Science.gov

Sample records for acceptors oxygen nitrate

  1. BIODEGRADATION OF MONOAROMATIC HYDROCARBONS BY AQUIFER MICROORGANISMS USING OXYGEN, NITRATE, OR NITROUS OXIDE AS THE TERMINAL ELECTRON ACCEPTOR

    EPA Science Inventory

    Microcosms were prepared from aquifer material, spiked with monoaromatic hydrocarbons, and amended with oxygen, nitrate, and nitrous oxide. Benzene and alkylbenzenes were degraded to concentrations below 5 µg/liter within 7 days under aerobic conditions, whereas only the alkylbe...

  2. Oxygen as Acceptor.

    PubMed

    Borisov, Vitaliy B; Verkhovsky, Michael I

    2015-01-01

    Like most bacteria, Escherichia coli has a flexible and branched respiratory chain that enables the prokaryote to live under a variety of environmental conditions, from highly aerobic to completely anaerobic. In general, the bacterial respiratory chain is composed of dehydrogenases, a quinone pool, and reductases. Substrate-specific dehydrogenases transfer reducing equivalents from various donor substrates (NADH, succinate, glycerophosphate, formate, hydrogen, pyruvate, and lactate) to a quinone pool (menaquinone, ubiquinone, and dimethylmenoquinone). Then electrons from reduced quinones (quinols) are transferred by terminal reductases to different electron acceptors. Under aerobic growth conditions, the terminal electron acceptor is molecular oxygen. A transfer of electrons from quinol to O₂ is served by two major oxidoreductases (oxidases), cytochrome bo₃ encoded by cyoABCDE and cytochrome bd encoded by cydABX. Terminal oxidases of aerobic respiratory chains of bacteria, which use O₂ as the final electron acceptor, can oxidize one of two alternative electron donors, either cytochrome c or quinol. This review compares the effects of different inhibitors on the respiratory activities of cytochrome bo₃ and cytochrome bd in E. coli. It also presents a discussion on the genetics and the prosthetic groups of cytochrome bo₃ and cytochrome bd. The E. coli membrane contains three types of quinones that all have an octaprenyl side chain (C₄₀). It has been proposed that the bo₃ oxidase can have two ubiquinone-binding sites with different affinities. "WHAT'S NEW" IN THE REVISED ARTICLE: The revised article comprises additional information about subunit composition of cytochrome bd and its role in bacterial resistance to nitrosative and oxidative stresses. Also, we present the novel data on the electrogenic function of appBCX-encoded cytochrome bd-II, a second bd-type oxidase that had been thought not to contribute to generation of a proton motive force in E

  3. Oxygen as Acceptor.

    PubMed

    Borisov, Vitaliy B; Verkhovsky, Michael I

    2015-01-01

    Like most bacteria, Escherichia coli has a flexible and branched respiratory chain that enables the prokaryote to live under a variety of environmental conditions, from highly aerobic to completely anaerobic. In general, the bacterial respiratory chain is composed of dehydrogenases, a quinone pool, and reductases. Substrate-specific dehydrogenases transfer reducing equivalents from various donor substrates (NADH, succinate, glycerophosphate, formate, hydrogen, pyruvate, and lactate) to a quinone pool (menaquinone, ubiquinone, and dimethylmenoquinone). Then electrons from reduced quinones (quinols) are transferred by terminal reductases to different electron acceptors. Under aerobic growth conditions, the terminal electron acceptor is molecular oxygen. A transfer of electrons from quinol to O₂ is served by two major oxidoreductases (oxidases), cytochrome bo₃ encoded by cyoABCDE and cytochrome bd encoded by cydABX. Terminal oxidases of aerobic respiratory chains of bacteria, which use O₂ as the final electron acceptor, can oxidize one of two alternative electron donors, either cytochrome c or quinol. This review compares the effects of different inhibitors on the respiratory activities of cytochrome bo₃ and cytochrome bd in E. coli. It also presents a discussion on the genetics and the prosthetic groups of cytochrome bo₃ and cytochrome bd. The E. coli membrane contains three types of quinones that all have an octaprenyl side chain (C₄₀). It has been proposed that the bo₃ oxidase can have two ubiquinone-binding sites with different affinities. "WHAT'S NEW" IN THE REVISED ARTICLE: The revised article comprises additional information about subunit composition of cytochrome bd and its role in bacterial resistance to nitrosative and oxidative stresses. Also, we present the novel data on the electrogenic function of appBCX-encoded cytochrome bd-II, a second bd-type oxidase that had been thought not to contribute to generation of a proton motive force in E

  4. Enhanced natural attenuation of BTEX in the nitrate-reducing environment by different electron acceptors.

    PubMed

    Zhao, Yongsheng; Qu, Dan; Hou, Zhimin; Zhou, Rui

    2015-01-01

    Enhancing natural attenuation of benzene, toluene, ethylbenzene, and xylene (BTEX) in groundwater is a potential remediation technology. This study focused on selecting appropriate electron acceptors to promote BTEX degradation in a nitrate-reducing environment. Nitrate-reducing soil was obtained from simulated BTEX-contaminated column. Enhancing experiments were conducted in the microcosm with nitrate-reducing material and simulated BTEX-polluted groundwater to investigate the promoting feasibility of adding dissolved oxygen (DO), nitrate, chelated Fe(III), and sulphate as electron acceptors. The concentrations of BTEX, electron acceptors, and their reducing products were measured. The order of promoting BTEX degradation with four electron acceptors was nitrate>sulphate>chelated Fe(III)>DO, and the first-order decay coefficients were 0.0432, 0.0333, 0.0240, and 0.0155, respectively. Nitrate, sulphate, and chelated Fe(III) enhanced attenuation. Nitrate was the most effective electron acceptor under nitrate-reducing conditions. Selecting proper electron acceptor is significant in promoting BTEX degradation according to the biogeochemical characteristics of local underground environment.

  5. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor

    USGS Publications Warehouse

    Hoeft, S.E.; Blum, J.S.; Stolz, J.F.; Tabita, F.R.; Witte, B.; King, G.M.; Santini, J.M.; Oremland, R.S.

    2007-01-01

    A facultative chemoautotrophic bacterium, strain MLHE-1T, was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1T were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth. No growth occurred when nitrite or nitrous oxide was substituted for nitrate. Heterotrophic growth was observed under aerobic and anaerobic (nitrate) conditions. Cells of strain MLHE-1T could oxidize but not grow on CO, while CH4 neither supported growth nor was it oxidized. When grown chemoautotrophically, strain MLHE-1T assimilated inorganic carbon via the Calvin-Benson-Bassham reductive pentose phosphate pathway, with the activity of ribulose 1,5-bisphosphate carboxylase (RuBisCO) functioning optimally at 0.1 M NaCl and at pH 7.3. Strain MLHE-1T grew over broad ranges of pH (7.3-10.0; optimum, 9.3), salinity (115-190 g l-1; optimum 30 g l-1) and temperature (113-40 ??C; optimum, 30 ??C). Phylogenetic analysis of 16S rRNA gene sequences placed strain MLHE-1T in the class Gammaproteobacteria (family Ectothiorhodospiraceae) and most closely related to Alkalispirillum mobile (98.5%) and Alkalilimnicola halodurans (98.6%), although none of these three haloalkaliphilic micro-organisms were capable of photoautotrophic growth and only strain MLHE-1T was able to oxidize As(III). On the basis of physiological characteristics and DNA-DNA hybridization data, it is suggested that strain MLHE-1T represents a novel species within the genus Alkalilimnicola for which the name Alkalilimnicola ehrlichii is proposed. The type strain is MLHE-1T (=DSM 17681T =ATCC BAA-1101T). Aspects of the annotated full genome of Alkalilimnicola ehrlichii are discussed in the light of its physiology. ?? 2007 IUMS.

  6. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.

    PubMed

    Cai, Jing; Zheng, Ping; Mahmood, Qaisar

    2016-01-01

    The current investigation reports the effect of cathode electron acceptors on simultaneous sulfide and nitrate removal in two-chamber microbial fuel cells (MFCs). Potassium permanganate and potassium ferricyanide were common cathode electron acceptors and evaluated for substrate removal and electricity generation. The abiotic MFCs produced electricity through spontaneous electrochemical oxidation of sulfide. In comparison with abiotic MFC, the biotic MFC showed better ability for simultaneous nitrate and sulfide removal along with electricity generation. Keeping external resistance of 1,000 Ω, both MFCs showed good capacities for substrate removal where nitrogen and sulfate were the main end products. The steady voltage with potassium permanganate electrodes was nearly twice that of with potassium ferricyanide. Cyclic voltammetry curves confirmed that the potassium permanganate had higher catalytic activity than potassium ferricyanide. The potassium permanganate may be a suitable choice as cathode electron acceptor for enhanced electricity generation during simultaneous treatment of sulfide and nitrate in MFCs. PMID:26901739

  7. Molecular and biokinetic characterization of methylotrophic denitrification using nitrate and nitrite as terminal electron acceptors.

    PubMed

    Baytshtok, Vladimir; Kim, Sungpyo; Yu, Ran; Park, Hongkeun; Chandran, Kartik

    2008-01-01

    Although methanol is a widely employed carbon source for denitrification, relatively little is known on the abundance and diversity of methylotrophic bacteria in activated sludge. The primary aim of this study was to specifically identify bacteria that metabolized methanol in a sequencing batch denitrifying reactor (SBDR), using a novel technique, stable isotope probing (SIP) of 13C labeled DNA. A secondary aim was to quantitatively track dominant methylotrophic bacteria in the SBDR exposed to different terminal electron acceptors. SIP enabled 13C 16S rDNA clone libraries revealed that SBDR methylotrophic populations were related to Methyloversatilis spp. and Hyphomicrobium spp. Based on newly developed quantitative polymerase chain reaction (qPCR) assays, Hyphomicrobium spp. were more abundant than Methyloversatilis spp. throughout the period of SBDR operation. The relative population abundance was stable despite a shift in electron acceptor from nitrate to nitrite (keeping the same methanol dose). However, the shift to nitrite resulted in a significant decrease in denitrification biokinetics on both nitrate and nitrite. PMID:18701786

  8. Selection of denitrifying phosphorous accumulating organisms in IFAS systems: comparison of nitrite with nitrate as an electron acceptor.

    PubMed

    Jabari, Pouria; Munz, Giulio; Oleszkiewicz, Jan A

    2014-08-01

    Nitrite and nitrate were compared as electron acceptors to select for denitrifying phosphorous accumulating organisms (DPAO) in two integrated fixed film activated sludge (IFAS 1 and IFAS 2) systems operated as sequencing batch reactors. The bench-scale experiment lasted one year and synthetic wastewater was used as feed. During anoxic conditions 20mgNO3(-)-NL(-1) were dosed into IFAS-1 and 20mgNO2(-)-NL(-1) were dosed into IFAS-2. Long term phosphorous and ammonia removal via nitritation were achieved in both systems and both attached and suspended biomass contributed to phosphorous and ammonia removal. DPAO showed no specific adaptation to the electron acceptor as evidenced by short term switch of feeding with nitrate or nitrite. Anoxic phosphorus uptake rate was significantly higher with nitrite than with nitrate. Results showed that DPAO activity with nitrite could be integrated into attached and suspended biomass of IFAS systems in long term operation.

  9. The rate of oxygen isotope exchange between nitrate and water

    NASA Astrophysics Data System (ADS)

    Kaneko, Masanori; Poulson, Simon R.

    2013-10-01

    The oxygen isotope exchange rate between nitrate and water was measured at a temperature of 50-80 °C and pH -0.6 to 1.1. Oxygen isotope exchange is a first-order reaction, with the exchange rate being strongly affected by both reaction temperature and pH, with increased rates of isotope exchange at higher temperatures and lower pH values. The rate of oxygen isotope exchange under natural conditions is extremely slow, with an estimated half-life for isotope exchange of 5.5 × 109 years at 25 °C and pH 7. The extremely slow rate of oxygen isotope exchange between nitrate and water under typical environmental conditions illustrates that nitrate-δ18O signatures (and also nitrate δ17O and Δ17O signatures) associated with various nitrate sources, as well as isotope compositions produced by biogeochemical processes, will be preserved. Hence, it is valid to use the value of nitrate-δ18O to investigate the sources and biogeochemical behavior of nitrate, in a similar manner to the use of sulfate-δ18O signatures to study the sources and biogeochemical behavior of sulfate. Equilibrium oxygen isotope fractionation factors have been determined, although quantification of the nitrate-water equilibrium fractionation factor is not possible due to the presence of nitrate as both protonated (i.e. HNO3) and unprotonated forms (i.e. NO3-) under the experimental conditions, and the difficulty in accurately calculating nitrate speciation in low pH, high ionic strength solutions.

  10. Online Method for Oxygen Triple Isotope Analyses of Nitrate

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Hastings, M. G.; Houlton, B.; Roeckmann, T.; Sigman, D. M.

    2004-12-01

    Combined 17O/16O and 18O/16O isotope ratio analyses of nitrate in ground and surface waters help to understand the partitioning between atmospheric and terrestrial nitrate sources because only terrestrial nitrate shows mass-dependent relative enrichments in 17O and 18O, whereas atmospheric nitrate displays an anomalous enrichment in 17O. The 17O isotope anomaly of nitrate is therefore a sensitive tracer of fresh water pollution. Furthermore, isotope measurements of atmospheric nitrate in aerosols and precipitation provide insight into the partitioning between atmospheric NOx cycling pathways via ozone or hydroxy/peroxy radicals because only ozone has a significant non-mass dependent enrichment in 17O. Previous methods to analyze the oxygen triple isotope composition of nitrate rely on offline thermal decomposition of AgNO3 amounts in the µ mol range. We have recently developed an online (coupled gas chromatography-mass spectrometry) method that requires two to three orders of magnitude less material to achieve essentially the same analytical precision: 30 nmol of nitrate give a 1σ uncertainty of 1.0 ‰ for the δ ^{18}O value and 0.3 \\permil for the ^{17}O anomaly (\\Delta17O). The method uses a strain of bacterial denitrifiers to convert nitrate to N2O [Casciotti et al., 2002], which is then quantitatively converted to elemental nitrogen and oxygen in a gold furnace at 800° C. Both gases are separated on a molecular sieve capillary column and introduced into the isotope ratio mass spectrometer. There is no significant memory effect, but calibration via nitrate or N2O standards is required for scale normalization. This novel method was used to analyze nitrate isotopes in rain water and streams and, thanks to the low sample size requirements, will also be suitable for ice core samples, which have very low nitrate concentrations. A tight correlation between Δ 17O and δ 18O in rain water was found with a slope of about 0.3 (R2 = 0.86), which reflects the

  11. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise.

    PubMed

    Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio

    2016-04-01

    Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT. PMID:26988767

  12. Controlled field study on the use of nitrate and oxygen for bioremediation of a gasoline source zone

    USGS Publications Warehouse

    Barbaro, J.R.; Barker, J.F.

    2000-01-01

    Controlled releases of unleaded gasoline were utilized to evaluate the biotransformation of the soluble aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene isomers, trimethylbenzene isomers, and naphthalene) within a source zone using nitrate and oxygen as electron acceptors. Experiments were conducted within two 2 m ?? 2 m ?? 3.5 m deep sheet-piling cells. In each treatment cell, a gasoline-contaminated zone was created below the water table. Groundwater amended with electron acceptors was then flushed continuously through the cells for 174 day. Electron-acceptor utilization and hydrocarbon-metabolite formation were noted in both cells, indicating that some microbial activity had been induced in response to flushing. Relative to the cell residence time, nitrate utilization was slow and aromatic-hydrocarbon mass losses in response to microaerophilic dissolved oxygen addition were not obvious under these in situ conditions. There was relatively little biotransformation of the aromatic hydrocarbons over the 2-m flow path monitored in this experiment. A large denitrifying population capable of aromatic hydrocarbon biotransformation failed to develop within the gasoline source zone over a 14-mo period of nitrate exposure.

  13. Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics.

    PubMed

    Batuk, Dmitry; Batuk, Maria; Tsirlin, Alexander A; Hadermann, Joke; Abakumov, Artem M

    2015-12-01

    The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.

  14. Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803.

    PubMed

    Gutthann, Franziska; Egert, Melanie; Marques, Alexandra; Appel, Jens

    2007-02-01

    In cyanobacterial membranes photosynthetic light reaction and respiration are intertwined. It was shown that the single hydrogenase of Synechocystis sp. PCC 6803 is connected to the light reaction. We conducted measurements of hydrogenase activity, fermentative hydrogen evolution and photohydrogen production of deletion mutants of respiratory electron transport complexes. All single, double and triple mutants of the three terminal respiratory oxidases and the ndhB-mutant without a functional complex I were studied. After activating the hydrogenase by applying anaerobic conditions in the dark hydrogen production was measured at the onset of light. Under these conditions respiratory capacity and amount of photohydrogen produced were found to be inversely correlated. Especially the absence of the quinol oxidase induced an increased hydrogenase activity and an increased production of hydrogen in the light compared to wild type cells. Our results support that the hydrogenase as well as the quinol oxidase function as electron valves under low oxygen concentrations. When the activities of photosystem II and I (PSII and PSI) are not in equilibrium or in case that the light reaction is working at a higher pace than the dark reaction, the hydrogenase is necessary to prevent an acceptor side limitation of PSI, and the quinol oxidase to prevent an overreduction of the plastoquinone pool (acceptor side of PSII). Besides oxygen, nitrate assimilation was found to be an important electron sink. Inhibition of nitrate reductase resulted in an increased fermentative hydrogen production as well as higher amounts of photohydrogen.

  15. Theory of Triplet Excitation Transfer in the Donor-Oxygen-Acceptor System: Application to Cytochrome b6f.

    PubMed

    Petrov, Elmar G; Robert, Bruno; Lin, Sheng Hsien; Valkunas, Leonas

    2015-10-20

    Theoretical consideration is presented of the triplet excitation dynamics in donor-acceptor systems in conditions where the transfer is mediated by an oxygen molecule. It is demonstrated that oxygen may be involved in both real and virtual intramolecular triplet-singlet conversions in the course of the process under consideration. Expressions describing a superexchange donor-acceptor coupling owing to a participation of the bridging twofold degenerate oxygen's virtual singlet state are derived and the transfer kinetics including the sequential (hopping) and coherent (distant) routes are analyzed. Applicability of this theoretical description to the pigment-protein complex cytochrome b6f, by considering the triplet excitation transfer from the chlorophyll a molecule to distant β-carotene, is discussed. PMID:26488665

  16. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  17. Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts.

    PubMed

    Michalski, Greg; Kolanowski, Michelle; Riha, Krystin M

    2015-01-01

    Nitrate is a key component of synthetic fertilizers that can be beneficial to crop production in agro-ecosystems, but can also cause damage to natural ecosystems if it is exported in large amounts. Stable isotopes, both oxygen and nitrogen, have been used to trace the sources and fate of nitrate in various ecosystems. However, the oxygen isotope composition of synthetic and organic nitrates is poorly constrained. Here, we present a study on the N and O isotope composition of nitrate-based fertilizers. The δ(15)N values of synthetic and natural nitrates were 0 ± 2 ‰ similar to the air N2 from which they are derived. The δ(18)O values of synthetic nitrates were 23 ± 3 ‰, similar to air O2, and natural nitrate fertilizer δ(18)O values (55 ± 5 ‰) were similar to those observed in atmospheric nitrate. The Δ(17)O values of synthetic fertilizer nitrate were approximately zero following a mass-dependent isotope relationship, while natural nitrate fertilizers had Δ(17)O values of 18 ± 2 ‰ similar to nitrate produced photochemically in the atmosphere. These narrow ranges of values can be used to assess the amount of nitrate arising from fertilizers in mixed systems where more than one nitrate source exists (soil, rivers, and lakes) using simple isotope mixing models. PMID:26181213

  18. Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts.

    PubMed

    Michalski, Greg; Kolanowski, Michelle; Riha, Krystin M

    2015-01-01

    Nitrate is a key component of synthetic fertilizers that can be beneficial to crop production in agro-ecosystems, but can also cause damage to natural ecosystems if it is exported in large amounts. Stable isotopes, both oxygen and nitrogen, have been used to trace the sources and fate of nitrate in various ecosystems. However, the oxygen isotope composition of synthetic and organic nitrates is poorly constrained. Here, we present a study on the N and O isotope composition of nitrate-based fertilizers. The δ(15)N values of synthetic and natural nitrates were 0 ± 2 ‰ similar to the air N2 from which they are derived. The δ(18)O values of synthetic nitrates were 23 ± 3 ‰, similar to air O2, and natural nitrate fertilizer δ(18)O values (55 ± 5 ‰) were similar to those observed in atmospheric nitrate. The Δ(17)O values of synthetic fertilizer nitrate were approximately zero following a mass-dependent isotope relationship, while natural nitrate fertilizers had Δ(17)O values of 18 ± 2 ‰ similar to nitrate produced photochemically in the atmosphere. These narrow ranges of values can be used to assess the amount of nitrate arising from fertilizers in mixed systems where more than one nitrate source exists (soil, rivers, and lakes) using simple isotope mixing models.

  19. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments

    USGS Publications Warehouse

    Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.

    2002-01-01

    Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  20. Nitrogen and Oxygen Isotopes of Low-Level Nitrate in Groundwater For Environmental Forensics

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2009-05-01

    Sources of nitrate in water from human activities include fertilizers, animal feedlots, septic systems, wastewater treatment lagoons, animal wastes, industrial wastes and food processing wastes. Nitrogen and Oxygen isotopic analysis of nitrate in groundwater is essential to source identification and environmental forensics as nitrate from different sources carry distinctly different N and O isotopic compositions. Nitrate is extracted from groundwater samples and converted into AgNO3 using ion exchange techniques. The purified AgNO3 is then broken down into N2 and CO for N and O isotopic measurement. Since nitrate concentrations in natural ground waters are usually less than 2 mg/L, however, such method has been limited by minimum sample size it requires, in liters, which is highly nitrate concentration dependent. Here we report a TurboVap- Denitrifier method for N and O isotopic measurement of low-level dissolved nitrate, based on sample evaporation and isotopic analysis of nitrous oxide generated from nitrate by denitrifying bacteria that lack N2O- reductase activity. For most groundwater samples with mg/L-level of nitrate direct injection of water samples in mLs is applied. The volume of sample is adjusted according to its nitrate concentration to achieve a final sample size optimal for the system. For water samples with ug/L-level of nitrate, nitrate is highly concentrated using a TurboVap evaporator, followed by isotopic measurement with Denitrifier method. Benefits of TurboVap- Denitrifier method include high sensitivity and better precision in both isotopic data. This method applies to both freshwater and seawater. The analyses of isotopic reference materials in nitrate-free de-ionized water and seawater are included as method controls to correct for any blank effects. The isotopic data from groundwater and ocean profiles demonstrate the consistency of the data produced by the TurboVap-Denitrifier method.

  1. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide.

    PubMed

    Yuan, Shi-Jie; Chen, Jie-Jie; Lin, Zhi-Qi; Li, Wen-Wei; Sheng, Guo-Ping; Yu, Han-Qing

    2013-01-01

    The concentration of nitrate in aquatic systems is rising with the development of modern industry and agriculture, causing a cascade of environmental problems. Here we describe a previously unreported nitrate formation process. Both indoor and outdoor experiments are conducted to demonstrate that nitrate may be formed from abundant atmospheric nitrogen and oxygen on nano-sized titanium dioxide surfaces under UV or sunlight irradiation. We suggest that nitric oxide is an intermediate product in this process, and elucidate its formation mechanisms using first-principles density functional theory calculations. Given the expanding use of titanium dioxide worldwide, such a titanium dioxide-mediated photocatalysis process may reveal a potentially underestimated source of nitrate in the environment, which on one hand may lead to an increasing environmental pollution concern, and on the other hand may provide an alternative, gentle and cost-effective method for nitrate production.

  2. Net community production at Ocean Station Papa observed with nitrate and oxygen sensors on profiling floats

    NASA Astrophysics Data System (ADS)

    Plant, Joshua N.; Johnson, Kenneth S.; Sakamoto, Carole M.; Jannasch, Hans W.; Coletti, Luke J.; Riser, Stephen C.; Swift, Dana D.

    2016-06-01

    Six profiling floats equipped with nitrate and oxygen sensors were deployed at Ocean Station P in the Gulf of Alaska. The resulting six calendar years and 10 float years of nitrate and oxygen data were used to determine an average annual cycle for net community production (NCP) in the top 35 m of the water column. NCP became positive in February as soon as the mixing activity in the surface layer began to weaken, but nearly 3 months before the traditionally defined mixed layer began to shoal from its winter time maximum. NCP displayed two maxima, one toward the end of May and another in August with a summertime minimum in June corresponding to the historical peak in mesozooplankton biomass. The average annual NCP was determined to be 1.5 ± 0.6 mol C m-2 yr-1 using nitrate and 1.5 ± 0.7 mol C m-2 yr-1 using oxygen. The results from oxygen data proved to be quite sensitive to the gas exchange model used as well as the accuracy of the oxygen measurement. Gas exchange models optimized for carbon dioxide flux generally ignore transport due to gas exchange through the injection of bubbles, and these models yield NCP values that are two to three time higher than the nitrate-based estimates. If nitrate and oxygen NCP rates are assumed to be related by the Redfield model, we show that the oxygen gas exchange model can be optimized by tuning the exchange terms to reproduce the nitrate NCP annual cycle.

  3. Analysis of Atmospheric Nitrate Deposition in Lake Tahoe Using Multiple Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    McCabe, J. R.; Michalski, G. M.; Hernandez, L. P.; Thiemens, M. H.; Taylor, K.; Kendall, C.; Wankel, S. D.

    2002-12-01

    Lake Tahoe in the Sierra Nevada Mountain Range is world renown for its depth and water clarity bringing 2.2 million visitors per year resulting in annual revenue of \\1.6 billion from tourism. In past decades the lake has suffered from decreased water clarity (from 32 m plate depth to less than 20), which is believed to be largely the result of algae growth initiated by increased nutrient loading. Lake nutrients have also seen a shift from a nitrogen limited to a phosphorous limited system indicating a large increase in the flux of fixed nitrogen. Several sources of fixed nitrogen of have been suggested including surface runoff, septic tank seepage from ground water and deposition from the atmosphere. Bio-available nitrogen in the form of nitrate (NO_{3}$-) is a main component of this system. Recent studies have estimated that approximately 50% of the nitrogen input into the lake is of atmospheric origin (Allison et al. 2000). However, the impact and magnitude of atmospheric deposition is still one of the least understood aspects of the relationship between air and water quality in the Basin (TRPA Threshold Assessment 2002). The utility of stable isotopes as tracers of nitrate reservoirs has been shown in several studies (Bohlke et al. 1997, Kendall and McDonnell 1998, Durka et al. 1994). Stable nitrogen (δ15N) and oxygen (δ18O) isotopes have been implemented in a dual isotope approach to characterize the various nitrate sources to an ecosystem. While δ18O distinguishes between atmospheric and soil sources of nitrate, processes such as denitrification can enrich the residual nitrate in δ18O leaving a misleading atmospheric signature. The benefit of δ15N as a tracer for NO3- sources is the ability to differentiate natural soil, fertilizer, and animal or septic waste, which contain equivalent δ18O values. The recent implementation of multiple oxygen isotopes to measure Δ17O in nitrate has proven to be a more sensitive tracer of atmospheric deposition. The

  4. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors.

    PubMed

    Camejo, Pamela Y; Owen, Brian R; Martirano, Joseph; Ma, Juan; Kapoor, Vikram; Santo Domingo, Jorge; McMahon, Katherine D; Noguera, Daniel R

    2016-10-01

    Lab- and pilot-scale simultaneous nitrification, denitrification and phosphorus removal-sequencing batch reactors were operated under cyclic anaerobic and micro-aerobic conditions. The use of oxygen, nitrite, and nitrate as electron acceptors by Candidatus Accumulibacter phosphatis during the micro-aerobic stage was investigated. A complete clade-level characterization of Accumulibacter in both reactors was performed using newly designed qPCR primers targeting the polyphosphate kinase gene (ppk1). In the lab-scale reactor, limited-oxygen conditions led to an alternated dominance of Clade IID and IC over the other clades. Results from batch tests when Clade IC was dominant (i.e., >92% of Accumulibacter) showed that this clade was capable of using oxygen, nitrite and nitrate as electron acceptors for P uptake. A more heterogeneous distribution of clades was found in the pilot-scale system (Clades IIA, IIB, IIC, IID, IA, and IC), and in this reactor, oxygen, nitrite and nitrate were also used as electron acceptors coupled to phosphorus uptake. However, nitrite was not an efficient electron acceptor in either reactor, and nitrate allowed only partial P removal. The results from the Clade IC dominated reactor indicated that either organisms in this clade can simultaneously use multiple electron acceptors under micro-aerobic conditions, or that the use of multiple electron acceptors by Clade IC is due to significant microdiversity within the Accumulibacter clades defined using the ppk1 gene. PMID:27340814

  5. BIODEGRADATION OF AROMATIC COMPOUNDS UNDER MIXED OXYGEN/DENITRIFYING CONDITIONS: A REVIEW

    EPA Science Inventory

    Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria...

  6. EFFECT OF HEMIN AND OXYGEN TENSION ON GROWTH AND NITRATE REDUCTION BY BACTERIA.

    PubMed

    JACOBS, N J; HEADY, R E; JACOBS, J M; CHAN, K; DEIBEL, R H

    1964-06-01

    Jacobs, N. J. (American Meat Institute Foundation, Chicago, Ill.), R. E. Heady, J. M. Jacobs, K. Chan, and R. H. Deibel. Effect of hemin and oxygen tension on growth and nitrate reduction by bacteria. J. Bacteriol. 87:1406-1411. 1964.-The effect of hemin supplementation of growth media on the ability of several bacteria to reduce nitrate was studied. Added hemin had no detectable effect on the ability of these organisms to reduce nitrate when grown in stationary cultures exposed to air. However, under anaerobic conditions, six strains of facultatively anaerobic staphylococci required hemin for nitrate reduction and growth stimulation in complex, nitrate-containing media. In a nutritionally defined medium, one strain of Staphylococcus required both hemin and nitrate for anaerobic growth. Anaerobic growth and nitrite production of the aerobe Bacillus subtilis was stimulated by addition of hemin. However, the anaerobic growth response was markedly de-decreased as compared with that obtained under static atmospheric conditions. Hemin had no detectable effect on anaerobic nitrate reduction or growth of the obligate aerobe Pseudomonas denitrificans, or of the facultative anaerobes Escherichia coli, B. polymyxa, and Corynebacterium diphtheriae.

  7. Modeling the paraelectric aging effect in the acceptor doped perovskite ferroelectrics: role of oxygen vacancy.

    PubMed

    Zhou, Yumei; Xue, Dezhen; Ding, Xiangdong; Zhang, Lixue; Sun, Jun; Ren, Xiaobing

    2013-10-30

    The time dependence of physical properties in the paraelectric phase was probed recently in a Mn(3+) doped (Ba0.8Sr0.2)TiO3 ceramic, providing a simple situation (without spontaneous polarization or domain walls) to quantify the role of the oxygen vacancy during aging. In the present study, we propose a quantitative model for paraelectric aging to understand how the distribution of the oxygen vacancy evolves with time and consequently influences the dielectric response of the paraelectric phase. First, by comparing dielectric behavior of paraelectric aging in a Mn(3+) doped (Ba0.75Sr0.25)TiO3 ceramic and the dielectric tunable effect, an internal bias field E(in) related to the oxygen vacancy is shown to exist in the paraelectric phase. Second, by introducing such a time dependent E(in) in a Landau-type model, we reproduce the dielectric response of Mn(3+) doped (Ba0.8Sr0.2)TiO3 ceramic during paraelectric aging. It is suggested that the increase of dielectric permittivity can be ascribed to the decrease of E(in) with time. The investigation of paraelectric aging is helpful for understanding the role of the oxygen vacancy in influencing the physical properties of ferroelectric materials.

  8. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments.

    PubMed

    Terry, Lee R; Kulp, Thomas R; Wiatrowski, Heather; Miller, Laurence G; Oremland, Ronald S

    2015-12-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophaga taeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [(14)C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.

  9. Microbiological Oxidation of Antimony(III) with Oxygen or Nitrate by Bacteria Isolated from Contaminated Mine Sediments

    PubMed Central

    Terry, Lee R.; Wiatrowski, Heather; Miller, Laurence G.; Oremland, Ronald S.

    2015-01-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophaga taeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [14C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates. PMID:26431974

  10. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments

    USGS Publications Warehouse

    Terry, Lee R.; Kulp, Thomas R.; Wiatrowski, Heather A.; Miller, Laurence G.; Oremland, Ronald S.

    2015-01-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophagataeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [14C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.

  11. Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign

    NASA Astrophysics Data System (ADS)

    Savarino, J.; Vicars, W. C.; Legrand, M.; Preunkert, S.; Jourdain, B.; Frey, M. M.; Kukui, A.; Caillon, N.; Gil Roca, J.

    2015-09-01

    Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO2 = NOx). The unique and distinctive 17O-excess (Δ17O = δ17O - 0.52 × δ18O) of ozone, which is transferred to NOx via oxidation, is a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O-excess within the NOx cycle is critical in polar areas where there exists the possibility of extending atmospheric investigations to the glacial/interglacial time scale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic plateau) during the austral summer of 2011/12. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NOx, O3, OH, HO2, RO2, etc.) and direct observations of the transferrable Δ17O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO2 pathway and using concurrent measurements of OH and NO2, we calculated a Δ17O signature for nitrate in the order of (21-22 ± 3) ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ17O(NO3-) values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this east Antarctic region.

  12. Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign

    NASA Astrophysics Data System (ADS)

    Savarino, Joël; Vicars, William C.; Legrand, Michel; Preunkert, Suzanne; Jourdain, Bruno; Frey, Markus M.; Kukui, Alexandre; Caillon, Nicolas; Gil Roca, Jaime

    2016-03-01

    Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO2 = NOx). The unique and distinctive 17O excess (Δ17O = δ17O - 0.52 × δ18O) of ozone, which is transferred to NOx via oxidation, is a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O excess within the NOx cycle is critical in polar areas, where there exists the possibility of extending atmospheric investigations to the glacial-interglacial timescale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic Plateau) during the austral summer of 2011/2012. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NOx, O3, OH, HO2, RO2, etc.) and direct observations of the transferrable Δ17O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO2 pathway and using concurrent measurements of OH and NO2, we calculated a Δ17O signature for nitrate on the order of (21-22 ± 3) ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ17O(NO3-) values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this East Antarctic region. However, systematic errors or false isotopic balance transfer functions are not totally excluded.

  13. Nitrate

    Integrated Risk Information System (IRIS)

    Nitrate ; CASRN 14797 - 55 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  14. Nitrate Effects on Nodule Oxygen Permeability and Leghemoglobin (Nodule Oximetry and Computer Modeling).

    PubMed Central

    Denison, R. F.; Harter, B. L.

    1995-01-01

    Two current hypotheses to explain nitrate inhibition of nodule function both involve decreased O2 supply for respiration in support of N2 fixation. This decrease could result from either (a) decreased O2 permeability (PO) of the nodule cortex, or (b) conversion of leghemoglobin (Lb) to an inactive, nitrosyl form. These hypotheses were tested using alfalfa (Medicago sativa L. cv Weevlchek) and birdsfoot trefoil (Lotus corniculatus L. cv Fergus) plants grown in growth pouches under controlled conditions. Nodulated roots were exposed to 10 mM KNO3 or KCI. Fractional oxygenation of Lb under air (FOLair), relative concentration of functional Lb, apparent PO, and O2-saturated central zone respiration rate were all monitored by nodule oximetry. Apparent PO and FOLair in nitrate-treated nodules decreased to <50% of values for KCI controls within 24 h, but there was no decrease in functional Lb concentration during the first 72 h. In nitrate-treated alfalfa, but not in birdsfoot trefoil, FOLair, apparent PO, and O2-saturated central zone respiration rate decreased during each light period and recovered somewhat during the subsequent dark period. This species difference could be explained by greater reliance on photoreduction of nitrate in alfalfa than in birdsfoot trefoil. Computer simulations extended the experimental results, showing that previously reported decreases in apparent PO of Glycine max nodules with nitrate exposure cannot be explained by hypothetical decreases in the concentration or O2 affinity of Lb. PMID:12228439

  15. Stable Nitrogen and Oxygen Isotope Analysis of Nitrate using Denitrifying Bacteria

    NASA Astrophysics Data System (ADS)

    Edenburn, L.; Michalski, G. M.

    2009-12-01

    tube into both O2 and N2 using techniques adapted from Cascotti and Kaiser. Our instrument utilizes an extended 11-cup multi-collector feature which does not require a peak jump during analysis on the continuous flow IRMS. Although this is not the first method to study independent measurements of δ18O, δ17O, δ15N, or Δ17O, this is first technique that simultaneously detects the stable isotope composition of oxygen and nitrogen in a given nitrate sample. Tests of the impact on isotopic composition by pre-concentration methods have been performed including freeze-drying/evaporation, column chromatography and ion chromatography.

  16. Tracking sources of unsaturated zone and groundwater nitrate contamination using nitrogen and oxygen stable isotopes at the Hanford Site, WA.

    SciTech Connect

    Singleton, Michael J.; Woods, Katharine N.; Conrad, Mark E.; DePaolo, Donald J.; Dresel, P Evan

    2005-04-15

    The nitrogen and oxygen isotopic compositions of nitrate in pore water extracts from unsaturated zone core samples and groundwater samples indicate at least four potential sources of nitrate plumes in groundwaters at the USDOE Hanford Site in south-central Washington.

  17. Tracing the Impact of Aviation on the Atmospheric Nitrate With Oxygen Triple Isotopes

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Jackson, T. L.; Chan, S.; Hill, A.; Chakraborty, S.; Thiemens, M. H.

    2014-12-01

    The aviation industry is responsible for ~ 5% of anthropogenic climate change. Jet emission affects ~ in 25 mile radii from airports produce fine particles and concomitant pulmonary and cardio-vascular diseases. These unregulated emissions are of particular concerns for the health of local residents and environment in general due to rapid increase in worldwide air travel in 21st century. The accurate measurement of emissions from airports therefore requires development of new tools that quantification of aviation related emissions against other road traffic and hence to assess its local and global impacts and provide deeper understanding of nitrate in the environment in general, including the stratosphere where contrails are inadequately detailed Triple oxygen isotopic analysis of particulate nitrate from a DC 8 engine during a controlled experiment in Palmdale, CA documented the emission of nitric acid (~31 ng.m-3) at ~ 1m. The oxygen triple isotopic composition of nitrate emitted directly from the jet had δ18O values (22±1‰) identical to air O2 (δ18O = 23.5‰) with a mass dependent isotopic signature (Δ17O = 0), thus providing a unique isotopic signature of jet nitrate. A year long sampling campaign at one of the world's busiest airports, the Los Angeles International airport showed the contribution of NO3 varies from 60 to 90% in summer and winter with variations largely attributed to the change in road traffic as air traffic remains fairly constant throughout the year at LAX. The next step in this is to detect these contributions at distal sites and use this as a signal carrier of atmospheric nitrate and its transport in general in the global biogeochemical system. These aspects will be discussed in the presentation.

  18. CONTROLLED FIELD STUDY ON THE USE OF NITRATE AND OXYGEN FOR BIOREMEDIATION OF A GASOLINE SOURCE ZONE

    EPA Science Inventory

    Controlled releases of unleaded gasoline were used to evaluate the biotransformation of the soluble aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene isomers, trimethylbenzene isomers, and naphthalene) within a source zone using nitrate and oxygen as electron accepto...

  19. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    PubMed

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  20. Using Nitrogen and Oxygen Isotope Compositions of Nitrate to Distinguish Contaminant Sources in Hanford Soil and Groundwater

    SciTech Connect

    Conrad, Mark; Bill, Markus

    2008-08-01

    The nitrogen ({delta}{sup 15}N) and oxygen ({delta}{sup 18}O) isotopic compositions of nitrate in the environment are primarily a function of the source of the nitrate. The ranges of isotopic compositions for nitrate resulting from common sources are outlined in Figure 1 from Kendall (1998). As noted on Figure 1, processes such as microbial metabolism can modify the isotopic compositions of the nitrate, but the effects of these processes are generally predictable. At Hanford, nitrate and other nitrogenous compounds were significant components of most of the chemical processes used at the site. Most of the oxygen in nitrate chemicals (e.g., nitric acid) is derived from atmospheric oxygen, giving it a significantly higher {delta}{sup 18}O value (+23.5{per_thousand}) than naturally occurring nitrate that obtains most of its oxygen from water (the {delta}{sup 18}O of Hanford groundwater ranges from -14{per_thousand} to -18{per_thousand}). This makes it possible to differentiate nitrate from Hanford site activities from background nitrate at the site (including most fertilizers that might have been used prior to the Department of Energy plutonium production activities at the site). In addition, the extreme thermal and chemical conditions that occurred during some of the waste processing procedures and subsequent waste storage in select single-shell tanks resulted in unique nitrate isotopic compositions that can be used to identify those waste streams in soil and groundwater at the site (Singleton et al., 2005; Christensen et al., 2007). This report presents nitrate isotope data for soil and groundwater samples from the Hanford 200 Areas and discusses the implications of that data for potential sources of groundwater contamination.

  1. Kinetics of nitrate and sulfate removal using a mixed microbial culture with or without limited-oxygen fed.

    PubMed

    Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Guo, Hong-Liang; Yuan, Ye; Lee, Duu-Jong; Ren, Nan-Qi

    2014-07-01

    The biological degradation of nitrate and sulfate was investigated using a mixed microbial culture and lactate as the carbon source, with or without limited-oxygen fed. It was found that sulfate reduction was slightly inhibited by nitrate, since after nitrate depletion the sulfate reduction rate increased from 0.37 mg SO4 (2-)/mg VSS d to 0.71 mg SO4 (2-)/mg VSS d, and the maximum rate of sulfate reduction in the presence of nitrate corresponded to 56 % of the non-inhibited sulfate reduction rate determined after nitrate depleted. However, simultaneous but not sequential reduction of both oxy-anions was observed in this study, unlike some literature reports in which sulfate reduction starts only after depletion of nitrate, and this case might be due to the fact that lactate was always kept above the limiting conditions. At limited oxygen, the inhibited effect on sulfate reduction by nitrate was relieved, and the sulfate reduction rate seemed relatively higher than that obtained without limited-oxygen fed, whereas kept almost constant (0.86-0.89 mg SO4 (2-)/mg VSS d) cross the six ROS states. In contrast, nitrate reduction rates decreased substantially with the increase in the initial limited-oxygen fed, showing an inhibited effect on nitrate reduction by oxygen. Kinetic parameters determined for the mixed microbial culture showed that the maximum specific sulfate utilization rate obtained (0.098 ± 0.022 mg SO4 (2-)/(mg VSS h)) was similar to the reported typical value (0.1 mg SO4 (2-)/(mg VSS h)), also indicating a moderate inhibited effect by nitrate.

  2. Nitrate transport and its regulation by O2 in Pseudomonas aeruginosa.

    PubMed

    Hernandez, D; Dias, F M; Rowe, J J

    1991-04-01

    Pseudomonas aeruginosa is an obligate respirer which can utilize nitrate as a terminal electron acceptor under anaerobic conditions (denitrification). Immediate, transient regulation of nitrate respiration is mediated by oxygen through the inhibition of nitrate uptake. In order to gain an understanding of the bioenergetics of nitrate transport and its regulation by oxygen, the effects of various metabolic inhibitors on the uptake process and on oxygen regulation were investigated. Nitrate uptake was stimulated by the protonophores carbonyl cyanide m-chlorophenylhydrazone and 2,4-dinitrophenol, indicating that nitrate uptake is not strictly energized by, but may be affected by the proton motive force. Oxygen regulation of nitrate uptake might in part be through redox-sensitive thiol groups since N-ethylmaleimide at high concentrations decreased the rate of nitrate transport. Cells grown with tungstate (deficient in nitrate reductase activity) and azide-treated cells transported nitrate at significantly lower rates than untreated cells, indicating that physiological rates of nitrate transport are dependent on nitrate reduction. Furthermore, tungstate grown cells transported nitrate only in the presence of nitrite, lending support to the nitrate/nitrite antiport model for transport. Oxygen regulation of nitrate transport was relieved (10% that of typical anaerobic rates) by the cytochrome oxygen reductase inhibitors carbon monoxide and cyanide. PMID:1910283

  3. Tracking sources of unsaturated zone and groundwater nitrate contamination using nitrogen and oxygen stable isotopes at the Hanford site, Washington.

    PubMed

    Singleton, Michael J; Woods, Katharine N; Conrad, Mark E; Depaolo, Donald J; Dresel, P Evan

    2005-05-15

    The nitrogen and oxygen isotopic compositions of nitrate in pore water extracts from unsaturated zone (UZ) core samples and groundwater samples indicate at least four potential sources of nitrate in groundwaters at the U.S. DOE Hanford Site in south-central Washington. Natural sources of nitrate identified include microbially produced nitrate from the soil column (delta15N of 4 - 8 per thousand, delta18O of -9 to 2 per thousand) and nitrate in buried caliche layers (delta15N of 0-8 per thousand, delta 18O of -6to 42 per thousand). Isotopically distinctindustrial sources of nitrate include nitric acid in low-level disposal waters (delta15N approximately per thousand, delta 18O approximately 23%o) per thousandnd co-contaminant nitrate in high-level radioactive waste from plutonium processing (6'5delta1of 8-33 % o, per thousand18delta oO -9 to 7%0). per thousandThe isotopic compositions of nitrate from 97 groundwater wells with concentrations up to 1290 mg/L NO3- have been analyzed. Stable isotope analyses from this study site, which has natural and industrial nitrate sources, provide a tool to distinguish nitrate sources in an unconfined aquiferwhere concentrations alone do not. These data indicate that the most common sources of high nitrate concentrations in groundwater at Hanford are nitric acid and natural nitrate flushed out of the UZ during disposal of low-level wastewater. Nitrate associated with high-level radioactive UZ contamination does not appear to be a major source of groundwater nitrate at this time.

  4. Nitrogen Isotope Tracing of Eutrophication Sources on a Watershed Scale: Nitrogen and Oxygen Isotopes of Nitrate

    NASA Astrophysics Data System (ADS)

    Showers, W. J.; Genna, B.; Karr, J.

    2001-05-01

    Nitrate contamination of shallow aquifers and surface waters associated with agricultural activities has become a major concern in river basins, like the Neuse, where significant agricultural land use is coupled with growing numbers of intensive animal operations (ILO's). The development of effective management practices to preserve water quality, or remediation strategies for basins already polluted requires source identification. The stable isotopes of nitrogen and oxygen in nitrate has been used as tracers to evaluate nitrogen sources on small scales, such as agricultural fields, or small watersheds with one dominate land use. This discrimination is possible because of the large fractionation associated with the volatilization of ammonia from animal wastes. Using stable isotopes on larger scales to evaluate nutrient sources is complicated by multiple sources, overlapping point and non-point sources, and co-existing biogeochemical processes that alter nitrate concentrations. To evaluate the potential of stable isotopes to determine the character of nutrient fluxes on larger scales, the isotopic/discharge relationship was examined for a watershed with little agricultural activity, an urban watershed, a watershed with mixed urban and agricultural land use, a watershed dominated by swine ILO's, and a watershed dominated by poultry ILO's. The watershed with little agricultural activity and the poultry watershed have similar isotope/discharge relationships with isotopic values at natural background levels and no change in concentration or isotopic composition in different discharge states. The urban watershed is dominated by point source isotopic values at all flow levels, the mixed urban and agricultural watershed is dominated by point source values during low flow conditions, and fertilizer non-point source values during high flow conditions. In this watershed nutrient concentrations also increase during low flow conditions. The swine watershed is dominated by

  5. Control of nitratation in an oxygen-limited autotrophic nitrification/denitrification rotating biological contactor through disc immersion level variation.

    PubMed

    Courtens, Emilie N P; Boon, Nico; De Clippeleir, Haydée; Berckmoes, Karla; Mosquera, Mariela; Seuntjens, Dries; Vlaeminck, Siegfried E

    2014-03-01

    With oxygen supply playing a crucial role in an oxygen-limited autotrophic nitrification/denitrification (OLAND) rotating biological contactor (RBC), its controlling factors were investigated in this study. Disc rotation speeds (1.8 and 3.6rpm) showed no influence on the process performance of a lab-scale RBC, although abiotic experiments showed a significant effect on the oxygenation capacity. Estimations of the biological oxygen uptake rate revealed that 85-89% of the oxygen was absorbed by the microorganisms during the air exposure of the discs. Indeed, increasing the disc immersion (50 to 75-80%) could significantly suppress undesired nitratation, on the short and long term. The presented results demonstrated that nitratation could be controlled by the immersion level and revealed that oxygen control in an OLAND RBC should be predominantly based on the atmospheric exposure percentage of the discs.

  6. Reactive oxygen species and the bacteriostatic and bactericidal effects of isoconazole nitrate.

    PubMed

    Czaika, Viktor A; Siebenbrock, Jan; Czekalla, Frank; Zuberbier, Torsten; Sieber, Martin A

    2013-05-01

    Bacterial superinfections often occur in dermatomycoses, resulting in greatly inflamed or eczematous skin. The objective of this study was to evaluate the antibacterial efficacy of isoconazole nitrate (ISN), a broad-spectrum antimicrobial imidazole, commonly used to treat dermatomycoses. Several gram-positive bacteria minimal inhibitory concentrations (MICs) for ISN (ISN solution or ISN-containing creams: Travogen or corticosteroid-containing Travocort) and ampicillin were obtained using the broth-dilution method. Speed of onset of the bactericidal effect was determined with bacterial killing curves. Reactive oxygen species (ROS) were visualised by staining cells with singlet oxygen detector stain. Compared with ampicillin MICs, ISN MICs for Bacillus cereus, Staphylococcus haemolyticus and Staphylococcus hominis were lower and ISN MICs for Corynebacterium tuberculostearicum and Streptococcus salivarius were similar. Incubation with ISN led to a 50% kill rate for Staphylococcus aureus and methicillin-resistant strains (MRSA). Post-ISN incubation, 36% (30 min) and 90% (60 min) of S. aureus cells were positive for ROS. Isoconazole nitrate has a broad bacteriostatic and bactericidal action, also against a MRSA strain that was not reduced by the corticosteroid in the Travocort cream. Data suggest that the antibacterial effect of ISN may be ROS dependent. An antifungal agent with robust antibacterial activity can provide a therapeutic advantage in treating dermatomycoses with suspected bacterial superinfections.

  7. Methane, oxygen and nitrate fluxes in sediments hosting shallow gas hydrates at Hydrate Ridge

    NASA Astrophysics Data System (ADS)

    Sommer, S.; Pfannkuche, O.; Linke, P.; Gubsch, S.; Gust, G.; Greinert, J.; Drews, M.

    2003-04-01

    It is generally recognised that destabilisation of gas hydrates (GH) and the resulting release of methane may be one of the most powerful trigger mechanism on past abrupt climatic changes of the earth. However, information about turnover and fluxes of methane derived from marine hydrate deposits is still fragmentary. We employed a novel observatory to determine methane, oxygen and nitrate fluxes situ in water depths of 605 - 883 m at Hydrate Ridge, Cascadia convergent margin. Widespread bacterial mats of Beggiatoa sp. indicate presence of shallow GH located only a few centimetres below the sediment surface. When GH became buried deeper in the sediment, bivalve molluscs of the genus Calyptogena sp. form dense clam fields. Background measurements were conducted at sites not affected by shallow GH a few hundreds of meters away from the microbial mats and clam fields. During the employments, which lasted up to 36 h, measurements were conducted simultaneously in two benthic chambers. To avoid anoxia within one of the chambers, hitherto referred to as exchange chamber, total oxygen uptake (TOU) of the enclosed sediment community was artificially compensated. In the second chamber termed control chamber no oxygen supply took place. To account for effects of water flow on interfacial fluxes ambient water flow was replicated inside either chamber. At reference sites no injection of methane from the sediment into the water column was detected. TOU was low (1.5 mmol/m^2/d). At microbial mat sites TOU was extremely fast. In the control chambers oxygen was used up within less than 20 min, thus reliable calculations of TOU were not possible. Nitrate became almost depleted within 24 h. In the exchange chamber oxygen content was kept at the outside level, TOU of up to 53.4 mmol/m^2/d were measured. Methane efflux in the exchange chamber ranged from 0.5 to 0.8 mmol/m^2/d compared to methane fluxes of 1.9 to 10.1 mmol/m^2/d determined in control chambers. In an exchange chamber

  8. Enrichment and identification of biosurfactant-producing oil field microbiota utilizing electron acceptors other than oxygen and nitrate.

    PubMed

    Kryachko, Yuriy; Semler, Diana; Vogrinetz, John; Lemke, Markus; Links, Matthew G; McCarthy, E Luke; Haug, Brenda; Hemmingsen, Sean M

    2016-08-10

    Microorganisms indigenous to an oil reservoir were grown in media containing either sucrose or proteins in four steel vessels under anoxic conditions at 30°C and 8.3MPa for 30days, to enrich biosurfactant producers. Fermentation of substrate was possible in the protein-containing medium and either fermentation or respiration through reduction of sulfate occurred in the sucrose-containing medium. Growth of microorganisms led to 3.4-5.4-fold surface tension reduction indicating production of biosurfactants in amounts sufficient for enhancement of gas-driven oil recovery. Analysis of sequenced cpn60 amplicons showed that Pseudomonas sp. highly similar to biosurfactant producing P. fluorescens and to Pseudomonas sp. strain TKP predominated, and a bacterium highly similar to biosurfactant producing Bacillus mojavensis was present in vessels. Analysis of 16S rDNA amplicons allowed only genus-level identification of these bacteria. Thus, cpn60-amplicon analysis was a more relevant tool for identification of putative biosurfactant producers than 16S rDNA-amplicon analysis.

  9. Exposure and size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons among the population using different household fuels.

    PubMed

    Shen, Guofeng; Chen, Yuanchen; Du, Wei; Lin, Nan; Wang, Xilong; Cheng, Hefa; Liu, Junfeng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) derivatives like nitrated and oxygenated PAHs are of growing concerns because of considerably higher toxicity and important roles during atmospheric chemical reactions. Residential solid fuel combustion is likely to be one large primary source of these pollutants in developing countries. In this study, inhalation exposure to nitrated and oxygenated PAH derivatives was evaluated among rural residents using carried samplers. The exposure levels of individual nitrated PAHs ranged from 4.04 (9-nitrated phenanthrene) to 89.8 (9-nitrated anthracene) pg/m(3), and of oxy-PAHs were 0.570 (benzo[a]anthracene-7, 12-dione) to 7.99 (Benzanthrone) ng/m(3), generally higher in wood user than that in anthracite user. A majority of derivatives in particle presented in PM2.5 (80% for nitrated naphthalene and over 90% for other targets) and even fine PM1.0. Mass fractions of PAH derivatives in fine and ultra-fine particles were significantly higher than the fractions of corresponding parent PAHs, indicating more adverse health outcomes induced by these derivatives. The inhalation exposure levels for residents adopting wood gasifier burners was significantly lower than the documented results for those burning wood in typical built-in brick stoves, and comparable to those using LPG and electricity, which provided vital information for clean stove development and intervention programs. PMID:27400906

  10. Comment on Egami's concept of the evolution of nitrate respiration

    NASA Technical Reports Server (NTRS)

    Rambler, M.; Margulis, L.

    1976-01-01

    Recent results suggest that the presence of common nitrogen salts (sodium nitrite and nitrate) in the irradiation medium can markedly protect filamentous blue-green algae from potentially lethal ultraviolet irradiation. The present results as well as general biological arguments of Egami support and extend Egami's original view that anaerobic respiratory pathways using nitrite and nitrate as terminal electron acceptors evolved prior to oxygen requiring aerobic respiratory pathways.

  11. Reduction of electron accumulation at InN(0001) surfaces via saturation of surface states by potassium and oxygen as donor- or acceptor-type adsorbates

    SciTech Connect

    Eisenhardt, A.; Reiß, S.; Krischok, S. Himmerlich, M.

    2014-01-28

    The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearance of surface states, which initially pin the Fermi level and induce downward band bending.

  12. Dissolved oxygen imaging in a porous medium to investigate biodegradation in a plume with limited electron acceptor supply.

    PubMed

    Huang, Wei E; Oswald, Sascha E; Lerner, David N; Smith, Colin C; Zheng, Chunmiao

    2003-05-01

    A novel combination of noninvasive imaging with an oxygen sensitive fluorescent indicator was developed to investigate the biodegradation processes occurring at the fringe of a solute plume, where the supply of oxygen was limited. A thin transparent porous matrix (156 x 120 x 3 mm) was made from quartz plates and quartz sand (212-300 microm) and enriched with acetate-degrading bacteria. A degrading plume developed from a continuous acetate source in the uniform flow field containing dissolved oxygen. Ruthenium (II)-dichlorotris(1,10-phenanthroline) (Ru(phen)3Cl2), a water-soluble fluorescent dye, was used as an indicator of dissolved oxygen. The fluorescence intensity was dependent on the concentration of oxygen because the dissolved oxygen acted as collisional quencher. The oxygen distribution was interpreted from images recorded by a CCD camera. These two-dimensional experimental results showed quantitatively how the oxygen concentrations decreased strongly at the narrow plume fringe and that oxygen was depleted at the core of the plume. Separately, dispersivity was measured in a series of nonreactive transport experiments, and biodegradation parameters were evaluated by batch experiments. Two-dimensional numerical simulations with MT3D/RT3D used these parameters, and the predicted oxygen distributions were compared with the experimental results. This measurement method provides a novel approach to investigate details of solute transport and biodegradation in porous media.

  13. Oxygen-Dependent Control of Respiratory Nitrate Reduction in Mycelium of Streptomyces coelicolor A3(2)

    PubMed Central

    Fischer, Marco; Falke, Dörte; Pawlik, Tony

    2014-01-01

    Several members of the obligately aerobic genus Streptomyces are able to reduce nitrate, catalyzed by Nar-type respiratory nitrate reductases. A unique feature of Streptomyces coelicolor A3(2) compared with other streptomycetes is that it synthesizes three nonredundant Nar enzymes. In this study, we show that Nar2 is the main Nar enzyme active in mycelium and could characterize the conditions governing its synthesis. Nar2 was present at low levels in aerobically cultivated mycelium, but synthesis was induced when cultures were grown under oxygen limitation. Growth in the presence of high oxygen concentrations prevented the induction of Nar2 synthesis. Equally, an abrupt shift from aerobiosis to anaerobiosis did not result in the immediate induction of Nar2 synthesis. This suggests that the synthesis of Nar2 is induced during a hypoxic downshift, probably to allow maintenance of a proton gradient during the transition to anaerobiosis. Although no Nar2 could be detected in freshly harvested mature spores, synthesis of the enzyme could be induced after long-term (several days) incubation of these resting spores under anaerobic conditions. Induction of Nar2 synthesis in spores was linked to transcriptional control. Nar2 activity in whole mycelium was strictly dependent on the presence of a putative nitrate transporter, NarK2. The oxygen-dependent inhibition of nitrate reduction by Nar2 was mediated by NarK2-dependent nitrate:nitrite antiport. This antiport mechanism likely prevents the accumulation of toxic nitrite in the cytoplasm. A deletion of the narK2 gene had no effect on Nar1-dependent nitrate reduction in resting spores. Together, our results indicate redox-dependent transcriptional and posttranslational control of nitrate reduction by Nar2. PMID:25225271

  14. Transcriptional Analysis of Shewanella oneidensis MR-1 with an Electrode Compared to Fe(III)Citrate or Oxygen as Terminal Electron Acceptor

    PubMed Central

    Rosenbaum, Miriam A.; Bar, Haim Y.; Beg, Qasim K.; Segrè, Daniel; Booth, James; Cotta, Michael A.; Angenent, Largus T.

    2012-01-01

    Shewanella oneidensis is a target of extensive research in the fields of bioelectrochemical systems and bioremediation because of its versatile metabolic capabilities, especially with regard to respiration with extracellular electron acceptors. The physiological activity of S. oneidensis to respire at electrodes is of great interest, but the growth conditions in thin-layer biofilms make physiological analyses experimentally challenging. Here, we took a global approach to evaluate physiological activity with an electrode as terminal electron acceptor for the generation of electric current. We performed expression analysis with DNA microarrays to compare the overall gene expression with an electrode to that with soluble iron(III) or oxygen as the electron acceptor and applied new hierarchical model-based statistics for the differential expression analysis. We confirmed the differential expression of many genes that have previously been reported to be involved in electrode respiration, such as the entire mtr operon. We also formulate hypotheses on other possible gene involvements in electrode respiration, for example, a role of ScyA in inter-protein electron transfer and a regulatory role of the cbb3-type cytochrome c oxidase under anaerobic conditions. Further, we hypothesize that electrode respiration imposes a significant stress on S. oneidensis, resulting in higher energetic costs for electrode respiration than for soluble iron(III) respiration, which fosters a higher metabolic turnover to cover energy needs. Our hypotheses now require experimental verification, but this expression analysis provides a fundamental platform for further studies into the molecular mechanisms of S. oneidensis electron transfer and the physiologically special situation of growth on a poised-potential surface. PMID:22319591

  15. Intracellular Isotope Localization in Ammonia sp. (Foraminifera) of Oxygen-Depleted Environments: Results of Nitrate and Sulfate Labeling Experiments

    PubMed Central

    Nomaki, Hidetaka; Bernhard, Joan M.; Ishida, Akizumi; Tsuchiya, Masashi; Uematsu, Katsuyuki; Tame, Akihiro; Kitahashi, Tomo; Takahata, Naoto; Sano, Yuji; Toyofuku, Takashi

    2016-01-01

    Some benthic foraminiferal species are reportedly capable of nitrate storage and denitrification, however, little is known about nitrate incorporation and subsequent utilization of nitrate within their cell. In this study, we investigated where and how much 15N or 34S were assimilated into foraminiferal cells or possible endobionts after incubation with isotopically labeled nitrate and sulfate in dysoxic or anoxic conditions. After 2 weeks of incubation, foraminiferal specimens were fixed and prepared for Transmission Electron Microscopy (TEM) and correlative nanometer-scale secondary ion mass spectrometry (NanoSIMS) analyses. TEM observations revealed that there were characteristic ultrastructural features typically near the cell periphery in the youngest two or three chambers of the foraminifera exposed to anoxic conditions. These structures, which are electron dense and ~200–500 nm in diameter and co-occurred with possible endobionts, were labeled with 15N originated from 15N-labeled nitrate under anoxia and were labeled with both 15N and 34S under dysoxia. The labeling with 15N was more apparent in specimens from the dysoxic incubation, suggesting higher foraminiferal activity or increased availability of the label during exposure to oxygen depletion than to anoxia. Our results suggest that the electron dense bodies in Ammonia sp. play a significant role in nitrate incorporation and/or subsequent nitrogen assimilation during exposure to dysoxic to anoxic conditions. PMID:26925038

  16. Intracellular Isotope Localization in Ammonia sp. (Foraminifera) of Oxygen-Depleted Environments: Results of Nitrate and Sulfate Labeling Experiments.

    PubMed

    Nomaki, Hidetaka; Bernhard, Joan M; Ishida, Akizumi; Tsuchiya, Masashi; Uematsu, Katsuyuki; Tame, Akihiro; Kitahashi, Tomo; Takahata, Naoto; Sano, Yuji; Toyofuku, Takashi

    2016-01-01

    Some benthic foraminiferal species are reportedly capable of nitrate storage and denitrification, however, little is known about nitrate incorporation and subsequent utilization of nitrate within their cell. In this study, we investigated where and how much (15)N or (34)S were assimilated into foraminiferal cells or possible endobionts after incubation with isotopically labeled nitrate and sulfate in dysoxic or anoxic conditions. After 2 weeks of incubation, foraminiferal specimens were fixed and prepared for Transmission Electron Microscopy (TEM) and correlative nanometer-scale secondary ion mass spectrometry (NanoSIMS) analyses. TEM observations revealed that there were characteristic ultrastructural features typically near the cell periphery in the youngest two or three chambers of the foraminifera exposed to anoxic conditions. These structures, which are electron dense and ~200-500 nm in diameter and co-occurred with possible endobionts, were labeled with (15)N originated from (15)N-labeled nitrate under anoxia and were labeled with both (15)N and (34)S under dysoxia. The labeling with (15)N was more apparent in specimens from the dysoxic incubation, suggesting higher foraminiferal activity or increased availability of the label during exposure to oxygen depletion than to anoxia. Our results suggest that the electron dense bodies in Ammonia sp. play a significant role in nitrate incorporation and/or subsequent nitrogen assimilation during exposure to dysoxic to anoxic conditions. PMID:26925038

  17. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios

    USGS Publications Warehouse

    Silva, S.R.; Kendall, C.; Wilkison, D.H.; Ziegler, A.C.; Chang, Cecily C.Y.; Avanzino, R.J.

    2000-01-01

    A new method for concentrating nitrate from fresh waters for ??15N and ??18O analysis has been developed and field-tested for four years. The benefits of the method are: (1) elimination of the need to transport large volumes of water to the laboratory for processing; (2) elimination of the need for hazardous preservatives; and (3) the ability to concentrate nitrate from fresh waters. Nitrate is collected by, passing the water-sample through pre-filled, disposable, anion exchanging resin columns in the field. The columns are subsequently transported to the laboratory where the nitrate is extracted, converted to AgNO3 and analyzed for its isotope composition. Nitrate is eluted from the anion exchange columns with 15 ml of 3 M HCl. The nitrate-bearing acid eluant is neutralized with Ag2O, filtered to remove the AgCl precipitate, then freeze-dried to obtain solid AgNO3, which is then combusted to N2 in sealed quartz tubes for ?? 15N analysis. For ?? 18O analysis, aliquots of the neutralized eluant are processed further to remove non-nitrate oxygen-bearing anions and dissolved organic matter. Barium chloride is added to precipitate sulfate and phosphate; the solution is then filtered, passed through a cation exchange column to remove excess Ba2+, re-neutralized with Ag2O, filtered, agitated with activated carbon to remove dissolved organic matter and freeze-dried. The resulting AgNO3 is combusted with graphite in a closed tube to produce CO2, which is cryogenically purified and analyzed for its oxygen isotope composition. The 1?? analytical precisions for ??15N and ??18O are ?? 0.05%o and ??0.5???, respectively, for solutions of KNO3 standard processed through the entire column procedure. High concentrations of anions in solution can interfere with nitrate adsorption on the anion exchange resins, which may result in isotope fractionation of nitrogen and oxygen (fractionation experiments were conducted for nitrogen only; however, fractionation for oxygen is expected

  18. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Wilkison, D. H.; Ziegler, A. C.; Chang, C. C. Y.; Avanzino, R. J.

    2000-02-01

    A new method for concentrating nitrate from fresh waters for δ15N and δ18O analysis has been developed and field-tested for four years. The benefits of the method are: (1) elimination of the need to transport large volumes of water to the laboratory for processing; (2) elimination of the need for hazardous preservatives; and (3) the ability to concentrate nitrate from fresh waters. Nitrate is collected by, passing the water-sample through pre-filled, disposable, anion exchanging resin columns in the field. The columns are subsequently transported to the laboratory where the nitrate is extracted, converted to AgNO 3 and analyzed for its isotope composition. Nitrate is eluted from the anion exchange columns with 15 ml of 3 M HCl. The nitrate-bearing acid eluant is neutralized with Ag 2O, filtered to remove the AgCl precipitate, then freeze-dried to obtain solid AgNO 3, which is then combusted to N 2 in sealed quartz tubes for δ15N analysis. For δ18O analysis, aliquots of the neutralized eluant are processed further to remove non-nitrate oxygen-bearing anions and dissolved organic matter. Barium chloride is added to precipitate sulfate and phosphate; the solution is then filtered, passed through a cation exchange column to remove excess Ba 2+, re-neutralized with Ag 2O, filtered, agitated with activated carbon to remove dissolved organic matter and freeze-dried. The resulting AgNO 3 is combusted with graphite in a closed tube to produce CO 2, which is cryogenically purified and analyzed for its oxygen isotope composition. The 1 σ analytical precisions for δ15N and δ18O are ±0.05‰ and ±0.5‰, respectively, for solutions of KNO 3 standard processed through the entire column procedure. High concentrations of anions in solution can interfere with nitrate adsorption on the anion exchange resins, which may result in isotope fractionation of nitrogen and oxygen (fractionation experiments were conducted for nitrogen only; however, fractionation for oxygen is

  19. Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes

    NASA Astrophysics Data System (ADS)

    Sommer, S.; Gier, J.; Treude, T.; Lomnitz, U.; Dengler, M.; Cardich, J.; Dale, A. W.

    2016-06-01

    Oxygen minimum zones (OMZ) are key regions for fixed nitrogen loss in both the sediments and the water column. During this study, the benthic contribution to N cycling was investigated at ten sites along a depth transect (74-989 m) across the Peruvian OMZ at 12°S. O2 levels were below detection limit down to ~500 m. Benthic fluxes of N2, NO3-, NO2-, NH4+, H2S and O2 were measured using benthic landers. Flux measurements on the shelf were made under extreme geochemical conditions consisting of a lack of O2, NO3- and NO2- in the bottom water and elevated seafloor sulphide release. These particular conditions were associated with a large imbalance in the benthic nitrogen cycle. The sediments on the shelf were densely covered by filamentous sulphur bacteria Thioploca, and were identified as major recycling sites for DIN releasing high amounts of NH4+up to 21.2 mmol m-2 d-1 that were far in excess of NH4+ release by ammonification. This difference was attributed to dissimilatory nitrate (or nitrite) reduction to ammonium (DNRA) that was partly being sustained by NO3- stored within the sulphur oxidizing bacteria. Sediments within the core of the OMZ (ca. 200-400 m) also displayed an excess flux of N of 3.5 mmol m-2 d-1 mainly as N2. Benthic nitrogen and sulphur cycling in the Peruvian OMZ appears to be particularly susceptible to bottom water fluctuations in O2, NO3- and NO2-, and may accelerate the onset of pelagic euxinia when NO3- and NO2- become depleted.

  20. Nitrogen cycling in shallow low-oxygen coastal waters off Peru from nitrite and nitrate nitrogen and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Hu, Happy; Bourbonnais, Annie; Larkum, Jennifer; Bange, Hermann W.; Altabet, Mark A.

    2016-03-01

    O2 deficient zones (ODZs) of the world's oceans are important locations for microbial dissimilatory nitrate (NO3-) reduction and subsequent loss of combined nitrogen (N) to biogenic N2 gas. ODZs are generally coupled to regions of high productivity leading to high rates of N-loss as found in the coastal upwelling region off Peru. Stable N and O isotope ratios can be used as natural tracers of ODZ N-cycling because of distinct kinetic isotope effects associated with microbially mediated N-cycle transformations. Here we present NO3- and nitrite (NO2-) stable isotope data from the nearshore upwelling region off Callao, Peru. Subsurface oxygen was generally depleted below about 30 m depth with concentrations less than 10 µM, while NO2- concentrations were high, ranging from 6 to 10 µM, and NO3- was in places strongly depleted to near 0 µM. We observed for the first time a positive linear relationship between NO2-δ15N and δ18O at our coastal stations, analogous to that of NO3- N and O isotopes during NO3- uptake and dissimilatory reduction. This relationship is likely the result of rapid NO2- turnover due to higher organic matter flux in these coastal upwelling waters. No such relationship was observed at offshore stations where slower turnover of NO2- facilitates dominance of isotope exchange with water. We also evaluate the overall isotope fractionation effect for N-loss in this system using several approaches that vary in their underlying assumptions. While there are differences in apparent fractionation factor (ɛ) for N-loss as calculated from the δ15N of NO3-, dissolved inorganic N, or biogenic N2, values for ɛ are generally much lower than previously reported, reaching as low as 6.5 ‰. A possible explanation is the influence of sedimentary N-loss at our inshore stations which incurs highly suppressed isotope fractionation.

  1. Oxygen-17 anomaly in soil nitrate: A new precipitation proxy for desert landscapes

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Ge, Wensheng; Luo, Hao; Seo, Ji-Hye; Michalski, Greg

    2016-03-01

    The nitrogen cycle in desert soil ecosystems is particularly sensitive to changes in precipitation, even of relatively small magnitude and short duration, because it is already under water stress. This suggests that desert soils may have preserved past evidence of small variations in continental precipitation. We have measured nitrate (NO3-) concentrations in soils from the Atacama (Chile), Kumtag (China), Mojave (US), and Thar (India) deserts, and stable nitrogen and oxygen isotope (15N, 17O, and 18O) abundances of the soil NO3-. 17O anomalies (Δ17O), the deviations from the mass-independent isotopic fractionation, were detected in soil NO3- from almost all sites of these four deserts. There was a strong negative correlation between the mean annual precipitation (MAP) and soil NO3- Δ17O values (Δ 17O NO3 soil). This MAP- Δ 17O NO3 soil correlation advocated Δ 17O NO3 soil as a new precipitation proxy and was then used to assess precipitation changes in southwestern US at the Pliocene-Pleistocene boundary, in South America during the Miocene, and the Sahara Desert in the past 10 kyr using NO3- Δ17O in paleosols or ancient aquifers. Global and the US maps of surface Δ 17 O NO3 soil were also projected with available MAP datasets based on the MAP- Δ 17O NO3 soil 17 model.

  2. Tracing seasonal nitrate sources and loads in the San Joaquin River using nitrogen and oxygen stable isotopes

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S.; Stringfellow, W. T.; Dahlgren, R. A.

    2007-12-01

    The San Joaquin River (SJR) is a heavily impacted river draining a major agricultural basin in central California. This river receives nitrate inputs from multiple point and non-point sources including agriculture, livestock, waste water treatment plants, septic systems, urban run-off, and natural soil leaching. Nitrate inputs to the SJR may play a significant role in driving algal blooms and reducing overall water quality. The San Joaquin River discharges into the San Francisco Bay-Delta ecosystem, and reduced water quality and large algal blooms in the SJR may play a significant role in driving critically low oxygen levels in the Stockton Deep Water Shipping Channel. Correct identification of the major nitrate sources to the SJR is important for coordinating mitigation efforts throughout the SJR-Delta-San Francisco Bay region. Measurements of the nitrogen and oxygen isotopic composition of nitrate were made monthly to bimonthly from 2005 through 2007 within the Lower SJR, major tributaries, and various other water input sources in order to assess spatial and temporal variations in nitrate inputs and cycling in this heavily impacted watershed. The oxygen and hydrogen isotopic composition of water was also measured to better distinguish water sources and identify changes in water inputs. A very wide range of δ15N-NO3 and δ18O-NO3 values were observed in the main stem SJR and tributaries. The δ15N values ranged from +2 to +17 ‰, and the δ18O values ranged from -1 to +18 ‰. Except for a major agricultural drain site (San Luis Drain), all the sites showed temporal changes in both δ15N-NO3 and δ18O-NO3 much greater than the differences seen between individual sites. In general, the δ15N values of nitrate in the larger tributary rivers (Merced, Tuolumne and Stanislaus) were much lower than those of the main stem SJR from April to May; however, after June the tributary values began to rise toward the values in the main stem river. Some of the highest δ15N-NO3

  3. Effect of nitrate on microbial perchlorate reduction

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Coates, J. D.

    2007-12-01

    Over the last decade perchlorate has been recognized as an important emerging water contaminant that poses a significant public health threat. Because of its chemical stability, low ionic charge density, and significant water solubility microbial remediation has been identified as the most feasible method for its in situ attenuation. Our previous studies have demonstrated that dissimilatory perchlorate reducing bacteria (DPRB) capable of the respiratory reduction of perchlorate into innocuous chloride are ubiquitous in soil and sedimentary environments. As part of their metabolism these organisms reduce perchlorate to chlorite which is subsequently dismutated into chloride and molecular oxygen. These initial steps are mediated by the perchlorate reductase and chlorite dismutase enzymes respectively. Previously we found that the activity of these organisms is dependent on the presence of molybdenum and is inhibited by the presence of oxygen and to different extents nitrate. However, to date, there is little understanding of the mechanisms involved in the regulation of perchlorate reduction by oxygen and nitrate. As a continuation of our studies into the factors that control DPRB activity we investigated these regulatory mechanisms in more detail as a model organism, Dechloromonas aromatica strain RCB, transitions from aerobic metabolism through nitrate reduction to perchlorate reduction. In series of growth transition studies where both nitrate and perchlorate were present, preference for nitrate to perchlorate was observed regardless of the nitrate to perchlorate ratio. Even when the organism was pre-grown anaerobically in perchlorate, nitrate was reduced prior to perchlorate. Using non-growth washed cell suspension, perchlorate- grown D. aromatica was capable of reducing both perchlorate and nitrate concomitantly suggesting the preferentially utilization of nitrate was not a result of enzyme functionality. To elucidate the mechanism for preferential utilization of

  4. Coexistence of translocated cytochrome c and nitrated protein in neurons of the rat cerebral cortex after oxygen and glucose deprivation.

    PubMed

    Alonso, D; Encinas, J M; Uttenthal, L O; Boscá, L; Serrano, J; Fernández, A P; Castro-Blanco, S; Santacana, M; Bentura, M L; Richart, A; Fernández-Vizarra, P; Rodrigo, J

    2002-01-01

    Changes in the distribution of immunoreactive cytochrome c and protein nitration were studied in the rat cerebral cortex after oxygen and glucose deprivation by bright field, confocal and electron microscopy. In control cerebral cortex, nitrotyrosine immunoreactivity indicating protein nitration was found mostly in the neuronal nuclear region, with only a small amount distributed in the cytosol, whereas cytochrome c immunoreactivity was found at the inner membrane and in the intermembrane space of the mitochondria. During the recovery phase after oxygen and glucose deprivation, cytochrome c immunoreactivity was released from the intermembrane space of swollen mitochondria into the surrounding cytosol. The cytosol now also displayed nitrotyrosine immunoreactivity, which had diminished in the nuclear region. Both immunoreactivities were dispersed throughout the soma and processes of the cortical neurons. These changes were largely prevented by the administration of cyclosporin A, which inhibits both the mitochondrial permeability transition and the neuronal isoform of nitric oxide synthase while blocking the induction of the inducible isoform. Ischemia/reperfusion injury increases the production of nitric oxide, reactive oxygen species and intracellular factors that damage the mitochondria and liberate apoptotic factors. We suggest that translocation of cytochrome c from the mitochondria to the cytosol, which has been shown to precede the mitochondrial permeability transition, could result from peroxynitrite-mediated nitration. This phenomenon is attenuated by cyclosporin A administration, suggesting a neuroprotective role for this agent.

  5. Oxygen-evolving system and secondary quinonic acceptors are highly reduced in dark adapted Euglena cells: A thermoluminescence study.

    PubMed

    Farineau, J; Laval-Martin, D

    1992-06-01

    Characteristics of thermoluminescence glow curves were compared in three types of Euglena cells: (i) strictly autotrophic, Cramer and Myers cells; (ii) photoheterotrophic cells sampled from an exponentially growing culture containing lactate as substrate repressing the photosynthetic activity; (iii) semiautotrophic cells, sampled when the lactate being totally exhausted, the photosynthesis was enhanced.In autotrophic and semiautotrophic cells, composite curves were observed after series of two or more actinic flashes fired at -10°C, which can be deconvoluted into a large band peaking in the range 12-22°C and a smaller one near 40°C, This second band presents the characteristics of a typical B band (due to S2/3QB (-) recombination), whereas the first one resembled the band, shifted by -15-20°C, which is observed in herbicide resistant plants. The amplitude of this major band, which was in all cases very low after one flash, exhibited oscillations of period four but rapidly damping, with maxima after two and six flashes. In contrast, photoheterotrophic Euglena displayed single, non-oscillating curves with maxima in the range 5-10°C.In autotrophic and semiautotrophic cells, oxidizing pretreatments by either a preillumination with one or more (up to twenty-five) flashes, or a far-red preillumination in the presence of methylviologen, followed by a short dark period, induced thermoluminescence bands almost single and shifted by +3-5°C, or +12°C, respectively. In autotrophic cells, far-red light plus methyl viologen treatment induced a band peaking at 31°C, as in isolated thylakoids from Euglena or higher plants, while it had barely any effect in photoheterotrophic cells.Due to metabolic activities in dark-adapted cells, a reduction of redox groups at the donor and acceptor sides of PS II dark-adapted cells is supposed to occur. Two different explanations can be proposed to explain such a shift in the position of the main band in dark-adapted autotrophic control

  6. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives.

    PubMed

    Misaki, Kentaro; Takamura-Enya, Takeji; Ogawa, Hideoki; Takamori, Kenji; Yanagida, Mitsuaki

    2016-03-01

    Various types of polycyclic aromatic compounds (PACs) in diesel exhaust particles are thought to contribute to carcinogenesis in mammals. Although the carcinogenicity, mutagenicity and tumour-initiating activity of these compounds have been evaluated, their tumour-promoting activity is unclear. In the present study, to determine the tumour-inducing activity of PACs, including previously known mutagenic compounds in atmospheric environments, a transformation assay for promoting activity mediated by the release of contact inhibition was conducted for six polycyclic aromatic hydrocarbons (PAHs), seven oxygenated PAHs (oxy-PAHs) and seven nitrated PAHs (nitro-PAHs) using mouse embryonic fibroblast cells transfected with the v-Ha-ras gene (Bhas 42 cells). Of these, two PAHs [benzo[k]fluoranthene (B[k]FA) and benzo[b]fluoranthene (B[b]FA)], one oxy-PAH [6H-benzo[cd]pyren-6-one (BPO)] and two nitro-PAHs (3-nitro-7H-benz[de]anthracen-7-one and 6-nitrochrysene) were found to exhibit particularly powerful tumour-promoting activity (≥10 foci following exposure to <100nM). In addition, clear mRNA expression of CYP1A1, which is associated with aryl hydrocarbon receptor (AhR)-mediated activation, was observed following the exposure of cells to two PAHs (B[k]FA and B[b]FA) and three oxy-PAHs (1,2-naphthoquinone, 11H-benzo[b]fluoren-11-one and BPO). Further, an HO-1 antioxidant response activation was observed following exposure to B[k]FA, B[b]FA and BPO, suggesting that the induction of tumour-promoting activity in these compounds is correlated with the dysfunction of signal transduction via AhR-mediated responses and/or oxidative stress responses.

  7. Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input.

    PubMed

    Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Yu, Hao; Zhou, Xu; Guo, Hong-liang; Yuan, Ye; Lee, Duu-jong; Zhou, Jizhong; Ren, Nan-qi

    2014-08-15

    Limited-oxygen mediated synergistic relationships between sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB) and sulfide-oxidizing bacteria (SOB, including nitrate-reducing, sulfide-oxidizing bacteria NR-SOB) were predicted to simultaneously remove contaminants of nitrate, sulfate and high COD, and eliminate sulfide generation. A lab-scale experiment was conducted to examine the impact of limited oxygen on these oxy-anions degradation, sulfide oxidation and associated microbial functional responses. In all scenarios tested, the reduction of both nitrate and sulfate was almost complete. When limited-oxygen was fed into bioreactors, S(0) formation was significantly improved up to ∼ 70%. GeoChip 4.0, a functional gene microarray, was used to determine the microbial gene diversity and functional potential for nitrate and sulfate reduction, and sulfide oxidation. The diversity of the microbial community in bioreactors was increased with the feeding of limited oxygen. Whereas the intensities of the functional genes involved in sulfate reduction did not show a significant difference, the abundance of the detected denitrification genes decreased in limited oxygen samples. More importantly, sulfide-oxidizing bacteria may alter their populations/genes in response to limited oxygen potentially to function more effectively in sulfide oxidation, especially to elemental sulfur. The genes fccA/fccB from nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB), such as Paracoccus denitrificans, Thiobacillus denitrificans, Beggiatoa sp., Thiomicrospira sp., and Thioalkalivibrio sp., were more abundant under limited-oxygen condition. PMID:24981676

  8. Oxygen Isotopic Composition of Nitrate and Sulfate in Fog and River water in Podocarpus National Forest, Ecuador

    NASA Astrophysics Data System (ADS)

    Brothers, L. A.; Fabian, P.; Thiemens, M. H.

    2006-12-01

    The eastern slopes of the Andean rainforests of Ecuador possess some of the highest plant biodiversity found on the planet; however, these ecosystems are in jeopardy because region is experiences one of the highest deforestation rates in South America. This rainforest characterized by high acidity and low nutrient soils and experiences natural process which are both destabilizing and stabilizing to biodiversity rendering this a unique, though sensitive environment. There is increased concern that anthropogenic activities are affecting rainforests and could lead to higher extinction rates, changes in the biodiversity and far reaching effects on the global troposphere. Measurements of nitrate and sulfate in rain and fog water have shown periods of elevated concentrations in the Podocarpus National Park near Loja, Ecuador. These high episodes contribute to annual deposition rates that are comparable to polluted central Europe. Significant anthropogenic sources near this region are lacking and it is believed that the majority of the nitrate and sulfate pollution can be attributed to biomass burning in the Amazon basin. Concentration measurements do not elucidate the source of high nitrate and sulfate pollution; however, by measuring all three stable isotopes of oxygen in nitrate and sulfate from fog and river water provides a new way to examine the impacts of biomass burning on the region. By using stable isotope techniques atmospheric nitrate and sulfate can be resolved from terrestrial sources. This provides an unique way to trace the contributions from the biomass burning and farming sources. Current research at the field station monitors sulfate and nitrate concentrations in rain and fog water by standard methods to investigate water and nutrient pathways along with data from satellite and ground based remote sensing, in-situ observations and numerical models.

  9. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.

    PubMed

    Mejia, Jacqueline; Roden, Eric E; Ginder-Vogel, Matthew

    2016-04-01

    Oscillations between reducing and oxidizing conditions are observed at the interface of anaerobic/oxic and anaerobic/anoxic environments, and are often stimulated by an alternating flux of electron donors (e.g., organic carbon) and electron acceptors (e.g., O2 and NO3(-)). In iron (Fe) rich soils and sediments, these oscillations may stimulate the growth of both Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and their metabolism may induce cycling between Fe(II) and Fe(III), promoting the transformation of Fe (hydr)oxide minerals. Here, we examine the mineralogical evolution of lepidocrocite and ferrihydrite, and the adaptation of a natural microbial community to alternating Fe-reducing (anaerobic with addition of glucose) and Fe-oxidizing (with addition of nitrate or air) conditions. The growth of FeRB (e.g., Geobacter) is stimulated under anaerobic conditions in the presence of glucose. However, the abundance of these organisms depends on the availability of Fe(III) (hydr)oxides. Redox cycling with nitrate results in decreased Fe(II) oxidation thereby decreasing the availability of Fe(III) for FeRB. Additionally, magnetite is detected as the main product of both lepidocrocite and ferrihydrite reduction. In contrast, introduction of air results in increased Fe(II) oxidation, increasing the availability of Fe(III) and the abundance of Geobacter. In the lepidocrocite reactors, Fe(II) oxidation by dissolved O2 promotes the formation of ferrihydrite and lepidocrocite, whereas in the ferrihydrite reactors we observe a decrease in magnetite stoichiometry (e.g., oxidation). Understanding Fe (hydr)oxide transformation under environmentally relevant redox cycling conditions provides insight into nutrient availability and transport, contaminant mobility, and microbial metabolism in soils and sediments. PMID:26949922

  10. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  11. Growth of strain SES-3 with arsenate and other diverse electron acceptors

    USGS Publications Warehouse

    Laverman, A.M.; Blum, J.S.; Schaefer, J.K.; Phillips, E.J.P.; Lovley, D.R.; Oremland, R.S.

    1995-01-01

    The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors.

  12. Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion.

    PubMed

    Díaz, I; Lopes, A C; Pérez, S I; Fdz-Polanco, M

    2010-10-01

    The removal performance of hydrogen sulphide in severely polluted biogas produced during the anaerobic digestion of sludge was studied by employing pure oxygen, air and nitrate as oxidant reactives supplied to the biodigester. Research was performed in a 200-L digester with an hydraulic retention time (HRT) of ∼20 days under mesophilic conditions. The oxygen supply (0.25 N m³/m³ feed) to the bioreactor successfully reduced the hydrogen sulphide content from 15,811 mg/N m³ to less than 400 mg/N m³. The introduction of air (1.27 N m³/m³ feed) removed more than 99% of the hydrogen sulphide content, with a final concentration of ∼55 mg/N m³. COD removal, VS reduction and methane yield were not affected under microaerobic conditions; however, methane concentration in the biogas decreased when air was employed as a result of nitrogen dilution. The nitrate addition was not effective for hydrogen sulphide removal in the biogas.

  13. Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Shewanella oneidensis is a target of extensive research efforts in the fields of bioelectrochemical systems and bioremediation because of its versatile metabolic capabilities, especially in regards to the respiration with extracellular electron acceptors. Here, we took a global approach ...

  14. Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum.

    PubMed

    Takeno, Seiki; Ohnishi, Junko; Komatsu, Tomoha; Masaki, Tatsuya; Sen, Kikuo; Ikeda, Masato

    2007-07-01

    Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O(2)), while no visible colonies were formed in the absence of O(2). However, in the presence of nitrate (NO3-), the organism exhibited limited growth anaerobically with production of nitrite (NO2-), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using L-lysine- and L-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.

  15. BIOREMEDIATION OF BTEX, NAPTHALENE, AND PHENANTHRENE IN AQUIFER MATERIAL USING MIXED OXYGEN/NITRATE ELECTRON

    EPA Science Inventory

    The goal of the research described herein was to examine the feasibility of biodegradation of mono and polycyclic aromatic hydrocarbons typically present in a manufactured gas processing (MGP) site groundwater and subsurface sediments under mixed oxygen/denitrifying conditions. ...

  16. Effects of acceptors on halogenated organic compound biotransformations in a biofilm column

    SciTech Connect

    Cobb, G.D.; Bouwer, E.J. )

    1991-06-01

    The transformability of trihalomethanes, carbon tetrachloride, 1,1,1-trichlorethane, 1,2-dibromomethane, tetrachlorethylene, dibromochloropropane, and chlorinated benzenes was evaluated by a biofilm utilizing a mixture of primary electron acceptors (oxygen, nitrate, and sulfate). These compounds at concentrations commonly found in groundwater were continuously administered for 4 years to a biofilm column reactor that resembled polluted groundwater environments. Acetate was the primary substrate to support microbial growth. Sequential biofilm zones or aerobic respiration, denitrification, and sulfate reduction developed within the column. Transformation of the halogenated aliphatic compounds coincided with the onset of sulfate in the column feed decreased the steady-state removals for several of the halogenated aliphatic compounds. These results suggest that sulfate was an important primary electron acceptor. Aerobic transformations of the chlorinated benzenes were incomplete due to the rapid depletion of oxygen and limited aerobic zone at the column inlet.

  17. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment.

    PubMed

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Meyer, Rikke Louise; Revsbech, Niels Peter; Schramm, Andreas; Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2014-08-01

    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4-6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed.

  18. Coexisting methane and oxygen excesses in nitrate-limited polar water (Fram Strait) during ongoing sea ice melting

    NASA Astrophysics Data System (ADS)

    Damm, E.; Thoms, S.; Kattner, G.; Beszczynska-Möller, A.; Nöthig, E. M.; Stimac, I.

    2011-05-01

    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on a hotspot of methane formation in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79° N oceanographic transect. We show that between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitation occurs and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences and initiates regenerated production in the western Fram Strait. In a unique biogeochemical feedback process, methane production occurs despite an oxygen excess. We postulate that DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for methane formation. Thus, feedback effects on cycling pathways of methane are likely, with DMSP catabolism in high latitudes possibly contributing to a warming effect on the earth's climate. This process could constitute an additional component in biogeochemical cycling in a seasonal ice-free Arctic Ocean. The metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment. Therefore we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment.

  19. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  20. Emissions of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons from indoor corn straw burning in normal and controlled combustion conditions.

    PubMed

    Shen, Guofeng; Xue, Miao; Wei, Siye; Chen, Yuanchen; Wang, Bin; Wang, Rong; Lv, Yan; Shen, Huizhong; Li, Wei; Zhang, Yanyan; Huang, Ye; Chen, Han; Wei, Wen; Zhao, Qiuyue; Li, Bing; Wu, Haisuo; Tao, Shu

    2013-10-01

    Emission factors (EFs) of parent polycyclic aromatic hydrocarbons (pPAHs), nitrated PAHs (nPAHs), and oxygenated PAHs (oPAHs) were measured for indoor corn straw burned in a brick cooking stove under different burning conditions. The EFs of total 28 pPAHs, 6 nPAHs and 4 oPAHs were (7.9 +/- 3.4), (6.5 +/- 1.6) x 10(-3), and (6.1 +/- 1.4) x 10(-1) mg/kg, respectively. Fuel charge size had insignificant influence on the pollutant emissions. Measured EFs increased significantly in a fast burning due to the oxygen deficient atmosphere formed in the stove chamber. In both restricted and enhanced air supply conditions, the EFs of pPAHs, nPAHs and oPAHs were significantly higher than those measured in normal burning conditions. Though EFs varied among different burning conditions, the composition profiles and calculated isomer ratios were similar, without significant differences. The results from the stepwise regression model showed that fuel burning rate, air supply amount, and modified combustion efficiency were the three most significant influencing factors, explaining 72%-85% of the total variations.

  1. Emissions of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons from indoor corn straw burning in normal and controlled combustion conditions

    PubMed Central

    Shen, Guofeng; Xue, Miao; Wei, Siye; Chen, Yuanchen; Wang, Bin; Wang, Rong; Lv, Yan; Shen, Huizhong; Li, Wei; Zhang, Yanyan; Huang, Ye; Chen, Han; Wei, Wen; Zhao, Qiuyue; Li, Bin; Wu, Haisuo; Tao, Shu

    2014-01-01

    Emission factors (EFs) of parent polycyclic aromatic (pPAHs), nitrated PAHs (nPAHs), and oxygenated PAHs (oPAHs) were measured for indoor corn straw burned in a cooking brick stove in both normal and controlled burning conditions. EFs of total 28 pPAHs, 6 nPAHs and 4 oPAHs were 7.9±3.4, 6.5±1.6×10-3, and 6.1±1.4×10-1 mg/kg, respectively. By controlling the burning conditions, it was found that the influence of fuel charge size on EFs of the pPAHs and derivatives was insignificant. Measured EFs increased significantly in a fast burning mainly because of the oxygen deficient atmosphere formed in the stove chamber with a small volume. In both restricted and enhance air supply conditions, EFs of pPAHs, nPAHs and oPAHs were significantly higher than those measured in normal burning conditions. Though EFs varied in different burning conditions, the composition profiles and calculated isomer ratios were similar without significant differences. The results from the stepwise regression model showed that fuel burning rate, air supply amount, and modified combustion efficiency were three most significant influencing factors, explaining 72-85% of the total variations. PMID:24494494

  2. Transcriptional regulation of the cydDC operon, encoding a heterodimeric ABC transporter required for assembly of cytochromes c and bd in Escherichia coli K-12: regulation by oxygen and alternative electron acceptors.

    PubMed Central

    Cook, G M; Membrillo-Hernández, J; Poole, R K

    1997-01-01

    The expression of the cydDC operon was investigated by using a chromosomal phi(cydD-lacZ) transcriptional fusion and primer extension analysis. A single transcriptional start site was found for cydD located 68 bp upstream of the translational start site, and Northern blot analysis confirmed that cydDC is transcribed as a polycistronic message independently of the upstream gene trxB. cydDC was highly expressed under aerobic growth conditions and during anaerobic growth with alternative electron acceptors. Aerobic expression was independent of ArcA and Fnr, but induction of cydDC by nitrate and nitrite was dependent on NarL and Fnr. PMID:9335308

  3. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    PubMed

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively.

  4. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    PubMed

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively. PMID:26031087

  5. Benthic nitrogen fluxes and fractionation of nitrate in the Mauritanian oxygen minimum zone (Eastern Tropical North Atlantic)

    NASA Astrophysics Data System (ADS)

    Dale, A. W.; Sommer, S.; Ryabenko, E.; Noffke, A.; Bohlen, L.; Wallmann, K.; Stolpovsky, K.; Greinert, J.; Pfannkuche, O.

    2014-06-01

    We present sedimentary geochemical data and in situ benthic flux measurements of dissolved inorganic nitrogen (DIN: NO3-, NO2-, NH4+) and oxygen (O2) from 7 sites with variable sand content along 18°N offshore Mauritania (NW Africa). Bottom water O2 concentrations at the shallowest station were hypoxic (42 μM) and increased to 125 μM at the deepest site (1113 m). Total oxygen uptake rates were highest on the shelf (-10.3 mmol O2 m-2 d-1) and decreased quasi-exponentially with water depth to -3.2 mmol O2 m-2 d-1. Average denitrification rates estimated from a flux balance decreased with water depth from 2.2 to 0.2 mmol N m-2 d-1. Overall, the sediments acted as net sink for DIN. Observed increases in δ15NNO3 and δ18ONO3 in the benthic chamber deployed on the shelf, characterized by muddy sand, were used to calculate apparent benthic nitrate fractionation factors of 8.0‰ (15εapp) and 14.1‰ (18εapp). Measurements of δ15NNO2 further demonstrated that the sediments acted as a source of 15N depleted NO2-. These observations were analyzed using an isotope box model that considered denitrification and nitrification of NH4+ and NO2-. The principal findings were that (i) net benthic 14N/15N fractionation (εDEN) was 12.9 ± 1.7‰, (ii) inverse fractionation during nitrite oxidation leads to an efflux of isotopically light NO2- (-22 ± 1.9‰), and (iii) direct coupling between nitrification and denitrification in the sediment is negligible. Previously reported εDEN for fine-grained sediments are much lower (4-8‰). We speculate that high benthic nitrate fractionation is driven by a combination of enhanced porewater-seawater exchange in permeable sediments and the hypoxic, high productivity environment. Although not without uncertainties, the results presented could have important implications for understanding the current state of the marine N cycle.

  6. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments.

    PubMed

    Balazs, D J; Triandafillu, K; Wood, P; Chevolot, Y; van Delden, C; Harms, H; Hollenstein, C; Mathieu, H J

    2004-05-01

    Medical-grade poly(vinyl chloride) (PVC) was chemically modified to study how the incorporation of monovalent silver influences Pseudomonas aeruginosa adhesion and colonization. The modification investigated consisted of a radio frequency-oxygen (RF-O(2)) glow discharge pre-functionalization, followed by a two-step wet-treatment in sodium hydroxide and silver nitrate solutions. X-ray photoelectron spectroscopy (XPS) analysis and contact angle measurements were used to investigate the chemical nature and surface wettability of the films following each step of the modification. XPS analysis proved that the RF-O(2) plasma pre-functionalization of native PVC reproducibly increased the amount of functional groups representative of PVC additives, including ether/alcohol, esters and carboxyl groups. More specifically, we demonstrated that the O-C=O groups representative of the phthalic ester and zinc carboxylate additives identified for native PVC increased by two-fold following the RF-O(2) plasma pre-functionalization step. Although RF-O(2) pre-functionalization did not have an effect on the silver content of the NaOH/AgNO(3) treated substrates, such a modification was necessary for biomaterial products that did not have reproducible surfaces amongst production lots. XPS analysis also demonstrated that saponification with sodium hydroxide (NaOH) of esters, like those of the phthalic ester additives of PVC is a simple, irreversible method of hydrolysis, which produced sodium carboxylate and sodium phthalate salts. Exposure of native PVC to NaOH resulted in an increased surface hydrophilicity (from ca 90 degrees to ca 60 degrees ) due to dechlorination. XPS analysis following further incubation in silver nitrate demonstrated that silver ions can be trapped when the sodium of sodium carboxylate is replaced by silver after performing a second treatment with a monovalent silver-containing solution. The creation of silver salt on native PVC resulted in an ultra

  7. Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China

    NASA Astrophysics Data System (ADS)

    Wei, Shilong; Huang, Bo; Liu, Ming; Bi, Xinhui; Ren, Zhaofang; Sheng, Guoying; Fu, Jiamo

    2012-06-01

    Daytime and nighttime PM2.5 samples were collected between August 5 and 16, 2009 and between January 24 and February 4, 2010 in an industrial complex site (site A) and an e-waste recycling site (site B) to determine the seasonal and diurnal variations of nitrated (nitro-) and oxygenated (oxy-) polycyclic aromatic hydrocarbons (PAHs) with gas chromatography/mass spectrometry (GC/MS). The two sites show similar composition for nitro- and oxy-PAHs although the composition of parent PAHs was quite different. 3 + 2-Nitrofluoranthene (3 + 2NFL) was the most abundant nitro-PAH, while 9,10-anthraquinone (Anquin), benzanthrone (Bzone) and 6H-benzo[cd]pyrene-6-one (Bpone) were the three major oxy-PAHs species. The concentrations of Σnitro-PAHs and Σoxy-PAHs were about 2-3 orders of magnitude lower than those of Σparent PAHs. Most of the nitro- and oxy-PAHs show notable seasonal variation. 7-Nitrobenz[a]anthracene (7NBaA), Bzone and benzo[a]anthrancene-7,12-dione (Bzdion) demonstrated a pronounced diurnal variation. The occurrence of nitro- and oxy-PAHs in the two sites can be accounted by direct emission and atmospheric secondary formation.

  8. The Campylobacter jejuni RacRS system regulates fumarate utilization in a low oxygen environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural environment of the human pathogen Campylobacter jejuni is the gastrointestinal tract of warm blooded animals. In the gut, the availability of oxygen is limited; therefore, less efficient electron acceptors such as nitrate or fumarate are used by C. jejuni. C. jejuni has a highly branched...

  9. Elucidating microbial processes in nitrate- and sulfate-reducing systems using sulfur and oxygen isotope ratios: The example of oil reservoir souring control

    NASA Astrophysics Data System (ADS)

    Hubert, Casey; Voordouw, Gerrit; Mayer, Bernhard

    2009-07-01

    Sulfate-reducing bacteria (SRB) are ubiquitous in anoxic environments where they couple the oxidation of organic compounds to the production of hydrogen sulfide. This can be problematic for various industries including oil production where reservoir "souring" (the generation of H 2S) requires corrective actions. Nitrate or nitrite injection into sour oil fields can promote SRB control by stimulating organotrophic nitrate- or nitrite-reducing bacteria (O-NRB) that out-compete SRB for electron donors (biocompetitive exclusion), and/or by lithotrophic nitrate- or nitrite-reducing sulfide oxidizing bacteria (NR-SOB) that remove H 2S directly. Sulfur and oxygen isotope ratios of sulfide and sulfate were monitored in batch cultures and sulfidic bioreactors to evaluate mitigation of SRB activities by nitrate or nitrite injection. Sulfate reduction in batch cultures of Desulfovibrio sp. strain Lac15 indicated typical Rayleigh-type fractionation of sulfur isotopes during bacterial sulfate reduction (BSR) with lactate, whereas oxygen isotope ratios in unreacted sulfate remained constant. Sulfur isotope fractionation in batch cultures of the NR-SOB Thiomicrospira sp. strain CVO was minimal during the oxidation of sulfide to sulfate, which had δ18O SO4 values similar to that of the water-oxygen. Treating an up-flow bioreactor with increasing doses of nitrate to eliminate sulfide resulted in changes in sulfur isotope ratios of sulfate and sulfide but very little variation in oxygen isotope ratios of sulfate. These observations were similar to results obtained from SRB-only, but different from those of NR-SOB-only pure culture control experiments. This suggests that biocompetitive exclusion of SRB took place in the nitrate-injected bioreactor. In two replicate bioreactors treated with nitrite, less pronounced sulfur isotope fractionation and a slight decrease in δ18O SO4 were observed. This indicated that NR-SOB played a minor role during dosing with low nitrite and that

  10. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China

    NASA Astrophysics Data System (ADS)

    Fang, Y. T.; Koba, K.; Wang, X. M.; Wen, D. Z.; Li, J.; Takebayashi, Y.; Liu, X. Y.; Yoh, M.

    2010-09-01

    Nitric acid (HNO3) or nitrate (NO3-) is the dominant sink for reactive nitrogen oxides (NOx = NO + NO2) in the atmosphere. In many Chinese cities, HNO3 is becoming a significant contributor to acid deposition. In the present study, we used the denitrifier method to measure nitrogen (N) and oxygen (O) isotopic composition of NO3- in 113 precipitation samples collected from Guangzhou City in southern China over a two-year period (2008 and 2009). We attempted to better understand the spatial and seasonal variability of atmospheric NOx sources and the NO3- formation pathways in this N-polluted city in the Pearl River Delta region. The δ15N values of NO3- (versus air N2) ranged from -4.9 to +10.1‰, and averaged +3.9‰ in 2008 and +3.3‰ in 2009. Positive δ15N values were observed throughout the year, indicating the anthropogenic contribution of NOx emissions, particularly from coal combustion. Different seasonal patterns of δ15N-NO3- were observed between 2008 and 2009, which might reflect different human activities associated with the global financial crisis and the intensive preparations for the 16th Asian Games. Nitrate δ18O values (versus Vienna Standard Mean Ocean Water) varied from +33.4 to +86.5‰ (average +65.0‰ and +67.0‰ in 2008 and 2009, respectively), a range being lower than those reported for high altitude and polar areas. Several δ18O values were observed lower than the expected minimum of 50‰ at our study site. This was likely caused by the reaction of NO with peroxy radicals; peroxy radicals can compete with O3 to convert NO to NO2, thereby donate O atoms with much lower δ18O value than that of O3 to atmospheric NO3-. Our results highlight that the influence of human activities on atmospheric chemistry can be recorded by the N and O isotopic composition of atmospheric NO3- in a N-polluted city.

  11. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China

    NASA Astrophysics Data System (ADS)

    Fang, Y. T.; Koba, K.; Wang, X. M.; Wen, D. Z.; Li, J.; Takebayashi, Y.; Liu, X. Y.; Yoh, M.

    2011-02-01

    Nitric acid (HNO3) or nitrate (NO3-) is the dominant sink for reactive nitrogen oxides (NOx = NO + NO2) in the atmosphere. In many Chinese cities, HNO3 is becoming a significant contributor to acid deposition. In the present study, we measured nitrogen (N) and oxygen (O) isotopic composition of NO3- in 113 precipitation samples collected from Guangzhou City in southern China over a two-year period (2008 and 2009). We attempted to better understand the spatial and seasonal variability of atmospheric NOx sources and the NO3- formation pathways in this N-polluted city in the Pearl River Delta region. The δ15N values of NO3- (versus air N2) ranged from -4.9 to +10.1‰, and averaged +3.9‰ in 2008 and +3.3‰ in 2009. Positive δ15N values were observed throughout the year, indicating the anthropogenic contribution of NOx emissions, particularly from coal combustion. Different seasonal patterns of δ15N-NO3- were observed between 2008 and 2009, which might reflect different human activities associated with the global financial crisis and the intensive preparations for the 16th Asian Games. Nitrate δ18O values (versus Vienna Standard Mean Ocean Water) varied from +33.4 to +86.5‰ (average +65.0‰ and +67.0‰ in 2008 and 2009, respectively), a range being lower than those reported for high latitude and polar areas. Sixteen percent of δ18O values was observed lower than the expected minimum of +55‰ at our study site. This was likely caused by the reaction of NO with peroxy radicals; peroxy radicals can compete with O3 to convert NO to NO2, thereby donate O atoms with much lower δ18O value than that of O3 to atmospheric NO3-. Our results highlight that the influence of human activities on atmospheric chemistry can be recorded by the N and O isotopic composition of atmospheric NO3- in a N-polluted city.

  12. Modelling transport and degradation of de-icing chemicals in soil, assuming Monod kinetics with multiple electron-acceptors

    NASA Astrophysics Data System (ADS)

    Schotanus, D.; Meeussen, J. C. L.; van der Ploeg, M. J.; van der Zee, S. E. A. T. M.

    2012-04-01

    De-icing chemicals that contain propylene glycol are used at Oslo airport during winter time. A fraction of these chemicals is spilled on the runway and can be transported rapidly in the sandy soil in spring during snowmelt. Better insight into the chemical and physical processes that govern the fate of these chemicals in soil will help to estimate potential effects on the large unconfined aquifer in this area, and makes it possible to evaluate potential remedial actions. Micro-organisms in the soil can degrade propylene glycol, for which they need electron-acceptors. Under aerobic conditions, oxygen will be used as an electron-acceptor. From experiments, it is known that also anaerobic degradation occurs in this soil. During snowmelt, high infiltration rates can lead to locally saturated soil. In these parts, oxygen diffusion is limited and thus anaerobic conditions will occur. In these anaerobic regions, other electron-acceptors, such as manganese-oxides that are present in this soil, are used. However, frequent propylene glycol application may lead to a depletion of manganese-oxides and so to increased persistence and migration of propylene glycol in soil. To prevent this depletion and to enhance biodegradation, other electron-acceptors can be applied at the soil surface. Examples are the application of nitrate to the soil surface, and air injection. Model calculations could help to estimate required concentrations. The objectives of this study are 1) to create the reactive model, 2) to use this model to evaluate which parameters are determining leaching fluxes of propylene glycol from the soil, and 3) to evaluate the effectiveness of the different remediation strategies. Therefore, transient water flow, kinetic degradation, and redox chemistry were combined in one model. Degradation is modelled with Monod kinetics using multiple electron-acceptors. Oxygen diffusion in the gas phase, biomass growth, and oxidation and reduction of the important electron-acceptors

  13. Associative Memory Acceptors.

    ERIC Educational Resources Information Center

    Card, Roger

    The properties of an associative memory are examined in this paper from the viewpoint of automata theory. A device called an associative memory acceptor is studied under real-time operation. The family "L" of languages accepted by real-time associative memory acceptors is shown to properly contain the family of languages accepted by one-tape,…

  14. Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NOy molecules, radOH, and H2O and its implications for isotope variations in atmospheric nitrate

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-10-01

    The oxygen stable isotope composition (δ18O) of nitrogen oxides [NOx = nitric oxide (NO) + nitrogen dioxide (NO2)] and their oxidation products (NOy = NOx + nitric acid (HNO3) + particulate nitrate (p-NO3-) + nitrate radical (NO3) + dinitrogen pentoxide (N2O5) + nitrous acid (HONO) + …) have been shown to be a useful tool for inferring the proportion of NOx that is oxidized by ozone (O3). However, isotopic fractionation processes may have an influence on δ18O of various NOy molecules and other atmospheric O-bearing molecules pertinent to NOx oxidation chemistry. Here we have evaluated the impacts of O isotopic exchange involving NOy molecules, the hydroxyl radical (radOH), and water (H2O) using reduced partition function ratios (xβ) calculated by hybrid density functional theory. Assuming atmospheric isotopic equilibrium is achieved between NO and NO2 during the daytime, and NO2, NO3, and N2O5 during the nighttime, δ18O-δ15N compositions were predicted for the major atmospheric nitrate formation pathways using our calculated exchange fractionation factors and isotopic mass-balance. Our equilibrium model predicts that various atmospheric nitrate formation pathways, including NO2 + radOH → HNO3, N2O5 + H2O + surface → 2HNO3, and NO3 + R → HNO3 + Rrad will yield distinctive δ18O-δ15N compositions. Our calculated δ18O-δ15N compositions match well with previous atmospheric nitrate measurements, and will potentially help better understand the role oxidation chemistry plays on the N and O isotopic composition of atmospheric nitrate.

  15. Biogenic U(IV) oxidation by dissolved oxygen and nitrate in sediment after prolonged U(VI)/Fe(III)/SO42- reduction

    SciTech Connect

    Moon, H. S.; Komlos, J.; Jaffé, P. R.

    2009-02-01

    Sediment column experiments were performed to quantify the effect of biogenic iron sulfide precipitates on the stability of bioreduced uranium during and after a simulated bioremediation scenario. In particular, this study examined the effect of different oxidants (dissolved oxygen and nitrate) on biogenic U(IV) oxidation in sediment that experienced significant sulfate reduction in addition to Fe(III) and U(VI) reduction. The experimental set-up included five replicate columns (each 5 cm in diameter, 15 cm long and packed with background sediment from a site contaminated with uranium) that were bioreduced for 70 days by injecting a nutrient media containing 3 mM acetate and 6 mM sulfate prior to oxidation. Upon oxidation, iron sulfide precipitates formed during bioreduction acted as a buffer to partially prevent biogenic U(IV) oxidation. The iron sulfides were more effective at protecting biogenic U(IV) from oxidation when dissolved oxygen was the oxidant compared to nitrate. A constant supply of 0.25 mM and 1.6 mM nitrate over a 50 day period resulted in uranium resolubilization of 11% and 60%, respectively, while less than 1% of the uranium was resolubilized in the column supplied 0.27 mM dissolved oxygen during the same time period. Over time, oxidation increased pore water channeling, which was more pronounced during oxidation with nitrate. Finally, increased channeling with time of oxidation could affect the transport of an oxidant through the previously reduced zone, and hence the oxidation dynamics of the reduced species.

  16. Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation: New Insights into the Formation and Fates of Highly Oxygenated Gas- and Particle-phase Organic Nitrates

    NASA Astrophysics Data System (ADS)

    Nah, T.; Sanchez, J.; Boyd, C.; Ng, N. L.

    2015-12-01

    The nitrate radical (NO3), one of the most important oxidants in the nocturnal atmosphere, can react rapidly with a variety of biogenic volatile organic compounds (BVOCs) to form high mass concentrations of secondary organic aerosol (SOA) and organic nitrates (ON). Despite its critical importance in aerosol formation, the mechanisms and products from the NO3 oxidation of BVOCs have been largely unexplored, and the fates of their SOA and ON after formation are not well characterized. In this work, we studied the formation of SOA and ON from the NO3 oxidation of α-pinene and β-pinene and investigated for the first time how they evolve during dark and photochemical aging through a series of chamber experiments performed at the Georgia Tech Environmental Chamber (GTEC) facility. The α-pinene and β-pinene SOA are characterized using real-time gas- and particle-phase measurements, which are used to propose mechanisms for SOA and organic nitrate formation and aging. Highly oxygenated gas- and particle-phase ON (containing as many as 9 oxygen atoms) are detected during the NO3 reaction. In addition, the β-pinene SOA and α-pinene SOA exhibited drastically different behavior during photochemical aging. Our results indicate that nighttime ON formed by NO3+monoterpene chemistry can serve as either NOx reservoirs or sinks depending on the monoterpene precursor. Results from this study provide fundamental data for evaluating the contributions of NO3+monoterpene reactions to ambient OA measured in the Southeastern U.S.

  17. Nitrate reduction in sulfate-reducing bacteria.

    PubMed

    Marietou, Angeliki

    2016-08-01

    Sulfate-reducing bacteria (SRBs) gain their energy by coupling the oxidation of organic substrate to the reduction of sulfate to sulfide. Several SRBs are able to use alternative terminal electron acceptors to sulfate such as nitrate. Nitrate-reducing SRBs have been isolated from a diverse range of environments. In order to be able to understand the significance of nitrate reduction in SRBs, we need to examine the ecology and physiology of the nitrate-reducing SRB isolates.

  18. Oxygen isotopes in nitrate: New reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration

    USGS Publications Warehouse

    Böhlke, J.K.; Mroczkowski, S.J.; Coplen, T.B.

    2003-01-01

    Despite a rapidly growing literature on analytical methods and field applications of O isotope-ratio measurements of NO3- in environmental studies, there is evidence that the reported data may not be comparable because reference materials with widely varying ?? 18O values have not been readily available. To address this problem, we prepared large quantities of two nitrate salts with contrasting O isotopic compositions for distribution as reference materials for O isotope-ratio measurements: USGS34 (KNO3) with low ??18O and USGS35 (NaNO3) with high ??18O and 'mass-independent' ??17O. The procedure used to produce USGS34 involved equilibration of HNO3 with 18O-depleted meteoric water. Nitric acid equilibration is proposed as a simple method for producing laboratory NO3- reference materials with a range of ??18O values and normal (mass-dependent) 18O: 17O:16O variation. Preliminary data indicate that the equilibrium O isotope-fractionation factor (??) between [NO 3-] and H2O decreases with increasing temperature from 1.0215 at 22??C to 1.0131 at 100??C. USGS35 was purified from the nitrate ore deposits of the Atacama Desert in Chile and has a high 17O:18O ratio owing to its atmospheric origin. These new reference materials, combined with previously distributed NO3- isotopic reference materials IAEA-N3 (=IAEA-NO-3) and USGS32, can be used to calibrate local laboratory reference materials for determining offset values, scale factors, and mass-independent effects on N and O isotope-ratio measurements in a wide variety of environmental NO 3- samples. Preliminary analyses yield the following results (normalized with respect to VSMOW and SLAP, with reproducibilities of ??0.2-0.3???, 1??): IAEA-N3 has ??18O = +25.6??? and ??17O = +13.2??? USGS32 has ?? 18O = +25.7??? USGS34 has ??18O = -27. 9??? and ??17O = -14.8??? and USGS35 has ?? 18O = +57.5??? and ??17O = +51.5???.

  19. The effect of 100 MeV oxygen ion on electrical and optical properties of nonlinear optical l-alanine sodium nitrate single crystals

    SciTech Connect

    Ahlam, M. A.; Prakash, A. P. Gnana

    2012-06-05

    Single crystals of nonlinear optical (NLO) L-alanine Sodium Nitrate (LASN) were grown by slow evaporation method. The grown crystals were irradiated by 100 MeV oxygen ions with the cumulative doses of 1Mrad, 6 Mrad and 10 Mrad. The dielectric properties, differential scanning calorimetry (DSC) and second harmonic generation (SHG) of the crystals were studied before and after irradiation. The dielectric constant was found to increase after irradiation. The DSC reveals that the melting point remains unaffected due to irradiation. The SHG efficiency of LASN was found to decrease with increase in radiation dose.

  20. Phylogenetic analyses and nitrate-reducing activity of fungal cultures isolated from the permanent, oceanic oxygen minimum zone of the Arabian Sea.

    PubMed

    Manohar, Cathrine Sumathi; Menezes, Larissa Danielle; Ramasamy, Kesava Priyan; Meena, Ram M

    2015-03-01

    Reports on the active role of fungi as denitrifiers in terrestrial ecosystems have stimulated an interest in the study of the role of fungi in oxygen-deficient marine systems. In this study, the culturable diversity of fungi was investigated from 4 stations within the permanent, oceanic, oxygen minimum zone of the Arabian Sea. The isolated cultures grouped within the 2 major fungal phyla Ascomycota and Basidiomycota; diversity estimates in the stations sampled indicated that the diversity of the oxygen-depleted environments is less than that of mangrove regions and deep-sea habitats. Phylogenetic analyses of 18S rRNA sequences revealed a few divergent isolates that clustered with environmental sequences previously obtained by others. This is significant, as these isolates represent phylotypes that so far were known only from metagenomic studies and are of phylogenetic importance. Nitrate reduction activity, the first step in the denitrification process, was recorded for isolates under simulated anoxic, deep-sea conditions showing ecological significance of fungi in the oxygen-depleted habitats. This report increases our understanding of fungal diversity in unique, poorly studied habitats and underlines the importance of fungi in the oxygen-depleted environments.

  1. Phylogenetic analyses and nitrate-reducing activity of fungal cultures isolated from the permanent, oceanic oxygen minimum zone of the Arabian Sea.

    PubMed

    Manohar, Cathrine Sumathi; Menezes, Larissa Danielle; Ramasamy, Kesava Priyan; Meena, Ram M

    2015-03-01

    Reports on the active role of fungi as denitrifiers in terrestrial ecosystems have stimulated an interest in the study of the role of fungi in oxygen-deficient marine systems. In this study, the culturable diversity of fungi was investigated from 4 stations within the permanent, oceanic, oxygen minimum zone of the Arabian Sea. The isolated cultures grouped within the 2 major fungal phyla Ascomycota and Basidiomycota; diversity estimates in the stations sampled indicated that the diversity of the oxygen-depleted environments is less than that of mangrove regions and deep-sea habitats. Phylogenetic analyses of 18S rRNA sequences revealed a few divergent isolates that clustered with environmental sequences previously obtained by others. This is significant, as these isolates represent phylotypes that so far were known only from metagenomic studies and are of phylogenetic importance. Nitrate reduction activity, the first step in the denitrification process, was recorded for isolates under simulated anoxic, deep-sea conditions showing ecological significance of fungi in the oxygen-depleted habitats. This report increases our understanding of fungal diversity in unique, poorly studied habitats and underlines the importance of fungi in the oxygen-depleted environments. PMID:25688692

  2. Impacts of Nitrate and Nitrite on Physiology of Shewanella oneidensis

    PubMed Central

    Zhang, Haiyan; Fu, Huihui; Wang, Jixuan; Sun, Linlin; Jiang, Yaoming; Zhang, Lili; Gao, Haichun

    2013-01-01

    Shewanella oneidensis exhibits a remarkable versatility in anaerobic respiration, which largely relies on its diverse respiratory pathways. Some of these are expressed in response to the existence of their corresponding electron acceptors (EAs) under aerobic conditions. However, little is known about respiration and the impact of non-oxygen EAs on the physiology of the microorganism when oxygen is present. Here we undertook a study to elucidate the basis for nitrate and nitrite inhibition of growth under aerobic conditions. We discovered that nitrate in the form of NaNO3 exerts its inhibitory effects as a precursor to nitrite at low concentrations and as an osmotic-stress provider (Na+) at high concentrations. In contrast, nitrite is extremely toxic, with 25 mM abolishing growth completely. We subsequently found that oxygen represses utilization of all EAs but nitrate. To order to utilize EAs with less positive redox potential, such as nitrite and fumarate, S. oneidensis must enter the stationary phase, when oxygen respiration becomes unfavorable. In addition, we demonstrated that during aerobic respiration the cytochrome bd oxidase confers S. oneidensis resistance to nitrite, which likely functions via nitric oxide (NO). PMID:23626841

  3. Nitrate and Nitrite Variability at the Seafloor of an Oxygen Minimum Zone Revealed by a Novel Microfluidic In-Situ Chemical Sensor.

    PubMed

    Yücel, Mustafa; Beaton, Alexander D; Dengler, Marcus; Mowlem, Matthew C; Sohl, Frank; Sommer, Stefan

    2015-01-01

    Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1 μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958

  4. Nitrate and Nitrite Variability at the Seafloor of an Oxygen Minimum Zone Revealed by a Novel Microfluidic In-Situ Chemical Sensor

    PubMed Central

    Yücel, Mustafa; Beaton, Alexander D.; Dengler, Marcus; Mowlem, Matthew C.; Sohl, Frank; Sommer, Stefan

    2015-01-01

    Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958

  5. Enzymic phosphoryl transfer to carbon and oxygen acceptors: An investigation of the biosynthesis of 2-aminoethylphosphonic acid in Tetrahymena pyriformis W. and the kinetic mechanism and cofactor controlled substrate specificity of yeast inorganic pyrophosphatase

    SciTech Connect

    Barry, R.J.

    1987-01-01

    This research is concerned with the study of two enzymatic systems which catalyze phosphoryl transfer reactions to carbon and oxygen acceptors. The first portion of this study is concerned with the elucidation of the T. pyriformis 2-aminoethylphosphonate (AEP) biosynthetic pathway. The de novo formation of AEP from exogenously added precursors in Tetrahymena cell-free preparations was evaluated by using radioisotopic techniques and NMR spectral analysis. Incubation of ({sup 32}P)-phosphoenolpyruvate (PEP) with cell-free preparations yielded ({sup 32}P)-labelled material that was chromatographically identical to authentic phosphonopyruvate (p-pry). A reexamination of AEP biosynthesis was initiated. In the second portion of this study the kinetic mechanism of yeast inorganic pyrophosphatase (PPase) was examined by carrying-out initial velocity studies. Ca{sup 2+} and Rh(H{sub 2}O){sub 4} (methylenediphosphonate) (Rh(H{sub 2}O){sub 4}PCP) were used as dead-end inhibitors to study the order of binding of Cr(H{sub 2}O){sub 4}PP to the substrate site and Mg{sup 2+} to the low affinity activator site on the enzyme.

  6. Generality of Nitrate Removal in Streambed Sediment on the Southern Delmarva Peninsula

    NASA Astrophysics Data System (ADS)

    McFadden, G.; Flewelling, S. A.; Herman, J. S.; Mills, A. L.

    2013-12-01

    Nitrogen fertilizers have accumulated in the unconfined Columbia aquifer on the Eastern Shore of Virginia (ESVA) and increased nitrate concentrations, which could potentially affect water quality in down-gradient surface-water bodies. The streambeds and riparian zones of the small, low-gradient ESVA streams appear to be attenuating the nitrate load of discharging groundwater via denitrification, thereby reducing groundwater nitrate concentrations by an order of magnitude or more in some cases. We measured concentrations of nitrate, chloride, and dissolved oxygen in sediment pore water as well as vertical head gradients and hydraulic conductivity in the streambed of four streams on the ESVA (Coal Kiln, Machipongo, Phillips Creek, and Parker Creek). Unlike measurements made in some other streams on the ESVA, the data did not show a consistent decrease in nitrate concentrations as groundwater discharged upward through the streambed. For Coal Kiln, Machipongo, and Phillips Creek, dissolved oxygen concentrations were consistently low (generally <3 mg/L) throughout sediment pore water, down to at least 60 cm (maximum depth of measurements). In Parker Creek, dissolved oxygen concentrations were higher and there was a general proportionality between nitrate and oxygen concentrations, consistent with microbially mediated redox reactions gradually shifting the electron acceptor from oxygen to nitrate as pore-water moved upward through the sediments. Whereas previous measurements at another stream (Cobb Mill Creek) on the ESVA indicated that denitrification occurred primarily in the upper 30-60 cm of the streambed sediment, the data from Coal Kiln, Machipongo, and Phillips Creek suggest that denitrification may also be important elsewhere in the catchment, perhaps deeper in the sediment profile. In Parker Creek, the streambed appeared to be reducing nitrate concentrations as groundwater discharged to the stream, however, the magnitude of nitrate removal during vertical flow

  7. Photochemical behavior of carbon nanotubes in natural waters: reactive oxygen species production and effects on •OH generation by Suwannee River fulvic acid, nitrate, and Fe (III).

    PubMed

    Zhou, Lei; Zhang, Ya; Wang, Qi; Ferronato, Corinne; Yang, Xi; Chovelon, Jean-Marc

    2016-10-01

    The photochemical activities of three kinds of carbon nanotubes (CNTs) were investigated in the present study. Efficient procedures of dispersing the three kinds of carbon nanotubes in water were established, and the quantitative analysis methods were also developed by TOC-absorbance method. High pH value or low ionic strength of the colloidal solutions facilitated the dispersion of CNTs. The suspensions of three kinds of CNTs could generate singlet oxygen ((1)O2) and hydroxyl radical (•OH) under irradiation of simulated sunlight, while superoxide radical (O2 (•-)) was not detected. The steady-state concentrations of (1)O2 and •OH generated by these CNTs were also determined. The presence of CNTs in natural waters can affect the photochemical behavior of water constituents, such as nitrate, dissolved organic matter, and Fe(3+). Specifically, in nitrate solution, the presence of CNTs could inhibit the generation of •OH by nitrate through light screening effect, while the quenching effect of hydroxyl radicals by CNTs was not observed. Besides light screening effect, the three kinds of CNTs used in the experiments also have a strong inhibiting effect on the ability of DOM to produce •OH by binding to the active sites. Moreover, the adsorption of Fe(3+) on MWCNT-OH and MWCNT-COOH could lead to its inactivation of formation of •OH in acidic conditions. However, the presence of the three kinds of CNTs did not affect the ligand-to-metal charge transfer (LMCT) reaction of DOM-Fe (III) complex.

  8. Sodium Nitrate Induces Reactive Oxygen Species That Lower the Antioxidant Power, Damage the Membrane, and Alter Pathways of Glucose Metabolism in Human Erythrocytes.

    PubMed

    Ansari, Fariheen Aisha; Mahmood, Riaz

    2015-12-01

    Nitrate salts are widely used as food additives and nitrogenous fertilizers and are present as contaminants in drinking water supplies. The effect of different concentrations (1-15 mM) of sodium nitrate (NaNO3) on human erythrocytes was studied under in vitro conditions. Treatment of erythrocytes with NaNO3 resulted in increases in methemoglobin levels, lipid peroxidation, and protein oxidation and a decrease in glutathione content. There were changes in the activities of all major antioxidant defense enzymes, and the pathways of glucose metabolism were also affected. Increased generation of reactive oxygen species (ROS) took place while the antioxidant power was impaired. The osmotic fragility of cells was increased, and membrane-bound enzymes were greatly inhibited. All changes were statistically significant at a probability level of P < 0.05 at all concentrations of NaNO3 except the lowest (1 mM). Thus, NaNO3 generates ROS that cause significant damage to human erythrocytes and interfere in normal cellular pathways. PMID:26586154

  9. Mass independent oxygen and sulfur isotopic compositions of environmental sulfate and nitrate. A new probe of atmospheric, hydrospheric and geological processes

    NASA Astrophysics Data System (ADS)

    Thiemens, M.; Michalski, G.; Romero, A.; McCabe, J.

    2003-04-01

    Aerosol sulfate is well known to exert a significant influence on the Earth’s atmosphere and surface. They mediate climate in its capacity as a cloud condensation nuclei (CCN) and as a visible light scattering agent. These particles are respirable, with severe cardiovascular disease consequences. Removal by wet and dry depositions is well known to cause surficial damage to biota, biodiversity, and structures. Despite decades of high precision global concentration measurements, single isotope ratio measurements (d18O, d34S) and high quality modeling efforts, there remain unresolved issues with respect to resolution of relative oxidative processes (homogenous vs. heterogeneous), transformation mechanisms, and identification of sources, proximal and distal. Mass independent oxygen isotopic compositions have added new insights un attainable by other techniques. These observations ideally complement other measurements in an effort to improve parameters used in modeling aerosols and climate. Recent sulfur mass independent compositions have potentially added a new means to recognize upper atmospheric photolytic processes. Aerosol nitrate is estimated to nearly double in the next half century, with potentially severe consequences which include soil acidification, loss of biodiversity, eutrophication of coastal and freshwaters, and, human cardiovascular disease. Loss of fresh water lake clarity, e.g. Lake Tahoe is also believed to occur due to increased nitrogen levels. As in the case of atmospheric sulfate, mass independent oxygen isotopic signatures have been observed in nitrate. The D17O is one of the largest mass independent isotopic signatures observed in any environmental species with the exception of ozone. These measurements have demonstrated the ability to provide new insight into the nitrogen cycle, including atmospheric, hydrospheric and geologic processes.

  10. Ion-exchange method in the collection of nitrate from freshwater ecosystems for nitrogen and oxygen isotope analysis: a review.

    PubMed

    Li, Wen-Bing; Song, Yao-Bin; Xu, Hong-Ke; Chen, Ling-Yun; Dai, Wen-Hong; Dong, Ming

    2015-07-01

    Nitrate (NO3(-)) contamination of freshwater is considered one of the most prevalent global environmental problems. Dual stable isotopic compositions (δ(15)N and δ(18)O) of NO3(-) can provide helpful information and have been well documented as being a powerful tool to track the source of NO3(-) in freshwater ecosystems. The ion-exchange method is a reliable and precise technique for measuring the δ(15)N and δ(18)O of NO3(-) and has been widely employed to collect NO3(-) from freshwater ecosystems. This review summarizes and presents the principles, affecting factors and corresponding significant improvements of the ion-exchange method. Finally, potential improvements and perspectives for the applicability of this method are also discussed, as are suggestions for further research and development drawn from the overall conclusions.

  11. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xia, Chunyu; Wu, Wei-Min; Sun, Guoping; Xu, Meiying

    2014-07-01

    To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors.

  12. Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates.

    PubMed

    Sears, H J; Sawers, G; Berks, B C; Ferguson, S J; Richardson, D J

    2000-11-01

    The napEDABC operon of Paracoccus pantotrophus encodes a periplasmic nitrate reductase (NAP), together with electron-transfer components and proteins required for the synthesis of a fully functional enzyme. Previously, it had been shown that high NAP activity was observed when P. pantotrophus was grown aerobically on highly reduced carbon sources such as butyrate or caproate, but not when cultured on more oxidized substrates such as succinate or malate. The enzyme is not present to any extent when the organism is grown anaerobically under denitrifying conditions, regardless of the carbon source. Transcriptional analyses of the nap operon have now identified two initiation sites which were differentially regulated in response to the carbon source, with expression being maximal when cells were grown aerobically with butyrate. Analysis of a P. pantotrophus mutant (M6) deregulated for NAP activity identified a single C-->A transversion in a heptameric inverted-repeat sequence that partially overlapped the proximal promoter. Transcription analysis of this mutant revealed that expression of nap was completely derepressed under all growth conditions examined. Taken together, these findings indicate that nap transcription is negatively regulated during anaerobiosis, such that expression is restricted to aerobic growth, but only when the carbon source is highly reduced. PMID:11065376

  13. Simultaneous arsenite oxidation and nitrate reduction at the electrodes of bioelectrochemical systems.

    PubMed

    Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2016-10-01

    Arsenic and nitrate contaminations in the soil and groundwater have urged the scientific community to explore suitable technologies for treatment of both contaminants. This study reports, for the first time, a novel application of bioelectrochemical systems for coupling As detoxification at the anode and denitrification at the cathode. A similar As(III) oxidation efficiency was achieved when anode potential was controlled by a potentiostat or a direct current (DC) power supply. However, a slightly lower nitrate reduction rate was obtained in reactors using DC power supply during simultaneous operation of nitrate reduction and As(III) oxidation. Microbial community analysis by denaturing gradient gel electrophoresis indicated the presence of some autotrophic As(III)-oxidizing bacteria, including Achromobacter spp., Ensifer spp., and Sinorhizobium spp., that can flexibly switch their original metabolism of using oxygen as sole electron acceptor to a new metabolism mode of using solid-state anode as sole electron acceptor driving for As(III) oxidation under anaerobic conditions. Although further research is required for validating their applicability, bioelectrochemical systems represent a brilliant technology for remediation of groundwater contaminated with nitrate and/or arsenite. PMID:27438874

  14. Simultaneous arsenite oxidation and nitrate reduction at the electrodes of bioelectrochemical systems.

    PubMed

    Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2016-10-01

    Arsenic and nitrate contaminations in the soil and groundwater have urged the scientific community to explore suitable technologies for treatment of both contaminants. This study reports, for the first time, a novel application of bioelectrochemical systems for coupling As detoxification at the anode and denitrification at the cathode. A similar As(III) oxidation efficiency was achieved when anode potential was controlled by a potentiostat or a direct current (DC) power supply. However, a slightly lower nitrate reduction rate was obtained in reactors using DC power supply during simultaneous operation of nitrate reduction and As(III) oxidation. Microbial community analysis by denaturing gradient gel electrophoresis indicated the presence of some autotrophic As(III)-oxidizing bacteria, including Achromobacter spp., Ensifer spp., and Sinorhizobium spp., that can flexibly switch their original metabolism of using oxygen as sole electron acceptor to a new metabolism mode of using solid-state anode as sole electron acceptor driving for As(III) oxidation under anaerobic conditions. Although further research is required for validating their applicability, bioelectrochemical systems represent a brilliant technology for remediation of groundwater contaminated with nitrate and/or arsenite.

  15. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors.

    PubMed

    Luo, Guozhi; Xu, Guimei; Gao, Jinfang; Tan, Hongxin

    2016-05-01

    Nitrate-nitrogen (NO3(-)-N) always accumulates in commercial recirculating aquaculture systems (RASs) with aerobic nitrification units. The ability to reduce NO3(-)-N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen (DO) content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO3(-)-N from RASs. The effect of dissolved oxygen (DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone (PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group (Group A, average DO concentration of 0.28±0.05mg/L), the low-oxygen treatment DO group (Group B, average DO concentration of 2.50±0.24mg/L) and the aerated treatment group (Group C, average DO concentration of 5.63±0.57mg/L). Feeding with 200mg/L of NO3(-)-N, the NO3(-)-N removal rates were 1.53, 1.60 and 1.42kg/m(3) PCL/day in Groups A, B and C, respectively. No significant difference in NO3(-)-N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated. PMID:27155419

  16. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination

    USGS Publications Warehouse

    Smith, R.L.; Ceazan, M.L.; Brooks, M.H.

    1994-01-01

    Addition of hydrogen or formate significantly enhanced the rate of consumption of nitrate in slurried core samples obtained from an active zone of denitrification in a nitrate-contaminated sand and gravel aquifer (Cape Cod, Mass.). Hydrogen uptake by the core material was immediate and rapid, with an apparent K(m) of 0.45 to 0.60 ??M and a V(max) of 18.7 nmol cm-3 h-1 at 30??C. Nine strains of hydrogen-oxidizing denitrifying bacteria were subsequently isolated from the aquifer. Eight of the strains grew autotrophically on hydrogen with either oxygen or nitrate as the electron acceptor. One strain grew mixotrophically. All of the isolates were capable of heterotrophic growth, but none were similar to Paracoccus denitrificans, a well-characterized hydrogen-oxidizing denitrifier. The kinetics for hydrogen uptake during denitrification were determined for each isolate with substrate depletion progress curves; the K(m)s ranged from 0.30 to 3.32 ??M, with V(max)s of 1.85 to 13.29 fmol cell-1 h-1. Because these organisms appear to be common constituents of the in situ population of the aquifer, produce innocuous end products, and could be manipulated to sequentially consume oxygen and then nitrate when both were present, these results suggest that these organisms may have significant potential for in situ bioremediation of nitrate contamination in groundwater.

  17. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination.

    PubMed

    Smith, R L; Ceazan, M L; Brooks, M H

    1994-06-01

    Addition of hydrogen or formate significantly enhanced the rate of consumption of nitrate in slurried core samples obtained from an active zone of denitrification in a nitrate-contaminated sand and gravel aquifer (Cape Cod, Mass.). Hydrogen uptake by the core material was immediate and rapid, with an apparent K(m) of 0.45 to 0.60 muM and a V(max) of 18.7 nmol cm h at 30 degrees C. Nine strains of hydrogen-oxidizing denitrifying bacteria were subsequently isolated from the aquifer. Eight of the strains grew autotrophically on hydrogen with either oxygen or nitrate as the electron acceptor. One strain grew mixotrophically. All of the isolates were capable of heterotrophic growth, but none were similar to Paracoccus denitrificans, a well-characterized hydrogen-oxidizing denitrifier. The kinetics for hydrogen uptake during denitrification were determined for each isolate with substrate depletion progress curves; the K(m)s ranged from 0.30 to 3.32 muM, with V(max)s of 1.85 to 13.29 fmol cell h. Because these organisms appear to be common constituents of the in situ population of the aquifer, produce innocuous end products, and could be manipulated to sequentially consume oxygen and then nitrate when both were present, these results suggest that these organisms may have significant potential for in situ bioremediation of nitrate contamination in groundwater.

  18. (Per)Chlorate-Reducing Bacteria Can Utilize Aerobic and Anaerobic Pathways of Aromatic Degradation with (Per)Chlorate as an Electron Acceptor

    PubMed Central

    Carlström, Charlotte I.; Loutey, Dana; Bauer, Stefan; Clark, Iain C.; Rohde, Robert A.; Iavarone, Anthony T.; Lucas, Lauren

    2015-01-01

    ABSTRACT The pathways involved in aromatic compound oxidation under perchlorate and chlorate [collectively known as (per)chlorate]-reducing conditions are poorly understood. Previous studies suggest that these are oxygenase-dependent pathways involving O2 biogenically produced during (per)chlorate respiration. Recently, we described Sedimenticola selenatireducens CUZ and Dechloromarinus chlorophilus NSS, which oxidized phenylacetate and benzoate, two key intermediates in aromatic compound catabolism, coupled to the reduction of perchlorate or chlorate, respectively, and nitrate. While strain CUZ also oxidized benzoate and phenylacetate with oxygen as an electron acceptor, strain NSS oxidized only the latter, even at a very low oxygen concentration (1%, vol/vol). Strains CUZ and NSS contain similar genes for both the anaerobic and aerobic-hybrid pathways of benzoate and phenylacetate degradation; however, the key genes (paaABCD) encoding the epoxidase of the aerobic-hybrid phenylacetate pathway were not found in either genome. By using transcriptomics and proteomics, as well as by monitoring metabolic intermediates, we investigated the utilization of the anaerobic and aerobic-hybrid pathways on different electron acceptors. For strain CUZ, the results indicated utilization of the anaerobic pathways with perchlorate and nitrate as electron acceptors and of the aerobic-hybrid pathways in the presence of oxygen. In contrast, proteomic results suggest that strain NSS may use a combination of the anaerobic and aerobic-hybrid pathways when growing on phenylacetate with chlorate. Though microbial (per)chlorate reduction produces molecular oxygen through the dismutation of chlorite (ClO2−), this study demonstrates that anaerobic pathways for the degradation of aromatics can still be utilized by these novel organisms. PMID:25805732

  19. Accurate and precise quantification of atmospheric nitrate in streams draining land of various uses by using triple oxygen isotopes as tracers

    NASA Astrophysics Data System (ADS)

    Tsunogai, Urumu; Miyauchi, Takanori; Ohyama, Takuya; Komatsu, Daisuke D.; Nakagawa, Fumiko; Obata, Yusuke; Sato, Keiichi; Ohizumi, Tsuyoshi

    2016-06-01

    Land use in a catchment area has significant impacts on nitrate eluted from the catchment, including atmospheric nitrate deposited onto the catchment area and remineralised nitrate produced within the catchment area. Although the stable isotopic compositions of nitrate eluted from a catchment can be a useful tracer to quantify the land use influences on the sources and behaviour of the nitrate, it is best to determine these for the remineralised portion of the nitrate separately from the unprocessed atmospheric nitrate to obtain a more accurate and precise quantification of the land use influences. In this study, we determined the spatial distribution and seasonal variation of stable isotopic compositions of nitrate for more than 30 streams within the same watershed, the Lake Biwa watershed in Japan, in order to use 17O excess (Δ17O) of nitrate as an additional tracer to quantify the mole fraction of atmospheric nitrate accurately and precisely. The stable isotopic compositions, including Δ17O of nitrate, in precipitation (wet deposition; n = 196) sampled at the Sado-seki monitoring station were also determined for 3 years. The deposited nitrate showed large 17O excesses similar to those already reported for midlatitudes: Δ17O values ranged from +18.6 to +32.4 ‰ with a 3-year average of +26.3 ‰. However, nitrate in each inflow stream showed small annual average Δ17O values ranging from +0.5 to +3.1 ‰, which corresponds to mole fractions of unprocessed atmospheric nitrate to total nitrate from (1.8 ± 0.3) to (11.8 ± 1.8) % respectively, with an average for all inflow streams of (5.1 ± 0.5) %. Although the annual average Δ17O values tended to be smaller in accordance with the increase in annual average stream nitrate concentration from 12.7 to 106.2 µmol L-1, the absolute concentrations of unprocessed atmospheric nitrate were almost stable at (2.3 ± 1.1) µmol L-1 irrespective of the changes in population density and land use in each catchment area

  20. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source. PMID:26783836

  1. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source.

  2. Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM2.5 in Beijing

    NASA Astrophysics Data System (ADS)

    Lin, Yan; Ma, Yiqiu; Qiu, Xinghua; Li, Ran; Fang, Yanhua; Wang, Junxia; Zhu, Yifang; Hu, Di

    2015-07-01

    Fine particulate matter (PM2.5) is a significant health issue in Chinese megacities. However, little information is available regarding the PM2.5-bound toxic organics, especially their sources, atmospheric transformations, and health implications. In this study, we assessed the levels of polycyclic aromatic hydrocarbons (PAHs) and their nitrated, hydroxylated, and oxygenated derivatives (i.e., NPAHs, OHPAHs, and OPAHs, respectively) in PM2.5 collected in Beijing over a 1 year period. The median concentration of 23 PAHs, 15 NPAHs, 16 OHPAHs, and 7 OPAHs in PM2.5 was 53.8, 1.14, 1.40, and 3.62 ng m-3, respectively. Much higher concentrations and mass percentages for all species were observed in the heating season, indicating a higher toxicity of PM2.5 during this period of time. Positive matrix factorization was applied to apportion the sources of PAHs and their derivatives. It was found that traffic emissions in the nonheating season, and coal combustion and biomass burning in the heating season, were the major primary sources of PAHs and their derivatives. Secondary formation, however, contributed significantly to the derivatives of PAHs (especially NPAHs and OPAHs) in the nonheating season, suggesting significant impacts of atmospheric transformation on the toxicity of PM2.5.

  3. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  4. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes.

    PubMed

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  5. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes.

    PubMed

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations.

  6. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes

    PubMed Central

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  7. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  8. Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor.

    PubMed

    Ziv-El, Michal C; Rittmann, Bruce E

    2009-01-01

    To evaluate the simultaneous reduction kinetics of the oxidized compounds, we treated nitrate-contaminated groundwater (approximately 9.4 mg-N/L) containing low concentrations of perchlorate (approximately 12.5 microg/L) and saturated with dissolved oxygen (approximately 8 mg/L) in a hydrogen-based membrane biofilm reactor (MBfR). We systematically increased the hydrogen availability and simultaneously varied the surface loading of the oxidized compounds on the biofilm in order to provide a comprehensive, quantitative data set with which to evaluate the relationship between electron donor (H(2)) availability, surface loading of the electron acceptors (oxidized compounds), and simultaneous bioreduction of the electron acceptors. Increasing the H(2) pressure delivered more H(2) gas, and the total H(2) flux increased linearly from approximately 0.04 mg/cm(2)-d for 0.5 psig (0.034 atm) to 0.13 mg/cm(2)-d for 9.5 psig (0.65 atm). This increased rate of H(2) delivery allowed for continued reduction of the acceptors as their surface loading increased. The electron acceptors had a clear hydrogen-utilization order when the availability of hydrogen was limited: oxygen, nitrate, nitrite, and then perchlorate. Spiking the influent with perchlorate or nitrate allowed us to identify the maximum surface loadings that still achieved more than 99.5% reduction of both oxidized contaminants: 0.21 mg NO(3)-N/cm(2)-d and 3.4 microg ClO(4)/cm(2)-d. Both maximum values appear to be controlled by factors other than hydrogen availability.

  9. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.

    PubMed

    Wu, Chao; Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Wen-Wei; Li, Dao-Bo; Yu, Han-Qing

    2013-05-01

    Shewanella oneidensis MR-1 is an extensively studied dissimilatory metal-reducing bacterium with a great potential for bioremediation and electricity generation. It secretes flavins as electron shuttles which play an important role in extracellular electron transfer. However, the influence of various environmental factors on the secretion of flavins is largely unknown. Here, the effects of electron acceptors, including fumarate, ferrihydrite, Fe(III)-nitrilotriacetic acid (NTA), nitrate and trimethylamine oxide (TMAO), on the secretion of flavins were investigated. The level of riboflavin and riboflavin-5'-phosphate (FMN) secreted by S. oneidensis MR-1 varied considerably with different electron acceptors. While nitrate and ferrihydrite suppressed the secretion of flavins in relative to fumarate, Fe(III)-NTA and TMAO promoted such a secretion and greatly enhanced ferrihydrite reduction and electricity generation. This work clearly demonstrates that electron acceptors could considerably affect the secretion of flavins and consequent microbial EET. Such impacts of electron acceptors in the environment deserve more attention.

  10. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.

    PubMed

    Wu, Chao; Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Wen-Wei; Li, Dao-Bo; Yu, Han-Qing

    2013-05-01

    Shewanella oneidensis MR-1 is an extensively studied dissimilatory metal-reducing bacterium with a great potential for bioremediation and electricity generation. It secretes flavins as electron shuttles which play an important role in extracellular electron transfer. However, the influence of various environmental factors on the secretion of flavins is largely unknown. Here, the effects of electron acceptors, including fumarate, ferrihydrite, Fe(III)-nitrilotriacetic acid (NTA), nitrate and trimethylamine oxide (TMAO), on the secretion of flavins were investigated. The level of riboflavin and riboflavin-5'-phosphate (FMN) secreted by S. oneidensis MR-1 varied considerably with different electron acceptors. While nitrate and ferrihydrite suppressed the secretion of flavins in relative to fumarate, Fe(III)-NTA and TMAO promoted such a secretion and greatly enhanced ferrihydrite reduction and electricity generation. This work clearly demonstrates that electron acceptors could considerably affect the secretion of flavins and consequent microbial EET. Such impacts of electron acceptors in the environment deserve more attention. PMID:23558182

  11. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi'an, Central China.

    PubMed

    Wei, Chong; Bandowe, Benjamin A Musa; Han, Yongming; Cao, Junji; Zhan, Changlin; Wilcke, Wolfgang

    2015-09-01

    Urban road dusts are carriers of polycyclic aromatic compounds (PACs) and are therefore considered to be a major source of contamination of other environmental compartments and a source of exposure to PACs for urban populations. We determined the occurrence, composition pattern and sources of several PACs (29 alkyl- and parent-PAHs, 15 oxygenated-PAHs (OPAHs), 4 azaarenes (AZAs), and 11 nitrated-PAHs (NPAHs)) in twenty urban road dusts and six suburban surface soils (0-5cm) from Xi'an, central China. The average concentrations of ∑29PAHs, ∑4AZAs, ∑15OPAHs, and ∑11NPAHs were 15767, 673, 4754, and 885 n gg(-1) in road dusts and 2067, 784, 854, and 118 ng g(-1) in surface soils, respectively. The concentrations of most individual PACs were higher in street dusts than suburban soils, particularly for PACs with molecular weight>192 g mol(-1). The enrichment factors of individual PACs were significantly positively correlated with log KOA and log KOW, indicating an increasing deposition and co-sorption of the PACs in urban dusts with decreasing volatility and increasing hydrophobicity. Significant correlations between the concentrations of individual and sum of PACs, carbon fractions (soot and char), and source-characteristic PACs (combustion-derived PAHs and retene, etc.), indicated that PAHs, OPAHs and AZAs were mostly directly emitted from combustion activities and had similar post-emission fates, but NPAHs were possibly more intensely photolyzed after deposition as well as being emitted from vehicle exhaust sources. The incremental lifetime cancer risk (ILCR) resulting from exposure to urban dust bound-PACs was higher than 10(-6), indicating a non-negligible cancer risk to residents of Xi'an.

  12. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel

    NASA Astrophysics Data System (ADS)

    Alves, C. A.; Vicente, A. M. P.; Gomes, J.; Nunes, T.; Duarte, M.; Bandowe, B. A. M.

    2016-11-01

    A sampling campaign of size segregated particulate matter (PM0.5, PM0.5-1, PM1-2.5 and PM2.5-10) was carried out at two sites, one in a road tunnel (Braga, Portugal) and another at an urban background location in the neighbourhood. Particle-bound polycyclic aromatic compounds were extracted with organic solvents and analysed by gas chromatography-mass spectrometry. Twenty six parent and alkyl-polycyclic aromatic hydrocarbons (PAHs), 4 azaarenes (AZAs), 15 nitrated and 15 oxygenated derivatives (NPAHs and OPAHs) were analysed. On average, submicron particles (PM1) in the tunnel comprised 93, 91, 96 and 71% of the total PAHs, OPAHs, NPAHs and AZAs mass in PM10, respectively. Tunnel to outdoor PAH concentration ratios between 10 and 14 reveal the strong contribution of fresh exhaust emissions to the PM loads. The dominant PAHs in the tunnel were pyrene, retene and benzo[ghi]perylene, accounting for 20, 17 and 8% of the total PAH levels in PM10, respectively. Isomer ratios indicated the importance of unburnt fuel as a significant PAH source. The only NPAH consistently present in all samples was 5-nitroacenaphthene. Indanone and 1,8-naphthalic anhydride were the most abundant OPAHs, accounting for 25 and 17% of the total concentrations of this organic class, respectively. Other abundant OPAHs were 1,4-naphthoquinone, 9-fluorenone, 1,2-acenaphthylenequinone and 7H-benz[de]anthracene-7-one. Individual emission factors (μg veh- 1 km- 1) were estimated and compared with those obtained in other tunnel studies.

  13. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): concentrations and sources.

    PubMed

    Albinet, Alexandre; Leoz-Garziandia, Eva; Budzinski, Hélène; Viilenave, Eric

    2007-10-01

    Ambient measurements (gas+particle phases) of 15 polycyclic aromatic hydrocarbons (PAHs), 17 nitrated PAHs (NPAHs) and 9 oxygenated PAHs (OPAHs) were carried out during July 2004 on three different sites (urban, sub-urban and rural) in the region of Marseilles (South of France). Atmospheric concentrations of these classes of polyaromatics are great of interest because of their high potential mutagenicity and carcinogenicity. OPAH concentrations were of the same order of magnitude as those of PAHs while NPAH concentrations were one to two orders lower. 9-Fluorenone and 9,10-anthraquinone were the most abundant OPAHs, accounting for about 60% and 20% of the total OPAH concentration. Respectively 1-and 2-nitronaphthalene were the most abundant NPAHs and were accounting for about 30-50% and 15-30% of the total NPAH concentration. NPAHs and OPAHs concentration levels were consistent with the characteristics of the sampling sites. Study of source specific ratios (2-nitrofluoranthene/1-nitropyrene) clearly showed those primary NPAH sources influence the urban and sub-urban sites whereas production of secondary NPAHs by gas phase reactions was prevalent at the rural site. The study of NPAH and OPAH sources suggested that gasoline engines were an important source of such compounds Whereas the dominant source of 1-nitropyrene, 2-nitrofluorene, 6-nitrochrysene and benz[a]anthracene-7,12-dione seems to be diesel vehicles. Finally, 9,10-anthraquinone presents a double origin: primary diesel emission and photochemical processes. Formation of 9,10-anthraquinone from anthracene ozonation was shown at the rural site. Further investigations will be necessary in order to discriminate when (before or during the sampling) the OPAHs are formed. PMID:17590415

  14. Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida

    PubMed Central

    Piña-Ochoa, Elisa; Høgslund, Signe; Geslin, Emmanuelle; Cedhagen, Tomas; Revsbech, Niels Peter; Nielsen, Lars Peter; Schweizer, Magali; Jorissen, Frans; Rysgaard, Søren; Risgaard-Petersen, Nils

    2009-01-01

    Benthic foraminifers inhabit a wide range of aquatic environments including open marine, brackish, and freshwater environments. Here we show that several different and diverse foraminiferal groups (miliolids, rotaliids, textulariids) and Gromia, another taxon also belonging to Rhizaria, accumulate and respire nitrates through denitrification. The widespread occurrence among distantly related organisms suggests an ancient origin of the trait. The diverse metabolic capacity of these organisms, which enables them to respire with oxygen and nitrate and to sustain respiratory activity even when electron acceptors are absent from the environment, may be one of the reasons for their successful colonization of diverse marine sediment environments. The contribution of eukaryotes to the removal of fixed nitrogen by respiration may equal the importance of bacterial denitrification in ocean sediments. PMID:20080540

  15. Importance of the Two Dissimilatory (Nar) Nitrate Reductases in the Growth and Nitrate Reduction of the Methylotrophic Marine Bacterium Methylophaga nitratireducenticrescens JAM1

    PubMed Central

    Mauffrey, Florian; Martineau, Christine; Villemur, Richard

    2015-01-01

    Methylophaga nitratireducenticrescens JAM1 is the only reported Methylophaga species capable of growing under anaerobic conditions with nitrate as electron acceptor. Its genome encodes a truncated denitrification pathway, which includes two nitrate reductases, Nar1 and Nar2; two nitric oxide reductases, Nor1 and Nor2; and one nitrous oxide reductase, Nos; but no nitrite reductase (NirK or NirS). The transcriptome of strain JAM1 cultivated with nitrate and methanol under anaerobic conditions showed the genes for these enzymes were all expressed. We investigated the importance of Nar1 and Nar2 by knocking out narG1, narG2 or both genes. Measurement of the specific growth rate and the specific nitrate reduction rate of the knockout mutants JAM1ΔnarG1 (Nar1) and JAM1ΔnarG2 (Nar2) clearly demonstrated that both Nar systems contributed to the growth of strain JAM1 under anaerobic conditions, but at different levels. The JAM1ΔnarG1 mutant exhibited an important decrease in the nitrate reduction rate that consequently impaired its growth under anaerobic conditions. In JAM1ΔnarG2, the mutation induced a 20-h lag period before nitrate reduction occurred at specific rate similar to that of strain JAM1. The disruption of narG1 did not affect the expression of narG2. However, the expression of the Nar1 system was highly downregulated in the presence of oxygen with the JAM1ΔnarG2 mutant. These results indicated that Nar1 is the major nitrate reductase in strain JAM1 but Nar2 appears to regulate the expression of Nar1. PMID:26733997

  16. Regulation of Nitrate Assimilation and Nitrate Respiration in Aerobacter aerogenes

    PubMed Central

    Van 'T Riet, J.; Stouthamer, A. H.; Planta, R. J.

    1968-01-01

    The influence of growth conditions on assimilatory and respiratory nitrate reduction in Aerobacter aerogenes was studied. The level of nitrate reductase activity in cells, growing in minimal medium with nitrate as the sole nitrogen source, was much lower under aerobic than anaerobic conditions. Further, the enzyme of the aerobic cultures was very sensitive to sonic disintegration, as distinct from the enzyme of anaerobic cultures. When a culture of A. aerogenes was shifted from anaerobic growth in minimal medium with nitrate and NH4+ to aerobiosis in the same medium, but without NH4+, the production of nitrite stopped instantaneously and the total activity of nitrate reductase decreased sharply. Moreover, there was a lag in growth of about 3 hr after such a shift. After resumption of growth, the total enzymatic activity increased again slowly and simultaneously became gradually sensitive to sonic disintegration. These findings show that oxygen inactivates the anaerobic nitrate reductase and represses its further formation; only after a de novo synthesis of nitrate reductase with an assimilatory function will growth be resumed. The enzyme in aerobic cultures was not significantly inactivated by air, only by pure oxygen. The formation of the assimilatory enzyme complex was repressed, however, by NH4+, under both aerobic and anaerobic conditions. The results indicate that the formation of the assimilatory enzyme complex and that of the respiratory enzyme complex are regulated differently. We suggest that both complexes have a different composition, but that the nitrate reductase in both cases is the same protein. PMID:5726295

  17. Oxygenated, nitrated, methyl and parent polycyclic aromatic hydrocarbons in rivers of Haihe River System, China: occurrence, possible formation, and source and fate in a water-shortage area.

    PubMed

    Qiao, Meng; Qi, Weixiao; Liu, Huijuan; Qu, Jiuhui

    2014-05-15

    Substituted polycyclic aromatic hydrocarbons (SPAHs) occur ubiquitously in the whole global environment as a result of their persistence and widely-spread sources. Some SPAHs show higher toxicities and levels than the corresponding PAHs. Three types of most frequently existing SPAHs, oxygenated-PAHs (OPAHs), nitrated-PAHs (NPAHs), and methyl-PAHs (MPAHs), as well as the 16 priority PAHs were investigated in this study. The purpose was to identify the occurrence, possible transformation, and source and fate of these target compounds in a water shortage area of North China. We took a river system in the water-shortage area in China, the Haihe River System (HRS), as a typical case. The rivers are used for irrigating the farmland in the North of China, which probably introduce these pollutants to the farmland of this area. The MPAHs (0.02-0.40 μg/L in dissolved phase; 0.32-16.54 μg/g in particulate phase), OPAHs (0.06-0.19 μg/L; 0.41-17.98 μg/g), and PAHs (0.16-1.20 μg/L; 1.56-79.38 μg/g) were found in the water samples, but no NPAHs were detected. The concentrations of OPAHs were higher than that of the corresponding PAHs. Seasonal comparison results indicated that the OPAHs, such as anthraquinone and 2-methylanthraquinone, were possibly transformed from the PAHs, particularly at higher temperature. Wastewater treatment plant (WWTP) effluent was deemed to be the major source for the MPAHs (contributing 62.3% and 87.6% to the receiving river in the two seasons), PAHs (68.5% and 89.4%), and especially OPAHs (80.3% and 93.2%) in the rivers. Additionally, the majority of MPAHs (12.4 kg, 80.0% of the total input), OPAHs (16.2 kg, 83.5%), and PAHs (65.9 kg, 93.3%) in the studied months entered the farmland through irrigation.

  18. Oxygenated, nitrated, methyl and parent polycyclic aromatic hydrocarbons in rivers of Haihe River System, China: occurrence, possible formation, and source and fate in a water-shortage area.

    PubMed

    Qiao, Meng; Qi, Weixiao; Liu, Huijuan; Qu, Jiuhui

    2014-05-15

    Substituted polycyclic aromatic hydrocarbons (SPAHs) occur ubiquitously in the whole global environment as a result of their persistence and widely-spread sources. Some SPAHs show higher toxicities and levels than the corresponding PAHs. Three types of most frequently existing SPAHs, oxygenated-PAHs (OPAHs), nitrated-PAHs (NPAHs), and methyl-PAHs (MPAHs), as well as the 16 priority PAHs were investigated in this study. The purpose was to identify the occurrence, possible transformation, and source and fate of these target compounds in a water shortage area of North China. We took a river system in the water-shortage area in China, the Haihe River System (HRS), as a typical case. The rivers are used for irrigating the farmland in the North of China, which probably introduce these pollutants to the farmland of this area. The MPAHs (0.02-0.40 μg/L in dissolved phase; 0.32-16.54 μg/g in particulate phase), OPAHs (0.06-0.19 μg/L; 0.41-17.98 μg/g), and PAHs (0.16-1.20 μg/L; 1.56-79.38 μg/g) were found in the water samples, but no NPAHs were detected. The concentrations of OPAHs were higher than that of the corresponding PAHs. Seasonal comparison results indicated that the OPAHs, such as anthraquinone and 2-methylanthraquinone, were possibly transformed from the PAHs, particularly at higher temperature. Wastewater treatment plant (WWTP) effluent was deemed to be the major source for the MPAHs (contributing 62.3% and 87.6% to the receiving river in the two seasons), PAHs (68.5% and 89.4%), and especially OPAHs (80.3% and 93.2%) in the rivers. Additionally, the majority of MPAHs (12.4 kg, 80.0% of the total input), OPAHs (16.2 kg, 83.5%), and PAHs (65.9 kg, 93.3%) in the studied months entered the farmland through irrigation. PMID:24598148

  19. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  20. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  1. Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition.

    PubMed

    Boopathy, R

    2001-02-01

    The biodegradation of cyclotetramethylenetetranitramine, commonly known as 'high melting explosive' (HMX), under various electron-acceptor conditions was investigated using enrichment cultures developed from the anaerobic digester sludge of Thibodaux sewage treatment plant. The results indicated that the HMX was biodegraded under sulfate reducing, nitrate reducing, fermenting, methanogenic, and mixed electron accepting conditions. However, the rates of degradation varied among the various conditions studied. The fastest removal of HMX (from 22 ppm on day 0 to < 0.05 ppm on day 11) was observed under mixed electron-acceptor conditions, followed in order by sulfate reducing, fermenting, methanogenic, and nitrate reducing conditions. Under aerobic conditions, HMX was not biodegraded, which indicated that HMX degradation takes place under anaerobic conditions via reduction. HMX was converted to methanol and chloroform under mixed electron-acceptor conditions. This study showed evidence for HMX degradation under anaerobic conditions in a mixed microbial population system similar to any contaminated field sites, where a heterogeneous population exists.

  2. The Campylobacter jejuni RacRS system regulates fumarate utilization in a low oxygen environment.

    PubMed

    van der Stel, Anne-Xander; van Mourik, Andries; Heijmen-van Dijk, Linda; Parker, Craig T; Kelly, David J; van de Lest, Chris H A; van Putten, Jos P M; Wösten, Marc M S M

    2015-04-01

    The natural environment of the human pathogen Campylobacter jejuni is the gastrointestinal tract of warm-blooded animals. In the gut, the availability of oxygen is limited; therefore, less efficient electron acceptors such as nitrate or fumarate are used by C. jejuni. The molecular mechanisms that regulate the activity of the highly branched respiratory chain of C. jejuni are still a mystery mainly because C. jejuni lacks homologues of transcription factors known to regulate energy metabolism in other bacteria. Here we demonstrate that dependent on the available electron acceptors the two-component system RacRS controls the production of fumarate from aspartate, as well as its transport and reduction to succinate. Transcription profiling, DNAse protection and functional assays showed that phosphorylated RacR binds to and represses at least five promoter elements located in front of genes involved in the uptake and synthesis of fumarate. The RacRS system is active in the presence of nitrate and trimethyl-amine-N-oxide under oxygen-limited conditions when fumarate is less preferred as an alternative electron acceptor. In the inactive state, RacRS allows utilization of fumarate for respiration. The unique C. jejuni RacRS regulatory system illustrates the disparate evolution of Campylobacter and aids the survival of this pathogen.

  3. Isolation and preliminary characterization of a respiratory nitrate reductase from hydrocarbon-degrading bacterium Gordonia alkanivorans S7.

    PubMed

    Romanowska, Irena; Kwapisz, Ewa; Mitka, Magdalena; Bielecki, Stanisław

    2010-06-01

    Gordonia alkanivorans S7 is an efficient degrader of fuel oil hydrocarbons that can simultaneously utilize oxygen and nitrate as electron acceptors. The respiratory nitrate reductase (Nar) from this organism has been isolated using ion exchange chromatography and gel filtration, and then preliminarily characterized. PAGE, SDS-PAGE and gel filtration chromatography revealed that Nar consisted of three subunits of 103, 53 and 25 kDa. The enzyme was optimally active at pH 7.9 and 40 degrees C. K(m) values for NO(3)(-) (110 microM) and for ClO(3)(-) (138 microM) were determined for a reduced viologen as an electron donor. The purified Nar did not use NADH as the electron donor to reduce nitrate or chlorate. Azide was a strong inhibitor of its activity. Our results imply that enzyme isolated from G. alkanivorans S7 is a respiratory membrane-bound nitrate reductase. This is the first report of purification of a nitrate reductase from Gordonia species.

  4. Denitrification and patterns of electron donors and acceptors in 8 riparian zones with contrasting hydrogeology

    NASA Astrophysics Data System (ADS)

    Vidon, P.; Hill, A.

    2004-12-01

    A better understanding of nitrate removal mechanisms is important for managing the water quality function of stream riparian zones. We examined the linkages between hydrologic flow paths, patterns of electron donors and acceptors and the importance of denitrification as a nitrate removal mechanism in 8 riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Nitrate-N concentrations in shallow groundwater from adjacent cropland declined from levels that were often 10-30 mg L-1 near the field-riparian edge to <1 mg L-1 in the riparian zones throughout the year. Chloride data suggest that dilution cannot account for most of this nitrate decline. Despite contrasting hydrogeologic settings, these riparian zones displayed a well-organized pattern of electron donors and acceptors that resulted from the transport of oxic nitrate-rich groundwater to portions of the riparian zones where low DO concentrations and an increase in DOC concentrations were encountered. The natural abundances of d15N and in situ acetylene injection to piezometers indicate that denitrification is the primary mechanism of nitrate removal in all of the riparian zones. Our data indicate that effective nitrate removal by denitrification occurs in riparian zones with hydric soils as well as in non-hydric riparian zones and that a shallow water table is not always necessary for efficient nitrate removal by denitrification. The location of "hot spots" of denitrification within riparian areas can be explained by the influence of key landscape variables such as slope, sediment texture and depth of confining layers on hydrologic pathways that link supplies of electron donors and acceptors.

  5. Effect of acceptor (Mg) concentration on the electrical resistance at room and high (200 deg. C) temperatures of acceptor (Mg)-doped BaTiO{sub 3} ceramics

    SciTech Connect

    Yoon, Seok-Hyun; Hong, Min-Hee; Hong, Jeong-Oh; Kim, Young-Tae; Hur, Kang-Heon

    2007-09-01

    The behaviors of the electrical resistance at room and high (200 deg. C) temperatures of acceptor (Mg)-doped BaTiO{sub 3} ceramics with the increase of acceptor concentration were investigated. A series of coarse-grained specimens with different acceptor concentrations that were sintered at various oxygen partial pressures was prepared. The critical acceptor concentrations, beyond which the room temperature resistance increases abruptly, were experimentally evaluated and they were found to increase with a decrease in oxygen partial pressure during sintering. Each defect and electron concentrations at sintering and room temperature as a function of acceptor concentration were theoretically calculated. The results calculated could explain the experimentally observed behavior of the resistance versus acceptor concentration. The high (200 deg. C) temperature resistances under high electric field showed resistance degradation critically depending on acceptor concentration in the very small concentration range below {approx}0.1 mol %, which occurred easily with the increase of acceptor concentration. It was explained that such behavior was caused by the variation of potential barrier of grain boundaries for the migration of oxygen vacancies as a function of acceptor concentration.

  6. The use of chlorate, nitrate, and perchlorate to promote crude oil mineralization in salt marsh sediments.

    PubMed

    Brundrett, Maeghan; Horita, Juske; Anderson, Todd; Pardue, John; Reible, Danny; Jackson, W Andrew

    2015-10-01

    Due to the high volume of crude oil released by the Deepwater Horizon oil spill, the salt marshes along the gulf coast were contaminated with crude oil. Biodegradation of crude oil in salt marshes is primarily limited by oxygen availability due to the high organic carbon content of the soil, high flux rate of S(2-), and saturated conditions. Chlorate, nitrate, and perchlorate were evaluated for use as electron acceptors in comparison to oxygen by comparing oil transformation and mineralization in mesocosms consisting of oiled salt marsh sediment from an area impacted by the BP Horizon oil spill. Mineralization rates were determined by measuring CO2 production and δ (13)C of the produced CO2 and compared to transformation evaluated by measuring the alkane/hopane ratios over a 4-month period. Total alkane/hopane ratios decreased (~55-70 %) for all treatments in the following relative order: aerated ≈ chlorate > nitrate > perchlorate. Total CO2 produced was similar between treatments ranging from 550-700 mg CO2-C. The δ (13)C-CO2 values generally ranged between the indigenous carbon and oil values (-17 and -27‰, respectively). Oil mineralization was greatest for the aerated treatments and least for the perchlorate amended. Our results indicate that chlorate has a similar potential as oxygen to support oil mineralization in contaminated salt marshes, but nitrate and perchlorate were less effective. The use of chlorate as a means to promote oil mineralization in situ may be a promising means to remediate contaminated salt marshes while preventing unwanted secondary impacts related to nutrient management as in the case of nitrate amendments. PMID:25854211

  7. The use of chlorate, nitrate, and perchlorate to promote crude oil mineralization in salt marsh sediments.

    PubMed

    Brundrett, Maeghan; Horita, Juske; Anderson, Todd; Pardue, John; Reible, Danny; Jackson, W Andrew

    2015-10-01

    Due to the high volume of crude oil released by the Deepwater Horizon oil spill, the salt marshes along the gulf coast were contaminated with crude oil. Biodegradation of crude oil in salt marshes is primarily limited by oxygen availability due to the high organic carbon content of the soil, high flux rate of S(2-), and saturated conditions. Chlorate, nitrate, and perchlorate were evaluated for use as electron acceptors in comparison to oxygen by comparing oil transformation and mineralization in mesocosms consisting of oiled salt marsh sediment from an area impacted by the BP Horizon oil spill. Mineralization rates were determined by measuring CO2 production and δ (13)C of the produced CO2 and compared to transformation evaluated by measuring the alkane/hopane ratios over a 4-month period. Total alkane/hopane ratios decreased (~55-70 %) for all treatments in the following relative order: aerated ≈ chlorate > nitrate > perchlorate. Total CO2 produced was similar between treatments ranging from 550-700 mg CO2-C. The δ (13)C-CO2 values generally ranged between the indigenous carbon and oil values (-17 and -27‰, respectively). Oil mineralization was greatest for the aerated treatments and least for the perchlorate amended. Our results indicate that chlorate has a similar potential as oxygen to support oil mineralization in contaminated salt marshes, but nitrate and perchlorate were less effective. The use of chlorate as a means to promote oil mineralization in situ may be a promising means to remediate contaminated salt marshes while preventing unwanted secondary impacts related to nutrient management as in the case of nitrate amendments.

  8. Silica Aerogels Doped with Ru(II) Tris 1,l0-Phenanthro1ine)-Electron Acceptor Dyads: Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Kevebtusm Bucgikas; Rawashdeh, Abdel M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2005-01-01

    Complexes 1 and 2 were characterized in fluid and frozen solution and as dopants of silica aerogels. The intramolecular quenching efficiency of pendant 4-benzoyl-N-methylpyridinium group (4BzPy) is solvent dependent: emission is quenched completely in acetonitrile but not in alcohols. On the other hand, N-benzyl-N'-methylviologen (BzMeV) quenches the emission in all solvents completely. The differences are traced electrochemically to a stronger solvation effect by the alcohol in the case of 1. In fiozen matrices or absorbed on the surfaces of silica aerogel, both 1 and 2 are photoluminescent. The lack of quenching has been traced to the environmental rigidity. When doped aerogels are cooled to 77K, the emission shifts to the blue and its intensity increases in analogy to what is observed with Ru(II) complexes in media undergoing fluid-to-rigid transition. The photoluminescence of 1 and 2 from the aerogel is quenched by oxygen diffusing through the pores. In the presence of oxygen, aerogels doped with 1 can modulate their emission over a wider dynamic range than aerogels doped with 2, and both are more sensitive than aerogels doped with Ru(II) tris(1,l0- phenanthroline). In contrast to frozen solutions, the luminescent moieties in the bulk of aerogels kept at 77K are still accessible, leading to more sensitive platforms for oxygen sensors than other ambient temperature configurations.

  9. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    NASA Astrophysics Data System (ADS)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    where pH remains neutral. The "low-acid" oxidation of sulfides with nitrate as an electron acceptor has been demonstrated at the laboratory scale. In 90-day microcosm respirometry experiments, we exposed a mixture of pulverized quartz and pyrite -rich ore to natural, high-nitrate groundwater and inoculated the microcosms with a culture of aerobic and anaerobic nitrate-dependent iron and sulfur-oxidising microorganisms, which were enriched from ore, groundwater and activated waste water. Incubations were performed under both oxic and anoxic conditions, in addition to abiotic controls. Initial results show that oxidation of the sulfides under nitrate-rich and microbially enhanced conditions does produce less acid than the same material under oxic conditions, and to some degree can match the models as long as oxygen ingress can be controlled. These results are the focus of further research into how this process can be enhanced and whether it can be applied in the field. Nitrate-driven oxidation of sulfides could potentially be used as a new approach to reduce acid generation and leaching of contaminants from waste dumps, in a passive or actively managed process designed to deplete and/or ameliorate (i.e. through surface passivation) the mineralogical hazard. Developing our understanding of biological aspects of these processes may also allow testing of longer-term "bio-caps" for various tailings and dump materials.

  10. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOEpatents

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  11. Acceptor-oxygen vacancy defect dipoles and fully coordinated defect centers in a ferroelectric perovskite lattice: Electron paramagnetic resonance analysis of Mn2+ in single crystal BaTiO3

    NASA Astrophysics Data System (ADS)

    Maier, R. A.; Pomorski, T. A.; Lenahan, P. M.; Randall, C. A.

    2015-10-01

    Defect dipoles are significant point defects in perovskite oxides as a result of their impact on oxygen vacancy dynamics. Electron paramagnetic resonance (EPR) was used to investigate the local defect structure of single crystal BaTiO3 doped with manganese. These results, along with a re-analysis of literature data, do not support the conclusion that transition metal-oxygen vacancy nearest neighbor defect dipoles ( M nT i ″ - VO • • ) × in ferroelectric BaTiO3 are majority defect centers as previously reported. Local symmetry analysis of the zero-field splitting term of the spin Hamiltonian supports the assignment of fully coordinated defect centers as opposed to defect dipoles for resonance signals at geff ˜ 2. A newly discovered defect center with g⊥ ˜ 6 is observed in the manganese doped system, and it is argued that this defect center belongs to an associated defect complex or defect dipole. This newly reported strong axial defect center, however, is present in small, minor concentrations compared to the well-known Mn2+ center with zero-field splitting of D ˜ 645 MHz. In regard to relative concentration, it is concluded that the dominant point defect related to the Mn2+ ion doped in BaTiO3 corresponds to B-site substitution with six nearest neighbor anions in octahedral coordination.

  12. Analysis of Shewanella oneidensis Membrane Protein Expression in Response to Electron Acceptor Availability

    SciTech Connect

    Giometti, Carol S.; Khare, Tripti; Verberkmoes, Nathan; O'Loughlin, Ed; Lindberg, Carl; Thompson, Melissa; Hettich, Robert

    2006-04-05

    Shewanella oneidensis MR-1, a gram negative metal-reducing bacterium, can utilize a large number of electron acceptors. In the natural environment, S. oneidensis utilizes insoluble metal oxides as well as soluble terminal electron acceptors. The purpose of this ERSP project is to identify differentially expressed proteins associated with the membranes of S. oneidensis MR-1 cells grown with different electron acceptors, including insoluble metal oxides. We hypothesize that through the use of surface labeling, subcellular fractionation, and a combination of proteome analysis tools, proteins involved in the reduction of different terminal electron acceptors will be elucidated. We are comparing the protein profiles from cells grown with the soluble electron acceptors oxygen and fumarate and with those from cells grown with the insoluble iron oxides goethite, ferrihydrite and lepidocrocite. Comparison of the cell surface proteins isolated from cells grown with oxygen or anaerobically with fumarate revealed an increase in the abundance of over 25 proteins in anaerobic cells, including agglutination protein and flagellin proteins along with the several hypothetical proteins. In addition, the surface protein composition of cells grown with the insoluble iron oxides varies considerably from the protein composition observed with either soluble electron acceptor as well as between the different insoluble acceptors.

  13. Oxidation and mobilization of selenium by nitrate in irrigation drainage

    USGS Publications Warehouse

    Wright, W.G.

    1999-01-01

    Selenium (Se) can be oxidized by nitrate (NO3-) from irrigation on Cretaceous marine shale in western Colorado. Dissolved Se concentrations are positively correlated with dissolved NO3- concentrations in surface water and ground water samples from irrigated areas. Redox conditions dominate in the mobilization of Se in marine shale hydrogeologic settings; dissolved Se concentrations increase with increasing platinum-electrode potentials. Theoretical calculations for the oxidation of Se by NO3- and oxygen show favorable Gibbs free energies for the oxidation of Se by NO3-, indicating NO3- can act as an electron acceptor for the oxidation of Se. Laboratory batch experiments were performed by adding Mancos Shale samples to zero- dissolved-oxygen water containing 0, 5, 50, and 100 mg/L NO3- as N (mg N/L). Samples were incubated in airtight bottles at 25??C for 188 d; samples collected from the batch experiment bottles show increased Se concentrations over time with increased NO3- concentrations. Pseudo first-order rate constants for NO3- oxidation of Se ranged from 0.0007 to 0.0048/d for 0 to 100 mg N/L NO3- concentrations, respectively. Management of N fertilizer applications in Cretaceous shale settings might help to control the oxidation and mobilization of Se and other trace constituents into the environment.

  14. Dual stable isotopic analysis of nitrogen and oxygen to evaluate sources and sinks of atmospheric anthropogenic nitrate in the Colorado Desert

    NASA Astrophysics Data System (ADS)

    Bell, M. D.; Allen, E. B.; Sickman, J. O.

    2010-12-01

    Industrial, automotive, and agricultural emissions release nitrogen into the atmosphere which is subsequently deposited to the surrounding terrestrial ecosystem. The Colorado Desert is impacted by nitrogen deposition from the west due to inputs from the Los Angeles air basin as well as nearby sources from agriculture in the Coachella Valley (CV). Current research within the Colorado Desert has demonstrated that anthropogenic N deposition contributes to the increased biomass of exotic invasive grasses, which compete with native species and can create enough biomass to carry fire in areas of high deposition. To measure the anthropogenic nitrogen within the CV, an array of passive air samplers was erected spanning the valley from west to east. Each sampler contained filters to passively collect both nitric acid and ammonia ions. To evaluate the degree to which the local ecosystem is supplemented by atmospheric N and determine how nitrogen pools are transformed, surface soil and leaf tissue of the dominant shrub, Larrea tridentata, were collected at each site. Only nitrate data from the samplers has currently been analyzed. δ15N, δ17O, and δ18O were obtained from atmospheric and 1M KCl soil extracts using dual isotopic analysis of NO3-. δ15N of vegetation was obtained through combustion of dried leaf tissue. The highest concentrations of atmospheric nitrate are located on the western edge of the desert in the direction toward Los Angeles, and there is also high nitrate near the Salton Sea. The isoscape produced by the isotopic analysis provides a map further describing how NO3- molecules are moving through the desert. This map shows which sources are influencing deposition sinks across the valley. Soil concentrations of nitrogen increase along the same gradient and have an inverse relationship with δ15N. Plant tissue is also less enriched in δ15N at high deposition sites, which correlates with soil values and may be caused by increased fractionation of nitrogen

  15. FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE

    DOEpatents

    Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

    1962-06-26

    A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

  16. Acceptor conductivity in bulk zinc oxide (0001) crystals

    NASA Astrophysics Data System (ADS)

    Adekore, Bababunmi Tolu

    ZnO is a promising wide bandgap semiconductor. Its renowned and prominent properties as its bandgap of 3.37eV at 4.2K; its very high excitonic binding energy, 60meV; its high melting temperature, 2248K constitute the basis for the recently renewed and sustained scientific interests in the material. In addition to the foregoing, the availability of bulk substrates of industrially relevant sizes provides important opportunities such as homoepitaxial deposition of the material which is a technological asset in the production of efficient optoelectronic and electronic devices. The nemesis of wide bandgap materials cannot be more exemplified than in ZnO. The notorious limitation of asymmetric doping and the haunting plague of electrically active point defects dim the bright future of the material. In this case, the search for reliable and consistent acceptor conductivity in bulk substrates has been hitherto, unsuccessful. In the dissertation that now follows, our efforts have been concerted in the search for a reliable acceptor. We have carefully investigated the science of point defects in the material, especially those responsible for the high donor conductivity. We also investigated and herein report variety of techniques of introducing acceptors into the material. We employ the most relevant and informative characterization techniques in verifying both the intended conductivity and the response of intrinsic crystals to variation in temperature and strain. And finally we explain deviations, where they exist, from ideal acceptor characteristics. Our work on reliable acceptor has been articulated in four papers. The first establishing capacitance based methods of monitoring electrically active donor defects. The second investigates the nature of anion acceptors on the oxygen sublattice. A study similar to the preceding study was conducted for cation acceptors on the zinc sublattice and reported in the third paper. Finally, an analysis of the response of the crystal to

  17. Mechanisms of electron acceptor utilization: Implications for simulating anaerobic biodegradation

    USGS Publications Warehouse

    Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr, J.M.

    2004-01-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum- contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  18. Insights on alterations to the rumen ecosystem by nitrate and nitrocompounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate and certain short chain nitrocompounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of metha...

  19. Microbial Uranium Immobilization Independent of Nitrate Reduction

    SciTech Connect

    Madden, Andrew; Smith, April; Balkwill, Dr. David; Fagan, Lisa Anne; Phelps, Tommy Joe

    2007-01-01

    At many uranium processing and handling facilities, including sites in the U.S. Department of Energy (DOE) complex, high levels of nitrate are present as co-contamination with uranium in groundwater. The daunting prospect of complete nitrate removal prior to the reduction of uranium provides a strong incentive to explore bioremediation strategies that allow for uranium bioreduction and stabilization in the presence of nitrate. Typical in-situ strategies involving the stimulation of metal-reducing bacteria are hindered by low pH environments at this study site and require that the persistent nitrate must first and continuously be removed or transformed prior to uranium being a preferred electron acceptor. This project investigates the possibility of stimulating nitrate-indifferent, pH-tolerant microorganisms to achieve bioreduction of U(VI) despite nitrate persistence. Successful enrichments from U-contaminated sediments demonstrated nearly complete reduction of uranium with very little loss of nitrate from pH 4.9-5.6 using methanol or glycerol as a carbon source. Higher pH enrichments also demonstrated similar U reduction capacity with 5-30% nitrate loss within one week. Bacterial 16S rRNA genes were amplified from uranium-reducing enrichments (pH 5.7-6.7) and sequenced. Phylogenetic analyses classified the clone sequences into four distinct clusters. Data from sequencing and T-RFLP profiles indicated that the majority of the microorganisms stimulated by these enrichment conditions consisted of low G+C Gram-positive bacteria most closely related to Clostridium and Clostridium-like organisms. This research demonstrates that the stimulation of a natural microbial community to immobilize U through bioreduction is possible without the removal of nitrate.

  20. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids

    SciTech Connect

    Haeggblom, M.M.; Rivera, M.D.; Young, L.Y.

    1993-01-01

    Nitrate, sulfate, and carbonate were used as electron acceptors to examine the anaerobic biodegradability of chlorinated aromatic compounds in estuarine and freshwater sediments. The respective denitrifying, sulfidogenic, and methanogenic enrichment cultures were established on each of the monochlorinated phenol and monochlorinated benzoic acid isomers, using sediment from the upper (freshwater) and lower (estuarine) Hudson River and the East River (estuarine) as source materials. (Copyright (c) 1993 American Society for Microbiology.)

  1. Modeling the long-term fate of agricultural nitrate in groundwater in the San Joaquin Valley, California

    USGS Publications Warehouse

    Chapelle, Francis H.; Campbell, Bruce G.; Widdowson, Mark A.; Landon, Mathew K.

    2013-01-01

    (POC) are the primary electron donors driving active denitrification in groundwater. The purpose of this chapter is to use a numerical mass balance modeling approach to quantitatively compare sources of electron donors (DOC, POC) and electron acceptors (dissolved oxygen, nitrate, and ferric iron) in order to assess the potential for denitrification to attenuate nitrate migration in the Central Valley aquifer.

  2. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-24

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state.

  3. The Periplasmic Nitrate Reductase Nap Is Required for Anaerobic Growth and Involved in Redox Control of Magnetite Biomineralization in Magnetospirillum gryphiswaldense

    PubMed Central

    Li, Yingjie; Katzmann, Emanuel; Borg, Sarah

    2012-01-01

    The magnetosomes of many magnetotactic bacteria consist of membrane-enveloped magnetite crystals, whose synthesis is favored by a low redox potential. However, the cellular redox processes governing the biomineralization of the mixed-valence iron oxide have remained unknown. Here, we show that in the alphaproteobacterium Magnetospirillum gryphiswaldense, magnetite biomineralization is linked to dissimilatory nitrate reduction. A complete denitrification pathway, including gene functions for nitrate (nap), nitrite (nir), nitric oxide (nor), and nitrous oxide reduction (nos), was identified. Transcriptional gusA fusions as reporters revealed that except for nap, the highest expression of the denitrification genes coincided with conditions permitting maximum magnetite synthesis. Whereas microaerobic denitrification overlapped with oxygen respiration, nitrate was the only electron acceptor supporting growth in the entire absence of oxygen, and only the deletion of nap genes, encoding a periplasmic nitrate reductase, and not deletion of nor or nos genes, abolished anaerobic growth and also delayed aerobic growth in both nitrate and ammonium media. While loss of nosZ or norCB had no or relatively weak effects on magnetosome synthesis, deletion of nap severely impaired magnetite biomineralization and resulted in fewer, smaller, and irregular crystals during denitrification and also microaerobic respiration, probably by disturbing the proper redox balance required for magnetite synthesis. In contrast to the case for the wild type, biomineralization in Δnap cells was independent of the oxidation state of carbon substrates. Altogether, our data demonstrate that in addition to its essential role in anaerobic respiration, the periplasmic nitrate reductase Nap has a further key function by participating in redox reactions required for magnetite biomineralization. PMID:22730130

  4. The periplasmic nitrate reductase nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense.

    PubMed

    Li, Yingjie; Katzmann, Emanuel; Borg, Sarah; Schüler, Dirk

    2012-09-01

    The magnetosomes of many magnetotactic bacteria consist of membrane-enveloped magnetite crystals, whose synthesis is favored by a low redox potential. However, the cellular redox processes governing the biomineralization of the mixed-valence iron oxide have remained unknown. Here, we show that in the alphaproteobacterium Magnetospirillum gryphiswaldense, magnetite biomineralization is linked to dissimilatory nitrate reduction. A complete denitrification pathway, including gene functions for nitrate (nap), nitrite (nir), nitric oxide (nor), and nitrous oxide reduction (nos), was identified. Transcriptional gusA fusions as reporters revealed that except for nap, the highest expression of the denitrification genes coincided with conditions permitting maximum magnetite synthesis. Whereas microaerobic denitrification overlapped with oxygen respiration, nitrate was the only electron acceptor supporting growth in the entire absence of oxygen, and only the deletion of nap genes, encoding a periplasmic nitrate reductase, and not deletion of nor or nos genes, abolished anaerobic growth and also delayed aerobic growth in both nitrate and ammonium media. While loss of nosZ or norCB had no or relatively weak effects on magnetosome synthesis, deletion of nap severely impaired magnetite biomineralization and resulted in fewer, smaller, and irregular crystals during denitrification and also microaerobic respiration, probably by disturbing the proper redox balance required for magnetite synthesis. In contrast to the case for the wild type, biomineralization in Δnap cells was independent of the oxidation state of carbon substrates. Altogether, our data demonstrate that in addition to its essential role in anaerobic respiration, the periplasmic nitrate reductase Nap has a further key function by participating in redox reactions required for magnetite biomineralization.

  5. Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    PubMed Central

    Papaspyrou, Sokratis; Smith, Cindy J.; Dong, Liang F.; Whitby, Corinne; Dumbrell, Alex J.; Nedwell, David B.

    2014-01-01

    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This

  6. Approximate prediction of melting point of nitramines, nitrate esters, nitrate salts and nitroaliphatics energetic compounds.

    PubMed

    Keshavarz, Mohammad Hossein

    2006-12-01

    A simple new procedure is introduced to predict melting point of selected class of energetic compounds containing nitramines, nitrate esters, nitrate salts and nitroaliphatics energetic compounds. The number of nitrogen and oxygen as well as the number of nitramine group and the contribution of some specific functional groups would be needed in the new method. Energetic compounds should contain at least one of the functional groups including N-NO(2), C-ONO(2) or nonaromatic C-NO(2). Calculated melting point for 33 nitramines, nitrate esters, nitrate salt and nitroaliphatics are compared with experimental data. Predicted melting points have average deviation of 5.4% for these energetic compounds.

  7. Oxygen defects in phosphorene.

    PubMed

    Ziletti, A; Carvalho, A; Campbell, D K; Coker, D F; Castro Neto, A H

    2015-01-30

    Surface reactions with oxygen are a fundamental cause of the degradation of phosphorene. Using first-principles calculations, we show that for each oxygen atom adsorbed onto phosphorene there is an energy release of about 2 eV. Although the most stable oxygen adsorbed forms are electrically inactive and lead only to minor distortions of the lattice, there are low energy metastable forms which introduce deep donor and/or acceptor levels in the gap. We also propose a mechanism for phosphorene oxidation involving reactive dangling oxygen atoms and we suggest that dangling oxygen atoms increase the hydrophilicity of phosphorene.

  8. Microbiology to help solve our energy needs: methanogenesis from oil and the impact of nitrate on the oil-field sulfur cycle.

    PubMed

    Grigoryan, Alexander; Voordouw, Gerrit

    2008-03-01

    Our society depends greatly on fossil fuels, and the environmental consequences of this are well known and include significant increases of the CO(2) concentration in the earth's atmosphere. Although microbiology has traditionally played only a minor role in fossil-fuel extraction, two novel key discoveries indicate that this may change. First, the realization that oil components can be converted to methane and CO(2) by methanogenic consortia in the absence of electron acceptors (oxygen, nitrate, sulfate) explains how much of the world's oil has been biodegraded in situ. In addition to inorganic nutrients, only water is needed for these methanogenic conversions. Hence, continued methanogenic biodegradation may have shaped the heavy-oil reservoirs that are so prevalent today. The potential to exploit these reactions, for example, by in situ gasification, is currently being actively investigated. Second, injection of nitrate in oil and gas fields can lower sulfide concentrations. High sulfide concentrations, caused by the action of sulfate-reducing bacteria (SRB), are associated with increased risk of corrosion, reservoir plugging (through precipitated sulfides), and human safety. Nitrate injection into an oil field stimulates subsurface heterotrophic nitrate-reducing bacteria (hNRB) and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Nitrite, formed by these NRB by partial reduction of nitrate, is a strong and specific SRB inhibitor. Nitrate injection has, therefore, promise in positively controlling the oil-field sulfur cycle. There is now more interest in and potential to apply petroleum microbiology than there has been in the past, allowing microbiologists to contribute to a sustainable energy future. PMID:18378604

  9. Microbial uranium immobilization independent of nitrate reduction.

    PubMed

    Madden, Andrew S; Smith, April C; Balkwill, David L; Fagan, Lisa A; Phelps, Tommy J

    2007-09-01

    At many uranium processing and handling facilities, including sites in the US Department of Energy (DOE) complex, high levels of nitrate are present as co-contamination with uranium in groundwater. The daunting prospect of complete nitrate removal prior to the reduction of uranium provides a strong incentive to explore bioremediation strategies that allow for uranium bioreduction and stabilization in the presence of nitrate. Typical in situ strategies involving the stimulation of metal-reducing bacteria are hindered by low-pH environments and require that the persistent nitrate must first and continuously be removed or transformed prior to uranium being a preferred electron acceptor. This work investigated the possibility of stimulating nitrate-indifferent, pH-tolerant microorganisms to achieve bioreduction of U(VI) despite nitrate persistence. Enrichments from U-contaminated sediments demonstrated nearly complete reduction of uranium with very little loss of nitrate from pH 5.7-6.2 using methanol or glycerol as a carbon source. Bacterial 16S rRNA genes were amplified from uranium-reducing enrichments (pH 5.7-6.2) and sequenced. Phylogenetic analyses classified the clone sequences into four distinct clusters. Data from sequencing and terminal-restriction fragment length polymorphism (T-RFLP) profiles indicated that the majority of the microorganisms stimulated by these enrichment conditions consisted of low G+C Gram-positive bacteria most closely related to Clostridium and Clostridium-like organisms. This research demonstrates that the stimulation of a natural microbial community to immobilize U through bioreduction is possible without the removal of nitrate.

  10. A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC-NICIMS.

    PubMed

    Albinet, A; Nalin, F; Tomaz, S; Beaumont, J; Lestremau, F

    2014-05-01

    An extraction procedure based on the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) approach has been developed and used for analysis of particle-bound nitrated and oxygenated PAH derivatives (NPAH and OPAH, respectively). Several analytical conditions, for example GC injection temperature and MS detection settings, were optimized. This analytical procedure enabled simultaneous GC-NICIMS quantification of 32 NPAH and 32 OPAH (or other oxygenated compounds), including typical components of secondary organic aerosol (SOA) formed by photooxidation of PAH (e.g. 2-formyl-trans-cinnamaldehyde and 6H-dibenzo[b,d]pyran-6-one). The QuEChERS-like approach was optimized, including the nature of the extraction solvent, the sorbent used for clean-up, and extraction time. The final extraction procedure was based on brief mechanical agitation (vortex mixing for 1.5 min), with 7 mL acetonitrile as solvent. Because dispersive solid-phase extraction (d-SPE) did not provide satisfactory results, SPE using SiO2 was selected for sample purification. Identical results were obtained when the QuEChERS-like and traditional pressurised solvent extraction (PLE) procedures were compared for analysis of fortified ambient air particle samples. The procedure was validated by analysis of two aerosol standard reference materials (NIST SRM 1649b (urban dust) and SRM 2787 (fine particulate matter, <10 μm)). For numerous NPAH and OPAH, this is the first report of their quantification in both SRMs. Compared with other extraction methods, including PLE, the QuEChERS-like procedure resulted in increased productivity and reduced extraction cost. This paper shows that QuEChERS-like extraction procedures can be suitably adapted for molecular chemical characterization of aerosol samples and could be extended to other categories of compound. PMID:24705956

  11. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  12. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    PubMed Central

    Balk, Melike; Laverman, Anniet M.; Keuskamp, Joost A.; Laanbroek, Hendrikus J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils. PMID:25784903

  13. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    PubMed

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  14. Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors.

    PubMed Central

    Frébortová, Jitka; Fraaije, Marco W; Galuszka, Petr; Sebela, Marek; Pec, Pavel; Hrbác, Jan; Novák, Ondrej; Bilyeu, Kristin D; English, James T; Frébort, Ivo

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors. PMID:14965342

  15. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments.

    PubMed

    Finneran, Kevin T; Housewright, Meghan E; Lovley, Derek R

    2002-09-01

    Microbiological reduction of soluble U(VI) to insoluble U(IV) has been proposed as a remediation strategy for uranium-contaminated groundwater. Nitrate is a common co-contaminant with uranium. Nitrate inhibited U(VI) reduction in acetate-amended aquifer sediments collected from a uranium-contaminated site in New Mexico. Once nitrate was depleted, both U(VI) and Fe(III) were reduced concurrently. When nitrate was added to sediments in which U(VI) had been reduced, U(VI) reappeared in solution. Parallel studies with the dissimilatory Fe(III)-, U(VI)- and nitrate-reducing microorganism, Geobacter metallireducens, demonstrated that nitrate inhibited reduction of Fe(III) and U(VI) in cell suspensions of cells that had been grown with nitrate as the electron acceptor, but not in Fe(III)-grown cells. Suspensions of nitrate-grown G. metallireducens oxidized Fe(II) and U(IV) with nitrate as the electron acceptor. U(IV) oxidation was accelerated when Fe(II) was also added, presumably due to the Fe(III) being formed abiotically oxidizing U(IV). These studies demonstrate that although the presence of nitrate is not likely to be an impediment to the bioremediation of uranium contamination with microbial U(VI) reduction, it is necessary to reduce nitrate before U(VI) can be reduced. These results also suggest that anaerobic oxidation of U(IV) to U(VI) with nitrate serving as the electron acceptor may provide a novel strategy for solubilizing and extracting microbial U(IV) precipitates from the subsurface.

  16. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  17. Oligosaccharide synthesis by dextransucrase: new unconventional acceptors.

    PubMed

    Demuth, Kristin; Jördening, Hans Joachim; Buchholz, Klaus

    2002-11-01

    The acceptor reactions of dextransucrase offer the potential for a targeted synthesis of a wide range of di-, tri- and higher oligosaccharides by the transfer of a glucosyl group from sucrose to the acceptor. We here report on results which show that the synthetic potential of this enzyme is not restricted to 'normal' saccharides. Additionally functionalized saccharides, such as alditols, aldosuloses, sugar acids, alkyl saccharides, and glycals, and rather unconventional saccharides, such as fructose dianhydride, may also act as acceptors. Some of these acceptors even turned out to be relatively efficient: alpha-D-glucopyranosyl-(1-->5)-D-arabinonic acid, alpha-D-glucopyranosyl-(1-->4)-D-glucitol, alpha-D-glucopyranosyl-(1-->6)-D-glucitol, alpha-D-glucopyranosyl-(1-->6)-D-mannitol, alpha-D-fructofuranosyl-beta-D-fructofuranosyl-(1,2':2,3')-dianhydride, 1,5-anhydro-2-deoxy-D-arabino-hex-1-enitol ('D-glucal'), and may therefore be of interest for future applications of the dextransucrase acceptor reaction.

  18. Competition between Methane and Alkylbenzenes for Electron Acceptors during Natural Attenuation of Crude Oil in the Subsurface

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Amos, R. T.; Cozzarelli, I.; Voytek, M. A.

    2009-12-01

    At a crude-oil spill site near the town of Bemidji, MN, entrapped oil is present at residual saturations exceeding 10% in the vadose zone and floating at the water table at saturations of 30-60%. The degradable fraction of the light crude oil includes n-alkanes, aromatics, and alkyl-cyclohexanes. Together these compounds constitute a reduced carbon concentration at least 500 times greater than is present in the dissolved hydrocarbon groundwater plume comprised mainly of aromatics. Methanogenic degradation of the stationary oil body has been occurring for at least 20 years providing a continuous supply of methane emanating from the oil. Transport of methane away from the oil body occurs in both the vapor phase through the vadose zone and in the dissolved phase with the groundwater flow. Within the vadose zone the supply of oxygen and other electron acceptors from the surface is completely consumed by the process of methane oxidation in a zone 2-3 meters above the water table. In the groundwater, the 1 ppm contour of the methane plume extends beyond the 0.5 ppb contour for benzene, which is located at the aerobic/anaerobic boundary in the plume approximately 120 m downgradient of the oil body. Between 75 m and 120 m downgradient, methane concentrations decrease steadily from >0.6 mmol/L to <0.06 mmol/L, accompanied by increases in the δ13C-CH4 indicating that methane attenuation occurs through microbially-mediated oxidation. Anaerobic methane oxidation under iron-reducing conditions has recently been demonstrated by Beal et al. (Science, 325, 184, 2009) and is indicated at this site by several lines of evidence. In the methane oxidation zone, values of bioavailable Fe(III) extracted from the sediments averaged 8 mmol/kg (n=16), or >8 times the amount required to degrade 0.5 mmol methane, while all other electron acceptors together can account for complete oxidation of only 0.07 mmol (sulfate <0.06 mmol/L, dissolved oxygen <3 µmol/L, and nitrate <0.02 mmol

  19. Organic nitrates and nitrate tolerance--state of the art and future developments.

    PubMed

    Daiber, Andreas; Münzel, Thomas; Gori, Tommaso

    2010-01-01

    The hemodynamic and antiischemic effects of nitroglycerin (GTN) are lost upon chronic administration due to the rapid development of nitrate tolerance. The mechanism of this phenomenon has puzzled several generations of scientists, but recent findings have led to novel hypotheses. The formation of reactive oxygen and nitrogen species in the mitochondria and the subsequent inhibition of the nitrate-bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) appear to play a central role, at least for GTN, that is, bioactivated by ALDH-2. Importantly, these findings provide the opportunity to reconcile the two "traditional" hypotheses of nitrate tolerance, that is, the one postulating a decreased bioactivation and the concurrent one suggesting a role of oxidative stress. Furthermore, recent animal and human experimental studies suggest that the organic nitrates are not a homogeneous group but demonstrate a broad diversity with regard to induction of vascular dysfunction, oxidative stress, and other side effects. In the past, attempts to avoid nitrate-induced side effects have focused on administration schedules that would allow a "nitrate-free interval"; in the future, the role of co-therapies with antioxidant compounds and of activation of endogeneous protective pathways such as the heme oxygenase 1 (HO-1) will need to be explored. However, the development of new nitrates, for example, tolerance-free aminoalkyl nitrates or combination of nitrate groups with established cardiovascular drugs like ACE inhibitors or AT(1)-receptor blockers (hybrid molecules) may be of great clinical interest.

  20. Distant electric coupling between nitrate reduction and sulphide oxidation investigated by an improved nitrate microscale biosensor

    NASA Astrophysics Data System (ADS)

    Marzocchi, U.; Revsbech, N. P.; Nielsen, L. P.; Risgaard-Petersen, N.

    2012-04-01

    Bacteria are apparently able to transmit electrons to other bacteria (Summers et al. 2010) or to electrodes (Malvankar et al. 2011) by some kind of nanowires (Reguera et al. 2005, Gorbi et al. 2006). Lately it has been shown that such transfer may occur over distances of centimetres in sediments, thereby coupling sulphide oxidation in deeper layers with oxygen reduction near the surface (Nielsen 2011). The finding of these long-distance electrical connections originated from analysis of O2, H2S, and pH profiles measured with microsensors. Nitrate is thermodynamically almost as good an electron acceptor as O2, and we therefore set up an experiment to investigate whether long-distance electron transfer also happens with NO3-. Aquaria were filled with sulphidic marine sediment from Aarhus Bay that was previously used to show long-distance electron transfer to O2. The aquaria were equipped with a lid so that they could be completely filled without a gas phase. Anoxic seawater with 300 μM NO3- was supplied at a constant rate resulting in a steady state concentration in the aquatic phase of 250 μM NO3-. The reservoir with the nitrate-containing water was kept anoxic by bubbling it with a N2/CO2 mixture and was kept at an elevated temperature. The water was cooled on the way to the aquaria to keep the water in the aquaria undersaturated with gasses, so that bubble formation by denitrification in the sediment could be minimised. Profiles of NO3-, H2S, and pH were measured as a function of time (2 months) applying commercial sensors for H2S and pH and an improved microscale NO3- biosensor developed in our laboratory. The penetration of NO3- in the sediment was 4-5 mm after 2 months, whereas sulphide only could be detected below 8-9 mm depth. The electron acceptor and electron donor were thus separated by 4-5 mm, indicating long distance electron transfer. A pH maximum of about 8.6 pH units at the NO3- reduction zone similar to a pH maximum observed in the O2 reduction

  1. Donor-acceptor heteroleptic open sandwiches.

    PubMed

    Merino, Gabriel; Beltrán, Hiram I; Vela, Alberto

    2006-02-01

    A series of donor-acceptor heteroleptic open sandwiches with formula CpM-M'Pyl (M = B, Al, Ga; M' = Li, Na; Cp = cyclopentadienyl; Pyl = pentadienyl) has been designed in silico using density functional theory. The most stable complexes are those containing boron as a donor atom. A molecular orbital analysis shows that the s character of the lone pair located at the group 13 element is mainly responsible for the complex stabilization. It is also found that the surrounding medium has a similar effect on these sandwiches such as in the "classical" donor-acceptor complexes, showing a decrement in the group 13 element-alkaline metal bond lengths.

  2. Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations.

    PubMed

    Uribe-Alvarez, Cristina; Chiquete-Félix, Natalia; Contreras-Zentella, Martha; Guerrero-Castillo, Sergio; Peña, Antonio; Uribe-Carvajal, Salvador

    2016-02-01

    Staphylococcus epidermidis has become a major health hazard. It is necessary to study its metabolism and hopefully uncover therapeutic targets. Cultivating S. epidermidis at increasing oxygen concentration [O2] enhanced growth, while inhibiting biofilm formation. Respiratory oxidoreductases were differentially expressed, probably to prevent reactive oxygen species formation. Under aerobiosis, S. epidermidis expressed high oxidoreductase activities, including glycerol-3-phosphate dehydrogenase, pyruvate dehydrogenase, ethanol dehydrogenase and succinate dehydrogenase, as well as cytochromes bo and aa3; while little tendency to form biofilms was observed. Under microaerobiosis, pyruvate dehydrogenase and ethanol dehydrogenase decreased while glycerol-3-phosphate dehydrogenase and succinate dehydrogenase nearly disappeared; cytochrome bo was present; anaerobic nitrate reductase activity was observed; biofilm formation increased slightly. Under anaerobiosis, biofilms grew; low ethanol dehydrogenase, pyruvate dehydrogenase and cytochrome bo were still present; nitrate dehydrogenase was the main terminal electron acceptor. KCN inhibited the aerobic respiratory chain and increased biofilm formation. In contrast, methylamine inhibited both nitrate reductase and biofilm formation. The correlation between the expression and/or activity or redox enzymes and biofilm-formation activities suggests that these are possible therapeutic targets to erradicate S. epidermidis.

  3. Fate of microbial metabolites of hydrocarbons in a coastal plain aquifer: The role of electron acceptors

    USGS Publications Warehouse

    Cozzarelli, I.M.; Herman, J.S.; Baedecker, M. Jo

    1995-01-01

    A combined field and laboratory study was undertaken to understand the distribution and geochemical conditions that influence the prevalence of low molecular weight organic acids in groundwater of a shallow aquifer contaminated with gasoline. Aromatic hydrocarbons from gasoline were degraded by microbially mediated oxidation-reduction reactions, including reduction of nitrate, sulfate, and Fe(III). The biogeochemical reactions changed overtime in response to changes in the hydrogeochemical conditions in the aquifer. Aliphatic and aromatic organic acids were associated with hydrocarbon degradation in anoxic zones of the aquifer. Laboratory microcosms demonstrated that the biogeochemical fate of specific organic acids observed in groundwater varied with the structure of the acid and the availability of electron acceptors. Benzoic and phenylacetic acid were degraded by indigenous aquifer microorganisms when nitrate was supplied as an electron acceptor. Aromatic acids with two or more methyl substituants on the benzene ring persisted under nitrate-reducing conditions. Although iron reduction and sulfate reduction were important processes in situ and occurred in the microcosms, these reactions were not coupled to the biological oxidation of aromatic organic acids that were added to the microcosms as electron donors. ?? 1995 American Chemical Society.

  4. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  5. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33 Section 181.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions...

  6. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  7. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  8. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids

    SciTech Connect

    Haeggblom, M.M.; Rivera, M.D.; Young, L.Y. )

    1993-04-01

    Methanogeneic conditions can promote the biodegradation of a number of halogenated aromatic compounds. This study, using sediments from freshwater and estuarine sites, is an evaluation of the anaerobic biodegradability of monochlorinated phenols and benzoic acids coupled to denitrification, sulfidogenesis, and methanogenesis. The results indicate that chlorinated phenols and benzoic acids are biodegradable under at least one set of anaerobic conditions. Metabolism depends both on the electron acceptor available and on the position of the chlorine substituent. Presence of alternative electron acceptors, nitrate, sulfate, and carbonate, can affect degradation rates and substrate specificities. Since contaminated sites usually have mixtures of wastes, bioremediation efforts may need to consider the activities of diverse anaerobic communities to carry out effective treatment of all components. 37 refs., 4 figs., 4 tabs.

  9. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids

    SciTech Connect

    Haeggblom, M.M.; Rivera, M.D.; Young, L.Y.

    1993-01-01

    Nitrate, sulfate, and carbonate were used as electron acceptors to examine the anaerobic biodegradability of chlorinated aromatic compounds in estuarine and freshwater sediments. The respective denitrifying, sulfidogenic, and methanogenic enrichment cultures were established on each of the monochlorinated phenol and monochlorinated benzoic acid isomers, using sediment from the upper (freshwater) and lower (estuarine) Hudson River and the East River (estuarine) as source materials. Utilization of each chlorophenol and chlorobenzoate isomer was observed under at least one reducing condition; however, no single reducing condition permitted the metabolism of all six compounds tested. The anaerobic biodegradation of the chlorophenols and chlorobenzoates depended on the electron acceptor available and on the position of the chlorine substituent. In general, similar activities were observed under the different reducing conditions in both the freshwater and estuarine sediments.

  10. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  11. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1

    SciTech Connect

    Gerritse, J.; Drzyzga, O.; Kloetstra, G.; Keijmel, M.; Wiersum, L.P.; Hutson, R.; Collins, M.D.; Gottschal, J.C.

    1999-12-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethane (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 {micro}m and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35 C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H{sub 2}, format, L-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except format and H{sub 2}) are oxidized to acetate and CO{sub 2}. when L-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher. Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumate or nitrate.

  12. Influence of Different Electron Donors and Acceptors on Dehalorespiration of Tetrachloroethene by Desulfitobacterium frappieri TCE1

    PubMed Central

    Gerritse, Jan; Drzyzga, Oliver; Kloetstra, Geert; Keijmel, Mischa; Wiersum, Luit P.; Hutson, Roger; Collins, Matthew D.; Gottschal, Jan C.

    1999-01-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 μm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35°C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H2, formate, l-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H2) are oxidized to acetate and CO2. When l-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 μmol of chloride released · min−1 · mg of protein−1). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate. PMID:10583967

  13. Decomposition of plant materials in marine sediment exposed to different electron acceptors (O 2, NO 3-, and SO 42-), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation

    NASA Astrophysics Data System (ADS)

    Kristensen, Erik; Holmer, Marianne

    2001-02-01

    Carbon mineralization of fresh and aged diatoms ( Skeletonema costatum) and barley hay ( Hordeum vulgare) was followed for 23 to 35 d in sandy and silty sediment. By the use of a thin-layer flow-through technique, it was possible to expose the sediment selectively for oxygen, nitrate or sulfate as electron acceptors in the terminal oxidation of organic carbon. Decomposition took place in two basic stages. Mineralization of the rapidly leachable fraction of the fresh materials occurred rapidly and with the same constant rate regardless of the electron acceptor available, indicating that the dissolved organic carbon released initially was labile and readily available for all heterotrophic respirers. In the case of diatoms, decay of the remaining, more refractory, particulate fraction of fresh and aged diatoms were strikingly similar, although both were degraded 5 to 10 times faster under oxic than anoxic conditions. Most of the particulate remains of diatoms after leaching apparently belong to one fraction, which maintains the same degradability even after prolonged aging. With respect to hay, the late divergence in rates of aerobic and anaerobic decay (a factor of 4 to 5 for aged hay only after 20 d) indicated that the larger hay particles (<500 μm) became exhausted in labile organic matter much slower through time than fine-particulate diatoms (˜20 μm). Anaerobic carbon mineralization rates of diatoms and hay particulates with sulfate and nitrate as electron acceptors were similar or up to two times faster with sulfate. The generally low levels of dissolved organic carbon in all incubations after the initial leaching phase suggest that the limiting step of decomposition under both aerobic and anaerobic decay is the initial hydrolytic attack on the complex particulate remains. Based on a volumetric model, we show that the exposure of anoxic subsurface sediment containing partly degraded organic material to oxygen via irrigated worm burrows or by reworking may

  14. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone.

    PubMed

    Lüke, Claudia; Speth, Daan R; Kox, Martine A R; Villanueva, Laura; Jetten, Mike S M

    2016-01-01

    Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different OMZs. In the Arabian Sea, both processes were reported. Here, we performed a metagenomics study of the upper and core zone of the Arabian Sea OMZ, to provide a comprehensive overview of the genetic potential for nitrogen and methane cycling. We propose that aerobic ammonium oxidation is carried out by a diverse community of Thaumarchaeota in the upper zone of the OMZ, whereas a low diversity of Scalindua-like anammox bacteria contribute significantly to nitrogen loss in the core zone. Aerobic nitrite oxidation in the OMZ seems to be performed by Nitrospina spp. and a novel lineage of nitrite oxidizing organisms that is present in roughly equal abundance as Nitrospina. Dissimilatory nitrate reduction to ammonia (DNRA) can be carried out by yet unknown microorganisms harbouring a divergent nrfA gene. The metagenomes do not provide conclusive evidence for active methane cycling; however, a low abundance of novel alkane monooxygenase diversity was detected. Taken together, our approach confirmed the genomic potential for an active nitrogen cycle in the Arabian Sea and allowed detection of hitherto overlooked lineages of carbon and nitrogen cycle bacteria.

  15. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone

    PubMed Central

    Kox, Martine A.R.; Villanueva, Laura; Jetten, Mike S.M.

    2016-01-01

    Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different OMZs. In the Arabian Sea, both processes were reported. Here, we performed a metagenomics study of the upper and core zone of the Arabian Sea OMZ, to provide a comprehensive overview of the genetic potential for nitrogen and methane cycling. We propose that aerobic ammonium oxidation is carried out by a diverse community of Thaumarchaeota in the upper zone of the OMZ, whereas a low diversity of Scalindua-like anammox bacteria contribute significantly to nitrogen loss in the core zone. Aerobic nitrite oxidation in the OMZ seems to be performed by Nitrospina spp. and a novel lineage of nitrite oxidizing organisms that is present in roughly equal abundance as Nitrospina. Dissimilatory nitrate reduction to ammonia (DNRA) can be carried out by yet unknown microorganisms harbouring a divergent nrfA gene. The metagenomes do not provide conclusive evidence for active methane cycling; however, a low abundance of novel alkane monooxygenase diversity was detected. Taken together, our approach confirmed the genomic potential for an active nitrogen cycle in the Arabian Sea and allowed detection of hitherto overlooked lineages of carbon and nitrogen cycle bacteria. PMID:27077014

  16. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone.

    PubMed

    Lüke, Claudia; Speth, Daan R; Kox, Martine A R; Villanueva, Laura; Jetten, Mike S M

    2016-01-01

    Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different OMZs. In the Arabian Sea, both processes were reported. Here, we performed a metagenomics study of the upper and core zone of the Arabian Sea OMZ, to provide a comprehensive overview of the genetic potential for nitrogen and methane cycling. We propose that aerobic ammonium oxidation is carried out by a diverse community of Thaumarchaeota in the upper zone of the OMZ, whereas a low diversity of Scalindua-like anammox bacteria contribute significantly to nitrogen loss in the core zone. Aerobic nitrite oxidation in the OMZ seems to be performed by Nitrospina spp. and a novel lineage of nitrite oxidizing organisms that is present in roughly equal abundance as Nitrospina. Dissimilatory nitrate reduction to ammonia (DNRA) can be carried out by yet unknown microorganisms harbouring a divergent nrfA gene. The metagenomes do not provide conclusive evidence for active methane cycling; however, a low abundance of novel alkane monooxygenase diversity was detected. Taken together, our approach confirmed the genomic potential for an active nitrogen cycle in the Arabian Sea and allowed detection of hitherto overlooked lineages of carbon and nitrogen cycle bacteria. PMID:27077014

  17. Gene regulatory and metabolic adaptation processes of Dinoroseobacter shibae DFL12T during oxygen depletion.

    PubMed

    Laass, Sebastian; Kleist, Sarah; Bill, Nelli; Drüppel, Katharina; Kossmehl, Sebastian; Wöhlbrand, Lars; Rabus, Ralf; Klein, Johannes; Rohde, Manfred; Bartsch, Annekathrin; Wittmann, Christoph; Schmidt-Hohagen, Kerstin; Tielen, Petra; Jahn, Dieter; Schomburg, Dietmar

    2014-05-01

    Metabolic flexibility is the key to the ecological success of the marine Roseobacter clade bacteria. We investigated the metabolic adaptation and the underlying changes in gene expression of Dinoroseobacter shibae DFL12(T) to anoxic life by a combination of metabolome, proteome, and transcriptome analyses. Time-resolved studies during continuous oxygen depletion were performed in a chemostat using nitrate as the terminal electron acceptor. Formation of the denitrification machinery was found enhanced on the transcriptional and proteome level, indicating that D. shibae DFL12(T) established nitrate respiration to compensate for the depletion of the electron acceptor oxygen. In parallel, arginine fermentation was induced. During the transition state, growth and ATP concentration were found to be reduced, as reflected by a decrease of A578 values and viable cell counts. In parallel, the central metabolism, including gluconeogenesis, protein biosynthesis, and purine/pyrimidine synthesis was found transiently reduced in agreement with the decreased demand for cellular building blocks. Surprisingly, an accumulation of poly-3-hydroxybutanoate was observed during prolonged incubation under anoxic conditions. One possible explanation is the storage of accumulated metabolites and the regeneration of NADP(+) from NADPH during poly-3-hydroxybutanoate synthesis (NADPH sink). Although D. shibae DFL12(T) was cultivated in the dark, biosynthesis of bacteriochlorophyll was increased, possibly to prepare for additional energy generation via aerobic anoxygenic photophosphorylation. Overall, oxygen depletion led to a metabolic crisis with partly blocked pathways and the accumulation of metabolites. In response, major energy-consuming processes were reduced until the alternative respiratory denitrification machinery was operative. PMID:24648520

  18. A mixture of nitrite-oxidizing and denitrifying microorganisms affects the δ18O of dissolved nitrate during anaerobic microbial denitrification depending on the δ18O of ambient water

    NASA Astrophysics Data System (ADS)

    Wunderlich, Anja; Meckenstock, Rainer U.; Einsiedl, Florian

    2013-10-01

    with respiratory nitrate reduction. In this context, our hypothesis is a reversibility of the reactions at the NXR enzyme even in the absence of external electron acceptors for nitrite oxidation. We suggest that the presence of nitrite-oxidizing microorganisms in aquatic environments may catalyse such an incorporation of oxygen-atoms stemming from ambient water into nitrate. This process may thus mask the original δ18O value of nitrate sources during denitrification and also distort the observed enrichment of 18O that is ascribed to denitrification. Our results are highly likely an explanation of the deviation of the described variable Δδ18O/Δδ15N ratios for denitrification in terrestrial field studies from the values observed in the laboratory on pure cultures.

  19. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  20. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  1. Nitrate sources and sinks in Elkhorn Slough, California: Results from long-term continuous in situ nitrate analyzers

    USGS Publications Warehouse

    Chapin, T.P.; Caffrey, J.M.; Jannasch, H.W.; Coletti, L.J.; Haskins, J.C.; Johnson, K.S.

    2004-01-01

    Nitrate and water quality parameters (temperature, salinity, dissolved oxygen, turbidity, and depth) were measured continuously with in situ NO 3 analyzers and water quality sondes at two sites in Elkhorn Slough in Central California. The Main Channel site near the mouth of Elkhorn Slough was sampled from February to September 2001. Azevedo Pond, a shallow tidal pond bordering agricultural fields further inland, was sampled from December 1999 to July 2001. Nitrate concentrations were recorded hourly while salinity, temperature, depth, oxygen, and turbidity were recorded every 30 min. Nitrate concentrations at the Main Channel site ranged from 5 to 65 ??M. The propagation of an internal wave carrying water from ???100 m depth up the Monterey Submarine Canyon and into the lower section of Elkhorn Slough on every rising tide was a major source of nitrate, accounting for 80-90% of the nitrogen load during the dry summer period. Nitrate concentrations in Azevedo Pond ranged from 0-20 ??M during the dry summer months. Nitrate in Azevedo Pond increased to over 450 ??M during a heavy winter precipitation event, and interannual variability driven by differences in precipitation was observed. At both sites, tidal cycling was the dominant forcing, often changing nitrate concentrations by 5-fold or more within a few hours. Water volume flux estimates were combined with observed nitrate concentrations to obtain nitrate fluxes. Nitrate flux calculations indicated a loss of 4 mmol NO3 m -2 d-1 for the entire Elkhorn Slough and 1 mmol NO 3 m-2 d-1 at Azevedo Pond. These results suggested that the waters of Elkhorn Slough were not a major source of nitrate to Monterey Bay but actually a nitrate sink during the dry season. The limited winter data at the Main Channel site suggest that nitrate was exported from Elkhorn Slough during the wet season. Export of ammonium or dissolved organic nitrogen, which we did not monitor, may balance some or all of the NO 3 flux.

  2. Cylodextrin Polymer Nitrate

    NASA Technical Reports Server (NTRS)

    Kosowski, Bernard; Ruebner, Anja; Statton, Gary; Robitelle, Danielle; Meyers, Curtis

    2000-01-01

    The development of the use of cyclodextrin nitrates as possible components of insensitive, high-energy energetics is outlined over a time period of 12 years. Four different types of cyclodextrin polymers were synthesized, nitrated, and evaluated regarding their potential use for the military and aerospace community. The synthesis of these novel cyclodextrin polymers and different nitration techniques are shown and the potential of these new materials is discussed.

  3. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  4. Oxygen and life on earth: an anesthesiologist's views on oxygen evolution, discovery, sensing, and utilization.

    PubMed

    Lindahl, Sten G E

    2008-07-01

    The advent of oxygenic photosynthesis and the accumulation of oxygen in our atmosphere opened up new possibilities for the development of life on Earth. The availability of oxygen, the most capable electron acceptor on our planet, allowed the development of highly efficient energy production from oxidative phosphorylation, which shaped the evolutionary development of aerobic life forms from the first multicellular organisms to the vertebrates.

  5. Thermochemical nitrate destruction

    DOEpatents

    Cox, John L.; Hallen, Richard T.; Lilga, Michael A.

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  6. Gallium nitrate revisited.

    PubMed

    Chitambar, Christopher R

    2003-04-01

    Gallium nitrate, the nitrate salt of the "near-metal" element gallium, is highly effective in the treatment of cancer-related hypercalcemia. Unlike bisphosphonates, gallium nitrate is effective in both parathyroid hormone-related protein-mediated and non-parathyroid hormone-related protein-mediated hypercalcemia. Gallium nitrate's effects on bone are clearly different from those of bisphosphonates. Gallium nitrate enhances calcium and phosphate content of bone and has direct, noncytotoxic effects on osteoclasts at markedly lower doses than those used for the treatment of cancer-related hypercalcemia. The drug may have clinical application in a variety of disorders associated with accelerated bone loss, including multiple myeloma. Gallium nitrate was originally evaluated as an antitumor agent. Its antitumor activity occurs at somewhat higher doses than those used in the treatment of cancer-related hypercalcemia. Gallium nitrate has substantial single-agent activity in the treatment of advanced lymphoma, particularly diffuse large cell lymphoma, small lymphocytic lymphoma, and follicular lymphoma. Because of its profile, including a different mechanism of action and minimal myelosuppression, the drug merits further evaluation in the treatment of advanced lymphoma. Gallium nitrate also has activity in advanced bladder cancer and may be useful in patients with metastatic or unresectable disease failing first-line chemotherapy regimens. Gallium nitrate exhibits a range of dose-dependent pharmacologic actions that provide a basis for its therapeutic potential in a variety of diseases and warrants further investigational evaluation as an antiresorptive and antitumor agent. PMID:12776253

  7. Evidence on Anaerobic Methane Oxidation (AOM) in a boreal cultivated peatland with natural and added electron acceptors

    NASA Astrophysics Data System (ADS)

    Dorodnikov, Maxim; Silvennoinen, Hanna; Martikainen, Pertti; Dörsch, Peter

    2015-04-01

    Anaerobic oxidation of methane (AOM) is a process of methane (CH4) consumption under anoxic conditions driven by microorganisms, which oxidize CH4 with various alternate electron acceptors (AEA): sulfate, nitrate, nitrite, metals-(Fe, Mn, Cu), organic compounds. AOM is common in marine ecosystems, where microbial sulfate reduction (SR) consumes most of the CH4 produced in sediments. Despite the global significance of AOM, the exact mechanisms and relevance of the process in terrestrial ecosystems are almost unknown. In the current study the occurrence of AOM was tested for two organic soil horizons (30 and 40 cm depth) and one mineral sub-soil (sand, 50 cm depth) of a cultivated boreal peatland (Linnansuo, Eastern Finland, energy crop Phalaris arundinacea - reed canarygrass) under controlled conditions with the addition of 13C-labeled CH4 and two common AEAs - SO4-2 and Fe+3. Concentrations of CH4, CO2 and O2 were continuously measured during 10 days of incubation and CO2 was sampled periodically under anaerobic conditions for stable 13C analysis. Oxygen dynamics revealed negligible O2 contamination during incubation and its trace amounts (0.05-0.8% from the atmospheric) were accounted in the net CH4 uptake. Application of 13C-enriched CH4 (4.9 atom%) allowed to track the label in CO2 as the end-product of AOM. The highest 13CO2 enrichment (up to 60‰) was observed in mineral sub-soil, however AOM was quantitatively more pronounced in the upper 30 cm horizon (2.1 vs. 0.2 μg CO2 g soil DW-1 in the 50 cm sub-soil). The highest AOM rate of 8.9 ng CO2 g soil DW-1 h-1 was estimated for the control treatment where no AEAs were added indicating sufficient amount of naturally available AEAs, likely organic compounds. This rate was 50 times more intensive (on the C basis) than the CH4 production potential of the same soil. In contrast, external AEAs decreased AOM rates but added Fe+3 stimulated decomposition of native SOM (as seen from the most depleted 13CO2 signatures

  8. Cyanomethylbenzoic acid: an acceptor for donor-π-acceptor chromophores used in dye-sensitized solar cells.

    PubMed

    Xiang, Wanchun; Gupta, Akhil; Kashif, Muhammad Kalim; Duffy, Noel; Bilic, Ante; Evans, Richard A; Spiccia, Leone; Bach, Udo

    2013-02-01

    Sensing the sun: Incorporation of a cyanomethyl benzoic acid electron acceptor into donor-π-acceptor sensitizers for dye-sensitized-solar cell is shown to lead to devices with improved conversion efficiency when compared with more widely used cyanoacetic acid acceptor.

  9. Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments

    NASA Astrophysics Data System (ADS)

    Laverman, Anniet M.; Pallud, Céline; Abell, Jeffrey; Cappellen, Philippe Van

    2012-01-01

    Nitrate and sulfate are two major terminal electron acceptors of anaerobic respiration in nearshore sediments. Potential nitrate and sulfate reduction rates (NRR and SRR) were determined on surficial sediments sampled at 14 sites representing a wide range of shallow-water depositional environments. The rates were obtained by supplying undisturbed slices of sediments with nitrate, sulfate or both using a flow-through reactor technique. No external electron donor was added to the sediments. The results indicate that all studied sediments harbored viable and coexisting nitrate- and sulfate-reducing communities, which were able to instantaneously consume the electron acceptors supplied to the reactors. On average, NRR exceeded SRR by about one order of magnitude (309 ± 180 nmol NO3- cm-3 h-1versus 37 ± 29 nmol SO42- cm-3 h-1). The NRR:SRR molar ratio, however, varied significantly from site to site, with values ranging from 1.7 to 59. Nitrite production, indicative of incomplete nitrate reduction, was observed in all studied sediments and, on average, accounted for 45% of NRR (range 3-80%). Production of sulfate under nitrate-reducing conditions was observed in 10 out of 14 of the studied sediments, suggesting a common occurrence of sulfide oxidation coupled to nitrate reduction. Oxidation of sulfide accounted for 0 to 40% of NRR in the nitrate-only experiments. When both electron acceptors were supplied simultaneously, net sulfate consumption decreased on average by 45%. The effect of nitrate on SRR was highly variable, however, ranging from near complete inhibition to a 25% enhancement of SRR. Overall, the results of this study point to the need to critically reassess the model formulations used to represent anaerobic respiration processes and their interactions in early diagenetic models.

  10. Synthesis of a new energetic nitrate ester

    SciTech Connect

    Chavez, David E

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  11. Preformed Nitrate in the Glacial North Atlantic

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.; D'Hondt, S.; Estes, E. R.; Insua, T. L.; McKinley, C. C.; Murray, R. W.; Pockalny, R. A.; Robinson, R. S.; Sauvage, J.

    2015-12-01

    Atmospheric CO2 abundances are highly correlated with global temperature variations over the past 800,000 years. Consequently, understanding the feedbacks between climate and CO2 is important for predictions of future climate. Leading hypotheses to explain this feedback invoke changes in ocean biology, circulation, chemistry, and/or gas exchange rates to trap CO2 in the deep ocean, thereby reducing the greenhouse effect of CO2 in the atmosphere. To test these hypotheses, we use sediment pore water profiles of dissolved nitrate and oxygen to reconstruct paleo-preformed nitrate concentrations at two deep-water sites in the western North Atlantic (23°N 57°W, 5557 m water depth; 30°N 58°W, 5367 m water depth). Preformed nitrate increases down-core to 22.7 μM (25.6 m core depth) at the northern site, and to 28.5 μM (27.8 m core depth) at the southern site. The large preformed nitrate gradient between these sites reveals a paleo-boundary between a southern water source high in preformed nitrate and a northern water source with lower concentrations, similar to today's ocean. However, the boundary between these water masses occurs north of where their modern counterparts meet, indicating that Antarctic Bottom Water (AABW) extended farther north during the Last Glacial Maximum (LGM). In addition, the southern source had a higher preformed nitrate concentration than today's AABW (25 μM), contradicting hypotheses that nutrient utilization was more efficient in the Southern Ocean deep-water formation regions during the LGM. Comparison to our previous Pacific data reveals that the average preformed nitrate concentration of the deep ocean was slightly higher during the LGM than today. This result implies that the CO2-climate feedback was not principally due to more efficient nitrate utilization.

  12. Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors.

    PubMed

    Zhao, He-Ping; Ontiveros-Valencia, Aura; Tang, Youneng; Kim, Bi-O; Vanginkel, Steven; Friese, David; Overstreet, Ryan; Smith, Jennifer; Evans, Patrick; Krajmalnik-Brown, Rosa; Rittmann, Bruce

    2014-05-01

    We studied the performance of a pilot-scale membrane biofilm reactor (MBfR) treating groundwater containing four electron acceptors: nitrate (NO3(-)), perchlorate (ClO4(-)), sulfate (SO4(2-)), and oxygen (O2). The treatment goal was to remove ClO4(-) from ∼200 μg/L to less than 6 μg/L. The pilot system was operated as two MBfRs in series, and the positions of the lead and lag MBfRs were switched regularly. The lead MBfR removed at least 99% of the O2 and 63-88% of NO3(-), depending on loading conditions. The lag MBfR was where most of the ClO4(-) reduction occurred, and the effluent ClO4(-) concentration was driven to as low as 4 μg/L, with most concentrations ≤10 μg/L. However, SO4(2-) reduction occurred in the lag MBfR when its NO3(-) + O2 flux was smaller than ∼0.18 g H2/m(2)-d, and this was accompanied by a lower ClO4(-) flux. We were able to suppress SO4(2-) reduction by lowering the H2 pressure and increasing the NO3(-) + O2 flux. We also monitored the microbial community using the quantitative polymerase chain reaction targeting characteristic reductase genes. Due to regular position switching, the lead and lag MBfRs had similar microbial communities. Denitrifying bacteria dominated the biofilm when the NO3(-) + O2 fluxes were highest, but sulfate-reducing bacteria became more important when SO4(2-) reduction was enhanced in the lag MBfR due to low NO3(-) + O2 flux. The practical two-stage strategy to achieve complete ClO4(-) and NO3(-) reduction while suppressing SO4(2-) reduction involved controlling the NO3(-) + O2 surface loading between 0.18 and 0.34 g H2/m(2)-d and using a low H2 pressure in the lag MBfR.

  13. Nitration of Hsp90 on Tyrosine 33 Regulates Mitochondrial Metabolism*

    PubMed Central

    Franco, Maria C.; Ricart, Karina C.; Gonzalez, Analía S.; Dennys, Cassandra N.; Nelson, Pascal A.; Janes, Michael S.; Mehl, Ryan A.; Landar, Aimee; Estévez, Alvaro G.

    2015-01-01

    Peroxynitrite production and tyrosine nitration are present in several pathological conditions, including neurodegeneration, stroke, aging, and cancer. Nitration of the pro-survival chaperone heat shock protein 90 (Hsp90) in position 33 and 56 induces motor neuron death through a toxic gain-of-function. Here we show that nitrated Hsp90 regulates mitochondrial metabolism independently of the induction of cell death. In PC12 cells, a small fraction of nitrated Hsp90 was located on the mitochondrial outer membrane and down-regulated mitochondrial membrane potential, oxygen consumption, and ATP production. Neither endogenous Hsp90 present in the homogenate nor unmodified and fully active recombinant Hsp90 was able to compete with the nitrated protein for the binding to mitochondria. Moreover, endogenous or recombinant Hsp90 did not prevent the decrease in mitochondrial activity but supported nitrated Hsp90 mitochondrial gain-of-function. Nitrotyrosine in position 33, but not in any of the other four tyrosine residues prone to nitration in Hsp90, was sufficient to down-regulate mitochondrial activity. Thus, in addition to induction of cell death, nitrated Hsp90 can also regulate mitochondrial metabolism, suggesting that depending on the cell type, distinct Hsp90 nitration states regulate different aspects of cellular metabolism. This regulation of mitochondrial homeostasis by nitrated Hsp90 could be of particular relevance in cancer cells. PMID:26085096

  14. Oxygen safety

    MedlinePlus

    COPD - oxygen safety; Chronic obstructive pulmonary disease - oxygen safety; Chronic obstructive airways disease - oxygen safety; Emphysema - oxygen safety; Heart failure - oxygen-safety; Palliative care - oxygen safety; ...

  15. Electromigration of microbial electron acceptors and nutrients: (I) transport in synthetic media.

    PubMed

    Lohner, Svenja T; Katzoreck, Daniel; Tiehm, Andreas

    2008-07-01

    Microbiological cleanup is a widely used in situ remediation strategy for organic soil and groundwater contaminations. However, often the availability of electron acceptors and nutrients are limiting factors for microbial pollutant degradation in the field. Electromigration represents a new approach for the transport of microbiological agents in soil. In this study, the electrokinetic transport of the microbial electron acceptors nitrate and sulfate and of the nutrients ammonium and phosphate was compared. All experiments were performed under standardized conditions, i.e. with constant voltage in demineralized water and a model sandy soil. Average transport rates for nitrate, sulfate, poly-phosphate, and ammonium were 1.34 cm/h, 1.91 cm/h, 0.48 cm/h, and 0.40 cm/h, respectively, in single compound studies. Transport velocities were dependent on applied voltage gradient but not on the initial ion concentration. Additionally, electrokinetic transport was studied with ion mixtures. The ion distribution in the soil was significantly influenced by the pH profile and the associated voltage gradient.

  16. Binomial distribution-based quantitative measurement of multiple-acceptors fluorescence resonance energy transfer by partially photobleaching acceptor

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yu, Huaina; Zhang, Jianwei; Chen, Tongsheng

    2014-06-01

    We report that binomial distribution depending on acceptor photobleaching degree can be used to characterize the proportions of various kinds of FRET (Fluorescence Resonance Energy Transfer) constructs resulted from partial acceptor photobleaching of multiple-acceptors FRET system. On this basis, we set up a rigorous quantitation theory for multiple-acceptors FRET construct named as Mb-PbFRET which is not affected by the imaging conditions and fluorophore properties. We experimentally validate Mb-PbFRET with FRET constructs consisted of one donor and two or three acceptors inside living cells on confocal and wide-field microscopes.

  17. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOEpatents

    Erickson, D.C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

  18. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  19. Isotope effect on electron paramagnetic resonance of boron acceptors in silicon

    NASA Astrophysics Data System (ADS)

    Stegner, A. R.; Tezuka, H.; Andlauer, T.; Stutzmann, M.; Thewalt, M. L. W.; Brandt, M. S.; Itoh, K. M.

    2010-09-01

    The fourfold degeneracy of the boron acceptor ground state in silicon, which is easily lifted by any symmetry-breaking perturbation, allows for a strong inhomogeneous broadening of the boron-related electron paramagnetic resonance (EPR) lines, e.g., by a random distribution of local strains. However, since EPR of boron acceptors in externally unstrained silicon was reported initially, neither the line shape nor the magnitude of the residual broadening observed in samples with high-crystalline purity were compatible with the low concentrations of carbon and oxygen point defects, being the predominant source of random local strain. Adapting a theoretical model which has been applied to understand the acceptor ground-state splitting in the absence of a magnetic field as an effect due to the presence of different silicon isotopes, we show that local fluctuations of the valence-band edge due to different isotopic configurations in the vicinity of the boron acceptors can quantitatively account for all inhomogeneous broadening effects in high-purity Si with a natural isotope composition. Our calculations show that such an isotopic perturbation also leads to a shift in the g value of different boron-related resonances, which we could verify in our experiments. Further, our results provide an independent test and verification of the valence-band offsets between the different Si isotopes determined in previous works.

  20. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress

    PubMed Central

    2015-01-01

    Abstract Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3′,-5′-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed. Antioxid. Redox Signal. 23, 899–942. PMID:26261901

  1. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress.

    PubMed

    Daiber, Andreas; Münzel, Thomas

    2015-10-10

    Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.

  2. Evaluation of Nitrate Sources and Nitrate Management Strategies in California Suburban Growth Areas

    NASA Astrophysics Data System (ADS)

    Singleton, M. J.; Moran, J. E.; Esser, B. K.; Leif, R. N.; McNab, W. W.; Carle, S. F.; Moore, K. B.

    2005-12-01

    Population growth in California has pushed the boundaries of suburban communities into formerly agricultural areas. As a result there is considerable uncertainty as to whether nitrate contamination in groundwater wells results from current sources or is a legacy of agriculture. Fertilizer application for historical agriculture is frequently assumed to be a major source, but septic system leachate, other animal waste, and residential fertilizer application may also contribute. Potential remediation strategies may include improved fertilizer management and/or conversion from septic tanks to sewer systems, but the sources of nitrate and pathways to groundwater must first be identified in order to develop a plan of action. We combine the detection of trace organic compounds that are specific to domestic waste with isotopic compositions of nitrogen and oxygen in nitrate in order to determine nitrate sources. Under anaerobic conditions and in the presence of an electron donor such as organic carbon, microbially mediated denitrification may transform nitrate to harmless nitrogen gas, and fractionate the isotopologues of any residual nitrate. The occurrence of saturated zone denitrification is detected by measuring excess dissolved nitrogen gas with a field-portable membrane inlet mass spectrometer system. Groundwater age dating using the 3H/3He method provides a means of tracking the history of nitrate inputs to groundwater, including changes in nitrate flux after implementation of a remediation program. Groundwater that pre-dates agricultural or suburban activity is used to define natural background levels of nitrate. Study areas in California include Chico, Livermore, and Gilroy. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  3. Thermochemical nitrate destruction

    DOEpatents

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  4. The environmental controls that govern the end product of bacterial nitrate respiration

    SciTech Connect

    Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; Klotz, Martin G.; Ferdelman, Timothy G.; Hettich, Robert L.; Geelhoed, Jeanine S.; Strous, Marc

    2014-08-08

    In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gas or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.

  5. The environmental controls that govern the end product of bacterial nitrate respiration

    DOE PAGES

    Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; Klotz, Martin G.; Ferdelman, Timothy G.; Hettich, Robert L.; Geelhoed, Jeanine S.; Strous, Marc

    2014-08-08

    In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gasmore » or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.« less

  6. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Lang, F.

    1991-01-01

    A membrane-bound nitrate reductase (nitrite:(acceptor) oxidoreductase, EC 1.7.99.4) from the extremely halophilic bacterium Haloferax denitrificans was solubilized by incubating membranes in buffer lacking NaCl and purified by DEAE, hydroxylapatite, and Sepharose 6B gel filtration chromatography. The purified nitrate reductase reduced chlorate and was inhibited by azide and cyanide. Preincubating the enzyme with cyanide increased the extent of inhibition which in turn was intensified when dithionite was present. Although cyanide was a noncompetitive inhibitor with respect to nitrate, nitrate protected against inhibition. The enzyme, as isolated, was composed of two subunits (Mr 116,000 and 60,000) and behaved as a dimer during gel filtration (Mr 380,000). Unlike other halobacterial enzymes, this nitrate reductase was most active, as well as stable, in the absence of salt.

  7. Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Blum, J.S.; Bindi, A.B.; Dowdle, P.R.; Herbel, M.; Stolz, J.F.

    1999-01-01

    Washed-cell suspensions of Sulfurospirillum barnesii reduced selenate [Se(VI)] when cells were cultured with nitrate, thiosulfate, arsenate, or fumarate as the electron acceptor. When the concentration of the electron donor was limiting, Se(VI) reduction in whole cells was approximately fourfold greater in Se(VI)-grown cells than was observed in nitrate-grown cells; correspondingly, nitrate reduction was ~11-fold higher in nitrate-grown cells than in Se(VI)-grown cells. However, a simultaneous reduction of nitrate and Se(VI) was observed in both cases. At nonlimiting electron donor concentrations, nitrate- grown cells suspended with equimolar nitrate and selenate achieved a complete reductive removal of nitrogen and selenium oxyanions, with the bulk of nitrate reduction preceding that of selenate reduction. Chloramphenicol did not inhibit these reductions. The Se(VI)-respiring haloalkaliphile Bacillus arsenicoselenatis gave similar results, but its Se(VI) reductase was not constitutive in nitrate-grown cells. No reduction of Se(VI) was noted for Bacillus selenitireducens, which respires selenite. The results of kinetic experiments with cell membrane preparations of S. barnesii suggest the presence of constitutive selenate and nitrate reduction, as well as an inducible, high- affinity nitrate reductase in nitrate-grown cells which also has a low affinity for selenate. The simultaneous reduction of micromolar Se(VI) in the presence of millimolar nitrate indicates that these organisms may have a functional use in bioremediating nitrate-rich, seleniferous agricultural wastewaters. Results with 75Se-selenate tracer show that these organisms can lower ambient Se(VI) concentrations to levels in compliance with new regulations proposed for release of selenium oxyanions into the environment.

  8. Vulnerability of streams to legacy nitrate sources

    USGS Publications Warehouse

    Tesoriero, Anthony J.; Duff, John H.; Saad, David A.; Spahr, Norman E.; Wolock, David M.

    2013-01-01

    The influence of hydrogeologic setting on the susceptibility of streams to legacy nitrate was examined at seven study sites having a wide range of base flow index (BFI) values. BFI is the ratio of base flow to total streamflow volume. The portion of annual stream nitrate loads from base flow was strongly correlated with BFI. Furthermore, dissolved oxygen concentrations in streambed pore water were significantly higher in high BFI watersheds than in low BFI watersheds suggesting that geochemical conditions favor nitrate transport through the bed when BFI is high. Results from a groundwater-surface water interaction study at a high BFI watershed indicate that decades old nitrate-laden water is discharging to this stream. These findings indicate that high nitrate levels in this stream may be sustained for decades to come regardless of current practices. It is hypothesized that a first approximation of stream vulnerability to legacy nutrients may be made by geospatial analysis of watersheds with high nitrogen inputs and a strong connection to groundwater (e.g., high BFI).

  9. Significant accumulation of nitrate in Chinese semi-humid croplands

    NASA Astrophysics Data System (ADS)

    Zhou, Junyu; Gu, Baojing; Schlesinger, William H.; Ju, Xiaotang

    2016-04-01

    Soil nitrate is important for crop growth, but it can also leach to groundwater causing nitrate contamination, a threat to human health. Here, we report a significant accumulation of soil nitrate in Chinese semi-humid croplands based upon more than 7000 samples from 141 sites collected from 1994 to 2015. In the 0–4 meters depth of soil, total nitrate accumulation reaches 453 ± 39, 749 ± 75, 1191 ± 89, 1269 ± 114, 2155 ± 330 kg N ha‑1 on average in wheat, maize, open-field vegetables (OFV), solar plastic-roofed greenhouse vegetables (GHV) and orchard fields, respectively. Surprisingly, there is also a comparable amount of nitrate accumulated in the vadose-zone deeper than 4 meters. Over-use of N fertilizer (and/or manure) and a declining groundwater table are the major causes for this huge nitrate reservoir in the vadose-zone of semi-humid croplands, where the nitrate cannot be denitrified due to the presence of oxygen and lack of carbon sources. Future climatic change with more extreme rainfall events would increase the risk of accumulated nitrate moving downwards and threatening groundwater nitrate contamination.

  10. Significant accumulation of nitrate in Chinese semi-humid croplands

    PubMed Central

    Zhou, Junyu; Gu, Baojing; Schlesinger, William H.; Ju, Xiaotang

    2016-01-01

    Soil nitrate is important for crop growth, but it can also leach to groundwater causing nitrate contamination, a threat to human health. Here, we report a significant accumulation of soil nitrate in Chinese semi-humid croplands based upon more than 7000 samples from 141 sites collected from 1994 to 2015. In the 0–4 meters depth of soil, total nitrate accumulation reaches 453 ± 39, 749 ± 75, 1191 ± 89, 1269 ± 114, 2155 ± 330 kg N ha−1 on average in wheat, maize, open-field vegetables (OFV), solar plastic-roofed greenhouse vegetables (GHV) and orchard fields, respectively. Surprisingly, there is also a comparable amount of nitrate accumulated in the vadose-zone deeper than 4 meters. Over-use of N fertilizer (and/or manure) and a declining groundwater table are the major causes for this huge nitrate reservoir in the vadose-zone of semi-humid croplands, where the nitrate cannot be denitrified due to the presence of oxygen and lack of carbon sources. Future climatic change with more extreme rainfall events would increase the risk of accumulated nitrate moving downwards and threatening groundwater nitrate contamination. PMID:27114032

  11. Significant accumulation of nitrate in Chinese semi-humid croplands.

    PubMed

    Zhou, Junyu; Gu, Baojing; Schlesinger, William H; Ju, Xiaotang

    2016-01-01

    Soil nitrate is important for crop growth, but it can also leach to groundwater causing nitrate contamination, a threat to human health. Here, we report a significant accumulation of soil nitrate in Chinese semi-humid croplands based upon more than 7000 samples from 141 sites collected from 1994 to 2015. In the 0-4 meters depth of soil, total nitrate accumulation reaches 453 ± 39, 749 ± 75, 1191 ± 89, 1269 ± 114, 2155 ± 330 kg N ha(-1) on average in wheat, maize, open-field vegetables (OFV), solar plastic-roofed greenhouse vegetables (GHV) and orchard fields, respectively. Surprisingly, there is also a comparable amount of nitrate accumulated in the vadose-zone deeper than 4 meters. Over-use of N fertilizer (and/or manure) and a declining groundwater table are the major causes for this huge nitrate reservoir in the vadose-zone of semi-humid croplands, where the nitrate cannot be denitrified due to the presence of oxygen and lack of carbon sources. Future climatic change with more extreme rainfall events would increase the risk of accumulated nitrate moving downwards and threatening groundwater nitrate contamination. PMID:27114032

  12. Significant accumulation of nitrate in Chinese semi-humid croplands.

    PubMed

    Zhou, Junyu; Gu, Baojing; Schlesinger, William H; Ju, Xiaotang

    2016-01-01

    Soil nitrate is important for crop growth, but it can also leach to groundwater causing nitrate contamination, a threat to human health. Here, we report a significant accumulation of soil nitrate in Chinese semi-humid croplands based upon more than 7000 samples from 141 sites collected from 1994 to 2015. In the 0-4 meters depth of soil, total nitrate accumulation reaches 453 ± 39, 749 ± 75, 1191 ± 89, 1269 ± 114, 2155 ± 330 kg N ha(-1) on average in wheat, maize, open-field vegetables (OFV), solar plastic-roofed greenhouse vegetables (GHV) and orchard fields, respectively. Surprisingly, there is also a comparable amount of nitrate accumulated in the vadose-zone deeper than 4 meters. Over-use of N fertilizer (and/or manure) and a declining groundwater table are the major causes for this huge nitrate reservoir in the vadose-zone of semi-humid croplands, where the nitrate cannot be denitrified due to the presence of oxygen and lack of carbon sources. Future climatic change with more extreme rainfall events would increase the risk of accumulated nitrate moving downwards and threatening groundwater nitrate contamination.

  13. Nitrate in groundwater in the United States

    NASA Astrophysics Data System (ADS)

    Burow, K. R.; Nolan, B. T.; Rupert, M. G.; Dubrovsky, N. M.

    2009-12-01

    dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm fertilizer, percent well-drained soils, dissolved oxygen, and other chemical and physical factors. The high rankings of iron, manganese, and farm fertilizer indicate that nitrate concentrations in groundwater are most significantly affected by redox conditions and nonpoint-source nitrogen inputs. The other water-quality indicators and physical variables have a secondary influence on nitrate concentrations.

  14. Assessing the Role of Sewers and Atmospheric Deposition as Nitrate Contamination Sources to Urban Surface Waters using Stable Nitrate Isotopes

    NASA Astrophysics Data System (ADS)

    Sikora, M. T.; Elliott, E. M.

    2009-12-01

    Excess nitrate (NO3-) contributes to the overall degraded quality of streams in many urban areas. These systems are often dominated by impervious surfaces and storm sewers that can route atmospherically deposited nitrogen, from both wet and dry deposition, to waterways. Moreover, in densely populated watersheds there is the potential for interaction between urban waterways and sewer systems. The affects of accumulated nitrate in riverine and estuary systems include low dissolved oxygen, loss of species diversity, increased mortality of aquatic species, and general eutrophication of the waterbody. However, the dynamics of nitrate pollution from each source and it’s affect on urban waterways is poorly constrained. The isotopes of nitrogen and oxygen in nitrate have been proven effective in helping to distinguish contamination sources to ground and surface waters. In order to improve our understanding of urban nitrate pollution sources and dynamics, we examined nitrate isotopes (δ15N and δ18O) in base- and stormflow samples collected over a two-year period from a restored urban stream in Pittsburgh, Pennsylvania (USA). Nine Mile Run drains a 1,600 hectare urban watershed characterized by 38% impervious surface cover. Prior work has documented high nitrate export from the watershed (~19 kg NO3- ha-1 yr-1). Potential nitrate sources to the watershed include observed sewer overflows draining directly to the stream, as well as atmospheric deposition (~23 kg NO3- ha-1 yr-1). In this and other urban systems with high percentages of impervious surfaces, there is likely minimal input from nitrate derived from soil or fertilizer. In this presentation, we examine spatial and temporal patterns in nitrate isotopic composition collected at five locations along Nine Mile Run characterized by both sanitary and combined-sewer cross-connections. Preliminary isotopic analysis of low-flow winter streamwater samples suggest nitrate export from Nine Mile Run is primarily influenced by

  15. Influence of petroleum deposit geometry on local gradient of electron acceptors and microbial catabolic potential.

    PubMed

    Singh, Gargi; Pruden, Amy; Widdowson, Mark A

    2012-06-01

    A field survey was conducted following the Deepwater Horizon blowout and it was noted that resulting coastal petroleum deposits possessed distinct geometries, ranging from small tar balls to expansive horizontal oil sheets. A subsequent laboratory study evaluated the effect of oil deposit geometry on localized gradients of electron acceptors and microbial community composition, factors that are critical to accurately estimating biodegradation rates. One-dimensional top-flow sand columns with 12-h simulated tidal cycles compared two contrasting geometries (isolated tar "balls" versus horizontal "sheets") relative to an oil-free control. Significant differences in the effluent dissolved oxygen and sulfate concentrations were noted among the columns, indicating presence of anaerobic zones in the oiled columns, particularly in the sheet condition. Furthermore, quantification of genetic markers of terminal electron acceptor and catabolic processes via quantitative polymerase chain reaction of dsrA (sulfate-reduction), mcrA (methanogenesis), and cat23 (oxygenation of aromatics) genes in column cores suggested more extensive anaerobic conditions induced by the sheet relative to the ball geometry. Denaturing gradient gel electrophoresis similarly revealed that distinct gradients of bacterial communities established in response to the different geometries. Thus, petroleum deposit geometry impacts local dominant electron acceptor conditions and may be a key factor for advancing attenuation models and prioritizing cleanup. PMID:22574781

  16. Using Nitrate Isotopes to Distinguish Pathways along which Unprocessed Atmospheric Nitrate is Transported through Forests to Streams

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.

    2013-12-01

    Evaluation of natural abundance oxygen and nitrogen isotopes in nitrate has revealed that atmospheric deposition of nitrate to forests sometimes has direct effects on the timing and magnitude of stream nitrate concentrations. Large amounts of unprocessed atmospheric nitrate have sometimes been found in streams during snowmelt and stormflow events. Despite increasing evidence that unprocessed atmospheric nitrate may be transported without biological processing to streams at various times and multiple locations, little has been reported about specific hydrological processes. I synthesized research findings from a number of studies in which nitrate isotopes have been measured over the past decade. Unprocessed nitrate may predominate in surficial soil waters after rainfall and snowmelt events relative to nitrate that originated from nitrification. Although transport to deep groundwater may be important in the most nitrogen saturated catchments, the transport of unprocessed atmospheric nitrate along shallow subsurface flowpaths is likely more important in many moderately N-polluted ecosystems, which predominate in the northeastern USA where most of my study sites are located. The presence of unprocessed atmospheric nitrate in surficial soils was linked to stream nitrate concentrations when large amounts of unprocessed nitrate were occasionally routed along lateral, shallow subsurface flowpaths during stormflow events. During these events, water tables rose to saturate shallow-depth soils. When catchments were drying or dryer, atmospheric nitrate was completely consumed by biological processing as flowpaths shifted from lateral to vertical transport through soils. The source areas of unprocessed atmospheric nitrate were usually limited to soils that were adjacent to streams, with little to no near-surface saturation and transport of unprocessed nitrate from more distal hillslope positions. The occasional large amounts of unprocessed atmospheric nitrate in soil water

  17. Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes.

    PubMed

    Luciński, Robert; Polcyn, Władysław; Ratajczak, Lech

    2002-01-01

    The inhibitory effect of nitrate on nitrogenase activity in root nodules of legume plants has been known for a long time. The major factor inducing changes in nitrogenase activity is the concentration of free oxygen inside nodules. Oxygen availability in the infected zone of nodule is limited, among others, by the gas diffusion resistance in nodule cortex. The presence of nitrate may cause changes in the resistance to O2 diffusion. The aim of this paper is to review literature data concerning the effect of nitrate on the symbiotic association between rhizobia and legume plants, with special emphasis on nitrogenase activity. Recent advances indicate that symbiotic associations of Rhizobium strains characterized by a high nitrate reductase activity are less susceptible to inhibition by nitrate. A thesis may be put forward that dissimilatory nitrate reduction, catalyzed by bacteroid nitrate reductase, significantly facilitates the symbiotic function of bacteroids.

  18. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells.

    PubMed

    Rabaey, Korneel; Read, Suzanne T; Clauwaert, Peter; Freguia, Stefano; Bond, Philip L; Blackall, Linda L; Keller, Jurg

    2008-05-01

    Microbial fuel cells (MFCs) have the potential to combine wastewater treatment efficiency with energetic efficiency. One of the major impediments to MFC implementation is the operation of the cathode compartment, as it employs environmentally unfriendly catalysts such as platinum. As recently shown, bacteria can facilitate sustainable and cost-effective cathode catalysis for nitrate and also oxygen. Here we describe a carbon cathode open to the air, on which attached bacteria catalyzed oxygen reduction. The bacteria present were able to reduce oxygen as the ultimate electron acceptor using electrons provided by the solid-phase cathode. Current densities of up to 2.2 A m(-2) cathode projected surface were obtained (0.303+/-0.017 W m(-2), 15 W m(-3) total reactor volume). The cathodic microbial community was dominated by Sphingobacterium, Acinetobacter and Acidovorax sp., according to 16S rRNA gene clone library analysis. Isolates of Sphingobacterium sp. and Acinetobacter sp. were obtained using H(2)/O(2) mixtures. Some of the pure culture isolates obtained from the cathode showed an increase in the power output of up to three-fold compared to a non-inoculated control, that is, from 0.015+/-0.001 to 0.049+/-0.025 W m(-2) cathode projected surface. The strong decrease in activation losses indicates that bacteria function as true catalysts for oxygen reduction. Owing to the high overpotential for non-catalyzed reduction, oxygen is only to a limited extent competitive toward the electron donor, that is, the cathode. Further research to refine the operational parameters and increase the current density by modifying the electrode surface and elucidating the bacterial metabolism is warranted. PMID:18288216

  19. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed Central

    Barrett, M C; Dawson, A P

    1975-01-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme. PMID:1218095

  20. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  1. Electronic structure of acceptor-donor complexes in silicon

    NASA Astrophysics Data System (ADS)

    Atoro, E.; Ohama, Y.; Hayafuji, Y.

    2003-10-01

    The electronic structure of trimer acceptor-donor complexes in silicon Si clusters is studied using the ab initio discrete variational-Xα molecular-orbital (MO) method. The trimer complexes In2D (D=phosphorus P, arsenic As, antimony Sb, or bismuth Bi) consist of two indium In acceptor elements and a centered donor element D from the group V elements. Calculations are performed under the assumption that the three atoms are arranged in the nearest neighbor substitutional trimer configuration. Results indicate that the trimer complexes act as shallower acceptors having smaller ionization activation energies than In acceptor. The potential of In2D as an acceptor in Si is then discussed and In2D is proposed as a promising acceptor for the formation of channels and source/drains in ultralarge scaled integration.

  2. Determination of intracellular nitrate.

    PubMed Central

    Romero, J M; Lara, C; Guerrero, M G

    1989-01-01

    A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans. PMID:2497740

  3. Protein tyrosine nitration

    PubMed Central

    Chaki, Mounira; Leterrier, Marina; Barroso, Juan B

    2009-01-01

    Nitric oxide metabolism in plant cells has a relative short history. Nitration is a chemical process which consists of introducing a nitro group (-NO2) into a chemical compound. in biological systems, this process has been found in different molecules such as proteins, lipids and nucleic acids that can affect its function. This mini-review offers an overview of this process with special emphasis on protein tyrosine nitration in plants and its involvement in the process of nitrosative stress. PMID:19826215

  4. Thermochemical nitrate reduction

    SciTech Connect

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with {approximately}3 wt% NO{sub 3}{sup {minus}} solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200{degrees}C to 350{degrees}C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia {approx} methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics.

  5. Electrostatic interaction of pi-acidic amides with hydrogen-bond acceptors.

    PubMed

    Li, Yi; Snyder, Lawrence B; Langley, David R

    2003-10-01

    Interactions between N-methylacetamide (NMA) and N-methylated derivatives of uracil, isocyanurate and barbituric acid have been studied using ab initio methods at the local MP2/6-31G** level of theory. The results were compared to similar interactions between the oxygen atom of NMA and the pi-clouds of perfluorobenzene, quinone and trimethyltriazine. The pi-acidic amides of isocyanurate and barbituric acid were found to interact with a hydrogen bond acceptor primarily through electrostatic attractions. These groups may be used as alternatives of a hydrogen bond donor to complement a hydrogen bond acceptor or an anion in molecular recognition and drug design. Examples of such interactions were identified through a search of the CSD database.

  6. An Integrated Proteomics/Transcriptomics Approach Points to Oxygen as the Main Electron Sink for Methanol Metabolism in Methylotenera mobilis▿†

    PubMed Central

    Beck, David A. C.; Hendrickson, Erik L.; Vorobev, Alexey; Wang, Tiansong; Lim, Sujung; Kalyuzhnaya, Marina G.; Lidstrom, Mary E.; Hackett, Murray; Chistoserdova, Ludmila

    2011-01-01

    Methylotenera species, unlike their close relatives in the genera Methylophilus, Methylobacillus, and Methylovorus, neither exhibit the activity of methanol dehydrogenase nor possess mxaFI genes encoding this enzyme, yet they are able to grow on methanol. In this work, we integrated a genome-wide proteomics approach, shotgun proteomics, and a genome-wide transcriptomics approach, shotgun transcriptome sequencing (RNA-seq), of Methylotenera mobilis JLW8 to identify genes and enzymes potentially involved in methanol oxidation, with special attention to alternative nitrogen sources, to address the question of whether nitrate could play a role as an electron acceptor in place of oxygen. Both proteomics and transcriptomics identified a limited number of genes and enzymes specifically responding to methanol. This set includes genes involved in oxidative stress response systems, a number of oxidoreductases, including XoxF-type alcohol dehydrogenases, a type II secretion system, and proteins without a predicted function. Nitrate stimulated expression of some genes in assimilatory nitrate reduction and denitrification pathways, while ammonium downregulated some of the nitrogen metabolism genes. However, none of these genes appeared to respond to methanol, which suggests that oxygen may be the main electron sink during growth on methanol. This study identifies initial targets for future focused physiological studies, including mutant analysis, which will provide further details into this novel process. PMID:21764938

  7. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si. PMID:27171901

  8. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  9. Quantum computing with acceptor spins in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  10. Responses of Aromatic-Degrading Microbial Communities to Elevated Nitrate in Sediments.

    PubMed

    Xu, Meiying; He, Zhili; Zhang, Qin; Liu, Jin; Guo, Jun; Sun, Guoping; Zhou, Jizhong

    2015-10-20

    A high number of aromatic compounds that have been released into aquatic ecosystems have accumulated in sediment because of their low solubility and high hydrophobicity, causing significant hazards to the environment and human health. Since nitrate is an essential nitrogen component and a more thermodynamically favorable electron acceptor for anaerobic respiration, nitrate-based bioremediation has been applied to aromatic-contaminated sediments. However, few studies have focused on the response of aromatic-degrading microbial communities to nitrate addition in anaerobic sediments. Here we hypothesized that high nitrate inputs would stimulate aromatic-degrading microbial communities and their associated degrading processes, thus increasing the bioremediation efficiency in aromatic compound-contaminated sediments. We analyzed the changes of key aromatic-degrading genes in the sediment samples from a field-scale site for in situ bioremediation of an aromatic-contaminated creek in the Pearl River Delta before and after nitrate injection using a functional gene array. Our results showed that the genes involved in the degradation of several kinds of aromatic compounds were significantly enriched after nitrate injection, especially those encoding enzymes for central catabolic pathways of aromatic compound degradation, and most of the enriched genes were derived from nitrate-reducing microorganisms, possibly accelerating bioremediation of aromatic-contaminated sediments. The sediment nitrate concentration was found to be the predominant factor shaping the aromatic-degrading microbial communities. This study provides new insights into our understanding of the influences of nitrate addition on aromatic-degrading microbial communities in sediments. PMID:26390227

  11. Responses of Aromatic-Degrading Microbial Communities to Elevated Nitrate in Sediments.

    PubMed

    Xu, Meiying; He, Zhili; Zhang, Qin; Liu, Jin; Guo, Jun; Sun, Guoping; Zhou, Jizhong

    2015-10-20

    A high number of aromatic compounds that have been released into aquatic ecosystems have accumulated in sediment because of their low solubility and high hydrophobicity, causing significant hazards to the environment and human health. Since nitrate is an essential nitrogen component and a more thermodynamically favorable electron acceptor for anaerobic respiration, nitrate-based bioremediation has been applied to aromatic-contaminated sediments. However, few studies have focused on the response of aromatic-degrading microbial communities to nitrate addition in anaerobic sediments. Here we hypothesized that high nitrate inputs would stimulate aromatic-degrading microbial communities and their associated degrading processes, thus increasing the bioremediation efficiency in aromatic compound-contaminated sediments. We analyzed the changes of key aromatic-degrading genes in the sediment samples from a field-scale site for in situ bioremediation of an aromatic-contaminated creek in the Pearl River Delta before and after nitrate injection using a functional gene array. Our results showed that the genes involved in the degradation of several kinds of aromatic compounds were significantly enriched after nitrate injection, especially those encoding enzymes for central catabolic pathways of aromatic compound degradation, and most of the enriched genes were derived from nitrate-reducing microorganisms, possibly accelerating bioremediation of aromatic-contaminated sediments. The sediment nitrate concentration was found to be the predominant factor shaping the aromatic-degrading microbial communities. This study provides new insights into our understanding of the influences of nitrate addition on aromatic-degrading microbial communities in sediments.

  12. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate.

    PubMed

    Cunningham, J A; Rahme, H; Hopkins, G D; Lebron, C; Reinhard, M

    2001-04-15

    Enhancement of in situ anaerobic biodegradation of BTEX compounds was demonstrated at a petroleum-contaminated aquifer in Seal Beach, CA. Specifically, combined injection of nitrate and sulfate into the contaminated aquifer was used to accelerate BTEX removal as compared to remediation by natural attenuation. An array of multi-level sampling wells was used to monitor the evolution of the in situ spatial distributions of the electron acceptors and the BTEX compounds. Nitrate was utilized preferentially over sulfate and was completely consumed within a horizontal distance of 4-6 m from the injection well; sulfate reduction occurred in the region outside the denitrifying zone. By combining injection of both nitrate and sulfate, the total electron acceptor capacity was enhanced without violating practical considerations that limit the amount of nitrate or sulfate that can be added individually. Degradation of total xylene appears linked to sulfate utilization, indicating another advantage of combined injection versus injection of nitrate alone. Benzene degradation also appears to have been stimulated by the nitrate and sulfate injection close to the injection well but only toward the end of the 15-month demonstration. The results are consistent with the hypothesis that benzene can be biodegraded anaerobically after other preferentially degraded hydrocarbons have been removed. PMID:11329718

  13. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate.

    PubMed

    Cunningham, J A; Rahme, H; Hopkins, G D; Lebron, C; Reinhard, M

    2001-04-15

    Enhancement of in situ anaerobic biodegradation of BTEX compounds was demonstrated at a petroleum-contaminated aquifer in Seal Beach, CA. Specifically, combined injection of nitrate and sulfate into the contaminated aquifer was used to accelerate BTEX removal as compared to remediation by natural attenuation. An array of multi-level sampling wells was used to monitor the evolution of the in situ spatial distributions of the electron acceptors and the BTEX compounds. Nitrate was utilized preferentially over sulfate and was completely consumed within a horizontal distance of 4-6 m from the injection well; sulfate reduction occurred in the region outside the denitrifying zone. By combining injection of both nitrate and sulfate, the total electron acceptor capacity was enhanced without violating practical considerations that limit the amount of nitrate or sulfate that can be added individually. Degradation of total xylene appears linked to sulfate utilization, indicating another advantage of combined injection versus injection of nitrate alone. Benzene degradation also appears to have been stimulated by the nitrate and sulfate injection close to the injection well but only toward the end of the 15-month demonstration. The results are consistent with the hypothesis that benzene can be biodegraded anaerobically after other preferentially degraded hydrocarbons have been removed.

  14. Nitrate chemistry in the snow and atmosphere at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; Hastings, M. G.; Dibb, J. E.; Nenes, A.; Chen, D.

    2013-12-01

    Atmospheric nitrate deposition to snow surfaces results from reactions of NOx (NO + NO2) with oxidants to produce HNO3. There has been enormous interest in using the isotopic composition of nitrate in ice cores to trace past NOx chemistry and sources. With the rapid cycling of NO and NO2, the oxygen isotopic signal reflects the oxidants that NOx reacts with to form nitrate, while the nitrogen isotopes could contain information about the NOx sources. In two spring/summer field seasons at Summit, Greenland (May-June 2010 and 2011), surface snow was collected at high time resolution and was measured for the complete N and O isotopic composition of nitrate. The oxygen isotopes (δ18O and Δ17O = δ17O - 0.52*δ18O) display the same very strong linear relationship (Δ17O = 0.46 * δ18O - 6.9, R2 = 0.9) in both seasons. This relationship indicates that there is very little photolysis of the nitrate at Summit and an unaltered nitrate signal is preserved in the snowpack. In addition, a suite of atmospheric measurements was made at Summit and none of the constituents measured show any correlation with concentration or isotopes of nitrate in the snow. This indicates that local chemistry is not contributing significantly to the nitrate in the snow. The combination of nitrogen and oxygen isotopes provides a richer picture of the data. There are three nitrate signatures that contribute to total nitrate deposition to Summit in both seasons. These sources can be described by the following isotopic compositions: δ15N, Δ17O, δ18O (per mil vs. air N2 or VSMOW): (1) -8, 27, 74 (2) 6, 40, 100 and (3) 16, 0, 23. While the same three nitrate sources are contributing in the two years, there is a very different balance of importance in 2010 compared to 2011. With limited source δ15N data it is difficult to assign each point to a specific NOx source, however the complete isotopic composition, atmospheric measurements and differences between the two seasons allow for tentative source

  15. New acceptor-donor-acceptor (A-D-A) type copolymers for efficient organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Ayachi, S.; Alimi, K.

    2015-01-01

    Three new conjugated systems alternating acceptor-donor-acceptor (A-D-A) type copolymers have been investigated by means of Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) at the 6-31g (d) level of theory. 4,4‧-Dimethoxy-chalcone, also called the 1,3-bis(4-methoxyphenyl)prop-2-en-1-one (BMP), has been used as a common acceptor moiety. It forced intra-molecular S⋯O interactions through alternating oligo-thiophene derivatives: 4-AlkylThiophenes (4-ATP), 4-AlkylBithiophenes (4-ABTP) and 4-Thienylene Vinylene (4-TEV) as donor moieties. The band gap, HOMO and LUMO electron distributions as well as optical properties were analyzed for each molecule. The fully optimized resulting copolymers showed low band gaps (2.2-2.8 eV) and deep HOMO energy levels ranging from -4.66 to -4.86 eV. A broad absorption [300-900 nm] covering the solar spectrum and absorption maxima ranges from 486 to 604 nm. In addition, organic photovoltaic cells (OPCs) based on alternating copolymers in bulk heterojunction (BHJ) composites with the 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6]-C61 (PCBM), as an acceptor, have been optimized. Thus, the band gap decreased to 1.62 eV, the power conversion efficiencies (PCEs) were about 3-5% and the open circuit voltage Voc of the resulting molecules decreased from 1.50 to 1.27 eV.

  16. Aromatic donor-acceptor interactions in non-polar environments.

    PubMed

    Prentice, Giles M; Pascu, Sofia I; Filip, Sorin V; West, Kevin R; Pantoş, G Dan

    2015-05-14

    We have evaluated the strength of aromatic donor-acceptor interactions between dialkyl naphthalenediimide and dialkoxynaphthalene in non-polar environments. (1)H NMR, UV-vis spectroscopy and isothermal titration calorimetry were used to characterise this interaction. We concluded that the strength of donor-acceptor interactions in heptane is sufficient to drive supramolecular assemblies in this and other aliphatic solvents. PMID:25875729

  17. Nitrate Removal in Stream Riparian Zones: The Last Fifteen Years

    NASA Astrophysics Data System (ADS)

    Duval, T. P.

    2009-05-01

    Anthropogenic loadings of nitrate from agricultural fertilizer use and deforestation can result in levels deleterious to stream ecosystems and downstream receiving water bodies. Riparian zones represent perhaps our most effective management tool in mitigating these elevated stream nitrate levels. In many settings these interfaces between the terrestrial and the aquatic have been shown to efficiently remove elevated nitrate loadings through denitrification and/or plant uptake. However, it was realized early that some riparian zones are not effective nitrate removers, and the relative importance of plant uptake versus denitrification was unclear. The uncertainty that existed 15 years ago fueled a plethora of studies on nitrate removal in stream riparian zones. This talk will highlight the most important findings of this research over the last decade and a half. Notably, the detailed description of hydrological flowpaths into and through riparian zones to the downstream environment has gone a long way to explaining the ineffectiveness of some riparian zones. Furthermore, the use of 15-N isotope tracers and field and lab incubation studies have aided in quantifying the importance of the denitrification pathway of removal. Patterns of terminal electron donors and acceptors and the importance of the intersection of the nitrate-elevated water with a source of bioavailable organic carbon, including deeply buried carbon, were a series of key achievements. Somewhat surprisingly, it has been shown that hydrogeology/landscape setting has a greater control on nitrate removal that climate/geography, as indicated by studies in different hydrogeologic settings in southern Ontario and uniform settings across a climatic gradient in Europe. Finally, the integration and generalization of these findings to the watershed-regional scale has aided in the transfer of knowledge from the scientist to the manager.

  18. Effect of nitrate, acetate, and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil.

    PubMed

    Nozawa-Inoue, Mamie; Jien, Mercy; Yang, Kun; Rolston, Dennis E; Hristova, Krassimira R; Scow, Kate M

    2011-05-01

    The effect of nitrate, acetate, and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared with unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting that the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration that was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting that either perchlorate or nitrate stimulates the growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment.

  19. Effect of nitrate, acetate and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil

    PubMed Central

    Nozawa-Inoue, Mamie; Jien, Mercy; Yang, Kun; Rolston, Dennis E.; Hristova, Krassimira R.; Scow, Kate M.

    2011-01-01

    Effect of nitrate, acetate and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared to unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration which was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting either perchlorate or nitrate stimulates growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment. PMID:21284679

  20. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes.

    PubMed

    Rivett, Michael O; Buss, Stephen R; Morgan, Philip; Smith, Jonathan W N; Bemment, Chrystina D

    2008-10-01

    Biogeochemical processes controlling nitrate attenuation in aquifers are critically reviewed. An understanding of the fate of nitrate in groundwater is vital for managing risks associated with nitrate pollution, and to safeguard groundwater supplies and groundwater-dependent surface waters. Denitrification is focused upon as the dominant nitrate attenuation process in groundwater. As denitrifying bacteria are essentially ubiquitous in the subsurface, the critical limiting factors are oxygen and electron donor concentration and availability. Variability in other environmental conditions such as nitrate concentration, nutrient availability, pH, temperature, presence of toxins and microbial acclimation appears to be less important, exerting only secondary influences on denitrification rates. Other nitrate depletion mechanisms such as dissimilatory nitrate reduction to ammonium and assimilation of nitrate into microbial biomass are unlikely to be important in most subsurface settings relative to denitrification. Further research is recommended to improve current understanding on the influence of organic carbon, sulphur and iron electron donors, physical restrictions on microbial activity in dual porosity aquifers, influences of environmental condition (e.g. pH in poorly buffered environments and salinity in coastal or salinized soil settings), co-contaminant influences (particularly the contrasting inhibitory and electron donor influences of pesticides) and improved quantification of denitrification rates in the laboratory and field.

  1. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  2. Transformation of Nitrate and Toluene in Groundwater by Sulfur Modified Iron(SMI-III)

    NASA Astrophysics Data System (ADS)

    Lee, W.; Park, S.; Lim, J.; Hong, U.; Kwon, S.; Kim, Y.

    2009-12-01

    In Korea, nitrate and benzene, toluene, ethylbenzene, and xylene isomers (BTEX) are frequently detected together as ground water contaminants. Therefore, a system simultaneously treating both nitrate (inorganic compound) and BTEX (organic compounds) is required to utilize groundwater as a water resource. In this study, we investigated the efficiency of Sulfur Modified Iron (SMI-III) in treating both nitrate and BTEX contaminated groundwater. Based on XRD (X-Ray Diffraction) analysis, the SMI-III is mainly composed of Fe3O4, S, and Fe. A series of column tests were conducted at three different empty bed contact times (EBCTs) for each compound. During the experiments, removal efficiency for both nitrate and toluene were linearly correlated with EBCT, suggesting that SMI-III have an ability to transform both nitrate and toluene. The concentration of SO42- and oxidation/reduction potential (ORP) were also measured. After exposed to nitrate contaminated groundwater, the composition of SMI-III was changed to Fe2O3, Fe3O4, Fe, and Fe0.95S1.05. The trends of effluent sulfate concentrations were inversely correlated with effluent nitrate concentrations, while the trends of ORP values, having the minimum values of -480 mV, were highly correlated with effluent nitrate concentrations. XRD analysis before and after exposed to nitrate contaminated groundwater, sulfate production, and nitrite detection as a reductive transformation by-product of nitrate suggest that nitrate is reductively transformed by SMI-III. Interestingly, in the toluene experiments, the trends of ORP values were inversely correlated with effluent toluene concentrations, suggesting that probably degrade through oxidation reaction. Consequently, nitrate and toluene probably degrade through reduction and oxidation reaction, respectively and SMI-III could serve as both electron donor and acceptor.

  3. Nitrous Oxide as a Hydrogen Acceptor for the Dehydrogenative Coupling of Alcohols.

    PubMed

    Gianetti, Thomas L; Annen, Samuel P; Santiso-Quinones, Gustavo; Reiher, Markus; Driess, Matthias; Grützmacher, Hansjörg

    2016-01-26

    The oxidation of alcohols with N2O as the hydrogen acceptor was achieved with low catalyst loadings of a rhodium complex that features a cooperative bis(olefin)amido ligand under mild conditions. Two different methods enable the formation of either the corresponding carboxylic acid or the ester. N2 and water are the only by-products. Mechanistic studies supported by DFT calculations suggest that the oxygen atom of N2O is transferred to the metal center by insertion into the Rh-H bond of a rhodium amino hydride species, generating a rhodium hydroxy complex as a key intermediate.

  4. Nitrous Oxide as a Hydrogen Acceptor for the Dehydrogenative Coupling of Alcohols.

    PubMed

    Gianetti, Thomas L; Annen, Samuel P; Santiso-Quinones, Gustavo; Reiher, Markus; Driess, Matthias; Grützmacher, Hansjörg

    2016-01-26

    The oxidation of alcohols with N2O as the hydrogen acceptor was achieved with low catalyst loadings of a rhodium complex that features a cooperative bis(olefin)amido ligand under mild conditions. Two different methods enable the formation of either the corresponding carboxylic acid or the ester. N2 and water are the only by-products. Mechanistic studies supported by DFT calculations suggest that the oxygen atom of N2O is transferred to the metal center by insertion into the Rh-H bond of a rhodium amino hydride species, generating a rhodium hydroxy complex as a key intermediate. PMID:26693955

  5. Neutral nitrogen acceptors in ZnO: The {sup 67}Zn hyperfine interactions

    SciTech Connect

    Golden, E. M.; Giles, N. C.; Evans, S. M.; Halliburton, L. E.

    2014-03-14

    Electron paramagnetic resonance (EPR) is used to characterize the {sup 67}Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N{sup −}) initially present in the crystal are converted to their paramagnetic neutral charge state (N{sup 0}) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N{sup 0} acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion along the [0001] direction is referred to as an axial neighbor and the three equivalent zinc ions in the basal plane are referred to as nonaxial neighbors. For axial neighbors, the {sup 67}Zn hyperfine parameters are A{sub ‖} = 37.0 MHz and A{sub ⊥} = 8.4 MHz with the unique direction being [0001]. For nonaxial neighbors, the {sup 67}Zn parameters are A{sub 1} = 14.5 MHz, A{sub 2} = 18.3 MHz, and A{sub 3} = 20.5 MHz with A{sub 3} along a [101{sup ¯}0] direction (i.e., in the basal plane toward the nitrogen) and A{sub 2} along the [0001] direction. These {sup 67}Zn results and the related {sup 14}N hyperfine parameters provide information about the distribution of unpaired spin density at substitutional neutral nitrogen acceptors in ZnO.

  6. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  7. Nitrate-dependent anaerobic methane oxidation in a freshwater sediment

    NASA Astrophysics Data System (ADS)

    Norði, Katrin á.; Thamdrup, Bo

    2014-05-01

    Anaerobic oxidation of methane coupled to denitrification (DAOM) is a novel process of potential importance to the regulation of methane emissions from freshwater environments. We established nitrate-enriched microcosms of sediment from a freshwater pond in order to quantify the role of this process in a simulated natural redox zonation. The microcosms were allowed to acclimate to nitrate levels of 1-2 mmol L-1 in the overlying water for 16 months leading to a nitrate penetration of 4 cm. The nitrate enrichment significantly stimulated AOM relative to controls, and based on the similar concentrations of sulfate and reactive Fe(III) in the control sediment we conclude that the observed AOM was coupled to denitrification. DAOM occurred at rates that were two orders of magnitude lower than aerobic methane oxidation rates reported in freshwater sediments, and the process appeared to be limited by nitrate or nitrite even at millimolar nitrate concentrations. By contrast, ammonium was efficiently consumed at the base of the nitrate zone, presumably by the anammox process. Although DAOM was stimulated by nitrate enrichment, there were no significant differences between the methane emission from the control and nitrate-enriched microcosms. Our results provide the first experimental evaluation of the kinetics of DAOM in whole sediment cores and indicate that AOM coupled to denitrification can consume a substantial part of the methane flux in nitrate-rich environments. Because it is much less efficient in scavenging methane than its aerobic counterpart, the anaerobic process will, however, mainly be of significance in the regulation of methane emission from oxygen-depleted systems.

  8. Nitrate behavior in ground waters of the southeastern USA

    USGS Publications Warehouse

    Nolan, B.T.

    1999-01-01

    Principal components analysis (PCA) was performed with water-quality data from studies conducted during 1993 to 1995 to explore potential nitrate- attenuation processes in ground waters of the southeastern USA. Nitrate reduction is an important attenuation process in selected areas of the Southeast. A nitrate-reduction component explains 23% of the total variance in the data and indicates that nitrate and dissolved oxygen (DO) are inversely related to ammonium, iron, manganese, and dissolved organic carbon (DOC). Additional components extracted by PCA include calcite dissolution (18% of variance explained) and phosphate dissolution (9% of variance explained). Reducing conditions in ground waters of the region influence nitrate behavior through bacterially mediated reduction in the presence of organic matter, and by inhibition of nitrate formation in anoxic ground water beneath forested areas. Component scores are consistent with observed water- quality conditions in the region. For example, median nitrate concentration in ground-water samples from the Albemarle-Pamlico Drainage Basin (ALBE) Coastal Plain is <0.05 mg L-1, median DOC concentration is 4.2 mg L-1, and median DO concentration is 2.1 mg L-1, consistent with denitrification. Nitrate reduction does not occur uniformly throughout the Southeast. Median DO concentrations in ground-water samples from the Apalachicola- Chattahoochee-Flint River Basin (ACFB) are 6.2 to 7.1 mg L-1, and median nitrate concentrations are 0.61 to 2.2 mg L-1, inconsistent with denitrification. Similarly, median DO concentration in samples from the Georgia-Florida Coastal Plain (GAFL) is 6.0 mg L-1 and median nitrate concentration is 5.8 mg L-1.

  9. Nitrate behavior in ground water of the southeastern USA

    SciTech Connect

    Nolan, B.T.

    1999-10-01

    Principal components analysis (PCA) was performed with water-quality data from studies conducted during 1993 to 1995 to explore potential nitrate-attenuation processes in ground waters of the southeastern USA. Nitrate reduction is an important attenuation process in selected areas of the Southeast. A nitrate-reduction component explains 23% of the total variance in the data and indicates that nitrate and dissolved oxygen (DO) are inversely related to ammonium, iron, manganese, and dissolved organic carbon (DOC). Additional components extracted by PCA include calcite dissolution (18% of variance explained) and phosphate dissolution (9% of variance explained). Reducing conditions in ground waters of the region influence nitrate behavior through bacterially mediated reduction in the presence of organic matter, and by inhibition of nitrate formation in anoxic ground water beneath forested areas. Component scores are consistent with observed water-quality conditions in the region. For example, median nitrate concentration in ground-water samples from the Albemarle-Pamlico Drainage Basin (ALBE) Coastal Plain is {lt}0.05 mg L{sup {minus}1}, median DOC concentration is 4.2 mg L{sup {minus}1}, and median DO concentration is 2.1 mg L{sup {minus}1}, consistent with denitrification. Nitrate reduction does not occur uniformly throughout the Southeast. Median DO concentrations in ground-water samples from the Apalachicola-Chattahoochee-Flint River Basin (ACFB) are 6.2 to 7.1 mg L{sup {minus}1}, and median nitrate concentrations are 0.61 to 2.2 mg L{sup {minus}1}, inconsistent with denitrification. Similarly, median DO concentration in samples from the Georgia-Florida Coastal Plain (GAFL) is 6.0 mg L{sup {minus}1} and median nitrate concentration is 5.8 mg L{sup {minus}1}.

  10. New enzyme belonging to the family of molybdenum-free nitrate reductases.

    PubMed Central

    Antipov, Alexey N; Sorokin, Dimitry Y; L'Vov, Nikolay P; Kuenen, J Gijs

    2003-01-01

    A novel molybdenum-free nitrate reductase was isolated from the obligate chemolithoautotrophic and facultative anaerobic, (halo)alkaliphilic sulphur-oxidizing bacterium Thioalkalivibrio nitratireducens strain ALEN 2. The enzyme was found to contain vanadium and haem c as cofactors. Its native molecular mass was determined as 195 kDa, and the enzyme consists of four identical subunits with apparent molecular masses of 57 kDa. Apart from nitrate, the enzyme can utilize nitrite, chlorate, bromate, selenate and sulphite as electron acceptors. Moreover, it also has a haloperoxidase activity. PMID:12238951

  11. Synthesis and Characterization of Ru(II) Tris(1,1O-phenanthroline)-Electron Acceptor Dyads Incorporating the 4-benzoyl-N-methylpyridinium Cation or N-Benzyl-N'-methyl-viologen. Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Optical Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Rawashdeh, Abdel-Monen M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2004-01-01

    The title compounds (1 and 2, above) were synthesized by Sonogashira coupling reactions of appropriate Ru(1I) complexes with the electron a cceptors. Characterization was conducted in solution and in frozen ma trices. Finally, the title compounds were evaluated as dopants of sol-gel materials. It was found that the intramolecular quenching efficie ncy of 4-benzoyl-Nmethylpyridinium cation in solution depends on the solvent: photoluminescence is quenched completely in CH,CN, but not i n methanol or ethanol. On the other hand, intramolecular emission que nching by 4-benzyl-N-methyl viologen is complete in all solvents. The difference between the two quenchers is traced electrochemically to t he solvation of the 4-benzoyl-Nmethylpyridiniums by alcohol. In froze n matrices or adsorbed on the surfaces of silica aerogel, both Ru(I1) complex/electron acceptor dyads of this study are photoluminescent, and the absence of quenching has been traced to the environmental rigi dity. When doped aerogels are cooled at 77 K, the emission intensity increases by approximately 4x, and the spectra shift to the blue, analogous to what is observed with Ru(I1) complexes in solutions undergoi ng fluid-to-rigid transition. However, in contrast to frozen solution s, the luminescent moieties in the bulk of aerogels kept at low tempe ratures are still accessible to gas-phase quenchers diffusing through the mesopores, leading to more sensitive platforms for sensors than o ther room-temperature configurations. Thus the photoluminescence of o ur Ru(I1) complex dyads adsorbed on aerogel is quenchable by O2 both at room temperature and at 77 K. Furthermore, it was also found that O 2 modulates the photoluminescence of aerogels doped with 4-benzoyl -N -methylpyridinium-based dyads over a wider dynamic range compared wi th aerogels doped with either our vislogen-based dyads or with Ru(I1) tris(1,lO-phenanthroline) itself.

  12. Nitrate in groundwater of the United States, 1991-2003.

    PubMed

    Burow, Karen R; Nolan, Bernard T; Rupert, Michael G; Dubrovsky, Neil M

    2010-07-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  13. Nitrate in groundwater of the United States, 1991-2003

    USGS Publications Warehouse

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  14. Nitrate pollution study in the aquifer of Dakar (Senegal).

    PubMed

    Tandia, A A; Diop, E S; Gaye, C B; Travi, Y

    2000-01-01

    Dakar is a peninsula inhabited by a population of about 2 million people in 1996. In some dug wells and piezometers, the nitrate content (NO3.) in the groundwater is above the World Health Organization (WHO) limit of 50 mg/l. In the unconfined part of the aquifer of the peninsula, all the samples from wells are contaminated by high nitrate contents which increased over time from 100 mg/l in 1987 to more than 250 mg/l in 1996. Only a limited area is affected by nitrate pollution in the confined layer. The results indicate anthropogenic pollution, a fact which indicates the increasing risk of pollution of drinking-water resources. Studies in the unsaturated zone and familiarity with the sanitation practices in the area indicate that the horizontal and vertical flux are linked mainly to defective septic tanks and direct organic waste elimination into the soil by more than 40% of the inhabitants. The correlation between tritium values (3H) and nitrate shows that the source of nitrate is recent. The relation of oxygen 18 (18O) to deuterium (2H) in water with high nitrate levels indicates that the concentrations of nitrate have been identified in evaporated points.

  15. Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025).

    PubMed

    Hartsock, Angela; Shapleigh, James P

    2011-12-01

    The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth. PMID:21949073

  16. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L.

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  17. Nitrogen is a deep acceptor in ZnO

    DOE PAGES

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  18. Nitrogen is a deep acceptor in ZnO

    SciTech Connect

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence band relative to the vacuum level.

  19. Electron Transfer Rate Maxima at Large Donor-Acceptor Distances.

    PubMed

    Kuss-Petermann, Martin; Wenger, Oliver S

    2016-02-01

    Because of their low mass, electrons can transfer rapidly over long (>15 Å) distances, but usually reaction rates decrease with increasing donor-acceptor distance. We report here on electron transfer rate maxima at donor-acceptor separations of 30.6 Å, observed for thermal electron transfer between an anthraquinone radical anion and a triarylamine radical cation in three homologous series of rigid-rod-like donor-photosensitizer-acceptor triads with p-xylene bridges. Our experimental observations can be explained by a weak distance dependence of electronic donor-acceptor coupling combined with a strong increase of the (outer-sphere) reorganization energy with increasing distance, as predicted by electron transfer theory more than 30 years ago. The observed effect has important consequences for light-to-chemical energy conversion. PMID:26800279

  20. NOx in the atmospheres of aquaplanets as electron acceptors for life

    NASA Astrophysics Data System (ADS)

    Wong, M. L.; Yung, Y. L.; Russell, M. J.

    2014-12-01

    A high potential electron acceptor is required to drive the highly endergonic reactions at the entry points to the autotrophic metabolic pathways that would lead to life on any wet rocky world. Nitrate and nitrite in the earliest oceans are the most attractive candidates (Ducluzeau et al., 2009, 2014). It has been estimated that, given a CO2 and N2 atmosphere, lightning (a proportion of it volcanic), meteorite impacts and volcanic gases would have produced enough NOx in a million years or so (>1018 g) to generate micromolar amounts of NO3- and NO2- in the ocean (Yung and McElroy, 1979; Kasting, 1990; Navarro-González et al., 1998; Martin et al., 2007). It is notable that lightning has been detected on Venus and Mars along with evidence of atmospheric NO. Because a figure 1018 g of nitrate/nitrite is controversial, we will present new calculations based on 10 atmospheres of CO2, two atmospheres of N2 and stepped concentrations of water vapor dependent on surface temperatures.

  1. Synthesis, Properties, and Design Principles of Donor-Acceptor Nanohoops.

    PubMed

    Darzi, Evan R; Hirst, Elizabeth S; Weber, Christopher D; Zakharov, Lev N; Lonergan, Mark C; Jasti, Ramesh

    2015-09-23

    We have synthesized a series of aza[8]cycloparaphenylenes containing one, two, and three nitrogens to probe the impact of nitrogen doping on optoelectronic properties and solid state packing. Alkylation of these azananohoops afforded the first donor-acceptor nanohoops where the phenylene backbone acts as the donor and the pyridinium units act as the acceptor. The impact on the optoelectronic properties was then studied experimentally and computationally to provide new insight into the effect of functionalization on nanohoops properties. PMID:27162989

  2. Synthesis, Properties, and Design Principles of Donor–Acceptor Nanohoops

    PubMed Central

    2015-01-01

    We have synthesized a series of aza[8]cycloparaphenylenes containing one, two, and three nitrogens to probe the impact of nitrogen doping on optoelectronic properties and solid state packing. Alkylation of these azananohoops afforded the first donor–acceptor nanohoops where the phenylene backbone acts as the donor and the pyridinium units act as the acceptor. The impact on the optoelectronic properties was then studied experimentally and computationally to provide new insight into the effect of functionalization on nanohoops properties. PMID:27162989

  3. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  4. Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway.

    PubMed

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Murray, Andrew J; Griffin, Julian L

    2015-02-01

    Inorganic nitrate was once considered an oxidation end product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach, we mechanistically defined that nitrate not only increases the expression of thermogenic genes in brown adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious comorbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Because resulting beige/brite cells exhibit antiobesity and antidiabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome.

  5. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  6. Ab initio study of shallow acceptors in bixbyite V{sub 2}O{sub 3}

    SciTech Connect

    Sarmadian, N. Saniz, R.; Partoens, B.; Lamoen, D.

    2015-01-07

    We present the results of our study on p-type dopability of bixbyite V{sub 2}O{sub 3} using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) within the density functional theory (DFT) formalism. We study vanadium and oxygen vacancies as intrinsic defects and substitutional Mg, Sc, and Y as extrinsic defects. We find that Mg substituting V acts as a shallow acceptor, and that oxygen vacancies are electrically neutral. Hence, we predict Mg-doped V{sub 2}O{sub 3} to be a p-type conductor. Our results also show that vanadium vacancies are relatively shallow, with a binding energy of 0.14 eV, so that they might also lead to p-type conductivity.

  7. Characterization of the Reduction of Selenate and Tellurite by Nitrate Reductases

    PubMed Central

    Sabaty, Monique; Avazeri, Cécile; Pignol, David; Vermeglio, André

    2001-01-01

    Preliminary studies showed that the periplasmic nitrate reductase (Nap) of Rhodobacter sphaeroides and the membrane-bound nitrate reductases of Escherichia coli are able to reduce selenate and tellurite in vitro with benzyl viologen as an electron donor. In the present study, we found that this is a general feature of denitrifiers. Both the periplasmic and membrane-bound nitrate reductases of Ralstonia eutropha, Paracoccus denitrificans, and Paracoccus pantotrophus can utilize potassium selenate and potassium tellurite as electron acceptors. In order to characterize these reactions, the periplasmic nitrate reductase of R. sphaeroides f. sp. denitrificans IL106 was histidine tagged and purified. The Vmax and Km were determined for nitrate, tellurite, and selenate. For nitrate, values of 39 μmol · min−1 · mg−1 and 0.12 mM were obtained for Vmax and Km, respectively, whereas the Vmax values for tellurite and selenate were 40- and 140-fold lower, respectively. These low activities can explain the observation that depletion of the nitrate reductase in R. sphaeroides does not modify the MIC of tellurite for this organism. PMID:11679335

  8. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments

    PubMed Central

    Xu, Meiying; Zhang, Qin; Xia, Chunyu; Zhong, Yuming; Sun, Guoping; Guo, Jun; Yuan, Tong; Zhou, Jizhong; He, Zhili

    2014-01-01

    Nitrate is an important nutrient and electron acceptor for microorganisms, having a key role in nitrogen (N) cycling and electron transfer in anoxic sediments. High-nitrate inputs into sediments could have a significant effect on N cycling and its associated microbial processes. However, few studies have been focused on the effect of nitrate addition on the functional diversity, composition, structure and dynamics of sediment microbial communities in contaminated aquatic ecosystems with persistent organic pollutants (POPs). Here we analyzed sediment microbial communities from a field-scale in situ bioremediation site, a creek in Pearl River Delta containing a variety of contaminants including polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs), before and after nitrate injection using a comprehensive functional gene array (GeoChip 4.0). Our results showed that the sediment microbial community functional composition and structure were markedly altered, and that functional genes involved in N-, carbon (C)-, sulfur (S)-and phosphorus (P)- cycling processes were highly enriched after nitrate injection, especially those microorganisms with diverse metabolic capabilities, leading to potential in situ bioremediation of the contaminated sediment, such as PBDE and PAH reduction/degradation. This study provides new insights into our understanding of sediment microbial community responses to nitrate addition, suggesting that indigenous microorganisms could be successfully stimulated for in situ bioremediation of POPs in contaminated sediments with nitrate addition. PMID:24671084

  9. Metal-catalyzed protein tyrosine nitration in biological systems.

    PubMed

    Campolo, Nicolás; Bartesaghi, Silvina; Radi, Rafael

    2014-11-01

    Protein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO(-)) and nitrogen dioxide ((•)NO₂). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process. Early after the discovery that protein tyrosine nitration can occur under biologically relevant conditions, it was shown that some low molecular weight transition-metal centers and metalloproteins could promote peroxynitrite-dependent nitration. Later studies showed that nitration could be achieved by peroxynitrite-independent routes as well, depending on the transition metal-catalyzed oxidation of nitrite (NO₂(-)) to (•)NO₂ in the presence of hydrogen peroxide. Processes like these can be achieved either by hemeperoxidase-dependent reactions or by ferrous and cuprous ions through Fenton-type chemistry. Besides the in vitro evidence, there are now several in vivo studies that support the close relationship between transition metal levels and protein tyrosine nitration. So, the contribution of transition metals to the levels of tyrosine nitrated proteins observed under basal conditions and, specially, in disease states related with high levels of these metal ions, seems to be quite clear. Altogether, current evidence unambiguously supports a central role of transition metals in determining the extent and selectivity of protein tyrosine nitration mediated both by peroxynitrite-dependent and independent mechanisms.

  10. The Periplasmic Nitrate Reductase NapABC Supports Luminal Growth of Salmonella enterica Serovar Typhimurium during Colitis

    PubMed Central

    Lopez, Christopher A.; Rivera-Chávez, Fabian; Byndloss, Mariana X.

    2015-01-01

    The food-borne pathogen Salmonella enterica serovar Typhimurium benefits from acute inflammation in part by using host-derived nitrate to respire anaerobically and compete successfully with the commensal microbes during growth in the intestinal lumen. The S. Typhimurium genome contains three nitrate reductases, encoded by the narGHI, narZYV, and napABC genes. Work on homologous genes present in Escherichia coli suggests that nitrate reductase A, encoded by the narGHI genes, is the main enzyme promoting growth on nitrate as an electron acceptor in anaerobic environments. Using a mouse colitis model, we found, surprisingly, that S. Typhimurium strains with defects in either nitrate reductase A (narG mutant) or the regulator inducing its transcription in the presence of high concentrations of nitrate (narL mutant) exhibited growth comparable to that of wild-type S. Typhimurium. In contrast, a strain lacking a functional periplasmic nitrate reductase (napA mutant) exhibited a marked growth defect in the lumen of the colon. In E. coli, the napABC genes are transcribed maximally under anaerobic growth conditions in the presence of low nitrate concentrations. Inactivation of narP, encoding a response regulator that activates napABC transcription in response to low nitrate concentrations, significantly reduced the growth of S. Typhimurium in the gut lumen. Cecal nitrate measurements suggested that the murine cecum is a nitrate-limited environment. Collectively, our results suggest that S. Typhimurium uses the periplasmic nitrate reductase to support its growth on the low nitrate concentrations encountered in the gut, a strategy that may be shared with other enteric pathogens. PMID:26099579

  11. The preservation of long-range transported nitrate in snow at Summit, Greenland (Invited)

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.

    2013-12-01

    Nitrate is one of the major anions found in polar and alpine snow, both today and in the past. Deposition of nitrate to snow surfaces results from reactions of nitrogen oxides (NOx) with oxidants in the atmosphere, resulting in the production of HNO3 that is incorporated into precipitation or reacts on the surface of particles. Several factors motivate studying nitrate concentration in ice cores including reconstructing past levels of NOx, tropospheric oxidant concentrations and natural variability in NOx sources. The link between the atmospheric concentration of NOx and nitrate concentration in ice core records is problematic because post-depositional processing, such as photolysis and evaporation, can impact the concentration of nitrate in snow. Recent work has shown that the isotopic ratios of nitrate (15N/14N, 18O/16O, 17O/16O) can be a powerful tool for tracing post-depositional loss of nitrate from surface snow. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e, NOx sources) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. Results from a number of studies at Summit, Greenland reveal limited loss of nitrate from surface snow during highly photoactive periods, and the oxygen isotopic signatures in snow nitrate appear to be representative of atmospheric deposition of nitrate from outside of Summit. Higher than expected oxygen isotope ratios (18O/16O, 17O/16O) found in Summit summertime nitrate were expected to be dependent upon local photochemistry in which nitrate in the snow is photolyzed to NOx that is then oxidized above the snow by BrO to reform nitrate (i.e., BrONO2). However, the oxygen isotopic composition of nitrate collected at high time resolution in surface snow does not show any link to local gas phase concentrations of a number of species, including BrO. Furthermore, the combination of nitrogen and oxygen isotope data reveals interesting

  12. Oxygen - Enemy or Friend for Microbial Fuel Cell Anode Performance?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Until recently, scientists and engineers have held a strong belief that oxygen intrusion into the anode chamber of a bioelectrochemical system (BES) is detrimental to microbial fuel cell (MFC) performance because oxygen acts as an alternate electron acceptor. This would, according to recent beliefs...

  13. Influence of Nitrate on the Hanford 100D Area In Situ Redox Manipulation Barrier Longevity

    SciTech Connect

    Szecsody, Jim E.; Phillips, Jerry L.; Vermeul, Vince R.; Fruchter, Jonathan S.; Williams, Mark D.

    2005-07-15

    The purpose of this laboratory study is to determine the influence of nitrate on the Hanford 100D Area in situ redox manipulation (ISRM) barrier longevity. There is a wide spread groundwater plume of 60 mg/L nitrate upgradient of the ISRM barrier with lower nitrate concentrations downgradient, suggestive of nitrate reduction occurring. Batch and 1-D column experiments showed that nitrate is being slowly reduced to nitrite and ammonia. These nitrate reduction reactions are predominantly abiotic, as experiments with and without bactericides present showed no difference in nitrate degradation rates. Nitrogen species transformation rates determined in experiments covered a range of ferrous iron/nitrate ratios such that the data can be used to predict rates in field scale conditions. Field scale reaction rate estimates for 100% reduced sediment (16 C) are: (a) nitrate degradation = 202 {+-} 50 h (half-life), (b) nitrite production = 850 {+-} 300 h, and (c) ammonia production = 650 {+-} 300 h. Calculation of the influence of nitrate reduction on the 100D Area reductive capacity requires consideration of mass balance and reaction rate effects. While dissolved oxygen and chromate reduction rates are rapid and essentially at equilibrium in the aquifer, nitrate transformation reactions are slow (100s of hours). In the limited (20-40 day) residence time in the ISRM barrier, only a portion of the nitrate will be reduced, whereas dissolved oxygen and chromate are reduced to completion. Assuming a groundwater flow rate of 1 ft/day, it is estimated that the ISRM barrier reductive capacity is 160 pore volumes (with no nitrate), and 85 pore volumes if 60 mg/L nitrate is present (i.e., a 47% decrease in the ISRM barrier longevity). Zones with more rapid groundwater flow will be less influenced by nitrate reduction. For example, a zone with a groundwater flow rate of 3 ft/day and 60 mg/L nitrate will have a reductive capacity of 130 pore volumes. Finally, long-term column experiments

  14. Glycine lithium nitrate crystals

    NASA Astrophysics Data System (ADS)

    González-Valenzuela, R.; Hernández-Paredes, J.; Medrano-Pesqueira, T.; Esparza-Ponce, H. E.; Jesús-Castillo, S.; Rodriguez-Mijangos, R.; Terpugov, V. S.; Alvarez-Ramos, M. E.; Duarte-Möller, A.

    Crystals of glycine lithium nitrate with non-linear optical properties have been grown in a solution by slow evaporation at room temperature. The crystal shows a good thermal stability from room temperature to 175 °C where the crystal begins to degrade. This property is desirable for future technological applications. Also, a good performance on the second harmonic generation was found, characterizing the emitted dominant wavelength by a customized indirect procedure using luminance and chromaticity measured data based on the CIE-1931 standard. Additionally, the 532 nm signal was detected by using a variant to the Kurtz and Perry method.

  15. Electron acceptor-dependent respiratory and physiological stratifications in biofilms.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Sun, Guoping; Wu, Wei-Min; Xu, Meiying

    2015-01-01

    Bacterial respiration is an essential driving force in biogeochemical cycling and bioremediation processes. Electron acceptors respired by bacteria often have solid and soluble forms that typically coexist in the environment. It is important to understand how sessile bacteria attached to solid electron acceptors respond to ambient soluble alternative electron acceptors. Microbial fuel cells (MFCs) provide a useful tool to investigate this interaction. In MFCs with Shewanella decolorationis, azo dye was used as an alternative electron acceptor in the anode chamber. Different respiration patterns were observed for biofilm and planktonic cells, with planktonic cells preferred to respire with azo dye while biofilm cells respired with both the anode and azo dye. The additional azo respiration dissipated the proton accumulation within the anode biofilm. There was a large redox potential gap between the biofilms and anode surface. Changing cathodic conditions caused immediate effects on the anode potential but not on the biofilm potential. Biofilm viability showed an inverse and respiration-dependent profile when respiring with only the anode or azo dye and was enhanced when respiring with both simultaneously. These results provide new insights into the bacterial respiration strategies in environments containing multiple electron acceptors and support an electron-hopping mechanism within Shewanella electrode-respiring biofilms.

  16. Effects of long-term dietary nitrate supplementation in mice

    PubMed Central

    Hezel, Michael P.; Liu, Ming; Schiffer, Tomas A.; Larsen, Filip J.; Checa, Antonio; Wheelock, Craig E.; Carlström, Mattias; Lundberg, Jon O.; Weitzberg, Eddie

    2015-01-01

    Background Inorganic nitrate (NO3-) is a precursor of nitric oxide (NO) in the body and a large number of short-term studies with dietary nitrate supplementation in animals and humans show beneficial effects on cardiovascular health, exercise efficiency, host defense and ischemia reperfusion injury. In contrast, there is a long withstanding concern regarding the putative adverse effects of chronic nitrate exposure related to cancer and adverse hormonal effects. To address these concerns we performed in mice, a physiological and biochemical multi-analysis on the effects of long-term dietary nitrate supplementation. Design 7 week-old C57BL/6 mice were put on a low-nitrate chow and at 20 weeks-old were treated with NaNO3 (1 mmol/L) or NaCl (1 mmol/L, control) in the drinking water. The groups were monitored for weight gain, food and water consumption, blood pressure, glucose metabolism, body composition and oxygen consumption until one group was reduced to eight animals due to death or illness. At that point remaining animals were sacrificed and blood and tissues were analyzed with respect to metabolism, cardiovascular function, inflammation, and oxidative stress. Results Animals were supplemented for 17 months before final sacrifice. Body composition, oxygen consumption, blood pressure, glucose tolerance were measured during the experiment, and vascular reactivity and muscle mitochondrial efficiency measured at the end of the experiment with no differences identified between groups. Nitrate supplementation was associated with improved insulin response, decreased plasma IL-10 and a trend towards improved survival. Conclusions Long term dietary nitrate in mice, at levels similar to the upper intake range in the western society, is not detrimental. PMID:26068891

  17. Biological remediation of groundwater containing both nitrate and atrazine.

    PubMed

    Hunter, William J; Shaner, Dale L

    2010-01-01

    Due to its high usage, mobility, and recalcitrant nature, atrazine is a common groundwater contaminant. Moreover, groundwaters that are contaminated with atrazine often contain nitrate as well. Nitrate interferes with the biological degradation of atrazine and makes it more difficult to use in situ biological methods to remediate atrazine contaminated groundwater. To solve this problem we used two reactors in sequence as models of in situ biobarriers; the first was a vegetable-oil-based denitrifying biobarrier and the second an aerobic reactor that oxygenated the denitrifying reactor's effluent. The reactors were inoculated with an atrazine-degrading microbial consortium and supplied with water containing 5 mg l(-1) nitrate-N and 3 mg l(-1) atrazine. Our hypothesis was that the denitrifying barrier would remove nitrate from the flowing water and that the downstream reaction would remove atrazine. Our hypothesis proved correct; the two reactor system removed 99.9% of the atrazine during the final 30 weeks of the study. The denitrifying barrier removed approximately 98% of the nitrate and approximately 30% of the atrazine while the aerobic reactor removed approximately 70% of the initial atrazine. The system continued to work when the amount of nitrate-N in the influent water was increased to 50 mg l(-1). A mercury poisoning study blocked the degradation of atrazine indicating that biological processes were involved. An in situ denitrifying barrier coupled with an air injection system or other oxygenation process might be used to remove both nitrate and atrazine from contaminated groundwater or to protect groundwater from an atrazine spill.

  18. Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC.

    PubMed

    Oosterkamp, Margreet J; Boeren, Sjef; Atashgahi, Siavash; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2015-06-01

    Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a β-hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to β-hydroxybutyrate that may be converted to the energy and carbon storage compound, poly-β-hydroxybutyrate. Accordingly, we confirmed the formation of poly-β-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor.

  19. Multiple isotope forensics of nitrate in a wild horse poisoning incident.

    PubMed

    Michalski, Greg; Earman, Sam; Dahman, Christa; Hershey, Ronald L; Mihevc, Todd

    2010-05-20

    Multiple stable isotope analysis can be a powerful technique in forensic sciences. Oxygen and nitrogen isotopes were used to determine the source of nitrate that was responsible for the poisoning deaths of 71 wild horses in the Nevada desert. The nitrate was present in a water-filled hole known as 'the Main Lake depression.' Nitrate from the Main Lake depression had delta(18)O and delta(15)N values that were very positive (+32 per thousand, +37 per thousand), and Delta(17)O values of approximately +2 per thousand. The isotopic data suggested that the most probable source of the nitrate was nitrification of nitrogen from horse manure and urine that had leached into the pond. The delta(18)O signal suggested that extreme evaporative concentration had occurred, resulting in toxic levels of nitrate accumulating in the Main Lake depression. The study demonstrates the utility of the multiple stable isotope analysis approach for characterizing sources of nitrate.

  20. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb ... in your home. A different kind of oxygen therapy is called hyperbaric oxygen therapy. It uses oxygen ...

  1. Organic solar cells based on acceptor-functionalized diketopyrrolopyrrole derivatives

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjay S.; Serrano, Luis A.; Ebenhoch, Bernd; Rotello, Vincent M.; Cooke, Graeme; Samuel, Ifor D. W.

    2015-01-01

    The synthesis and characterization of three solution processable diketopyrrolopyrrole (DPP) derivatives featuring acceptor units attached to the core by alkyne linker units is reported. Cyclic voltammetry and density functional theory calculations indicate that the DPP derivatives possess similar HOMO and LUMO energies. Solar cells were fabricated by blending the synthesized DPP derivatives with [6,6]-phenyl-C71-butyrate methyl ester. The influence of donor:acceptor blend ratio, film thickness, annealing temperature, and annealing time on device performance was studied. Differences in device performance were related to atomic force microscopy measurements of the films. The highest power conversion efficiency of 1.76% was achieved for the DPP derivative functionalized with an aldehyde electron-withdrawing group with a 1∶0.7 donor:acceptor ratio when the active layer was annealed for 10 min at 110°C.

  2. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    NASA Astrophysics Data System (ADS)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  3. Proton Donor/acceptor Propensities of Ammonia: Rotational Studies of its Molecular Complexes with Organic Molecules

    NASA Astrophysics Data System (ADS)

    Giuliano, Barbara M.; Maris, Assimo; Melandri, Sonia; Favero, Laura B.; Evangelisti, Luca; Caminati, Walther

    2009-06-01

    We studied the rotational spectra of the adducts of ammonia with several organic molecules, namely tert-butanol, glycidol, ethyl alcohol, anisol and 1,4-difluorobenzene. The adducts with glycidol and ethanol have been observed for both conformers of the substrate molecule. Based on the rotational and ^{14}N quadrupole coupling constants of the various complexes, we found a considerably different behaviour of ammonia, with respect to water, in its proton donor/acceptor double role. In the interaction with the three alcohol molecules, NH_{3} acts as a proton acceptor and the OH groups as a proton donor. However, in the case of glycidol-NH_{3}, a secundary N-H\\cdotsO interaction occurrs between ammonia and the ether oxygen. This interaction generates a sizable V_{3} barrier to the internal rotation of the NH_{3} moiety, while NH_{3} undergoes a free rotation in tert-butanol-NH_{3} and in ethanol-NH_{3}. As to the anisole-NH_{3} and 1,4-difluorobenzene-NH_{3} complexes, the NH_{3} group explicits its double proton donor/acceptor role, although through two weak (C_{Me}-H\\cdotsN and N-H\\cdotsπ) H-bonds. There is, however, an important difference between the two complexes, because in the first one NH_{3} lies out of the aromatic plane, while in the second one it is in the plane of the aromatic ring. B. M. Giuliano, M. C. Castrovilli, A. Maris, S. Melandri, W. Caminati and E. A. Cohen, Chem.Phys.Lett., 2008, 463, 330 B. M. Giuliano, S. Melandri, A. Maris, L. B. Favero and W. Caminati, Angew.Chem.Int.Ed., 2009, 48, 1102

  4. In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater.

    PubMed

    Bennett, Peter; Gandhi, Deepa; Warner, Scott; Bussey, Julia

    2007-11-19

    In situ bioremediation using carbohydrate was evaluated as an in situ treatment alternative for trichloroethene (TCE) and cis-1,2-dichloroethene (cDCE) in groundwater containing high nitrate concentrations. Upon addition of carbohydrate to groundwater, sequential reduction of electron acceptors was observed, where nitrate was reduced early in the pilot test, followed by sulfate and TCE. Reduction of cDCE to vinyl chloride and ethene occurred in conjunction with increased iron and manganese, and increased methane concentrations, approximately 7 months into the evaluation period, following depletion of nitrate and sulfate. TCE, cDCE, and vinyl chloride concentrations decreased from approximately 500 to >10 microg/L within 21 months of operation.

  5. Host-derived nitrate boosts growth of E. coli in the inflamed gut.

    PubMed

    Winter, Sebastian E; Winter, Maria G; Xavier, Mariana N; Thiennimitr, Parameth; Poon, Victor; Keestra, A Marijke; Laughlin, Richard C; Gomez, Gabriel; Wu, Jing; Lawhon, Sara D; Popova, Ina E; Parikh, Sanjai J; Adams, L Garry; Tsolis, Renée M; Stewart, Valley J; Bäumler, Andreas J

    2013-02-01

    Changes in the microbial community structure are observed in individuals with intestinal inflammatory disorders. These changes are often characterized by a depletion of obligate anaerobic bacteria, whereas the relative abundance of facultative anaerobic Enterobacteriaceae increases. The mechanisms by which the host response shapes the microbial community structure, however, remain unknown. We show that nitrate generated as a by-product of the inflammatory response conferred a growth advantage to the commensal bacterium Escherichia coli in the large intestine of mice. Mice deficient in inducible nitric oxide synthase did not support the growth of E. coli by nitrate respiration, suggesting that the nitrate generated during inflammation was host-derived. Thus, the inflammatory host response selectively enhances the growth of commensal Enterobacteriaceae by generating electron acceptors for anaerobic respiration. PMID:23393266

  6. Host-derived nitrate boosts growth of E. coli in the inflamed gut

    PubMed Central

    Winter, Sebastian E.; Winter, Maria G.; Xavier, Mariana N.; Thiennimitr, Parameth; Poon, Victor; Keestra, A. Marijke; Laughlin, Richard C.; Gomez, Gabriel; Wu, Jing; Lawhon, Sara D.; Popova, Ina; Parikh, Sanjai J.; Adams, L. Garry; Tsolis, Renée M.; Stewart, Valley J.; Bäumler, Andreas J.

    2014-01-01

    Changes in the microbial community structure are observed in individuals with intestinal inflammatory disorders. These changes are often characterized by a depletion of obligate anaerobic bacteria, whereas the relative abundance of facultative anaerobic Enterobacteriaceae increases. The mechanisms by which the host response shapes the microbial community structure, however, remain unknown. We show that nitrate generated as a by-product of the inflammatory response conferred a growth advantage to the commensal bacterium Escherichia coli in the large intestine of mice. Mice deficient for inducible nitric oxide synthase (iNOS) did not support growth of E. coli by nitrate respiration, suggesting that nitrate generated during inflammation was host-derived. Thus the inflammatory host response selectively enhances growth of commensal Enterobacteriaceae by generating electron acceptors for anaerobic respiration. PMID:23393266

  7. Higher excited states of acceptors in cubic semiconductors

    NASA Astrophysics Data System (ADS)

    Said, M.; Kanehisa, M. A.; Balkanski, M.

    1986-02-01

    For the first time, higher excited states of shallow acceptors up to the 3s and 4s states are calculated based on the Balderschi and Lipari theory including the cubic correction. The eigenvalues and eigenvectors of the effective mass Hamiltonian for shallow acceptor states were obtained by the finite element method. The resultant sparse matrix is diagonalized by a newly developed Saad's method based on Arnoldi's algorithm. Comparison with experimental spectra on ZnTe:Li and ZnTe:P gives best valence band parameters for ZnTe; μ = 0.60 and δ = 0.12.

  8. Donor-acceptor chemistry in the main group.

    PubMed

    Rivard, Eric

    2014-06-21

    This Perspective article summarizes recent progress from our laboratory in the isolation of reactive main group species using a general donor-acceptor protocol. A highlight of this program is the use of carbon-based donors in combination with suitable Lewis acidic acceptors to yield stable complexes of parent Group 14 element hydrides (e.g. GeH2 and H2SiGeH2). It is anticipated that this strategy could be extended to include new synthetic targets from throughout the Periodic Table with possible applications in bottom-up materials synthesis and main group element catalysis envisioned. PMID:24788390

  9. Acceptors in bulk and nanoscale ZnO

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.

    2012-02-01

    Zinc oxide (ZnO) is a semiconductor that emits bright UV light, with little wasted heat. This intrinsic feature makes it a promising material for energy-efficient white lighting, nano-lasers, and other optical applications. For devices to be competitive, however, it is necessary to develop reliable p-type doping. Although substitutional nitrogen has been considered as a potential p-type dopant for ZnO, theoretical and experimental work indicates that nitrogen is a deep acceptor and will not lead to p-type conductivity. This talk will highlight recent experiments on ZnO:N at low temperatures. A red/near-IR photoluminescence (PL) band is correlated with the presence of deep nitrogen acceptors. PL excitation (PLE) measurements show an absorption threshold of 2.26 eV, in good agreement with theory. Magnetic resonance experiments provide further evidence for this assignment. The results of these studies seem to rule out group-V elements as shallow acceptors in ZnO, contradicting numerous reports in the literature. If these acceptors do not work as advertised, is there a viable alternative? Optical studies on ZnO nanocrystals show some intriguing leads. At liquid-helium temperatures, a series of sharp IR absorption peaks arise from an unknown acceptor impurity. The data are consistent with a hydrogenic acceptor 0.46 eV above the valence band edge. While this binding energy is still too deep for many practical applications, it represents a significant improvement over the ˜ 1.3 eV binding energy for nitrogen acceptors. Nanocrystals present another twist. Due to their high surface-to-volume ratio, surface states are especially important. Specifically, electron-hole recombination at the surface give rises to a red luminescence band. From our PL and IR experiments, we have developed a ``unified'' model that attempts to explain acceptor and surface states in ZnO nanocrystals. This model could provide a useful framework for designing future nanoscale ZnO devices.

  10. Microbial Diversity in Coastal Subsurface Sediments: a Cultivation Approach Using Various Electron Acceptors and Substrate Gradients

    PubMed Central

    Köpke, Beate; Wilms, Reinhard; Engelen, Bert; Cypionka, Heribert; Sass, Henrik

    2005-01-01

    Microbial communities in coastal subsurface sediments are scarcely investigated and have escaped attention so far. But since they are likely to play an important role in biogeochemical cycles, knowledge of their composition and ecological adaptations is important. Microbial communities in tidal sediments were investigated along the geochemical gradients from the surface down to a depth of 5.5 m. Most-probable-number (MPN) series were prepared with a variety of different carbon substrates, each at a low concentration, in combination with different electron acceptors such as iron and manganese oxides. These achieved remarkably high cultivation efficiencies (up to 23% of the total cell counts) along the upper 200 cm. In the deeper sediment layers, MPN counts dropped significantly. Parallel to the liquid enrichment cultures in the MPN series, gradient cultures with embedded sediment subcores were prepared as an additional enrichment approach. In total, 112 pure cultures were isolated; they could be grouped into 53 different operational taxonomic units (OTU). The isolates belonged to the Proteobacteria, “Bacteroidetes,” “Fusobacteria,” Actinobacteria, and “Firmicutes.” Each cultivation approach yielded a specific set of isolates that in general were restricted to this single isolation procedure. Analysis of the enrichment cultures by PCR and denaturing gradient gel electrophoresis revealed an even higher diversity in the primary enrichments that was only partially reflected by the culture collection. The majority of the isolates grew well under anoxic conditions, by fermentation, or by anaerobic respiration with nitrate, sulfate, ferrihydrite, or manganese oxides as electron acceptors. PMID:16332756

  11. Long-term use of short- and long-acting nitrates in stable angina pectoris.

    PubMed

    Kosmicki, Marek Antoni

    2009-05-01

    Long-acting nitrates are effective antianginal drugs during initial treatment. However, their therapeutic value is compromised by the rapid development of tolerance during sustained therapy, which means that their clinical efficacy is decreased during long-term use. Sublingual nitroglycerin (NTG), a short-acting nitrate, is suitable for the immediate relief of angina. In patients with stable angina treated with oral long-acting nitrates, NTG maintains its full anti-ischemic effect both after initial oral ingestion and after intermittent long-term oral administration. However, NTG attenuates this effect during continuous treatment, when tolerance to oral nitrates occurs, and this is called cross-tolerance. In stable angina long-acting nitrates are considered third-line therapy because a nitrate-free interval is required to avoid the development of tolerance. Nitrates vary in their potential to induce the development of tolerance. During long-lasting nitrate therapy, except pentaerythritol tetranitrate (PETN), one can observe the development of reactive oxygen species (ROS) inside the muscular cell of a vessel wall, and these bind with nitric oxide (NO). This leads to decreased NO activity, thus, nitrate tolerance. PETN has no tendency to form ROS, and therefore during long-term PETN therapy, there is probably no tolerance or cross-tolerance, as during treatment with other nitrates.

  12. The mechanism of oxygen isotopic fractionation during fungal denitrification - A pure culture study

    NASA Astrophysics Data System (ADS)

    Wrage-Moennig, Nicole; Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Annette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2014-05-01

    Nitrous oxide (N2O) from soil denitrification originates from bacteria and - to an unknown extent - also from fungi. During fungal denitrification, oxygen (O) exchange takes place between H2O and intermediates of the denitrification process as in bacterial exchange[1,2]. However, information about enzymes involved in fungal O exchanges and the associated fractionation effects is lacking. The objectives of this study were to estimate the O fractionation and O exchange during the fungal denitrifying steps using a conceptual model[2] adapted from concepts for bacterial denitrification[3], implementing controls of O exchange proposed by Aerssens, et al.[4] and using fractionation models by Snider et al.[5] Six different pure fungal cultures (five Hypocreales, one Sordariales) known to be capable of denitrification were incubated under anaerobic conditions, either with nitrite or nitrate. Gas samples were analyzed for N2O concentration and its isotopic signatures (SP, average δ15N, δ18O). To investigate O exchange, both treatments were also established with 18O-labelled water as a tracer in the medium. The Hypocreales strains showed O exchange mainly at NO2- reductase (Nir) with NO2- as electron acceptor and no additional O exchange at NO3- reductase (Nar) with NO3- as electron acceptor. The only Hypocreales species having higher O exchange with NO3- than with NO2- also showed O exchange at Nar. The Sordariales species tested seems capable of O exchange at NO reductase (Nor) additionally to O exchange at Nir with NO2-. The data will help to better interpret stable isotope values of N2O from soils. .[1] D. M. Kool, N. Wrage, O. Oenema, J. Dolfing, J. W. Van Groenigen. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO?3- and N2O: a review. Rapid Commun. Mass Spec. 2007, 21, 3569. [2] L. Rohe, T.-H. Anderson, B. Braker, H. Flessa, A. Giesemann, N. Wrage-Mönnig, R. Well. Fungal Oxygen Exchange between

  13. Optical Spectroscopy of Acceptors in Semiconductors: I. Acceptor Complexes in Neutron Transmutation-Doped Silicon. I. Piezospectroscopy of Beryllium Double Acceptors in Germanium.

    NASA Astrophysics Data System (ADS)

    Labrec, Charles Raymond

    Substitutional group III impurities in group IV elemental semiconductors bind a hole from the valence band and are solid-state analogs of the hydrogen atom; likewise, group II impurities bind two holes and are analogs of the helium atom. In these materials, the electronic transitions from the acceptor s-like ground state to the p-like excited states are infrared active. A high-resolution Fourier transform spectrometer, and a liquid-helium cooled germanium bolometer and glass sample cryostat are ideally suited to study these effects. When silicon is exposed to neutron radiation, a fraction of the atoms are converted to phosphorus. After annealing, these impurity atoms occupy substitutional locations and are thus donors. When the initial crystal is p-type and the final phosphorus concentration is less than that of the acceptor, the sample is left p-type but highly compensated. This results in broadening of the transition lines. However, before complete annealing, it is discovered that a new, extremely shallow acceptor is formed, with an ionization energy of 28.24 meV, which is far shallower than any previously known. Neutral Be in Ge is known to be a double acceptor. Under uniaxial stress, the single hole (1s)^2 to (1s)(np) excitation spectrum shows splittings and polarization effects. These piezospectroscopic effects were observed for a compressive force vec F | (111) and vec F | (100). The phenomenological shear deformation potential constants have been deduced for the ground and excited states of the D transition.

  14. Some History of Nitrates

    NASA Astrophysics Data System (ADS)

    Barnum, Dennis W.

    2003-12-01

    The history of saltpeter is an interesting combination of chemistry, world trade, technology, politics, and warfare. Originally it was obtained from the dirt floors of stables, sheep pens, pigeon houses, caverns, and even peasants' cottages; any place manure and refuse accumulated in soil under dry conditions. When these sources became inadequate to meet demand it was manufactured on saltpeter plantations, located in dry climates, where piles of dirt, limestone, and manure were allowed to stand for three to five years while soil microbes oxidized the nitrogen to nitrate—an example of early bioengineering. Extensive deposits of sodium nitrate were mined in the Atacama Desert in northern Chile from 1830 until the mid 1920s when the mines were displaced by the Haber Ostwald process.

  15. [Effects of Nitrate and CH4 on Anaerobic Oxidation of BETX in Landfill Cover Soils].

    PubMed

    Liu, Rong; Long, Yan; Wang, Li-li; He, Ting; Ye, Jin-shao

    2015-05-01

    BETX is one of the important components of stink organic gases in landfills, which simultaneously release much of greenhouse CH4. The microorganisms in landfill cover soils are able to degrade CH4 and BETX. Therefore, improving the capacity of biological oxidation of microorganisms in landfill cover soils can effectively reduce and control pollution caused by landfill gases. Some electron acceptors can couple to anaerobic oxidation of methane and some organic pollutants, thus eliminating methane and organic substances. Based on the above theory, this research investigated the effect of nitrate (NO3-) and CH4 on anaerobic degradation of benzene series (toluene, xylene and isopropyl benzene) with coexistence of SO4(2-) in landfill cover soils through static incubation experiment. The results showed that BTEX inhibited the degradation of CH4 without adding nitrate, however, BTEX instead improved the removal of CH4 after nitrate addition. Although single addition of nitrate or CH4 could improve the removal of BTEX in landfill cover soils, adding both of them could improve the removal of BTEX better as the removal efficiencies for benzene, toluene and isopropyl benzene were respectively reached 65%, 88% and 82%, much higher than those of 53%, 76% and 31% when not adding nitrate and CH4. The process of anaerobic methane oxidation coupled to nitrate reduction was able to synchronously improve anaerobic oxidation of BETX.

  16. Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal

    SciTech Connect

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Zeng, Qiang; Edelmann, Richard E.; Pentrak, Martin; Agrawal, Abinash

    2015-05-05

    Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electron donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mössbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mössbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.

  17. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  18. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOEpatents

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  19. Tetrathiafulvalene-based mixed-valence acceptor-donor-acceptor triads: a joint theoretical and experimental approach.

    PubMed

    Calbo, Joaquín; Aragó, Juan; Otón, Francisco; Lloveras, Vega; Mas-Torrent, Marta; Vidal-Gancedo, José; Veciana, Jaume; Rovira, Concepció; Ortí, Enrique

    2013-12-01

    This work presents a joint theoretical and experimental characterisation of the structural and electronic properties of two tetrathiafulvalene (TTF)-based acceptor-donor-acceptor triads (BQ-TTF-BQ and BTCNQ-TTF-BTCNQ; BQ is naphthoquinone and BTCNQ is benzotetracyano-p-quinodimethane) in their neutral and reduced states. The study is performed with the use of electrochemical, electron paramagnetic resonance (EPR), and UV/Vis/NIR spectroelectrochemical techniques guided by quantum-chemical calculations. Emphasis is placed on the mixed-valence properties of both triads in their radical anion states. The electrochemical and EPR results reveal that both BQ-TTF-BQ and BTCNQ-TTF-BTCNQ triads in their radical anion states behave as class-II mixed-valence compounds with significant electronic communication between the acceptor moieties. Density functional theory calculations (BLYP35/cc-pVTZ), taking into account the solvent effects, predict charge-localised species (BQ(.-)-TTF-BQ and BTCNQ(.-)-TTF-BTCNQ) as the most stable structures for the radical anion states of both triads. A stronger localisation is found both experimentally and theoretically for the BTCNQ-TTF-BTCNQ anion, in accordance with the more electron-withdrawing character of the BTCNQ acceptor. CASSCF/CASPT2 calculations suggest that the low-energy, broad absorption bands observed experimentally for the BQ-TTF-BQ and BTCNQ-TTF-BTCNQ radical anions are associated with the intervalence charge transfer (IV-CT) electronic transition and two nearby donor-to-acceptor CT excitations. The study highlights the molecular efficiency of the electron-donor TTF unit as a molecular wire connecting two acceptor redox centres.

  20. Polar lipid fatty acids, LPS-hydroxy fatty acids, and respiratory quinones of three Geobacter strains, and variation with electron acceptor

    SciTech Connect

    Hedrick, David B.; Peacock, Aaron; Lovley, Derek; Woodard, Trevor L.; Nevin, Kelly P.; Long, Philip E.; White, David C.

    2009-02-01

    The polar lipid fatty acids, lipopolysaccharide hydroxy-fatty acids, and respiratory quinones of Geobacter metallireducens str. GS-15, Geobacter sulfurreducens str. PCA, and Geobacter bemidjiensis str. Bem are reported. Also, the lipids of G. metallireducens were compared when grown with Fe3+ or nitrate as electron acceptors and G. sulfurreducens with Fe3+ or fumarate. In all experiments, the most abundant polar lipid fatty acids were 14:0, i15:0, 16:1*7c, 16:1*5c, and 16:0; lipopolysaccharide hydroxyfatty acids were dominated by 3oh16:0, 3oh14:0, 9oh16:0, and 10oh16:0; and menaquinone-8 was the most abundant respiratory quinone. Some variation in lipid proWles with strain were observed, but not with electron acceptor.

  1. Mortality of nitrate fertiliser workers.

    PubMed

    Al-Dabbagh, S; Forman, D; Bryson, D; Stratton, I; Doll, R

    1986-08-01

    An epidemiological cohort study was conducted to investigate the mortality patterns among a group of workers engaged in the production of nitrate based fertilisers. This study was designed to test the hypothesis that individuals exposed to high concentrations of nitrates might be at increased risk of developing cancers, particularly gastric cancer. A total of 1327 male workers who had been employed in the production of fertilisers between 1946 and 1981 and who had been occupationally exposed to nitrates for at least one year were followed up until 1 March 1981. In total, 304 deaths were observed in this group and these were compared with expected numbers calculated from mortality rates in the northern region of England, where the factory was located. Analysis was also carried out separately for a subgroup of the cohort who had been heavily exposed to nitrates--that is, working in an environment likely to contain more than 10 mg nitrate/m3 for a year or longer. In neither the entire cohort nor the subgroup was any significant excess observed for all causes of mortality or for mortality from any of five broad categories of cause or from four specific types of cancer. A small excess of lung cancer was noted more than 20 years after first exposure in men heavily exposed for more than 10 years. That men were exposed to high concentrations of nitrate was confirmed by comparing concentrations of nitrates in the saliva of a sample of currently employed men with control men, employed at the same factory but not in fertiliser production. The men exposed to nitrate had substantially raised concentrations of nitrate in their saliva compared with both controls within the industry and with men in the general population and resident nearby. The results of this study therefore weight against the idea that exposure to nitrates in the environment leads to the formation in vivo of material amounts of carcinogens. PMID:3015194

  2. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  3. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  4. Three Redox States of a Diradical Acceptor-Donor-Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization.

    PubMed

    Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume

    2016-06-16

    The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations.

  5. Nitrate Transport System in Neurospora crassa

    PubMed Central

    Schloemer, Robert H.; Garrett, Reginald H.

    1974-01-01

    Nitrate uptake in Neurospora crassa has been investigated under various conditions of nitrogen nutrition by measuring the rate of disappearance of nitrate from the medium and by determining mycelial nitrate accumulation. The nitrate transport system is induced by either nitrate or nitrite, but is not present in mycelia grown on ammonia or Casamino Acids. The appearance of nitrate uptake activity is prevented by cycloheximide, puromycin, or 6-methyl purine. The induced nitrate transport system displays a Km for nitrate of 0.25 mM. Nitrate uptake is inhibited by metabolic poisons such as 2,4-dinitrophenol, cyanide, and antimycin A. Furthermore, mycelia can concentrate nitrate 50-fold. Ammonia and nitrite are non-competitive inhibitors with respect to nitrate, with Ki values of 0.13 and 0.17 mM, respectively. Ammonia does not repress the formation of the nitrate transport system. In contrast, the nitrate uptake system is repressed by Casamino Acids. All amino acids individually prevent nitrate accumulation, with the exception of methionine, glutamine, and alanine. The influence of nitrate reduction and the nitrate reductase protein on nitrate transport was investigated in wild-type Neurospora lacking a functional nitrate reductase and in nitrate non-utilizing mutants, nit-1, nit-2, and nit-3. These mycelia contain an inducible nitrate transport system which displays the same characteristics as those found in the wild-type mycelia having the functional nitrate reductase. These findings suggest that nitrate transport is not dependent upon nitrate reduction and that these two processes are separate events in the assimilation of nitrate. PMID:4274457

  6. ISOTOPE EVALUATION OF NITRATE ATTENUATION IN RESTORED AND NATIVE RIPARIAN ZONES IN THE KANKAKEE WATERSHED, INDIANA

    EPA Science Inventory

    Isotopic analyses of oxygen and hydrogen of water ( 18O and D) and nitrogen and oxygen of nitrate ( 15N and 18O) are used in conjunction with conventional water chemistry and hydrologic measurements to investigate water flow and nitrogen cycling mechanisms through two riparian ...

  7. Toward the development of the direct and selective detection of nitrates by a bioinspired Mo-Cu system.

    PubMed

    Marom, Hanit; Popowski, Yanay; Antonov, Svetlana; Gozin, Michael

    2011-10-21

    The development of a new platform for the direct and selective detection of nitrates is described. Two thioether-based chemosensors and the corresponding sulfoxides and sulfones were prepared, and their photophysical properties were evaluated. Upon selective sulfoxidation of these thioethers with nitrates via an oxygen-transfer reaction promoted by a bioinspired Mo-Cu system, significant fluorescence shifts were measured. A selective response of these systems, discriminating between nitrate salts and H(2)O(2), was also shown.

  8. A national look at nitrate contamination of ground water

    USGS Publications Warehouse

    Nolan, Bernard T.; Ruddy, Barbara C.; Hitt, Kerie J.; Helsel, Dennis R.

    1998-01-01

    Knowing where and what type of risks to ground water exist can alert water-resource managers and private users of the need to protect water supplies. Although nitrate generally is not an adult public-health threat, ingestion in drinking water by infants can cause low oxygen levels in the blood, a potentially fatal condition (Spalding and Exner, 1993). For this reason, the U.S. Environmental Protection Agency (EPA) has established a drinking-water standard of 10 milligrams per liter (mg/L) nitrate as nitrogen (U.S. Environmental Protection Agency, 1995). Nitrate concentrations in natural ground waters are usually less than 2 mg/L (Mueller and others, 1995).

  9. Covalent non-fused tetrathiafulvalene-acceptor systems.

    PubMed

    Pop, Flavia; Avarvari, Narcis

    2016-06-28

    Covalent donor-acceptor (D-A) systems have significantly contributed to the development of many organic materials and to molecular electronics. Tetrathiafulvalene (TTF) represents one of the most widely studied donor precursors and has been incorporated into the structure of many D-A derivatives with the objective of obtaining redox control and modulation of the intramolecular charge transfer (ICT), in order to address switchable emissive systems and to take advantage of its propensity to form regular stacks in the solid state. In this review, we focus on the main families of non-fused TTF-acceptors, which are classified according to the nature of the acceptor: nitrogen-containing heterocycles, BODIPY, perylenes and electron poor unsaturated hydrocarbons, as well as radical acceptors. We describe herein the most representative members of each family with a brief mention of their synthesis and a special focus on their D-A characteristics. Special attention is given to ICT and its modulation, fluorescence quenching and switching, photoconductivity, bistability and spin distribution by discussing and comparing spectroscopic and electrochemical features, photophysical properties, solid-state properties and theoretical calculations. PMID:27193500

  10. Fine structure of the Mn acceptor in GaAs

    NASA Astrophysics Data System (ADS)

    Krainov, I. V.; Debus, J.; Averkiev, N. S.; Dimitriev, G. S.; Sapega, V. F.; Lähderanta, E.

    2016-06-01

    We reveal the electronic level structure of the Mn acceptor, which consists of a valence-band hole bound to an Mn2 + ion, in presence of applied uniaxial stress and an external magnetic field in bulk GaAs. Resonant spin-flip Raman scattering is used to measure the g factor of the AMn0 center in the ground and excited states with the total angular momenta F =1 and F =2 and characterize the optical selection rules of the spin-flip transitions between these Mn-acceptor states. We determine the random stress fields near the Mn acceptor, the constant of the antiferromagnetic exchange interaction between the valence-band holes and the electrons of the inner Mn2 + shell as well as the deformation potential for the exchange energy. The p -d exchange energy, in particular, decreases significantly with increasing compressive stress. By combining the experimental Raman study with the developed theoretical model on the scattering efficiency, in which also the random local and external uniaxial stresses and magnetic field are considered, the fine structure of the Mn acceptor is determined in full detail.

  11. The response of aquifer sediments to nitrate exposure: biogeochemical controls on denitrification potential

    NASA Astrophysics Data System (ADS)

    Hartog, N.; Griffioen, J.

    2003-04-01

    Nitrate is the most common contaminant of freshwater aquifers, mainly due to its extensive leaching from manured and fertilized agricultural soils. The attenuation of nitrate in groundwater is generally controlled by the reactivity of the reductants present in the subsurface. Here, the nitrate reduction potential of anaerobic aquifer sediments is studied using fluidized-bed and batch reactor experiments. The dentrification potential is primarily controlled by microbial adaptation. In addition, the development of microbial denitrification capacity is delayed by the recalcitrant nature of SOM, as indicated by Py-GC/MS analysis. In the absence of oxygen, reduction of nitrate to nitrite occurs readily upon nitrate exposure. However, nitrite accumulated until slow microbial adaptation enabled complete denitrification to N2. Therefore, nitrite is an essential intermediate that should be measured in denitrification studies, especially when microbial adaptation time is potentially longer or in the range of duration of the experiment. Under the carbonate-buffered experimental conditions, sedimentary organic matter was the principal electron donor during denitrification. Nitrate reduction coupled to pyrite oxidation is probably strongly limited by either its low solubility at circum-neutral to slightly alkaline pH values or the precipitation of ironhydroxides on its surface. The experimental results are dissimilar from those obtained for oxygen reduction, where pyrite oxidation was a dominant process. Overall, the rates obtained for nitrate reduction are two times lower than those obtained for oxygen reduction.

  12. Development of imide- and imidazole-containing electron acceptors for use in donor-acceptor conjugated compounds and polymers

    NASA Astrophysics Data System (ADS)

    Li, Duo

    Conjugated organic compounds and polymers have attracted significant attention due to their potential application in electronic devices as semiconducting materials, such as organic solar cells (OSCs). In order to tune band gaps, donor-acceptor (D-A) structure is widely used, which has been proved to be one of the most effective strategies. This thesis consists of three parts: 1) design, syntheses and characterization of new weak acceptors based on imides and the systematic study of the structure-property relationship; (2) introduction of weak and strong acceptors in one polymer to achieve a broad coverage of light absorption and improve the power conversion efficiency (PCE); (3) modification of benzothiadiazole (BT) acceptor in order to increase the electron withdrawing ability. Imide-based electron acceptors, 4-(5-bromothiophen-2-y1)-2-(2-ethylhexyl)-9- phenyl- 1H-benzo[f]isoindole-1,3(2H)-dione (BIDO-1) and 4,9-bis(5-bromothiophen-2-yl)-2-(2-ethylhexyl)-benzo[f]isoindole-1,3-dione (BIDO-2), were designed and synthesized. In this design, naphthalene is selected as its main core to maintain a planar structure, and thienyl groups are able to facilitate the bromination reaction and lower the band gap. BIDO-1 and BIDO-2 were successfully coupled with different donors by both Suzuki cross-coupling and Stille cross-coupling reactions. Based on the energy levels and band gaps of the BIDO-containing compounds and polymers, BIDO-1 and BIDO-2 are proved to be weak electron acceptors. Pyromellitic diimide (PMDI) was also studied and found to be a stronger electron acceptor than BIDO . In order to obtain broad absorption coverage, both weak acceptor ( BIDO-2) and strong acceptor diketopyrrolopyrrole (DPP) were introduced in the same polymer. The resulting polymers show two absorption bands at 400 and 600 nm and two emission peaks at 500 and 680 nm. The band gaps of the polymers are around 1.6 eV, which is ideal for OSC application. The PCE of 1.17% was achieved. Finally

  13. Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases.

    PubMed

    Omar, S A; Webb, A J; Lundberg, J O; Weitzberg, E

    2016-04-01

    Nitric oxide (NO) is generated endogenously by NO synthases to regulate a number of physiological processes including cardiovascular and metabolic functions. A decrease in the production and bioavailability of NO is a hallmark of many major chronic diseases including hypertension, ischaemia-reperfusion injury, atherosclerosis and diabetes. This NO deficiency is mainly caused by dysfunctional NO synthases and increased scavenging of NO by the formation of reactive oxygen species. Inorganic nitrate and nitrite are emerging as substrates for in vivo NO synthase-independent formation of NO bioactivity. These anions are oxidation products of endogenous NO generation and are also present in the diet, with green leafy vegetables having a high nitrate content. The effects of nitrate and nitrite are diverse and include vasodilatation, improved endothelial function, enhanced mitochondrial efficiency and reduced generation of reactive oxygen species. Administration of nitrate or nitrite in animal models of cardiovascular disease shows promising results, and clinical trials are currently ongoing to investigate the therapeutic potential of nitrate and nitrite in hypertension, pulmonary hypertension, peripheral artery disease and myocardial infarction. In addition, the nutritional aspects of the nitrate-nitrite-NO pathway are interesting as diets suggested to protect against cardiovascular disease, such as the Mediterranean diet, are especially high in nitrate. Here, we discuss the potential therapeutic opportunities for nitrate and nitrite in prevention and treatment of cardiovascular and metabolic diseases.

  14. Algal productivity and nitrate assimilation in an effluent dominated concrete lined stream

    USGS Publications Warehouse

    Kent, R.; Belitz, K.; Burton, C.A.

    2005-01-01

    This study examined algal productivity and nitrate assimilation in a 2.85 km reach of Cucamonga Creek, California, a concrete lined channel receiving treated municipal wastewater. Stream nitrate concentrations observed at two stations indicated nearly continuous loss throughout the diel study. Nitrate loss in the reach was approximately 11 mg/L/d or 1.0 g/m2/d as N, most of which occurred during daylight. The peak rate of nitrate loss (1.13 mg/l/hr) occurred just prior to an afternoon total CO2 depletion. Gross primary productivity, as estimated by a model using the observed differences in dissolved oxygen between the two stations, was 228 mg/L/d, or 21 g/m2/d as O2. The observed diel variations in productivity, nitrate loss, pH, dissolved oxygen, and CO2 indicate that nitrate loss was primarily due to algal assimilation. The observed levels of productivity and nitrate assimilation were exceptionally high on a mass per volume basis compared to studies on other streams; these rates occurred because of the shallow stream depth. This study suggests that concrete-lined channels can provide an important environmental service: lowering of nitrate concentrations similar to rates observed in biological treatment systems.

  15. Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation

    PubMed Central

    Koroidov, Sergey; Shevela, Dmitriy; Shutova, Tatiana; Samuelsson, Göran; Messinger, Johannes

    2014-01-01

    Cyanobacteria, algae, and plants oxidize water to the O2 we breathe, and consume CO2 during the synthesis of biomass. Although these vital processes are functionally and structurally well separated in photosynthetic organisms, there is a long-debated role for CO2/ in water oxidation. Using membrane-inlet mass spectrometry we demonstrate that acts as a mobile proton acceptor that helps to transport the protons produced inside of photosystem II by water oxidation out into the chloroplast’s lumen, resulting in a light-driven production of O2 and CO2. Depletion of from the media leads, in the absence of added buffers, to a reversible down-regulation of O2 production by about 20%. These findings add a previously unidentified component to the regulatory network of oxygenic photosynthesis and conclude the more than 50-y-long quest for the function of CO2/ in photosynthetic water oxidation. PMID:24711433

  16. Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation.

    PubMed

    Koroidov, Sergey; Shevela, Dmitriy; Shutova, Tatiana; Samuelsson, Göran; Messinger, Johannes

    2014-04-29

    Cyanobacteria, algae, and plants oxidize water to the O2 we breathe, and consume CO2 during the synthesis of biomass. Although these vital processes are functionally and structurally well separated in photosynthetic organisms, there is a long-debated role for CO2/ in water oxidation. Using membrane-inlet mass spectrometry we demonstrate that acts as a mobile proton acceptor that helps to transport the protons produced inside of photosystem II by water oxidation out into the chloroplast's lumen, resulting in a light-driven production of O2 and CO2. Depletion of from the media leads, in the absence of added buffers, to a reversible down-regulation of O2 production by about 20%. These findings add a previously unidentified component to the regulatory network of oxygenic photosynthesis and conclude the more than 50-y-long quest for the function of CO2/ in photosynthetic water oxidation. PMID:24711433

  17. Nitrate concentrations under irrigated agriculture

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    In recent years, considerable interest has been expressed in the nitrate content of water supplies. The most notable toxic effect of nitrate is infant methemoglobinemia. The risk of this disease increases significantly at nitrate-nitrogen levels exceeding 10 mg/l. For this reason, this concentration has been established as a limit for drinking water in many countries. In natural waters, nitrate is a minor ionic constituent and seldom accounts for more than a few percent of the total anions. However, nitrate in a significant concentration may occur in the vicinity of some point sources such as septic tanks, manure pits, and waste-disposal sites. Non-point sources contributing to groundwater pollution are numerous and a majority of them are related to agricultural activities. The largest single anthropogenic input of nitrate into the groundwater is fertilizer. Even though it has not been proven that nitrogen fertilizers are responsible for much of nitrate pollution, they are generally recognized as the main threat to groundwater quality, especially when inefficiently applied to irrigated fields on sandy soils. The biggest challenge facing today's agriculture is to maintain the balance between the enhancement of crop productivity and the risk of groundwater pollution. ?? 1982 Springer-Verlag New York Inc.

  18. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in "mixed" samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant. ?? 2007 American Chemical Society.

  19. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions

    PubMed Central

    Tiso, Mauro; Schechter, Alan N.

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  20. An Alternative Reaction Course in O-Glycosidation with O-Glycosyl Trichloroacetimidates as Glycosyl Donors and Lewis Acidic Metal Salts as Catalyst: Acid-Base Catalysis with Gold Chloride-Glycosyl Acceptor Adducts.

    PubMed

    Peng, Peng; Schmidt, Richard R

    2015-10-01

    Gold(III) chloride as catalyst for O-glycosyl trichloroacetimidate activation revealed low affinity to the glycosyl donor but high affinity to the hydroxy group of the acceptor alcohol moiety, thus leading to catalyst-acceptor adduct formation. Charge separation in this adduct, increasing the proton acidity and the oxygen nucleophilicity, permits donor activation and concomitant acceptor transfer in a hydrogen-bond mediated S(N)2-type transition state. Hence, the sequential binding between acceptor and catalyst and then with the glycosyl donor enables self-organization of an ordered transition-state. This way, with various acceptors, even at temperatures below -60 °C, fast and high yielding glycosidations in high anomeric selectivities were recorded, showing the power of this gold(III) chloride acid-base catalysis. Alternative reaction courses via hydrogen chloride or HAuCl4 activation or intermediate generation of glycosyl chloride as the real donor could be excluded. With partially O-protected acceptors, prone to bidentate ligation to gold(III) chloride, particularly high reactivities and anomeric selectivities were observed. Gold(I) chloride follows the same catalyst-acceptor adduct driven acid-base catalysis reaction course.

  1. Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen.

    PubMed

    Flock, Ulrika; Watmough, Nicholas J; Adelroth, Pia

    2005-08-01

    The respiratory nitric oxide reductase (NOR) from Paracoccus denitrificans catalyzes the two-electron reduction of NO to N(2)O (2NO + 2H(+) + 2e(-) --> N(2)O + H(2)O), which is an obligatory step in the sequential reduction of nitrate to dinitrogen known as denitrification. NOR has four redox-active cofactors, namely, two low-spin hemes c and b, one high-spin heme b(3), and a non-heme iron Fe(B), and belongs to same superfamily as the oxygen-reducing heme-copper oxidases. NOR can also use oxygen as an electron acceptor; this catalytic activity was investigated in this study. We show that the product in the steady-state reduction of oxygen is water. A single turnover of the fully reduced NOR with oxygen was initiated using the flow-flash technique, and the progress of the reaction monitored by time-resolved optical absorption spectroscopy. Two major phases with time constants of 40 micros and 25 ms (pH 7.5, 1 mM O(2)) were observed. The rate constant for the faster process was dependent on the O(2) concentration and is assigned to O(2) binding to heme b(3) at a bimolecular rate constant of 2 x 10(7) M(-)(1) s(-)(1). The second phase (tau = 25 ms) involves oxidation of the low-spin hemes b and c, and is coupled to the uptake of protons from the bulk solution. The rate constant for this phase shows a pH dependence consistent with rate limitation by proton transfer from an internal group with a pK(a) = 6.6. This group is presumably an amino acid residue that is crucial for proton transfer to the catalytic site also during NO reduction. PMID:16060680

  2. Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model

    USGS Publications Warehouse

    Stelzer, Robert S.; Bartsch, Lynn

    2012-01-01

    Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher, on average, in shallower core sections. However, core sections deeper than 5 cm accounted for 70%, on average, of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L but the relationship broke down at higher concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates

  3. North Pond: Evidence of upward supply of oxygen to deeply buried sediments from the basaltic basement

    NASA Astrophysics Data System (ADS)

    Ziebis, W.; Ferdelman, T. G.; McManus, J.; Schmidt-Schierhorn, F.; Stephan, S.; Edwards, K. J.; Villinger, H. W.

    2009-12-01

    A vast area of sea floor on the western flank of the Mid-Atlantic Ridge is characterized by depressions filled with sediment and surrounded by high relief topography. The largest depressions are 5 km to 20 km wide and sediment thickness varies but can reach 400 m. These sediments are believed to blanket recharge zones for the venting of fluids that takes place locally through unsedimented young ocean crust. North Pond, one of the larger (70 km2) and best studied sediment ponds was revisited in Spring 2009 with the German research vessel M.S. Merian (MSM 11/1) as part of an IODP site evaluation. Investigations included heat-flow, single-channel seismic and bathymetry surveys, as well as gravity coring. Oxygen measurements and pore water sampling (25 cm depth intervals) were performed directly on intact sediment cores, which were subsequently sampled for microbiological analyses. The entire sediment column down to > 8 m sediment depth contained oxygen, the deepest penetration of oxygen that has been measured in the seafloor of the Atlantic. The steepest decrease in oxygen concentrations occurred within the top ~ 60 cm surface layer, and was consistent across all stations. In the central part of the sediment pond oxygen decreased continuously with depth, indicating an active aerobic microbial community while nitrate concentrations increased. In contrast, along the northern and western rims of North Pond, oxygen concentrations remained surprisingly constant with depth at values around 170 µM. Moreover, at 3 locations along the north shore, oxygen increased towards the bottom of the cores, indicating an upward supply of oxygen from the underlying basaltic basement. The straight oxygen profiles, beneath the surface layer, can be explained by a balance between upward diffusion and consumption of oxygen within the sediment column. Nutrient profiles confirmed that in contrast to the central part of the pond, where concentration profiles (nitrate, silica) reflected

  4. Physiological Roles for Two Periplasmic Nitrate Reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025)▿

    PubMed Central

    Hartsock, Angela; Shapleigh, James P.

    2011-01-01

    The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth. PMID:21949073

  5. Nitrate Degradation in the Aquifer of an Agricultural Catchment - An Integrative Modelling Approach

    NASA Astrophysics Data System (ADS)

    Kolbe, T.

    2015-12-01

    Agricultural activity has increased nitrate concentration in aquifers worldwide, which represents one of the major environmental challenges of our generation. Nitrate is highly mobile in groundwater and if transported to denitrifying environments (i.e. anaerobic areas with the presence of bioavailable organic carbon (basis for heterotrophic denitrification) or pyrite (basis for autotrophic denitrification)) degraded to nitrogenous gas. These areas are often small, but account for a high percentage of nitrate removal. Consequential groundwater flow, a nitrate supplier to these hot spots, influence significantly the fate of nitrate. A hydro-geochemical modeling approach is used to demonstrate the relation between nitrate inputs and denitrifying services provided by catchment structure and flow dynamics. A developed three-dimensional numerical groundwater flow model is capable to map groundwater flow and visualize preferential nitrate flow paths in a 35 km2 agricultural catchment, western France. Environmental proxies for microbial processes (natural isotopic abundance of nitrogen and oxygen) are used to identify denitrification processes in the aquifer. These information are combined with the flow paths obtained by the groundwater model in a post-processing step. An overall understanding of groundwater flow patterns and therefore nitrate input to denitrifying environments yield to better management decisions and predictions for nitrate attenuation.

  6. The Isotopic Composition of Nitrate in West Antarctica at Present and Since the Last Glacial Stage

    NASA Astrophysics Data System (ADS)

    Buffen, A.; Hastings, M. G.

    2014-12-01

    Nitrate is one of the major ions found in polar and alpine snow. The oxygen isotopic composition of nitrate offers unique potential for examining the oxidation chemistry of past atmospheres. Additionally, nitrogen isotope ratios may contain information abut the contribution of the nitrogen oxide precursors (NOx = NO + NO2) to atmospheric nitrate from different sources (e.g., fossil fuel combustion, biomass burning, soil microbial emissions, lightning and stratospheric injection). Nitrate in snow, however, is sensitive to post-depositional processing and isotopic alteration, thereby obscuring the atmospheric record ultimately archived in an ice core. At sites with very low snow accumulation rates (such as East Antarctica), nitrate is particularly vulnerable to photolytic loss due to long residence times near the surface. However, under higher accumulation regimes (such as Summit, Greenland), previous work has shown that loss can be more limited and nitrate isotopic composition preserved. Here we present results from a two-part study assessing the modern and paleo isotopic composition of nitrate in West Antarctica. We present seasonally-resolved snowpit and shallow core records from 7 West Antarctic sites which span a range of accumulation rates in order to evaluate the spatial heterogeneity of deposited nitrate and how preservation varies with snowfall. This work is requisite to an accurate interpretation of a new nitrate isotopic record from the West Antarctic Ice Sheet Divide deep ice core, from which we show decadal- to centennial-scale measurements since the last glacial stage.

  7. Effects of auxiliary carbon sources and electron acceptors on methanogenic degradation of chlorinated phenols

    SciTech Connect

    Haeggblom, M.M.; Rivera, M.D.; Young, L.Y. )

    1993-08-01

    The authors studied the degradation of chlorinated phenols under methanogenic conditions by establishing enrichment cultures on 4-chlorophenol and 2,4-dichlorophenol with or without a supplementary substrate. p-Cresol was chosen as a nonchlorinated aromatic compound structurally similar to the chlorophenols, and propionate was chosen as a readily utilizable carbon source. 2,4-Dichlorophenol was dechlorinated to 4-chlorophenol, which was degraded without further detection of metabolites. The rates of chlorophenols and supplementary substrates. The addition of p-cresol or propionate as an auxiliary carbon source enhanced the rate of 4-chlorophenol degradation. Methanogenic cultures capable of ortho dechlorination were repeatedly subcultured by dilution into fresh media and refeeding of 2,6-dichlorophenol and either p-cresol or propionate as auxiliary substrates. 2,6-Dichlorophenol was sequentially dechlorinated to 2-chlorophenol and phenol and ultimately mineralized to methane and carbon dioxide. Cultures adapted to 2,4- or 2,6-dichlorophenol also readily dechlorinated other dichlorophenols containing an ortho chlorine. The alternative electron acceptors nitrate, sulfite, and thiosulfate completely inhibited dechlorination of 2,6-dichlorophenol, whereas sulfate slowed the dechlorination rate.

  8. NOx in the Atmosphere of Early Earth as Electron Acceptors for Life

    NASA Astrophysics Data System (ADS)

    Wong, M. L.; Charnay, B.; Gao, P.; Yung, Y. L.; Russell, M. J.

    2015-12-01

    We quantify the amount of NOx produced in the Hadean atmosphere and available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for driving the highly endergonic reactions at the entry points to autotrophic metabolic pathways at submarine alkaline hydrothermal vents (Ducluzeau, 2008; Russell, 2014). The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning and impacts (Ducluzeau, 2008; Nna Mvondo, 2001). Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO3 and HNO2 that rain into the ocean and dissociate into NO3- and NO2-. Previous work suggests that 1018 g of NOx can be produced in a million years or so, satisfying the need for micromolar concentrations of NO3- and NO2- in the ocean (Ducluzeau, 2008). But because this number is controversial, we present new calculations based on a novel combination of early-Earth GCM and photochemical modeling, calculating the sources and sinks for fixed nitrogen. Finally, it is notable that lightning has been detected on Venus and Mars along with evidence of atmospheric NO; in the distant past, could NOx have been created and available for the emergence of life on numerous wet, rocky worlds?

  9. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    USGS Publications Warehouse

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Bohlke, J.K.

    2017-01-01

    Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several

  10. Vasodilator Therapy: Nitrates and Nicorandil.

    PubMed

    Tarkin, Jason M; Kaski, Juan Carlos

    2016-08-01

    Nitrates have been used to treat symptoms of chronic stable angina for over 135 years. These drugs are known to activate nitric oxide (NO)-cyclic guanosine-3',-5'-monophasphate (cGMP) signaling pathways underlying vascular smooth muscle cell relaxation, albeit many questions relating to how nitrates work at the cellular level remain unanswered. Physiologically, the anti-angina effects of nitrates are mostly due to peripheral venous dilatation leading to reduction in preload and therefore left ventricular wall stress, and, to a lesser extent, epicardial coronary artery dilatation and lowering of systemic blood pressure. By counteracting ischemic mechanisms, short-acting nitrates offer rapid relief following an angina attack. Long-acting nitrates, used commonly for angina prophylaxis are recommended second-line, after beta-blockers and calcium channel antagonists. Nicorandil is a balanced vasodilator that acts as both NO donor and arterial K(+) ATP channel opener. Nicorandil might also exhibit cardioprotective properties via mitochondrial ischemic preconditioning. While nitrates and nicorandil are effective pharmacological agents for prevention of angina symptoms, when prescribing these drugs it is important to consider that unwanted and poorly tolerated hemodynamic side-effects such as headache and orthostatic hypotension can often occur owing to systemic vasodilatation. It is also necessary to ensure that a dosing regime is followed that avoids nitrate tolerance, which not only results in loss of drug efficacy, but might also cause endothelial dysfunction and increase long-term cardiovascular risk. Here we provide an update on the pharmacological management of chronic stable angina using nitrates and nicorandil.

  11. Conformation-selective coordination-driven self-assembly of a ditopic donor with Pd(II) acceptors.

    PubMed

    Howlader, Prodip; Mukherjee, Sandip; Saha, Rajat; Mukherjee, Partha Sarathi

    2015-12-21

    Coordination-driven self-assembly of 3-(5-(pyridin-3-yl)-1H-1,2,4-triazol-3-yl)pyridine (L) was investigated with 90°cis-blocked Pd(II) acceptors and tetratopic Pd(NO3)2. Although the ligand is capable of binding in several different conformations (acting as a ditopic donor through the pyridyl nitrogens), the experimental results (including X-ray structures) showed that it adopts a particular conformation when it binds with 90°cis-blocked Pd(II) acceptors (two available sites) to yield [2 + 2] self-assembled macrocycles. On the other hand, with Pd(NO3)2 (where four available sites are present) a different conformer of the same donor was selectively bound to form a molecular cubic cage. The experimental findings were corroborated well with the density functional theory (B3LYP) calculations. The tetratopic Pd(NO3)2 yielded a [6 + 12] self-assembled Pd6L12 molecular cube, which contains a potential void occupied by nitrate and perchlorate ions. Being a triazole based ligand, the free space inside the cage is enriched with several sp(2) hybridised nitrogen atoms with lone pairs of electrons to act as Lewis basic sites. Knoevenagel condensation reactions of several aromatic aldehydes with active methylene compounds were successfully performed in reasonably high yields in the presence of the cage. PMID:26544720

  12. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... sablefish, smoked, cured salmon, and smoked, cured shad, so that the level of sodium nitrate does not...

  13. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... sablefish, smoked, cured salmon, and smoked, cured shad, so that the level of sodium nitrate does not...

  14. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... sablefish, smoked, cured salmon, and smoked, cured shad, so that the level of sodium nitrate does not...

  15. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... sablefish, smoked, cured salmon, and smoked, cured shad, so that the level of sodium nitrate does not...

  16. Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments

    NASA Astrophysics Data System (ADS)

    Sawyer, A. H.

    2015-01-01

    nitrate loads to rivers and coasts deteriorate coastal water quality. The primary sink for nitrate is denitrification in aquatic sediments. Here I show that nitrate removal rates in upwelling groundwater are as much as 60 times more efficient in heterogeneous than equivalent homogeneous aquatic sediments, even when travel times are the same. Coupled flow and reactive transport simulations were used to quantify the removal of groundwater-borne nitrate in aquatic sediments with sand and silt structures that represent infilled burrows, rip-up clasts, or other core-scale features. In silt structures with greater organic carbon content and microbial biomass, aerobic respiration consumes oxygen, creating localized zones of denitrification that would not otherwise exist in homogeneous sediments. While hot spots of denitrification have previously been shown to form in organic-rich aggregates in soils and sediments, this study is the first to quantify their potentially large influence on groundwater-borne nitrate loads to surface waters.

  17. Nitrate Utilization by the Diatom Skeletonema costatum

    PubMed Central

    Serra, Juan L.; Llama, Maria J.; Cadenas, Eduardo

    1978-01-01

    Nitrate utilization has been characterized in nitrogen-deficient cells of the marine diatom Skeletonema costatum. In order to separate nitrate uptake from nitrate reduction, nitrate reductase activity was suppressed with tungstate. Neither nitrite nor the presence of amino acids in the external medium or darkness affects nitrate uptake kinetics. Ammonium strongly inhibits carrier-mediated nitrate uptake, without affecting diffusion transfer. A model is proposed for the uptake and assimilation of nitrate in S. costatum and their regulation by ammonium ions. PMID:16660653

  18. Interface effects on acceptor qubits in silicon and germanium.

    PubMed

    Abadillo-Uriel, J C; Calderón, M J

    2016-01-15

    Dopant-based quantum computing implementations often require the dopants to be situated close to an interface to facilitate qubit manipulation with local gates. Interfaces not only modify the energies of the bound states but also affect their symmetry. Making use of the successful effective mass theory we study the energy spectra of acceptors in Si or Ge taking into account the quantum confinement, the dielectric mismatch and the central cell effects. The presence of an interface puts constraints to the allowed symmetries and leads to the splitting of the ground state in two Kramers doublets (Mol et al 2015 Appl. Phys. Lett. 106 203110). Inversion symmetry breaking also implies parity mixing which affects the allowed optical transitions. Consequences for acceptor qubits are discussed. PMID:26618443

  19. Photoconductivity in donor-acceptor heterojunction organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Renshaw, C. K.; Zimmerman, J. D.; Lassiter, B. E.; Forrest, S. R.

    2012-08-01

    Organic photovoltaics (OPVs) differ from ideal inorganic solar cells due to their pronounced voltage dependence under reverse bias. This feature is commonly modeled in an ad hoc fashion by including a parallel junction resistance (Rp) that bypasses the heterojunction energy barrier between donor and acceptor. The existence of a finite Rp has variously been attributed to rough interfaces, pinhole defects, or to the electric field dependence of the dissociation of polaron pairs that are bound at the heterojunction. Here we show that the voltage dependence of the photocurrent can also arise from photoconductivity resulting from exciton generation followed by dissociation into free polarons within the bulk of the donor and acceptor layers. The presence of photoconductivity of the active layers does not result in an increase in power conversion efficiency, and places a constraint on the maximum fill factor that can be achieved in an OPV cell.

  20. Electron Acceptors Induce Secretion of Enterotoxigenic Escherichia coli Heat-Labile Enterotoxin under Anaerobic Conditions through Promotion of GspD Assembly.

    PubMed

    Lu, Xi; Fu, Enqing; Xie, Yonghong; Jin, Faguang

    2016-10-01

    Heat-labile enterotoxin (LT), the major virulence factor of enterotoxigenic Escherichia coli (ETEC), can lead to severe diarrhea and promotes ETEC adherence to intestinal epithelial cells. Most previous in vitro studies focused on ETEC pathogenesis were conducted under aerobic conditions, which do not reflect the real situation of ETEC infection because the intestine is anoxic. In this study, the expression and secretion of LT under anaerobic or microaerobic conditions were determined; LT was not efficiently secreted into the supernatant under anaerobic or microaerobic conditions unless terminal electron acceptors (trimethylamine N-oxide dihydrate [TMAO] or nitrate) were available. Furthermore, we found that the restoration effects of TMAO and nitrate on LT secretion could be inhibited by amytal or ΔtorCAD and ΔnarG E. coli strains, indicating that LT secretion under anaerobic conditions was dependent on the integrity of the respiratory chain. At the same time, electron acceptors increase the ATP level of ETEC, but this increase was not the main reason for LT secretion. Subsequently, the relationship between the integrity of the respiratory chain and the function of the type II secretion system was determined. The GspD protein, the secretin of ETEC, was assembled under anaerobic conditions and was accompanied by LT secretion when TMAO or nitrate was added. Our data also demonstrated that TMAO and nitrate could not induce the GspD assembly and LT secretion in ΔtorCAD and ΔnarG strains, respectively. Moreover, GspD assembly under anaerobic conditions was assisted by the pilot protein YghG.

  1. Electron Acceptors Induce Secretion of Enterotoxigenic Escherichia coli Heat-Labile Enterotoxin under Anaerobic Conditions through Promotion of GspD Assembly.

    PubMed

    Lu, Xi; Fu, Enqing; Xie, Yonghong; Jin, Faguang

    2016-10-01

    Heat-labile enterotoxin (LT), the major virulence factor of enterotoxigenic Escherichia coli (ETEC), can lead to severe diarrhea and promotes ETEC adherence to intestinal epithelial cells. Most previous in vitro studies focused on ETEC pathogenesis were conducted under aerobic conditions, which do not reflect the real situation of ETEC infection because the intestine is anoxic. In this study, the expression and secretion of LT under anaerobic or microaerobic conditions were determined; LT was not efficiently secreted into the supernatant under anaerobic or microaerobic conditions unless terminal electron acceptors (trimethylamine N-oxide dihydrate [TMAO] or nitrate) were available. Furthermore, we found that the restoration effects of TMAO and nitrate on LT secretion could be inhibited by amytal or ΔtorCAD and ΔnarG E. coli strains, indicating that LT secretion under anaerobic conditions was dependent on the integrity of the respiratory chain. At the same time, electron acceptors increase the ATP level of ETEC, but this increase was not the main reason for LT secretion. Subsequently, the relationship between the integrity of the respiratory chain and the function of the type II secretion system was determined. The GspD protein, the secretin of ETEC, was assembled under anaerobic conditions and was accompanied by LT secretion when TMAO or nitrate was added. Our data also demonstrated that TMAO and nitrate could not induce the GspD assembly and LT secretion in ΔtorCAD and ΔnarG strains, respectively. Moreover, GspD assembly under anaerobic conditions was assisted by the pilot protein YghG. PMID:27430271

  2. Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors

    SciTech Connect

    Nardes, Alexandre M.; Ferguson, Andrew J.; Wolfer, Pascal; Gui, Kurt; Burn, Paul L.; Meredith, Paul; Kopidakis, Nikos

    2014-03-05

    We present a comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85 % of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. Here, we propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub

  3. Free carrier generation in organic photovoltaic bulk heterojunctions of conjugated polymers with molecular acceptors: planar versus spherical acceptors.

    PubMed

    Nardes, Alexandre M; Ferguson, Andrew J; Wolfer, Pascal; Gui, Kurt; Burn, Paul L; Meredith, Paul; Kopidakis, Nikos

    2014-06-01

    A comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device is presented. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85% of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. We propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub

  4. Free carrier generation in organic photovoltaic bulk heterojunctions of conjugated polymers with molecular acceptors: planar versus spherical acceptors.

    PubMed

    Nardes, Alexandre M; Ferguson, Andrew J; Wolfer, Pascal; Gui, Kurt; Burn, Paul L; Meredith, Paul; Kopidakis, Nikos

    2014-06-01

    A comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device is presented. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85% of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. We propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub

  5. Quantum confined acceptors and donors in InSe nanosheets

    SciTech Connect

    Mudd, G. W.; Patanè, A. Makarovsky, O.; Eaves, L.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Fay, M. W.; Zólyomi, V.; Falko, V.

    2014-12-01

    We report on the radiative recombination of photo-excited carriers bound at native donors and acceptors in exfoliated nanoflakes of nominally undoped rhombohedral γ-polytype InSe. The binding energies of these states are found to increase with the decrease in flake thickness, L. We model their dependence on L using a two-dimensional hydrogenic model for impurities and show that they are strongly sensitive to the position of the impurities within the nanolayer.

  6. 2012 ELECTRON DONOR-ACCEPTOR INTERACTIONS GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect

    McCusker, James

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  7. An extended Foerster-Dexter model for correlated donor-acceptor placement in solid state materials

    NASA Astrophysics Data System (ADS)

    Rotman, S. R.; Hartmann, F. X.

    1987-09-01

    The current theory of donor-acceptor interactions in solid-state materials is based on a random distribution of donors and acceptors through the crystal. In this paper, we present a model to calculate the observable transfer rates for the correlated positioning of donors and acceptors in laser materials. Chemical effects leading to such correlations are discussed.

  8. Perchlorate and Nitrate Remediation Efficiency and Microbial Diversity in a Containerized Wetland Bioreactor

    SciTech Connect

    Jr., B D; Dibley, V; Pinkart, H; Legler, T

    2004-06-09

    We have developed a method to remove perchlorate (14 to 27 {micro}g/L) and nitrate (48 mg/L) from contaminated groundwater using a wetland bioreactor. The bioreactor has operated continuously in a remote field location for more than two years with a stable ecosystem of indigenous organisms. This study assesses the bioreactor for long-term perchlorate and nitrate remediation by evaluating influent and effluent groundwater for reduction-oxidation conditions and nitrate and perchlorate concentrations. Total community DNA was extracted and purified from 10-g sediment samples retrieved from vertical coring of the bioreactor during winter. Analysis by denaturing gradient gel electrophoresis of short, 16S rDNA, polymerase-chain-reaction products was used to identify dominant microorganisms. Bacteria genera identified were closely affiliated with bacteria widely distributed in soils, mud layers, and fresh water. Of the 17 dominant bands sequenced, most were gram negative and capable of aerobic or anaerobic respiration with nitrate as the terminal electron acceptor (Pseudomonas, Acinetobacter, Halomonas, and Nitrospira). Several identified genera (Rhizobium, Acinetobactor, and Xanthomonas) are capable of fixing atmospheric nitrogen into a combined form (ammonia) usable by host plants. Isolates were identified from the Proteobacteria class, known for the ability to reduce perchlorate. Initial bacterial assessments of sediments confirm the prevalence of facultative anaerobic bacteria capable of reducing perchlorate and nitrate in situ.

  9. Development of hydraulic properties and nitrate turnover processes in minerotrophic fen soil on differnet scales

    NASA Astrophysics Data System (ADS)

    Kleimeier, Christian; Lennartz, Bernd

    2014-05-01

    Generally, it is recommended to remove the uppermost highly degraded peat layer from fens prior to rewetting to eliminate a potential source of organic pollutants for downstream water bodies. We investigated this material as a potential medium for denitrifying filters to further use the organic material. We are aiming to remove nitrate from tile drainage runoff at the outlet drainage dominated catchments to fullfill the requirements of the European Water Framework Directive. In a lysimeter scale long term mesocosm experiments we were aiming to reveal the peats behavior after disturbing and rewetting under constant flow conditions. Tracer experiments revealed a restructuring of the peat ending up at 20/80 percentage of mobile immobile pore volume. Additionally we observed the nitrate turnover. The turnover rate was determined by the hydraulic load. Absolute turnover rates were equal at lower and higher concentrations as well as flow rates, whereas the turnover reached higher percentages at lower concentrations. To further reveal the nitrate turnover processes flow through rector experiments were conducted in an anaerobic environment. We found that strongly reducing conditions can be created in peat even at the presence of nitrate. Thus we can conclude that the minerotrophic peat with its high iron and sulfur concentrations also enables autotrophic denitrification oxidizing iron and sulfur. While the conditions are favorable to re-reduce iron and sulfur,thus an electron shuttling system developed transporting electrons from the organic material as initial e- donor to nitrate as terminal e- acceptor.

  10. Perchlorate and nitrate remediation efficiency and microbial diversity in a containerized wetland bioreactor.

    PubMed

    Krauter, Paula; Daily, Bill; Dibley, Valerie; Pinkart, Holly; Legler, Tina

    2005-01-01

    We have developed a method to remove perchlorate (14-27 microg/L) and nitrate (48 mg/L) from contaminated groundwater using a wetland bioreactor. The bioreactor has operated continuously in a remote field location for more than 2 yr with a stable ecosystem of indigenous organisms. This study assesses the bioreactorfor long-term perchlorate and nitrate remediation by evaluating influent and effluent groundwater for oxidation-reduction conditions and nitrate and perchlorate concentrations. Total community DNA was extracted and purified from 10-g sediment samples retrieved from vertical coring of the bioreactor during winter. Analysis by denaturing gradient gel electrophoresis of short, 16S rDNA, polymerase-chainreaction products was used to identify dominant microorganisms. Bacteria genera identified were closely affiliated with bacteria widely distributed in soils, mud layers, and fresh water. Of the 17 dominant bands sequenced, most were gram negative and capable of aerobic or anaerobic respiration with nitrate as the terminal electron acceptor (Pseudomonas, Acinetobacter, Halomonas, and Nitrospira). Several identified genera (Rhizobium, Acinetobactor, and Xanthomonas) are capable of fixing atmospheric nitrogen into a combined form (ammonia) usable by host plants. Isolates were identified from the Proteobacteria class, known for the ability to reduce perchlorate. Initial bacterial assessments of sediments confirm the prevalence of facultative anaerobic bacteria capable of reducing perchlorate and nitrate in situ.

  11. Income-generating activities for family planning acceptors.

    PubMed

    1989-07-01

    The Income Generating Activities program for Family Planning Acceptors was introduced in Indonesia in 1979. Capital input by the Indonesian National Family Planning Coordination Board and the UN Fund for Population Activities was used to set up small businesses by family planning acceptors. In 2 years, when the businesses become self-sufficient, the loans are repaid, and the money is used to set up new family planning acceptors in business. The program strengthens family planning acceptance, improves the status of women, and enhances community self-reliance. The increase in household income generated by the program raises the standards of child nutrition, encourages reliance on the survival of children, and decreases the value of large families. Approximately 18,000 Family Planning-Income Generating Activities groups are now functioning all over Indonesia, with financial assistance from the central and local governments, the World Bank, the US Agency for International Development, the UN Population Fund, the Government of the Netherlands, and the Government of Australia through the Association of South East Asian Nations.

  12. Virtual screening of electron acceptor materials for organic photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Halls, Mathew D.; Djurovich, Peter J.; Giesen, David J.; Goldberg, Alexander; Sommer, Jonathan; McAnally, Eric; Thompson, Mark E.

    2013-10-01

    Virtual screening involves the generation of structure libraries, automated analysis to predict properties related to application performance and subsequent screening to identify lead systems and estimate critical structure-property limits across a targeted chemical design space. This approach holds great promise for informing experimental discovery and development efforts for next-generation materials, such as organic semiconductors. In this work, the virtual screening approach is illustrated for nitrogen-substituted pentacene molecules to identify systems for development as electron acceptor materials for use in organic photovoltaic (OPV) devices. A structure library of tetra-azapentacenes (TAPs) was generated by substituting four nitrogens for CH at 12 sites on the pentacene molecular framework. Molecular properties (e.g. ELUMO, Eg and μ) were computed for each candidate structure using hybrid DFT at the B3LYP/6-311G** level of theory. The resulting TAPs library was then analyzed with respect to intrinsic properties associated with OPV acceptor performance. Marcus reorganization energies for charge transport for the most favorable TAP candidates were then calculated to further determine suitability as OPV electron acceptors. The synthesis, characterization and OPV device testing of TAP materials is underway, guided by these results.

  13. Design directed self-assembly of donor-acceptor polymers.

    PubMed

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements. PMID:27440174

  14. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    PubMed

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  15. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  16. Facultative nitrate reduction by electrode-respiring Geobacter metallireducens biofilms as a competitive reaction to electrode reduction in a bioelectrochemical system.

    PubMed

    Kashima, Hiroyuki; Regan, John M

    2015-03-01

    Alternative metabolic options of exoelectrogenic biofilms in bioelectrochemical systems (BESs) are important not only to explain the fundamental ecology and performance of these systems but also to develop reliable integrated nutrient removal strategies in BESs, which potentially involve substrates or intermediates that support/induce those alternative metabolisms. This research focused on dissimilatory nitrate reduction as an alternative metabolism to dissimilatory anode reduction. Using the exoelectrogenic nitrate reducer Geobacter metallireducens, the critical conditions controlling those alternative metabolisms were investigated in two-chamber, potentiostatically controlled BESs at various anode potentials and biofilm thicknesses and challenged over a range of nitrate concentrations. Results showed that anode-reducing biofilms facultatively reduced nitrate at all tested anode potentials (-150 to +900 mV vs Standard Hydrogen Electrode) with a rapid metabolic shift. The critical nitrate concentration that triggered a significant decrease in BES performance was a function of anode biofilm thickness but not anode potential. This indicates that these alternative metabolisms were controlled by the availability of nitrate, which is a function of nitrate concentration in bulk solution and its diffusion into an anode-reducing biofilm. Coulombic recovery decreased as a function of nitrate dose due to electron-acceptor substrate competition, and nitrate-induced suspended biomass growth decreased the effluent quality. PMID:25622928

  17. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2015-04-01

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  18. Diurnal variation of dominant nitrate retention processes in an agricultural headwater stream

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Ryabenko, Evgenia; Stumpp, Christine

    2015-04-01

    Nitrate and ammonium are introduced by agricultural practice into the environment and are transformed and retained on their pathway through aquatic environments. In particular, biological transformation processes (i.e. microbial denitrification or ammonium oxidation and assimilation) are responsible for the largest part of nitrate removal, which are also crucial processes in headwater streams. It is well known, that most of the biological processes are influenced by available (solar) energy fluxes, temperatures and dissolved oxygen concentrations, which vary with time and space. However, looking at biogeochemical hot spots in the landscapes` hydrological interface, the stream and river network (e.g. stream sections with a high biological activity), the temporal variability of biological processes can be an important control on total nitrate export. In this study, we therefore identified most important diurnal time periods for nitrate retention in a 75 m impervious section of an agricultural headwater stream using oxygen saturation dynamics and nitrate isotopes. We regularly measured discharge, hydro-geochemical and climate parameters, as well as nitrate and water isotopes in grab samples at three locations along the reach. On average, we observed a decrease of 10% in nitrate concentration from up- to downstream, which was only caused by biological processes and not by dilution. Nitrate isotope analysis indicated distinct trends along the reach and with time of the day. Both nitrate assimilation and nitrification caused significant changes in nitrate isotope distribution in the early day. To explain the distinct observed process dynamics from the morning to the afternoon, we simulated net primary production (NEP) and respiration using the river metabolism model RIVERMETC with observed oxygen concentrations and water temperatures. Comparing the results with the observed nitrate dynamics, the short time period when NEP occurs (~10:30 -12:30) seems to be crucial for

  19. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  20. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    NASA Astrophysics Data System (ADS)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  1. Conversion of {Fe(NO)2}10 dinitrosyl iron to nitrato iron(III) species by molecular oxygen.

    PubMed

    Skodje, Kelsey M; Williard, Paul G; Kim, Eunsuk

    2012-07-14

    A new {Fe(NO)(2)}(10) dinitrosyl iron complex possessing a 2,9-dimethyl-1,10-phenanthroline ligand has been prepared. This complex exhibits dioxygenase activity, converting NO to nitrate (NO(3)(-)) anions. During the oxygenation reaction, formation of reactive nitrating species is implicated, as shown in the effective o-nitration with a phenolic substrate.

  2. Using dual-bacterial denitrification to improve δ15N determinations of nitrates containing mass-independent 17O

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; Casciotti, K.L.

    2004-01-01

    The bacterial denitrification method for isotopic analysis of nitrate using N2O generated from Pseudomonas aureofaciens may overestimate ??15N values by as much as 1-2??? for samples containing atmospheric nitrate because of mass-independent 17O variations in such samples. By analyzing such samples for ??15N and ??18O using the denitrifier Pseudomonas chlororaphis, one obtains nearly correct ??15N values because oxygen in N 2O generated by P. chlororaphis is primarily derived from H 2O. The difference between the apparent ??15N value determined with P. aureofaciens and that determined with P. chlororaphis, assuming mass-dependent oxygen isotopic fractionation, reflects the amount of mass-independent 17O in a nitrate sample. By interspersing nitrate isotopic reference materials having substantially different ?? 18O values with samples, one can normalize oxygen isotope ratios and determine the fractions of oxygen in N2O derived from the nitrate and from water with each denitrifier. This information can be used to improve ??15N values of nitrates having excess 17O. The same analyses also yield estimates of the magnitude of 17O excess in the nitrate (expressed as ??17O) that may be useful in some environmental studies. The 1-?? uncertainties of ??15N, ??18O and ??17O measurements are ??0.2, ??0.3 and ??5???, respectively. Copyright ?? 2004 John Wiley & Sons, Ltd.

  3. Cetia pacifica gen. nov., sp. nov., a chemolithoautotrophic, thermophilic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent.

    PubMed

    Grosche, Ashley; Sekaran, Hema; Pérez-Rodríguez, Ileana; Starovoytov, Valentin; Vetriani, Costantino

    2015-04-01

    A thermophilic, anaerobic, chemolithoautotrophic bacterium, strain TB-6(T), was isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at 9° N. The cells were Gram-staining-negative and rod-shaped with one or more polar flagella. Cell size was approximately 1-1.5 µm in length and 0.5 µm in width. Strain TB-6(T) grew between 45 and 70 °C (optimum 55-60 °C), 0 and 35 g NaCl l(-1) (optimum 20-30 g l(-1)) and pH 4.5 and 7.5 (optimum pH 5.5-6.0). Generation time under optimal conditions was 2 h. Growth of strain TB-6(T) occurred with H2 as the energy source, CO2 as the carbon source and nitrate or sulfur as electron acceptors, with formation of ammonium or hydrogen sulfide, respectively. Acetate, (+)-d-glucose, Casamino acids, sucrose and yeast extract were not used as carbon and energy sources. Inhibition of growth occurred in the presence of lactate, peptone and tryptone under a H2/CO2 (80 : 20; 200 kPa) gas phase. Thiosulfate, sulfite, arsenate, selenate and oxygen were not used as electron acceptors. The G+C content of the genomic DNA was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene of strain TB-6(T) showed that this organism branched separately from the three most closely related genera, Caminibacter , Nautilia and Lebetimonas , within the family Nautiliaceae . Strain TB-6(T) contained several unique fatty acids in comparison with other members of the family Nautiliaceae . Based on experimental evidence, it is proposed that the organism represents a novel species and genus within the family Nautiliaceae , Cetia pacifica, gen. nov., sp. nov. The type strain is TB-6(T) ( = DSM 27783(T) = JCM 19563(T)). PMID:25604337

  4. Method for producing and regenerating a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

    1982-01-01

    A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

  5. Method for producing and regenerating a synthetic CO[sub 2] acceptor

    DOEpatents

    Lancet, M. S.; Curran, G. P.; Gorin, E.

    1982-05-18

    A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

  6. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  7. Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds.

    PubMed

    Latham, Elizabeth A; Anderson, Robin C; Pinchak, William E; Nisbet, David J

    2016-01-01

    Nitrate and certain short chain nitrocompounds and nitro-oxy compounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of methanogenesis during dissimilatory reduction to an intermediate, nitrite, which is primarily reduced to ammonia although small quantities of nitrous oxide may also be produced. Short chain nitrocompounds act as direct inhibitors of methanogenic bacteria although certain of these compounds may also consume electrons at the expense of methanogenesis and are effective inhibitors of important foodborne pathogens. Microbial and nutritional consequences of incorporating nitrate into ruminant diets typically results in increased acetate production. Unlike most other methane-inhibiting supplements, nitrate decreases or has no effect on propionate production. The type of nitrate salt added influences rates of nitrate reduction, rates of nitrite accumulation and efficacy of methane reduction, with sodium and potassium salts being more potent than calcium nitrate salts. Digestive consequences of adding nitrocompounds to ruminant diets are more variable and may in some cases increase propionate production. Concerns about the toxicity of nitrate's intermediate product, nitrite, to ruminants necessitate management, as animal poisoning may occur via methemoglobinemia. Certain of the naturally occurring nitrocompounds, such as 3-nitro-1-propionate or 3-nitro-1-propanol also cause poisoning but via inhibition of succinate dehydrogenase. Typical risk management procedures to avoid nitrite toxicity involve gradually adapting the animals to higher concentrations of nitrate and nitrite, which could possibly be used with the nitrocompounds as well. A number of organisms responsible for nitrate metabolism in the rumen have been characterized. To date a single rumen bacterium

  8. Concurrent microbial reduction of high concentrations of nitrate and perchlorate in an ion exchange membrane bioreactor.

    PubMed

    Fox, Shalom; Bruner, Tali; Oren, Yoram; Gilron, Jack; Ronen, Zeev

    2016-09-01

    acceptors. Such a mechanism has important implications for controlling the bio-reduction reaction in the IEMB when using glycerol as a carbon source and allowing treating a complex contamination of high concentrations of perchlorate and nitrating in groundwater and successfully biodegrading them to non-hazardous components. Biotechnol. Bioeng. 2016;113: 1881-1891. © 2016 Wiley Periodicals, Inc. PMID:26913813

  9. Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds

    PubMed Central

    Latham, Elizabeth A.; Anderson, Robin C.; Pinchak, William E.; Nisbet, David J.

    2016-01-01

    Nitrate and certain short chain nitrocompounds and nitro-oxy compounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of methanogenesis during dissimilatory reduction to an intermediate, nitrite, which is primarily reduced to ammonia although small quantities of nitrous oxide may also be produced. Short chain nitrocompounds act as direct inhibitors of methanogenic bacteria although certain of these compounds may also consume electrons at the expense of methanogenesis and are effective inhibitors of important foodborne pathogens. Microbial and nutritional consequences of incorporating nitrate into ruminant diets typically results in increased acetate production. Unlike most other methane-inhibiting supplements, nitrate decreases or has no effect on propionate production. The type of nitrate salt added influences rates of nitrate reduction, rates of nitrite accumulation and efficacy of methane reduction, with sodium and potassium salts being more potent than calcium nitrate salts. Digestive consequences of adding nitrocompounds to ruminant diets are more variable and may in some cases increase propionate production. Concerns about the toxicity of nitrate's intermediate product, nitrite, to ruminants necessitate management, as animal poisoning may occur via methemoglobinemia. Certain of the naturally occurring nitrocompounds, such as 3-nitro-1-propionate or 3-nitro-1-propanol also cause poisoning but via inhibition of succinate dehydrogenase. Typical risk management procedures to avoid nitrite toxicity involve gradually adapting the animals to higher concentrations of nitrate and nitrite, which could possibly be used with the nitrocompounds as well. A number of organisms responsible for nitrate metabolism in the rumen have been characterized. To date a single rumen bacterium

  10. Concurrent microbial reduction of high concentrations of nitrate and perchlorate in an ion exchange membrane bioreactor.

    PubMed

    Fox, Shalom; Bruner, Tali; Oren, Yoram; Gilron, Jack; Ronen, Zeev

    2016-09-01

    acceptors. Such a mechanism has important implications for controlling the bio-reduction reaction in the IEMB when using glycerol as a carbon source and allowing treating a complex contamination of high concentrations of perchlorate and nitrating in groundwater and successfully biodegrading them to non-hazardous components. Biotechnol. Bioeng. 2016;113: 1881-1891. © 2016 Wiley Periodicals, Inc.

  11. Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds.

    PubMed

    Latham, Elizabeth A; Anderson, Robin C; Pinchak, William E; Nisbet, David J

    2016-01-01

    Nitrate and certain short chain nitrocompounds and nitro-oxy compounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of methanogenesis during dissimilatory reduction to an intermediate, nitrite, which is primarily reduced to ammonia although small quantities of nitrous oxide may also be produced. Short chain nitrocompounds act as direct inhibitors of methanogenic bacteria although certain of these compounds may also consume electrons at the expense of methanogenesis and are effective inhibitors of important foodborne pathogens. Microbial and nutritional consequences of incorporating nitrate into ruminant diets typically results in increased acetate production. Unlike most other methane-inhibiting supplements, nitrate decreases or has no effect on propionate production. The type of nitrate salt added influences rates of nitrate reduction, rates of nitrite accumulation and efficacy of methane reduction, with sodium and potassium salts being more potent than calcium nitrate salts. Digestive consequences of adding nitrocompounds to ruminant diets are more variable and may in some cases increase propionate production. Concerns about the toxicity of nitrate's intermediate product, nitrite, to ruminants necessitate management, as animal poisoning may occur via methemoglobinemia. Certain of the naturally occurring nitrocompounds, such as 3-nitro-1-propionate or 3-nitro-1-propanol also cause poisoning but via inhibition of succinate dehydrogenase. Typical risk management procedures to avoid nitrite toxicity involve gradually adapting the animals to higher concentrations of nitrate and nitrite, which could possibly be used with the nitrocompounds as well. A number of organisms responsible for nitrate metabolism in the rumen have been characterized. To date a single rumen bacterium

  12. Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

    2014-05-01

    Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the

  13. Reduction of nitrate in Shewanella

    SciTech Connect

    Gao, Haichun; Yang, Zamin Koo; Barua, Sumitra; Reed, SB; Nealson, Kenneth H.; Fredrikson, JK; Tiedje, James; Zhou, Jizhong

    2009-01-01

    In the genome of Shewanella oneidensis, a napDAGHB gene cluster encoding periplasmic nitrate reductase (NapA) and accessory proteins and an nrfA gene encoding periplasmic nitrite reductase (NrfA) have been identified. These two systems seem to be atypical because the genome lacks genes encoding cytoplasmic membrane electron transport proteins, NapC for NAP and NrfBCD/NrfH for NRF, respectively. Here, we present evidence that reduction of nitrate to ammonium in S. oneidensis is carried out by these atypical systems in a two-step manner. Transcriptional and mutational analyses suggest that CymA, a cytoplasmic membrane electron transport protein, is likely to be the functional replacement of both NapC and NrfH in S. oneidensis. Surprisingly, a strain devoid of napB encoding the small subunit of nitrate reductase exhibited the maximum cell density sooner than the wild type. Further characterization of this strain showed that nitrite was not detected as a free intermediate in its culture and NapB provides a fitness gain for S. oneidensis to compete for nitrate in the environments. On the basis results from mutational analyses of napA, napB, nrfA and napBnrfA in-frame deletion mutants, we propose that NapB is able to favor nitrate reduction by routing electrons to NapA exclusively.

  14. Ralstonia solanacearum Uses Inorganic Nitrogen Metabolism for Virulence, ATP Production, and Detoxification in the Oxygen-Limited Host Xylem Environment

    PubMed Central

    Dalsing, Beth L.; Truchon, Alicia N.; Gonzalez-Orta, Enid T.; Milling, Annett S.

    2015-01-01

    ABSTRACT Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3−), nitrite (NO2−), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R. solanacearum. Xylem fluid contained ~25 mM NO3−, corresponding to R. solanacearum’s optimal NO3− concentration for anaerobic growth in vitro. We tested the hypothesis that R. solanacearum uses inorganic nitrogen species to respire and grow during pathogenesis by making deletion mutants that each lacked a step in nitrate respiration (ΔnarG), denitrification (ΔaniA, ΔnorB, and ΔnosZ), or NO detoxification (ΔhmpX). The ΔnarG, ΔaniA, and ΔnorB mutants grew poorly on NO3− compared to the wild type, and they had reduced adenylate energy charge levels under anaerobiosis. While NarG-dependent NO3− respiration directly enhanced growth, AniA-dependent NO2− reduction did not. NO2− and NO inhibited growth in culture, and their removal depended on denitrification and NO detoxification. Thus, NO3− acts as a TEA, but the resulting NO2− and NO likely do not. None of the mutants grew as well as the wild type in planta, and strains lacking AniA (NO2− reductase) or HmpX (NO detoxification) had reduced virulence on tomato. Thus, R. solanacearum exploits host NO3− to respire, grow, and cause disease. Degradation of NO2− and NO is also important for successful infection and depends on denitrification and NO detoxification systems. PMID:25784703

  15. Utilization of toxic and vapors as alternate electron acceptors in biofilters

    SciTech Connect

    Lee, B.D.; Apel, W.A.; Walton, M.R.

    1997-08-01

    Conceptually, biofilters are vapor phase bioreactors that rely on microorganisms in the bed medium to oxidize contaminants in off-gases flowing through the bed to less hazardous compounds. In the most studied and utilized systems reduced compounds such as fuel hydrocarbons are enzymatically oxidized to compounds such as carbon dioxide and water. In these types of reactions the microorganisms in the bed oxidize the contaminant and transfer the electrons to oxygen which is the terminal electron acceptor in the process. In essence the contaminant is the carbon and energy source for the microorganisms in the bed medium and through this catabolic process oxygen is reduced to water. An example of this oxidation process can be seen during the degradation of benzene and similar aromatic compounds. Aromatics are initially attacked by a dioxygenase enzyme which oxidizes the compounds to a labile dihydrodiole which is spontaneously converted to a catechol. The dihydroxylated aromatic rings is then opened by oxidative {open_quotes}ortho{close_quotes} or {open_quotes}meta{close_quotes} cleavage yielding cis, cis-muconic acid or 2-hydroxy-cis, cis-muconic semialdehyde, respectively. These organic compounds are further oxidized to carbon dioxide or are assimilated for cellular material. This paper describes the conversion of carbon tetrachloride using methanol as the primary carbon and energy source.

  16. Decolorization of kraft bleaching effluent by advanced oxidation processes using copper (II) as electron acceptor.

    PubMed

    Yeber, María C; Oñate, Katherine P; Vidal, Gladys

    2007-04-01

    Two advanced oxidation processes (AOPs), TiO2/UV/O2 and TiO2/UV/Cu (II), were used to remove color from a Kraft bleaching effluent. The optimal decoloration rate was determined by multivariate analysis, obtaining a mathematical model to evaluate the effect among variables. TiO2 and Cu (II) concentrations and the reaction times were optimized. The experimental design resulted in a quadratic matrix of 30 experiments. Additionally, the pH influence on the color removal was determined by multivariate analysis. Results indicate that color removal was 94% at acidic pH (3.0) in the presence of Cu (11) as an electron acceptor. Under this condition, the biodegradation of the effluent increased from 0.3 to 0.6. Moreover, 70% of COD (chemical oxygen demand) was removed, and the ecotoxicity, measured by Daphnia magna, was reduced. Photocatalytic oxidation to remove the color contained in the Kraft mill bleaching effluent was effective under the following conditions: short reaction time, acidic pH values, and without the addition of oxygen due to the presence of Cu (II) in the effluent. Moreover, residual Cu (II) was a minimum (0.05.mg L(-1)) and was not toxic to the next biological stage. The experimental design methodology indicated that a quadratic polynomial model may be used to representthe efficiencyfor degradation of the Kraft bleach pulp effluent by a photocatalytic process. PMID:17438808

  17. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments

    NASA Astrophysics Data System (ADS)

    Klüpfel, Laura; Piepenbrock, Annette; Kappler, Andreas; Sander, Michael

    2014-03-01

    Humic substances form through the degradation of microbial and plant precursors, and make up a significant fraction of natural organic matter in terrestrial and aquatic environments. Humic substances are redox-active and can act as terminal electron acceptors in anaerobic microbial respiration. Reduced humic substances may become re-oxidized during aeration of temporarily anoxic systems, such as wetlands, sediments and many soils. If the transfer of electrons from anaerobic respiration through humic substances to oxygen is sustained over many redox cycles, it may competitively suppress electron transfer to carbon dioxide, and thereby lower the formation of methane in temporarily anoxic systems. Here, we monitor changes in the redox states of four chemically distinct dissolved humic substances over successive cycles of reduction by the bacterium Shewanella oneidensis MR-1 and oxidation by oxygen, in a series of laboratory experiments. We show that electron transfer to and from these substances is fully reversible and sustainable over successive redox cycles. We suggest that redox cycling of humic substances may largely suppress methane production in temporarily anoxic systems.

  18. Decolorization of kraft bleaching effluent by advanced oxidation processes using copper (II) as electron acceptor.

    PubMed

    Yeber, María C; Oñate, Katherine P; Vidal, Gladys

    2007-04-01

    Two advanced oxidation processes (AOPs), TiO2/UV/O2 and TiO2/UV/Cu (II), were used to remove color from a Kraft bleaching effluent. The optimal decoloration rate was determined by multivariate analysis, obtaining a mathematical model to evaluate the effect among variables. TiO2 and Cu (II) concentrations and the reaction times were optimized. The experimental design resulted in a quadratic matrix of 30 experiments. Additionally, the pH influence on the color removal was determined by multivariate analysis. Results indicate that color removal was 94% at acidic pH (3.0) in the presence of Cu (11) as an electron acceptor. Under this condition, the biodegradation of the effluent increased from 0.3 to 0.6. Moreover, 70% of COD (chemical oxygen demand) was removed, and the ecotoxicity, measured by Daphnia magna, was reduced. Photocatalytic oxidation to remove the color contained in the Kraft mill bleaching effluent was effective under the following conditions: short reaction time, acidic pH values, and without the addition of oxygen due to the presence of Cu (II) in the effluent. Moreover, residual Cu (II) was a minimum (0.05.mg L(-1)) and was not toxic to the next biological stage. The experimental design methodology indicated that a quadratic polynomial model may be used to representthe efficiencyfor degradation of the Kraft bleach pulp effluent by a photocatalytic process.

  19. Modeling the Current and Future Roles of Particulate Organic Nitrates in the Southeastern United States.

    PubMed

    Pye, Havala O T; Luecken, Deborah J; Xu, Lu; Boyd, Christopher M; Ng, Nga L; Baker, Kirk R; Ayres, Benjamin R; Bash, Jesse O; Baumann, Karsten; Carter, William P L; Edgerton, Eric; Fry, Juliane L; Hutzell, William T; Schwede, Donna B; Shepson, Paul B

    2015-12-15

    Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate radicals (the primary source of particle-phase organic nitrates in the Southeast United States), secondary organic aerosol (SOA) models can underestimate yields. Furthermore, SOA parametrizations do not explicitly take into account organic nitrate compounds produced in the gas phase. In this work, we developed a coupled gas and aerosol system to describe the formation and subsequent aerosol-phase partitioning of organic nitrates from isoprene and monoterpenes with a focus on the Southeast United States. The concentrations of organic aerosol and gas-phase organic nitrates were improved when particulate organic nitrates were assumed to undergo rapid (τ = 3 h) pseudohydrolysis resulting in nitric acid and nonvolatile secondary organic aerosol. In addition, up to 60% of less oxidized-oxygenated organic aerosol (LO-OOA) could be accounted for via organic nitrate mediated chemistry during the Southern Oxidants and Aerosol Study (SOAS). A 25% reduction in nitrogen oxide (NO + NO2) emissions was predicted to cause a 9% reduction in organic aerosol for June 2013 SOAS conditions at Centreville, Alabama.

  20. Using Nitrate N and O Isotope Ratios to Identify Nitrate Sources and Dominant Nitrogen Cycling Processes in a 12ha Tile Drained Dryland Agricultural Field in the Palouse Basin of Eastern Washington State

    NASA Astrophysics Data System (ADS)

    Kelley, C. J.; Keller, C. K.; Evans, R. D.; Orr, C. H.; Smith, J. L.

    2010-12-01

    Agricultural systems are a leading source of reactive nitrogen to aquatic and atmospheric ecosystem. Understanding how anthropogenic nitrogen sources are cycled during transport from agricultural systems to aquatic and atmospheric systems is essential to identify the sink(s) of missing nitrogen and improve nitrogen management. Here we use natural nitrate 15N and 18O isotope abundances to determine the timing of nitrogen cycling process and to identify the source of nitrate discharged from a tile drained section of the WSU Cook Agronomy Farm. Previous research at the Cook Farm has shown that 5% to 20% of fertilizer nitrogen leaves the system as nitrate through the tile-drain. Identifying the timing of nitrogen cycling events and identifying the source(s) of tile drain nitrate is the first step to reduce nitrogen loss to aquatic systems bordering agricultural land. Throughout the 5 year study period δ18Onitrate averaged -1.26±1.48‰, indicating that nitrate-oxygen isotopes were not being enriched. Tile drain nitrate δ15N varied seasonally from -0.48‰ in the winter to +9.24‰ during the summer with an average of +3.19±2.62‰. The lack of nitrate-oxygen enrichment during the study period indicates that nitrification is the dominant nitrogen cycling process in the tile drained soil. The expected δ18Onitrate from nitrification based on the nitrification equation is -2.0‰, also supporting the claim that nitrification is the dominant nitrogen cycling process in the soil drained by the tile drain system. The large range of nitrate δ15N overlaps the expected isotope values for nitrate from nitrified synthetic nitrogen fertilizers and soil organic nitrogen. Nitrate-nitrogen and nitrate-oxygen isotope abundances have shown that nitrate in high nitrate concentration TD discharge originates from nitrification of reduced nitrogen fertilizers and nitrate in low nitrate concentration TD discharge originates from nitrification of; 1) soil organic nitrogen, 2) biotically

  1. Implications of the band gap problem on oxidation and hydration in acceptor-doped barium zirconate

    NASA Astrophysics Data System (ADS)

    Lindman, Anders; Erhart, Paul; Wahnström, Göran

    2015-06-01

    Charge carrier concentrations in acceptor-doped proton-conducting perovskites are to a large extent determined by the hydration and oxidation of oxygen vacancies, which introduce protons and holes, respectively. First-principles modeling of these reactions involves calculation of formation energies of charged defects, which requires an accurate description of the band gap and the position of the band edges. Since density-functional theory (DFT) with local and semilocal exchange-correlation functionals (LDA and GGA) systematically fails to predict these quantities this can have serious implications on the modeling of defect reactions. In this study we investigate how the description of band gap and band-edge positions affects the hydration and oxidation in acceptor-doped BaZrO3. First-principles calculations are performed in combination with thermodynamic modeling in order to obtain equilibrium charge carrier concentrations at different temperatures and partial pressures. Three different methods have been considered: DFT with both semilocal (PBE) and hybrid (PBE0) exchange-correlation functionals, and many-body perturbation theory within the G0W0 approximation. All three methods yield similar results for the hydration reaction, which are consistent with experimental findings. For the oxidation reaction, on the other hand, there is a qualitative difference. PBE predicts the reaction to be exothermic, while the two others predict an endothermic behavior. Results from thermodynamic modeling are compared with available experimental data, such as enthalpies, concentrations, and conductivities, and only the results obtained with PBE0 and G0W0 , with an endothermic oxidation behavior, give a satisfactory agreement with experiments.

  2. Oxidative and nitrative stress in neurodegeneration.

    PubMed

    Cobb, Catherine A; Cole, Marsha P

    2015-12-01

    Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage. PMID:26024962

  3. Nitrate Trends in Minnesota Rivers

    USGS Publications Warehouse

    Wall, Dave; Christopherson, Dave; Lorenz, Dave; Martin, Gary

    2013-01-01

    The objective of this study was to assess long-term trends (30 to 35 years) of flow-adjusted concentrations of nitrite+nitrate-N (hereinafter referred to as nitrate) in a way that would allow us to discern changing trends. Recognizing that these trends are commonly different from one river to another river and from one part of the state to another, our objective was to examine as many river monitoring sites across the state as possible for which sufficient long term streamflow and concentration data were available.

  4. Oxygen Therapy

    MedlinePlus

    ... 85-95% pure oxygen. The concentrator runs on electricity or a battery. A concentrator for home usually ... systems deliver 100% oxygen, and do not require electricity. A small canister can be filled from the ...

  5. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  6. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    PubMed Central

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  7. Nanostructured donor-acceptor self assembly with improved photoconductivity.

    PubMed

    Saibal, B; Ashar, A Z; Devi, R Nandini; Narayan, K S; Asha, S K

    2014-11-12

    Nanostructured supramolecular donor-acceptor assemblies were formed when an unsymmetrical N-substituted pyridine functionalized perylenebisimide (UPBI-Py) was complexed with oligo(p-phenylenevinylene) (OPVM-OH) complementarily functionalized with hydroxyl unit and polymerizable methacrylamide unit at the two termini. The resulting supramolecular complex [UPBI-Py (OPVM-OH)]1.0 upon polymerization by irradiation in the presence of photoinitiator formed well-defined supramolecular polymeric nanostructures. Self-assembly studies using fluorescence emission from thin film samples showed that subtle structural changes occurred on the OPV donor moiety following polymerization. The 1:1 supramolecular complex showed red-shifted aggregate emission from both OPV (∼500 nm) and PBI (∼640 nm) units, whereas the OPV aggregate emission was replaced by intense monomeric emission (∼430 nm) upon polymerizing the methacrylamide units on the OPVM-OH. The bulk structure was studied using wide-angle X-ray diffraction (WXRD). Complex formation resulted in distinct changes in the cell parameters of OPVM-OH. In contrast, a physical mixture of 1 mol each of OPVM-OH and UPBI-Py prepared by mixing the powdered solid samples together showed only a combination of reflections from both parent molecules. Thin film morphology of the 1:1 molecular complex as well as the supramolecular polymer complex showed uniform lamellar structures in the domain range <10 nm. The donor-acceptor supramolecular complex [UPBI-Py (OPVM-OH)]1.0 exhibited space charge limited current (SCLC) with a bulk mobility estimate of an order of magnitude higher accompanied by a higher photoconductivity yield compared to the pristine UPBI-Py. This is a very versatile method to obtain spatially defined organization of n and p-type semiconductor materials based on suitably functionalized donor and acceptor molecules resulting in improved photocurrent response using self-assembly.

  8. Nanostructured donor-acceptor self assembly with improved photoconductivity.

    PubMed

    Saibal, B; Ashar, A Z; Devi, R Nandini; Narayan, K S; Asha, S K

    2014-11-12

    Nanostructured supramolecular donor-acceptor assemblies were formed when an unsymmetrical N-substituted pyridine functionalized perylenebisimide (UPBI-Py) was complexed with oligo(p-phenylenevinylene) (OPVM-OH) complementarily functionalized with hydroxyl unit and polymerizable methacrylamide unit at the two termini. The resulting supramolecular complex [UPBI-Py (OPVM-OH)]1.0 upon polymerization by irradiation in the presence of photoinitiator formed well-defined supramolecular polymeric nanostructures. Self-assembly studies using fluorescence emission from thin film samples showed that subtle structural changes occurred on the OPV donor moiety following polymerization. The 1:1 supramolecular complex showed red-shifted aggregate emission from both OPV (∼500 nm) and PBI (∼640 nm) units, whereas the OPV aggregate emission was replaced by intense monomeric emission (∼430 nm) upon polymerizing the methacrylamide units on the OPVM-OH. The bulk structure was studied using wide-angle X-ray diffraction (WXRD). Complex formation resulted in distinct changes in the cell parameters of OPVM-OH. In contrast, a physical mixture of 1 mol each of OPVM-OH and UPBI-Py prepared by mixing the powdered solid samples together showed only a combination of reflections from both parent molecules. Thin film morphology of the 1:1 molecular complex as well as the supramolecular polymer complex showed uniform lamellar structures in the domain range <10 nm. The donor-acceptor supramolecular complex [UPBI-Py (OPVM-OH)]1.0 exhibited space charge limited current (SCLC) with a bulk mobility estimate of an order of magnitude higher accompanied by a higher photoconductivity yield compared to the pristine UPBI-Py. This is a very versatile method to obtain spatially defined organization of n and p-type semiconductor materials based on suitably functionalized donor and acceptor molecules resulting in improved photocurrent response using self-assembly. PMID:25283356

  9. Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp.

    PubMed

    Denger, K; Laue, H; Cook, A M

    1997-06-01

    Enrichment cultures were prepared under strictly anoxic conditions in medium representing fresh water and containing an organosulfonate as electron donor and carbon source, and nitrate as electron acceptor. The inoculum was from the anaerobic digestor of two communal sewage works. The natural organosulfonates 2-aminoethanesulfonate (taurine), DL-2-amino-3-sulfopropionate (cysteate) and 2-hydroxyethanesulfonate (isethionate) all gave positive enrichments, whereas unsubstituted alkanesulfonates, such as methanesulfonate and arenesulfonates, gave no enrichment. Two representative enrichments were used to obtain pure cultures, and strains NKNTAU (utilizing taurine) and NKNIS (utilizing isethionate) were isolated. Strain NKNTAU was examined in detail. Out of 18 tested organosulfonates, it utilized only one, taurine, and was identified as a novel Alcaligenes sp., a facultatively anaerobic bacterium. Carbon from taurine was converted to cell material and carbon dioxide. The amino group was released as ammonium ion and the sulfonate moiety was recovered as sulfate. Nitrate was reduced to nitrogen gas.

  10. Incorporation of Cu Acceptors in ZnO Nanocrystals

    SciTech Connect

    Oo, W.M.H.; Mccluskey, Matthew D.; Huso, Jesse; Morrison, J.; Bergman, Leah; Engelhard, Mark H.; Saraf, Laxmikant V.

    2010-09-16

    Doping of semiconductor nanocrystals is an important problem in nanomaterials research. Using infrared (IR) and x-ray photoelectron spectroscopy (XPS), we have observed Cu acceptor dopants that were intentionally introduced into ZnO nanocrystals. The incorporation of Cu2+ dopants increased as the diameter of the nanocrystals was increased from ~3 to 5 nm. Etching the nanocrystals with acetic acid revealed a core-shell structure, where a 2-nm lightly doped core is surrounded by a heavily doped shell. These observations are consistent with the trapped dopant model, in which dopant atoms stick to the surface of the core and are overgrown by the nanocrystal material.

  11. Hexamethoxylated Monocarbonyl Analogues of Curcumin Cause G2/M Cell Cycle Arrest in NCI-H460 Cells via Michael Acceptor-Dependent Redox Intervention.

    PubMed

    Li, Yan; Zhang, Li-Ping; Dai, Fang; Yan, Wen-Jing; Wang, Hai-Bo; Tu, Zhi-Shan; Zhou, Bo

    2015-09-01

    Curcumin, derived from the dietary spice turmeric, holds promise for cancer prevention. This prompts much interest in investigating the action mechanisms of curcumin and its analogues. Two symmetrical hexamethoxy-diarylpentadienones (1 and 2) as cucumin analogues were reported to possess significantly enhanced cytotoxicity compared with the parent molecule. However, the detailed mechanisms remain unclear. In this study, compounds 1 and 2 were identified as the G2/M cell cycle arrest agents to mediate the cytotoxicity toward NCI-H460 cells via Michael acceptor-dependent redox intervention. Compared with curcumin, they could more easily induce a burst of reactive oxygen species (ROS) and collapse of the redox buffering system. One possible reason is that they could more effectively target intracellular TrxR to convert this antioxidant enzyme into a ROS promoter. Additionally, they caused up-regulation of p53 and p21 and down-regulation of redox-sensitive Cdc25C along with cyclin B1/Cdk1 in a Michael acceptor- and ROS-dependent fashion. Interestingly, in comparison with compound 2, compound 1 displayed a relatively weak ability to generate ROS but increased cell cycle arrest activity and cytotoxicity probably due to its Michael acceptor-dependent microtubule-destabilizing effect and greater GST-inhibitory activity, as well as its enhanced cellular uptake. This work provides useful information for understanding Michael acceptor-dependent and redox-mediated cytotoxic mechanisms of curcumin and its active analogues.

  12. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    SciTech Connect

    John F. Stolz

    2011-06-15

    A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory

  13. Reactive Transport of Nitrate in Northern California Groundwater basins: An Integrated Characterization and Modeling Approach

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Moran, J. E.; Hudson, G. B.; Carle, S. F.; McNab, W.; Tompson, A. F.; Moore, K.; Beller, H.; Kane, S.; Eaton, G.

    2003-12-01

    More than 1/3 of active public drinking water supply wells in California produce water with nitrate-N levels indicative of anthropogenic inputs (> 4 mg/L). Understanding how the distribution of nitrate in California groundwater basins will evolve is vital to water supply and infrastructure planning. To address this need, we are studying the basin-scale reactive transport of nitrate in the Livermore and Llagas basins of Northern California. Both basins have increasingly urban populations heavily reliant on groundwater. A distinct nitrate "plume" exists in the Livermore Basin (Alameda County) whereas pervasive nitrate contamination exists in shallow groundwaters of the Llagas Basin (Santa Clara County). The sources and timing of nitrate contamination in these basins are not definitively known; septic systems, irrigated agriculture and livestock operations exist or have existed in both areas. The role of denitrification in controlling nitrate distribution is also unknown; dissolved oxygen levels are sufficiently low in portions of each basin as to indicate the potential for denitrification. We have collected water from 60 wells, and are determining both groundwater age (by the 3H/3He method) and the extent of denitrification (by the excess N2 method). Excess nitrogen is being determined by both membrane-inlet and noble gas mass spectrometry, using Ar and Ne content to account for atmospheric N2. We are also analyzing for stable istotopes of nitrate and water, nitrate co-contaminants, and general water quality parameters. Preliminary analysis of archival water district data from both basins suggests positive correlations of nitrate with Ca+2, Mg+2 and bicarbonate and negative correlation with pH. In the Llagas Basin, a negative correlation also exists between nitrate and temperature. Flow path-oriented reactive transport modeling is being explored as a tool to aid in the identification of both the sources of nitrate and evidence for denitrification in both basins

  14. Evaluating the source of streamwater nitrate using δ15N and δ18O in nitrate in two watersheds in New Hampshire, USA

    USGS Publications Warehouse

    Pardo, Linda H.; Kendall, Carol; Pett-Ridge, Jennifer; Chang, Cecily C.Y.

    2004-01-01

    The natural abundance of nitrogen and oxygen isotopes in nitrate can be a powerful tool for identifying the source of nitrate in streamwater in forested watersheds, because the two main sources of nitrate, atmospheric deposition and microbial nitrification, have distinct δ18O values. Using a simple mixing model, we estimated the relative fractions in streamwater derived from these sources for two forested watersheds with markedly different streamwater nitrate outputs. In this study, we monitored δ15N and δ18O of nitrate biweekly in atmospheric deposition and in streamwater for 20 months at the Hubbard Brook Experimental Forest, New Hampshire, USA (moderate nitrogen export), and monthly in streamwater at the Bowl Research Natural Area, New Hampshire, USA (high nitrogen export). For rain, δ18O values ranged from +47 to +77‰ (mean: +58‰) and δ15N from −5 to +1‰ (mean: −3‰); for snow, δ18O values ranged from +52 to +75‰ (mean: +67‰) and δ15N from −3 to +2‰ (mean: −1‰). Streamwater nitrate, in contrast to deposition, had δ18O values between +12 and +33‰ (mean: +18‰) and δ15N between −3 and +6‰ (mean: 0‰). Since nitrate produced by nitrification typically has δ18O values ranging from −5 to +15‰, our field data suggest that most of the nitrate lost from the watersheds in streamflow was nitrified within the catchment. Our results confirm the importance of microbial nitrogen transformations in regulating nitrogen losses from forested ecosystems and suggest that hydrologic storage may be a factor in controlling catchment nitrate losses.

  15. Iron Corrosion Induced by Nonhydrogenotrophic Nitrate-Reducing Prolixibacter sp. Strain MIC1-1

    PubMed Central

    Ito, Kimio; Wakai, Satoshi; Tsurumaru, Hirohito; Ohkuma, Moriya; Harayama, Shigeaki

    2014-01-01

    Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe0) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe0 oxidation. In this study, we describe Fe0 corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe0 as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe0-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe0 concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe0 foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe0 to reduce nitrate. PMID:25548048

  16. Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1.

    PubMed

    Iino, Takao; Ito, Kimio; Wakai, Satoshi; Tsurumaru, Hirohito; Ohkuma, Moriya; Harayama, Shigeaki

    2015-03-01

    Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe(0)) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe(0) oxidation. In this study, we describe Fe(0) corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe(0) as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe(0)-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe(0) concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe(0) foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe(0) to reduce nitrate.

  17. Dietary nitrate and cardiovascular health

    USGS Publications Warehouse

    Ahluwalia, A.; Gladwin, M.T.; Harman, Jane L.; Ward, M.H.; Nolan, Bernard T.

    2014-01-01

    The National Heart, Lung, and Blood Institute convened this workshop to discuss the results of recent research on the effects of inorganic nitrate and nitrite on the cardiovascular system, possible long term effects of these compounds in the diet and drinking water, and future research needs including population-wide effects examined through epidemiological studies.

  18. Biological denitrification of high concentration nitrate waste

    DOEpatents

    Francis, Chester W.; Brinkley, Frank S.

    1977-01-01

    Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

  19. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  20. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration.

    PubMed

    Richter, Katrin; Schicklberger, Marcus; Gescher, Johannes

    2012-02-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions.

  1. Functional analysis of a C. elegans trans-splice acceptor.

    PubMed Central

    Conrad, R; Liou, R F; Blumenthal, T

    1993-01-01

    The rol-6 gene is trans-spliced to the 22 nt leader, SL1, 173 nt downstream of the transcription start. We have analyzed splicing in transformants carrying extrachromosomal arrays of rol-6 with mutations in the trans-splice acceptor site. This site is a close match to the consensus, UUUCAG, that is highly conserved in both trans-splice and intron acceptor sites in C. elegans. When the trans-splice site was inactivated by mutating the perfectly-conserved AG, trans-splicing still occurred, but at a cryptic site 20 nt upstream. We tested the frequency with which splicing switched from the normal site to the cryptic site when the pyrimidines at this site were changed to A's. Since most C. elegans 3' splice sites lack an obvious polypyrimidine tract, we hypothesized that these four pyrimidines might play this role, and indeed mutation of these bases caused splicing to switch to the cryptic site. We also demonstrated that a major reason the downstream site is normally favored is because it occurs at a boundary between A+U rich and non-A+U rich RNA. When the RNA between the two splice sites was made less A+U rich, splicing occurred preferentially at the upstream site. Images PMID:8451190

  2. Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration

    PubMed Central

    Richter, Katrin; Schicklberger, Marcus

    2012-01-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions. PMID:22179232

  3. Donor-acceptor complexation and dehydrogenation chemistry of aminoboranes.

    PubMed

    Malcolm, Adam C; Sabourin, Kyle J; McDonald, Robert; Ferguson, Michael J; Rivard, Eric

    2012-12-01

    A series of formal donor-acceptor adducts of aminoborane (H(2)BNH(2)) and its N-substituted analogues (H(2)BNRR') were prepared: LB-H(2)BNRR'(2)-BH(3) (LB = DMAP, IPr, IPrCH(2) and PCy(3); R and R' = H, Me or tBu; IPr = [(HCNDipp)(2)C:] and Dipp = 2,6-iPr(2)C(6)H(3)). To potentially access complexes of molecular boron nitride, LB-BN-LA (LA = Lewis acid), preliminary dehydrogenation chemistry involving the parent aminoborane adducts LB-H(2)BNH(2)-BH(3) was investigated using [Rh(COD)Cl](2), CuBr, and NiBr(2) as dehydrogenation catalysts. In place of isolating the intended dehydrogenated BN donor-acceptor complexes, the formation of borazine was noted as a major product. Attempts to prepare the fluoroarylborane-capped aminoborane complexes, LB-H(2)BNH(2)-B(C(6)F(5))(3), are also described. PMID:23153209

  4. An investigation of acceptor-doped grain boundaries in ?

    NASA Astrophysics Data System (ADS)

    Ravikumar, V.; Rodrigues, R. P.; Dravid, V. P.

    1996-07-01

    Grain boundary (GB) doped 0022-3727/29/7/014/img2 exhibits interesting electroceramic phenomena including varistor and barrier layer capacitor behaviour. We present here our investigation of GB acceptor-doped 0022-3727/29/7/014/img2 using analytical electron microscopy including electron holography. Mn was diffused into sintered polycrystalline 0022-3727/29/7/014/img2 to attain GBs which are rich in Mn. The presence and spatial extent of Mn at the GBs were analysed using x-ray emission spectroscopy (XES) and parallel electron energy loss spectroscopy (PEELS). The valence state of Mn was determined using PEELS to be predominantly +2. Finally, transmission high-energy electron holography was utilized to directly image and quantify the electrostatic potential and associated space-charge across the GBs directly. The holography results reveal a negatively charged GB with positive space-charge, indicating that Mn with a valence of +2 resides as an acceptor dopant on the Ti site at the GB core. The barrier height and local charge density distribution, including the Debye length, of the double Schottky barrier at the GB are derived from these holography results. This investigation demonstrates the usefulness of electron holography as a bulk-sensitive technique to probe the statics and dynamics of electrostatic field distribution and electrical charge across interfaces in technologically useful materials, and the need to employ diverse analytical techniques for such an investigation.

  5. A Novel Chemical Nitrate Destruction Process

    SciTech Connect

    Dziewinski, J.; Marczak, S.

    1999-03-01

    Nitrates represent one of the most significant pollutant discharged to the Baltic Sea by the Sliiamae hydrometallurgical plant. This article contains a brief overview of the existing nitrate destruction technologies followed by the description of a new process developed by the authors. The new chemical process for nitrate destruction is cost effective and simple to operate. It converts the nitrate to nitrogen gas which goes to the atmosphere.

  6. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer

    PubMed Central

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D.; Vicars, William; Alexander, Becky; Achterberg, Eric P.

    2013-01-01

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL. PMID:23431201

  7. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer.

    PubMed

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D; Vicars, William; Alexander, Becky; Achterberg, Eric P

    2013-10-29

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.

  8. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer.

    PubMed

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D; Vicars, William; Alexander, Becky; Achterberg, Eric P

    2013-10-29

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL. PMID:23431201

  9. Surface chemistry of electrospun cellulose nitrate nanofiber membranes.

    PubMed

    Nartker, Steven; Askeland, Per; Wiederoder, Sara; Drzal, Lawrence T

    2011-02-01

    Electrospinning is a rapidly developing technology that provides a unique way to produce novel polymer nanofibers with controllable diameters. Cellulose nitrate non-woven mats of submicron-sized fibers with diameters of 100-1200 nm were prepared. The effects of processing equipment collector design void gap, and steel drum coated with polyvinylidene dichloride (PVDC) were investigated. The PVDC layer applied to the rotating drum aided in fiber harvesting. Electron microscopy (FESEM and ESEM) studies of as-spun fibers revealed that the morphology of cellulose nitrate fibers depended on the collector type and solution viscosity. When a rotating steel drum was employed a random morphology was observed, while the void gap collector produced aligned fiber mats. Increases in viscosity lead to larger diameter fibers. The fibers collected were free from all residual solvents and could undergo oxygen plasma treatment to increase the hydropholicity. PMID:21456166

  10. The Measurement of Hot-Spots in Granulated Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Proud, W. G.

    2002-07-01

    Ammonium Nitrate (AN) is one of the components of the most widely used explosive in the world namely, ammonium nitrate: fuel oil mixtures (ANFO). By itself, it is an oxygen positive explosive with a large critical diameter. Hot-spots are produced in explosives by various means including gas space collapse, localised shear or friction. If these hot-spots reach critical conditions of size, temperature and duration reaction can grow. This deflagration stage may eventually transition to detonation. This paper describes high-speed image-intensified photography study in which the number and growth of hot spots in granular AN are monitored for a range of different impact pressures. The results can be used in detonation codes to provide a more accurate and realistic description of the initiation process.

  11. The Measurement of Hot-spots in Granulated Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Proud, William; Field, John

    2001-06-01

    Ammonium Nitrate (AN) is one of the components of the most widely used explosive in the world ammonium nitrate: fuel oil mixtures (ANFO). By itself, it is an oxygen negative explosive with a large critical diameter. Hot-spots are produced in explosives by various means including gas space collapse, localised shear or friction. If these hot-spots reach critical conditions of size, temperature and duration size reaction can grow. This deflagration stage may eventually transition to detonation. This paper describes a system and presents results where high-speed image intensified photography is used to monitor the number and growth of hot spots in granular AN under a range of different impact pressures. The results can be used in detonation codes to provide a more accurate and realistic description of the initiation process.

  12. Evaluation of Sources of Nitrate Beneath Food Processing Wastewater-Application Sites near Umatilla, Oregon

    USGS Publications Warehouse

    Frans, Lonna; Paulson, Anthony; Richerson, Phil; Striz, Elise; Black, Curt

    2009-01-01

    Water samples from wells were collected beneath and downgradient of two food-processing wastewater-application sites near Umatilla, Oregon. These samples were analyzed for nitrate stable isotopes, nutrients, major ions, and age-dating constituents to determine if nitrate-stable isotopes can be used to differentiate food-processing waste from other potential sources of nitrate. Major-ion data from each site were used to determine which samples were associated with the recharge of the food-processing wastewater. End-member mixing analysis was used to determine the relative amounts of each identified end member within the samples collected from the Terrace Farm site. The delta nitrogen-15 (delta 15N) of nitrate generally ranged between +2 and +9 parts per thousand and the delta oxygen-18 (delta 18O) of nitrate generally ranged between -2 and -7 parts per thousand. None of the samples that were determined to be associated with the wastewater were different from the samples that were not affected by the wastewater. The nitrate isotope values measured in this study are also characteristic of ammonium fertilizer, animal and human waste, and soil nitrate; therefore, it was not possible to differentiate between food-processing wastewater and the other nitrate sources. Values of delta 15N and delta 18O of nitrate provided no more information about the sources of nitrate in the Umatilla River basin than did a hydrologic and geochemical understanding of the ground-water system derived from interpreting water-level and major-ion chemistry data.

  13. [Review of dual stable isotope technique for nitrate source identification in surface- and groundwater in China].

    PubMed

    Xu, Zhi-Wei; Zhang, Xin-Yu; Yu, Gui-Rui; Sun, Xiao-Min; Wen, Xue-Fa

    2014-08-01

    Water nitrate (NO3-) contamination is a world-wide environmental problem under the effects of intensive human activities. Sources identification of NO3- contamination in water is important for better management of water quality. Dual stable isotope data of nitrate nitrogen (delta15N) and nitrate oxygen (delta18O) combined with other stable isotopes and chemical analysis data have been frequently used to identify NO3- sources, differentiate percentage of the different NO3- sources and assess the nitrification/denitrification processes of surface water, groundwater and precipitation, respectively. This review summarized the analysis technique of nitrate delta15N and delta18O in domestic and abroad, assessed typical values of delta15N, delta18O from different NO3- sources and evaluated the progress in application of dual stable isotope of delta15N and delta18O technique to trace NO3- sources in surface- and ground-water. Both ion exchange-AgNO3 and bacteria denitrifying methods have been successfully used in tracing water nitrate sources nationwide. The comprehensive metadata analysis of nitrate sources showed that the delta15N values of sewage and manure, soil, precipitation, fertilizer ranged from 3 per thousand to 17 per thousand, 3 per thousand to 8 per thousand, - 9 per thousand to 9 per thousand, -2 per thousand to 4 per thousand, respectively. And the delta15N values of ammonium fertilizer ranged from - 4 per thousand to 2 per thousand. According to the stable isotope technique, sewage and manure were identified as the major nitrate sources of surface- and ground-water in China. This indicated that municipal sewage and aquaculture exerted serious influence on the nitrate pollution of surface water. In the future, long-term monitoring, dual stable isotope fingerprinting and hydro-chemical analysis should be applied together to quantitatively differentiate contribution of nitrate sources, and to assess seasonal dynamic of nitrate sources. It will provide useful

  14. Alkyl Nitrates and Oxidized Volatile Organic Compounds during NACHTT: Influence on Reactive Chlorine Activation

    NASA Astrophysics Data System (ADS)

    Swarthout, R.; Sive, B. C.; Russo, R. S.; Zhou, Y.

    2011-12-01

    Recent studies have suggested that reactive chlorine species can contribute substantially to the oxidative capacity of the atmosphere and also influence tropospheric ozone chemistry in areas far from dominant marine sources. The photochemical processing of polluted air masses containing can potentially affect the formation of chlorine radical (Cl) through various processes involving hydrocarbons and NOx (NO + NO2). Organic peroxy radicals can react with nitric oxide (NO) to form alkyl nitrates or to produce nitrogen dioxide (NO2) and oxygenated volatile organic compounds (OVOCs), including alcohols, aldehydes and ketones. Aldehydes can further react with NO2 to form peroxyacyl nitrates (PAN). Alkyl nitrates and PAN can serve as reservoirs for long range transport of NOx and can influence Cl production in remote areas. In order to further elucidate the influence of OVOCs and alkyl nitrates on chlorine activation processes, whole air samples were collected hourly during the Nitrogen, Aerosol Composition and Halogens on a Tall Tower (NACHTT) campaign at the Boulder Atmospheric Observatory in Erie, Colorado from February 18 through March 11, 2011. Profile samples up to 250 m were also collected throughout the campaign. Samples were analyzed for a comprehensive suite of volatile organic compounds, including OVOCs and C1 to C5 alkyl nitrates, using a five channel gas chromatographic analytical system. Alkyl nitrates and OVOCs were abundant throughout the campaign. Total alkyl nitrate mixing ratios ranged from 13 to 227 pptv with 2-butyl nitrate and 2-propyl nitrate accounting for over half of this total. Ethanol was the most abundant OVOC followed by methanol with median mixing ratios of 8.5 ppbv and 5.6 ppbv, respectively. This presentation will focus on the influence the observed alkyl nitrate and OVOC mixing ratios and air mass photochemical processing on Cl cycling.

  15. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis

    PubMed Central

    Macedo, Maíra Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-01-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB. PMID:24031916

  16. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  17. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  18. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  19. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  20. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  1. Nitration of Naphthol: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Mowery, Dwight F.

    1982-01-01

    Products of nitrations, upon distillation or steam distillation, may produce dermatitis in some students. A procedure for nitration of beta-naphthol producing a relatively non-volatile product not purified by steam distillation is described. Nitration of alpha-naphthol by the same procedure yields Martius Yellow dye which dyes wool yellow or…

  2. Modeling nitrate removal in a denitrification bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...

  3. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  4. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a...

  5. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  6. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... nitrate. The food additive potassium nitrate may be safely used as a curing agent in the processing of...

  7. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  8. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  9. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  10. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified foods in accordance with...

  11. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  12. Higher nitrate-reducer diversity in macrophyte-colonized compared to unvegetated freshwater sediment.

    PubMed

    Kofoed, Michael V W; Stief, Peter; Hauzmayer, Sandra; Schramm, Andreas; Herrmann, Martina

    2012-10-01

    Freshwater macrophytes stimulate rhizosphere-associated coupled nitrification-denitrification and are therefore likely to influence the community composition and abundance of rhizosphere-associated denitrifiers and nitrate reducers. Using the narG gene, which encodes the catalytic subunit of the membrane-bound nitrate reductase, as a molecular marker, the community composition and relative abundance of nitrate-reducing bacteria were compared in the rhizosphere of the freshwater macrophyte species Littorella uniflora and Myriophyllum alterniflorum to nitrate-reducing communities in unvegetated sediment. Microsensor analysis indicated a higher availability of oxygen in the rhizosphere compared to unvegetated sediment, with a stronger release of oxygen from the roots of L. uniflora compared to M. alterniflorum. Comparison of narG clone libraries between samples revealed a higher diversity of narG phylotypes in association with the macrophyte rhizospheres compared to unvegetated sediment. Quantitative PCR targeting narG- and 16S rRNA-encoding genes pointed to a selective enrichment of narG gene copies in the rhizosphere. The results suggested that the microenvironment of macrophyte rhizospheres, characterized by the release of oxygen and labile organic carbon from the root system, had a stimulating effect on the diversity and relative abundance of rhizosphere-associated nitrate reducers. PMID:23041409

  13. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries.

    PubMed

    Doel, J J; Hector, M P; Amirtham, C V; Al-Anzan, L A; Benjamin, N; Allaker, R P

    2004-10-01

    To test the hypothesis that a combination of high salivary nitrate and high nitrate-reducing capacity are protective against dental caries, 209 children attending the Dental Institute, Barts and The London NHS Trust were examined. Salivary nitrate and nitrite levels, counts of Streptococcus mutans and Lactobacillus spp., and caries experience were recorded. Compared with control subjects, a significant reduction in caries experience was found in patients with high salivary nitrate and high nitrate-reducing ability. Production of nitrite from salivary nitrate by commensal nitrate-reducing bacteria may limit the growth of cariogenic bacteria as a result of the production of antimicrobial oxides of nitrogen, including nitric oxide. PMID:15458501

  14. The structure and bonding of iron-acceptor pairs in silicon

    SciTech Connect

    Zhao, S.; Assali, L.V.C.; Kimerling, L.C.

    1995-08-01

    The highly mobile interstitial iron and Group III impurities (B, Al, Ga, In) form iron-acceptor pairs in silicon. Based on the migration kinetics and taking host silicon as a dielectric medium, we have simulated the pairing process in a static silicon lattice. Different from the conventional point charge ionic model, our phenomenological calculations include (1) a correction that takes into account valence electron cloud polarization which adds a short range, attractive interaction in the iron-acceptor pair bonding; and (2) silicon lattice relaxation due to the atomic size difference which causes a local strain field. Our model explains qualitatively (1) trends among the iron-acceptor pairs revealing an increase of the electronic state hole emission energy with increasing principal quantum number of acceptor and decreasing pair separation distance; and (2) the stable and metastable sites and configurational symmetries of the iron-acceptor pairs. The iron-acceptor pairing and bonding mechanism is also discussed.

  15. Binding characteristics of homogeneous molecularly imprinted polymers for acyclovir using an (acceptor-donor-donor)-(donor-acceptor-acceptor) hydrogen-bond strategy, and analytical applications for serum samples.

    PubMed

    Wu, Suqin; Tan, Lei; Wang, Ganquan; Peng, Guiming; Kang, Chengcheng; Tang, Youwen

    2013-04-12

    This paper demonstrates a novel approach to assembling homogeneous molecularly imprinted polymers (MIPs) based on mimicking multiple hydrogen bonds between nucleotide bases by preparing acyclovir (ACV) as a template and using coatings grafted on silica supports. (1)H NMR studies confirmed the AAD-DDA (A for acceptor, D for donor) hydrogen-bond array between template and functional monomer, while the resultant monodisperse molecularly imprinted microspheres (MIMs) were evaluated using a binding experiment, high performance liquid chromatography (HPLC), and solid phase extraction. The Langmuir isothermal model and the Langmuir-Freundlich isothermal model suggest that ACV-MIMs have more homogeneous binding sites than MIPs prepared through normal imprinting. In contrast to previous MIP-HPLC columns, there were no apparent tailings for the ACV peaks, and ACV-MIMs had excellent specific binding properties with a Ka peak of 3.44 × 10(5)M(-1). A complete baseline separation is obtained for ACV and structurally similar compounds. This work also successfully used MIMs as a specific sorbent for capturing ACV from serum samples. The detection limit and mean recovery of ACV was 1.8 ng/mL(-1) and 95.6%, respectively, for molecularly imprinted solid phase extraction coupled with HPLC. To our knowledge, this was the first example of MIPs using AAD-DDA hydrogen bonds.

  16. High Nitrate Concentrations in Vacuolate, Autotrophic Marine Beggiatoa spp

    PubMed Central

    McHatton, S. C.; Barry, J. P.; Jannasch, H. W.; Nelson, D. C.

    1996-01-01

    Massive accumulations of very large Beggiatoa spp. are found at a Monterey Canyon cold seep and at Guaymas Basin hydrothermal vents. Both environments are characterized by high sediment concentrations of soluble sulfide and low levels of dissolved oxygen in surrounding waters. These filamentous, sulfur-oxidizing bacteria accumulate nitrate intracellularly at concentrations of 130 to 160 mM, 3,000- to 4,000-fold higher than ambient levels. Average filament widths range from 24 to 122 (mu)m, and individual cells of all widths possess a central vacuole. These findings plus recent parallel discoveries for Thioploca spp. (H. Fossing, V. A. Gallardo, B. B. Jorgensen, M. Huttel, L. P. Nielsen, H. Schulz, D. E. Canfield, S. Forster, R. N. Glud, J. K. Gundersen, J. Kuver, N. B. Ramsing, A. Teske, B. Thamdrup, and O. Ulloa, Nature (London) 374:713-715, 1995) suggest that nitrate accumulation may be a universal property of vacuolate, filamentous sulfur bacteria. Ribulose bisphosphate carboxylase-oxygenase and 2-oxoglutarate dehydrogenase activities in the Beggiatoa sp. from Monterey Canyon suggest in situ autotrophic growth of these bacteria. Nitrate reductase activity is much higher in the Monterey Beggiatoa sp. than in narrow, laboratory-grown strains of Beggiatoa spp., and the activity is found primarily in the membrane fraction, suggesting that the vacuolate Beggiatoa sp. can reduce nitrate coupled to electron flow through an electron transport system. Nitrate-concentrating and respiration potentials of these chemolithoautotrophs suggest that the Beggiatoa spp. described here are an important link between the sulfur, nitrogen, and carbon cycles at the Monterey Canyon seeps and the Guaymas Basin hydrothermal vents where they are found. PMID:16535282

  17. Isotopic and Chemical Analysis of Nitrate Sources and Cycling in the San Joaquin River Near Stockton, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Bemis, B.; Wankel, S.; Bergamaschi, B.; Kratzer, C.; Dileanis, P.; Erickson, D.; Avery, E.; Paxton, K.

    2002-12-01

    Fish migration through the deep-water channel in the San Joaquin River at Stockton, California is inhibited by low oxygen concentrations during the summer months. The cause for this condition appears to be stagnation and decomposition of algae with attendant oxygen consumption. Algae growth in the San Joaquin River is promoted by nutrients entering the river mainly in the form of nitrate. Possible significant sources of nitrate include soil, fertilizer from agriculture, manure from dairy operations, and N derived from municipal sewage. A 2000 CALFED pilot study investigated the sources and cycling of nitrate at four sites along the San Joaquin River upstream of Stockton using the carbon and nitrogen isotopes of total dissolved and particulate organic matter, together with hydrological measurements and various concentration data, including chlorophyll-a. The nitrate source, its relationship to phytoplankton, and the effect of the nitrate source and cycling on the N isotopic composition of dissolved and particulate organic matter were the primary concerns of the study. The d15N values of dissolved organic nitrogen (DON) were used as a proxy for nitrate d15N because nitrate comprised about 90% of DON. Chlorophyll-a and C:N ratios indicated that the particulate organic matter (POM) consisted largely of plankton and therefore the d15N of POM was used as a proxy for the d15N of plankton. A tentative interpretation of the pilot study was that nitrate was a major nutrient for the plankton and the nitrate was of anthropogenic origin, possibly sewage or animal waste. To test these assumptions and interpretations, we are currently analyzing a set of samples collected in 2001. In addition to the previous sample types, a subset of samples will be measured directly for nitrate d15N to assess the validity of using d15N of DON as a proxy for nitrate.

  18. Donor-Acceptor-Type Semiconducting Polymers Consisting of Benzothiadiazole Derivatives as Electron-Acceptor Units for Organic Photovoltaic Cells.

    PubMed

    Kim, Hee Su; Park, Jong Baek; Kim, Ji-Hoon; Hwang, Do-Hoon

    2015-11-01

    We synthesized two fused pentacyclic donor-acceptor structures, where the two different outer electron rich thiophene (DTPBT) and electron poor benzene (ICTh) moieties are covalently bonded to the central electron-deficient benzothiadiazole core by two nitrogen bridges. These new electron-acceptor DTPBT and ICTh building blocks were copolymerized with fluorene, as the electron donor group, via Suzuki coupling polymerization, to produce two new alternating copolymers, PFDTPBT and PFICTh, respectively. The average molecular weights of the synthesized polymers were determined by GPC. The number-average molecular weights of PFDTPBT and PFICTh were 19,000 (PDI = 2.5) and 20,000 (PDI = 4.0), respectively. The optical bandgap energies of the polymers were measured from their absorption onsets to be 2.15 and 2.55 eV, depending on the polymer structure. The HOMO energy levels of the polymers were determined, by measuring the oxidation onsets of the polymer films by cyclic voltammetry. The measured HOMO energy levels of PFDTPBT and PFICTh were -5.10 and -5.57 eV, respectively. When the polymers were blended with PC71BM, as the active layer for bulk-heterojunction photovoltaic devices, power conversion efficiencies were 2.08% and 0.34%, respectively, under AM 1.5 G (100 mW cm(-2)) conditions.

  19. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    SciTech Connect

    Smith, Jacob W.; Lam, Royce K.; Saykally, Richard J.; Shih, Orion; Rizzuto, Anthony M.; Prendergast, David

    2015-08-28

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO{sub 3}{sup −} and NO{sub 2}{sup −}. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  20. On the mechanism by which dietary nitrate improves human skeletal muscle function

    PubMed Central

    Affourtit, Charles; Bailey, Stephen J.; Jones, Andrew M.; Smallwood, Miranda J.; Winyard, Paul G.

    2015-01-01

    Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been associated favorably with nitric-oxide-regulated processes including blood flow and energy metabolism. Indeed, the therapeutic potential of dietary nitrate in cardiovascular disease and metabolic syndrome—both aging-related medical disorders—has attracted considerable recent research interest. We and others have shown that dietary nitrate supplementation lowers the oxygen cost of human exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle work. This striking observation predicts that nitrate benefits the energy metabolism of human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of cellular ATP-consuming processes. In this mini-review, we evaluate experimental support for the dietary nitrate effects on muscle bioenergetics and we critically discuss the likelihood of nitric oxide as the molecular mediator of such effects. PMID:26283970

  1. On the mechanism by which dietary nitrate improves human skeletal muscle function.

    PubMed

    Affourtit, Charles; Bailey, Stephen J; Jones, Andrew M; Smallwood, Miranda J; Winyard, Paul G

    2015-01-01

    Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been associated favorably with nitric-oxide-regulated processes including blood flow and energy metabolism. Indeed, the therapeutic potential of dietary nitrate in cardiovascular disease and metabolic syndrome-both aging-related medical disorders-has attracted considerable recent research interest. We and others have shown that dietary nitrate supplementation lowers the oxygen cost of human exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle work. This striking observation predicts that nitrate benefits the energy metabolism of human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of cellular ATP-consuming processes. In this mini-review, we evaluate experimental support for the dietary nitrate effects on muscle bioenergetics and we critically discuss the likelihood of nitric oxide as the molecular mediator of such effects. PMID:26283970

  2. Molecular Signals Controlling the Inhibition of Nodulation by Nitrate in Medicago truncatula

    PubMed Central

    van Noorden, Giel E.; Verbeek, Rob; Dinh, Quy Dung; Jin, Jian; Green, Alexandra; Ng, Jason Liang Pin; Mathesius, Ulrike

    2016-01-01

    The presence of nitrogen inhibits legume nodule formation, but the mechanism of this inhibition is poorly understood. We found that 2.5 mM nitrate and above significantly inhibited nodule initiation but not root hair curling in Medicago trunatula. We analyzed protein abundance in M. truncatula roots after treatment with either 0 or 2.5 mM nitrate in the presence or absence of its symbiont Sinorhizobium meliloti after 1, 2 and 5 days following inoculation. Two-dimensional gel electrophoresis combined with mass spectrometry was used to identify 106 differentially accumulated proteins responding to nitrate addition, inoculation or time point. While flavonoid-related proteins were less abundant in the presence of nitrate, addition of Nod gene-inducing flavonoids to the Sinorhizobium culture did not rescue nodulation. Accumulation of auxin in response to rhizobia, which is also controlled by flavonoids, still occurred in the presence of nitrate, but did not localize to a nodule initiation site. Several of the changes included defense- and redox-related proteins, and visualization of reactive oxygen species indicated that their induction in root hairs following Sinorhizobium inoculation was inhibited by nitrate. In summary, the presence of nitrate appears to inhibit nodulation via multiple pathways, including changes to flavonoid metabolism, defense responses and redox changes. PMID:27384556

  3. An anaerobic two-layer permeable reactive biobarrier for the remediation of nitrate-contaminated groundwater.

    PubMed

    Liu, She-Jiang; Zhao, Zhi-Yuan; Li, Jie; Wang, Juan; Qi, Yun

    2013-10-15

    In this paper, an anaerobic two-layer permeable reactive biobarrier system consisting of an oxygen-capturing layer followed by a biodegradation layer was designed firstly for evaluating the remediation effectiveness of nitrate-contaminated groundwater. The first layer filling with granular oxygen-capturing materials is used to capture dissolved oxygen (DO) in groundwater in order to create an anaerobic condition for the microbial denitrification. Furthermore, it can also provide nutrition, such as carbon and phosphorus, for the normal metabolism of immobilized denitrifying bacteria filled in the second layer. The second layer using granular activated carbon as microbial carrier is able to biodegrade nitrate entering the barrier system. Batch experiments were conducted to identify the effect of DO on microbial denitrification, oxygen-capturing performance of zero valent iron (ZVI) powder and the characteristics of the prepared oxygen-capturing materials used to stimulate growth of denitrifying bacteria. A laboratory-scale experiment using two continuous upflow stainless-steel columns was then performed to evaluate the feasibility of this designed system. The first column was filled with granular oxygen-capturing materials prepared by ZVI powder, sodium citrate as well as other inorganic salts, etc. The second column was filled with activated carbon immobilizing denitrifying microbial consortium. Simulated nitrate-contaminated groundwater (40 mg NO3-N/L, pH 7.0) with 6 mg/L of DO content was pumped into this system at a flow rate of 235 mL/d. Samples from the second column were analyzed for nitrate and its major degradation byproduct. Results showed that nitrate could be removed more than 94%, and its metabolic intermediate, nitrite, could also be biodegraded further in this passive system. Further study is necessary in order to evaluate performance of its field application.

  4. Isotope fractionation and isotope decoupling during nitrate reduction in marine sediments

    NASA Astrophysics Data System (ADS)

    Dähnke, Kirstin; Thamdrup, Bo

    2015-04-01

    In summer 2010, we sampled marine sediments in the Skagerrak, covering a gradient of reactivity, oxygen consumption, and manganese concentration in the sediment. Along this gradient, we aimed to evaluate links between nitrogen cycling and sediment properties. The focus of the study was the interplay of nitrate and nitrite reduction rates and concomitant nitrate and nitrite isotope changes in sediment incubations. As expected, nitrate reduction was fastest in sediments with highest sediment reactivity and oxygen consumption. At the shallower sampling sites, denitrification was the main removal pathway of nitrate and nitrite, but acetylene inhibition experiments pointed towards significant importance of anammox at the deepest site in the Skagerrak. The N-isotope of denitrification effect varied with depth, with stronger N-isotope fractionation at deeper, and less reactive, sites, and ranged from -12 to -16o. At the deepest site in the Skagerrak, anammox was the dominant N2 production pathway. For this site, we calculated the intrinsic isotope effect of anammox in marine sediments, and found that it is ~-15o, which is in accordance with recent culture studies. The isotope effect of oxygen, however, was not consistent pattern along the gradient of sediment reactivity. The oxygen isotope effect of nitrate reduction was entirely decoupled from the nitrogen isotope effect. Surprisingly, this variability in oxygen isotope fractionation was not linked to the occurrence of anammox, but rather to intermediate nitrite accumulation in the anoxic incubations. Consequently, the ratio of 18ɛ / 15ɛ was highly variable in all sediments we investigated. We presume that such decoupling of oxygen and nitrogen isotopes is due to anoxic nitrite oxidation, which rises in turn with nitrite accumulation in the sediment incubations. These findings suggest that the ratio of 18ɛ / 15ɛ in marine environments is highly flexible, and might, especially in regions with considerable nitrite

  5. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  6. Generation of Nitrogen Acceptors in ZnO using Pulse Thermal Processing

    SciTech Connect

    Xu, Jun; Ott, Ronald D; Sabau, Adrian S; Pan, Zhengwei; Xiu, Faxian; Liu, Jilin; Erie, Jean-Marie; Norton, David P

    2008-01-01

    Bipolar doping in wide bandgap semiconductors is difficult to achieve under equilibrium conditions because of the spontaneous formation of compensating defects and unfavorable energetics for dopant substitution. In this work, we explored the use of rapid pulse thermal processing for activating nitrogen dopants into acceptor states in ZnO. Low-temperature photoluminescence spectra revealed both acceptor-bound exciton (A{sup 0}X) and donor-acceptor pair emissions, which present direct evidence for acceptors generated after pulse thermal processing of nitrogen-doped ZnO. This work suggests that pulse thermal processing is potentially an effective method for p-type doping of ZnO.

  7. Root Respiration Associated with Ammonium and Nitrate Absorption and Assimilation by Barley 1

    PubMed Central

    Bloom, Arnold J.; Sukrapanna, Scott S.; Warner, Robert L.

    1992-01-01

    We examined nitrate assimilation and root gas fluxes in a wild-type barley (Hordeum vulgare L. cv Steptoe), a mutant (nar1a) deficient in NADH nitrate reductase, and a mutant (nar1a;nar7w) deficient in both NADH and NAD(P)H nitrate reductases. Estimates of in vivo nitrate assimilation from excised roots and whole plants indicated that the nar1a mutation influences assimilation only in the shoot and that exposure to NO3− induced shoot nitrate reduction more slowly than root nitrate reduction in all three genotypes. When plants that had been deprived of nitrogen for several days were exposed to ammonium, root carbon dioxide evolution and oxygen consumption increased markedly, but respiratory quotient—the ratio of carbon dioxide evolved to oxygen consumed—did not change. A shift from ammonium to nitrate nutrition stimulated root carbon dioxide evolution slightly and inhibited oxygen consumption in the wild type and nar1a mutant, but had negligible effects on root gas fluxes in the nar1a;nar7w mutant. These results indicate that, under NH4+ nutrition, 14% of root carbon catabolism is coupled to NH4+ absorption and assimilation and that, under NO3− nutrition, 5% of root carbon catabolism is coupled to NO3− absorption, 15% to NO3− assimilation, and 3% to NH4+ assimilation. The additional energy requirements of NO3− assimilation appear to diminish root mitochondrial electron transport. Thus, the energy requirements of NH4+ and NO3− absorption and assimilation constitute a significant portion of root respiration. PMID:16669035

  8. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  9. Purification and Characterization of the Nitrate Reductase from the Diatom Thalassiosira pseudonana1

    PubMed Central

    Amy, Nancy K.; Garrett, Reginald H.

    1974-01-01

    The assimilatory nitrate reductase (NADH: nitrate oxidoreductase, E.C. 1.6.6.2.) from the marine diatom Thalassiosira pseudonana, Hasle and Heimdal, has been purified 200-fold and characterized. The regulation of nitrate reductase in response to various conditions of nitrogen nutrition has been investigated. Nitrate reductase activity is repressed by the presence of ammonium in vivo, and its synthesis is derepressed when ammonium is absent. The derepression process is sensitive to cycloheximide and apparently requires protein synthesis. Repression of enzyme activity by ammonium is neither inhibited nor delayed by the presence of cycloheximide. In vitro, ammonium does not inhibit enzyme activity. NADH is the physiological electron donor for the enzyme in a flavin-dependent reaction. Spectral studies have indicated the presence of a b-type cytochrome associated with the enzyme. It is possible to observe enzymatic oxidation-reduction reactions which represent partial functions of the over-all electron transport capacity of this enzyme. Nitrate reductase will accept electrons from artificial electron donors such as reduced methyl viologen in a flavin-independent reaction. Further, dithionitereduced flavin adenine dinucleotide can donate electrons to the enzyme to reduce nitrate to nitrite. Finally, the nitrate reductase will exhibit a diaphorase activity and reduce the artificial electron acceptor mammalian cytochrome c in flavin-adeninedinucleotide-dependent reaction. Inhibition studies with potassium cyanide, sodium azide, and o-phenanthroline have yielded indirect evidence for metal component (s) of the enzyme. The inhibition of the NADH-requiring enzyme activities by p-hydroxymercuribenzoate has shown that an essential sulfhydryl group is involved in the initial portion of the electron transport. Heat treatment exerts an effect similar to the p-hydroxymercuribenzoate inhibition; namely, the NADH-requiring activities are rapidly inactivated, whereas the terminal

  10. Deconstructing nitrate isotope dynamics in aquifers

    NASA Astrophysics Data System (ADS)

    Granger, J.

    2012-12-01

    The natural abundance N and O stable isotope ratios of nitrate provide an invaluable tool to differentiate N sources to the environment, track their dispersal, and monitor their attenuation by biological transformations. The interpretation of patterns in isotope abundances relies on knowledge of the isotope ratios of the source end-members, as well as on constraints on the isotope discrimination imposed on nitrate by respective biological processes. Emergent observations from mono-culture experiments of denitrifying bacteria reveal nitrate fractionation trends that appear at odds with trends ascribed to denitrification in soils and aquifers. This discrepancy raises the possibility that additional biological N transformations may be acting in tandem with denitrification. Here, the N and O isotope enrichments associated with nitrate removal by denitrification in aquifers are posited to bear evidence of coincident biological nitrate production - from nitrification and/or from anammox. Simulations are presented from a simple time-dependent one-box model of a groundwater mass ageing that is subject to net nitrate loss by denitrification with coincident nitrate production by nitrification or anammox. Within boundary conditions characteristic of freshwater aquifers, the apparent slope of the parallel enrichments in nitrate N and O isotopes associated with net N loss to denitrification can vary in proportion to the nitrate added simultaneous by oxidative processes. Pertinent observations from nitrate plumes in suboxic to anoxic aquifers are examined to validate this premise. In this perspective, nitrate isotope distributions suggest that we may be missing important N fluxes inherent to most aquifers.

  11. Nitrate Utilization by the Diatom Skeletonema costatum

    PubMed Central

    Serra, Juan L.; Llama, Maria J.; Cadenas, Eduardo

    1978-01-01

    Nitrate uptake has been studied in nitrogen-deficient cells of the marine diatom Skeletonema costatum. When these cells are incubated in the presence of nitrate, this ion is quickly taken up from the medium, and nitrite is excreted by the cells. Nitrite is excreted following classical saturation kinetics, its rate being independent of nitrate concentration in the incubation medium for nitrate concentration values higher than 3 micromolar. Nitrate uptake shows mixed-transfer kinetics, which can be attributed to the simultaneous contributions of mediated and diffusion transfer. Cycloheximide and p-hydroxymercuribenzoate inhibit the carrier-mediated contribution to nitrate uptake, without affecting the diffusion component. When cells are preincubated with nitrate, the net nitrogen uptake is increased. PMID:16660652

  12. Pollution of drinking water with nitrate

    SciTech Connect

    Cabel, B.; Kozicki, R.; Lahl, U.; Podbielshi, A.; Stachel, B.; Struss, S.

    1982-01-01

    The main sources of nitrate in man are food and drinking water. The legislature in West Germany intends to lower the permitted level of nitrate in drinking water from the present 90 mg/l to 50 mg/l in 1982. The European Community has issued a directive that recommends a level of only 25 mg/l, and for babies 10 mg/l nitrate should not be exceeded. At present, nitrate cannot be removed from raw water at an acceptable cost. The problem of high nitrate content is mainly one of drinking water generation from ground water. Several analyses indicate rising concentrations of nitrate in ground water in different regions of West Germany, especially in the last few years. The following sources of nitrate-contamination of ground water aquifers in West are discussed: natural sources; over-manuring of agricultural areas with natural organic fertilizers; over-manuring of agricultural areas with synthetic fertilizers.

  13. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  14. Quantum information processing using acceptors in silicon and phonon entanglement

    NASA Astrophysics Data System (ADS)

    Clark, Susan; Reinke, Charles; McGuinness, Hayden; El-Kady, Ihab

    2014-03-01

    Quantum computing with large numbers of qubits remains challenging due to the decoherence and complexity that arise as more qubits are added to a system. Here I propose a new platform for semiconductor quantum computing which may be robust to common sources of decoherence and may not be difficult to fabricate repeatedly. This system consists of a hole bound to an acceptor in silicon which has been implanted in the center of a mechanical cavity (similar to a photonic crystal cavity) and connected to other cavities by a system of waveguides. I will outline a basic entangling gate and calculations showing the promise of this platform as the ideal qubit. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Photochemical reduction of uranyl nitrate

    SciTech Connect

    Duerksen, W.K.

    1993-10-20

    The photochemical reduction of uranyl nitrate solutions to tetravalent uranium was investigated as a means of producing uranium dioxide feed for the saltless direct oxide reduction (SDOR) process. At high uranium concentrations, reoxidation of U{sup +4} occurs rapidly. The kinetics of the nitric oxidation of tetravalent uranium depend on the concentrations of hydrogen ion, nitrate ion, nitrous acid, and tetravalent uranium in the same manner as was reported elsewhere for the nitrate oxidation of PU{sup +3}. Reaction rate data were successfully correlated with a mechanism in which nitrogen dioxide is the reactive intermediate. Addition of a nitrous acid scavenger suppresses the reoxidation reaction. An immersion reactor employing a mercury vapor lamp gave reduction times fast enough for routine production usage. Precipitation techniques for conversion of aqueous U(NO{sub 3}){sub 4} to hydrous UO{sub 2} were evaluated. Prolonged dewatering times tended to make the process time consuming. Use of 3- to 4-M aqueous NaOH gave the best dewatering times observed. Reoxidation of the UO{sub 2} by water of hydration was encountered, which required the drying process to be carried out under a reducing atmosphere.

  16. Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics.

    PubMed

    Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang; Saeki, Akinori; Yoshikawa, Saya; Murari, Nishit M; Subramaniyan, Selvam; Crane, Matthew J; Seki, Shu; Jenekhe, Samson A

    2014-10-15

    New electron-acceptor materials are long sought to overcome the small photovoltage, high-cost, poor photochemical stability, and other limitations of fullerene-based organic photovoltaics. However, all known nonfullerene acceptors have so far shown inferior photovoltaic properties compared to fullerene benchmark [6,6]-phenyl-C60-butyric acid methyl ester (PC60BM), and there are as yet no established design principles for realizing improved materials. Herein we report a design strategy that has produced a novel multichromophoric, large size, nonplanar three-dimensional (3D) organic molecule, DBFI-T, whose π-conjugated framework occupies space comparable to an aggregate of 9 [C60]-fullerene molecules. Comparative studies of DBFI-T with its planar monomeric analogue (BFI-P2) and PC60BM in bulk heterojunction (BHJ) solar cells, by using a common thiazolothiazole-dithienosilole copolymer donor (PSEHTT), showed that DBFI-T has superior charge photogeneration and photovoltaic properties; PSEHTT:DBFI-T solar cells combined a high short-circuit current (10.14 mA/cm(2)) with a high open-circuit voltage (0.86 V) to give a power conversion efficiency of 5.0%. The external quantum efficiency spectrum of PSEHTT:DBFI-T devices had peaks of 60-65% in the 380-620 nm range, demonstrating that both hole transfer from photoexcited DBFI-T to PSEHTT and electron transfer from photoexcited PSEHTT to DBFI-T contribute substantially to charge photogeneration. The superior charge photogeneration and electron-accepting properties of DBFI-T were further confirmed by independent Xenon-flash time-resolved microwave conductivity measurements, which correctly predict the relative magnitudes of the conversion efficiencies of the BHJ solar cells: PSEHTT:DBFI-T > PSEHTT:PC60BM > PSEHTT:BFI-P2. The results demonstrate that the large size, multichromophoric, nonplanar 3D molecular design is a promising approach to more efficient organic photovoltaic materials.

  17. Recent advances in photoinduced donor/acceptor copolymerization

    NASA Astrophysics Data System (ADS)

    Jönsson, S.; Viswanathan, K.; Hoyle, C. E.; Clark, S. C.; Miller, C.; Morel, F.; Decker, C.

    1999-05-01

    Photoinitiated free radical polymerization of donor (D)/acceptor (A) type monomers has gained considerable interest due to the possibility to efficiently photopolymerize non-acrylate based systems. Furthermore, this photoinduced alternating copolymerization can be accomplished without the presence of a conventional free radical generating photoinitiator. In the past, we have shown that the structural influences in the direct photolysis of N-Alkyl and N-Arylmaleimides as well as their corresponding ground state charge transfer complexes (CTC) with suitable donors have carefully been investigated. For certain combinations of A and D type monomers, a direct photolysis of the ground state complex or the excitation of the acceptor, followed by the formation of an exciplex, has been shown to initiate the copolymerization. Herein, we show that the main route of initiation is based on inter or intra molecular H-abstraction from an excited state maleimide, whereby no exciplex formation takes place. H-abstraction will predominantly take place in systems where easily abstractable hydrogens are present. Our laser flash photolysis investigation, ESR [1] (A. Hiroshi, I. Takasi, T. Nosi, Macromol. Chem. 190 (1989) 2821) and phosphorescence emissions [2,3] (K.S. Chen, T. Foster, J.K.S. Wan, J. Phys. Chem. 84 (1980) 2473; C.J. Seliskar, S.P. McGlynn, J. Chem. Phys. 55 (1971) 4337) studies show that triplet excited states of N-alkyl substituted maleimides (RMI), which are well known strong precursors for direct H-abstractions from aliphatic ethers and secondary alcohols, are formed upon excitation. Rates of copolymerization and degrees of conversion for copolymerization of maleimide/vinyl ether pairs in air and nitrogen have been measured as a function of hydrogen abstractability of the excited triplet state MI as well as the influence of concentration and hydrogen donating effect of the hydrogen donor.

  18. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  19. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  20. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  1. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  2. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  3. Cation Effects on the Electron-Acceptor Side of Photosystem II.

    PubMed

    Khan, Sahr; Sun, Jennifer S; Brudvig, Gary W

    2015-06-18

    The normal pathway of electron transfer on the electron-acceptor side of photosystem II (PSII) involves electron transfer from quinone A, QA, to quinone B, QB. It is possible to redirect electrons from QA(-) to water-soluble Co(III) complexes, which opens a new avenue for harvesting electrons from water oxidation by immobilization of PSII on electrode surfaces. Herein, the kinetics of electron transfer from QA(-) to [Co(III)(terpy)2](3+) (terpy = 2,2';6',2″-terpyridine) are investigated with a spectrophotometric assay revealing that the reaction follows Michaelis-Menten saturation kinetics, is inhibited by cations, and is not affected by variation of the QA reduction potential. A negatively charged site on the stromal surface of the PSII protein complex, composed of glutamic acid residues near QA, is hypothesized to bind cations, especially divalent cations. The cations are proposed to tune the redox properties of QA through electrostatic interactions. These observations may thus explain the molecular basis of the effect of divalent cations like Ca(2+), Sr(2+), Mg(2+), and Zn(2+) on the redox properties of the quinones in PSII, which has previously been attributed to long-range conformational changes propagated from divalent cations binding to the Ca(II)-binding site in the oxygen-evolving complex on the lumenal side of the PSII complex.

  4. Analysis of degradation mechanisms in donor-acceptor copolymer based organic photovoltaic devices using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Srivastava, S. B.; Sonar, P.; Singh, S. P.

    2016-09-01

    The stability of organic photovoltaic (OPV) devices in ambient conditions has been a serious issue which needs to be addressed and resolved timely. In order to probe the degradation mechanism in a donor-acceptor polymer PDPP-TNT: PC71BM bulk heterojunction based OPV devices, we have studied current density-voltage (J-V) behavior and impedance spectroscopy of fresh and aged devices. The current-voltage characteristic of optimized fresh devices exhibit a short circuit current density (J sc) of 8.9 mA cm-2, open circuit voltage (V oc) of 0.79 V, fill factor (FF) of 54.6%, and power conversion efficiency (PCE) of 3.8%. For aged devices, J sc, V oc, FF, and PCE were reduced to 57.3%, 89.8%, 44.3% and 23.7% of its initial value, respectively. The impedance spectra measured under illumination for these devices were successfully fitted using a CPE-based circuit model. For aged devices, the low-frequency response in impedance spectra suggests an accumulation of the photo-generated charge carriers at the interfaces which leads to a significant lowering in fill factor. Such degradation in device performance is attributed to the incorporation of oxygen and water molecules in devices. An increase in the recombination resistance indicates a deterioration of free charge carrier generation and conduction in devices.

  5. Ultrafast photoinduced charge transport in Pt(II) donor-acceptor assembly bearing naphthalimide electron acceptor and phenothiazine electron donor.

    PubMed

    Sazanovich, Igor V; Best, Jonathan; Scattergood, Paul A; Towrie, Michael; Tikhomirov, Sergei A; Bouganov, Oleg V; Meijer, Anthony J H M; Weinstein, Julia A

    2014-12-21

    Visible light-induced charge transfer dynamics were investigated in a novel transition metal triad acceptor-chromophore-donor, (NDI-phen)Pt(II)(-C≡C-Ph-CH2-PTZ)2 (1), designed for photoinduced charge separation using a combination of time-resolved infrared (TRIR) and femtosecond electronic transient absorption (TA) spectroscopy. In 1, the electron acceptor is 1,4,5,8-naphthalene diimide (NDI), and the electron donor is phenothiazine (PTZ), and [(phen)Pt(-C≡C-Ph-)], where phen is 1,10-phenanthroline, represents the chromophoric core. The first excited state observed in 1 is a (3)MLCT/LL'CT, with {Pt(II)-acetylide}-to-phen character. Following that, charge transfer from the phen-anion onto the NDI subunit to form NDI(-)-phen-[Pt-(C≡C)2](+)-PTZ2 occurs with a time constant of 2.3 ps. This transition is characterised by appearance of the prominent NDI-anion features in both TRIR and TA spectra. The final step of the charge separation in 1 proceeds with a time constant of ∼15 ps during which the hole migrates from the [Pt-(C≡C)2] subunit to one of the PTZ groups. Charge recombination in 1 then occurs with two distinct time constants of 36 ns and 107 ns, corresponding to the back electron transfer to each of the two donor groups; a rather rare occurrence which manifests that the hole in the final charge-separated state is localised on one of the two donor PTZ groups. The assignment of the nature of the excited states and dynamics in 1 was assisted by TRIR investigations of the analogous previously reported ((COOEt)2bpy)Pt(C≡C-Ph-CH2-PTZ)2 (2), (J. E. McGarrah and R. Eisenberg, Inorg. Chem., 2003, 42, 4355; J. E. McGarrah, J. T. Hupp and S. N. Smirnov, J. Phys. Chem. A, 2009, 113, 6430) as well as (bpy)Pt(C≡C-Ph-C7H15)2, which represent the acceptor-free dyad, and the chromophoric core, respectively. Thus, the step-wise formation of the full charge-separated state on the picosecond time scale and charge recombination via tunnelling have been established; and

  6. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. W.

    2016-02-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO2 and +38 % for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth.

  7. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  8. The effect of oxygen on denitrification during steady-state growth of Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Betlach, M.; Kritikos, G.

    1984-01-01

    Steady-state cultures of Paracoccus halodenitrificans were grown anaerobically prior to establishing steady states at different concentrations of oxygen. In the absence of oxygen, nitrate-limited cultures produced dinitrogen, and as the oxygen supply increased, these cultures produced nitrous oxide, then nitrite. These changes reflected two phenomena: the inactivation of nitrous oxide reductase by oxygen and the diversion of electrons from nitrite to oxygen.

  9. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer

    PubMed Central

    Murakoshi, Hideji; Shibata, Akihiro C. E.; Nakahata, Yoshihisa; Nabekura, Junichi

    2015-01-01

    Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor. PMID:26469148

  10. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.

    PubMed

    Murakoshi, Hideji; Shibata, Akihiro C E; Nakahata, Yoshihisa; Nabekura, Junichi

    2015-10-15

    Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor.

  11. Tracing the origin of nitrate accumulation in a deep groundwater reservoir in the Sahara desert using mass dependent and non-mass-dependent isotopic signatures

    NASA Astrophysics Data System (ADS)

    Leis, A.; Dietzel, M.; Abdalla, R.; Savarino, J.; Böttcher, M.; Köhler, S. J.

    2010-05-01

    Accumulation of nitrate in groundwater is a well known problem and mostly due to anthropogenic activities. However, in desert regions far from any anthropogenic pollution the accumulation of nitrate in groundwaters has to be related to other processes. In the present study an integrative hydrogeochemical and isotopic approach is used to identify the origin of nitrate in the Hasouna basin. The Jabal Hasouna wellfields are located in Libyan desert about 700 kilometers south of Tripoli. In the groundwater samples aqueous major and trace elements as well as traditional and non-traditional environmental isotopes were analyzed. Stable hydrogen and oxygen isotopic composition of the groundwater indicate that the ancient groundwater was recharged under cooler and more humid climate conditions. Nitrogen (δ15N) and oxygen isotopes (δ17O,