher Fe concentrations (49,200 μg g -1; pH 4.2-6.9) we detect a mixture of mononuclear Fe(III)-NOM complexes and polymeric Fe(III) (hydr)oxides with an increasing amount of Fe(III) (hydr)oxides at higher pH. However, even at pH 6.9 and a Fe concentration of 49,200 μg g -1 our data indicates that a substantial amount of the total Fe (>50%) is in the form of organic complexes. Thus, in environments with significant amounts of organic matter organic Fe complexes will be of great importance for the geochemistry of Fe. Furthermore, the formation of five-membered chelate ring structures is in line with the strong complexation and limited hydrolytic polymerization of Fe(III) in our samples and also agrees with EXAFS derived structures of Fe(III) in organic soils.

  8. Flexible biological arsenite oxidation utilizing NOx and O2 as alternative electron acceptors.

    PubMed

    Wang, Jie; Wan, Junfeng; Wu, Zihao; Li, Hongli; Li, Haisong; Dagot, Christophe; Wang, Yan

    2017-03-18

    The feasibility of flexible microbial arsenite (As(III)) oxidation coupled with the reduction of different electron acceptors was investigated. The results indicated the acclimated microorganisms could oxidize As(III) with oxygen, nitrate and nitrite as the alternative electron acceptors. A series of batch tests were conducted to measure the kinetic parameters of As(III) oxidation and to evaluate the effects of environmental conditions including pH and temperature on the activity of biological As(III) oxidation dependent on different electron acceptors. Kinetic results showed that oxygen-dependent As(III) oxidation had the highest oxidation rate (0.59 mg As g(-1) VSS min(-1)), followed by nitrate- (0.40 mg As g(-1) VSS min(-1)) and nitrite-dependent As(III) oxidation (0.32 mg As g(-1) VSS min(-1)). The kinetic data of aerobic As(III) oxidation were fitted well with the Monod kinetic model, while the Haldane substrate inhibition model was better applicable to describe the inhibition of anoxic As(III) oxidation. Both aerobic and anoxic As(III) oxidation performed the optimal activity at the near neutral pH. Besides, the optimal temperature for oxygen-, nitrate- and nitrite-dependent As(III) oxidation was 30 ± 1 °C, 40 ± 1 °C and 20 ± 1 °C, respectively.

  9. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    PubMed Central

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  10. Transglucosylation with 6'-chloro-6'-deoxysucrose and immobilized isomaltulose-producing microorganisms using 2,2-dimethyl-1,3-dioxolane-4-methanol and its related compounds as acceptors. Steric and chemical requirement of the glucosyl acceptor.

    PubMed

    Kakinuma, H; Tsuchiya, Y; Tanaka, M; Horito, S; Hashimoto, H

    1994-11-15

    Enantioselective and diastereoselective alpha-D-glucosylation of 2,3-O-isopropylidene-erythritol was observed in transglucosylation with a synthetic donor using three kinds of immobilized isomaltulose-producing microorganisms. Several related compounds, including an 2,3-O-isopropylidenated aldotetrose dimethyl dithioacetal and an aldotetronic acid ester were also glucosylated in moderate or good yield, depending on the microorganism utilized. Steric as well as functional group factors are discussed in relation to the substrate specificity of the glucosyl acceptor.

  11. SERS Activity of Silver Nanoparticles Functionalized with A Desferrioxamine B Derived Ligand for FE(III) Binding and Sensing

    NASA Astrophysics Data System (ADS)

    Galinetto, P.; Taglietti, A.; Pasotti, L.; Pallavicini, P.; Dacarro, G.; Giulotto, E.; Grandi, M. S.

    2016-01-01

    We report the SERS activity of colloidal silver nanoparticles functionalized with a ligand, derived from the siderophore desferrioxamine B (desferal, DFO), an iron chelator widely used in biological and medical applications. The ligand was equipped with a sulfur-containing moiety to ensure optimal binding with silver surfaces. By means of Raman and SERS effects we monitored the route of material preparation from the modified DFO-S molecule to the colloidal aggregates. The results indicate that the functionalization of the chelating agent does not affect its binding ability towards Fe(III). The resulting functionalized silver nanoparticles are a promising SERS tag for operation in biological environments. The Fe-O stretching signature, arising when DFO-S grafted to silver nanoparticles binds Fe(III), could provide a tool for cation sensing in solution.

  12. Evaluation of siderite and magnetite formation in BIFs by pressure-temperature experiments of Fe(III) minerals and microbial biomass

    NASA Astrophysics Data System (ADS)

    Halama, Maximilian; Swanner, Elizabeth D.; Konhauser, Kurt O.; Kappler, Andreas

    2016-09-01

    Anoxygenic phototrophic Fe(II)-oxidizing bacteria potentially contributed to the deposition of Archean banded iron formations (BIFs), before the evolution of cyanobacterially-generated molecular oxygen (O2), by using sunlight to oxidize aqueous Fe(II) and precipitate Fe(III) (oxyhydr)oxides. Once deposited at the seafloor, diagenetic reduction of the Fe(III) (oxyhydr)oxides by heterotrophic bacteria produced secondary Fe(II)-bearing minerals, such as siderite (FeCO3) and magnetite (Fe3O4), via the oxidation of microbial organic carbon (i.e., cellular biomass). During deeper burial at temperatures above the threshold for life, thermochemical Fe(III) reduction has the potential to form BIF-like minerals. However, the role of thermochemical Fe(III) reduction of primary BIF minerals during metamorphism, and its impact on mineralogy and geochemical signatures in BIFs, is poorly understood. Consequently, we simulated the metamorphism of the precursor and diagenetic iron-rich minerals (ferrihydrite, goethite, hematite) at low-grade metamorphic conditions (170 °C, 1.2 kbar) for 14 days by using (1) mixtures of abiotically synthesized Fe(III) minerals and either microbial biomass or glucose as a proxy for biomass, and (2) using biogenic minerals formed by phototrophic Fe(II)-oxidizing bacteria. Mössbauer spectroscopy and μXRD showed that thermochemical magnetite formation was limited to samples containing ferrihydrite and glucose, or goethite and glucose. No magnetite was formed from Fe(III) minerals when microbial biomass was present as the carbon and electron sources for thermochemical Fe(III) reduction. This could be due to biomass-derived organic molecules binding to the mineral surfaces and preventing solid-state conversion to magnetite. Mössbauer spectroscopy revealed siderite contents of up to 17% after only 14 days of incubation at elevated temperature and pressure for all samples with synthetic Fe(III) minerals and biomass, whereas 6% of the initial Fe(III) was

  13. Microbial Reduction of Fe(III) in the Fithian and Muloorina Illites: Contrasting Extents and Rates of Bioreduction

    DTIC Science & Technology

    2005-07-18

    Stennis Space Center, MS 39529, USA Abstract- Shewanella putrefaciens CN32 reduces Fe(III) within two illites which have different properties: the...Fithian, Illite, Microbial Fe(llI) Reduction, M6ssbauer Spectroscopy, Muloorina, Shewanella putrefaciens. INTRODUCTION dominant clay mineral in soils...measured pH of -7. The buffer was putrefaciens CN32, an Fe-reducing facultative anaerobe prepared with 2.5 g/L reagent-grade NaHCO 3 and isolated from the

  14. Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    SciTech Connect

    Hartshorne, Robert S.; Jepson, Brian N.; Clarke, Thomas A.; Field, Sarah J.; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang; Butt, Julea N.; Richardson, David

    2007-09-04

    Abstract MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately *500 mV (vs. the standard hydrogen electrode). Across this potential window the UV– vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled lowspin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate.

  15. Solution thermodynamics and structures of biscatecholamide complexes of Fe(III) and U(VI)

    SciTech Connect

    Gohdes, J.W.; Reilly, S.D.; Pecha, A.W.; Neu, M.P.

    1996-12-31

    We have studied the solution and solid-state complexes of a bis-catecholamide ligand, 2-LICAMS, with Fe(III) and U(VI). The first protonation constant was found to be pK{sub al} = 14.2(3) using {sup 1}H NMR titrations. Subsequent protonation constants were determined by potentiometric titration in 0.1 M TMAOTf at 25{degrees}C to be pK{sub a2} = 11.2(1), pK{sub 13} =6.5(1), pK{sub a4}= 5.9(1). Ligand-metal formation constants, {Beta}{sub mlh}, were found to be log {beta}{sub 110} = 31.4(2), log {beta}{sub 111} = 31.7(2), log {beta}{sub 112} = 34.9(2), and log {beta}11.1 = 18.0(1) for uranium(VI). To discriminate between monomeric or dimeric species models which both fit the potentiometric titration data, we isolated the hydroxide species and determined its single-crystal X-ray structure and EXAFS. The structure consists of a dimeric, bis-hydroxide bridged iron core which is spanned by two ligands. This study of solution equilibria indicates a higher stability for iron complexes of 2-LICAMS relative to uranyl complexes.

  16. Biochar-Facilitated Reduction of Crystalline Fe(III) in Hematite

    NASA Astrophysics Data System (ADS)

    Xu, S.; Yang, Y.; Roden, E. E.; Tang, Y.; Huang, R.; Adhikari, D.

    2015-12-01

    Pyrogenic organic matter is a significant component of soil organic matter, the transformation of which may play a crucial role in the coupled redox cycles of carbon and iron. However, scant information is available for the role of pyrogenic carbon in the redox cycle of iron. Herein, we studied the influences of wheat straw-derived biochar on the microbial reduction of hematite by Shewanella oneidensis MR-1. In the presence of 10 mg/L biochar, microbial reduction of hematite was substantially accelerated by 41% to 142%. Reduction of hematite was enhanced to similar degrees by aqueous biochar with the concentration of 1-3 mg C/L. Importance of the aqueous biochar was also supported by the response of enhancement of Fe reduction to the dose of biochar particles, closely linked to the change in aqueous biochar concentration rather than the amount of total biochar particles. Microbiologically pre-reduced biochar reduced hematite abiotically, demonstrating the electron shuttling capacity of aqueous biochar for hematite reduction. On the other side, biochar particles sorbed Fe(II) and consequently decreased the accumulation of Fe(II) in solution to facilitate the reduction of hematite further. We reported for the first time the biochar-facilitated microbial reduction of crystalline Fe(III), through electron shuttling processes mediated by aqueous biochar and complexation of Fe(II) by biochar particles. Such impacted redox cycles of Fe would be important for the soil environment with relatively high content of indigenous pyrogenic carbon or substantial application of biochar.

  17. Antioxidant, tautomerism and antibacterial studies of Fe(III)-1,2,4-triazole based complexes.

    PubMed

    Kharadi, G J

    2013-06-01

    New Fe(III) complexes have been synthesized by the reactions of ferric nitrate with Schiff base derived from 3-substituted phenyl-4-amino-5-hydrazino-1,2,4-triazole and indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes. Elemental analyses suggest that the complexes have 1:1 stoichiometry of the type [FeLn(H2O)(OH)]·xH2O. Structural and spectroscopic properties have been studied on the basis of elemental analyses, infrared spectra, (1)H and (13)H NMR spectra, electronic spectra, magnetic measurements and FAB mass spectra. FT-IR, (1)H and (13)H NMR studies reveal that the ligand (Ln) exists in the tautomeric enol form in both the states with intramolecular hydrogen bonding. Magnetic moment and reflectance spectral studies reveal that an octahedral geometry has been assigned to all the prepared complexes. FRAP values indicate that all the compounds have a ferric reducing antioxidant power. The compounds 2 and 3 showed relatively high antioxidant activity while compound 1 and 4 shows poor antioxidant power. Also good antimicrobial activities of the complexes against Staphylococcus aureus, Bacillus subtilis, Serratia marcescens, Pseudomonas aeruginosa and Escherichia coli have been found compared to its free ligands.

  18. Antioxidant, tautomerism and antibacterial studies of Fe(III)-1,2,4-triazole based complexes

    NASA Astrophysics Data System (ADS)

    Kharadi, G. J.

    2013-06-01

    New Fe(III) complexes have been synthesized by the reactions of ferric nitrate with Schiff base derived from 3-substituted phenyl-4-amino-5-hydrazino-1,2,4-triazole and indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes. Elemental analyses suggest that the complexes have 1:1 stoichiometry of the type [FeLn(H2O)(OH)]·xH2O. Structural and spectroscopic properties have been studied on the basis of elemental analyses, infrared spectra, 1H and 13H NMR spectra, electronic spectra, magnetic measurements and FAB mass spectra. FT-IR, 1H and 13H NMR studies reveal that the ligand (Ln) exists in the tautomeric enol form in both the states with intramolecular hydrogen bonding. Magnetic moment and reflectance spectral studies reveal that an octahedral geometry has been assigned to all the prepared complexes. FRAP values indicate that all the compounds have a ferric reducing antioxidant power. The compounds 2 and 3 showed relatively high antioxidant activity while compound 1 and 4 shows poor antioxidant power. Also good antimicrobial activities of the complexes against Staphylococcus aureus, Bacillus subtilis, Serratia marcescens, Pseudomonas aeruginosa and Escherichia coli have been found compared to its free ligands.

  19. Fe(III) shifts the mitochondria permeability transition-eliciting capacity of mangiferin to protection of organelle.

    PubMed

    Pardo-Andreu, Gilberto L; Cavalheiro, Renata A; Dorta, Daniel J; Naal, Zeki; Delgado, René; Vercesi, Aníbal E; Curti, Carlos

    2007-02-01

    Mangiferin acts as a strong antioxidant on mitochondria. However, when in the presence of Ca(2+), mangiferin elicits mitochondrial permeability transition (MPT), as evidenced by cyclosporin A-sensitive mitochondrial swelling. We now provide evidence, by means of electrochemical and UV-visible spectroscopical analysis, that Fe(III) coordinates with mangiferin. The resulting mangiferin-Fe(III) complex does not elicit MPT and prevents MPT by scavenging reactive oxygen species. Indeed, the complex protects mitochondrial membrane protein thiols and glutathione from oxidation. Fe(III) also significantly increases the ability of mangiferin to scavenge the 2,2-diphenyl-1-picrylhydrazyl radical, as well as to display antioxidant activity toward antimycin A-induced H(2)O(2) production and t-butyl hydroperoxide-promoted membrane lipid peroxidation in mitochondria. We postulate that coordination with Fe(III) constitutes a potential protective mechanism toward the prooxidant action of mangiferin and other catechol-containing antioxidants regarding MPT induction. Potential therapeutic relevance of this finding for conditions of pathological iron overload is discussed.

  20. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  1. Heterogeneous reduction of PuO₂ with Fe(II): importance of the Fe(III) reaction product.

    PubMed

    Felmy, Andrew R; Moore, Dean A; Rosso, Kevin M; Qafoku, Odeta; Rai, Dhanpat; Buck, Edgar C; Ilton, Eugene S

    2011-05-01

    Heterogeneous reduction of actinides in higher, more soluble oxidation states to lower, more insoluble oxidation states by reductants such as Fe(II) has been the subject of intensive study for more than two decades. However, Fe(II)-induced reduction of sparingly soluble Pu(IV) to the more soluble lower oxidation state Pu(III) has been much less studied, even though such reactions can potentially increase the mobility of Pu in the subsurface. Thermodynamic calculations are presented that show how differences in the free energy of various possible solid-phase Fe(III) reaction products can greatly influence aqueous Pu(III) concentrations resulting from reduction of PuO₂(am) by Fe(II). We present the first experimental evidence that reduction of PuO₂(am) to Pu(III) by Fe(II) was enhanced when the Fe(III) mineral goethite was spiked into the reaction. The effect of goethite on reduction of Pu(IV) was demonstrated by measuring the time dependence of total aqueous Pu concentration, its oxidation state, and system pe/pH. We also re-evaluated established protocols for determining Pu(III) {[Pu(III) + Pu(IV)] - Pu(IV)} by using thenoyltrifluoroacetone (TTA) in toluene extractions; the study showed that it is important to eliminate dissolved oxygen from the TTA solutions for accurate determinations. More broadly, this study highlights the importance of the Fe(III) reaction product in actinide reduction rate and extent by Fe(II).

  2. Fe(III) doped and grafted PbTiO{sub 3} film photocathode with enhanced photoactivity for hydrogen production

    SciTech Connect

    Hu, Yuxiang; Dong, Wen; Zheng, Fengang; Fang, Liang; Shen, Mingrong

    2014-08-25

    The photoelectrochemical activity of the PbTiO{sub 3} film photocathode deposited on indium tin oxide-coated quartz substrate was significantly improved through modifying the film surface by both the Fe(III) doping and grafting. Doping the PbTiO{sub 3} with Fe(III) ions narrows its band gap thus increases the visible light utilization, while the surface-grafted Fe(III) ions on the doped PbTiO{sub 3} surface are helpful to improve the charge transfer on the photocathode/electrolyte interface. Consequently, the photocurrent was increased from 38 μA/cm{sup 2} to 220 μA/cm{sup 2} under the irradiation of 100 mW/cm{sup 2} Xe lamp by using 0.1M Na{sub 2}SO{sub 4} as an electrolyte and zero-potential versus saturated calomel as a reference electrode. The corresponding increase in open circuit voltage was 0.95–1.11 V.

  3. Donor-acceptor complexation and dehydrogenation chemistry of aminoboranes.

    PubMed

    Malcolm, Adam C; Sabourin, Kyle J; McDonald, Robert; Ferguson, Michael J; Rivard, Eric

    2012-12-03

    A series of formal donor-acceptor adducts of aminoborane (H(2)BNH(2)) and its N-substituted analogues (H(2)BNRR') were prepared: LB-H(2)BNRR'(2)-BH(3) (LB = DMAP, IPr, IPrCH(2) and PCy(3); R and R' = H, Me or tBu; IPr = [(HCNDipp)(2)C:] and Dipp = 2,6-iPr(2)C(6)H(3)). To potentially access complexes of molecular boron nitride, LB-BN-LA (LA = Lewis acid), preliminary dehydrogenation chemistry involving the parent aminoborane adducts LB-H(2)BNH(2)-BH(3) was investigated using [Rh(COD)Cl](2), CuBr, and NiBr(2) as dehydrogenation catalysts. In place of isolating the intended dehydrogenated BN donor-acceptor complexes, the formation of borazine was noted as a major product. Attempts to prepare the fluoroarylborane-capped aminoborane complexes, LB-H(2)BNH(2)-B(C(6)F(5))(3), are also described.

  4. Conductivity of a Weyl semimetal with donor and acceptor impurities

    NASA Astrophysics Data System (ADS)

    Rodionov, Ya. I.; Syzranov, S. V.

    2015-05-01

    We study transport in a Weyl semimetal with donor and acceptor impurities. At sufficiently high temperatures transport is dominated by electron-electron interactions, while the low-temperature resistivity comes from the scattering of quasiparticles on screened impurities. Using the diagrammatic technique, we calculate the conductivity σ (T ,ω ,nA,nD) in the impurities-dominated regime as a function of temperature T , frequency ω , and the concentrations nA and nD of acceptors and donors and discuss the crossover behavior between the regimes of low and high temperatures and impurity concentrations. In a sufficiently compensated material [| nA-nD|≪ (nA+nD) ] with a small effective fine structure constant α ,σ (ω ,T ) ∝T2/(T-2-i ω .const) in a wide interval of temperatures. For very low temperatures, or in the case of an uncompensated material, the transport is effectively metallic. We discuss experimental conditions necessary for realizing each regime.

  5. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration.

    PubMed

    Richter, Katrin; Schicklberger, Marcus; Gescher, Johannes

    2012-02-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions.

  6. The excited states of stilbene and stilbenoid donor-acceptor dye systems. A theoretical study

    NASA Astrophysics Data System (ADS)

    Rettig, Wolfgang; Strehmel, Bernd; Majenz, Wilfried

    1993-07-01

    Semiempirical calculations within the CNDO/S framework are used to characterize the nature of the "phantom-singlet" excited state P * (double-bond twisted geometry) of stilbene and stilbenoid donor-acceptor dye systems including the laser dyes DCM and DASPMI. P * is highly polar (closed shell "hole-pair" nature) for weakly perturbed stilbenes but for larger donor-acceptor strength, the order of ground and excited state is reversed, and P * becomes of small polarity ("dot-dot" nature), fully consistent with the established model of biradicaloid states. For stilbene, a slight geometric symmetry reduction is necessary in order to localize the orbitals on the subunits. Only then are the calculated results consistent with those for methyl-substituted stilbene. The localized orbital description of twisted stilbene shows that P * contains negligible doubly excited character and possesses a very small gap to the ground state contrary to what is stated in the previous literature. The planar systems are also investigated and correlated with Dähne's triad rule of polymethine systems.

  7. Cholesterol acceptor capacity is preserved by different mechanisms in preterm and term fetuses.

    PubMed

    Pecks, Ulrich; Mohaupt, Markus G; Hütten, Matthias C; Maass, Nicolai; Rath, Werner; Escher, Geneviève

    2014-02-01

    Fetal serum cholesterol and lipoprotein concentrations differ between preterm and term born neonates. An imbalance of the flow of cholesterol from the sites of synthesis or efflux from cells of peripheral organs to the liver, the reverse cholesterol transport (RCT), is linked to atherosclerosis and cardiovascular disease (CVD). Preterm delivery is a risk factor for the development of CVD. Thus, we hypothesized that RCT is affected by a diminished cholesterol acceptor capacity in preterm as compared to term fetuses. Cholesterol efflux assays were performed in RAW264.7, HepG2, and HUVEC cell lines. In the presence and absence of ABC transporter overexpression by TO-901317, umbilical cord sera of preterm and term born neonates (n = 28 in both groups) were added. Lipid components including high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoprotein A1, and apolipoprotein E were measured and related to fractional cholesterol efflux values. We found overall, fractional cholesterol efflux to remain constant between the study groups, and over gestational ages at delivery, respectively. However, correlation analysis revealed cholesterol efflux values to be predominantly related to HDL concentration at term, while in preterm neonates, cholesterol efflux was mainly associated with LDL In conclusion cholesterol acceptor capacity during fetal development is kept in a steady state with different mechanisms and lipid fractions involved at distinct stages during the second half of fetal development. However, RCT mechanisms in preterm neonates seem not to be involved in the development of CVD later in life suggesting rather changes in the lipoprotein pattern causative.

  8. Exploring the transferase activity of Ffase from Schwanniomyces occidentalis, a β-fructofuranosidase showing high fructosyl-acceptor promiscuity.

    PubMed

    Piedrabuena, David; Míguez, Noa; Poveda, Ana; Plou, Francisco J; Fernández-Lobato, María

    2016-10-01

    The β-fructofuranosidase from the yeast Schwanniomyces occidentalis (Ffase) produces the prebiotic sugars 6-kestose and 1-kestose by transfructosylation of sucrose, which makes it of biotechnological interest. In this study, the hydrolase and transferase activity of this enzyme was kinetically characterized and its potential to synthesize new fructosylated products explored. A total of 40 hydroxylated compounds were used as potential fructosyl-acceptor alternatives to sucrose. Only 17 of them, including some monosaccharides, disaccharides, and oligosaccharides as well as alditols and glycosides were fructosylated. The best alternative acceptors were the alditols. The major transfer product of the reaction including mannitol was purified and characterized as 1-O-β-D-fructofuranosyl-D-mannitol, whose maximum concentration reached 44 g/L, representing about 7.3 % of total compounds in the mixture and 89 % of all products generated by transfructosylation. The reactions including erythritol produced 35 g/L of an isomer mixture comprising 1- and 4-O-β-D-fructofuranosyl-D-erythritol. In addition, Ffase produced 24 g/L of the disaccharide blastose by direct fructosylation of glucose, which makes it the first enzyme characterized from yeast showing this ability. Thus, novel fructosylated compounds with potential applications in food and pharmaceutical industries can be obtained due to the Ffase fructosyl-acceptor promiscuity.

  9. Toward a computational description of nitrile hydratase: studies of the ground state bonding and spin-dependent energetics of mononuclear, non-heme Fe(III) complexes.

    PubMed

    Chang, Christopher H; Boone, Amy J; Bartlett, Rodney J; Richards, Nigel G J

    2004-01-26

    The metal coordination and spin state of the Fe(III) center in nitrile hydratase (NHase) has stimulated the synthesis of model complexes in efforts to understand the reactivity and spectroscopic properties of the enzyme. We report density functional theory (DFT) calculations on a number of Fe(III) complexes that have been prepared as models of the NHase metal center, together with others having similar ligands but different ground state spin multiplicities. Our results suggest that a DFT description of specific spin configurations in these systems does not suffer from significant amounts of spin contamination. In particular, B3LYP calculations not only reproduce the observed spin state preferences of these Fe(III) complexes but also predict spin-dependent structural properties consistent with those expected on the basis of ligand field models. An analysis of the natural bond orbital (NBO) transformation of the Kohn-Sham wave functions has enabled quantitation of the overall contribution to covalency of ligand-to-metal sigma-donation and pi-donation, and metal-to-ligand pi-back-bonding in these Fe(III) complexes at their BLYP-optimized geometries. Although sulfur ligands are the primary source of covalency in the Fe(III) complexes, our quantitative analysis suggests that hyperbonding between metal-bound nitrogens and an Fe-S bond represents a mechanism by which Fe-N covalency may arise. These studies establish the computational methodology for future theoretical investigations of the NHase Fe(III) center.

  10. Binding characteristics of homogeneous molecularly imprinted polymers for acyclovir using an (acceptor-donor-donor)-(donor-acceptor-acceptor) hydrogen-bond strategy, and analytical applications for serum samples.

    PubMed

    Wu, Suqin; Tan, Lei; Wang, Ganquan; Peng, Guiming; Kang, Chengcheng; Tang, Youwen

    2013-04-12

    This paper demonstrates a novel approach to assembling homogeneous molecularly imprinted polymers (MIPs) based on mimicking multiple hydrogen bonds between nucleotide bases by preparing acyclovir (ACV) as a template and using coatings grafted on silica supports. (1)H NMR studies confirmed the AAD-DDA (A for acceptor, D for donor) hydrogen-bond array between template and functional monomer, while the resultant monodisperse molecularly imprinted microspheres (MIMs) were evaluated using a binding experiment, high performance liquid chromatography (HPLC), and solid phase extraction. The Langmuir isothermal model and the Langmuir-Freundlich isothermal model suggest that ACV-MIMs have more homogeneous binding sites than MIPs prepared through normal imprinting. In contrast to previous MIP-HPLC columns, there were no apparent tailings for the ACV peaks, and ACV-MIMs had excellent specific binding properties with a Ka peak of 3.44 × 10(5)M(-1). A complete baseline separation is obtained for ACV and structurally similar compounds. This work also successfully used MIMs as a specific sorbent for capturing ACV from serum samples. The detection limit and mean recovery of ACV was 1.8 ng/mL(-1) and 95.6%, respectively, for molecularly imprinted solid phase extraction coupled with HPLC. To our knowledge, this was the first example of MIPs using AAD-DDA hydrogen bonds.

  11. Theory of Triplet Excitation Transfer in the Donor-Oxygen-Acceptor System: Application to Cytochrome b6f

    PubMed Central

    Petrov, Elmar G.; Robert, Bruno; Lin, Sheng Hsien; Valkunas, Leonas

    2015-01-01

    Theoretical consideration is presented of the triplet excitation dynamics in donor-acceptor systems in conditions where the transfer is mediated by an oxygen molecule. It is demonstrated that oxygen may be involved in both real and virtual intramolecular triplet-singlet conversions in the course of the process under consideration. Expressions describing a superexchange donor-acceptor coupling owing to a participation of the bridging twofold degenerate oxygen’s virtual singlet state are derived and the transfer kinetics including the sequential (hopping) and coherent (distant) routes are analyzed. Applicability of this theoretical description to the pigment-protein complex cytochrome b6f, by considering the triplet excitation transfer from the chlorophyll a molecule to distant β-carotene, is discussed. PMID:26488665

  12. Two acceptor levels and hopping conduction in Mn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Kajikawa, Yasutomo

    2017-01-01

    By analysing the experimental data of the temperature-dependent Hall-effect measurements, an additional acceptor level has been confirmed to exist in Mn-doped p-GaAs besides the isolated substitutional Mn acceptor level. It is found that, in most of the investigated samples, the room-temperature hole concentration is governed by the additional acceptor level rather than the isolated substitutional Mn acceptor level. The concentration of the additional acceptor level is found to increase almost in proportion to the square of the concentration of the isolated substitutional Mn acceptors, suggesting that the additional acceptor level is related to Mn dimers. This suggests that the ferromagnetism observed in more heavily Mn-doped GaAs may be attributed to Mn clusters. For some of the samples in which the characteristic of nearest-neighbour hopping conduction in the substitutional Mn acceptor impurity band is evident, the hopping activation energy is deduced and is proved to increase in proportion to the cube root of the concentration of the substitutional Mn acceptors.

  13. Protected sphingosine from phytosphingosine as an efficient acceptor in glycosylation reaction.

    PubMed

    Di Benedetto, Roberta; Zanetti, Luca; Varese, Monica; Rajabi, Mehdi; Di Brisco, Riccardo; Panza, Luigi

    2014-02-07

    A convenient, simple, and high-yielding five-step synthesis of a sphingosine acceptor from phytosphingosine is reported, and its behavior in glycosylation reactions is described. Different synthetic paths to sphingosine acceptors using tetrachlorophthalimide as a protecting group for the sphingosine amino function and different glycosylation methods have been explored. Among the acceptors tested, the easiest accessible acceptor, unprotected on the two hydroxyl groups in positions 1 and 3, was regioselectively glycosylated on the primary position, the regioselectivity depending on the donor used.

  14. Process for gasification using a synthetic CO/sub 2/ acceptor

    SciTech Connect

    Lancet, M.S.; Curran, G.P.

    1980-11-04

    Conoco's gasification process uses a synthetic CO/sub 2/ acceptor consisting essentially of at least one calcium compound (either calcium oxide or calcium carbonate) supported in a refractory carrier matrix having the general formula Ca/sub 5/(SiO/sub 4/)/sub 2/CO/sub 3/. The synthetic acceptor is more effective than a natural calcium oxide acceptor during the gasification process because the thermally stable matrix causes the calcium compounds to remain in discrete particles that tend to reactivate with each passage through the process. This eliminates the need for large quantities of fresh makeup acceptor materials.

  15. Kinetics of DCE and VC mineralization under methanogenic and Fe(III)- reducing conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1997-01-01

    The kinetics of anaerobic mineralization of DCE and VC under mathanogenic and Fe(III)-reducing conditions as a function of dissolved contaminant concentration were evaluated. Microorganisms indigenous to creek bed sediments, where groundwater contaminated with chlorinated ethenes continuously discharges, demonstrated significant mineralization of DCE and VC under methanogenic and Fe(III)- reducing conditions. Over 37 days, the recovery of [1,214C]VC radioactivity as 14CO2 ranged from 5% to 44% and from 8% to 100% under methanogenic and Fe(III)-reducing conditions, respectively. The recovery of [1,2-14C]DCE radioactivity as 14CO2 ranged from 4% to 14% and did not vary significantly between methanogenic and Fe(III)reducing conditions. VC mineralization was described by Michaelis- Menten kinetics. Under methanogenic conditions, V(max) was 0.19 ?? 0.01 ??mol L-1 d-1 and the half-saturation constant, k(m), was 7.6 ?? 1.7 ??M. Under Fe(III)-reducing conditions, V(max) was 0.76 ?? 0.07 ??mol L-1 d-1 and k(m) was 1.3 ?? 0.5 ??M. In contrast, DCE mineralization could be described by first-order kinetics. The first-order degradation rate constant for DCE mineralization was 0.6 ?? 0.2% d-1 under methanogenic and Fe(III)-reducing conditions. The results indicate that the kinetics of chlorinated ethane mineralization can vary significantly with the specific contaminant and the predominant redox conditions under which mineralization occurs.

  16. Spectroscopy of donor-pi-acceptor complexes for solar cells

    NASA Astrophysics Data System (ADS)

    Himpsel, F. J.; Zegkinoglou, I.; Johnson, P. S.; Pemmaraju, C. D.; Prendergast, D.; Ragoussi, M.-E.; de la Torre, G.; Pickup, D. F.; Ortega, J. E.

    2014-03-01

    A recent improvement in the design of dye sensitized solar cells has been the combination of light absorbing, electron-donating, and electron-withdrawing groups within the same sensitizer molecule. This dye architecture has contributed to increase the energy conversion efficiency, leading to record efficiency values. Here we investigate a zinc(II)-porphyrin-based complex with triphenylamine donor groups and carboxyl linkers for the attachment to an oxide acceptor. The unoccupied orbitals of these three moieties are probed by element-selective X-ray absorption spectroscopy at the N 1s, C 1s, and Zn 2p edges, complemented by time-dependent density functional theory. The attachment of electron-donating groups to the porphyrin ring significantly delocalizes the highest occupied molecular orbital (HOMO) of the molecule. This leads to a spatial separation between the HOMO and the lowest unoccupied molecular orbital (LUMO), reducing the recombination rate of photoinduced electrons and holes.

  17. Pigment-acceptor-catalyst triads for photochemical hydrogen evolution.

    PubMed

    Kitamoto, Kyoji; Sakai, Ken

    2014-04-25

    In order to solve the problems of global warming and shortage of fossil fuels, researchers have been endeavoring to achieve artificial photosynthesis: splitting water into H2 and O2 under solar light illumination. Our group has recently invented a unique system that drives photoinduced water reduction through "Z-scheme" photosynthetic pathways. Nevertheless, that system still suffered from a low turnover number (TON) of the photocatalytic cycle (TON=4.1). We have now found and describe herein a new methodology to make significant improvements in the TON, up to around TON=14-27. For the new model systems reported herein, the quantum efficiency of the second photoinduced step in the Z-scheme photosynthesis is dramatically improved by introducing multiviologen tethers to temporarily collect the high-energy electron generated in the first photoinduced step. These are unique examples of "pigment-acceptor-catalyst triads", which demonstrate a new effective type of artificial photosynthesis.

  18. Donor-acceptor pair recombination in gallium sulfide

    NASA Astrophysics Data System (ADS)

    Aydinli, A.; Gasanly, N. M.; Gökşen, K.

    2000-12-01

    Low temperature photoluminescence of GaS single crystals shows three broad emission bands below 2.4 eV. Temperature and excitation light intensity dependencies of these bands reveal that all of them originate from close donor-acceptor pair recombination processes. Temperature dependence of the peak energies of two of these bands in the visible range follow, as expected, the band gap energy shift of GaS. However, the temperature dependence of the peak energy of the third band in the near infrared shows complex behavior by blueshifting at low temperatures followed by a redshift at intermediate temperatures and a second blueshift close to room temperature, which could only be explained via a configuration coordinate model. A simple model calculation indicates that the recombination centers are most likely located at the nearest neighbor lattice or interstitial sites.

  19. Recent advances in photoinduced donor/acceptor copolymerization

    NASA Astrophysics Data System (ADS)

    Jönsson, S.; Viswanathan, K.; Hoyle, C. E.; Clark, S. C.; Miller, C.; Morel, F.; Decker, C.

    1999-05-01

    Photoinitiated free radical polymerization of donor (D)/acceptor (A) type monomers has gained considerable interest due to the possibility to efficiently photopolymerize non-acrylate based systems. Furthermore, this photoinduced alternating copolymerization can be accomplished without the presence of a conventional free radical generating photoinitiator. In the past, we have shown that the structural influences in the direct photolysis of N-Alkyl and N-Arylmaleimides as well as their corresponding ground state charge transfer complexes (CTC) with suitable donors have carefully been investigated. For certain combinations of A and D type monomers, a direct photolysis of the ground state complex or the excitation of the acceptor, followed by the formation of an exciplex, has been shown to initiate the copolymerization. Herein, we show that the main route of initiation is based on inter or intra molecular H-abstraction from an excited state maleimide, whereby no exciplex formation takes place. H-abstraction will predominantly take place in systems where easily abstractable hydrogens are present. Our laser flash photolysis investigation, ESR [1] (A. Hiroshi, I. Takasi, T. Nosi, Macromol. Chem. 190 (1989) 2821) and phosphorescence emissions [2,3] (K.S. Chen, T. Foster, J.K.S. Wan, J. Phys. Chem. 84 (1980) 2473; C.J. Seliskar, S.P. McGlynn, J. Chem. Phys. 55 (1971) 4337) studies show that triplet excited states of N-alkyl substituted maleimides (RMI), which are well known strong precursors for direct H-abstractions from aliphatic ethers and secondary alcohols, are formed upon excitation. Rates of copolymerization and degrees of conversion for copolymerization of maleimide/vinyl ether pairs in air and nitrogen have been measured as a function of hydrogen abstractability of the excited triplet state MI as well as the influence of concentration and hydrogen donating effect of the hydrogen donor.

  20. Role of Hydrophobicity in Adhesion of the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga to Amorphous Fe(III) Oxide

    PubMed Central

    Caccavo, F.; Schamberger, P. C.; Keiding, K.; Nielsen, P. H.

    1997-01-01

    The mechanisms by which the dissimilatory Fe(III)-reducing bacterium Shewanella alga adheres to amorphous Fe(III) oxide were examined through comparative analysis of S. alga BrY and an adhesion-deficient strain of this species, S. alga RAD20. Approximately 100% of S. alga BrY cells typically adhered to amorphous Fe(III) oxide, while less than 50% of S. alga RAD20 cells adhered. Bulk chemical analysis, isoelectric point analysis, and cell surface analysis by time-of-flight secondary-ion mass spectrometry and electron spectroscopy for chemical analysis demonstrated that the surfaces of S. alga BrY cells were predominantly protein but that the surfaces of S. alga RAD20 cells were predominantly exopolysaccharide. Physicochemical analyses and hydrophobic interaction assays demonstrated that S. alga BrY cells were more hydrophobic than S. alga RAD20 cells. This study represents the first quantitative analysis of the adhesion of a dissimilatory Fe(III)-reducing bacterium to amorphous Fe(III) oxide, and the results collectively suggest that hydrophobic interactions are a factor in controlling the adhesion of this bacterium to amorphous Fe(III) oxide. Despite having a reduced ability to adhere, S. alga RAD20 reduced Fe(III) oxide at a rate identical to that of S. alga BrY. This result contrasts with results of previous studies by demonstrating that irreversible cell adhesion is not requisite for microbial reduction of amorphous Fe(III) oxide. These results suggest that the interaction between dissimilatory Fe(III)-reducing bacteria and amorphous Fe(III) oxide is more complex than previously believed. PMID:16535706

  1. Effect of desferrioxamine B and Suwannee River fulvic acid on Fe(III) release and Cr(III) desorption from goethite

    NASA Astrophysics Data System (ADS)

    Stewart, Angela G.; Hudson-Edwards, Karen A.; Dubbin, William E.

    2016-04-01

    Siderophores are biogenic chelating ligands that facilitate the solubilisation of Fe(III) and form stable complexes with a range of contaminant metals and therefore may significantly affect their biogeochemical cycling. Desferrioxamine B (DFOB) is a trihydroxamate siderophore that acts synergistically with fulvic acid and low molecular weight organic ligands to release Fe from Fe(III) oxides. We report the results of batch dissolution experiments in which we determine the rates of Cr(III) desorption and Fe(III) release from Cr(III)-treated synthetic goethite as influenced by DFOB, by fulvic acid, and by the two compounds in combination. We observed that adsorbed Cr(III) at 3% surface coverage significantly reduced Fe(III) release from goethite for all combinations of DFOB and fulvic acid. When DFOB (270 μM) was the only ligand present, dissolved Fe(III) and Cr(III) increased approximately 1000-fold and 16-fold, respectively, as compared to the ligand-free system, a difference we attribute to the slow rate of water exchange of Cr(III). Suwannee River fulvic acid (SRFA) acts synergistically with DFOB by (i) reducing the goethite surface charge leading to increased HDFOB+ surface excess and by (ii) forming aqueous Fe(III)-SRFA species whose Fe(III) is subsequently removed by DFOB to yield aqueous Fe(III)-DFOB complexes. These observations shed new light on the synergistic relationship between DFOB and fulvic acid and reveal the mechanisms of Fe(III) acquisition available to plants and micro-organisms in Cr(III) contaminated environments.

  2. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study.

    PubMed

    Tavangar, Zahra; Zareie, Nazanin

    2016-10-05

    A series of metal free Tetrathienoacene-based (TTA-based) organic dyes are designed and investigated as sensitizers for application in dye sensitized solar cells (DSSCs). Density function theory and time dependent density function theory calculations were performed on these dyes at vacuum and orthodichlorobenzene as the solvent. Effects of changing π-conjugation bridges and different functional groups in acceptor and donor units were investigated. UV-Vis absorption spectra were simulated to show the wavelength shifting and absorption properties. Inserting nitro and acyl chloride functional groups in acceptor and NH2 in donor units leads to the reduction of HOMO-LUMO gap by lowering the lowest unoccupied molecular orbital (LUMO) energy level and raising the highest occupied molecular orbital (HOMO) energy level and the increase in effective parameters in DSSC' efficiency. The results show that changing spacer units from thiophene to furan has a great effect on electronic structure and absorption spectra. Investigation of the electron distributions of frontier orbitals shows the HOMO and LUMO localization in donor and acceptor, respectively. Some key parameters that were studied here include light harvesting efficiency, free energy of electron injection and open circuit photo-voltage.

  3. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study

    NASA Astrophysics Data System (ADS)

    Tavangar, Zahra; Zareie, Nazanin

    2016-10-01

    A series of metal free Tetrathienoacene-based (TTA-based) organic dyes are designed and investigated as sensitizers for application in dye sensitized solar cells (DSSCs). Density function theory and time dependent density function theory calculations were performed on these dyes at vacuum and orthodichlorobenzene as the solvent. Effects of changing π-conjugation bridges and different functional groups in acceptor and donor units were investigated. UV-Vis absorption spectra were simulated to show the wavelength shifting and absorption properties. Inserting nitro and acyl chloride functional groups in acceptor and NH2 in donor units leads to the reduction of HOMO-LUMO gap by lowering the lowest unoccupied molecular orbital (LUMO) energy level and raising the highest occupied molecular orbital (HOMO) energy level and the increase in effective parameters in DSSC' efficiency. The results show that changing spacer units from thiophene to furan has a great effect on electronic structure and absorption spectra. Investigation of the electron distributions of frontier orbitals shows the HOMO and LUMO localization in donor and acceptor, respectively. Some key parameters that were studied here include light harvesting efficiency, free energy of electron injection and open circuit photo-voltage.

  4. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source.

  5. Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors.

    PubMed

    Black, Katherine A; Dos Santos, Patricia C

    2015-06-01

    Cysteine desulfurases utilize a PLP-dependent mechanism to catalyze the first step of sulfur mobilization in the biosynthesis of sulfur-containing cofactors. Sulfur activation and integration into thiocofactors involve complex mechanisms and intricate biosynthetic schemes. Cysteine desulfurases catalyze sulfur-transfer reactions from l-cysteine to sulfur acceptor molecules participating in the biosynthesis of thio-cofactors, including Fe-S clusters, thionucleosides, thiamin, biotin, and molybdenum cofactor. The proposed mechanism of cysteine desulfurases involves the PLP-dependent cleavage of the C-S bond from l-cysteine via the formation of a persulfide enzyme intermediate, which is considered the hallmark step in sulfur mobilization. The subsequent sulfur transfer reaction varies with the class of cysteine desulfurase and sulfur acceptor. IscS serves as a mecca for sulfur incorporation into a network of intertwined pathways for the biosynthesis of thio-cofactors. The involvement of a single enzyme interacting with multiple acceptors, the recruitment of shared-intermediates partaking roles in multiple pathways, and the participation of Fe-S enzymes denote the interconnectivity of pathways involving sulfur trafficking. In Bacillus subtilis, the occurrence of multiple cysteine desulfurases partnering with dedicated sulfur acceptors partially deconvolutes the routes of sulfur trafficking and assigns specific roles for these enzymes. Understanding the roles of promiscuous vs. dedicated cysteine desulfurases and their partnership with shared-intermediates in the biosynthesis of thio-cofactors will help to map sulfur transfer events across interconnected pathways and to provide insight into the hierarchy of sulfur incorporation into biomolecules. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.

  6. Synthesis and characterization of dopamine substitue tripodal trinuclear [(salen/salophen/salpropen)M] (Mdbnd Cr(III), Mn(III), Fe(III) ions) capped s-triazine complexes: Investigation of their thermal and magnetic properties

    NASA Astrophysics Data System (ADS)

    Uysal, Şaban; Koç, Ziya Erdem

    2016-04-01

    In this work, we aimed to synthesize and characterize a novel tridirectional ligand including three catechol groups and its novel tridirectional-trinuclear triazine core complexes. For this purpose, we used melamine (2,4,6-triamino-1,3,5-triazine) (MA) as starting material. 2,4,6-tris(4-carboxybenzimino)-1,3,5-triazine (II) was synthesized by the reaction of an equivalent melamine (I) and three equivalent 4-carboxybenzaldehyde. 4,4‧,4″-((1E,1‧E,1″E)-((1,3,5-triazine-2,4,6-triyl)tris(azanylylidene))tris(methanylylidene))tris(N-(3,4-dihydroxyphenethyl)benzamide) L (IV) was synthesized by the reaction of one equivalent (II) and three equivalent dopamine (3,4-dihydroxyphenethylamine) (DA) by using two different methods. (II, III, IV) and nine novel trinuclear Cr(III), Mn(III) and Fe(III) complexes of (IV) were characterized by means of elemental analyses, 1H NMR, FT-IR spectrometry, LC-MS (ESI+) and thermal analyses. The metal ratios of the prepared complexes were performed using Atomic Absorption Spectrophotometry (AAS). We also synthesized novel tridirectional-trinuclear systems and investigated their effects on magnetic behaviors of [salen, salophen, salpropen Cr(III)/Mn(III)/Fe(III)] capped complexes. The complexes were determined to be low-spin distorted octahedral Mn(III) and Fe(III), and distorted octahedral Cr(III) all bridged by catechol group.

  7. Contrasting performance of donor-acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells.

    PubMed

    Khlyabich, Petr P; Rudenko, Andrey E; Burkhart, Beate; Thompson, Barry C

    2015-02-04

    Here two contrasting approaches to polymer-fullerene solar cells are compared. In the first approach, two distinct semi-random donor-acceptor copolymers are blended with phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The two poly(3-hexylthiophene)-based polymers contain either the acceptor thienopyrroledione (TPD) or diketopyrrolopyrrole (DPP). In the second approach, semi-random donor-acceptor copolymers containing both TPD and DPP acceptors in the same polymer backbone, termed two-acceptor polymers, are blended with PC61BM to give binary blend solar cells. The two approaches result in bulk heterojunction solar cells that have the same molecular active-layer components but differ in the manner in which these molecular components are mixed, either by physical mixing (ternary blend) or chemical "mixing" in the two-acceptor (binary blend) case. Optical properties and photon-to-electron conversion efficiencies of the binary and ternary blends were found to have similar features and were described as a linear combination of the individual components. At the same time, significant differences were observed in the open-circuit voltage (Voc) behaviors of binary and ternary blend solar cells. While in case of two-acceptor polymers, the Voc was found to be in the range of 0.495-0.552 V, ternary blend solar cells showed behavior inherent to organic alloy formation, displaying an intermediate, composition-dependent and tunable Voc in the range from 0.582 to 0.684 V, significantly exceeding the values achieved in the two-acceptor containing binary blend solar cells. Despite the differences between the physical and chemical mixing approaches, both pathways provided solar cells with similar power conversion efficiencies, highlighting the advantages of both pathways toward highly efficient organic solar cells.

  8. Scaling laws for charge transfer in multiply bridged donor/acceptor molecules in a dissipative environment.

    PubMed

    Goldsmith, Randall H; Wasielewski, Michael R; Ratner, Mark A

    2007-10-31

    The ability of multiple spatial pathways to sum coherently and facilitate charge transfer is examined theoretically. The role of multiple spatial pathways in mediating charge transfer has been invoked several times in the recent literature while discussing charge transfer in proteins, while multiple spatial pathways are known to contribute to charge transport in metal-molecule-metal junctions. We look at scaling laws for charge transfer in donor-bridge-acceptor (D-B-A) molecules and show that these scaling laws change significantly when environment-induced dephasing is included. In some cases, D-B-A systems are expected to show no enhancement in the rate of charge transfer with the addition of multiple degenerate pathways. The origins of these different scaling laws are investigated by looking at which Liouville space pathways are active in different dephasing regimes.

  9. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers

    NASA Astrophysics Data System (ADS)

    Barrejón, Myriam; Gobeze, Habtom B.; Gómez-Escalonilla, María J.; Fierro, José Luis G.; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando

    2016-08-01

    Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an

  10. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex.

    PubMed

    Rosokha, Sergiy V; Kochi, Jay K

    2008-05-01

    . First, Q < 1 identifies one extreme mechanism owing to slow electron-transfer rates that result from the dominance of the intrinsic activation barrier (lambdaT) between the encounter and successor complexes. At the other extreme of Q > or = 1, the overwhelming dominance of the resonance stabilization (H(DA)) predicts the odd-electron mobility between the donor and acceptor to occur without an activation barrier such that bimolecular electron transfer is coincident with their diffusional encounter. In between lies a potentially infinite set of states, 0 < Q < 1 with opposing attractive and destabilizing forces that determine the location of the bound transition states along the reaction coordinate. Three prototypical potential-energy surfaces evolve as a result of progressively increasing the donor/acceptor bindings (H(DA)) extant in the precursor complex (at constant lambdaT). In these cases, the "outer-sphere" mechanism is limited by the weak donor/acceptor coupling that characterizes the now classical Marcus outer-sphere mechanism. Next, the "inner-sphere" mechanism derives from moderate (localized) donor/acceptor bindings and includes the mechanistic concept of the bridged-activated complex introduced by Taube for a wide variety of ligand-based redox dyads. Finally, the "interior" mechanism is also another subclass of the Taube (inner-sphere) classification, and it lies at the other extreme of very fast electron-transfer rate processes (heretofore unrecognized), arising from the spontaneous annihilation of the donor/acceptor dyad to the delocalized (electron-transfer) complex as it descends barrierlessly into the chemical "black hole" that is rate-limited solely by diffusion.

  11. Comparison of the Adsorption of Fe(III) on Alpha- and Gamma-MnO2 Nanostructure

    NASA Astrophysics Data System (ADS)

    Dinh, Van-Phuc; Le, Ngoc-Chung; Le, Thi-Diem; Bui, Tan-Anh; Nguyen, Ngoc-Tuan

    2017-01-01

    Aqueous industrial wastes from heavy industry factories contain a large amount of Fe ions, which constitute a hazard for human life even at trace concentrations. Adsorption technology is a promising method for removing Fe(III) from aqueous solutions. In this report, the adsorption of the Fe(III) ion on γ- and α-MnO2 nanostructures was compared. The results showed that the maximum adsorption was obtained at pH = 3.5 for both materials after 120 min for γ-MnO2 and 80 min for α-MnO2. Adsorption isotherm models, such as Langmuir, Freundlich, Sips, Tempkin, and Dubinin-Radushkevich were applied to determine adsorption capacity as well as the nature of the uptake. The highest R 2, the smallest of root mean squared error (RMSE), and the nonlinear Chi-square test (χ2) values determined that the Sips model was the most appropriate equation to describe the adsorption of Fe(III) on γ- and α-MnO2. The maximum monolayer adsorption capacity calculated from the Langmuir model and the maximum adsorption capacity calculated from the Sips model of γ-MnO2 was more than four times that of α-MnO2. The heat of the adsorption as well as the mean free energy estimated from Tempkin and Dubinin-Radushkevich was determined to be less than 8 kJ/mol, which showed that the adsorption on both materials followed a physical process. Kinetic studies showed that a pseudo-second-order model was accurately described on both samples with three stages.

  12. Heterogeneous Reduction of PuO2 with Fe(II): Importance of the Fe(III) Reaction Product

    SciTech Connect

    Felmy, Andrew R.; Moore, Dean A.; Rosso, Kevin M.; Qafoku, Odeta; Rai, Dhanpat; Buck, Edgar C.; Ilton, Eugene S.

    2011-05-01

    Abstract Heterogeneous reduction of actinides in higher and more soluble oxidation states to lower more insoluble oxidation states by reductants such as Fe(II) has been the subject of intensive study for more than two decades. However, Fe(II)-induced reduction of sparingly soluble Pu(IV) to the more soluble lower oxidation state Pu(III) has been much less studied even though such reactions can potentially increase the mobility of Pu in the subsurface. Thermodynamic calculations are presented that show how differences in the free energy of various possible solid-phase Fe(III) reaction products can greatly influence aqueous Pu(III) concentrations resulting from reduction of PuO2(am) by Fe(II). We present the first experimental evidence that reduction of PuO2(am) to Pu(III) by Fe(II) was enhanced when the Fe(III) mineral goethite was spiked into the reaction. The effect of goethite on reduction of Pu(IV) was demonstrated by measuring the time-dependence of total aqueous Pu concentration, its oxidation state, and system pe/pH. We also re-evaluated established protocols for determining Pu(III) [(Pu(III) + Pu(IV)) - Pu(IV)] by using thenoyltrifluoroacetone (TTA) in toluene extractions; the study showed that it is important to eliminate dissolved oxygen from the TTA solutions for accurate determinations. More broadly, this study highlights the importance of the Fe(III) reaction product in actinide reduction rate and extent by Fe(II).

  13. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor

    PubMed Central

    Kane, Aunica L.; Brutinel, Evan D.; Joo, Heena; Maysonet, Rebecca; VanDrisse, Chelsey M.; Kotloski, Nicholas J.

    2016-01-01

    ABSTRACT Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in S. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in S. oneidensis. IMPORTANCE Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the

  14. Dichotomous Role of Exciting the Donor or the Acceptor on Charge Generation in Organic Solar Cells.

    PubMed

    Hendriks, Koen H; Wijpkema, Alexandra S G; van Franeker, Jacobus J; Wienk, Martijn M; Janssen, René A J

    2016-08-10

    In organic solar cells, photoexcitation of the donor or acceptor phase can result in different efficiencies for charge generation. We investigate this difference for four different 2-pyridyl diketopyrrolopyrrole (DPP) polymer-fullerene solar cells. By comparing the external quantum efficiency spectra of the polymer solar cells fabricated with either [60]PCBM or [70]PCBM fullerene derivatives as acceptor, the efficiency of charge generation via donor excitation and acceptor excitation can both be quantified. Surprisingly, we find that to make charge transfer efficient, the offset in energy between the HOMO levels of donor and acceptor that govern charge transfer after excitation of the acceptor must be larger by ∼0.3 eV than the offset between the corresponding two LUMO levels when the donor is excited. As a consequence, the driving force required for efficient charge generation is significantly higher for excitation of the acceptor than for excitation of the donor. By comparing charge generation for a total of 16 different DPP polymers, we confirm that the minimal driving force, expressed as the photon energy loss, differs by about 0.3 eV for exciting the donor and exciting the acceptor. Marcus theory may explain the dichotomous role of exciting the donor or the acceptor on charge generation in these solar cells.

  15. Stimuli responsive hybrid magnets: tuning the photoinduced spin-crossover in Fe(III) complexes inserted into layered magnets.

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; López-Jordà, Maurici; Waerenborgh, João C; Desplanches, Cédric; Wang, Hongfeng; Létard, Jean-François; Hauser, Andreas; Tissot, Antoine

    2013-06-12

    The insertion of a [Fe(sal2-trien)](+) complex cation into a 2D oxalate network in the presence of different solvents results in a family of hybrid magnets with coexistence of magnetic ordering and photoinduced spin-crossover (LIESST effect) in compounds [Fe(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]·CHCl3 (1·CHCl3), [Fe(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]·CHBr3 (1·CHBr3), and [Fe(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]·CH2Br2 (1·CH2Br2). The three compounds crystallize in a 2D honeycomb anionic layer formed by Mn(II) and Cr(III) ions linked through oxalate ligands and a layer of [Fe(sal2-trien)](+) complexes and solvent molecules (CHCl3, CHBr3, or CH2Br2) intercalated between the 2D oxalate network. The magnetic properties and Mössbauer spectroscopy indicate that they undergo long-range ferromagnetic ordering at 5.6 K and a spin crossover of the intercalated [Fe(sal2-trien)](+) complexes at different temperatures T1/2. The three compounds present a LIESST effect with a relaxation temperature TLIESST inversely proportional to T1/2. The isostructural paramagnetic compound, [Fe(III)(sal2-trien)][Zn(II)Cr(III)(ox)3]·CH2Cl2 (2·CH2Cl2) was also prepared. This compound presents a partial spin crossover of the inserted Fe(III) complex as well as a LIESST effect. Finally, spectroscopic characterization of the Fe(III) doped compound [Ga0.99Fe0.01(sal2trien)][Mn(II)Cr(III)(ox)3]·CH2Cl2 (3·CH2Cl2) shows a gradual and complete thermal spin crossover and a LIESST effect on the isolated Fe(III) complexes. This result confirms that cooperativity is not a necessary condition to observe the LIESST effect in an Fe(III) compound.

  16. Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors.

    SciTech Connect

    Beliaev, A. S.; Thompson, D. K.; Khare, T.; Lim, H.; Brandt, C. C.; Li, G.; Murray, A. E.; Heidelberg, J. F.; Giometti, C. S.; Yates, J., III; Nealson, K. H.; Tiedje, J. M.; Zhou, J.; Biosciences Division; ORNL; Scripps Research Inst.; Michigan State Univ.; The Inst. for Genomic Research; Jet Propulsion Laboratory; California Inst. of Tech.

    2002-01-01

    Changes in mRNA and protein expression profiles of Shewanella oneidenesis MR-1 during switch from aerobic to fumarate-, Fe(III)-, or nitrate-reducing conditions were examined using DNA microarrays and two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In response to changes in growth conditions, 121 of the 691 arrayed genes displayed at least a two-fold difference in transcript abundance as determined by microarray analysis. Genes involved in aerobic respiration encoding cytochrome c and d oxidases and TCA cycle enzymes were repressed under anaerobic conditions. Genes induced during anaerobic respiration included those involved in cofactor biosynthesis and assembly (moaACE, ccmHF, nosD, cysG), substrate transport (cysUP, cysTWA, dcuB), and anaerobic energy metabolism (dmsAB, psrC, pshA, hyaABC, hydA). Transcription of genes encoding a periplasmic nitrate reductase (napBHGA), cytochrome c{sub 552}, and prismane was elevated 8- to 56-fold in response to the presence of nitrate, while cymA, ifcA, and frdA were specifically induced three- to eightfold under fumarate-reducing conditions. The mRNA levels for two oxidoreductase-like genes of unknown function and several cell envelope genes involved in multidrug resistance increased two- to fivefold specifically under Fe(III)-reducing conditions. Analysis of protein expression profiles under aerobic and anaerobic conditions revealed 14 protein spots that showed significant differences in abundance on 2-D gels. Protein identification by mass spectrometry indicated that the expression of prismane, dihydrolipoamide succinyltransferase, and alcaligin siderophore biosynthesis protein correlated with the microarray data.

  17. Multifunctional magnetic materials obtained by insertion of spin-crossover Fe(III) complexes into chiral 3D bimetallic oxalate-based ferromagnets.

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; López-Jordà, Maurici; Waerenborgh, João C

    2011-09-19

    The syntheses, structures, and magnetic properties of compounds of formula [Fe(III)(5-Clsal(2)-trien)][Mn(II)Cr(III)(ox)(3)]·0.5(CH(3)NO(2)) (1), [Fe(III)(5-Brsal(2)-trien)][Mn(II)Cr(III)(ox)(3)] (2), and [In(III)(5-Clsal(2)-trien)][Mn(II)Cr(III)(ox)(3)] (3) are reported. The structure of the three compounds, which crystallize in the orthorhombic P2(1)2(1)2(1) chiral space group, presents a 3D chiral anionic network formed by Mn(II) and Cr(III) ions linked through oxalate ligands with inserted [Fe(III)(5-Clsal(2)-trien)](+), [Fe(III)(5-Brsal(2)-trien)](+), and [In(III)(5-Clsal(2)-trien)](+) cations. The magnetic properties indicate that the three compounds undergo long-range ferromagnetic ordering at ca. 5 K. On the other hand, the inserted Fe(III) cations undergo a partial spin crossover in the case of 1 and 2.

  18. Effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper in synthesized Fe(III) minerals and Fe-rich soils.

    PubMed

    Hu, Chaohua; Zhang, Youchi; Zhang, Lei; Luo, Wensui

    2014-04-01

    The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, SO4(2-) in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cucontaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

  19. Fe(III) fertilization mitigating net global warming potential and greenhouse gas intensity in paddy rice-wheat rotation systems in China.

    PubMed

    Liu, Shuwei; Zhang, Ling; Liu, Qiaohui; Zou, Jianwen

    2012-05-01

    A complete accounting of net greenhouse gas balance (NGHGB) and greenhouse gas intensity (GHGI) affected by Fe(III) fertilizer application was examined in typical annual paddy rice-winter wheat rotation cropping systems in southeast China. Annual fluxes of soil carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) were measured using static chamber method, and the net ecosystem exchange of CO(2) (NEE) was determined by the difference between soil CO(2) emissions (R(H)) and net primary production (NPP). Fe(III) fertilizer application significantly decreased R(H) without adverse effects on NPP of rice and winter wheat. Fe(III) fertilizer application decreased seasonal CH(4) by 27-44%, but increased annual N(2)O by 65-100%. Overall, Fe(III) fertilizer application decreased the annual NGHGB and GHGI by 35-47% and 30-36%, respectively. High grain yield and low greenhouse gas intensity can be reconciled by Fe(III) fertilizer applied at the local recommendation rate in rice-based cropping systems.

  20. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  1. Vacancy-Induced Electronic Structure Variation of Acceptors and Correlation with Proton Conduction in Perovskite Oxides.

    PubMed

    Kim, Hye-Sung; Jang, Ahreum; Choi, Si-Young; Jung, WooChul; Chung, Sung-Yoon

    2016-10-17

    In most proton-conducing perovskite oxides, the electrostatic attraction between negatively charged acceptor dopants and protonic defects having a positive charge is known to be a major cause of retardation of proton conduction, a phenomenon that is generally referred to as proton trapping. We experimentally show that proton trapping can be suppressed by clustering of positively charged oxygen vacancies to acceptors in BaZrO3-δ and BaCeO3-δ . In particular, to ensure the vacancy-acceptor association is effective against proton trapping, the valence electron density of acceptors should not significantly vary when the oxygen vacancies cluster, based on the weak hybridization between the valence d or p orbitals of acceptors and the 2p orbitals of oxygen.

  2. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xia, Chunyu; Wu, Wei-Min; Sun, Guoping; Xu, Meiying

    2014-07-01

    To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors.

  3. The activation energy for Mg acceptor in the Ga-rich InGaN alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Wei, Tong; Chen, Li-Ying; Wang, Sha-Sha; Wang, Jun

    2017-02-01

    The activation energy for Mg acceptor in InxGa1-xN alloys is investigated. It is found that there are three factors to influence the activation energy for Mg acceptor. One is the stronger dependence of the VBM of InxGa1-xN depending on In content than that of the Mg acceptor energy level. The other is the concentration of Mg acceptors. Another is the extending of the valence band-tail states into the band gap. In addition, a model based on modifying the effective mass model is developed. It is found that the model can describe the activation energy for Mg acceptor in the Ga-rich InxGa1-xN alloys well after considering the influence of the valence band-tail states.

  4. Ultrafast exciton dissociation at donor/acceptor interfaces

    NASA Astrophysics Data System (ADS)

    Grancini, G.; Fazzi, D.; Binda, M.; Maiuri, M.; Petrozza, A.; Criante, L.; Perissinotto, S.; Egelhaaf, H.-J.; Brida, D.; Cerullo, G.; Lanzani, G.

    2013-09-01

    Charge generation at donor/acceptor interface is a highly debated topic in the organic photovoltaics (OPV) community. The primary photoexcited state evolution happens in few femtosecond timescale, thus making very intriguing their full understanding. In particular charge generation is believed to occur in < 200 fs, but no clear picture emerged so far. In this work we reveal for the first time the actual charge generation mechanism following in real time the exciton dissociation mechanism by means of sub-22 fs pump-probe spectroscopy. We study a low-band-gap polymer: fullerene interface as an ideal system for OPV. We demonstrate that excitons dissociation leads, on a timescale of 20-50 fs, to two byproducts: bound interfacial charge transfer states (CTS) and free charges. The branching ratio of their formation depends on the excess photon energy provided. When high energy singlet polymer states are excited, well above the optical band gap, an ultrafast hot electron transfer happens between the polymer singlet state and the interfacial hot CTS* due to the high electronic coupling between them. Hot exciton dissociation prevails then on internal energy dissipation that occurs within few hundreds of fs. By measuring the internal quantum efficiency of a prototypical device a rising trend with energy is observed, thus indicating that hot exciton dissociation effectively leads to a higher fraction of free charges.

  5. Potassium acceptor doping of ZnO crystals

    SciTech Connect

    Parmar, Narendra S. Lynn, K. G.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  6. Poly(trifluoromethyl)azulenes: structures and acceptor properties

    SciTech Connect

    Clikeman, Tyler T.; Bukovsky, Eric V.; Kuvychko, Igor V.; San, Long K.; Deng, Shihu; Wang, Xue B.; Chen, Yu-Sheng; Strauss, Steven H.; Boltalina, Olga V.

    2014-07-10

    Azulene is a non-alternant, non-benzenoid aromatic hydrocarbon with an intense blue colour, a dipole moment of 1.0 D,1 positive electron affinity, and an “anomalous” emission from the second excited state in violation of Kasha’s rule.2,3 Azulene’s unique properties have potential uses in molecular switches,4,5 molecular diodes,6 organic photovoltaics,7 and charge transfer complexes.8-12 Introduction of electron-withdrawing groups to the azulenic core, such as CN,8,13,14 halogens,15-19 and CF3,20,21 can enhance certain electrical and photophysical properties. In this work, we report six new trifluoromethyl derivatives of azulene (AZUL), three isomers of AZUL(CF3)3 and three isomers of AZUL(CF3)4, and the first X-ray structure of a π-stacked donor-acceptor complex of a trifluoromethyl azulene with donor pyrene.

  7. Paramagnetic centers in particulate formed from the oxidative pyrolysis of 1-methylnaphthalene in the presence of Fe(III)2O3 nanoparticles

    PubMed Central

    Herring, Paul; Khachatryan, Lavrent; Lomnicki, Slawomir; Dellinger, Barry

    2015-01-01

    The identity of radical species associated with particulate formed from the oxidative pyrolysis of 1-methylnaphthalene (1-MN) was investigated using low temperature matrix isolation electron paramagnetic resonance spectroscopy (LTMI-EPR), a specialized technique that provided a method of sampling and analysis of the gas-phase paramagnetic components. A superimposed EPR signal was identified to be a mixture of organic radicals (carbon and oxygen-centered) and soot. The carbon-centered radicals were identified as a mixture of the resonance-stabilized indenyl, cyclopentadienyl, and naphthalene 1-methylene radicals through the theoretical simulation of the radical’s hyperfine structure. Formation of these radical species was promoted by the addition of Fe(III)2O3 nanoparticles. Enhanced formation of resonance stabilized radicals from the addition of Fe(III)2O3 nanoparticles can account for the observed increased sooting tendency associated with Fe(III)2O3 nanoparticle addition. PMID:25673882

  8. Synthesis of Imine-Naphthol Tripodal Ligand and Study of Its Coordination Behaviour towards Fe(III), Al(III), and Cr(III) Metal Ions

    PubMed Central

    Kaur, Kirandeep

    2014-01-01

    A hexadentate Schiff base tripodal ligand is synthesized by the condensation of tris (2-aminoethyl) amine with 2-hydroxy-1-naphthaldehyde and characterized by various spectroscopic techniques like UV-VIS, IR, NMR, MASS, and elemental analysis. The solution studies by potentiometric and spectrophotometric methods are done at 25 ± 1°C, µ = 0.1 M KCl, to calculate the protonation constants of the ligand and formation constants of metal complexes formed by the ligand with Fe(III), Al(III), and Cr(III) metal ions. The affinity of the ligand towards Fe(III) is compared with deferiprone (a drug applied for iron intoxication) and transferrin (the main Fe(III) binding protein in plasma). Structural analysis of the ligand and the metal complexes was done using semiempirical PM6 method. Electronic and IR spectra are calculated by semiempirical methods and compared with experimental one. PMID:25294978

  9. The effect of chelating agent on the separation of Fe(III) and Ti(IV) from binary mixture solution by cation-exchange membrane.

    PubMed

    Kir, Esengül; Cengeloğlu, Yunus; Ersöz, Mustafa

    2005-12-15

    The competitive transport of Fe(III) and Ti(IV) ions and the effect of chelating agents on separation from binary mixture solutions through charged polysulfone cation-exchange membrane (SA3S) has been studied under Donnan dialysis conditions. The amount of chelating agent was taken as an equimolar of Fe(III) ion in the feed phase. In this process, the membrane separated two electrolyte solutions: the feed solution, initially containing metal salts (Fe, Ti), or metal salts solution, containing a chelating agent, and the other side (receiver solution) being HCl solution. An external potential field is not applied. It was observed that the chelating agents affect the metal transport; the transport of Fe(III) is decreased and the transport of Ti(IV) is increased.

  10. Interaction of imidazole containing hydroxamic acids with Fe(III): hydroxamate versus imidazole coordination of the ligands.

    PubMed

    Farkas, Etelka; Bátka, Dávid; Csóka, Hajnalka; Nagy, Nóra V

    2007-01-01

    Solution equilibrium studies on Fe(III) complexes formed with imidazole-4-carbohydroxamic acid (Im-4-Cha), N-Me-imidazole-4-carbohydroxamic acid (N-Me-Im-4-Cha), imidazole-4-acetohydroxamic acid (Im-4-Aha), and histidinehydroxamic acid (Hisha) have been performed by using pH-potentiometry, UV-visible spectrophotometry, EPR, ESI-MS, and H1-NMR methods. All of the obtained results demonstrate that the imidazole moiety is able to play an important role very often in the interaction with Fe(III), even if this metal ion prefers the hydroxamate chelates very much. If the imidazole moiety is in alpha-position to the hydroxamic one (Im-4-Cha and N-Me-Im-4-Cha) its coordination to the metal ion is indicated unambiguously by our results. Interestingly, parallel formation of (Nimidazole, Ohydroxamate), and (Ohydroxamate, Ohydroxamate) type chelates seems probable with N-Me-Im-4-Cha. The imidazole is in beta-position to the hydroxamic moiety in Im-4-Aha and an intermolecular noncovalent (mainly H-bonding) interaction seems to organize the intermediate-protonated molecules in this system. Following the formation of mono- and bishydroxamato mononuclear complexes, only EPR silent species exists in the Fe(III)-Hisha system above pH 4, what suggests the rather significant "assembler activity" of the imidazole (perhaps together with the ammonium moiety).

  11. Influence of thermal treatment applied to Fe(III) polyhydroxy cation intercalated vermiculite on the adsorption of atrazine.

    PubMed

    Abate, Gilberto; Masini, Jorge C

    2007-05-02

    Intercalation of vermiculite with Fe(III) polyhydroxy cations at 1:1 and 2:1 [OH-]/[Fe(III)] molar ratios increases the affinity of the clay mineral toward atrazine in comparison with potassium saturated vermiculite. The present paper describes the effects of thermal treatments applied to Fe(III) polyhydroxy cations modified vermiculite on the adsorption properties of the clay mineral. Only small changes in the textural characteristics were observed for the materials intercalated with either 1:1 or 2:1 [OH-]/[Fe(III)] molar ratios treated at 100 and 250 degrees C. In comparison with potassium saturated vermiculite, or intercalated vermiculite treated at 100 degrees C, a significant enhancement in the adsorption of atrazine was observed for the materials treated at 250 and 400 degrees C, which removed more than 95.8 and 99.5% of the herbicide initially present in a 50.0 microg L-1 aqueous solution, respectively. In comparison with potassium saturated vermiculite and intercalated vermiculite treated at 100 degrees C, a lower desorption degree of preadsorbed atrazine was observed for both intercalated materials treated at 250 and 400 degrees C. These findings suggest that the thermal treatment produced modified vermiculite materials with a high adsorption capacity and high affinity toward atrazine, with potential application in the removal of this herbicide, as well as other triazines, from aqueous medium.

  12. Photodegradation of hexabromocyclododecane (HBCD) by Fe(III) complexes/H2O 2 under simulated sunlight.

    PubMed

    Zhou, Danna; Wu, Yao; Feng, Xiaonan; Chen, Yong; Wang, Zongping; Tao, Tao; Wei, Dongbin

    2014-05-01

    Hexabromocyclododecane (HBCD) is a globally produced brominated flame retardant used primarily as an additive flame retardant in polystyrene and textile products. Photodegradation of HBCD in the presence of Fe(III)-carboxylate complexes/H2O2 was investigated under simulated sunlight. The degradation of HBCD decreased with increasing pH in the Fe(III)-oxalate solutions. In contrast, the optimum pH was 5.0 for the Fe(III)-citrate-catalyzed photodegradation within the range of 3.0 to 7.0. For both Fe(III)-oxalate and Fe(III)-citrate complexes, the increase of carboxylate concentrations facilitated the photodegradation. The photochemical removal of HBCD was related to the photoreactivity and speciation distribution of Fe(III) complexes. The addition of H2O2 markedly accelerated the degradation of HBCD in the presence of Fe(III)-citrate complexes. The quenching experiments showed that ·OH was responsible for the photodegradation of HBCD in the Fe(III)-carboxylate complexes/H2O2 solutions. The results suggest that Fe(III) complexes/H2O2 catalysis is a potential method for the removal of HBCD in the aqueous solutions.

  13. Sunlight-driven photo-transformation of bisphenol A by Fe(III) in aqueous solution: Photochemical activity and mechanistic aspects.

    PubMed

    Pan, Meilan; Ding, Jie; Duan, Lin; Gao, Guandao

    2017-01-01

    Iron is one of the most abundant elements in aquatic environments, and plays important roles in the fate and transport of environmental contaminants. Previous studies on the photochemical properties of Fe(III) species have largely focused on complexes formed between Fe(III) and environmental ligands such as natural organic matter (NOM) under UV irradiation, whereas the potentially important roles of hydrolysis species of Fe(III) in Fe(III)-mediated photo-transformation of environmental contaminants under solar light are not fully understood. In this study, the solar light-driven photochemical activities of hydrolysis species of Fe(III) were further explored, using a system containing only 0.5 mM Fe2(SO4)3 and bisphenol A. The important role of colloidal [Fe(OH)3]m, formed from the hydrolysis of Fe(3+), as a core photochemical species of Fe(III) was proposed and verified. Interestingly, O2(-), rather than OH, was identified (via electron spin resonance) as the key active radical responsible for the degradation of bisphenol A. We propose that unlike Fe(OH)(2+), which under UV irradiation can yield OH (Fe(OH)(2+) + hv → Fe(2+) + OH), colloidal [Fe(OH)3]m produces O2(-) even in sunlight ([Fe(OH)3]m + 2O2 + hv → Fe(II) + 2O2(-) + H2O). The fact that Fe(III) can produce strong radicals in sunlight may have important environmental implications.

  14. Simultaneous spectrophotometric determination of Fe(III) and Al(III) using orthogonal signal correction-partial least squares calibration method after solidified floating organic drop microextraction

    NASA Astrophysics Data System (ADS)

    Rohani Moghadam, Masoud; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh

    2015-01-01

    A solidified floating organic drop microextraction (SFODME) procedure was developed for the simultaneous extraction and preconcentration of Fe(III) and Al(III) from water samples. The method was based on the formation of cationic complexes between Fe(III) and Al(III) and 3,5,7,2‧,4‧-pentahydroxyflavone (morin) which were extracted into 1-undecanol as ion pairs with perchlorate ions. The absorbance of the extracted complexes was then measured in the wavelength range of 300-450 nm. Finally, the concentration of each metal ion was determined by the use of the orthogonal signal correction-partial least squares (OSC-PLS) calibration method. Several experimental parameters that may be affected on the extraction process such as the type and volume of extraction solvent, pH of the aqueous solution, morin and perchlorate concentration and extraction time were optimized. Under the optimum conditions, Fe(III) and Al(III) were determined in the ranges of 0.83-27.00 μg L-1 (R2 = 0.9985) and 1.00-32.00 μg L-1 (R2 = 0.9979) of Fe(III) and Al(III), respectively. The relative standard deviations (n = 6) at 12.80 μg L-1 of Fe(III) and 17.00 μg L-1 of Al(III) were 3.2% and 3.5%, respectively. An enhancement factors of 102 and 96 were obtained for Fe(III) and Al(III) ions, respectively. The procedure was successfully applied to determination of iron and aluminum in steam and water samples of thermal power plant; and the accuracy was assessed through the recovery experiments and independent analysis by electrothermal atomic absorption spectroscopy (ETAAS).

  15. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution.

    PubMed

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1-1.5 : 1 KOH : tamarind seed charcoal ratios and 500-700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5-20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O-H, C=O, C-O, -CO3, C-H, and Si-H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m(2)/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069-0.019 mg/g.

  16. Simultaneous spectrophotometric determination of Fe(III) and Al(III) using orthogonal signal correction-partial least squares calibration method after solidified floating organic drop microextraction.

    PubMed

    Rohani Moghadam, Masoud; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh

    2015-01-25

    A solidified floating organic drop microextraction (SFODME) procedure was developed for the simultaneous extraction and preconcentration of Fe(III) and Al(III) from water samples. The method was based on the formation of cationic complexes between Fe(III) and Al(III) and 3,5,7,2',4'-pentahydroxyflavone (morin) which were extracted into 1-undecanol as ion pairs with perchlorate ions. The absorbance of the extracted complexes was then measured in the wavelength range of 300-450 nm. Finally, the concentration of each metal ion was determined by the use of the orthogonal signal correction-partial least squares (OSC-PLS) calibration method. Several experimental parameters that may be affected on the extraction process such as the type and volume of extraction solvent, pH of the aqueous solution, morin and perchlorate concentration and extraction time were optimized. Under the optimum conditions, Fe(III) and Al(III) were determined in the ranges of 0.83-27.00 μg L(-1) (R(2)=0.9985) and 1.00-32.00 μg L(-1) (R(2)=0.9979) of Fe(III) and Al(III), respectively. The relative standard deviations (n=6) at 12.80 μg L(-1) of Fe(III) and 17.00 μg L(-)(1) of Al(III) were 3.2% and 3.5%, respectively. An enhancement factors of 102 and 96 were obtained for Fe(III) and Al(III) ions, respectively. The procedure was successfully applied to determination of iron and aluminum in steam and water samples of thermal power plant; and the accuracy was assessed through the recovery experiments and independent analysis by electrothermal atomic absorption spectroscopy (ETAAS).

  17. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor

    SciTech Connect

    Kumazaki, Shigeichi; Kandori, Hideki; Yoshihara, Keitaro ); Iwaki, Masayo; Itoh, Shigeru ); Ikegamu, Isamu )

    1994-10-27

    Rates of sequential electron transfer reactions from the primary electron donor chlorophyll dimer (P700) to the electron acceptor chlorophyll a-686 (A[sub 0]) and to the secondary acceptor quinone (Q[sub [phi

  18. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    NASA Astrophysics Data System (ADS)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  19. Synthesis and electrochemical studies of charge-transfer complexes of thiazolidine-2,4-dione with σ and π acceptors

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Kumar, Pradeep; Katyal, Anju; Kalra, Rashmi; Dass, Sujata K.; Prakash, Satya; Chandra, Ramesh

    2010-03-01

    In the present work, we report the synthesis and characterization of novel charge-transfer complexes of thiazolidine-2,4-dione (TZD) with sigma acceptor (iodine) and pi acceptors (chloranil, dichlorodicyanoquinone, picric acid and duraquinone). We also evaluated their thermal and electrochemical properties and we conclude that these complexes are frequency dependent. Charge-transfer complex between thiazolidine-2,4-dione and iodine give best conductivity. In conclusion, complex with sigma acceptors are more conducting than with pi acceptors.

  20. Optical spectroscopy of single beryllium acceptors in GaAs/AlGaAs quantum well

    NASA Astrophysics Data System (ADS)

    Petrov, P. V.; Kokurin, I. A.; Klimko, G. V.; Ivanov, S. V.; Ivánov, Yu. L.; Koenraad, P. M.; Silov, A. Yu.; Averkiev, N. S.

    2016-09-01

    We carry out microphotoluminescence measurements of an acceptor-bound exciton (A0X ) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into account a quantum well (QW) confinement, an electron-hole and hole-hole exchange interaction. By means of fitting the measured data with the model we are able to study the fine structure of individual acceptors inside the QW. The good agreement between our experiments and the model indicates that we observe single acceptors in a pure two-dimensional environment whose states are unstrained in the QW plain.

  1. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  2. Mesomeric and twisted intramolecular-charge-transfer states as a key to polarity-dependent fluorescence of donor acceptor-substituted aryl pyrenes

    NASA Astrophysics Data System (ADS)

    Dekhtyar, M.; Rettig, W.; Weigel, W.

    2008-03-01

    Computational study by the AM1 method has been performed for pyrene-based donor-acceptor-substituted systems, with the aim to elucidate the origin of their polarity-dependent fluorescence governed by mesomeric and twisted internal-charge-transfer (MICT and TICT, resp.) states. Using theoretical methods, principal relationships have been established between the constitution of arylpyrene derivatives (donor-acceptor strength of substituents, the substitution pattern, sterical hindrance, inclusion of additional aryl spacers between the donor and acceptor moieties, etc.) and environmental effects (solvent polarity and external electric field strength), and the properties of the MICT and TICT states (energy, localization, dipole moment, allowedness). These relationships have been compared to the experimental fluorescence properties. The substituent-induced donor-acceptor difference has been varied in a continuous way in both directions by employing point charges in the molecular surrounding ("sparkles"). A remarkable feature of the phenylpyrene molecule has thus been revealed: it can exist in two MICT and two TICT states, the CT states in each pair being oppositely polarized and much the same in energy. It is shown, moreover, that the quantum-chemically calculated trends in MICT and TICT energies in the families of related compounds can be qualitatively judged from simple MO considerations including the analysis of frontier MO energies and shapes for the isolated molecular subunits. The approach employed is, therefore, applicable as a first-step tool in the design of compounds with the desired features of polarity-sensitive fluorescence.

  3. Humic Substances as Electron Acceptors and Electron Shuttlers in Anaerobic Marine Sediments.

    DTIC Science & Technology

    1998-09-30

    fold after incubation with Geobacter Metallireducens. A direct positive correlation exists between the change in organic radicals and the molar...the humics with a pure culture of Geobacter metallireducens and acetate, and then adding Fe(III) and measuring the resulting Fe(II) using the...fold after incubation with Geobacter metallireducens. A direct positive correlation exists between the change in concentration of organic

  4. Evidence for ligand hydrolysis and Fe(III) reduction in the dissolution of goethite by desferrioxamine-B

    NASA Astrophysics Data System (ADS)

    Simanova, Anna A.; Persson, Per; Loring, John S.

    2010-12-01

    Desferrioxamine-B (DFOB) is a bacterial trihydroxamate siderophore and probably the most studied to date. However, the manner in which DFOB adsorbs at mineral surfaces and promotes dissolution is still under discussion. Here we investigated the adsorption and dissolution reactions in the goethite-DFOB system using both in situ infrared spectroscopic and quantitative analytical methods. Experiments were carried out at a total DFOB concentration of 1 μmol/m 2, at pH 6, and in the absence of visible light. Our infrared spectroscopic results indicated that the adsorption of DFOB was nearly complete after a 4-h reaction time. In an attempt to determine the coordination mode at the goethite surface, we compared the spectrum of adsorbed DFOB after a 4-h reaction time to the spectra of model aqueous species. However, this approach proved too simplistic in the case of such a complex ligand as DFOB, and we suggest that a more detailed investigation (IR in D 2O, EXAFS of adsorbed model complexes) is needed to elucidate the structure of the adsorbed siderophore. Between a 4-h and 4-day reaction time, we observed the growth of carboxylate stretching bands at 1548 and 1404 cm -1, which are indicators of DFOB hydrolysis. Acetate, a product of DFOB hydrolysis at its terminal hydroxamate group, was quantified by ion chromatography. Its rate of formation was linear and nearly the same as the rate of Fe(III) dissolution. The larger hydrolysis product, a hydroxylamine fragment, was not detected by LC-MS. However, a signal due to the oxidized form of this fragment, a nitroso compound, was found to increase linearly with time, which is an indirect indication for Fe(III) reduction. Based on these findings, we propose that DFOB undergoes metal-enhanced hydrolysis at the mineral surface followed by the reduction of surface Fe(III). While Fe(II) was not detected in solution, this is likely because it remains adsorbed at the goethite surface or becomes buried in the goethite crystal by

  5. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B

    NASA Astrophysics Data System (ADS)

    Dideriksen, K.; Baker, J. A.; Stipp, S. L. S.

    2008-05-01

    In oxic oceans, most of the dissolved iron (Fe) exists as complexes with siderophore-like, strongly coordinating organic ligands. Thus, the isotope composition of the little amount of free inorganic Fe that is available for precipitation and preservation in the geological record may largely be controlled by isotope fractionation between the free and complexed iron. We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fe-desferrioxamine B (at pH 2). The two differently complexed Fe(III) pools were separated by addition of Na 2CO 3, which led to immediate precipitation of the inorganic Fe without causing significant dissociation of Fe-desferrioxamine complexes. Experiments using enriched 57Fe tracer showed that isotopic equilibration between the 57Fe-labelled inorganic species and the isotopically "normal" siderophore-bound Fe was rapid during the first few seconds and then became slower. Consequently, the data fitted poorly to first and second order reaction equations. However, with a two-stage reaction, the data fit perfectly with a first order equation for the slower stage, indicating that approximately 40% re-equilibration may take place during the separation of the two pools. To further test if the induced precipitation leads to experimental artefacts, the fractionation during precipitation of inorganic Fe was determined. Assuming a Rayleigh-type fractionation during precipitation, this experiment yielded an isotope fractionation factor of α56Fe solution-solid = 1.00027. Calculations based on these results indicate that isotopic re-equilibration is unlikely to significantly affect our determined equilibrium Fe isotope fractionation between inorganically and organically complexed Fe. To determine the equilibrium Fe isotope fractionation between inorganically and organically bound Fe(III), experiments with variable

  6. Evidence for Ligand Hydrolysis and Fe(III) Reduction in the Dissolution of Goethite by Desferrioxamine-B

    SciTech Connect

    Simanova, Anna A.; Persson, Per; Loring, John S.

    2010-08-01

    Desferrioxamine-B (DFOB) is a bacterial trihydroxamate siderophore and probably the most studied to date. However, the manner in which DFOB adsorbs at mineral surfaces and promotes dissolution is still under discussion. Here we investigated the adsorption and dissolution reactions in the goethite DFOB system using both in situ infrared spectroscopic and quantitative analytical methods. Experiments were carried out at a total DFOB concentration of 1 lmol/m2, at pH 6, and in the absence of visible light. Our infrared spectroscopic results indicated that the adsorption of DFOB was nearly complete after a 4-h reaction time. In an attempt to determine the coordination mode at the goethite surface, we compared the spectrum of adsorbed DFOB after a 4-h reaction time to the spectra of model aqueous species. However, this approach proved too simplistic in the case of such a complex ligand as DFOB, and we suggest that a more detailed investigation (IR in D2O, EXAFS of adsorbed model complexes) is needed to elucidate the structure of the adsorbed siderophore. Between a 4-h and 4-day reaction time, we observed the growth of carboxylate stretching bands at 1548 and 1404 cm1, which are indicators of DFOB hydrolysis. Acetate, a product of DFOB hydrolysis at its terminal hydroxamate group, was quantified by ion chromatography. Its rate of formation was linear and nearly the same as the rate of Fe(III) dissolution. The larger hydrolysis product, a hydroxylamine fragment, was not detected by LC MS. However, a signal due to the oxidized form of this fragment, a nitroso compound, was found to increase linearly with time, which is an indirect indication for Fe(III) reduction. Based on these findings, we propose that DFOB undergoes metal-enhanced hydrolysis at the mineral surface followed by the reduction of surface Fe(III). While Fe(II) was not detected in solution, this is likely because it remains adsorbed at the goethite surface or becomes buried in the goethite crystal by electron

  7. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors

    EPA Science Inventory

    Lab- and pilot-scale simultaneous nitrification, denitrification and phosphorus removal-sequencing batch reactors were operated under cyclic anaerobic and micro-aerobic conditions. The use of oxygen, nitrite, and nitrate as electron acceptors by Candidatus Accumulibacter phosphat...

  8. Selection of the acceptor medium in in vitro measurements of drug release from dermatological ointments.

    PubMed

    Gloor, M; Shabafrouz, H

    1983-01-01

    Comparative measurements of in vitro agent release using hydrophilic, intermediate, and lipophilic acceptor phases and in vivo measurements of the blanching effect with triamcinolone acetonide are reported. White petrolatum, wool alcohols ointment, and polyethylene glycol ointment served as donator phases. The results demonstrate that the lipophilic acceptor phase (isopropyl palmitate) is most representative for the in vivo acceptor phase. Conclusions cannot be drawn regarding in vivo effectiveness from measurements of agent release to the hydrophilic (phosphate buffer, pH 6) and intermediate (n-octanol) acceptor phases. In vitro measurements of agent release have a screening character and must usually be supplemented by very elaborate penetration models of the human skin for a definitive evaluation of an ointment.

  9. Reversal-bounded multipushdown machines. [Turing acceptors for context free languages

    NASA Technical Reports Server (NTRS)

    Baker, B. S.; Book, R. V.

    1974-01-01

    Several representations of the recursively enumerable (r.e.) sets are presented. The first states that every r.e. set is the homomorphic image of the intersection of two linear context-free languages. The second states that every r.e. set is accepted by an on-line Turing acceptor with two pushdown stores such that in every computation, each pushdown store can make at most one reversal (that is, one change from 'pushing' to 'popping'). It is shown that this automata theoretic representation cannot be strengthened by restricting the acceptors to be deterministic multitape, nondeterministic one-tape, or nondeterministic multicounter acceptors. This provides evidence that reversal bounds are not a natural measure of computational complexity for multitape Turing acceptors.

  10. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications.

    PubMed

    Stalder, Romain; Xie, Dongping; Islam, Ashraful; Han, Liyuan; Reynolds, John R; Schanze, Kirk S

    2014-06-11

    We report on a sexithienyl and two donor-acceptor-donor oligothiophenes, employing benzothiadiazole and isoindigo as electron-acceptors, each functionalized with a phosphonic acid group for anchoring onto TiO2 substrates as light-harvesting molecules for dye sensitized solar cells (DSSCs). These dyes absorb light to wavelengths as long as 700 nm, as their optical HOMO/LUMO energy gaps are reduced from 2.40 to 1.77 eV with increasing acceptor strength. The oligomers were adsorbed onto mesoporous TiO2 films on fluorine doped tin oxide (FTO)/glass substrates and incorporated into DSSCs, which show AM1.5 power conversion efficiencies (PCEs) ranging between 2.6% and 6.4%. This work demonstrates that the donor-acceptor-donor (D-A-D) molecular structures coupled to phosphonic acid anchoring groups, which have not been used in DSSCs, can lead to high PCEs.

  11. Interface-induced heavy-hole/light-hole splitting of acceptors in silicon

    SciTech Connect

    Mol, J. A.; Salfi, J.; Simmons, M. Y.; Rogge, S.; Rahman, R.; Hsueh, Y.; Klimeck, G.; Miwa, J. A.

    2015-05-18

    The energy spectrum of spin-orbit coupled states of individual sub-surface boron acceptor dopants in silicon have been investigated using scanning tunneling spectroscopy at cryogenic temperatures. The spatially resolved tunnel spectra show two resonances, which we ascribe to the heavy- and light-hole Kramers doublets. This type of broken degeneracy has recently been argued to be advantageous for the lifetime of acceptor-based qubits [R. Ruskov and C. Tahan, Phys. Rev. B 88, 064308 (2013)]. The depth dependent energy splitting between the heavy- and light-hole Kramers doublets is consistent with tight binding calculations, and is in excess of 1 meV for all acceptors within the experimentally accessible depth range (<2 nm from the surface). These results will aid the development of tunable acceptor-based qubits in silicon with long coherence times and the possibility for electrical manipulation.

  12. Preparation and spectroscopic studies on charge-transfer complexes of 2-hydroxypyridine with electron acceptors

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.

    2013-07-01

    The CT-interactions of electron acceptors such as iodine (I2), chloranilic acid (H2CA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) with 2-hydroxypyridine (HPyO) have been investigated in the defined solvent. The data indicate the formation of CT-complexes with the general formula [(HPyO)(acceptor)]. The 1:1 stoichiometry of the (HPyO)-acceptors were based on elemental analysis, IR spectra and thermogravimetric analysis of the solid CT-complexes along with the photometric titration measurements for the reactions. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes are discussed.

  13. Preparation and spectroscopic studies on charge-transfer complexes of famciclovir drug with different electron acceptors

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.; Teleb, Said M.; Nour, El-Metwally

    2012-09-01

    The CT-interaction of electron acceptors such as chloranilic acid (H2CA), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and and 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) with the antiviral drug famciclovir (FCV) have been investigated spectrophotometrically in the defined solvent. The data indicate the formation of CT-complexes with the general formula [(FCV)(acceptor)]. The 1:1 stoichiometry of the (FCV)-acceptors were based on elemental analysis, IR spectra and thermogravimetric analysis of the solid CT-complexes along with the photometric titration measurements for the reactions. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptor. Factors affecting the CT-processes such as redox potentials and steric hinderance of reactants are discussed.

  14. Disassembly of micelles to impart donor and acceptor gradation to enhance organic solar cell efficiency.

    PubMed

    Arulkashmir, Arulraj; Krishnamoorthy, Kothandam

    2016-02-28

    A transparent, conducting and low surface energy surface was prepared by disassembly of anionic micelles, which altered the orientation of the donor polymer and imparted gradation between the donor and acceptor. This configuration increased the solar cell device efficiency.

  15. Time-resolved spectroscopy of the fluorescence quenching of a donor — acceptor pair by halothane

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Draxler, S.; Lippitsch, M. E.

    1992-04-01

    Donor (anthracene) sensitized acceptor (perylene) fluorescence is quenched more efficiently by halothane than is intrinsic perylene fluorescence. The underlying process of dynamic fluorescence quenching is investigated by time-resolved fluorescence spectroscopy.

  16. ABAB Phthalocyanines: Scaffolds for Building Unprecedented Donor–π–Acceptor Chromophores

    PubMed Central

    Fazio, Ettore; Jaramillo‐García, Javier; Medel, María; Urbani, Maxence; Grätzel, Michael

    2016-01-01

    Abstract Unique donor–π–acceptor phthalocyanines have been synthesized through the asymmetric functionalization of an ABAB phthalocyanine, crosswise functionalized with two iodine atoms through Pd‐catalyzed cross‐coupling reactions with adequate electron‐donor and electron‐acceptor moieties. These push–pull molecules have been optically and electrochemically characterized, and their ability to perform as chromophores for dye‐sensitized solar cells has been tested. PMID:28168157

  17. Process for gasification using a synthetic CO/sub 2/ acceptor

    SciTech Connect

    Curran, G.P.; Lancet, M.S.

    1980-11-04

    A gasification process is disclosed using a synthetic CO/sub 2/ acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca/sub 5/(SiO/sub 4/)/sub 2/CO/sub 3/. A method for producing the synthetic CO/sub 2/ acceptor is also disclosed.

  18. An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Non-Fullerene Solar Cells.

    PubMed

    Zhang, Andong; Li, Cheng; Yang, Fan; Zhang, Jianqi; Wang, Zhaohui; Wei, Zhixiang; Li, Weiwei

    2017-03-01

    A star-shaped electron acceptor based on porphyrin as a core and perylene bisimide as end groups was constructed for application in non-fullerene organic solar cells. The new conjugated molecule exhibits aligned energy levels, good electron mobility, and complementary absorption with a donor polymer. These advantages facilitate a high power conversion efficiency of 7.4 % in non-fullerene solar cells, which represents the highest photovoltaic performance based on porphyrin derivatives as the acceptor.

  19. Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10.

    PubMed

    Liu, Tao; Guo, Yuan; Yi, Yuanping; Huo, Lijun; Xue, Xiaonan; Sun, Xiaobo; Fu, Huiting; Xiong, Wentao; Meng, Dong; Wang, Zhaohui; Liu, Feng; Russell, Thomas P; Sun, Yanming

    2016-12-01

    Two different nonfullerene acceptors and one copolymer are used to fabricate ternary organic solar cells (OSCs). The two acceptors show unique interactions that reduce crystallinity and form a homogeneous mixed phase in the blend film, leading to a high efficiency of ≈10.3%, the highest performance reported for nonfullerene ternary blends. This work provides a new approach to fabricate high-performance OSCs.

  20. ABAB Phthalocyanines: Scaffolds for Building Unprecedented Donor-π-Acceptor Chromophores.

    PubMed

    Fazio, Ettore; Jaramillo-García, Javier; Medel, María; Urbani, Maxence; Grätzel, Michael; Nazeerudin, Mohammad K; de la Torre, Gema; Torres, Tomas

    2017-02-01

    Unique donor-π-acceptor phthalocyanines have been synthesized through the asymmetric functionalization of an ABAB phthalocyanine, crosswise functionalized with two iodine atoms through Pd-catalyzed cross-coupling reactions with adequate electron-donor and electron-acceptor moieties. These push-pull molecules have been optically and electrochemically characterized, and their ability to perform as chromophores for dye-sensitized solar cells has been tested.

  1. Electron Donor-Acceptor Quenching and Photoinduced Electron Transfer for Coumarin Dyes.

    DTIC Science & Technology

    1983-10-31

    Mechanism of cousarin photodegradation . Ithe behavior of eoiuma dyes is water ad In aqueous detergent media,. and the effsects of medism aud, additives on...D-i36 345 ELECTRON DONOR-ACCEPTOR UENCHING AND PHOTOINDUCED i/i Ai ELECTRON TRANSFER FOR COUMARIN DYES (U) BOSTON UNIY MR DEPT OF CHEMISTRY G JONES...TYPE OF REPORT & PEIOD COVERED Electron Donor-acceptor Quenching and Photo- Technical, 1/1/82-10/31/82 induced Electron Transfer for Coumarin Dyes S

  2. Process for gasification using a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1980-01-01

    A gasification process is disclosed using a synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  3. On-line solid-phase extraction and multisyringe flow injection analysis of Al(III) and Fe(III) in drinking water.

    PubMed

    Vanloot, Pierre; Branger, Catherine; Margaillan, André; Brach-Papa, Christophe; Boudenne, Jean-Luc; Coulomb, Bruno

    2007-11-01

    A new analytical method was developed for on-line monitoring of residual coagulants (aluminium and iron salts) in potable water. The determination was based on a sequential procedure coupling an extraction/enrichment step of the analytes onto a modified resin and a spectrophotometric measurement of a surfactant-sensitized binary complex formed between eluted analytes and Chrome Azurol S. The optimization of the solid phase extraction was performed using factorial design and a Doehlert matrix considering six variables: sample percolation rate, sample metal concentration, flow-through sample volume (all three directly linked to the extraction step), elution flow rate, concentration and volume of eluent (all three directly linked to the elution step). A specific reagent was elaborated for sensitive and specific spectrophotometric determination of Al(III) and Fe(III), by optimizing surfactant and ligand concentrations and buffer composition. The whole procedure was automated by a multisyringe flow injection analysis (MSFIA) system. Detection limits of 4.9 and 5.6 microg L(-1) were obtained for Al(III) and Fe(III) determination , respectively, and the linear calibration graph up to 300 microg L(-1) (both for Al(III) and Fe(III)) was well adapted to the monitoring of drinking water quality. The system was successfully applied to the on-site determination of Al(III) and Fe(III) at the outlet of two water treatment units during two periods of the year (winter and summer conditions).

  4. In Situ Measurement of Fe(III) Reduction Activity of Geobacter pelophilus by Simultaneous in Situ RT-PCR and XPS Analysis

    DTIC Science & Technology

    2004-04-16

    Geobacter pelophilus is capable of dissimilatory Fe(III)-reduction on solid phase Fe(III)-oxides by means of surface attachment and direct electron...expression, and mineral transformation by this organism. The gene fer A ( Geobacter sulfurreducens outer membrane Fe(III) reductase cytochrome c) was

  5. 2D and 3D bimetallic oxalate-based ferromagnets prepared by insertion of different Fe(III) spin crossover complexes.

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; López-Jordà, Maurici

    2010-05-28

    The syntheses, structures and magnetic properties of the compounds of formula [Fe(III)(5-NO(2)sal(2)-trien)][Mn(II)Cr(III)(ox)(3)]·CH(3)NO(2).0.5H(2)O (1) and [Fe(III)(5-CH(3)Osal(2)-trien)][Mn(II)Cr(III)(ox)(3)] (2) are reported. The structure of 1, that crystallizes in the P2(1) chiral space group, presents a 2D honeycomb anionic layer formed by Mn(II) and Cr(III) ions linked through oxalate ligands and a cationic layer of [Fe(III)(5-NO(2)sal(2)-trien)](+) complexes intercalated between the 2D oxalate network. The structure of 2, that crystallizes in the Pna2(1) acentric space group, presents a 3D achiral anionic network formed by Mn(II) and Cr(III) ions linked through oxalate ligands with [Fe(5-CH(3)Osal(2)-trien)](+) complexes intercalated within the 3D oxalate network. The magnetic properties of 1 and 2 indicate that both compounds undergo a long-range ferromagnetic ordering at ca. 5 K. On the other hand, the inserted Fe(III) cations remain mainly in the low-spin (LS) state in the case of 1 and in the high-spin (HS) state in the case of 2.

  6. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: The role of Fe(II) and Fe(III)

    SciTech Connect

    Yan, Sen; Chen, Yongheng; Xiang, Wu; Bao, Zhengyu; Liu, Chongxuan; Deng, Baolin

    2014-12-01

    The role of Fe(II) and Fe(III) on U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.92 to 9.03. For instance, at pH 6.92 the observed U(VI) reduction rates decreased by 80.7% and 82.3% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) probably acted as an electron shuttle to mediate the transfer of electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 can facilitate the U(VI) reductive immobilization in the contaminated groundwater.

  7. An Analytical Chemistry Experiment in Simultaneous Spectrophotometric Determination of Fe(III) and Cu(II) with Hexacyanoruthenate(II) Reagent.

    ERIC Educational Resources Information Center

    Mehra, M. C.; Rioux, J.

    1982-01-01

    Experimental procedures, typical observations, and results for the simultaneous analysis of Fe(III) and Cu(II) in a solution are discussed. The method is based on selective interaction between the two ions and potassium hexacyanoruthenate(II) in acid solution involving no preliminary sample preparations. (Author/JN)

  8. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria

    NASA Astrophysics Data System (ADS)

    Byrne, James M.; Klueglein, Nicole; Pearce, Carolyn; Rosso, Kevin M.; Appel, Erwin; Kappler, Andreas

    2015-03-01

    Microorganisms are a primary control on the redox-induced cycling of iron in the environment. Despite the ability of bacteria to grow using both Fe(II) and Fe(III) bound in solid-phase iron minerals, it is currently unknown whether changing environmental conditions enable the sharing of electrons in mixed-valent iron oxides between bacteria with different metabolisms. We show through magnetic and spectroscopic measurements that the phototrophic Fe(II)-oxidizing bacterium Rhodopseudomonas palustris TIE-1 oxidizes magnetite (Fe3O4) nanoparticles using light energy. This process is reversible in co-cultures by the anaerobic Fe(III)-reducing bacterium Geobacter sulfurreducens. These results demonstrate that Fe ions bound in the highly crystalline mineral magnetite are bioavailable as electron sinks and electron sources under varying environmental conditions, effectively rendering magnetite a naturally occurring battery.

  9. Nanostructured Fe(III) catalysts for water oxidation assembled with the aid of organic acid salt electrolytes

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Li, Dandan; Gao, Guofeng; Yuan, Wen; Hao, Genyan; Li, Jinping

    2016-11-01

    We describe the preparation of three partially ordered iron-based catalyst films (Fe-OAc, Fe-Pro, Fe-But) with nanoporous structure by electrodeposition from organate electrolytes containing Fe2+. The anions of the organic acids assisted the partial ordering of the nanostructured Fe(III) catalysts for water oxidation. A model involving an electrical double layer is invoked to explain the role of the organate electrolyte system in their formation. Analytical results have revealed the main component of the iron-based films to be a β-FeOOH structure. The Fe-But catalyst catalyzed water oxidation in 0.1 m potassium carbonate solution with an average activity of 1.48 mA cm-2 and an overpotential of 433 mV.

  10. The role of multihaem cytochromes in the respiration of nitrite in Escherichia coli and Fe(III) in Shewanella oneidensis.

    PubMed

    Clarke, Thomas A; Holley, Tracey; Hartshorne, Robert S; Fredrickson, Jim K; Zachara, John M; Shi, Liang; Richardson, David J

    2008-10-01

    The periplasmic nitrite reductase system from Escherichia coli and the extracellular Fe(III) reductase system from Shewanella oneidensis contain multihaem c-type cytochromes as electron carriers and terminal reductases. The position and orientation of the haem cofactors in multihaem cytochromes from different bacteria often show significant conservation despite different arrangements of the polypeptide chain. We propose that the decahaem cytochromes of the iron reductase system MtrA, MtrC and OmcA comprise pentahaem 'modules' similar to the electron donor protein, NrfB, from E. coli. To demonstrate this, we have isolated and characterized the N-terminal pentahaem module of MtrA by preparing a truncated form containing five covalently attached haems. UV-visible spectroscopy indicated that all five haems were low-spin, consistent with the presence of bis-His ligand co-ordination as found in full-length MtrA.

  11. The role of multihaem cytochromes in the respiration of nitrite in Escherichia coli and Fe(III) in Shewanella oneidensis

    SciTech Connect

    Clarke, Thomas A.; Holley, Tracey; Hartshorne, Robert S.; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang; Richardson, David

    2008-10-01

    The periplasmic nitrite reductase system from Escherichia coli and the extracellular Fe(III) reductase system from Shewanella oneidensis contain multihaem c-type cytochromes as electron carriers and terminal reductases. The position and orientation of the haem cofactors in multihaem cytochromes from different bacteria often show significant conservation despite different arrangements of the polypeptide chain. We propose that the decahaem cytochromes of the iron reductase system MtrA, MtrC and OmcA comprise pentahaem ‘modules’ similar to the electron donor protein, NrfB, from E. coli. To demonstrate this, we have isolated and characterized the N-terminal pentahaem module of MtrA by preparing a truncated form containing five covalently attached haems. UV–visible spectroscopy indicated that all five haems were low-spin, consistent with the presence of bis-His ligand co-ordination as found in full-length MtrA.

  12. Study of characteristics of condom-acceptors using condom as first choice and alternative method of contraception in 1981-1987 at the NPFDB, GHKL.

    PubMed

    Low Boon Song

    1990-06-01

    Factors influencing condom acceptance were studied and compared in 2 groups of condom-acceptors--those using condoms as a 1st method of contraception and those using condoms as an alternative method of contraception. Data was obtained by reviewing the condom-acceptor cards during 1981-1987 at the General Hospital in Kuala Lumpur, Malaysia; 208 cards for the 1st group and 230 for the 2nd group were included in the study. Statistical analysis was conducted to determine characteristics influencing condom-use. AGe of wife, duration of marriage, number of living children, wife's level of education and socioeconomic status were identified as factors influencing condom acceptance. No significant difference was observed between the 2 group concerning their purpose of contraception. Age of wife had a significant influence on the use of condoms as contraception. Age of wife had a significant influence on the use of condoms as contraception; 74.5% of group 1 users were 31 years and 56.5% of group 2 users were 30 years. A very significant relationship also exist between condom use and duration of marriage and number of living children; condom-acceptors using condoms as the 1st method of contraception did so within 9 years of marriage (85.6%) and practiced condom use when they had 2 of children (73.6%) while those who used condoms subsequently were married 10 years (46.5%) and did so after having 3 or children (57.8%). Significant differences were observed between groups in higher socioeconomic status and higher level of education. With 7 or more years of education, a significant proportion of condom-acceptors used condoms as a 1st method of contraception as compared with those who used it as a subsequent method of contraception. For the higher socioeconomic, a significant number of acceptors used condoms as a 1st method of contraception.

  13. Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics.

    PubMed

    Sauvé, Geneviève; Fernando, Roshan

    2015-09-17

    Organic photovoltaics (OPVs) are promising candidates for providing a low cost, widespread energy source by converting sunlight into electricity. Solution-processable active layers have predominantly consisted of a conjugated polymer donor blended with a fullerene derivative as the acceptor. Although fullerene derivatives have been the acceptor of choice, they have drawbacks such as weak visible light absorption and poor energy tuning that limit overall efficiencies. This has recently fueled new research to explore alternative acceptors that would overcome those limitations. During this exploration, one question arises: what are the important design principles for developing nonfullerene acceptors? It is generally accepted that acceptors should have high electron affinity, electron mobility, and absorption coefficient in the visible and near-IR region of the spectra. In this Perspective, we argue that alternative molecular acceptors, when blended with a conjugated polymer donor, should also have large nonplanar structures to promote nanoscale phase separation, charge separation and charge transport in blend films. Additionally, new material design should address the low dielectric constant of organic semiconductors that have so far limited their widespread application.

  14. A new classification of the amino acid side chains based on doublet acceptor energy levels.

    PubMed Central

    Sneddon, S F; Morgan, R S; Brooks, C L

    1988-01-01

    We describe a new classification of the amino acid side chains based on the potential energy level at which each will accept an extra (doublet) electron. The doublet acceptor energy level, and the doublet acceptor orbital were calculated using semiempirical INDO/2-UHF molecular orbital theory. The results of these calculations show that the side chains fall into four groups. We have termed these groups repulsive, insulating, semiconducting, and attractive in accordance with where each lies on the relative energy scale. We use this classification to examine the role of residues between the donor and acceptor in modulating the rate and mechanism of electron transfer in proteins. With the calculated acceptor levels, we construct a potential barrier for those residues between the donor and acceptor. It is the area beneath this barrier that determines the decay of electronic coupling between donor and acceptor, and thus the transfer rate. We have used this schematic approach to characterize the four electron transfer pathways in myoglobin recently studied by Mayo et al. (Mayo, S.L., W.R. Ellis, R.J. Crutchley, and H.B. Gray. 1986. Science [Wash. DC]. 233:948-952). PMID:3342271

  15. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE PAGES

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  16. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y.; Black, Charles T.; Steigerwald, Michael L.; Loo, Yueh-Lin; Ng, Fay; Zhu, X.-Y.; Nuckolls, Colin

    2015-09-01

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  17. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  18. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    SciTech Connect

    Roch, Christina; Kuhn, Joachim; Kleesiek, Knut; Goetting, Christian

    2010-01-01

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that K{sub m} and V{sub max} values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  19. Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors.

    PubMed

    Aerts, Dirk; Verhaeghe, Tom F; Roman, Bart I; Stevens, Christian V; Desmet, Tom; Soetaert, Wim

    2011-09-27

    In this study, the transglucosylation potential of six sucrose phosphorylase (SP) enzymes has been compared using eighty putative acceptors from different structural classes. To increase the solubility of hydrophobic acceptors, the addition of various co-solvents was first evaluated. All enzymes were found to retain at least 50% of their activity in 25% dimethylsulfoxide, with the enzymes from Bifidobacterium adolescentis and Streptococcus mutans being the most stable. Screening of the enzymes' specificity then revealed that the vast majority of acceptors are transglucosylated very slowly by SP, at a rate that is comparable to the contaminating hydrolytic reaction. The enzyme from S. mutans displayed the narrowest acceptor specificity and the one from Leuconostoc mesenteroides NRRL B1355 the broadest. However, high activity could only be detected on l-sorbose and l-arabinose, besides the native acceptors d-fructose and phosphate. Improving the affinity for alternative acceptors by means of enzyme engineering will, therefore, be a major challenge for the commercial exploitation of the transglucosylation potential of sucrose phosphorylase.

  20. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    SciTech Connect

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Sfeir, Matthew Y.; Black, Charles T.; Steigerwald, Michael L.; Loo, Yueh -Lin; Ng, Fay; Zhu, X. -Y.; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.

  1. Heterogeneous oxidation of Fe(II) on iron oxides in aqueous systems: Identification and controls of Fe(III) product formation

    NASA Astrophysics Data System (ADS)

    Larese-Casanova, Philip; Kappler, Andreas; Haderlein, Stefan B.

    2012-08-01

    The aqueous Fe(II)-oxide Fe(III) system is a reactant for many classes of redox sensitive compounds via an interfacial Fe(II) sorption and electron transfer process. The poorly soluble Fe(III) products formed as a result of contaminant reduction and Fe(II) oxidation on iron oxides may be capable of modifying iron oxide surfaces and affecting subsequent reduction rates of contaminants such as halogenated ethenes or nitroaromatic compounds. The scope of this study was to identify the secondary Fe(III) mineral phases formed after Fe(II) oxidation on common iron oxides during heterogeneous contaminant reduction by directly targeting the secondary minerals using Mössbauer-active isotopes. Fe(III) mineral characterization was performed using 57Fe-Mössbauer spectroscopy, μ-X-ray diffraction, and electron microscopy after oxidation of dissolved 57Fe(II) using nitrobenzenes as a model oxidant in pH-buffered suspensions of 56hematite, 56goethite, 56magnetite, and 56maghemite. Mössbauer spectra confirmed sorbed 57Fe(II) becomes oxidized by the parent 56Fe(III)-oxide sorbent and assimilated as the sorbent oxide prior to any nitrobenzene reduction, consistent with several reports in the literature. In addition to oxide sorbent growth, Fe(II) sorption and oxidation by nitrobenzene result also in the formation of secondary Fe(III) minerals. Goethite formed on three hematite morphologies (rhombohedra, needles, and hexagonal platelets), and acicular needle shapes typical of goethite appeared on the micron-sized hexagonal platelets, at times aligned in 60° orientations on (0 0 1) faces. The proportion of goethite formation on the three hematites was linked to number of surface sites. Only goethite was observed to form on a goethite sorbent. In contrast, lepidocrocite was observed to form on magnetite and maghemite sorbents (consistent with homogeneous Fe(II) oxidation by O2) and assumed spherulite morphologies. All secondary Fe(III) phases were confirmed within

  2. Severe and mild phenotypes in Pfeiffer syndrome with splice acceptor mutations in exon IIIc of FGFR2.

    PubMed

    Teebi, Ahmad S; Kennedy, Shelley; Chun, Kathy; Ray, Peter N

    2002-01-01

    Pfeiffer syndrome is clinically and genetically heterogeneous. Three clinical subtypes have been delineated based on the severity of acrocephalysyndactyly and associated manifestations. Severe cases are usually sporadic and caused by a number of different mutations in exons IIIa and IIIc of the fibroblast growth factor receptor 2 (FGFR2) gene. Mild cases are either sporadic or familial and are caused by mutations in FGFR2 or FGFR1, respectively. We report on two individuals with different novel de novo mutations in FGFR2. The first is a 17-year-old male who has a severe phenotype, within the spectrum of subtype 1 including severe ocular proptosis, elbow ankylosis, visceral anomalies, and normal intelligence. This patient was found to have a novel complex mutation at the 3' acceptor site of exon IIIc of FGFR2, denoted as C952-3 del10insACC. The other patient, a 2-year-old female, has a mild phenotype, typical of the classic subtype 1 including brachycephaly with coronal synostosis and hypertelorism. She was also found to have a mutation at the 3' acceptor site (the same splice site) of exon IIIc of FGFR2, a point mutation designated as 952-1G-->A. Speculation on the molecular mechanisms that cause severe and mild phenotypes is presented in relation to these two cases.

  3. Central action of dendrotoxin: selective reduction of a transient K conductance in hippocampus and binding to localized acceptors.

    PubMed Central

    Halliwell, J V; Othman, I B; Pelchen-Matthews, A; Dolly, J O

    1986-01-01

    Dendrotoxin, a small single-chain protein from the venom of Dendroaspis angusticeps, is highly toxic following intracerebroventricular injection into rats. Voltage-clamp analysis of CA1 neurons in hippocampal slices, treated with tetrodotoxin, revealed that nanomolar concentrations of dendrotoxin reduce selectively a transient, voltage-dependent K conductance. Epileptiform activity known to be induced by dendrotoxin can be attributed to such an action. Membrane currents not affected directly by the toxin include (i) Ca-activated K conductance; (ii) noninactivating voltage-dependent K conductance; (iii) inactivating and noninactivating Ca conductances; (iv) persistent inward (anomalous) rectifier current. Persistence of the effects of the toxin when Cd was included to suppress spontaneous transmitter release indicates a direct action on the neuronal membrane. Using biologically active, 125I-labeled dendrotoxin, protein acceptor sites of high affinity were detected on cerebrocortical synaptosomal membranes and sections of rat brain. In hippocampus, toxin binding was shown autoradiographically to reside in synapse-rich and white matter regions, with lower levels in cell body layers. This acceptor is implicated in the action of toxin because its affinities for dendrotoxin congeners are proportional to their central neurotoxicities and potencies in reducing the transient, voltage-dependent K conductance. Images PMID:2417246

  4. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    NASA Astrophysics Data System (ADS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-05-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov-de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov-de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of negatively

  5. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    PubMed

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  6. Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.

    PubMed

    Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd

    2013-08-16

    α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.

  7. Triazole bridges as versatile linkers in electron donor-acceptor conjugates

    PubMed Central

    de Miguel, Gustavo; Wielopolski, Mateusz; Schuster, David I.; Fazio, Michael A; Lee, Olivia P.; Haley, Christopher K.; Ortiz, Angy L.; Echegoyen, Luis; Clark, Timothy; Guldi, Dirk M.

    2011-01-01

    Aromatic triazoles have been frequently used as π-conjugated linkers in intramolecular electron transfer processes. To gain a deeper understanding of the electron mediating function of triazoles, we have synthesized a family of new triazole-based electron donor-acceptor conjugates. We have connected porphyrins and fullerenes through a central triazole moiety – (ZnP-Tri-C60) – each with a single change in their connection through the linker. An extensive photophysical and computational investigation reveals that the electron transfer dynamics – charge separation and charge recombination – in the different ZnP-Tri-C60 conjugates reflect a significant influence of the connectivity at the triazole linker. Except for m4m-ZnP-Tri-C60 17, the conjugates exhibit through-bond electron transfer with varying rate constants. Since the through-bond distance is nearly equal in the ZnP-Tri-C60 conjugates, the variation in charge separation and charge recombination dynamics is mainly associated with the electronic properties of the conjugates, including orbital energies, electron affinity, and the energies of the excited states. The changes of the electronic couplings are, in turn, a consequence of the different connectivity patterns at the triazole moieties. PMID:21702513

  8. Triazole bridges as versatile linkers in electron donor-acceptor conjugates.

    PubMed

    de Miguel, Gustavo; Wielopolski, Mateusz; Schuster, David I; Fazio, Michael A; Lee, Olivia P; Haley, Christopher K; Ortiz, Angy L; Echegoyen, Luis; Clark, Timothy; Guldi, Dirk M

    2011-08-24

    Aromatic triazoles have been frequently used as π-conjugated linkers in intramolecular electron transfer processes. To gain a deeper understanding of the electron-mediating function of triazoles, we have synthesized a family of new triazole-based electron donor-acceptor conjugates. We have connected zinc(II)porphyrins and fullerenes through a central triazole moiety--(ZnP-Tri-C(60))--each with a single change in their connection through the linker. An extensive photophysical and computational investigation reveals that the electron transfer dynamics--charge separation and charge recombination--in the different ZnP-Tri-C(60) conjugates reflect a significant influence of the connectivity at the triazole linker. Except for the m4m-ZnP-Tri-C(60)17, the conjugates exhibit through-bond photoinduced electron transfer with varying rate constants. Since the through-bond distance is nearly the same for all the synthesized ZnP-Tri-C(60) conjugates, the variation in charge separation and charge recombination dynamics is mainly associated with the electronic properties of the conjugates, including orbital energies, electron affinity, and the energies of the excited states. The changes of the electronic couplings are, in turn, a consequence of the different connectivity patterns at the triazole moieties.

  9. Dissociation of charge-transfer states at donor-acceptor interfaces of organic heterojunctions

    NASA Astrophysics Data System (ADS)

    Inche Ibrahim, M. L.

    2017-02-01

    The dissociation of charge-transfer (CT) states into free charge carriers at donor-acceptor (DA) interfaces is an important step in the operation of organic solar cells and related devices. In this paper, we show that the effect of DA morphology and architecture means that the directions of CT states (where a CT state’s direction is defined as the direction from the electron to the hole of the CT state) may deviate from the direction of the applied electric field. The deviation means that the electric field is not fully utilized to assist, and could even hinder the dissociation process. Furthermore, we show that the correct charge carrier mobilities that should be used to describe CT state dissociation are the actual mobilites at DA interfaces. The actual mobilities are defined in this paper, and in general are not the same as the mobilities that are used to calculate electric currents which are the mobilites along the direction of the electric field. Then, to correctly describe CT state dissociation, we modify the widely used Onsager-Braun (OB) model by including the effect of DA morphology and architecture, and by employing the correct mobilities. We verify that when the modified OB model is used to describe CT state dissociation, the fundamental issues that concern the original OB model are resolved. This study demonstrates that DA morphology and architecture play an important role by strongly influencing the CT state dissociation as well as the mobilites along the direction of the electric field.

  10. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study.

    PubMed

    Fonari, A; Corbin, N S; Vermeulen, D; Goetz, K P; Jurchescu, O D; McNeil, L E; Bredas, J L; Coropceanu, V

    2015-12-14

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoretical Raman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  11. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    SciTech Connect

    Fonari, A.; Corbin, N. S.; Coropceanu, V. E-mail: coropceanu@gatech.edu; Vermeulen, D.; McNeil, L. E.; Goetz, K. P.; Jurchescu, O. D.; Bredas, J. L. E-mail: coropceanu@gatech.edu

    2015-12-14

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoretical Raman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  12. Linked‐Acceptor Type Conjugated Polymer for High Performance Organic Photovoltaics with an Open‐Circuit Voltage Exceeding 1 V

    PubMed Central

    Xia, Benzheng; Zhao, Yifan; Zhang, Jianqi; Yuan, Liu; Zhu, Lingyun; Yi, Yuanping

    2015-01-01

    A linked‐acceptor type conjugated polymer is designed and sythesized based on 4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) and linked‐thieno[3,4‐c]pyrrole‐4,6‐dione (LTPD). This polymer uses alkyl‐substituted thiophene as a bridge. The PBDTT‐LTPD includes two TPD units in one repeating unit, which can enhance acceptor density in the polymer backbone and lower the highest occupied molecular orbital (HOMO) level. By contrast, variable alkyl substitutions in the thiophene‐bridges ensure the subtle regulation of polymer properties. The solar cells based on PBDTT‐LTPD display an open‐circuit voltage (V oc) that exceeds 1 V, and a maximum power conversion efficiency (PCE) of 7.59% is obtained. This PCE value is the highest for conventional single‐junction bulk heterojunction solar cells with V oc values of up to 1 V. Given that PBDTT‐LTPD exhibits a low HOMO energy level and a band gap equivalent to that of poly(3‐hexylthiophene), PBDTT‐LTPD/phenyl‐C61‐butyric acid methyl ester may be a promising candidate for the front cell in tandem polymer solar cells. PMID:27980933

  13. Taming hot CF3 radicals: incrementally tuned families of polyarene acceptors for air-stable molecular optoelectronics

    SciTech Connect

    Kuvychko, Igor V.; Castro, Karlee P.; Deng, Shihu; Wang, Xue B.; Strauss, Steven H.; Boltalina, Olga V.

    2013-04-26

    Breakthroughs in molecular optoelectronics await the availability of new families of air-stable polyaromatic hydrocarbon (PAH) acceptors with incrementally- and predictably-tunable electron affinities and structures capable of inducing desirable solid-state morphologies in hybrid materials. Although the addition of electron withdrawing groups to PAHs has been studied for decades, producing new compounds from time to time, a generic one-step synthetic methodology applicable to potentially all PAH substrates has been, until now, an impossible dream. We herein report that at least seventeen common PAHs and polyheterocyclics can be trifluoromethylated by a new procedure to yield families of PAH(CF3)n acceptors with (i) n = 4-8, (ii) multiple isomers for particular n values, (iii) gas-phase experimental electron affinities as high as 3.32 eV and shifted from the respective PAH precursor as a linear function of n, and (iv) various solid-state morphologies, including the ability to form alternating π stacked hybrid crystals with aromatic donors.

  14. Nature of the attractive interaction between proton acceptors and organic ring systems.

    PubMed

    Arras, Emmanuel; Seitsonen, Ari Paavo; Klappenberger, Florian; Barth, Johannes V

    2012-12-14

    Systematic ab initio calculations are combined with a deconvolution of electrostatic contributions to analyze the interplay between potential hydrogen bond acceptors and organic rings with C(sp(2))-H groups (benzene, pyridine and cyclopentadiene). A distinct anisotropic interaction between the ring systems and the electron lone pairs of cyanide, water and other acceptor species is revealed that favors the in-plane orientation of the proton acceptor group. In the attractive regime this interaction carries a pronounced electrostatic signature. By decomposing the electrostatic contribution into parts attributed to different subunits of the ring systems we demonstrate that a major proportion of the interaction energy gain is originating from the non-adjacent moieties, that are not in close contact with. This behavior holds equally for homocyclic, heterocyclic and non-aromatic rings but contrasts that of the ethyne molecule, taken as reference for a weak hydrogen bond donor clearly exhibiting the expected localized character. The ring interaction requires the presence of π-electron clouds and typically results in an interaction energy gain of 40 to 80 meV. Our findings suggest the proton acceptor-ring interaction as a new category of intermolecular non-covalent interactions.

  15. Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors.

    PubMed Central

    Frébortová, Jitka; Fraaije, Marco W; Galuszka, Petr; Sebela, Marek; Pec, Pavel; Hrbác, Jan; Novák, Ondrej; Bilyeu, Kristin D; English, James T; Frébort, Ivo

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors. PMID:14965342

  16. Metabolic response of Alicycliphilus denitrificans strain BC toward electron acceptor variation.

    PubMed

    Oosterkamp, Margreet J; Boeren, Sjef; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2013-10-01

    Alicycliphilus denitrificans is a versatile, ubiquitous, facultative anaerobic bacterium. Alicycliphilus denitrificans strain BC can use chlorate, nitrate, and oxygen as electron acceptor for growth. Cells display a prolonged lag-phase when transferred from nitrate to chlorate and vice versa. Furthermore, cells adapted to aerobic growth do not easily use nitrate or chlorate as electron acceptor. We further investigated these responses of strain BC by differential proteomics, transcript analysis, and enzyme activity assays. In nitrate-adapted cells transferred to chlorate and vice versa, appropriate electron acceptor reduction pathways need to be activated. In oxygen-adapted cells, adaptation to the use of chlorate or nitrate is likely difficult due to the poorly active nitrate reduction pathway and low active chlorate reduction pathway. We deduce that the Nar-type nitrate reductase of strain BC also reduces chlorate, which may result in toxic levels of chlorite if cells are transferred to chlorate. Furthermore, the activities of nitrate reductase and nitrite reductase appear to be not balanced when oxygen-adapted cells are shifted to nitrate as electron acceptor, leading to the production of a toxic amount of nitrite. These data suggest that strain BC encounters metabolic challenges in environments with fluctuations in the availability of electron acceptors. All MS data have been deposited in the ProteomeXchange with identifier PXD000258.

  17. Natural organic matter as electron acceptor: experimental evidence for its important role in anaerobic respiration

    NASA Astrophysics Data System (ADS)

    Lau, Maximilian Peter; Sander, Michael; Gelbrecht, Jörg; Hupfer, Michael

    2014-05-01

    Microbial respiration is a key driver of element cycling in oxic and anoxic environments. Upon depletion of oxygen as terminal electron acceptor (TEA), a number of anaerobic bacteria can employ alternative TEA for intracellular energy generation. Redox active quinone moieties in dissolved organic matter (DOM) are well known electron acceptors for microbial respiration. However, it remains unclear whether quinones in adsorbed and particulate OM accept electrons in a same way. In our studies we aim to understand the importance of natural organic matter (NOM) as electron acceptors for microbial energy gain and its possible implications for methanogenesis. Using a novel electrochemical approach, mediated electrochemical reduction and -oxidation, we can directly quantify reduced hydroquinone and oxidized quionone moieties in dissolved and particulate NOM samples. In a mesocosm experiment, we rewetted sediment and peat soil and followed electron transfer to the inorganic and organic electron acceptors over time. We found that inorganic and organic electron acceptor pools were depleted over the same timescales. More importantly, we showed that organic, NOM-associated electron accepting moieties represent as much as 21 40% of total TEA inventories. These findings support earlier studies that propose that the reduction of quinone moieties in particulate organic matter competitively suppresses methanogenesis in wetland soils. Our results indicate that electron transfer to organic, particulate TEA in inundated ecosystems has to be accounted for when establishing carbon budgets in and projecting greenhouse gas emissions from these systems.

  18. Fe(II) sorption on pyrophyllite: Effect of structural Fe(III) (impurity) in pyrophyllite on nature of layered double hydroxide (LDH) secondary mineral formation

    SciTech Connect

    Starcher, Autumn N.; Li, Wei; Kukkadapu, Ravi K.; Elzinga, Evert J.; Sparks, Donald L.

    2016-11-01

    Fe(II)-Al(III)-LDH (layered double hydroxide) phases have been shown to form from reactions of aqueous Fe(II) with Fe-free Al-bearing minerals (phyllosilicate/clays and Al-oxides). To our knowledge, the effect of small amounts of structural Fe(III) impurities in “neutral” clays on such reactions, however, were not studied. In this study to understand the role of structural Fe(III) impurity in clays, laboratory batch studies with pyrophyllite (10 g/L), an Al-bearing phyllosilicate, containing small amounts of structural Fe(III) impurities and 0.8 mM and 3 mM Fe(II) (both natural and enriched in 57Fe) were carried out at pH 7.5 under anaerobic conditions (4% H2 – 96% N2 atmosphere). Samples were taken up to 4 weeks for analysis by Fe-X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy. In addition to the precipitation of Fe(II)-Al(III)-LDH phases as observed in earlier studies with pure minerals (no Fe(III) impurities in the minerals), the analyses indicated formation of small amounts of Fe(III) containing solid(s), most probably hybrid a Fe(II)-Al(III)/Fe(III)-LDH phase. The mechanism of Fe(II) oxidation was not apparent but most likely was due to interfacial electron transfer from the sorbed Fe(II) to the structural Fe(III) and/or surface-sorption-induced electron-transfer from the sorbed Fe(II) to the clay lattice. Increase in the Fe(II)/Al ratio of the LDH with reaction time further indicated the complex nature of the samples. This research provides evidence for the formation of both Fe(II)-Al(III)-LDH and Fe(II)-Fe(III)/Al(III)-LDH-like phases during reactions of Fe(II) in systems that mimic the natural environments. Better understanding Fe phase formation in complex laboratory studies will improve models of natural redox systems.

  19. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution

    PubMed Central

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5–20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O–H, C=O, C–O, –CO3, C–H, and Si–H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m2/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069–0.019 mg/g. PMID:26689357

  20. Origin of simultaneous donor-acceptor emission in single molecules of peryleneimide-terrylenediimide labeled polyphenylene dendrimers.

    PubMed

    Melnikov, Sergey M; Yeow, Edwin K L; Uji-i, Hiroshi; Cotlet, Mircea; Müllen, Klaus; De Schryver, Frans C; Enderlein, Jörg; Hofkens, Johan

    2007-02-01

    Förster type resonance energy transfer (FRET) in donor-acceptor peryleneimide-terrylenediimide dendrimers has been examined at the single molecule level. Very efficient energy transfer between the donor and the acceptor prevent the detection of donor emission before photobleaching of the acceptor. Indeed, in solution, on exciting the donor, only acceptor emission is detected. However, at the single molecule level, an important fraction of the investigated individual molecules (about 10-15%) show simultaneous emission from both donor and acceptor chromophores. The effect becomes apparent mostly after photobleaching of the majority of donors. Single molecule photon flux correlation measurements in combination with computer simulations and a variety of excitation conditions were used to determine the contribution of an exciton blockade to this two-color emission. Two-color defocused wide-field imaging showed that the two-color emission goes hand in hand with an unfavorable orientation between one of the donors and the acceptor chromophore.

  1. Probing charge and energy transfer process at the donor-acceptor interface of semiconductor nanostructures with simultaneous photocurrent-optical microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Yongqian; Acharya, Krishna; Galande, Charudatta; Ajayan, Pulickel; Mohite, Aditya; Dattelbaum, Andrew; Hollingsworth, Jennifer; Htoon, Han; Los Alamos Natioal Lab Team; Rice Univerisity Collaboration

    2013-03-01

    Understanding and control of charge and energy transfer (CT & ET) processes happening at the donor-acceptor interface of colloidal semiconductor nanostructures play a critical role in defining the performance of many exploratory photo-voltaic devices. Ultrafast dynamics of CT and ET processes in semiconductor nanostrucutres can be investigated effectively by time and energy resolved PL spectroscopy. However a full understanding on impact of these process on device performance demand direct correlation of these dynamical measurements with photocurrent measurements that probe the separation and transport of charges. To this end we develop simultaneous optical and electrical characterization approaches capable of performing scanning photocurrent microscopy and various single nanostructure optical spectroscopies (e.g. photoluminescence (PL), Raman, time resolved PL) simultaneously. We will present application of this technique on various donor/acceptor interfaces including graphene oxide/CdSe nanowire and TiO2 nanocrystals/CdSe nanowire interfaces.

  2. Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Ramavenkateswari, K.; Venkatachalam, P.

    2016-09-01

    This work investigates the proficiency of acceptor-donor-acceptor (A-D-A) organic dye Diisopropyl azodicarboxylate (DIAC) as photosensitizer on the photovoltaic parameters of silver (Ag) doped TiO2 photoanode dye-sensitized solar cells (DSSCs) with quasi-solid state electrolyte/hole transport material (HTM) spiro-MeOTAD. TNSs (TiO2 nanosticks) photoanodes are prepared through sol-gel method and hydrothermal technique. X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and BET measurement were used to characterize the structure and morphology of TiO2 nanostructures. The Diisopropyl azodicarboxylate organic dye with TNPs-Ag@TNSs composite photoanode structure and spiro-MeOTAD HTM exhibited better power conversion efficiency (PCE).

  3. FRET study in oligopeptide-linked donor-acceptor system in PVA matrix

    NASA Astrophysics Data System (ADS)

    Shah, Sunil; Mandecki, Wlodek; Li, Ji; Gryczynski, Zygmunt; Borejdo, Julian; Gryczynski, Ignacy; Fudala, Rafal

    2016-12-01

    An oligopeptide: Lys-Gly-Pro-Arg-Ser-Leu-Ser-Gly-Lys-NH2, cleaved specifically by a matrix metalloproteinase 9 (MMP-9) at the Ser-Leu bond, was labeled on the ɛ-NH2 groups of lysine with donor (5, 6 TAMRA) and acceptor (HiLyte647) dye. The donor control was a peptide labeled with 5, 6 TAMRA only on the C-terminal lysine, and the acceptor control was free HiLyte647. Following three products were studied by dissolving in 10% (w/w) poly(vinyl alcohol) and dried on glass slides forming 200 micron films. Absorption spectra of the films show full additivity of donor and acceptor absorptions. A strong Fluorescence Resonance Energy Transfer (FRET) with an efficiency of about 85% was observed in the fluorescence emission and excitation spectra. The lifetime of the donor was shorter and heterogeneous compared with the donor control.

  4. Ultrafast Non-Förster Intramolecular Donor-Acceptor Excitation Energy Transfer.

    PubMed

    Athanasopoulos, Stavros; Alfonso Hernandez, Laura; Beljonne, David; Fernandez-Alberti, Sebastian; Tretiak, Sergei

    2017-04-06

    Ultrafast intramolecular electronic energy transfer in a conjugated donor-acceptor system is simulated using nonadiabatic excited-state molecular dynamics. After initial site-selective photoexcitation of the donor, transition density localization is monitored throughout the S2 → S1 internal conversion process, revealing an efficient unidirectional donor → acceptor energy-transfer process. Detailed analysis of the excited-state trajectories uncovers several salient features of the energy-transfer dynamics. While a weak temperature dependence is observed during the entire electronic energy relaxation, an ultrafast initially temperature-independent process allows the molecular system to approach the S2-S1 potential energy crossing seam within the first ten femtoseconds. Efficient energy transfer occurs in the absence of spectral overlap between the donor and acceptor units and is assisted by a transient delocalization phenomenon of the excited-state wave function acquiring Frenkel-exciton character at the moment of quantum transition.

  5. Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing

    NASA Astrophysics Data System (ADS)

    Ton-That, C.; Zhu, L.; Lockrey, M. N.; Phillips, M. R.; Cowie, B. C. C.; Tadich, A.; Thomsen, L.; Khachadorian, S.; Schlichting, S.; Jankowski, N.; Hoffmann, A.

    2015-07-01

    X-ray absorption near-edge spectroscopy, photoluminescence, cathodoluminescence, and Raman spectroscopy have been used to investigate the chemical states of nitrogen dopants in ZnO nanowires. It is found that nitrogen exists in multiple states: NO,NZn, and loosely bound N2 molecule. The results establish a direct link between a donor-acceptor pair emission at 3.232 eV and the concentration of loosely bound N2. This work confirms that N2 at Zn site is a potential candidate for producing a shallow acceptor state in N-doped ZnO as theoretically predicted by Lambrecht and Boonchun [Phys. Rev. B 87, 195207 (2013), 10.1103/PhysRevB.87.195207]. Additionally, shallow acceptor states arising from NO complexes have been ruled out in this paper.

  6. Spectroscopic studies of charge transfer complexes between colchicine and some π acceptors

    NASA Astrophysics Data System (ADS)

    Arslan, Mustafa; Duymus, Hulya

    2007-07-01

    Charge transfer complexes between colchicine as donor and π acceptors such as tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), p-chloranil ( p-CHL) have been studied spectrophotometrically in dichloromethane at 21 °C. The stoichiometry of the complexes was found to be 1:1 ratio by the Job method between donor and acceptors with the maximum absorption band at a wavelength of 535, 585 and 515 nm. The equilibrium constant and thermodynamic parameters of the complexes were determined by Benesi-Hildebrand and van't Hoff equations. Colchicine in pure form and in dosage form was applied in this study. The formation constants for the complexes were shown to be dependent on the structure of the electron acceptors used.

  7. Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology

    SciTech Connect

    Loeffler, F.E.; Tiedje, J.M.; Sanford, R.A.

    1999-09-01

    Measurements of the hydrogen consumption threshold and the tracking of electrons transferred to the chlorinated electron acceptor (f{sub e}) reliably detected chlororespiratory physiology in both mixed cultures and pure cultures capable of using tetrachloroethene, cis-1,2-dichloroethene, vinyl chloride, 2-chlorophenol, 3-chlorobenzoate, 3-chloro-4-hydroxybenzoate, or 1,2-dichloropropane as an electron acceptor. Hydrogen was consumed to significantly lower threshold concentrations of less than 0.4 ppmv compared with the values obtained for the same cultures without a chlorinated compound as an electron acceptor. The f{sub e} values ranged from 0.63 to 0.7, values which are in good agreement with theoretical calculations based on the thermodynamics of reductive dechlorination as the terminal electron-accepting process. In contrast, a mixed methanogenic culture that cometabolized 3-chlorophenol exhibited a significantly lower f{sub e} value, 0.012.

  8. Geometry for the Primary Electron Donor and the Bacteriopheophytin Acceptor in Rhodopseudomonas viridis Photosynthetic Reaction Centers

    PubMed Central

    Tiede, D. M.; Choquet, Y.; Breton, J.

    1985-01-01

    The tetrapyrrole electron donors and acceptors (bacteriochlorophyll, BCh; bacteriopheophytin, BPh) within the bacterial photosynthetic reaction center (RC) are arranged with a specific geometry that permits rapid (picosecond time scale) electron tunneling to occur between them. Here we have measured the angle between the molecular planes of the bacteriochlorophyll dimer (primary donor), B2, and the acceptor bacteriopheophytin, H, by analyzing the dichroism of the absorption change associated with H reduction, formed by photoselection with RCs of Rhodopseudomonas viridis. This angle between molecular planes is found to be 60° ± 2. This means that the ultrafast electron tunneling must occur between donors and acceptors that are fixed by the protein to have a noncoplanar alignment. Nearly perpendicular alignments have been determined for other electron tunneling complexes involving RCs. These geometries can be contrasted with models proposed for heme-heme electron transfer complexes, which have emphasized that mutually parallel orientations should permit the most kinetically facile transfers. PMID:19431588

  9. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors.

    PubMed

    Chou, Kenny F; Dennis, Allison M

    2015-06-05

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  10. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.

    PubMed

    Cai, Jing; Zheng, Ping; Mahmood, Qaisar

    2016-01-01

    The current investigation reports the effect of cathode electron acceptors on simultaneous sulfide and nitrate removal in two-chamber microbial fuel cells (MFCs). Potassium permanganate and potassium ferricyanide were common cathode electron acceptors and evaluated for substrate removal and electricity generation. The abiotic MFCs produced electricity through spontaneous electrochemical oxidation of sulfide. In comparison with abiotic MFC, the biotic MFC showed better ability for simultaneous nitrate and sulfide removal along with electricity generation. Keeping external resistance of 1,000 Ω, both MFCs showed good capacities for substrate removal where nitrogen and sulfate were the main end products. The steady voltage with potassium permanganate electrodes was nearly twice that of with potassium ferricyanide. Cyclic voltammetry curves confirmed that the potassium permanganate had higher catalytic activity than potassium ferricyanide. The potassium permanganate may be a suitable choice as cathode electron acceptor for enhanced electricity generation during simultaneous treatment of sulfide and nitrate in MFCs.

  11. Rapid Energy Transfer Enabling Control of Emission Polarization in Perylene Bisimide Donor-Acceptor Triads.

    PubMed

    Menelaou, Christopher; ter Schiphorst, Jeroen; Kendhale, Amol M; Parkinson, Patrick; Debije, Michael G; Schenning, Albertus P H J; Herz, Laura M

    2015-04-02

    Materials showing rapid intramolecular energy transfer and polarization switching are of interest for both their fundamental photophysics and potential for use in real-world applications. Here, we report two donor-acceptor-donor triad dyes based on perylene-bisimide subunits, with the long axis of the donors arranged either parallel or perpendicular to that of the central acceptor. We observe rapid energy transfer (<2 ps) and effective polarization control in both dye molecules in solution. A distributed-dipole Förster model predicts the excitation energy transfer rate for the linearly arranged triad but severely underestimates it for the orthogonal case. We show that the rapid energy transfer arises from a combination of through-bond coupling and through-space transfer between donor and acceptor units. As they allow energy cascading to an excited state with controllable polarization, these triad dyes show high potential for use in luminescent solar concentrator devices.

  12. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    PubMed Central

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  13. Identification of a Deep Acceptor Level in ZnO Due to Silver Doping

    NASA Astrophysics Data System (ADS)

    Chai, J.; Mendelsberg, R. J.; Reeves, R. J.; Kennedy, J.; von Wenckstern, H.; Schmidt, M.; Grundmann, M.; Doyle, K.; Myers, T. H.; Durbin, S. M.

    2010-05-01

    There remains considerable interest in the behavior of acceptors in ZnO, the ultimate goal being the realization of device grade p-type material. Silver is a candidate acceptor, and, in this study, in situ doping of silver was performed during plasma-assisted molecular beam epitaxy. Silver concentrations, as determined by ion beam analysis, ranged between 1018 cm-3and 1020 cm-3, with as much as 94% incorporated substitutionally on Zn lattice sites. Variable magnetic field Hall effect measurements detected no evidence of holes, and 4 K photoluminescence was dominated by donor bound excitons. Transient capacitance measurements, however, suggested that incorporated silver had led to the formation of an acceptor, located approximately 320 meV above the valence band edge, indicating that compensation remains a significant issue in determining the conductivity of ZnO.

  14. Molecular origin of photovoltaic performance in donor-block-acceptor all-conjugated block copolymers

    DOE PAGES

    Smith, Kendall A.; Lin, Yen -Hao; Mok, Jorge W.; ...

    2015-11-03

    All-conjugated block copolymers may be an effective route to self-assembled photovoltaic devices, but we lack basic information on the relationship between molecular characteristics and photovoltaic performance. Here, we synthesize a library of poly(3-hexylthiophene) (P3HT) block poly((9,9-dialkylfluorene)-2,7-diyl-alt-[4,7-bis(alkylthiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT) donor-block-acceptor all-conjugated block copolymers and carry out a comprehensive study of processing conditions, crystallinity, domain sizes, and side-chain structure on photovoltaic device performance. We find that all block copolymers studied exhibit an out-of-plane crystal orientation after deposition, and on thermal annealing at high temperatures the crystal orientation flips to an in-plane orientation. By varying processing conditions on polymer photovoltaic devices, we show thatmore » the crystal orientation has only a modest effect (15-20%) on photovoltaic performance. The addition of side-chains to the PFTBT block is found to decrease photovoltaic power conversion efficiencies by at least an order of magnitude. Through grazing-incidence X-ray measurements we find that the addition of side-chains to the PFTBT acceptor block results in weak segregation and small (< 10 nm) block copolymer self-assembled donor and acceptor domains. This work is the most comprehensive to date on all-conjugated block copolymer systems and suggests that photovoltaic performance of block copolymers depends strongly on the miscibility of donor and acceptor blocks, which impacts donor and acceptor domain sizes and purity. Lastly, strategies for improving the device performance of block copolymer photovoltaics should seek to increase segregation between donor and acceptor polymer domains.« less

  15. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    SciTech Connect

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  16. Threshold-like complexation of conjugated polymers with small molecule acceptors in solution within the neighbor-effect model.

    PubMed

    Sosorev, Andrey Yu; Parashchuk, Olga D; Zapunidi, Sergey A; Kashtanov, Grigoriy S; Golovnin, Ilya V; Kommanaboyina, Srikanth; Perepichka, Igor F; Paraschuk, Dmitry Yu

    2016-02-14

    In some donor-acceptor blends based on conjugated polymers, a pronounced charge-transfer complex (CTC) forms in the electronic ground state. In contrast to small-molecule donor-acceptor blends, the CTC concentration in polymer:acceptor solution can increase with the acceptor content in a threshold-like way. This threshold-like behavior was earlier attributed to the neighbor effect (NE) in the polymer complexation, i.e., next CTCs are preferentially formed near the existing ones; however, the NE origin is unknown. To address the factors affecting the NE, we record the optical absorption data for blends of the most studied conjugated polymers, poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene) (P3HT), with electron acceptors of fluorene series, 1,8-dinitro-9,10-antraquinone (), and 7,7,8,8-tetracyanoquinodimethane () in different solvents, and then analyze the data within the NE model. We have found that the NE depends on the polymer and acceptor molecular skeletons and solvent, while it does not depend on the acceptor electron affinity and polymer concentration. We conclude that the NE operates within a single macromolecule and stems from planarization of the polymer chain involved in the CTC with an acceptor molecule; as a result, the probability of further complexation with the next acceptor molecules at the adjacent repeat units increases. The steric and electronic microscopic mechanisms of NE are discussed.

  17. 2010 Electron Donor-Acceptor Interactions Gordon Research Conference, August 8 - 13, 2010.

    SciTech Connect

    Gerald Meyer

    2010-08-18

    The Gordon Research Conference on Electron Donor Acceptor Interactions (GRC EDAI) presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer Processes and Energy Conversion. The fundamental concepts underpinning the field of electron transfer and charge transport phenomena are understood, but fascinating experimental discoveries and novel applications based on charge transfer processes are expanding the discipline. Simultaneously, global challenges for development of viable and economical alternative energy resources, on which many researchers in the field focus their efforts, are now the subject of daily news headlines. Enduring themes of this conference relate to photosynthesis, both natural and artificial, and solar energy conversion. More recent developments include molecular electronics, optical switches, and nanoscale charge transport structures of both natural (biological) and man-made origin. The GRC EDAI is one of the major international meetings advancing this field, and is one of the few scientific meetings where fundamental research in solar energy conversion has a leading voice. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices. In addition to disseminating the latest advances in the field of electron transfer processes, the conference is an excellent forum for scientists from different disciplines to meet and initiate new directions; for scientists from different countries to make contacts; for young scientists to network and establish personal contacts with other young scientists and with established scientists who, otherwise, might not have the time to meet young people. The EDAI GRC also features an interactive atmosphere with lively poster sessions, a few of which are selected for oral presentations.

  18. Modular supramolecular approach for co-crystallization of donors and acceptors into ordered networks

    DOEpatents

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alex K.; Tayi, Alok S.; Sue, Andrew C. H.; Narayanan, Ashwin

    2016-09-20

    Organic charge-transfer (CT) co-crystals in a mixed stack system are disclosed, wherein a donor molecule (D) and an acceptor molecule (A) occupy alternating positions (DADADA) along the CT axis. A platform is provided which amplifies the molecular recognition of donors and acceptors and produces co-crystals at ambient conditions, wherein the platform comprises (i) a molecular design of the first constituent (.alpha.-complement), (ii) a molecular design of the second compound (.beta.-complement), and (iii) a solvent system that promotes co-crystallization.

  19. Copper-catalyzed asymmetric conjugate addition of organometallic reagents to extended Michael acceptors.

    PubMed

    Schmid, Thibault E; Drissi-Amraoui, Sammy; Crévisy, Christophe; Baslé, Olivier; Mauduit, Marc

    2015-01-01

    The copper-catalyzed asymmetric conjugate addition (ACA) of nucleophiles onto polyenic Michael acceptors represents an attractive and powerful methodology for the synthesis of relevant chiral molecules, as it enables in a straightforward manner the sequential generation of two or more stereogenic centers. In the last decade, various chiral copper-based catalysts were evaluated in combination with different nucleophiles and Michael acceptors, and have unambiguously demonstrated their usefulness in the control of the regio- and enantioselectivity of the addition. The aim of this review is to report recent breakthroughs achieved in this challenging field.

  20. Investigation of acceptor states in ZnO by junction DLTS

    NASA Astrophysics Data System (ADS)

    von Wenckstern, H.; Pickenhain, R.; Schmidt, H.; Brandt, M.; Biehne, G.; Lorenz, M.; Grundmann, M.; Brauer, G.

    2007-07-01

    We have realized a p-type ZnO surface layer by N + ion implantation of a high quality ZnO wafer and subsequent annealing. The conduction type of this surface layer was revealed by scanning capacitance microscopy. Rectifying current-voltage characteristics for processed devices were coherent with the existence of an internal pn junction. Deep donor- and acceptor-like defects were investigated by junction deep level transient spectroscopy. The donor-like levels correspond to those commonly observed for E1 and E3 defects. The acceptor states resolved have thermal activation energies of about 150 meV and 280 meV, respectively.

  1. Effect of Electronic Acceptor Segments on Photophysical Properties of Low-Band-Gap Ambipolar Polymers

    PubMed Central

    Li, Yuanzuo; Cui, Jingang; Zhao, Jianing; Liu, Jinglin; Song, Peng; Ma, Fengcai

    2013-01-01

    Stimulated by a recent experimental report, charge transfer and photophysical properties of donor-acceptor ambipolar polymer were studied with the quantum chemistry calculation and the developed 3D charge difference density method. The effects of electronic acceptor strength on the structure, energy levels, electron density distribution, ionization potentials, and electron affinities were also obtained to estimate the transporting ability of hole and electron. With the developed 3D charge difference density, one visualizes the charge transfer process, distinguishes the role of molecular units, and finds the relationship between the role of DPP and excitation energy for the three polymers during photo-excitation. PMID:23365549

  2. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOEpatents

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  3. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    SciTech Connect

    Kalpana, P.; Merwyn, A.; Nithiananthi, P.; Jayakumar, K.; Reuben, Jasper D.

    2015-06-24

    The Coulomb interaction of holes in a Semimagnetic Cd{sub 1-x}Mn{sub x}Te / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  4. Effect of electronic acceptor segments on photophysical properties of low-band-gap ambipolar polymers.

    PubMed

    Li, Yuanzuo; Cui, Jingang; Zhao, Jianing; Liu, Jinglin; Song, Peng; Ma, Fengcai

    2013-01-01

    Stimulated by a recent experimental report, charge transfer and photophysical properties of donor-acceptor ambipolar polymer were studied with the quantum chemistry calculation and the developed 3D charge difference density method. The effects of electronic acceptor strength on the structure, energy levels, electron density distribution, ionization potentials, and electron affinities were also obtained to estimate the transporting ability of hole and electron. With the developed 3D charge difference density, one visualizes the charge transfer process, distinguishes the role of molecular units, and finds the relationship between the role of DPP and excitation energy for the three polymers during photo-excitation.

  5. Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors

    PubMed Central

    Wu, Tzi-Yi; Tsao, Ming-Hsiu; Chen, Fu-Lin; Su, Shyh-Gang; Chang, Cheng-Wen; Wang, Hong-Paul; Lin, Yuan-Chung; Ou-Yang, Wen-Chung; Sun, I-Wen

    2010-01-01

    New organic dyes comprising carbazole, iminodibenzyl, or phenothiazine moieties, respectively, as the electron donors, and cyanoacetic acid or acrylic acid moieties as the electron acceptors/anchoring groups were synthesized and characterized. The influence of heteroatoms on carbazole, iminodibenzyl and phenothiazine donors, and cyano-substitution on the acid acceptor is evidenced by spectral, electrochemical, photovoltaic experiments, and density functional theory calculations. The phenothiazine dyes show solar-energy-to-electricity conversion efficiency (η) of 3.46–5.53%, whereas carbazole and iminodibenzyl dyes show η of 2.43% and 3.49%, respectively. PMID:20162019

  6. Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases.

    PubMed

    Hindsgaul, O; Kaur, K J; Srivastava, G; Blaszczyk-Thurin, M; Crawley, S C; Heerze, L D; Palcic, M M

    1991-09-25

    The glycosyltransferases controlling the biosynthesis of cell-surface complex carbohydrates transfer glycosyl residues from sugar nucleotides to specific hydroxyl groups of acceptor oligosaccharides. These enzymes represent prime targets for the design of glycosylation inhibitors with the potential to specifically alter the structures of cell-surface glycoconjugates. With the aim of producing such inhibitors, synthetic oligosaccharide substrates were prepared for eight different glycosyltransferases. The enzymes investigated were: A, alpha(1----2, porcine submaxillary gland); B, alpha(1----3/4, Lewis); C, alpha(1----4, mung bean); D, alpha(1----3, Lex)-fucosyltransferases; E, beta(1----4)-galactosyltransferase; F, beta(1----6)-N-acetylglucosaminyltransferase V; G, beta(1----6)-mucin-N-acetylglucosaminyltransferase ("core-2" transferase); and H, alpha(2----3)-sialyltransferase from rat liver. These enzymes all transfer sugar residues from their respective sugar nucleotides (GDP-Fuc, UDP-Gal, UDP-GlcNAc, and CMP-sialic acid) with inversion of configuration at their anomeric centers. The Km values for their synthetic oligosaccharide acceptors were in the range of 0.036-1.3 mM. For each of these eight enzymes, acceptor analogs were next prepared where the hydroxyl group undergoing glycosylation was chemically removed and replaced by hydrogen. The resulting deoxygenated acceptor analogs can no longer be substrates for the corresponding glycosyltransferases and, if still bound by the enzymes, should act as competitive inhibitors. In only four of the eight cases examined (enzymes A, C, F, and G) did the deoxygenated acceptor analogs inhibit their target enzymes, and their Ki values (all competitive) remained in the general range of the corresponding acceptor Km values. No inhibition was observed for the remaining four enzymes even at high concentrations of deoxygenated acceptor analog. For these latter enzymes it is suggested that the reactive acceptor hydroxyl groups are

  7. A Stable Monomeric SiO2 Complex with Donor-Acceptor Ligands.

    PubMed

    Rodriguez, Ricardo; Gau, David; Saouli, Jérémy; Baceiredo, Antoine; Saffon-Merceron, Nathalie; Branchadell, Vicenç; Kato, Tsuyoshi

    2017-03-27

    Isolation of a monomeric SiO2 compound 3 as a stable donor-acceptor complex with two different ligands -a σ-donating ligand (pyridine, dimethylaminopyridine, N-heterocyclic carbene) and a donor-acceptor ligand (iminophosphorane)-is presented. The SiO2 complex 3 is soluble in ordinary organic solvents and is stable at room temperature in solution and in the solid state. Of particular interest, 3 remains reactive and can be used as a stable and soluble unimolecular SiO2 reagent.

  8. IR, UV-Vis, magnetic and thermal characterization of chelates of some catecholamines and 4-aminoantipyrine with Fe(III) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, M. A.; El-Dien, F. A. Nour; El-Nahas, Reham G.

    2004-07-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. α-Methyldopa (α-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), α-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic - OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  9. Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides.

    PubMed

    Jeon, Byong-Hun; Dempsey, Brian A; Burgos, William D; Barnett, Mark O; Roden, Eric E

    2005-08-01

    Abiotic reduction of 0.1 mM U(VI) by Fe(II) in the presence of synthetic iron oxides (biogenic magnetite, goethite, and hematite) and natural Fe(III) oxide-containing solids was investigated in pH 6.8 artificial groundwater containing 10 mM NaHCO3. In most experiments, more than 95% of added U(VI) was sorbed to solids. U(VI) was rapidly and extensively (> or = 80%) reduced in the presence of synthetic Fe(III) oxides and highly Fe(II) oxide-enriched (18-35 wt % Fe) Atlantic coastal plain sediments. In contrast, long-term (20-60 d) U(VI) reduction was less than 30% in suspensions of six other natural solids with relatively low Fe(III) oxide content (1-5 wt % Fe). Fe(II) sorption site density was severalfold lower on these natural solids (0.2-1.1 Fe(II) nm(-2)) compared tothe synthetic Fe(lII) oxides (1.6-3.2 Fe(II) nm(-2)), which may explain the poor U(VI) reduction in the natural solid-containing systems. Addition of the reduced form of the electron shuttling compound anthrahydroquinone-2,6-disulfonate (AH2DS; final concentration 2.5 mM) to the natural solid suspensions enhanced the rate and extent of U(VI) reduction, suggesting that AH2DS reduced U(VI) at surface sites where reaction of U(VI) with sorbed Fe(II) was limited. This study demonstrates that abiotic, Fe(II)-driven U(VI) reduction is likely to be less efficient in natural soils and sediments than would be inferred from studies with synthetic Fe(III) oxides.

  10. Depth-dependent geochemical and microbiological gradients in Fe(III) deposits resulting from coal mine-derived acid mine drainage

    PubMed Central

    Brantner, Justin S.; Haake, Zachary J.; Burwick, John E.; Menge, Christopher M.; Hotchkiss, Shane T.; Senko, John M.

    2014-01-01

    We evaluated the depth-dependent geochemistry and microbiology of sediments that have developed via the microbially-mediated oxidation of Fe(II) dissolved in acid mine drainage (AMD), giving rise to a 8–10 cm deep “iron mound” that is composed primarily of Fe(III) (hydr)oxide phases. Chemical analyses of iron mound sediments indicated a zone of maximal Fe(III) reducing bacterial activity at a depth of approximately 2.5 cm despite the availability of dissolved O2 at this depth. Subsequently, Fe(II) was depleted at depths within the iron mound sediments that did not contain abundant O2. Evaluations of microbial communities at 1 cm depth intervals within the iron mound sediments using “next generation” nucleic acid sequencing approaches revealed an abundance of phylotypes attributable to acidophilic Fe(II) oxidizing Betaproteobacteria and the chloroplasts of photosynthetic microeukaryotic organisms in the upper 4 cm of the iron mound sediments. While we observed a depth-dependent transition in microbial community structure within the iron mound sediments, phylotypes attributable to Gammaproteobacterial lineages capable of both Fe(II) oxidation and Fe(III) reduction were abundant in sequence libraries (comprising ≥20% of sequences) from all depths. Similarly, abundances of total cells and culturable Fe(II) oxidizing bacteria were uniform throughout the iron mound sediments. Our results indicate that O2 and Fe(III) reduction co-occur in AMD-induced iron mound sediments, but that Fe(II)-oxidizing activity may be sustained in regions of the sediments that are depleted in O2. PMID:24860562

  11. A family of enantiopure Fe(III)4 single molecule magnets: fine tuning of energy barrier by remote substituent.

    PubMed

    Zhu, Yuan-Yuan; Cui, Chang; Qian, Kang; Yin, Ji; Wang, Bing-Wu; Wang, Zhe-Ming; Gao, Song

    2014-08-21

    A new family of enantiopure star-shaped Fe(III)4 single-molecule magnets (SMMs) with the general formula [Fe4(L(K))6] (H2L = (R or S)-2-((2-hydroxy-1-phenylethylimino methyl)phenol); K = H (), Cl (), Br (), I (), and t-Bu ()), were structurally and magnetically characterized. Complex was reported in our previous paper (Chem. Commun., 2011, 47, 8049-8051). Detailed magnetic measurements and a systematic magneto-structural correlation study revealed that the SMM properties of this series of compounds can be finely tuned by the remote substituent of the ligands. Although the change in the coordination environment of the central Fe(3+) ions is very small, the properties of SMM behavior are changed considerably. All five complexes display frequency dependence of the ac susceptibility. However, the χ peaks of complexes and cannot be observed down to 0.5 K. The fitted anisotropy energy barriers (Ueff) of complexes , , and were 5.9, 7.1, and 11.0 K, respectively. Moreover, the hysteresis loops of these three complexes can be also observed around 0.5 K. Magneto-structural correlation analyses revealed that the coordination symmetry of the central Fe(3+) ion and the intermolecular interaction are two key factors affecting the SMM properties. Deviation to a trigonal prism coordination environment and the existence of intermolecular interactions between neighboring clusters may both reduce the anisotropy energy barriers.

  12. Crystal structure of the coordination polymer [Fe(III) 2{Pt(II)(CN)4}3].

    PubMed

    Seredyuk, Maksym; Muñoz, M Carmen; Real, José A; Iskenderov, Turganbay S

    2015-01-01

    The title complex, poly[dodeca-μ-cyanido-diiron(III)triplat-inum(II)], [Fe(III) 2{Pt(II)(CN)4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [Pt(II)(CN)4](2-) anions (point group symmetry 2/m) bridging cationic [Fe(III)Pt(II)(CN)4](+) ∞ layers extending in the bc plane. The Fe(II) atoms of the layers are located on inversion centres and exhibit an octa-hedral coordination sphere defined by six N atoms of cyanide ligands, while the Pt(II) atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octa-hedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [Fe(III)Pt(II)(CN)4](+) ∞ layers corresponds to the length a/2 = 8.0070 (3) Å, and the separation between two neighbouring Pt(II) atoms of the bridging [Pt(II)(CN)4](2-) groups corresponds to the length of the c axis [7.5720 (2) Å]. The structure is porous with accessible voids of 390 Å(3) per unit cell.

  13. Synthesis, spectroscopic and theoretical studies of two novel tripodal imine-phenol ligands and their complexation with Fe(III)

    NASA Astrophysics Data System (ADS)

    Kanungo, B. K.; Baral, Minati; Sahoo, Suban K.; Muthu, S. E.

    2009-10-01

    Two novel tripodal imine-phenol ligands, cis, cis-1,3,5-tris{(2-hydroxybenzilidene)aminomethyl}cyclohexane (TMACHSAL, L 1) and of cis, cis-1,3,5-tris{[(2-hydroxyphenyl)ethylidene]aminomethyl}cyclohexane (Me 3-TMACHSAL, L 2) have been synthesized and characterized by elemental analyses and various spectral (UV-vis, IR and 1H and 13C NMR) data. The complexation reactions of the ligands with H + and Fe(III) were investigated by potentiometric and spectrophotometric methods at an ionic strength of 0.1 M KCl and 25 ± 1 °C in aqueous medium. Three protonation constants each for ligands L 1 and L 2 were determined and were used as input data to evaluate the formation constants of the metal complexes. Formations of metal complexes of the types FeLH 3, FeLH 2, FeLH, FeL and FeLH -1 were depicted in solution. Experimental evidences suggested for a formation of tris(iminophenolate) type metal complex by the ligands. The ligand L 1 showed higher affinity towards iron(III) than L 2. The pFe value related to L 1 (pFe = 20.14) is approximately four units higher than L 2 (pFe = 16.41) at pH = 7.4. The structures of the metal complexes were proposed through the molecular mechanics calculation using MM3 force field followed by semi-empirical PM3 method.

  14. Crystal structure of the coordination polymer [FeIII 2{PtII(CN)4}3

    PubMed Central

    Seredyuk, Maksym; Muñoz, M. Carmen; Real, José A.; Iskenderov, Turganbay S.

    2015-01-01

    The title complex, poly[dodeca-μ-cyanido-diiron(III)triplat­inum(II)], [FeIII 2{PtII(CN)4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN)4]2− anions (point group symmetry 2/m) bridging cationic [FeIIIPtII(CN)4]+ ∞ layers extending in the bc plane. The FeII atoms of the layers are located on inversion centres and exhibit an octa­hedral coordination sphere defined by six N atoms of cyanide ligands, while the PtII atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octa­hedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [FeIIIPtII(CN)4]+ ∞ layers corresponds to the length a/2 = 8.0070 (3) Å, and the separation between two neighbouring PtII atoms of the bridging [PtII(CN)4]2− groups corresponds to the length of the c axis [7.5720 (2) Å]. The structure is porous with accessible voids of 390 Å3 per unit cell. PMID:25705468

  15. Natural input of arsenic into a coral-reef ecosystem by hydrothermal fluids and its removal by Fe(III) oxyhydroxides

    SciTech Connect

    Pichler, T.; Veizer, J.; Hall, G.E.M.

    1999-05-01

    The coral reef that circles Ambitle Island, Papua New Guinea, is exposed to the discharge of a hot, mineralized hydrothermal fluid. The hydrothermal fluids have a pH of {approximately}6 and are slightly reducing and rich in As. Seven individual vents discharge an estimated 1500 g of As per day into an area of approximately 50 x 100 m that has an average depth of 6 m. Despite the amount of As released into the bay, corals, clams, and fish do not show a response to the elevated values. The authors analyzed hydrothermal precipitates for their chemical and mineralogical composition in order to determine As sinks. Two mechanisms efficiently control and buffer the As concentration: (1) dilution by seawater and (2) incorporation in and adsorption on Fe(III) oxyhydroxides that precipitate when the hydrothermal fluids mix with ambient seawater. Fe(III) oxyhydroxides contain up to 76,000 ppm As, by an order of magnitude the highest As values found in a natural marine environment. Following adsorption, As is successfully retained in the Fe(III) oxyhydroxide deposits because oxidizing conditions prevail and high As activity allows for the formation of discrete As minerals, such as claudetite, arsenic oxide, and scorodite.

  16. Interactions of the periplasmic binding protein CeuE with Fe(III) n-LICAM4− siderophore analogues of varied linker length

    PubMed Central

    Wilde, Ellis J.; Hughes, Adam; Blagova, Elena V.; Moroz, Olga V.; Thomas, Ross P.; Turkenburg, Johan P.; Raines, Daniel J.; Duhme-Klair, Anne-Kathrin; Wilson, Keith S.

    2017-01-01

    Bacteria use siderophores to mediate the transport of essential Fe(III) into the cell. In Campylobacter jejuni the periplasmic binding protein CeuE, an integral part of the Fe(III) transport system, has adapted to bind tetradentate siderophores using a His and a Tyr side chain to complete the Fe(III) coordination. A series of tetradentate siderophore mimics was synthesized in which the length of the linker between the two iron-binding catecholamide units was increased from four carbon atoms (4-LICAM4−) to five, six and eight (5-, 6-, 8-LICAM4−, respectively). Co-crystal structures with CeuE showed that the inter-planar angles between the iron-binding catecholamide units in the 5-, 6- and 8-LICAM4− structures are very similar (111°, 110° and 110°) and allow for an optimum fit into the binding pocket of CeuE, the inter-planar angle in the structure of 4-LICAM4− is significantly smaller (97°) due to restrictions imposed by the shorter linker. Accordingly, the protein-binding affinity was found to be slightly higher for 5- compared to 4-LICAM4− but decreases for 6- and 8-LICAM4−. The optimum linker length of five matches that present in natural siderophores such as enterobactin and azotochelin. Site-directed mutagenesis was used to investigate the relative importance of the Fe(III)-coordinating residues H227 and Y288. PMID:28383577

  17. Biostimulation of Iron Reduction and Subsequent Oxidation of Sediment Containing Fe-silicates and Fe-oxides: Effect of Redox Cycling on Fe(III) Bioreduction

    SciTech Connect

    Komlos, John; Kukkadapu, Ravi K.; Zachara, John M.; Jaffe, Peter R.

    2007-07-01

    Microbial reduction of iron has been shown to be important in the transformation and remediation of contaminated sediments. Re-oxidation of microbially reduced iron may occur in sediments that experience oxidation-reduction cycling and can thus impact the extent of contaminant remediation. The purpose of this research was to quantify iron oxidation in a flow-through column filled with biologically-reduced sediment and to compare the iron phases in the re-oxidized sediment to both the pristine and biologically-reduced sediment. The sediment contained both Fe(III)-oxides (primarily goethite) and silicate Fe (illite/vermiculite) and was biologically reduced in phosphate buffered (PB) medium during a 497 day column experiment with acetate supplied as the electron donor. Long-term iron reduction resulted in partial reduction of silicate Fe(III) without any goethite reduction, based on Mössbauer spectroscopy measurements. This reduced sediment was treated with an oxygenated PB solution in a flow-through column resulting in the oxidation of 38% of the biogenic Fe(II). Additional batch experiments showed that the Fe(III) in the oxidized sediment was more quickly reduced compared to the pristine sediment, indicating that oxidation of the sediment not only regenerated Fe(III) but also enhanced iron reduction compared to the pristine sediment. Oxidation-reduction cycling may be a viable method to extend iron-reducing conditions during in-situ bioremediation.

  18. Cooperative effects of solvent and polymer acceptor co-additives in P3HT:PDI solar cells: simultaneous optimization in lateral and vertical phase separation.

    PubMed

    Li, Mingguang; Wang, Lei; Liu, Jiangang; Zhou, Ke; Yu, Xinhong; Xing, Rubo; Geng, Yanhou; Han, Yanchun

    2014-03-14

    In this work, solvent chloronaphthalene (CN) and polymer acceptor an alternating copolymer of perylene diimide and carbazole (PCPDI) were utilized as co-additives to optimize the nanoscale phase-separated morphology and photovoltaic properties of bulk-heterojunction (BHJ) polymer solar cells based on the poly(3-hexyl thiophene) (P3HT)/N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) system. The domain size of EP-PDI molecules together with that of P3HT distinctly decreased by adding a 0.75 vol% CN additive. The optimized lateral phase separation increased the donor-acceptor interfacial area and facilitated the exciton dissociation process, leading to 5-fold enhancement of short-circuit current (JSC). Furthermore, when PCPDI was employed as a co-additive, acceptor materials (including PCPDI and EP-PDI) were prone to aggregation towards the top surface of blend films, improving vertical phase separation of active layers. PCPDI incorporation, which improved the percolation pathways for electron carriers, suppressed the crystallinity of P3HT distinctly. Thus, much more balanced charge transport was achieved by PCPDI addition, which resulted in almost 1-fold enhancement of open-circuit voltage (VOC) by reducing nongeminate recombination. As a consequence, cooperative effects of CN and PCPDI additives improved the nanoscale phase-separated morphology in lateral and vertical directions simultaneously, achieving the enhancement in both VOC and JSC.

  19. Reinforced self-assembly of donor-acceptor π-conjugated molecules to DNA templates by dipole-dipole interactions together with complementary hydrogen bonding interactions for biomimetics.

    PubMed

    Yang, Wanggui; Chen, Yali; Wong, Man Shing; Lo, Pik Kwan

    2012-10-08

    One of the most important criteria for the successful DNA-templated polymerization to generate fully synthetic biomimetic polymers is to design the complementary structural monomers, which assemble to the templates strongly and precisely before carrying polymerization. In this study, water-soluble, laterally thymine-substituted donor-acceptor π-conjugated molecules were designed and synthesized to self-assemble with complementary oligoadenines templates, dA(20) and dA(40), into stable and tubular assemblies through noncovalent interactions including π-π stacking, dipole-dipole interactions, and the complementary adenine-thymine (A-T) hydrogen-bonding. UV-vis, fluorescence, circular dichroism (CD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to investigate the formation of highly robust nanofibrous structures. Our results have demonstrated for the first time that the dipole-dipole interactions are stronger and useful to reinforce the assembly of donor-acceptor π-conjugated molecules to DNA templates and the formation of the stable and robust supramolecular nanofibrous complexes together with the complementary hydrogen bonding interactions. This provides an initial step toward DNA-templated polymerization to create fully synthetic DNA-mimetic polymers for biotechnological applications. This study also presents an opportunity to precisely position donor-acceptor type molecules in a controlled manner and tailor-make advanced materials for various biotechnological applications.

  20. Evidence That Bank Vole PrP Is a Universal Acceptor for Prions

    PubMed Central

    Watts, Joel C.; Giles, Kurt; Patel, Smita; Oehler, Abby; DeArmond, Stephen J.; Prusiner, Stanley B.

    2014-01-01

    Bank voles are uniquely susceptible to a wide range of prion strains isolated from many different species. To determine if this enhanced susceptibility to interspecies prion transmission is encoded within the sequence of the bank vole prion protein (BVPrP), we inoculated Tg(M109) and Tg(I109) mice, which express BVPrP containing either methionine or isoleucine at polymorphic codon 109, with 16 prion isolates from 8 different species: humans, cattle, elk, sheep, guinea pigs, hamsters, mice, and meadow voles. Efficient disease transmission was observed in both Tg(M109) and Tg(I109) mice. For instance, inoculation of the most common human prion strain, sporadic Creutzfeldt-Jakob disease (sCJD) subtype MM1, into Tg(M109) mice gave incubation periods of ∼200 days that were shortened slightly on second passage. Chronic wasting disease prions exhibited an incubation time of ∼250 days, which shortened to ∼150 days upon second passage in Tg(M109) mice. Unexpectedly, bovine spongiform encephalopathy and variant CJD prions caused rapid neurological dysfunction in Tg(M109) mice upon second passage, with incubation periods of 64 and 40 days, respectively. Despite the rapid incubation periods, other strain-specified properties of many prion isolates—including the size of proteinase K–resistant PrPSc, the pattern of cerebral PrPSc deposition, and the conformational stability—were remarkably conserved upon serial passage in Tg(M109) mice. Our results demonstrate that expression of BVPrP is sufficient to engender enhanced susceptibility to a diverse range of prion isolates, suggesting that BVPrP may be a universal acceptor for prions. PMID:24699458

  1. Optimization of Donor-Acceptor Substitution for Large Optical Non-linearities in Small Organic Molecules

    NASA Astrophysics Data System (ADS)

    Beels, Marten

    The determination of the wavelength dependence of the complex third-order polarizability of organic molecules delivers information on the mechanisms of resonance enhancement and allows for comparison of the two-photon absorption cross sections on their peak to the off-resonant third-order polarizabilities. The experimental technique of degenerate four-wave mixing offers several advantages over other comparable techniques, including sensitivity, background-free signal, automatization, and information on excited state lifetimes. This work uses experimental data, computational chemistry, and analysis of the relevant terms in the sum-over-states quantum mechanics expression to analyze the significant contributions to the third-order polarizability, mechanisms of resonance enhancement, and comparison of the off resonant values, to peak resonant values. This information provides insight to the structure-property relationships for the third-order polarizability, allows for comparison to fundamental limits, and assessment of the potential for molecules to form solid state materials with a large third-order susceptibility. The use of donor-acceptor (D/A) substitution allows for the realization of small molecules with large third-order polarizabilities. However, in contrast to symmetric non-D/A oligomers that have third-order polarizabilities which scale by a power law as the molecule is made larger, D/A substituted molecules only scale up to a certain length, beyond which the molecule is over-extended and the third-order polarizability does not increase further. This work will analyze the scaling of non-D/A and D/A substituted molecules, determine the optimum length for D/A substituted molecules, and explain the physics of the saturation.

  2. Ring opening of donor-acceptor cyclopropanes with the azide ion: a tool for construction of N-heterocycles.

    PubMed

    Ivanov, Konstantin L; Villemson, Elena V; Budynina, Ekaterina M; Ivanova, Olga A; Trushkov, Igor V; Melnikov, Mikhail Ya

    2015-03-23

    A general method for ring opening of various donor-acceptor cyclopropanes with the azide ion through an SN 2-like reaction has been developed. This highly regioselective and stereospecific process proceeds through nucleophilic attack on the more-substituted C2 atom of a cyclopropane with complete inversion of configuration at this center. Results of DFT calculations support the SN 2 mechanism and demonstrate good qualitative correlation between the relative experimental reactivity of cyclopropanes and the calculated energy barriers. The reaction provides a straightforward approach to a variety of polyfunctional azides in up to 91 % yield. The high synthetic utility of these azides and the possibilities of their involvement in diversity-oriented synthesis were demonstrated by the developed multipath strategy of their transformations into five-, six-, and seven-membered N-heterocycles, as well as complex annulated compounds, including natural products and medicines such as (-)-nicotine and atorvastatin.

  3. 2004 Electron Donor Acceptor Interactions Gordon Conference - August 8-13, 2004

    SciTech Connect

    GUILFORD JONES BOSTON UNIVERSITY PHOTONICS CENTER 8 ST. MARY'S ST BOSTON, MA 02215

    2005-09-14

    The 2004 Gordon Conference on Donor/Acceptor Interactions will take place at Salve Regina University in Newport, Rhode Island on August 8-13, 2004. The conference will be devoted to the consequences of charge interaction and charge motion in molecular and materials systems.

  4. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  5. Limited Cash Flow on Slot Machines: Effects of Prohibition of Note Acceptors on Adolescent Gambling Behaviour

    ERIC Educational Resources Information Center

    Hansen, Marianne; Rossow, Ingeborg

    2010-01-01

    This study addresses the impact of prohibition of note acceptors on gambling behaviour and gambling problems among Norwegian adolescents. Data comprised school surveys at three time points; 2004 and 2005 (before intervention) and 2006 (after intervention). Net samples comprised 20.000 students aged 13-19 years at each data collection. Identical…

  6. Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface.

    PubMed

    Chen, Lijia; Zhang, Qiaoming; Lei, Yanlian; Zhu, Furong; Wu, Bo; Zhang, Ting; Niu, Guoxi; Xiong, Zuhong; Song, Qunliang

    2013-10-21

    In this work, we report our effort to understand the photocurrent generation that is contributed via electron-exciton interaction at the donor/acceptor interface in organic solar cells (OSCs). Donor/acceptor bi-layer heterojunction OSCs, of the indium tin oxide/copper phthalocyanine (CuPc)/fullerene (C60)/molybdenum oxide/Al type, were employed to study the mechanism of photocurrent generation due to the electron-exciton interaction, where CuPc and C60 are the donor and the acceptor, respectively. It is shown that the electron-exciton interaction and the exciton dissociation processes co-exist at the CuPc/C60 interface in OSCs. Compared to conventional donor/acceptor bi-layer OSCs, the cells with the above configuration enable holes to be extracted at the C60 side while electrons can be collected at the CuPc side, resulting in a photocurrent in the reverse direction. The photocurrent thus observed is contributed to primarily by the charge carriers that are generated by the electron-exciton interaction at the CuPc/C60 interface, while charges derived from the exciton dissociation process also exist at the same interface. The mechanism of photocurrent generation due to electron-exciton interaction in the OSCs is further investigated, and it is manifested by the transient photovoltage characteristics and the external quantum efficiency measurements.

  7. Solvent as electron donor: Donor/acceptor electronic coupling is a dynamical variable

    SciTech Connect

    Castner, E.W. Jr.; Kennedy, D.; Cave, R.J.

    2000-04-06

    The authors combine analysis of measurements by femtosecond optical spectroscopy, computer simulations, and the generalized Mulliken-Hush (GMH) theory in the study of electron-transfer reactions and electron donor-acceptor interactions. The study focus is on ultrafast photoinduced electron-transfer reactions from aromatic amine solvent donors to excited-state acceptors. The experimental results from femtosecond dynamical measurements fall into three categories: six coumarin acceptors reductively quenched by N,N-dimethylaniline (DMA), eight electron-donating amine solvents reductively quenching coumarin 152 (7-(dimethylamino)-4-(trifluoromethyl)-coumarin), and reductive quenching dynamics of two coumarins by DMA as a function of dilution in the nonreactive solvents toluene and chlorobenzene. Applying a combination of molecular dynamics trajectories, semiempirical quantum mechanical calculations (of the relevant adiabatic electronic states), and GMH theory to the C152/DMA photoreaction, the authors calculate the electron donor/acceptor interaction parameter H{sub DA} at various time frames, H{sub DA} is strongly modulated by both inner-sphere and outer-sphere nuclear dynamics, leading us to conclude that H{sub DA} must be considered as a dynamical variable.

  8. Photoluminescence study of Be acceptors in GaInNAs epilayers

    NASA Astrophysics Data System (ADS)

    Tsai, Y.; Barman, B.; Scrace, T.; Petrou, A.; Fukuda, M.; Sellers, I. R.; Leroux, M.; Khalfioui, M. A.

    2014-03-01

    We have studied the photoluminescence (PL) spectra from MBE grown GaInNAs epilayers doped p-type with Beryllium acceptors. The measurements were carried out in the 5 K - 70 K temperature range and in magnetic fields (B) up to 7 tesla. The PL spectra contain two features at T = 5 K: The exciton at 1093 meV and a second broader feature at 1058 meV. The intensity of this feature decreases with increasing temperature and disappears completely by 70K while the excitonic feature persists. The emission at 1058meV is identified as the conduction band to Beryllium acceptor transition. If we take into account the binding energy of the exciton [3] we get a value of 23 meV for the Beryllium acceptor binding energy. The acceptor related transition was studied as a function of magnetic field; the energy of this transition has a linear dependence on B with a slope of 055 meV/T. Research supported by Amethyst Research In. through the State of Oklahoma, ONAP program.

  9. Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis.

    PubMed

    Baraquet, Claudine; Théraulaz, Laurence; Iobbi-Nivol, Chantal; Méjean, Vincent; Jourlin-Castelli, Cécile

    2009-07-01

    Shewanella oneidensis uses a wide range of terminal electron acceptors for respiration. In this study, we show that the chemotactic response of S. oneidensis to anaerobic electron acceptors requires functional electron transport systems. Deletion of the genes encoding dimethyl sulphoxide and trimethylamine N-oxide reductases, or inactivation of these molybdoenzymes as well as nitrate reductase by addition of tungstate, abolished electron acceptor taxis. Moreover, addition of nigericin prevented taxis towards trimethylamine N-oxide, dimethyl sulphoxide, nitrite, nitrate and fumarate, showing that this process depends on the DeltapH component of the proton motive force. These data, together with those concerning response to metals (Bencharit and Ward, 2005), support the idea that, in S. oneidensis, taxis towards electron acceptors is governed by an energy taxis mechanism. Surprisingly, energy taxis in S. oneidensis is not mediated by the PAS-containing chemoreceptors but rather by a chemoreceptor (SO2240) containing a Cache domain. Four other chemoreceptors also play a minor role in this process. These results indicate that energy taxis can be mediated by new types of chemoreceptors.

  10. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    NASA Astrophysics Data System (ADS)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  11. Donator acceptor map of psittacofulvins and anthocyanins: are they good antioxidant substances?

    PubMed

    Martínez, Ana

    2009-04-09

    Psittacofulvins represent an unusual class of pigments (noncarotenoid lipochromes), which are found only in the red, orange, and yellow plumage of parrots. Anthocyanins are flavonoids, and they are one of the primary types of colorants found in plants. Blue butterflies acquire blue and UV hues on their wings, owing to the presence of flavonoids. It is assumed that these natural pigments are valuable antioxidants because they are able to scavenge free radicals. The aim of this investigation is to rationalize the scavenging activity of psittacofulvins and anthocyanins, in terms of the one electron transfer mechanism, taking into account that to prevent oxidative stress, substances must either donate or accept electrons. Density functional approximation calculations are used to obtain ionization potentials, electron affinities, electrodonating, and electroaccepting power indexes. Taking these values, a donator acceptor map (DAM) was constructed, indicating that anthocyanins are good electron donors, whereas psittacofulvins are good electron acceptors. Anthocyanins and vitamins are antioxidants, whereas psittacofulvins and carotenoids are antireductants (oxidants). In terms of solvent effects, animal pigments (carotenoids, psittacofulvins, and anthocyanins) are much better electron acceptors in water than in either the gas phase or benzene. Solvent effects do not alter the electron donor capacity of vitamins, but anthocyanins become effective electron acceptors in water, rather than effective electron donors. The information presented here may also be valuable for the design and analysis of further experiments.

  12. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.

    PubMed

    Mashimo, Masato; Kato, Jiro; Moss, Joel

    2014-11-01

    ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD(+)) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g., ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g., ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1(-/-) and ARH3(-/-) mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos.

  13. Imaging protein interactions by FRET microscopy: FRET measurements by acceptor photobleaching.

    PubMed

    Verveer, Peter J; Rocks, Oliver; Harpur, Ailsa G; Bastiaens, Philippe I H

    2006-11-01

    This protocol describes the detection of fluorescence resonance energy transfer (FRET) by measuring the quenching of donor emission alone. As opposed to sensitized emission measurements, photobleaching can be performed with high selectivity of the acceptor because absorption spectra are steep at their red edge, allowing the acceptor to be bleached without excitation of the donor. When using acceptor photobleaching FRET measurements, care should be taken that the photochemical product of the bleached acceptor does not have residual absorption at the donor emission and, more importantly, that it does not fluoresce in the donor spectral region. Because of mass movement of protein during the extended time required for photobleaching (typically 1-20 min), it is preferable to perform this type of FRET determination on fixed cell samples. Live-cell FRET measurements based only on donor fluorescence are more feasible using fluorescence lifetime imaging (FLIM), because lifetimes are independent of probe concentration and light path length. The former is not easy to determine in cells, and the latter means that cell shape is not a factor.

  14. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics.

    PubMed

    Li, Hanying; Fan, Congcheng; Fu, Weifei; Xin, Huolin L; Chen, Hongzheng

    2015-01-12

    Organic single crystals are ideal candidates for high-performance photovoltaics due to their high charge mobility and long exciton diffusion length; however, they have not been largely considered for photovoltaics due to the practical difficulty in making a heterojunction between donor and acceptor single crystals. Here, we demonstrate that extended single-crystalline heterojunctions with a consistent donor-top and acceptor-bottom structure throughout the substrate can be simply obtained from a mixed solution of C60 (acceptor) and 3,6-bis(5-(4-n-butylphenyl)thiophene-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (donor). 46 photovoltaic devices were studied with the power conversion efficiency of (0.255±0.095)% under 1 sun, which is significantly higher than the previously reported value for a vapor-grown organic single-crystalline donor-acceptor heterojunction (0.007%). As such, this work opens a practical avenue for the study of organic photovoltaics based on single crystals.

  15. Dominant effects of first monolayer energetics at donor/acceptor interfaces on organic photovoltaics.

    PubMed

    Izawa, Seiichiro; Nakano, Kyohei; Suzuki, Kaori; Hashimoto, Kazuhito; Tajima, Keisuke

    2015-05-20

    Energy levels of the first monolayer are manipulated at donor/acceptor interfaces in planar heterojunction organic photovoltaics by using molecular self-organization. A "cascade" energy landscape allows thermal-activation-free charge generation by photoirradiation, destabilizes the energy of the interfacial charge-transfer state, and suppresses bimolecular charge recombination, resulting in a higher open-circuit voltage and fill factor.

  16. [4 + 2] Annulation of Donor-Acceptor Cyclopropanes with Acetylenes Using 1,2-Zwitterionic Reactivity.

    PubMed

    Novikov, Roman A; Tarasova, Anna V; Denisov, Dmitry A; Borisov, Denis D; Korolev, Victor A; Timofeev, Vladimir P; Tomilov, Yury V

    2017-02-23

    A new process for the [4 + 2] annulation of donor-acceptor cyclopropanes with acetylenes under the effect of anhydrous GaCl3 using 1,2-zwitterion reactivity was elaborated. The reaction opens access to substituted dihydronaphthalenes, naphthalenes, and other fused carbocycles. The direction of the reaction can be efficiently controlled by temperature.

  17. Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells.

    PubMed

    Jadhav, D A; Ghadge, A N; Mondal, Debika; Ghangrekar, M M

    2014-02-01

    Effect of oxygen and sodium hypochlorite (NaOCl) as cathodic electron acceptors on performance of a clayware microbial fuel cell (MFC) was evaluated in this study. Maximum power density of 6.57 W/m(3) was obtained with NaOCl as catholyte, which is about 9 times higher than oxygen being used as an electron acceptor. Voltammetry and Tafel analysis further supported the faster reduction kinetics lead to increase in power output and reduction in internal resistance of MFC operated with NaOCl as an electron acceptor. Using NaOCl as catholyte, higher exchange current density of 10.91 and 11.52 mA/m(2) and lower charge transfer resistance of 0.58 and 0.56 kΩ m(2) was observed for anode and cathode, respectively. Higher organic matter removal of about 90% with 25% Coulombic efficiency was achieved using NaOCl as catholyte. Higher internal resistance, lower cathode potential and slow reduction kinetics deteriorated performance of MFC using oxygen as cathodic electron acceptor.

  18. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA

    DOE PAGES

    Liu, Yimo; Fredrickson, Jim K.; Zachara, John M.; ...

    2015-10-01

    The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC) and an outer-membrane c-Cyt (OmcB/OmcC). The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III), however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had nomore » impact on reduction of Fe(III)-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III)-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III)-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which clearly show that OmbB, OmaB and OmcB contribute equally to extracellular Fe(III) reduction. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III)-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.« less

  19. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA

    SciTech Connect

    Liu, Yimo; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang

    2015-10-01

    The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC) and an outer-membrane c-Cyt (OmcB/OmcC). The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III), however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had no impact on reduction of Fe(III)-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III)-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III)-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which clearly show that OmbB, OmaB and OmcB contribute equally to extracellular Fe(III) reduction. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III)-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.

  20. Microbial Community Succession during Lactate Amendment and Electron Acceptor Limitation Reveals a Predominance of Metal-Reducing Pelosinus spp.

    PubMed Central

    Mosher, Jennifer J.; Phelps, Tommy J.; Podar, Mircea; Hurt, Richard A.; Campbell, James H.; Drake, Meghan M.; Moberly, James G.; Schadt, Christopher W.; Brown, Steven D.; Hazen, Terry C.; Arkin, Adam P.; Palumbo, Anthony V.; Faybishenko, Boris A.

    2012-01-01

    The determination of the success of in situ bioremediation strategies is complex. By using controlled laboratory conditions, the influence of individual variables, such as U(VI), Cr(VI), and electron donors and acceptors on community structure, dynamics, and the metal-reducing potential can be studied. Triplicate anaerobic, continuous-flow reactors were inoculated with Cr(VI)-contaminated groundwater from the Hanford, WA, 100-H area, amended with lactate, and incubated for 95 days to obtain stable, enriched communities. The reactors were kept anaerobic with N2 gas (9 ml/min) flushing the headspace and were fed a defined medium amended with 30 mM lactate and 0.05 mM sulfate with a 48-h generation time. The resultant diversity decreased from 63 genera within 12 phyla to 11 bacterial genera (from 3 phyla) and 2 archaeal genera (from 1 phylum). Final communities were dominated by Pelosinus spp. and to a lesser degree, Acetobacterium spp., with low levels of other organisms, including methanogens. Four new strains of Pelosinus were isolated, with 3 strains being capable of Cr(VI) reduction while one also reduced U(VI). Under limited sulfate, it appeared that the sulfate reducers, including Desulfovibrio spp., were outcompeted. These results suggest that during times of electron acceptor limitation in situ, organisms such as Pelosinus spp. may outcompete the more-well-studied organisms while maintaining overall metal reduction rates and extents. Finally, lab-scale simulations can test new strategies on a smaller scale while facilitating community member isolation, so that a deeper understanding of community metabolism can be revealed. PMID:22267668

  1. Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells.

    PubMed

    Wu, Jhong-Sian; Cheng, Sheng-Wen; Cheng, Yen-Ju; Hsu, Chain-Shu

    2015-03-07

    Harvesting solar energy from sunlight to generate electricity is considered as one of the most important technologies to address the future sustainability of humans. Polymer solar cells (PSCs) have attracted tremendous interest and attention over the past two decades due to their potential advantage to be fabricated onto large area and light-weight flexible substrates by solution processing at a lower cost. PSCs based on the concept of bulk heterojunction (BHJ) configuration where an active layer comprises a composite of a p-type (donor) and an n-type (acceptor) material represents the most useful strategy to maximize the internal donor-acceptor interfacial area allowing for efficient charge separation. Fullerene derivatives such as [6,6]-phenyl-C61 or 71-butyric acid methyl ester (PCBM) are the ideal n-type materials ubiquitously used for BHJ solar cells. The major effort to develop photoactive materials is numerously focused on the p-type conjugated polymers which are generally synthesized by polymerization of electron-rich donor and electron-deficient acceptor monomers. Compared to the development of electron-deficient comonomers (acceptor segments), the development of electron-rich donor materials is considerably flourishing. Forced planarization by covalently fastening adjacent aromatic and heteroaromatic subunits leads to the formation of ladder-type conjugated structures which are capable of elongating effective conjugation, reducing the optical bandgap, promoting intermolecular π-π interactions and enhancing intrinsic charge mobility. In this review, we will summarize the recent progress on the development of various well-defined new ladder-type conjugated materials. These materials serve as the superb donor monomers to prepare a range of donor-acceptor semi-ladder copolymers with sufficient solution-processability for solar cell applications.

  2. A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells.

    PubMed

    Zhou, Huaxing; Yang, Liqiang; Stoneking, Sarah; You, Wei

    2010-05-01

    Polymers to be used in bulk heterojunction (BHJ) solar cells should maintain a low highest occupied molecular orbital (HOMO) energy level as well as a narrow band gap in order to maximize the open circuit voltage (V(oc)) and the short circuit current (J(sc)). To concurrently lower the HOMO energy level and the band gap, we propose to modify the donor-acceptor low band gap polymer strategy by constructing alternating copolymers incorporating a "weak donor" and a "strong acceptor". As a result, the "weak donor" should help maintain a low HOMO energy level while the "strong acceptor" should reduce the band gap via internal charge transfer (ICT). This concept was examined by constructing a library of polymers employing the naphtho[2,1-b:3,4-b']dithiophene (NDT) unit as the weak donor, and benzothiadiazole (BT) as the strong acceptor. PNDT-BT, designed under the "weak donor-strong acceptor" strategy, demonstrated both a low HOMO energy level of -5.35 eV and a narrow band gap of 1.59 eV. As expected, a noticeably high V(oc) of 0.83 V was obtained from the BHJ device of PNDT-BT blended with PCBM. However, the J(sc) ( approximately 3 mA/cm(2)) was significantly lower than the maximum expected current from such a low band gap material, which limited the observed efficiency to 1.27% (with a 70 nm thin film). Further improvements in the efficiency are expected from these materials if new strategies can be identified to (a) increase the molecular weight and (b) improve the hole mobility while still maintaining a low HOMO energy level and a narrow band gap.

  3. Pump apparatus including deconsolidator

    DOEpatents

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  4. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  5. Determination of acceptor-to-donor cross section ratio for two-photon excitation in living cells

    NASA Astrophysics Data System (ADS)

    Hou, Zexian; Wang, Yuhua; Zheng, Liqin; Chen, Tongsheng; Yang, Hongqin; Xie, Shusen

    2016-10-01

    The cross section is a significant parameter for fluorescence protein and determination of acceptor-to-donor cross section ratio for two-photon excitation in living cells is the vital issue for two-photon excitation FRET quantification. In this study, Hela cells were labeled with FPs that acceptor-to-donor concentration ratio is 1 to 1 and acceptor-to-donor cross section ratio ranged from 700nm to 960nm was obtained by emission spectral unmixing with independent excitation crosstalk correction. The results show that acceptor-to-donor cross section ratio declines with the excitation wavelength from 700nm to 790nm and then increases inversely from 790nm to 960nm. This method can quickly determine the cross section without any additional references, which could provide a powerful and convenient tool for measuring acceptor-to-donor cross section ratio by two-photon excitation in living cells.

  6. A systematic study of thermochromic aromatic donor-acceptor materials.

    PubMed

    Alvey, Paul M; Reczek, Joseph J; Lynch, Vincent; Iverson, Brent L

    2010-11-19

    Molar mixtures (1:1) of electron-rich dialkoxynapthalene (Dan) and electron-deficient 1,4,5,8-napthalenetetracarboxylic diimide (Ndi) derivatives form highly tunable, columnar mesophases with a dark red color due to a charge transfer absorbance derived from alternating face-centered stacking. Certain Dan-Ndi mixtures undergo a dramatic color change from dark red to an almost colorless material upon crystallizing from the mesophase. Macroscopic morphology of the solid is not changed during this process. In order to investigate the origins of this interesting thermochromic behavior, Dan and Ndi side chains were systematically altered and their 1:1 mixtures were studied. We have previously speculated that the presence or absence of steric interactions due to side chain branching on the aromatic units controlled the level of color change associated with crystallization. Results from the present study further refine this conclusion including a key crystal structure that provides a structural rationale for the observed results.

  7. A Systematic Study of Thermochromic Aromatic Donor-Acceptor Materials

    PubMed Central

    Alvey, Paul M.; Reczek, Joseph J.; Lynch, Vincent; Iverson, Brent L.

    2010-01-01

    1:1 molar mixtures of electron rich dialkoxynapthalene (Dan) and electron deficient 1,4,5,8-napthalenetetracarboxylic diimide (Ndi) derivatives form highly tunable, columnar mesophases with a dark red color due to a charge transfer absorbance derived from alternating face-centered stacking. Certain Dan-Ndi mixtures undergo a dramatic color change from dark red to an almost colorless material upon crystallizing from the mesophase. Macroscopic morphology of the solid is not changed during this process. In order to investigate the origins of this interesting thermochromic behavior, Dan and Ndi side chains were systematically altered and their 1:1 mixtures studied. We have previously speculated that the presence or absence of steric interactions due to side chain branching on the aromatic units controlled the level of color change associated with crystallization. Results from the present study further refine this conclusion including a key crystal structure that provides a structural rationale for the observed results. PMID:20973470

  8. Donor-Acceptor-Donor Modular Small Organic Molecules Based on the Naphthalene Diimide Acceptor Unit for Solution-Processable Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Patil, Hemlata; Gupta, Akhil; Bilic, Ante; Jackson, Sam Leslie; Latham, Kay; Bhosale, Sheshanath V.

    2014-09-01

    Two novel solution-processable small organic molecules, 4,9-bis(4-(diphenylamino)phenyl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8(2 H,7 H)-tetraone ( S6) and 4,9-bis(benzo[ b]thiophen-2-yl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8 (2 H,7 H)-tetraone ( S7), have been successfully designed, synthesized, characterized, and applied in solution-processable photovoltaic devices. S6 and S7 contain a common electron-accepting moiety, naphthalene diimide (NDI), with different electron-donating moieties, triphenylamine ( S6) and benzothiophene ( S7), and are based on a donor-acceptor-donor structure. S7 was isolated as black, rod-shaped crystals. Its triclinic structure was determined by single crystal x-ray diffraction (XRD): space group , Z = 2, a = 9.434(5) Å, b = 14.460(7) Å, c = 15.359(8) Å, α = 67.256(9) degrees, β = 80.356(11) degrees, γ = 76.618(10) degrees, at 150 Kelvin (K), R = 0.073. Ultraviolet-visible absorption spectra revealed that use of triphenylamine donor functionality with the NDI acceptor unit resulted in an enhanced intramolecular charge transfer (ICT) transition and reduction of the optical band gap compared with the benzothiophene analogue. Solution-processable inverted bulk heterojunction devices with the structure indium tin oxide/zinc oxide (30 nm)/active layer/molybdenum trioxide (10 nm)/silver (100 nm) were fabricated with S6 and S7 as donors and (6,6)-phenyl C70-butyric acid methyl ester (PC70BM) as acceptor. Power conversion efficiencies of 0.22% for S6/PC70BM and 0.10% for S7/PC70BM were achieved for the preliminary photovoltaic devices under simulated AM 1.5 illumination (100 mW cm-2). This paper reports donor-acceptor-donor modular small organic molecules, with NDI as central accepting unit, that have been screened for use in solution-processable inverted photovoltaic devices.

  9. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  10. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study.

    PubMed

    Pan, Bingjun; Qiu, Hui; Pan, Bingcai; Nie, Guangze; Xiao, Lili; Lv, Lu; Zhang, Weiming; Zhang, Quanxing; Zheng, Shourong

    2010-02-01

    The present study developed a polymer-based hybrid sorbent (HFO-001) for highly efficient removal of heavy metals [e.g., Pb(II), Cd(II), and Cu(II)] by irreversibly impregnating hydrated Fe(III) oxide (HFO) nanoparticles within a cation-exchange resin D-001 (R-SO(3)Na), and revealed the underlying mechanism based on X-ray photoelectron spectroscopy (XPS) study. HFO-001 combines the excellent handling, flow characteristics, and attrition resistance of conventional cation-exchange resins with the specific affinity of HFOs toward heavy metal cations. As compared to D-001, sorption selectivity of HFO-001 toward Pb(II), Cu(II), and Cd(II) was greatly improved from the Ca(II) competition at greater concentration. Column sorption results indicated that the working capacity of HFO-001 was about 4-6 times more than D-001 with respect to removal of three heavy metals from simulated electroplating water (pH approximately 4.0). Also, HFO-001 is particularly effective in removing trace Pb(II) and Cd(II) from simulated natural waters to meet the drinking water standard, with treatment volume orders of magnitude higher than D-001. The superior performance of HFO-001 was attributed to the Donnan membrane effect exerted by the host D-001 as well as to the impregnated HFO nanoparticles of specific interaction toward heavy metal cations, as further confirmed by XPS study on lead sorption. More attractively, the exhausted HFO-001 beads can be effectively regenerated by HCl-NaCl solution (pH 3) for repeated use without any significant capacity loss.

  11. Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content.

    PubMed

    Laufer, Katja; Byrne, James M; Glombitza, Clemens; Schmidt, Caroline; Jørgensen, Bo Barker; Kappler, Andreas

    2016-09-01

    Coastal marine sediments contain varying concentrations of iron, oxygen, nitrate and organic carbon. It is unknown how organic carbon content influences the activity of nitrate-reducing and phototrophic Fe(II)-oxidizers and microbial Fe-redox cycling in such sediments. Therefore, microcosms were prepared with two coastal marine sediments (Kalø Vig and Norsminde Fjord at Aarhus Bay, Denmark) varying in TOC from 0.4 to 3.0 wt%. The microcosms were incubated under light/dark conditions with/without addition of nitrate and/or Fe(II). Although most probable number (MPN) counts of phototrophic Fe(II)-oxidizers were five times lower in the low-TOC sediment, phototrophic Fe(II) oxidation rates were higher compared with the high-TOC sediment. Fe(III)-amended microcosms showed that this lower net Fe(II) oxidation in the high-TOC sediment is caused by concurrent bacterial Fe(III) reduction. In contrast, MPN counts of nitrate-reducing Fe(II)-oxidizers and net rates of nitrate-reducing Fe(II) oxidation were comparable in low- and high-TOC sediments. However, the ratio of nitratereduced :iron(II)oxidized was higher in the high-TOC sediment, suggesting that a part of the nitrate was reduced by mixotrophic nitrate-reducing Fe(II)-oxidizers and chemoorganoheterotrophic nitrate-reducers. Our results demonstrate that dynamic microbial Fe cycling occurs in these sediments and that the extent of Fe cycling is dependent on organic carbon content.

  12. Linking Microbial Dynamics and Physicochemical Processes in High-temperature Acidic Fe(III)- Mineralizing Systems

    NASA Astrophysics Data System (ADS)

    Inskeep, W.

    2014-12-01

    Microbial activity is responsible for the mineralization of Fe(III)-oxides in high-temperature chemotrophic communities that flourish within oxygenated zones of low pH (2.5 - 4) geothermal outflow channels (Yellowstone National Park, WY). High-temperature Fe(II)-oxidizing communities contain several lineages of Archaea, and are excellent model systems for studying microbial interactions and spatiotemporal dynamics across geochemical gradients. We hypothesize that acidic Fe(III)-oxide mats form as a result of constant interaction among primary colonizers including Hydrogenobaculum spp. (Aquificales) and Metallosphaera spp. (Sulfolobales), and subsequent colonization by archaeal heterotrophs, which vary in abundance as a function of oxygen, pH and temperature. We are integrating a complementary suite of geochemical, stable isotope, genomic, proteomic and modeling analyses to study the role of microorganisms in Fe(III)-oxide mat development, and to elucidate the primary microbial interactions that are coupled with key abiotic events. Curated de novo assemblies of major phylotypes are being used to analyze additional -omics datasets from these microbial mats. Hydrogenobaculum spp. (Aquificales) are the dominant bacterial population(s) present, and predominate during early mat development (< 30 d). Other Sulfolobales populations known to oxidize Fe(II) and fix carbon dioxide (e.g., Metallosphaera spp.) represent a secondary stage of mat development (e.g., 14 - 30 d). Hydrogenobaculum filaments appear to promote the nucleation and subsequent mineralization of Fe(III)-oxides, which likely affect the growth and turnover rates of these organisms. Other heterotrophs colonize Fe(III)-oxide mats during succession (> 30 d), including novel lineages of Archaea and representatives within the Crenarchaeota, Euryarchaeota, Thaumarchaeota and Nanoarchaeota. In situ oxygen consumption rates show that steep gradients occur within the top 1 mm of mat surface, and which correlate with

  13. Humic substances as a mediator for microbially catalyzed metal reduction

    USGS Publications Warehouse

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  14. Cap analog substrates reveal three clades of cap guanine-N2 methyltransferases with distinct methyl acceptor specificities.

    PubMed

    Benarroch, Delphine; Jankowska-Anyszka, Marzena; Stepinski, Janusz; Darzynkiewicz, Edward; Shuman, Stewart

    2010-01-01

    The Tgs proteins are structurally homologous AdoMet-dependent eukaryal enzymes that methylate the N2 atom of 7-methyl guanosine nucleotides. They have an imputed role in the synthesis of the 2,2,7-trimethylguanosine (TMG) RNA cap. Here we exploit a collection of cap-like substrates to probe the repertoire of three exemplary Tgs enzymes, from mammalian, protozoan, and viral sources, respectively. We find that human Tgs (hTgs1) is a bona fide TMG synthase adept at two separable transmethylation steps: (1) conversion of m(7)G to m(2,7)G, and (2) conversion of m(2,7)G to m(2,2,7)G. hTgs1 is unable to methylate G or m(2)G, signifying that both steps require an m(7)G cap. hTgs1 utilizes a broad range of m(7)G nucleotides, including mono-, di-, tri-, and tetraphosphate derivatives as well as cap dinucleotides with triphosphate or tetraphosphate bridges. In contrast, Giardia lamblia Tgs (GlaTgs2) exemplifies a different clade of guanine-N2 methyltransferase that synthesizes only a dimethylguanosine (DMG) cap structure and cannot per se convert DMG to TMG under any conditions tested. Methylation of benzyl(7)G and ethyl(7)G nucleotides by hTgs1 and GlaTgs2 underscored the importance of guanine N7 alkylation in providing a key pi-cation interaction in the methyl acceptor site. Mimivirus Tgs (MimiTgs) shares with the Giardia homolog the ability to catalyze only a single round of methyl addition at guanine-N2, but is distinguished by its capacity for guanine-N2 methylation in the absence of prior N7 methylation. The relaxed cap specificity of MimiTgs is revealed at alkaline pH. Our findings highlight both stark and subtle differences in acceptor specificity and reaction outcomes among Tgs family members.

  15. Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Brune, D. C.; Blankenship, R. E.

    1992-01-01

    Photosynthetic reaction centers isolated from Heliobacillus mobilis exhibit a single major protein on SDS-PAGE of 47 000 Mr. Attempts to sequence the reaction center polypeptide indicated that the N-terminus is blocked. After enzymatic and chemical cleavage, four peptide fragments were sequenced from the Heliobacillus mobilis apoprotein. Only one of these sequences showed significant specific similarity to any of the protein and deduced protein sequences in the GenBank data base. This fragment is identical with 56% of the residues, including both cysteines, found in highly conserved region that is proposed to bind iron-sulfur center Fx in the Photosystem I reaction center peptide that is the psaB gene product. The similarity to the psaA gene product in this region is 48%. Redox titrations of laser-flash-induced photobleaching with millisecond decay kinetics on isolated reaction centers from Heliobacterium gestii indicate a midpoint potential of -414 mV with n = 2 titration behavior. In membranes, the behavior is intermediate between n = 1 and n = 2, and the apparent midpoint potential is -444 mV. This is compared to the behavior in Photosystem I, where the intermediate electron acceptor A1, thought to be a phylloquinone molecule, has been proposed to undergo a double reduction at low redox potentials in the presence of viologen redox mediators. These results strongly suggest that the acceptor side electron transfer system in reaction centers from heliobacteria is indeed analogous to that found in Photosystem I. The sequence similarities indicate that the divergence of the heliobacteria from the Photosystem I line occurred before the gene duplication and subsequent divergence that lead to the heterodimeric protein core of the Photosystem I reaction center.

  16. Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin-Copper Corrole Donor-Acceptor Conjugates.

    PubMed

    Ngo, Thien H; Zieba, David; Webre, Whitney A; Lim, Gary N; Karr, Paul A; Kord, Scheghajegh; Jin, Shangbin; Ariga, Katsuhiko; Galli, Marzia; Goldup, Steve; Hill, Jonathan P; D'Souza, Francis

    2016-01-22

    An electron-deficient copper(III) corrole was utilized for the construction of donor-acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump-probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge-separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron-deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 10(10)  s(-1) and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.

  17. Including Jews in Multiculturalism.

    ERIC Educational Resources Information Center

    Langman, Peter F.

    1995-01-01

    Discusses reasons for the lack of attention to Jews as an ethnic minority within multiculturalism both by Jews and non-Jews; why Jews and Jewish issues need to be included; and addresses some of the issues involved in the ethical treatment of Jewish clients. (Author)

  18. The Pushkin—Varshney—Kamoonpuri equation for the evaluation of association constants for the charge transfer complexes of sparingly soluble acceptors

    NASA Astrophysics Data System (ADS)

    Qureshi, Pushkin M.; Varshney, Rishi K.; Kamoonpuri, S. Iqbal M.

    The proposed Pushkin—Varshney—Kamoonpuri equation proposes a simple way in which the association constants of complexes of sparingly soluble acceptors may be evaluated. The method can be used where the concentration of the acceptor is not known.

  19. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor

    NASA Astrophysics Data System (ADS)

    Diehl, Katharine L.; Kolesnichenko, Igor V.; Robotham, Scott A.; Bachman, J. Logan; Zhong, Ye; Brodbelt, Jennifer S.; Anslyn, Eric V.

    2016-10-01

    The coupling and decoupling of molecular units is a fundamental undertaking of organic chemistry. Herein we report the use of a very simple conjugate acceptor, derived from Meldrum's acid, for the sequential ‘clicking’ together of an amine and a thiol in aqueous conditions at neutral pH. Subsequently, this linkage can be ‘declicked’ by a chemical trigger to release the original amine and thiol undisturbed. The reactivity differs from that of other crosslinking agents because the selectivity for sequential functionalization derives from an altering of the electrophilicity of the conjugate acceptor on the addition of the amine. We describe the use of the procedure to modify proteins, create multicomponent libraries and synthesize oligomers, all of which can be declicked to their starting components in a controlled fashion when desired. Owing to the mild reaction conditions and ease of use in a variety of applications, the method is predicted to have wide utility.

  20. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    SciTech Connect

    Mynbaev, K. D.; Shilyaev, A. V. Bazhenov, N. L.; Izhnin, A. I.; Izhnin, I. I.; Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A.

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  1. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    PubMed

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  2. Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis.

    PubMed

    Genz, Maika; Vickers, Clare; van den Bergh, Tom; Joosten, Henk-Jan; Dörr, Mark; Höhne, Matthias; Bornscheuer, Uwe T

    2015-11-11

    To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5'-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions.

  3. Microwave assisted synthesis of bithiophene based donor-acceptor-donor oligomers and their optoelectronic performances

    NASA Astrophysics Data System (ADS)

    Bathula, Chinna; Buruga, Kezia; Lee, Sang Kyu; Khazi, Imtiyaz Ahmed M.; Kang, Youngjong

    2017-07-01

    In this article we present the synthesis of two novel bithiophene based symmetrical π conjugated oligomers with donor-acceptor-donor (D-A-D) structures by microwave assisted PdCl2(dppf) catalyzed Suzuki coupling reaction. These molecules contain electron rich bithiophene as a donor, dithienothiadiazole[3,4-c]pyridine and phthalic anhydride units as acceptors. The shorter reaction time, excellent yields and easy product isolation are the advantages of this method. The photophysical prerequisites for electronic application such as strong and broad optical absorption, thermal stability, and compatible energy levels were determined for synthesized oligomers. Optical band gap for the oligomers is found to be 1.72-1.90 eV. The results demonstrated the novel oligomers to be promising candidates in organic optoelectronic applications.

  4. Solution-processable donor-acceptor polymers with modular electronic properties and very narrow bandgaps.

    PubMed

    Foster, Michael E; Zhang, Benjamin A; Murtagh, Dustin; Liu, Yi; Sfeir, Matthew Y; Wong, Bryan M; Azoulay, Jason D

    2014-09-01

    Bridgehead imine-substituted cyclopentadithiophene structural units, in combination with highly electronegative acceptors that exhibit progressively delocalized π-systems, afford donor-acceptor (DA) conjugated polymers with broad absorption profiles that span technologically relevant wavelength (λ) ranges from 0.7 < λ < 3.2 μm. A joint theoretical and experimental study demonstrates that the presence of the cross-conjugated substituent at the donor bridgehead position results in the capability to fine-tune structural and electronic properties so as to achieve very narrow optical bandgaps (Eg (opt) < 0.5 eV). This strategy affords modular DA copolymers with broad- and long-wavelength light absorption in the infrared and materials with some of the narrowest bandgaps reported to date.

  5. Frequency modulated femtosecond stimulated Raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer.

    PubMed

    Grumstrup, Erik M; Chen, Zhuo; Vary, Ryan P; Moran, Andrew M; Schanze, Kirk S; Papanikolas, John M

    2013-07-11

    A Raman-pump frequency modulation scheme and an automated signal-processing algorithm are developed for improved collection of time-resolved femtosecond stimulated Raman spectra. Together, these two advancements remove the broad background signals endemic to FSRS measurements and retrieve signals with high sensitivity. We apply this frequency-modulated femtosecond stimulated Raman spectroscopy (FM-FSRS) to the characterization of ultrafast energy transport in a copolymer comprised of polystyrene linked oligo(phenylene-ethynylene) donor and thiophene-benzothiadiazole acceptor chromophores. After photoexcitation of the donor, ultrafast energy transfer is monitored by the decay of donor vibrational modes and simultaneous growth of acceptor modes. The FM-FSRS method shows clear advantages in signal-to-noise levels, mitigation of artifact features, and ease of data processing over the conventional FSRS technique.

  6. The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy.

    PubMed

    Sun, Qiang

    2010-02-07

    In this work, the Raman spectra of aqueous C(12)E(5) solutions are recorded and utilized to demonstrate the existence of single donator-single acceptor (DA) hydrogen bonding in water. From Raman OH stretching bands of aqueous C(12)E(5) solutions, the relative intensity of 3430 cm(-1) subband increases with C(12)E(5) concentrations. For confined water, the DA hydrogen bonding can be expected to be the important hydrogen bonding species. Therefore, the 3430 cm(-1) component can be ascribed to OH vibration engaged in DA hydrogen bonding. This is in agreement with our recent explanation on Raman OH stretching band of water. For water at ambient conditions, the double donor-double acceptor (DDAA) and DA should be the dominant hydrogen bonding species, the ratio of DDAA to DA can be approximately to be 0.75:1, and the mean hydrogen bonding can be determined to be 2.75.

  7. The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2010-02-01

    In this work, the Raman spectra of aqueous C12E5 solutions are recorded and utilized to demonstrate the existence of single donator-single acceptor (DA) hydrogen bonding in water. From Raman OH stretching bands of aqueous C12E5 solutions, the relative intensity of 3430 cm-1 subband increases with C12E5 concentrations. For confined water, the DA hydrogen bonding can be expected to be the important hydrogen bonding species. Therefore, the 3430 cm-1 component can be ascribed to OH vibration engaged in DA hydrogen bonding. This is in agreement with our recent explanation on Raman OH stretching band of water. For water at ambient conditions, the double donor-double acceptor (DDAA) and DA should be the dominant hydrogen bonding species, the ratio of DDAA to DA can be approximately to be 0.75:1, and the mean hydrogen bonding can be determined to be 2.75.

  8. Donor-acceptor type low band gap polymers: polysquaraines and related systems.

    PubMed

    Ajayaghosh, Ayyappanpillai

    2003-07-01

    In recent years, considerable effort has been directed towards the synthesis of conjugated polymers with low optical band gaps (Eg), since they show intrinsic electrical conductivity. One of the approaches towards the designing of such polymers is the use of strong donor and acceptor monomers at regular arrangements in the repeating units, which has limited success in many cases. An alternate strategy is the use of organic dyes, having inherently low HUMO-LUMO separation, as building blocks. Extension of conjugation in organic dyes is therefore expected to result in oligomers and polymers with near infrared absorption, which is a signature of low band gaps. Squaraine dyes are ideal candidates for this purpose due to their unique optical properties. This review highlights the recent developments in the area of donor-acceptor type low band gap polymers with special emphasis on polysquaraines.

  9. Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis

    PubMed Central

    Genz, Maika; Vickers, Clare; van den Bergh, Tom; Joosten, Henk-Jan; Dörr, Mark; Höhne, Matthias; Bornscheuer, Uwe T.

    2015-01-01

    To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5′-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions. PMID:26569229

  10. Donor-acceptor pair recombination in AgIn5S8 single crystals

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.; Serpengüzel, A.; Aydinli, A.; Gürlü, O.; Yilmaz, I.

    1999-03-01

    Photoluminescence (PL) spectra of AgIn5S8 single crystals were investigated in the 1.44-1.91 eV energy region and in the 10-170 K temperature range. The PL band was observed to be centered at 1.65 eV at 10 K and an excitation intensity of 0.97 W cm-2. The redshift of this band with increasing temperature and with decreasing excitation intensity was observed. To explain the observed PL behavior, we propose that the emission is due to radiative recombination of a donor-acceptor pair, with an electron occupying a donor level located at 0.06 eV below the conduction band, and a hole occupying an acceptor level located at 0.32 eV above the valence band.

  11. Performance of sodium bromate as cathodic electron acceptor in microbial fuel cell.

    PubMed

    Dai, Hongyan; Yang, Huimin; Liu, Xian; Zhao, Yu; Liang, Zhenhai

    2016-02-01

    The potential of using sodium bromate as a cathodic electron acceptor in a microbial fuel cell (MFC) was determined in this study. The effects of sodium bromate concentration and initial catholyte pH on the electricity production of the MFC were investigated. The MFC performance improved with increasing sodium bromate concentration and decreasing catholyte pH. The maximum voltage output (0.538 V), power density (1.4908 W m(-3)), optimal open circuit potential (1.635 V), coulombic efficiency (11.1%), exchange current density (0.538 A m(-3)) and charge transfer resistance (4274.1 Ω) were obtained at pH 3.0 and 100 mM sodium bromate. This work is the first to confirm that sodium bromate could be used as an electron acceptor in MFCs.

  12. Optimization of naproxen and ibuprofen removal in photolysis using a Box-Behnken design: effect of Fe(III), NO3-, and humic acid.

    PubMed

    Im, Jong-Kwon; Yoon, Yeomin; Zoh, Kyung-Duk

    2014-01-01

    This study investigated the roles and optimum conditions of four independent variables [ultraviolet (UV) intensity, Fe(III), NO3 (-), and humic acid (HA) concentration] in the photolytic removal of naproxen (NPX) and ibuprofen (IBP) in water using a response surface method based on the Box-Behnken design. Lab-scale experiments used analysis of variance and t-test statistics to test the significance of independent variables and their interactions. Predicted levels of NPX and IBP removals were found to be in good agreement with experimental levels (R(2) = 0.9891 for NPX and 0.9936 for IBP). UV intensity and HA were the most positively and negatively significant variables (P < 0.001), respectively. However, Fe(III) and NO3 (-) ions had a less significant impact (P > 0.05). This result implies that NPX was removed by both direct photolysis (photons) and indirect reaction (OH radical), while IBP was removed mainly by the OH radical. NPX was more susceptible to the OH radical than IBP (kOH/NPX = 8.24 × 10(9) M(-1)s(-1) and kOH/IBP = 7.51 × 10(9) M(-1)s(-1)). According to a quadratic regression model, the predicted maximum removal efficiencies for NPX and IBP were 71.66% and 63.58% when the predicted optimum ratio of UV (mW cm(-2)):Fe(III) (mg/L):NO3(-) (mg/L):HA (mg/L) was 6.3:0.94:0:0 and 6.3:0.94:20:0, respectively, which was similar to the respective experimental NPX and IBP removal values of 70.21% and 62.16%. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.

  13. Charge trapping in mixed organic donor-acceptor semiconductor thin films.

    PubMed

    Nunomura, Shota; Che, Xiaozhou; Forrest, Stephen R

    2014-12-03

    A pump-probe method, whereby trapped charges are optically induced to contribute to the total photocurrent, is applied to quantitatively determine the trap density in small-molecule organic semiconductor thin films and donor-acceptor blends used in organic solar cells. The trapped charge density is correlated to the cell performance, and the dependence of charge trapping on the presence of nanocrystalline domains is discussed.

  14. Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors

    PubMed Central

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian

    2016-01-01

    Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications. PMID:27263856

  15. Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian

    2016-06-01

    Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications.

  16. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  17. Naphthalene diimide-difluorobenzene-based polymer acceptors for all-polymer solar cells.

    PubMed

    Deng, Ping; Ho, Carr Hoi Yi; Lu, Yong; Li, Ho-Wa; Tsang, Sai-Wing; So, Shu Kong; Ong, Beng S

    2017-03-18

    Regio-random (P1) and -regular (P2) difluorobenzene-naphthalene-containing polymer acceptors were developed for bulk-heterojunction all-polymer solar cells (all-PSCs). P2 exhibited significantly higher crystallinity in thin films, providing high spectral absorptivity and electron mobility than P1. When used in all-PSC devices, P2 afforded a respectably higher power conversion efficiency of over 5%.

  18. Neutral nitrogen acceptors in ZnO: The {sup 67}Zn hyperfine interactions

    SciTech Connect

    Golden, E. M.; Giles, N. C.; Evans, S. M.; Halliburton, L. E.

    2014-03-14

    Electron paramagnetic resonance (EPR) is used to characterize the {sup 67}Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N{sup −}) initially present in the crystal are converted to their paramagnetic neutral charge state (N{sup 0}) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N{sup 0} acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion along the [0001] direction is referred to as an axial neighbor and the three equivalent zinc ions in the basal plane are referred to as nonaxial neighbors. For axial neighbors, the {sup 67}Zn hyperfine parameters are A{sub ‖} = 37.0 MHz and A{sub ⊥} = 8.4 MHz with the unique direction being [0001]. For nonaxial neighbors, the {sup 67}Zn parameters are A{sub 1} = 14.5 MHz, A{sub 2} = 18.3 MHz, and A{sub 3} = 20.5 MHz with A{sub 3} along a [101{sup ¯}0] direction (i.e., in the basal plane toward the nitrogen) and A{sub 2} along the [0001] direction. These {sup 67}Zn results and the related {sup 14}N hyperfine parameters provide information about the distribution of unpaired spin density at substitutional neutral nitrogen acceptors in ZnO.

  19. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1

    SciTech Connect

    Gerritse, J.; Drzyzga, O.; Kloetstra, G.; Keijmel, M.; Wiersum, L.P.; Hutson, R.; Collins, M.D.; Gottschal, J.C.

    1999-12-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethane (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 {micro}m and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35 C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H{sub 2}, format, L-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except format and H{sub 2}) are oxidized to acetate and CO{sub 2}. when L-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher. Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumate or nitrate.

  20. Green's function calculation of through-bond electronic coupling in donor bridge acceptor model systems

    NASA Astrophysics Data System (ADS)

    de Santana, O. L.; da Gama, A. A. S.

    1999-12-01

    The Green's function formalism is applied for the calculation of the effective through-bond donor-acceptor coupling in model molecular systems. The calculation is performed at a Hartree-Fock (self-consistent) level, by using semiempirical AM1 and CNDO/S, and ab initio STO-3G methods. The results are compared with that obtained from the splitting of the appropriate levels, by using the Koopmans' theorem, within each one of the selected quantum chemical methods.

  1. Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor-Acceptor Combinations

    DTIC Science & Technology

    2006-01-01

    poly- mers;[103] such systems may be exploitable for bioassays. 2.6. Photochromic Dyes Jovin and co-workers define photochromic compounds as “having...having different absorption (and in some cases, fluorescence) spectra”.[104] The primary attraction of using photochromic dyes as FRET acceptors is the...structed with this concept. Spiropyrans and functionally related molecules are among the more prominent photochromic compounds. These mole- cules

  2. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Zhou, Li; Huang, Long-Biao; Zhuang, Jiaqing; Sonar, Prashant; Roy, V. A. L.

    2015-01-01

    Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices. PMID:26029856

  3. Michael Acceptor-Based Peptidomimetic Inhibitor of Main Protease from Porcine Epidemic Diarrhea Virus.

    PubMed

    Wang, Fenghua; Chen, Cheng; Yang, Kailin; Xu, Yang; Liu, Xiaomei; Gao, Fan; Liu, He; Chen, Xia; Zhao, Qi; Liu, Xiang; Cai, Yan; Yang, Haitao

    2017-03-13

    Porcine epidemic diarrhea virus (PEDV) causes high mortality in pigs. PEDV main protease (Mpro) plays an essential role in viral replication. We solved the structure of PEDV Mpro complexed with peptidomimetic inhibitor N3 carrying a Michael acceptor warhead, revealing atomic level interactions. We further designed a series of 17 inhibitors with altered side groups. Inhibitors M2 and M17 demonstrated enhanced specificity against PEDV Mpro. These compounds have potential as future therapeutics to combat PEDV infection.

  4. Development of novel 1,4-benzodiazepine-based Michael acceptors as antitrypanosomal agents.

    PubMed

    Ettari, Roberta; Previti, Santo; Cosconati, Sandro; Maiorana, Santina; Schirmeister, Tanja; Grasso, Silvana; Zappalà, Maria

    2016-08-01

    Novel 1,4-benzodiazepines, endowed with a Michael acceptor moiety, were designed taking advantage of a computational prediction of their pharmacokinetic parameters. Among all the synthesized derivatives, we identified a new lead compound (i.e., 4a), bearing a vinyl ketone warhead and endowed with a promising antitrypanosomal activity against Trypanosoma brucei brucei (IC50=5.29μM), coupled with a lack of cytotoxicity towards mammalian cells (TC50 >100μM).

  5. A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics.

    PubMed

    Liu, Shi-Yong; Wu, Chen-Hao; Li, Chang-Zhi; Liu, Sheng-Qiang; Wei, Kung-Hwa; Chen, Hong-Zheng; Jen, Alex K-Y

    2015-04-01

    A nonfullerene acceptor based on a 3D tetraperylene diimide is developed for bulk heterojunction organic photovoltaics. The disruption of perylene diimide planarity with a 3D framework suppresses the self-aggregation of perylene diimide and inhibits excimer formation. From planar monoperylene diimide to 3D tetraperylene diimide, a significant improvement of power conversion efficiency from 0.63% to 3.54% can be achieved.

  6. Light-induced noncentrosymmetry in acceptor-donor-substituted azobenzene solutions

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Si, Jinhai; Wang, Yougui; Ye, Peixian; Fu, Xingfa; Qiu, Ling; Shen, Yuquan

    1995-10-01

    Light-induced noncentrosymmetry was achieved experimentally in acceptor-donor-substituted azobenzene solutions and observed by phase-matched nondegenerate six-wave mixing. The microscopic origin of the induced noncentrosymmetry was found to be orientational hole burning, which was distinguished directly with net orientation of molecules by experimental observations. The decay time of the induced noncentrosymmetry depended on the rotational orientation time of the sample's molecule, which varied linearly with the viscosity of the solvent.

  7. Role of microbial Fe(III) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River Delta plain, Louisiana, USA

    USGS Publications Warehouse

    Jaisi, D.P.; Ji, S.; Dong, H.; Blake, R.E.; Eberl, D.D.; Kim, J.

    2008-01-01

    River-dominated delta areas are primary sites of active biogeochemical cycling, with productivity enhanced by terrestrial inputs of nutrients. Particle aggregation in these areas primarily controls the deposition of suspended particles, yet factors that control particle aggregation and resulting sedimentation in these environments are poorly understood. This study was designed to investigate the role of microbial Fe(III) reduction and solution chemistry in aggregation of suspended particles in the Mississippi Delta. Three representative sites along the salinity gradient were selected and sediments were collected from the sediment-water interface. Based on quantitative mineralogical analyses 88-89 wt.% of all minerals in the sediments are clays, mainly smectite and illite. Consumption of SO421 and the formation of H2S and pyrite during microbial Fe(III) reduction of the non-sterile sediments by Shewanella putrefaciens CN32 in artificial pore water (APW) media suggest simultaneous sulfate and Fe(III) reduction activity. The pHPZNPC of the sediments was ??? 3.5 and their zeta potentials at the sediment-water interface pH (6.9-7.3) varied from -35 to -45 mV, suggesting that both edges and faces of clay particles have negative surface charge. Therefore, high concentrations of cations in pore water are expected to be a predominant factor in particle aggregation consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Experiments on aggregation of different types of sediments in the same APW composition revealed that the sediment with low zeta potential had a high rate of aggregation. Similarly, addition of external Fe(II) (i.e. not derived from sediments) was normally found to enhance particle aggregation and deposition in all sediments, probably resulting from a decrease in surface potential of particles due to specific Fe(II) sorption. Scanning and transmission electron microscopy (SEM, TEM) images showed predominant face-to-face clay aggregation in native

  8. Investigation of Donor and Acceptor Ion Implantation in AlN

    SciTech Connect

    Osinsky, Andrei

    2015-09-16

    AlGaN alloys with high Al composition and AlN based electronic devices are attractive for high voltage, high temperature applications, including microwave power sources, power switches and communication systems. AlN is of particular interest because of its wide bandgap of ~6.1eV which is ideal for power electronic device applications in extreme environments which requires high dose ion implantation. One of the major challenges that need to be addressed to achieve full utilization of AlN for opto and microelectronic applications is the development of a doping strategy for both donors and acceptors. Ion implantation is a particularly attractive approach since it allows for selected-area doping of semiconductors due to its high spatial and dose control and its high throughput capability. Active layers in the semiconductor are created by implanting a dopant species followed by very high temperature annealing to reduce defects and thereby activate the dopants. Recovery of implant damage in AlN requires excessively high temperature. In this SBIR program we began the investigation by simulation of ion beam implantation profiles for Mg, Ge and Si in AlN over wide dose and energy ranges. Si and Ge are implanted to achieve the n-type doping, Mg is investigated as a p-type doping. The simulation of implantation profiles were performed in collaboration between NRL and Agnitron using a commercial software known as Stopping and Range of Ions in Matter (SRIM). The simulation results were then used as the basis for ion implantation of AlN samples. The implanted samples were annealed by an innovative technique under different conditions and evaluated along the way. Raman spectroscopy and XRD were used to determine the crystal quality of the implanted samples, demonstrating the effectiveness of annealing in removing implant induced damage. Additionally, SIMS was used to verify that a nearly uniform doping profile was achieved near the sample surface. The electrical characteristics

  9. Theoretical Study of Donor - Spacer - Acceptor Structure Molecule for Molecular Rectifier

    NASA Astrophysics Data System (ADS)

    Mizuseki, Hiroshi; Kenji, Niimura; Belosludov, Rodion; Farajian, Amir; Kawazoe, Yoshiyuki

    2003-03-01

    Recently, the molecular electronics has attracted strong attention as a ``post-silicone technology'' to establish a future nanoscale electronic devices. To realize this molecular device, unimolecular rectifiering function is one of the most important constituents in nanotechnology [C. Majumder, H. Mizuseki, and Y. Kawazoe, Molecular Scale Rectifier: Theoretical Study, J. Phys. Chem. A, 105 (2001) 9454-9459.]. In the present study, the geometric and electronic structure of alkyl derivative C37H50N4O4 (PNX) molecule, (donor - spacer - acceptor), a leading candidate of molecular rectifying device, has been investigated theoretically using ab initio quantum mechanical calculation. The results suggest that in such donor-acceptor molecular complexes, while the lowest unoccupied orbital concentrates on the acceptor subunit, the highest occupied molecular orbital is localized on the donor subunit. The approximate potential differences for optimized PNX molecule have been estimated at the B3PW91/6-311g++(d,p) level of theory, which achieves quite good agreement with experimentally reported results. This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.

  10. Examining Forster Energy Transfer for Semiconductor Nanocrystaline Quantum Dot Donors and Acceptors

    SciTech Connect

    Curutchet, C.; Franceschetti, A.; Zunger, A.; Scholes, G. D.

    2008-01-01

    Excitation energy transfer involving semiconductor quantum dots (QDs) has received increased attention in recent years because their properties, such as high photostability and size-tunable optical properties, have made QDs attractive as Forster resonant energy transfer (FRET) probes or sensors. An intriguing question in FRET studies involving QDs has been whether the dipole approximation, commonly used to predict the electronic coupling, is sufficiently accurate. Accurate estimates of electronic couplings between two 3.9 nm CdSe QDs and between a QD and a chlorophyll molecule are reported. These calculations are based on transition densities obtained from atomistic semiempirical calculations and time-dependent density functional theory for the QD and the chlorophyll, respectively. In contrast to the case of donor-acceptor molecules, where the dipole approximation breaks down at length scales comparable to the molecular dimensions, we find that the dipole approximation works surprisingly well when donor and/or acceptor is a spherical QD, even at contact donor-acceptor separations. Our conclusions provide support for the use of QDs as FRET probes for accurate distance measurements.

  11. Molecular Donor-Bridge-Acceptor Strategies for High-Capacitance Organic Dielectric Materials.

    PubMed

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2015-06-10

    Donor-bridge-acceptor (DBA) systems occupy a rich history in molecular electronics and photonics. A key property of DBA materials is their typically large and tunable (hyper)polarizabilities. While traditionally, classical descriptions such as the Clausius-Mossotti formalism have been used to relate molecular polarizabilities to bulk dielectric response, recent work has shown that these classical equations are inadequate for numerous materials classes. Creating high-dielectric organic materials is critically important for utilizing unconventional semiconductors in electronic circuitry. Employing a plane-wave density functional theory formalism, we investigate the dielectric response of highly polarizable DBA molecule-based thin films. Such films are found to have large dielectric response arising from cooperative effects between donor and acceptor units when mediated by a conjugated bridge. Moreover, the dielectric response can be systematically tuned by altering the building block donor, acceptor, or bridge structures and is found to be nonlinearly dependent on electric field strength. The computed dielectric constants are largely independent of the density functional employed, and qualitative trends are readily evident. Remarkably large computed dielectric constants >15.0 and capacitances >6.0 μF/cm(2) are achieved for squaraine monolayers, significantly higher than in traditional organic dielectrics. Such calculations should provide a guide for designing high-capacitance organic dielectrics that should greatly enhance transistor performance.

  12. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry

    PubMed Central

    Carter, Charles W.; Wolfenden, Richard

    2016-01-01

    abstract The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  13. Field emission analysis of band bending in donor/acceptor heterojunction

    NASA Astrophysics Data System (ADS)

    Xing, Yingjie; Li, Shuai; Wang, Guiwei; Zhao, Tianjiao; Zhang, Gengmin

    2016-06-01

    The donor/acceptor heterojunction plays an important role in organic solar cells. An investigation of band bending in the donor/acceptor heterojunction is helpful in analysis of the charge transport behavior and for the improvement of the device performance. In this work, we report an approach for detection of band bending in a donor/acceptor heterojunction that has been prepared on a small and sharp tungsten tip. In situ field emission measurements are performed after the deposition process, and a linear Fowler-Nordheim plot is obtained from the fresh organic film surface. The thickness-dependent work function is then measured in the layer-by-layer deposited heterojunction. Several different types of heterojunction (zinc phthalocyanine (ZnPc)/C60, copper phthalocyanine (CuPc)/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, and CuPc/C60) are fabricated and analyzed. The different charge transfer directions in the heterojunctions are distinguished by field emission measurements. The calculation method used to determine the band bending is then discussed in detail. A triple layer heterojunction (C60/ZnPc/CuPc) is also analyzed using this method. A small amount of band bending is measured in the outer CuPc layer. This method provides an independent reference method for determination of the band bending in an organic heterojunction that will complement photoemission spectroscopy and current-voltage measurement methods.

  14. Dielectric relaxation behavior of acceptor (Mg)-doped BaTiO3

    NASA Astrophysics Data System (ADS)

    Yoon, Seok-Hyun; Kwon, Sang-Hoon; Hur, Kang-Heon

    2011-04-01

    Dielectric relaxation behavior of acceptor (Mg)-doped BaTiO3 ceramics was investigated with the increase of Mg concentration up to 0.6 mol. % in the temperature rang of 120 ˜ 540 °C. In the high temperature range above 320 °C, the activation energies of dielectric relaxation (Eτ) showed nearly similar values of ˜ 1.2 eV irrespective of Mg concentration. However, in the low temperature range below 320 °C, they continuously decreased from ˜ 1.2 eV and then saturated to ˜ 0.4 eV with the increase of Mg concentration. The activation energies of electrical conduction (Eσ) of the bulk grain evaluated by impedance analysis also showed almost the same behavior. Such coincidence demonstrates that the observed dielectric behaviors are caused by the space charge polarization at grain boundaries by conducting charge carriers. The disappearance of the dielectric relaxation in submicrometer fine-grain specimen also supports this mechanism. The variation of Eτ and Eσ with the increase of Mg concentration in the low temperature range was supposed to be caused by the dominant hopping conduction between ionized acceptor (MgTi″) and neutral or hole-trapped acceptor (MgTi×).

  15. Electron acceptors based on alpha-position substituted PDI for OPV solar cells.

    SciTech Connect

    Zhao, Donglin; Wu, Qinghe; Cai, Zhengxu; Zheng, T; Chen, Wei; Lu, Jessica; Yu, L

    2016-02-23

    The ortho-position functionalized perylene diimide derivatives (alphaPPID, alphaPBDT) were synthesized and used as the electron acceptors in nonfullerene organic photovoltaics. Due to the good planarity of ortho-position functionalized PDI, the alphaPPID and alphaPBDT show strong tendency to form aggregate because of their enhanced intermolecular pie-pie interaction. Moreover, they maintain the pure domains and the same packing order as in the pure film if they are blended with PBT7-TH and the SCLC measurement also shows the high electron mobility. The inverted OPVs employing alphaPDI-based compounds as acceptor and PBT7-TH as the donor give the highest PCE of 4.92 % for alphaPBDT based device and 3.61 % for alphaPPID based device, which is 39 % and 4 % higher than that for their counterpart betaPBDT and betaPPID. The charge separation study shows the more efficient exciton dissociation at interfaces between PDI based compounds and PBT7-TH. The results suggest that compared to beta-substituted ones, alpha-substituted PDI derivatives are more promising electron acceptors for OPV.

  16. Transferase Activity of Lactobacillal and Bifidobacterial β-Galactosidases with Various Sugars as Galactosyl Acceptors

    PubMed Central

    2016-01-01

    The β-galactosidases from Lactobacillus reuteri L103 (Lreuβgal), Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (Lbulβgal), and Bifidobacterium breve DSM 20281 (Bbreβgal-I and Bbreβgal-II) were investigated in detail with respect to their propensity to transfer galactosyl moieties onto lactose, its hydrolysis products d-glucose and d-galactose, and certain sugar acceptors such as N-acetyl-d-glucosamine (GlcNAc), N-acetyl-d-galactosamine (GalNAc), and l-fucose (Fuc) under defined, initial velocity conditions. The rate constants or partitioning ratios (kNu/kwater) determined for these different acceptors (termed nucleophiles, Nu) were used as a measure for the ability of a certain substance to act as a galactosyl acceptor of these β-galactosidases. When using Lbulβgal or Bbreβgal-II, the galactosyl transfer to GlcNAc was 6 and 10 times higher than that to lactose, respectively. With lactose and GlcNAc used in equimolar substrate concentrations, Lbulβgal and Bbreβgal-II catalyzed the formation of N-acetyl-allolactosamine with the highest yields of 41 and 24%, respectively, as calculated from the initial GlcNAc concentration. PMID:26975338

  17. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.

    PubMed

    Kumar, Challa V; Duff, Michael R

    2008-12-01

    Specific donor and acceptor pairs have been assembled in bovine serum albumin (BSA), at neutral pH and room temperature, and these dye-protein complexes indicated efficient donor to acceptor singlet-singlet energy transfer. For example, pyrene-1-butyric acid served as the donor and Coumarin 540A served as the acceptor. Both the donor and the acceptor bind to BSA with affinity constants in excess of 2x10(5) M(-1), as measured in absorption and circular dichroism (CD) spectral titrations. Simultaneous binding of both the donor and the acceptor chromophores was supported by CD spectra and one chromophore did not displace the other from the protein host, even when limited concentrations of the host were used. For example, a 1:1:1 complex between the donor, acceptor and the host can be readily formed, and spectral data clearly show that the binding sites are mutually exclusive. The ternary complexes (two different ligands bound to the same protein molecule) provided opportunities to examine singlet-singlet energy transfer between the protein-bound chromophores. Donor emission was quenched by the addition of the acceptor, in the presence of limited amounts of BSA, while no energy transfer was observed in the absence of the protein host, under the same conditions. The excitation spectra of the donor-acceptor-host complexes clearly show the sensitization of acceptor emission by the donor. Protein denaturation, as induced by the addition of urea or increasing the temperature to 360 K, inhibited energy transfer, which indicate that protein structure plays an important role. Sensitization also proceeded at low temperature (77 K) and diffusion of the donor or the acceptor is not required for energy transfer. Stern-Volmer quenching plots show that the quenching constant is (3.1+/-0.2)x10(4) M(-1), at low acceptor concentrations (<35 microM). Other albumins such as human and porcine proteins also served as good hosts for the above experiments. For the first time, non

  18. Adsorption of atrazine, hydroxyatrazine, deethylatrazine, and deisopropylatrazine onto Fe(III) polyhydroxy cations intercalated vermiculite and montmorillonite.

    PubMed

    Abate, Gilberto; Masini, Jorge Cesar

    2005-03-09

    This paper describes the modification of the clay minerals vermiculite (VT) and montmorillonite (MT) by intercalating Fe(III) polymers of different [OH(-)]:[Fe(III)] ratios with the aim of removing atrazine (AT) and its metabolites deethylatrazine (DEA), deisopropylatrazine (DIA), and hydroxyatrazine (ATOH) from aqueous solution. An enhancement of adsorption capacity was observed for both intercalated clay minerals in comparison to the potassium-saturated materials (KVT or KMT). The results showed that different [OH(-)]:[Fe(III)] molar ratios had a small influence on the adsorption capacity, as well as in the basal spacing, BET surface area, and porosity. For the lowest initial concentrations of AT, DIA, and ATOH (0.050 mg L(-)(1)) studied, the modified VT adsorbed almost 80% of AT and DIA, while ATOH was removed at concentration levels below the detection limit of the technique, implying in at least 99.5% of sorption. Weak interaction between intercalated VT and DEA was observed, although a significant adsorption enhancement occurred in comparison to KVT. Within a 24 h interval, desorption of AT and DIA in aqueous medium reached levels close to 20% of the amount initially adsorbed, while for ATOH only 3% of the adsorbed compound was desorbed. The adsorption capacity of the Fe(III)-intercalated VT decreased after the first adsorption/desorption cycle, implying that the material is not suitable for reutilization. The intercalated MT was a powerful sorbent for AT, DEA, DIA, and ATOH, removing all of these chemicals from solution almost quantitatively (sorption greater than 99.5%), even at initial concentrations as high as 1.0 mg L(-)(1). Additionally, desorption of AT, ATOH, and DIA in water was not measurable up to the tube corresponding to the initial concentration of 1.0 mg L(-)(1), suggesting strong irreversible binding of these compounds to the intercalated MT materials. Desorption of DEA from the intercalated MT was between 5 and 30%. Unlike what was observed

  19. Nutritional therapies (including fosteum).

    PubMed

    Nieves, Jeri W

    2009-03-01

    Nutrition is important in promoting bone health and in managing an individual with low bone mass or osteoporosis. In adult women and men, known losses of bone mass and microarchitecture occur, and nutrition can help minimize these losses. In every patient, a healthy diet with adequate protein, fruits, vegetables, calcium, and vitamin D is required to maintain bone health. Recent reports on nutritional remedies for osteoporosis have highlighted the importance of calcium in youth and continued importance in conjunction with vitamin D as the population ages. It is likely that a calcium intake of 1200 mg/d is ideal, and there are some concerns about excessive calcium intakes. However, vitamin D intake needs to be increased in most populations. The ability of soy products, particularly genistein aglycone, to provide skeletal benefit has been recently studied, including some data that support a new medical food marketed as Fosteum (Primus Pharmaceuticals, Scottsdale, AZ).

  20. Refraction, including prisms.

    PubMed

    Hiatt, R L

    1991-02-01

    The literature in the past year on refraction is replete with several isolated but very important topics that have been of interest to strabismologists and refractionists for many decades. The refractive changes in scleral buckling procedures include an increase in axial length as well as an increase in myopia, as would be expected. Tinted lenses in dyslexia show little positive effect in the nonasthmatic patients in one study. The use of spectacles or bifocals as a way to control increase in myopia is refuted in another report. It has been shown that in accommodative esotropia not all patients will be able to escape the use of bifocals in the teenage years, even though surgery might be performed. The hope that disposable contact lenses would cut down on the instance of giant papillary conjunctivitis and keratitis has been given some credence, and the conventional theory that sclerosis alone is the cause of presbyopia is attacked. Also, gas permeable bifocal contact lenses are reviewed and the difficulties of correcting presbyopia by this method outlined. The practice of giving an aphakic less bifocal addition instead of a nonaphakic, based on the presumption of increased effective power, is challenged. In the review of prisms, the majority of articles concern prism adaption. The most significant report is that of the Prism Adaptation Study Research Group (Arch Ophthalmol 1990, 108:1248-1256), showing that acquired esotropia in particular has an increased incidence of stable and full corrections surgically in the prism adaptation group versus the control group.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Enantioselective cis-β-lactam synthesis by intramolecular C-H functionalization from enoldiazoacetamides and derivative donor-acceptor cyclopropenes

    PubMed Central

    Deng, Yongming; Yim, David N.; Zavalij, Peter Y.

    2015-01-01

    β-Lactam derivatives are produced through intermediate donor-acceptor cyclopropene intermediates in high yield, exclusive cis-diastereoselectivity, and high enantiocontrol in a chiral dirhodium carboxylate catalyzed intramolecular C-H functionalization reaction of enoldiazoacetamides. PMID:26029355

  2. Endo-β-N-acetylglucosaminidase catalysed glycosylation: tolerance of enzymes to structural variation of the glycosyl amino acid acceptor.

    PubMed

    Tomabechi, Yusuke; Squire, Marie A; Fairbanks, Antony J

    2014-02-14

    Endo-β-N-Acetylglucosaminidases (ENGases) are highly useful biocatalysts that can be used to synthetically access a wide variety of defined homogenous N-linked glycoconjugates in a convergent manner. The synthetic efficiency of a selection of family GH85 ENGases was investigated as the structure of the acceptor substrate was varied. Several different GlcNAc-asparagine acceptors were synthesised, and used in conjunction with penta- and decasaccharide oxazoline donors. Different enzymes showed different tolerances of modification of the GlcNAc acceptor. Whilst none tolerated modification of either the 4- or 6-hydroxyl, both Endo M and Endo D tolerated modification of OH-3. For Endo D the achievable synthetic efficiency was increased by a factor of three by the use a 3-O-benzyl protected acceptor. The presence of a fucose at position-3 was not tolerated by any of the enzymes assayed.

  3. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing

    NASA Astrophysics Data System (ADS)

    Li, Ning; Perea, José Darío; Kassar, Thaer; Richter, Moses; Heumueller, Thomas; Matt, Gebhard J.; Hou, Yi; Güldal, Nusret S.; Chen, Haiwei; Chen, Shi; Langner, Stefan; Berlinghof, Marvin; Unruh, Tobias; Brabec, Christoph J.

    2017-02-01

    The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells.

  4. Role of functionalized acceptors in heteroleptic bipyridyl Cu(I) complexes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqing; Shao, Yang; Li, Ke; Zhao, Zigang; Wei, Shuxian; Guo, Wenyue

    2016-09-01

    The intrinsic optoelectronic properties of heteroleptic bipyridyl Cu(I) complexes bearing functionalized acceptor subunits have been investigated by density functional theory and time-dependent DFT. The Cu(I) complexes exhibit distorted trigonal-pyramidal geometries and typical metal-to-ligand electron transfer characteristics at the long wavelength region. Replacing carboxylic acid with cyanoacrylic acid in acceptor subunits stabilizes the LUMO levels, thus lowering the HOMOLUMO energy gaps and facilitating favorable donor-to-acceptor intramolecular electron transfer and charge separation. Introduction of heteroaromatic groups and cyanoacrylic acid significantly improves the light-harvesting capability of the complexes. Our results highlight the effect of functionalized acceptors on the optoelectronic properties of bipyridyl Cu(I) complexes and provide a fresh perspective on screening of efficient sensitizers for dye-sensitized solar cells.

  5. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing

    PubMed Central

    Li, Ning; Perea, José Darío; Kassar, Thaer; Richter, Moses; Heumueller, Thomas; Matt, Gebhard J.; Hou, Yi; Güldal, Nusret S.; Chen, Haiwei; Chen, Shi; Langner, Stefan; Berlinghof, Marvin; Unruh, Tobias; Brabec, Christoph J.

    2017-01-01

    The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells. PMID:28224984

  6. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments

    SciTech Connect

    Ahmed, B.; Cao, B.; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.; Beyenal, Haluk

    2012-11-07

    A facultative iron-reducing (Fe(III)-reducing) Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes (Fe(III)-NTA and Fe(III)-citrate) but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 µM) of either of electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 µM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We found that Paenibacillus sp. 300A also could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ~7:3 in PIPES and ~1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.

  7. Binding of the Trace Elements: Cu(II) and Fe(III) to the Native and Modified Nutritive Potato Starches Studied by EPR

    NASA Astrophysics Data System (ADS)

    Śmigielska, H.; Lewandowicz, G.; Goslar, J.; Hoffmann, S. K.

    2006-08-01

    The Cu(II) and Fe(III) ions have been adsorbed by four potato starches of different degrees of oxidation (different numbers of COOH groups replacing host CH2OH groups): native (no oxidized), white (pudding) with oxidation degree of 0.04%, gelating (0.1%), and LUBOX starch (0.5%). Concentration of the ions in starches was determined from atomic absorption and EPR spectrum intensity. For small concentration of the adsorbed ions (below 4 mg/g) nearly all ions are adsorbed from the solution. EPR shows that adsorbed copper(II) ions are chemically bonded to the starch molecules (preferably) at COOH sites and uniformly dispersed in the starch structure. The complexes are typical of octahedral or square-quadratic coordination with spin-Hamiltonian parameters gǁ=2.373, g⊥= 2.080, Aǁ=12.1 mT, A⊥=1.0 mT. For higher concentrations the Cu(II) displays a tendency to clustering. Iron(III) ions are introduced into starch in a form of clusters mainly, even for the smallest concentration. The highest concentrations of both Cu(II) and Fe(III) were observed in LUBOX starch having the highest degree of oxidation.

  8. [Preparation, X-ray structural and spectroscopic studies of some D-lactobionic acid complexes with Cs(I), Fe(III) and di-n-butyltin(IV)].

    PubMed

    Szorcsik, A; Jorunn, S; Nagy, L; Vankó, G; Lakatos, A; Korecz, L; Vértes, A

    2000-01-01

    D-Lactobionic acid (4-O-beta-D-galactopyranosyl-D-gluconic acid) complexes of Cs(I), Fe(III) and di-n-butyltin(IV)2+ ions were prepared in the solid state. The bonding sites of the ligands were verified by means of FTIR, Raman and 13C NMR spectroscopic measurements. The Cs(I)-D-lactobionate was obtained in single-crystal form. The X-ray crystallographic results on Cs(I)-D-lactobionate demonstarted that each Cs(I) ion is bonded to four D-lactobionate ions, forming an intricate 3D network. The asymmetric unit consists of one Cs(I), one D-lactobionate ion and one water molecule. For the di-n-butyltin(IV) complex, Mössbauer pqs calculations indicated octahedral and trigonalbipyramidal stereochemistry around the central tin atom in the oligomeric compound. In DMSO solution, the polymeric structure does not remain as shown by 13C NMR measurement. One solvent molecule is coordinated additionally to the tin center, and the carboxylate group has become monodentate. According to the EPR measurement, the Fe(III) complexes obtained at different pH have at least dimeric or oligomeric structure.

  9. A Geobacter sulfurreducens strain expressing pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production.

    PubMed

    Liu, Xing; Tremblay, Pier-Luc; Malvankar, Nikhil S; Nevin, Kelly P; Lovley, Derek R; Vargas, Madeline

    2014-02-01

    The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity.

  10. A Geobacter sulfurreducens Strain Expressing Pseudomonas aeruginosa Type IV Pili Localizes OmcS on Pili but Is Deficient in Fe(III) Oxide Reduction and Current Production

    PubMed Central

    Liu, Xing; Tremblay, Pier-Luc; Malvankar, Nikhil S.; Nevin, Kelly P.; Vargas, Madeline

    2014-01-01

    The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity. PMID:24296506

  11. Bio-reduction of Fe(III) ores using three pure strains of Aeromonas hydrophila, Serratia fonticola and Clostridium celerecrescens and a natural consortium.

    PubMed

    García-Balboa, C; Bedoya, I Chion; González, F; Blázquez, M L; Muñoz, J A; Ballester, A

    2010-10-01

    The present work describes a research approach to the anaerobic bioleaching of Fe(III) ores. Three strains (Serratia fonticola, Aeromonas hydrophila and Clostridium celerecrescens) isolated from an acidic abandoned mine were selected to test their ability to reduce dissimilatory Fe(III). Total iron bio-reduction was achieved after 48 h using either the consortium or the Aeromonas cultures. In the latter case, there was no evidence of precipitates and Fe(II) remained in solution at neutral pH through complex formation with citrate. None of the other cultures tested (mixed culture and the two isolates) exhibited this behaviour. Biotechnologically, this is a very promising result since it obviates the problem associated with undesirable precipitation of iron compounds in Fe(III)-reducing bacterial cultures. The performance of the Aeromonas culture was improved progressively by adaptation to moderately acidic pH values (up to 4.5) and to three different Fe(III)-oxyhydroxides as the sole source of iron: ferrihydrite, hematite and jarosite, commonly found as weathering compounds at mine sites. Dissimilatory Fe(III)-reducers for iron extraction from ores is therefore especially attractive in that acidification of the surrounding area can be minimized.

  12. Solvent extraction of Sc(III), Zr(IV), Th(IV), Fe(III), and Lu(III) with thiosubstituted organophosphinic acid extractants

    SciTech Connect

    Wang, C.; Li, D.

    1995-05-01

    The solvent extraction of Sc(III), Zr(IV), Th(IV), Fe(III) and Lu(III) with Cyanex 302 (bis(2,4,4-trimethylpentyl)monothiphosphinic acid) and Cyanex 301 (bis(2,4,4-trimethylpentyl)dithiophosphinic acid) in n-hexane from acidic aqueous solutions has been investigated systematically. The effect of equilibrium aqueous acidity on the extraction with these reagents was studied. The separation of Th(IV), Fe(III) and Lu(III) from Sc(III), or the separation of other metals from Lu(III) with Cyanex 302, can be achieved by controlling the aqueous acidity. However, Cyanex 301 exhibited a poor selectivity for the above metals, except for Lu(III). The extraction of these metals with Cyanex 272, Cyanex 302 and Cyanex 301 has been compared. The stripping percentages of Sc(III) for Cyanex 302 and Cyanex 301 in a single stage are near 78% and 75% with 3.5 mol/L and 5.8 mol/L sulphuric acid solutions, respectively. The effects of extractant concentration and temperature on the extraction of Sc(III) were investigated. The stoichiometry of the extraction of Sc(III) with Cyanex 302 was determined. The role of different components of Cyanex 302 in the extraction of Sc(III) was discussed. 18 refs., 10 figs.