Sample records for access bandwidth increases

  1. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-02-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks.

  2. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-03-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to:

  3. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-06-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to: Optical access network architectures and protocols Passive optical networks (BPON, EPON, GPON, etc.) Active optical networks Multiple access control Multiservices and QoS provisioning Network survivability Field trials and standards Performance modeling and analysis

  4. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan; Jersey Inst Ansari, New; Jersey Inst, New

    2005-04-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to: Optical access network architectures and protocols Passive optical networks (BPON, EPON, GPON, etc.) Active optical networks Multiple access control Multiservices and QoS provisioning Network survivability Field trials and standards Performance modeling and analysis

  5. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-05-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to: Optical access network architectures and protocols Passive optical networks (BPON, EPON, GPON, etc.) Active optical networks Multiple access control Multiservices and QoS provisioning Network survivability Field trials and standards Performance modeling and analysis

  6. Efficient traffic grooming with dynamic ONU grouping for multiple-OLT-based access network

    NASA Astrophysics Data System (ADS)

    Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Wang, Hongxiang

    2015-12-01

    Fast bandwidth growth urges large-scale high-density access scenarios, where the multiple Passive Optical Networking (PON) system clustered deployment can be adopted as an appropriate solution to fulfill the huge bandwidth demands, especially for a future 5G mobile network. However, the lack of interaction between different optical line terminals (OLTs) results in part of the bandwidth resources waste. To increase the bandwidth efficiency, as well as reduce bandwidth pressure at the edge of a network, we propose a centralized flexible PON architecture based on Time- and Wavelength-Division Multiplexing PON (TWDM PON). It can provide flexible affiliation for optical network units (ONUs) and different OLTs to support access network traffic localization. Specifically, a dynamic ONU grouping algorithm (DGA) is provided to obtain the minimal OLT outbound traffic. Simulation results show that DGA obtains an average 25.23% traffic gain increment under different OLT numbers within a small ONU number situation, and the traffic gain will increase dramatically with the increment of the ONU number. As the DGA can be deployed easily as an application running above the centralized control plane, the proposed architecture can be helpful to improve the network efficiency for future traffic-intensive access scenarios.

  7. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-01-01

    Call for Papers: Optical Access Networks

    Guest Editors Jun Zheng, University of Ottawa Nirwan Ansari, New Jersey Institute of Technology

    Submission Deadline: 1 June 2005

    Background

    With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks.

    Scope of Contributions

    This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to:
    • Optical access network architectures and protocols
    • Passive optical networks (BPON, EPON, GPON, etc.)
    • Active optical networks
    • Multiple access control
    • Multiservices and QoS provisioning
    • Network survivability
    • Field trials and standards
    • Performance modeling and analysis

    Manuscript Submission

    To submit to this special issue, follow the normal procedure for submission to JON, indicating ``Optical Access Networks feature' in the ``Comments' field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line ``Optical Access Networks' Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Submission Deadline: 1 June 2005

  8. Full-band TDM-OPDMA for OBI-reduced simultaneous multiple access in a single-wavelength optical access network.

    PubMed

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-14

    Simultaneous multiple access (MA) within a single wavelength can increase the data rate and split ratio in a passive optical network while optical beat interference (OBI) becomes serious in the uplink. Previous techniques to reduce OBI were limited by their complexity and lack of extendibility; as well, bandwidth allocation among MA signals is needed for single photo diode (PD) detection. We proposed and experimentally demonstrated full-band optical pulse division multiplexing-based MA (OPDMA) in an optical access network, which can effectively reduce OBI with extendibility and fully utilize frequency resources of optical modulator without bandwidth allocation in a single-wavelength MA.

  9. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    NASA Astrophysics Data System (ADS)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol outperformed the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation. Significant gains were observed in packet energy dissipation and bandwidth even with scaling the system to higher number of cores. Non-uniform traffic simulations showed that the proposed CDMA-WiNoC was consistent in bandwidth across all traffic patterns. It is also shown that the CDMA based MAC scheme does not introduce additional reliability concerns in data transfer over the on-chip wireless interconnects.

  10. Orthogonal Pilot Channel Using Combination of FDMA and CDMA in Single-Carrier FDMA-Based Evolved UTRA Uplink

    NASA Astrophysics Data System (ADS)

    Kawamura, Teruo; Kishiyama, Yoshihisa; Higuchi, Kenichi; Sawahashi, Mamoru

    In the Evolved UTRA (UMTS Terrestrial Radio Access) uplink, single-carrier frequency division multiple access (SC-FDMA) radio access was adopted owing to its advantageous low peak-to-average power ratio (PAPR) feature, which leads to wide coverage area provisioning with limited peak transmission power of user equipments. This paper proposes orthogonal pilot channel generation using the combination of FDMA and CDMA in the SC-FDMA-based Evolved UTRA uplink. In the proposed method, we employ distributed FDMA transmission for simultaneous accessing users with different transmission bandwidths, and employ CDMA transmission for simultaneous accessing users with identical transmission bandwidth. Moreover, we apply a code sequence with a good auto-correlation property such as a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence employing a cyclic shift to increase the number of sequences. Simulation results show that the average packet error rate performance using an orthogonal pilot channel with the combination of FDMA and CDMA in a six-user environment, i. e., four users each with a 1.25-MHz transmission bandwidth and two users each with a 5-MHz transmission bandwidth, employing turbo coding with the coding r of R=1/2 and QPSK and 16QAM data modulation coincides well with that in a single-user environment with the same transmission bandwidth. We show that the proposed orthogonal pilot channel structure using the combination of distributed FDMA and CDMA transmissions and the application of the CAZAC sequence is effective in the SC-FDMA-based Evolved UTRA uplink.

  11. COMSATCOM service technical baseline strategy development approach using PPBW concept

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.

    2016-05-01

    This paper presents an innovative approach to develop a Commercial Satellite Communications (COMSATCOM) service Technical Baseline (TB) and associated Program Baseline (PB) strategy using Portable Pool Bandwidth (PPBW) concept. The concept involves trading of the purchased commercial transponders' Bandwidths (BWs) with existing commercial satellites' bandwidths participated in a "designated pool bandwidth"3 according to agreed terms and conditions. Space Missile Systems Center (SMC) has been implementing the Better Buying Power (BBP 3.0) directive4 and recommending the System Program Offices (SPO) to own the Program and Technical Baseline (PTB) [1, 2] for the development of flexible acquisition strategy and achieving affordability and increased in competition. This paper defines and describes the critical PTB parameters and associated requirements that are important to the government SPO for "owning" an affordable COMSATCOM services contract using PPBW trading concept. The paper describes a step-by-step approach to optimally perform the PPBW trading to meet DoD and its stakeholders (i) affordability requirement, and (ii) fixed and variable bandwidth requirements by optimizing communications performance, cost and PPBW accessibility in terms of Quality of Services (QoS), Bandwidth Sharing Ratio (BSR), Committed Information Rate (CIR), Burstable Information Rate (BIR), Transponder equivalent bandwidth (TPE) and transponder Net Presence Value (NPV). The affordable optimal solution that meets variable bandwidth requirements will consider the operating and trading terms and conditions described in the Fair Access Policy (FAP).

  12. Design and implementation of flexible TWDM-PON with PtP WDM overlay based on WSS for next-generation optical access networks

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yin, Hongxi; Qin, Jie; Liu, Chang; Liu, Anliang; Shao, Qi; Xu, Xiaoguang

    2016-09-01

    Aiming at the increasing demand of the diversification services and flexible bandwidth allocation of the future access networks, a flexible passive optical network (PON) scheme combining time and wavelength division multiplexing (TWDM) with point-to-point wavelength division multiplexing (PtP WDM) overlay is proposed for the next-generation optical access networks in this paper. A novel software-defined optical distribution network (ODN) structure is designed based on wavelength selective switches (WSS), which can implement wavelength and bandwidth dynamical allocations and suits for the bursty traffic. The experimental results reveal that the TWDM-PON can provide 40 Gb/s downstream and 10 Gb/s upstream data transmission, while the PtP WDM-PON can support 10 GHz point-to-point dedicated bandwidth as the overlay complement system. The wavelengths of the TWDM-PON and PtP WDM-PON are allocated dynamically based on WSS, which verifies the feasibility of the proposed structure.

  13. Analysis and application of intelligence network based on FTTH

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    With the continued rapid growth of Internet, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. The bandwidth requirement increase continuously. Network technique, optical device technical development is swift and violent. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network. Firstly, it introduces the main service which FTTH supports, main analysis key technology such as FTTH system composition way, topological structure, multiplexing, optical cable and device. It focus two kinds of realization methods - PON, P2P technology. Then it proposed that the solution of FTTH can support comprehensive access (service such as broadband data, voice, video and narrowband private line). Finally, it shows the engineering application for FTTH in the district and building. It brings enormous economic benefits and social benefit.

  14. Fiber in access technologies and network convergence: an opportunity for optical integration

    NASA Astrophysics Data System (ADS)

    Ghiggino, Pierpaolo C.

    2008-11-01

    Broadband networks are among the fastest growing segment in telecom. The initial and still very significant push originated with xDSL technologies and indeed a significant amount of research and development is still occurring in this field with impressive results and allowing for a remarkable use of the installed copper infrastructure way beyond its originally planned bandwidth capabilities. However it is clear that ultimately a more suitable fiber based infrastructure will be needed in order to reduce both operational and network technology costs. Such cost reduction in inevitable as the added value to end users is only related to services and these cannot be priced outside a sensible window, whilst the related bandwidth increase is much more dramatic and its huge variability must be met with little or no cost impact by the network and its operation. Fiber in access has indeed the potential to cope with a huge bandwidth demand for many years to come as its inherent bandwidth capabilities are only just tapped by current service requirements. However the whole technology supply chain must follow in line. In particular optical technology must brace itself to cope with the required much larger deployment and greater cost effectiveness, whilst at the same time deliver performance suitable to the bandwidth increase offered in the longer term by the fiber medium. This paper looks at this issues and debates the opportunities for a new class of optical devices making use of the progress in optical integration

  15. Recent advancements towards green optical networks

    NASA Astrophysics Data System (ADS)

    Davidson, Alan; Glesk, Ivan; Buis, Adrianus; Wang, Junjia; Chen, Lawrence

    2014-12-01

    Recent years have seen a rapid growth in demand for ultra high speed data transmission with end users expecting fast, high bandwidth network access. With this rapid growth in demand, data centres are under pressure to provide ever increasing data rates through their networks and at the same time improve the quality of data handling in terms of reduced latency, increased scalability and improved channel speed for users. However as data rates increase, present technology based on well-established CMOS technology is becoming increasingly difficult to scale and consequently data networks are struggling to satisfy current network demand. In this paper the interrelated issues of electronic scalability, power consumption, limited copper interconnect bandwidth and the limited speed of CMOS electronics will be explored alongside the tremendous bandwidth potential of optical fibre based photonic networks. Some applications of photonics to help alleviate the speed and latency in data networks will be discussed.

  16. Volume three-dimensional flow measurements using wavelength multiplexing.

    PubMed

    Moore, Andrew J; Smith, Jason; Lawson, Nicholas J

    2005-10-01

    Optically distinguishable seeding particles that emit light in a narrow bandwidth, and a combination of bandwidths, were prepared by encapsulating quantum dots. The three-dimensional components of the particles' displacement were measured within a volume of fluid with particle tracking velocimetry (PTV). Particles are multiplexed to different hue bands in the camera images, enabling an increased seeding density and (or) fewer cameras to be used, thereby increasing the measurement spatial resolution and (or) reducing optical access requirements. The technique is also applicable to two-phase flow measurements with PTV or particle image velocimetry, where each phase is uniquely seeded.

  17. Analysis and Simulation of Traffic Control for Resource Management in DVB-Based Broadband Satellite Access Networks

    NASA Astrophysics Data System (ADS)

    Impemba, Ernesto; Inzerilli, Tiziano

    2003-07-01

    Integration of satellite access networks with the Internet is seen as a strategic goal to achieve in order to provide ubiquitous broadband access to Internet services in Next Generation Networks (NGNs). One of the main interworking aspects which has been most studied is an efficient management of satellite resources, i.e. bandwidth and buffer space, in order to satisfy most demanding application requirements as to delay control and bandwidth assurance. In this context, resource management in DVB-S/DVB-RCS satellite technologies, emerging technologies for broadband satellite access and transport of IP applications, is a research issue largely investigated as a means to provide efficient bi-directional communications across satellites. This is in particular one of the principal goals of the SATIP6 project, sponsored within the 5th EU Research Programme Framework, i.e. IST. In this paper we present a possible approach to efficiently exploit bandwidth, the most critical resource in a broadband satellite access network, while pursuing satisfaction of delay and bandwidth requirements for applications with guaranteed QoS through a traffic control architecture to be implemented in ground terminals. Performance of this approach is assessed in terms of efficient exploitation of the uplink bandwidth and differentiation and minimization of queuing delays for most demanding applications over a time-varying capacity. Opnet simulations is used as analysis tool.

  18. I/O-aware bandwidth allocation for petascale computing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhou; Yang, Xu; Zhao, Dongfang

    In the Big Data era, the gap between the storage performance and an appli- cation's I/O requirement is increasing. I/O congestion caused by concurrent storage accesses from multiple applications is inevitable and severely harms the performance. Conventional approaches either focus on optimizing an ap- plication's access pattern individually or handle I/O requests on a low-level storage layer without any knowledge from the upper-level applications. In this paper, we present a novel I/O-aware bandwidth allocation framework to coordinate ongoing I/O requests on petascale computing systems. The motivation behind this innovation is that the resource management system has a holistic view ofmore » both the system state and jobs' activities and can dy- namically control the jobs' status or allocate resource on the y during their execution. We treat a job's I/O requests as periodical subjobs within its lifecycle and transform the I/O congestion issue into a classical scheduling problem. Based on this model, we propose a bandwidth management mech- anism as an extension to the existing scheduling system. We design several bandwidth allocation policies with different optimization objectives either on user-oriented metrics or system performance. We conduct extensive trace- based simulations using real job traces and I/O traces from a production IBM Blue Gene/Q system at Argonne National Laboratory. Experimental results demonstrate that our new design can improve job performance by more than 30%, as well as increasing system performance.« less

  19. Application of Fiber-Optical Techniques in the Access Transmission and Backbone Transport of Mobile Networks

    NASA Astrophysics Data System (ADS)

    Hilt, Attila; Pozsonyi, László

    2012-09-01

    Fixed access networks widely employ fiber-optical techniques due to the extremely wide bandwidth offered to subscribers. In the last decade, there has also been an enormous increase of user data visible in mobile systems. The importance of fiber-optical techniques within the fixed transmission/transport networks of mobile systems is therefore inevitably increasing. This article summarizes a few reasons and gives examples why and how fiber-optic techniques are employed efficiently in second-generation networks.

  20. Adaptive Broadcasting Mechanism for Bandwidth Allocation in Mobile Services

    PubMed Central

    Horng, Gwo-Jiun; Wang, Chi-Hsuan; Chou, Chih-Lun

    2014-01-01

    This paper proposes a tree-based adaptive broadcasting (TAB) algorithm for data dissemination to improve data access efficiency. The proposed TAB algorithm first constructs a broadcast tree to determine the broadcast frequency of each data and splits the broadcast tree into some broadcast wood to generate the broadcast program. In addition, this paper develops an analytical model to derive the mean access latency of the generated broadcast program. In light of the derived results, both the index channel's bandwidth and the data channel's bandwidth can be optimally allocated to maximize bandwidth utilization. This paper presents experiments to help evaluate the effectiveness of the proposed strategy. From the experimental results, it can be seen that the proposed mechanism is feasible in practice. PMID:25057509

  1. Circuit-Switched Memory Access in Photonic Interconnection Networks for High-Performance Embedded Computing

    DTIC Science & Technology

    2010-07-22

    dependent , providing a natural bandwidth match between compute cores and the memory subsystem. • High Bandwidth Dcnsity. Waveguides crossing the chip...simulate this memory access architecture on a 2S6-core chip with a concentrated 64-node network lIsing detailed traces of high-performance embedded...memory modulcs, wc placc memory access poi nts (MAPs) around the pcriphery of the chip connected to thc nctwork. These MAPs, shown in Figure 4, contain

  2. Software defined multi-OLT passive optical network for flexible traffic allocation

    NASA Astrophysics Data System (ADS)

    Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Zhang, Jiawei; Li, Hui

    2016-10-01

    With the rapid growth of 4G mobile network and vehicular network services mobile terminal users have increasing demand on data sharing among different radio remote units (RRUs) and roadside units (RSUs). Meanwhile, commercial video-streaming, video/voice conference applications delivered through peer-to-peer (P2P) technology are still keep on stimulating the sharp increment of bandwidth demand in both business and residential subscribers. However, a significant issue is that, although wavelength division multiplexing (WDM) and orthogonal frequency division multiplexing (OFDM) technology have been proposed to fulfil the ever-increasing bandwidth demand in access network, the bandwidth of optical fiber is not unlimited due to the restriction of optical component properties and modulation/demodulation technology, and blindly increase the wavelength cannot meet the cost-sensitive characteristic of the access network. In this paper, we propose a software defined multi-OLT PON architecture to support efficient scheduling of access network traffic. By introducing software defined networking technology and wavelength selective switch into TWDM PON system in central office, multiple OLTs can be considered as a bandwidth resource pool and support flexible traffic allocation for optical network units (ONUs). Moreover, under the configuration of the control plane, ONUs have the capability of changing affiliation between different OLTs under different traffic situations, thus the inter-OLT traffic can be localized and the data exchange pressure of the core network can be released. Considering this architecture is designed to be maximum following the TWDM PON specification, the existing optical distribution network (ODN) investment can be saved and conventional EPON/GPON equipment can be compatible with the proposed architecture. What's more, based on this architecture, we propose a dynamic wavelength scheduling algorithm, which can be deployed as an application on control plane and achieve effective scheduling OLT wavelength resources between different OLTs based on various traffic situation. Simulation results show that, by using the scheduling algorithm, network traffic between different OLTs can be optimized effectively, and the wavelength utilization of the multi-OLT system can be improved due to the flexible wavelength scheduling.

  3. Accessibility to health care facilities in Montreal Island: an application of relative accessibility indicators from the perspective of senior and non-senior residents.

    PubMed

    Paez, Antonio; Mercado, Ruben G; Farber, Steven; Morency, Catherine; Roorda, Matthew

    2010-10-25

    Geographical access to health care facilities is known to influence health services usage. As societies age, accessibility to health care becomes an increasingly acute public health concern. It is known that seniors tend to have lower mobility levels, and it is possible that this may negatively affect their ability to reach facilities and services. Therefore, it becomes important to examine the mobility situation of seniors vis-a-vis the spatial distribution of health care facilities, to identify areas where accessibility is low and interventions may be required. Accessibility is implemented using a cumulative opportunities measure. Instead of assuming a fixed bandwidth (i.e. a distance threshold) for measuring accessibility, in this paper the bandwidth is defined using model-based estimates of average trip length. Average trip length is an all-purpose indicator of individual mobility and geographical reach. Adoption of a spatial modelling approach allows us to tailor these estimates of travel behaviour to specific locations and person profiles. Replacing a fixed bandwidth with these estimates permits us to calculate customized location- and person-based accessibility measures that allow inter-personal as well as geographical comparisons. The case study is Montreal Island. Geo-coded travel behaviour data, specifically average trip length, and relevant traveller's attributes are obtained from the Montreal Household Travel Survey. These data are complemented with information from the Census. Health care facilities, also geo-coded, are extracted from a comprehensive business point database. Health care facilities are selected based on Standard Industrial Classification codes 8011-21 (Medical Doctors and Dentists). Model-based estimates of average trip length show that travel behaviour varies widely across space. With the exception of seniors in the downtown area, older residents of Montreal Island tend to be significantly less mobile than people of other age cohorts. The combination of average trip length estimates with the spatial distribution of health care facilities indicates that despite being more mobile, suburban residents tend to have lower levels of accessibility compared to central city residents. The effect is more marked for seniors. Furthermore, the results indicate that accessibility calculated using a fixed bandwidth would produce patterns of exposure to health care facilities that would be difficult to achieve for suburban seniors given actual mobility patterns. The analysis shows large disparities in accessibility between seniors and non-seniors, between urban and suburban seniors, and between vehicle owning and non-owning seniors. This research was concerned with potential accessibility levels. Follow up research could consider the results reported here to select case studies of actual access and usage of health care facilities, and related health outcomes.

  4. An Improved Call Admission Control Mechanism with Prioritized Handoff Queuing Scheme for BWA Networks

    NASA Astrophysics Data System (ADS)

    Chowdhury, Prasun; Saha Misra, Iti

    2014-10-01

    Nowadays, due to increased demand for using the Broadband Wireless Access (BWA) networks in a satisfactory manner a promised Quality of Service (QoS) is required to manage the seamless transmission of the heterogeneous handoff calls. To this end, this paper proposes an improved Call Admission Control (CAC) mechanism with prioritized handoff queuing scheme that aims to reduce dropping probability of handoff calls. Handoff calls are queued when no bandwidth is available even after the allowable bandwidth degradation of the ongoing calls and get admitted into the network when an ongoing call is terminated with a higher priority than the newly originated call. An analytical Markov model for the proposed CAC mechanism is developed to analyze various performance parameters. Analytical results show that our proposed CAC with handoff queuing scheme prioritizes the handoff calls effectively and reduces dropping probability of the system by 78.57% for real-time traffic without degrading the number of failed new call attempts. This results in the increased bandwidth utilization of the network.

  5. An Enhanced Reservation-Based MAC Protocol for IEEE 802.15.4 Networks

    PubMed Central

    Afonso, José A.; Silva, Helder D.; Macedo, Pedro; Rocha, Luis A.

    2011-01-01

    The IEEE 802.15.4 Medium Access Control (MAC) protocol is an enabling standard for wireless sensor networks. In order to support applications requiring dedicated bandwidth or bounded delay, it provides a reservation-based scheme named Guaranteed Time Slot (GTS). However, the GTS scheme presents some drawbacks, such as inefficient bandwidth utilization and support to a maximum of only seven devices. This paper presents eLPRT (enhanced Low Power Real Time), a new reservation-based MAC protocol that introduces several performance enhancing features in comparison to the GTS scheme. This MAC protocol builds on top of LPRT (Low Power Real Time) and includes various mechanisms designed to increase data transmission reliability against channel errors, improve bandwidth utilization and increase the number of supported devices. A motion capture system based on inertial and magnetic sensors has been used to validate the protocol. The effectiveness of the performance enhancements introduced by each of the new features is demonstrated through the provision of both simulation and experimental results. PMID:22163826

  6. Quadruple multi-wavelength conversion for access network scalability based on cross-phase modulation in an SOA-MZI

    NASA Astrophysics Data System (ADS)

    Ab-Rahman, Mohammad Syuhaimi; Swedan, Abdulhameed Almabrok

    2017-12-01

    The emergence of new services and data exchange applications has increased the demand for bandwidth among individuals and commercial business users at the access area. Thus, vendors of optical access networks should achieve a high-capacity system. This study demonstrates the performance of an integrated configuration of one to four multi-wavelength conversions at 10 Gb/s based on cross-phase modulation using semiconductor optical amplifier integrated with Mach-Zehnder interferometer. The Opti System simulation tool is used to simulate and demonstrate one to four wavelength conversions using one modulated wavelength and four probes of continuous wave sources. The wavelength converter processes are confirmed through investigation of the input and output characteristics, optical signal-to-noise ratio, conversion efficiency, and extinction ratio of new modulated channels after separation by demultiplexing. The outcomes of the proposed system using single channel indicate that the capacity can increase from 10 Gb/s to 50 Gb/s with a maximum number of access points increasing from 64 to 320 (each point with 156.25 Mb/s bandwidth). The splitting ratio of 1:16 provides each client with 625 Mb/s for the total number of 80 users. The Q-factor and bit error rate curves are investigated to confirm and validate the modified scheme and prove the system performance of the full topology of 25 km with 1/64 splitter. The outcomes are within the acceptable range to provide the system scalability.

  7. Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order

    NASA Technical Reports Server (NTRS)

    Schwab, Andrew J. (Inventor); Aylor, James (Inventor); Hitchcock, Charles Young (Inventor); Wulf, William A. (Inventor); McKee, Sally A. (Inventor); Moyer, Stephen A. (Inventor); Klenke, Robert (Inventor)

    2000-01-01

    A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time.

  8. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    PubMed

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  9. Linearity optimizations of analog ring resonator modulators through bias voltage adjustments

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.

    2018-03-01

    The linearity of ring resonator modulator (RRM) in microwave photonic links is studied in terms of instantaneous bandwidth, fabrication tolerances, and operational bandwidth. A proposed bias voltage adjustment method is shown to maximize spur-free dynamic range (SFDR) at instantaneous bandwidths required by microwave photonic link (MPL) applications while also mitigating RRM fabrication tolerances effects. The proposed bias voltage adjustment method shows RRM SFDR improvement of ∼5.8 dB versus common Mach-Zehnder modulators at 500 MHz instantaneous bandwidth. Analyzing operational bandwidth effects on SFDR shows RRMs can be promising electro-optic modulators for MPL applications which require high operational frequencies while in a limited bandwidth such as radio-over-fiber 60 GHz wireless network access.

  10. Sliceable transponders for metro-access transmission links

    NASA Astrophysics Data System (ADS)

    Wagner, C.; Madsen, P.; Spolitis, S.; Vegas Olmos, J. J.; Tafur Monroy, I.

    2015-01-01

    This paper presents a solution for upgrading optical access networks by reusing existing electronics or optical equipment: sliceable transponders using signal spectrum slicing and stitching back method after direct detection. This technique allows transmission of wide bandwidth signals from the service provider (OLT - optical line terminal) to the end user (ONU - optical network unit) over an optical distribution network (ODN) via low bandwidth equipment. We show simulation and experimental results for duobinary signaling of 1 Gbit/s and 10 Gbit/s waveforms. The number of slices is adjusted to match the lowest analog bandwidth of used electrical devices and scale from 2 slices to 10 slices. Results of experimental transmission show error free signal recovery by using post forward error correction with 7% overhead.

  11. Enhanced and Tunable Optical Quantum Efficiencies from Plasmon Bandwidth Engineering in Bimetallic CoAg Nanoparticles (Open Access Publisher’s Version)

    DTIC Science & Technology

    2016-08-01

    Engineering Engineering -- Faculty Publications and Other Works 8-2016 Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering ...this and additional works at: http://trace.tennessee.edu/utk_matepubs Part of the Materials Science and Engineering Commons This Article is brought to...you for free and open access by the Engineering -- Faculty Publications and Other Works at Trace: Tennessee Research and Creative Exchange. It has been

  12. Video in Distance Education: ITFS vs. Web-Streaming--Evaluation of Student Attitudes

    ERIC Educational Resources Information Center

    Reisslein, Jana; Seeling, Patrick; Reisslein, Martin

    2005-01-01

    The use of video in distance education courses has a long tradition, with many colleges and universities having been delivering distance education courses with video since the 80's using the Instructional Television Fixed Service (ITFS) and cable television. With the emergence of the Internet and the increased access bandwidths from private homes…

  13. Genetic expression programming-based DBA for enhancing peer-assisted music-on-demand service in EPON

    NASA Astrophysics Data System (ADS)

    Liem, Andrew Tanny; Hwang, I.-Shyan; Nikoukar, AliAkbar; Lee, Jhong-Yue

    2015-03-01

    Today, the popularity of peer-assisted music-on-demand (MoD) has increased significantly worldwide. This service allows users to access large music library tracks, listen to music, and share their playlist with other users. Unlike the conventional voice traffic, such an application maintains music quality that ranges from 160 kbps to 320 kbps, which most likely consumes more bandwidth than other traffics. In the access network, Ethernet passive optical network (EPON) is one of the best candidates for delivering such a service because of being cost-effective and with high bandwidth. To maintain music quality, a stutter needs to be prevented because of either network effects or when the due user was not receiving enough resources to play in a timely manner. Therefore, in this paper, we propose two genetic expression programming (GEP)-based dynamic bandwidth allocations (DBAs). The first DBA is a generic DBA that aims to find an optimum formula for voice, video, and data services. The second DBA aims to find optimum formulas so that Optical Line Terminal (OLT) can satisfy not only the voice and Peer-to-Peer (P2P) MoD traffics but also reduce the stutter. Optical Network Unit (ONU) traits such as REPORT and GATE messages, cycle time, and mean packet delay are set to be predictor variables. Simulation results show that our proposed DBAs can satisfy the voice and P2P MoD services packet delay and monitor other overall system performances such as expedited forwarding (EF) jitter, packet loss, bandwidth waste, and system throughputs.

  14. Bandwidth, Broadband, and Planning for Public Access

    ERIC Educational Resources Information Center

    Blowers, Helene

    2012-01-01

    Broadband and bandwidth allocation is an essential technology planning activity that libraries should address on a continual basis. There are five key factors that will impact your network's performance: 1. infrastructure, 2. network load, 3. workstation performance, 4. prioritization of services, and 5. network management. The author thinks it's…

  15. An extended smart utilization medium access control (ESU-MAC) protocol for ad hoc wireless systems

    NASA Astrophysics Data System (ADS)

    Vashishtha, Jyoti; Sinha, Aakash

    2006-05-01

    The demand for spontaneous setup of a wireless communication system has increased in recent years for areas like battlefield, disaster relief operations etc., where a pre-deployment of network infrastructure is difficult or unavailable. A mobile ad-hoc network (MANET) is a promising solution, but poses a lot of challenges for all the design layers, specifically medium access control (MAC) layer. Recent existing works have used the concepts of multi-channel and power control in designing MAC layer protocols. SU-MAC developed by the same authors, efficiently uses the 'available' data and control bandwidth to send control information and results in increased throughput via decreasing contention on the control channel. However, SU-MAC protocol was limited for static ad-hoc network and also faced the busy-receiver node problem. We present the Extended SU-MAC (ESU-MAC) protocol which works mobile nodes. Also, we significantly improve the scheme of control information exchange in ESU-MAC to overcome the busy-receiver node problem and thus, further avoid the blockage of control channel for longer periods of time. A power control scheme is used as before to reduce interference and to effectively re-use the available bandwidth. Simulation results show that ESU-MAC protocol is promising for mobile, ad-hoc network in terms of reduced contention at the control channel and improved throughput because of channel re-use. Results show a considerable increase in throughput compared to SU-MAC which could be attributed to increased accessibility of control channel and improved utilization of data channels due to superior control information exchange scheme.

  16. Managing high-bandwidth real-time data storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigelow, David D.; Brandt, Scott A; Bent, John M

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended tomore » address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.« less

  17. Comparison of FDMA and CDMA for second generation land-mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Yongacoglu, A.; Lyons, R. G.; Mazur, B. A.

    1990-01-01

    Code Division Multiple Access (CDMA) and Frequency Division Multiple Access (FDMA) (both analog and digital) systems capacities are compared on the basis of identical link availabilities and physical propagation models. Parameters are optimized for a bandwidth limited, multibeam environment. For CDMA, the benefits of voice activated carriers, antenna discrimination, polarization reuse, return link power control and multipath suppression are included in the analysis. For FDMA, the advantages of bandwidth efficient modulation/coding combinations, voice activated carriers, polarization reuse, beam placement, and frequency staggering were taken into account.

  18. Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON

    NASA Astrophysics Data System (ADS)

    Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue

    2014-12-01

    WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.

  19. Guidelines for Outsourcing Remote Access.

    ERIC Educational Resources Information Center

    Hassler, Ardoth; Neuman, Michael

    1996-01-01

    Discusses the advantages and disadvantages of outsourcing remote access to campus computer networks and the Internet, focusing on improved service, cost-sharing, partnerships with vendors, supported protocols, bandwidth, scope of access, implementation, support, network security, and pricing. Includes a checklist for a request for proposals on…

  20. Introduction

    NASA Astrophysics Data System (ADS)

    Callegati, Franco; Aracil, Javier; López, Víctor

    At the present time, optical transmission systems are capable of sending data over hundreds of wavelengths on a single fiber thanks to dense wavelength division multiplexing (DWDM) technologies, reaching bit rates on the order of gigabits per second per wavelength and terabits per second per fiber. In the last decade the availability of such a huge bandwidth caused transport networks to be considered as having infinite capacity. The recent massive deployment of Asymmetric Digital Subscriber Line (ADSL) and broadband wireless access solutions, as well as the outburst of new multimedia network services (such as Skype, YouTube, Joost, etc.) caused a significant increase of end user traffic and bandwidth demands. Therefore, the apparently “infinite” capacity of optical networks appears much more “finite” today, despite the latest developments in photonic transmission.

  1. Indoor communications networks realized through hybrid free-space optical and Wi-Fi links

    NASA Astrophysics Data System (ADS)

    Liverman, Spencer; Wang, Qiwei; Chu, Yu-Chung; Borah, Anindita; Wang, Songtao; Natarajan, Arun; Nguyen, Thinh; Wang, Alan X.

    2018-01-01

    Recently, free-space optical (FSO) networks have been investigated as a potential replacement for traditional WiFi networks due to their large bandwidth potentials. However, FSO networks often suffer from a lack of mobility. We present a hybrid free-space optical and radio frequency (RF) system that we have named WiFO, which seamlessly integrates free-space optical links with pre-existing WiFi networks. The free-space optical link in this system utilizes infrared LEDs operating at a wavelength of 850nm and is capable of transmitting 50Mbps over a three-meter distance. In this hybrid system, optical transmitters are embedded periodically throughout the ceiling of a workspace. Each transmitter directs an optical signal downward in a diffuse light cone, establishing a line of sight optical link. Line of sight communications links have an intrinsic physical layer of security due to the fact that a user must be directly in the path of transmission to access the link; however, this feature also poses a challenge for mobility. In our system, if the free-space optical link is interrupted, a control algorithm redirects traffic over a pre-existing WiFi link ensuring uninterrupted transmissions. After data packets are received, acknowledgments are sent back to a central access point via a WiFi link. As the demand for wireless bandwidth continues to increase exponentially, utilizing the unregulated bandwidth contained within optical spectrum will become necessary. Our fully functional hybrid free-space optical and WiFi prototype system takes full advantage of the untapped bandwidth potential in the optical spectrum, while also maintaining the mobility inherent in WiFi networks.

  2. A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs

    PubMed Central

    Cevik, Taner

    2013-01-01

    One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT) which is the only competent authority, each optical network unit (ONU) runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand. PMID:24194684

  3. Research of application mode for FTTX technology

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Yun, Xiang; Huang, Wei

    2009-08-01

    With rapid development of Internet and broadband access network, the technologies of xDSL, FTTx+LAN, WLAN have more applications, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network. In this paper, technique theory of EPON is introduced at first. At the same time, MAC frame structure, automatic detection and ranging of MPCP, DBA,and multi-LLID of EPON is analyzed. Then, service development ability, cost advantage and maintenance superiority based on EPON technology are carried out. At last,with Cost comparison between FTTH / FTTB building model and the traditional model, FTTB + LAN mode which is suitable for the newadding residential users in general areas and FTTN + DSL mode which is suitable for the old city and rural access network transformation are built up in detail. And FTTN + DSL project of rural information in rural areas and FTTH broadband HOUSE project on service solutions program are analyzed. comparing to the traditional access technologies, EPON technology has the obvious advantages, such as distance transmission, high or wide band, saving line resources, service abilities, etc. These are the qualities which not only be served for home users, but solve more access problems for us effectively.

  4. Channel access schemes and fiber optic configurations for integrated-services local area networks

    NASA Astrophysics Data System (ADS)

    Nassehi, M. Mehdi

    1987-03-01

    Local Area Networks are in common use for data communications and have enjoyed great success. Recently, there is a growing interest in using a single network to support many applications in addition to traditional data traffic. These additional applications introduce new requirements in terms of volume of traffic and real-time delivery of data which are not met by existing networks. To satisfy these requirements, a high-bandwidth tranmission medium, such as fiber optics, and a distributed channel access scheme for the efficient sharing of the bandwidth among the various applications are needed. As far as the throughput-delay requirements of the various application are concerned, a network structure along with a distributed channel access are proposed which incorporate appropriate scheduling policies for the transmission of outstanding messages on the network. A dynamic scheduling policy was devised which outperforms all existing policies in terms of minimizing the expected cost per message. A broadcast mechanism was devised for the efficient dissemination of all relevant information. Fiber optic technology is considered for the high-bandwidth transmisison medium.

  5. Channel access schemes and fiber optic configurations for integrated-services local area networks. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nassehi, M. Mehdi

    1987-01-01

    Local Area Networks are in common use for data communications and have enjoyed great success. Recently, there is a growing interest in using a single network to support many applications in addition to traditional data traffic. These additional applications introduce new requirements in terms of volume of traffic and real-time delivery of data which are not met by existing networks. To satisfy these requirements, a high-bandwidth tranmission medium, such as fiber optics, and a distributed channel access scheme for the efficient sharing of the bandwidth among the various applications are needed. As far as the throughput-delay requirements of the various application are concerned, a network structure along with a distributed channel access are proposed which incorporate appropriate scheduling policies for the transmission of outstanding messages on the network. A dynamic scheduling policy was devised which outperforms all existing policies in terms of minimizing the expected cost per message. A broadcast mechanism was devised for the efficient dissemination of all relevant information. Fiber optic technology is considered for the high-bandwidth transmisison medium.

  6. Aeronautical audio broadcasting via satellite

    NASA Technical Reports Server (NTRS)

    Tzeng, Forrest F.

    1993-01-01

    A system design for aeronautical audio broadcasting, with C-band uplink and L-band downlink, via Inmarsat space segments is presented. Near-transparent-quality compression of 5-kHz bandwidth audio at 20.5 kbit/s is achieved based on a hybrid technique employing linear predictive modeling and transform-domain residual quantization. Concatenated Reed-Solomon/convolutional codes with quadrature phase shift keying are selected for bandwidth and power efficiency. RF bandwidth at 25 kHz per channel, and a decoded bit error rate at 10(exp -6) with E(sub b)/N(sub o) at 3.75 dB are obtained. An interleaver, scrambler, modem synchronization, and frame format were designed, and frequency-division multiple access was selected over code-division multiple access. A link budget computation based on a worst-case scenario indicates sufficient system power margins. Transponder occupancy analysis for 72 audio channels demonstrates ample remaining capacity to accommodate emerging aeronautical services.

  7. Integrating QoS and security functions in an IP-VPN gateway

    NASA Astrophysics Data System (ADS)

    Fan, Kuo-Pao; Chang, Shu-Hsin; Lin, Kuan-Ming; Pen, Mau-Jy

    2001-10-01

    IP-based Virtual Private Network becomes more and more popular. It can not only reduce the enterprise communication cost but also increase the revenue of the service provider. The common IP-VPN application types include Intranet VPN, Extranet VPN, and remote access VPN. For the large IP-VPN market, some vendors develop dedicated IP-VPN devices; while some vendors add the VPN functions into their existing network equipment such as router, access gateway, etc. The functions in the IP-VPN device include security, QoS, and management. The common security functions supported are IPSec (IP Security), IKE (Internet Key Exchange), and Firewall. The QoS functions include bandwidth control and packet scheduling. In the management component, policy-based network management is under standardization in IETF. In this paper, we discuss issues on how to integrate the QoS and security functions in an IP-VPN Gateway. We propose three approaches to do this. They are (1) perform Qos first (2) perform IPSec first and (3) reserve fixed bandwidth for IPSec. We also compare the advantages and disadvantages of the three proposed approaches.

  8. QoS-aware integrated fiber-wireless standard compliant architecture based on XGPON and EDCA

    NASA Astrophysics Data System (ADS)

    Kaur, Ravneet; Srivastava, Anand

    2018-01-01

    Converged Fiber-Wireless (FiWi) broadband access network proves to be a promising candidate that is reliable, robust, cost efficient, ubiquitous and capable of providing huge amount of bandwidth. To meet the ever-increasing bandwidth requirements, it has become very crucial to investigate the performance issues that arise with the deployment of next-generation Passive Optical Network (PON) and its integration with various wireless technologies. Apart from providing high speed internet access for mass use, this combined architecture aims to enable delivery of high quality and effective e-services in different categories including health, education, finance, banking, agriculture and e-government. In this work, we present an integrated architecture of 10-Gigabit-capable PON (XG-PON) and Enhanced Distributed Channel Access (EDCA) that combines the benefits of both technologies to meet the QoS demands of subscribers. Performance evaluation of the standards-compliant hybrid network is done using discrete-event Network Simulator-3 (NS-3) and results are reported in terms of throughput, average delay, average packet loss rate and fairness index. Per-class throughput signifies effectiveness of QoS distribution whereas aggregate throughput indicates effective utilization of wireless channel. This work has not been reported so far to the best of our knowledge.

  9. Distributed reservation control protocols for random access broadcasting channels

    NASA Technical Reports Server (NTRS)

    Greene, E. P.; Ephremides, A.

    1981-01-01

    Attention is given to a communication network consisting of an arbitrary number of nodes which can communicate with each other via a time-division multiple access (TDMA) broadcast channel. The reported investigation is concerned with the development of efficient distributed multiple access protocols for traffic consisting primarily of single packet messages in a datagram mode of operation. The motivation for the design of the protocols came from the consideration of efficient multiple access utilization of moderate to high bandwidth (4-40 Mbit/s capacity) communication satellite channels used for the transmission of short (1000-10,000 bits) fixed length packets. Under these circumstances, the ratio of roundtrip propagation time to packet transmission time is between 100 to 10,000. It is shown how a TDMA channel can be adaptively shared by datagram traffic and constant bandwidth users such as in digital voice applications. The distributed reservation control protocols described are a hybrid between contention and reservation protocols.

  10. A high performance long-reach passive optical network with a novel excess bandwidth distribution scheme

    NASA Astrophysics Data System (ADS)

    Chao, I.-Fen; Zhang, Tsung-Min

    2015-06-01

    Long-reach passive optical networks (LR-PONs) have been considered to be promising solutions for future access networks. In this paper, we propose a distributed medium access control (MAC) scheme over an advantageous LR-PON network architecture that reroutes the control information from and back to all ONUs through an (N + 1) × (N + 1) star coupler (SC) deployed near the ONUs, thereby overwhelming the extremely long propagation delay problem in LR-PONs. In the network, the control slot is designed to contain all bandwidth requirements of all ONUs and is in-band time-division-multiplexed with a number of data slots within a cycle. In the proposed MAC scheme, a novel profit-weight-based dynamic bandwidth allocation (P-DBA) scheme is presented. The algorithm is designed to efficiently and fairly distribute the amount of excess bandwidth based on a profit value derived from the excess bandwidth usage of each ONU, which resolves the problems of previously reported DBA schemes that are either unfair or inefficient. The simulation results show that the proposed decentralized algorithms exhibit a nearly three-order-of-magnitude improvement in delay performance compared to the centralized algorithms over LR-PONs. Moreover, the newly proposed P-DBA scheme guarantees low delay performance and fairness even when under attack by the malevolent ONU irrespective of traffic loads and burstiness.

  11. A novel dynamic wavelength bandwidth allocation scheme over OFDMA PONs

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Guo, Wei; Jin, Yaohui; Hu, Weisheng

    2011-12-01

    With rapid growth of Internet applications, supporting differentiated service and enlarging system capacity have been new tasks for next generation access system. In recent years, research in OFDMA Passive Optical Networks (PON) has experienced extraordinary development as for its large capacity and flexibility in scheduling. Although much work has been done to solve hardware layer obstacles for OFDMA PON, scheduling algorithm on OFDMA PON system is still under primary discussion. In order to support QoS service on OFDMA PON system, a novel dynamic wavelength bandwidth allocation (DWBA) algorithm is proposed in this paper. Per-stream QoS service is supported in this algorithm. Through simulation, we proved our bandwidth allocation algorithm performs better in bandwidth utilization and differentiate service support.

  12. Dynamic bandwidth allocation based on multiservice in software-defined wavelength-division multiplexing time-division multiplexing passive optical network

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Jin, Feifei; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-03-01

    The wavelength-division multiplexing passive optical network (WDM-PON) is a potential technology to carry multiple services in an optical access network. However, it has the disadvantages of high cost and an immature technique for users. A software-defined WDM/time-division multiplexing PON was proposed to meet the requirements of high bandwidth, high performance, and multiple services. A reasonable and effective uplink dynamic bandwidth allocation algorithm was proposed. A controller with dynamic wavelength and slot assignment was introduced, and a different optical dynamic bandwidth management strategy was formulated flexibly for services of different priorities according to the network loading. The simulation compares the proposed algorithm with the interleaved polling with adaptive cycle time algorithm. The algorithm shows better performance in average delay, throughput, and bandwidth utilization. The results show that the delay is reduced to 62% and the throughput is improved by 35%.

  13. Hubless satellite communications networks

    NASA Technical Reports Server (NTRS)

    Robinson, Peter Alan

    1994-01-01

    Frequency Comb Multiple Access (FCMA) is a new combined modulation and multiple access method which will allow cheap hubless Very Small Aperture Terminal (VSAT) networks to be constructed. Theoretical results show bandwidth efficiency and power efficiency improvements over other modulation and multiple access methods. Costs of the VSAT network are reduced dramatically since a hub station is not required.

  14. Testing and reference model analysis of FTTH system

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Cui, Wanlong; Chen, Ying

    2009-08-01

    With rapid development of Internet and broadband access network, the technologies of xDSL, FTTx+LAN , WLAN have more applications, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network.. Fiber to the Home (FTTH) will be the goal of telecommunications cable broadband access. In accordance with the development trend of telecommunication services, to enhance the capacity of integrated access network, to achieve triple-play (voice, data, image), based on the existing optical Fiber to the curb (FTTC), Fiber To The Zone (FTTZ), Fiber to the Building (FTTB) user optical cable network, the optical fiber can extend to the FTTH system of end-user by using EPON technology. The article first introduced the basic components of FTTH system; and then explain the reference model and reference point for testing of the FTTH system; Finally, by testing connection diagram, the testing process, expected results, primarily analyze SNI Interface Testing, PON interface testing, Ethernet performance testing, UNI interface testing, Ethernet functional testing, PON functional testing, equipment functional testing, telephone functional testing, operational support capability testing and so on testing of FTTH system. ...

  15. Bandwidth Constraints to Using Video and Other Rich Media in Behavior Change Websites

    PubMed Central

    Jazdzewski, Stephen A; McKay, H Garth; Hudson, Clinton R

    2005-01-01

    Background Web-based behavior change interventions often include rich media (eg, video, audio, and large graphics). The rationale for using rich media includes the need to reach users who are not inclined or able to use text-based website content, encouragement of program engagement, and following the precedent set by news and sports websites. Objectives We describe the development of a bandwidth usage index, which seeks to provide a practical method to gauge the extent to which websites can successfully be used within different Internet access scenarios (eg, dial-up and broadband). Methods We conducted three studies to measure bandwidth consumption. In Study 1, we measured the bandwidth usage index for three video-rich websites (for smoking cessation, for caregivers, and for improving eldercare by family members). We then estimated the number of concurrent users that could be accommodated by each website under various Internet access scenarios. In Study 2, we sought to validate our estimated threshold number of concurrent users by testing the video-rich smoking cessation website with different numbers of concurrent users. In Study 3, we calculated the bandwidth usage index and threshold number of concurrent users for three versions of the smoking cessation website: the video-rich version (tested in Study 1), an audio-rich version, and a Web-enabled CD-ROM version in which all media-rich content was placed on a CD-ROM on the client computer. Results In Study 1, we found that the bandwidth usage index of the video-rich websites ranged from 144 Kbps to 93 Kbps. These results indicated that dial-up modem users would not achieve a “good user experience” with any of the three rich media websites. Results for Study 2 confirmed that usability was compromised when the estimated threshold number of concurrent users was exceeded. Results for Study 3 indicated that changing a website from video- to audio-rich content reduced the bandwidth requirement by almost 50%, but it remained too large to allow satisfactory use in dial-up modem scenarios. The Web-enabled CD-ROM reduced bandwidth requirements such that even a dial-up modem user could have a good user experience with the rich media content. Conclusions We conclude that the bandwidth usage index represents a practical tool that can help developers and researchers to measure the bandwidth requirements of their websites as well as to evaluate the feasibility of certain website designs in terms of specific use cases. These findings are discussed in terms of reaching different groups of users as well accommodating the intended number of concurrent users. We also discuss the promising option of using Web-enabled CD-ROMs to deliver rich media content to users with dial-up Internet access. We introduce a number of researchable themes for improving our ability to develop Web-based behavior change interventions that can better deliver what they promise. PMID:16236701

  16. Bandwidth constraints to using video and other rich media in behavior change websites.

    PubMed

    Danaher, Brian G; Jazdzewski, Stephen A; McKay, H Garth; Hudson, Clinton R

    2005-09-16

    Web-based behavior change interventions often include rich media (eg, video, audio, and large graphics). The rationale for using rich media includes the need to reach users who are not inclined or able to use text-based website content, encouragement of program engagement, and following the precedent set by news and sports websites. We describe the development of a bandwidth usage index, which seeks to provide a practical method to gauge the extent to which websites can successfully be used within different Internet access scenarios (eg, dial-up and broadband). We conducted three studies to measure bandwidth consumption. In Study 1, we measured the bandwidth usage index for three video-rich websites (for smoking cessation, for caregivers, and for improving eldercare by family members). We then estimated the number of concurrent users that could be accommodated by each website under various Internet access scenarios. In Study 2, we sought to validate our estimated threshold number of concurrent users by testing the video-rich smoking cessation website with different numbers of concurrent users. In Study 3, we calculated the bandwidth usage index and threshold number of concurrent users for three versions of the smoking cessation website: the video-rich version (tested in Study 1), an audio-rich version, and a Web-enabled CD-ROM version in which all media-rich content was placed on a CD-ROM on the client computer. In Study 1, we found that the bandwidth usage index of the video-rich websites ranged from 144 Kbps to 93 Kbps. These results indicated that dial-up modem users would not achieve a "good user experience" with any of the three rich media websites. Results for Study 2 confirmed that usability was compromised when the estimated threshold number of concurrent users was exceeded. Results for Study 3 indicated that changing a website from video- to audio-rich content reduced the bandwidth requirement by almost 50%, but it remained too large to allow satisfactory use in dial-up modem scenarios. The Web-enabled CD-ROM reduced bandwidth requirements such that even a dial-up modem user could have a good user experience with the rich media content. We conclude that the bandwidth usage index represents a practical tool that can help developers and researchers to measure the bandwidth requirements of their websites as well as to evaluate the feasibility of certain website designs in terms of specific use cases. These findings are discussed in terms of reaching different groups of users as well accommodating the intended number of concurrent users. We also discuss the promising option of using Web-enabled CD-ROMs to deliver rich media content to users with dial-up Internet access. We introduce a number of researchable themes for improving our ability to develop Web-based behavior change interventions that can better deliver what they promise.

  17. Strategic Implications of Cloud Computing for Modeling and Simulation (Briefing)

    DTIC Science & Technology

    2016-04-01

    of Promises with Cloud • Cost efficiency • Unlimited storage • Backup and recovery • Automatic software integration • Easy access to information...activities that wrap the actual exercise itself (e.g., travel for exercise support, data collection, integration , etc.). Cloud -based simulation would...requiring quick delivery rather than fewer large messages requiring high bandwidth. Cloud environments tend to be better at providing high-bandwidth

  18. Microwave Photonics: current challenges towards widespread application.

    PubMed

    Capmany, José; Li, Guifang; Lim, Christina; Yao, Jianping

    2013-09-23

    Microwave Photonics, a symbiotic field of research that brings together the worlds of optics and radio frequency is currently facing several challenges in its transition from a niche to a truly widespread technology essential to support the ever-increasing values for speed, bandwidth, processing capability and dynamic range that will be required in next generation hybrid access networks. We outline these challenges, which are the subject of the contributions to this focus issue.

  19. A novel EPON architecture for supporting direct communication between ONUs

    NASA Astrophysics Data System (ADS)

    Wang, Liqian; Chen, Xue; Wang, Zhen

    2008-11-01

    In the traditional EPON network, optical signal from one ONU can not reach other ONUs. So ONUs can not directly transmit packets to other ONUs .The packets must be transferred by the OLT and it consumes both upstream bandwidth and downstream bandwidth. The bandwidth utilization is low and becomes lower when there are more packets among ONUs. When the EPON network carries P2P (Peer-to-Peer) applications and VPN applications, there would be a great lot of packets among ONUs and the traditional EPON network meets the problem of low bandwidth utilization. In the worst situation the bandwidth utilization of traditional EPON only is 50 percent. This paper proposed a novel EPON architecture and a novel medium access control protocol to realize direct packets transmission between ONUs. In the proposed EPON we adopt a novel circled architecture in the splitter. Due to the circled-splitter, optical signals from an ONU can reach the other ONUs and packets could be directly transmitted between two ONUs. The traffic between two ONUs only consumes upstream bandwidth and the bandwidth cost is reduced by 50 percent. Moreover, this kind of directly transmission reduces the packet's latency.

  20. Mahanaxar: quality of service guarantees in high-bandwidth, real-time streaming data storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigelow, David; Bent, John; Chen, Hsing-Bung

    2010-04-05

    Large radio telescopes, cyber-security systems monitoring real-time network traffic, and others have specialized data storage needs: guaranteed capture of an ultra-high-bandwidth data stream, retention of the data long enough to determine what is 'interesting,' retention of interesting data indefinitely, and concurrent read/write access to determine what data is interesting, without interrupting the ongoing capture of incoming data. Mahanaxar addresses this problem. Mahanaxar guarantees streaming real-time data capture at (nearly) the full rate of the raw device, allows concurrent read and write access to the device on a best-effort basis without interrupting the data capture, and retains data as long asmore » possible given the available storage. It has built in mechanisms for reliability and indexing, can scale to meet arbitrary bandwidth requirements, and handles both small and large data elements equally well. Results from our prototype implementation shows that Mahanaxar provides both better guarantees and better performance than traditional file systems.« less

  1. Collective input/output under memory constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yin; Chen, Yong; Zhuang, Yu

    2014-12-18

    Compared with current high-performance computing (HPC) systems, exascale systems are expected to have much less memory per node, which can significantly reduce necessary collective input/output (I/O) performance. In this study, we introduce a memory-conscious collective I/O strategy that takes into account memory capacity and bandwidth constraints. The new strategy restricts aggregation data traffic within disjointed subgroups, coordinates I/O accesses in intranode and internode layers, and determines I/O aggregators at run time considering memory consumption among processes. We have prototyped the design and evaluated it with commonly used benchmarks to verify its potential. The evaluation results demonstrate that this strategy holdsmore » promise in mitigating the memory pressure, alleviating the contention for memory bandwidth, and improving the I/O performance for projected extreme-scale systems. Given the importance of supporting increasingly data-intensive workloads and projected memory constraints on increasingly larger scale HPC systems, this new memory-conscious collective I/O can have a significant positive impact on scientific discovery productivity.« less

  2. Silicon microdisk-based full adders for optical computing.

    PubMed

    Ying, Zhoufeng; Wang, Zheng; Zhao, Zheng; Dhar, Shounak; Pan, David Z; Soref, Richard; Chen, Ray T

    2018-03-01

    Due to the projected saturation of Moore's law, as well as the drastically increasing trend of bandwidth with lower power consumption, silicon photonics has emerged as one of the most promising alternatives that has attracted a lasting interest due to the accessibility and maturity of ultra-compact passive and active integrated photonic components. In this Letter, we demonstrate a ripple-carry electro-optic 2-bit full adder using microdisks, which replaces the core part of an electrical full adder by optical counterparts and uses light to carry signals from one bit to the next with high bandwidth and low power consumption per bit. All control signals of the operands are applied simultaneously within each clock cycle. Thus, the severe latency issue that accumulates as the size of the full adder increases can be circumvented, allowing for an improvement in computing speed and a reduction in power consumption. This approach paves the way for future high-speed optical computing systems in the post-Moore's law era.

  3. Distribute Off-Time Office Internet bandwidth Using Topology Mesh For Sorrounding Neighbour

    NASA Astrophysics Data System (ADS)

    Zendrato, Niskarto; Sihombing, Oloan; Laia, Yonata; Sabarita Barus, Ertina

    2018-04-01

    The Internet as one of the very rapidly growing information technology can provide data and information with wide world, complete, and up to date. Users can download and upload data such as the application file, multimedia and text through the Internet network. But for the Internet availability is still less equal access because of the lack of availability of adequate infrastructure, therefore the author make the utilization of bandwidth that can be establish Internet balancing although still on a small scale. By this research the authors use bandwidth from PT. Deltauli Home Teknikarya that where bandwidth necessity on when time off-time unused office, where the office always pay full for Internet connection even though at the time of the off-time. It’s many of the available bandwidth, so that the author is trying to take advantage of the bandwidth at the time of the off-time the office to be used by the community using radio connection link and use the radius server as user management and server to send sms and user and password to the users who want to enjoy free internet connection.

  4. The impact of capacity growth in national telecommunications networks.

    PubMed

    Lord, Andrew; Soppera, Andrea; Jacquet, Arnaud

    2016-03-06

    This paper discusses both UK-based and global Internet data bandwidth growth, beginning with historical data for the BT network. We examine the time variations in consumer behaviour and how this is statistically aggregated into larger traffic loads on national core fibre communications networks. The random nature of consumer Internet behaviour, where very few consumers require maximum bandwidth simultaneously, provides the opportunity for a significant statistical gain. The paper looks at predictions for how this growth might continue over the next 10-20 years, giving estimates for the amount of bandwidth that networks should support in the future. The paper then explains how national networks are designed to accommodate these traffic levels, and the various network roles, including access, metro and core, are described. The physical layer network is put into the context of how the packet and service layers are designed and the applications and location of content are also included in an overall network overview. The specific role of content servers in alleviating core network traffic loads is highlighted. The status of the relevant transmission technologies in the access, metro and core is given, showing that these technologies, with adequate research, should be sufficient to provide bandwidth for consumers in the next 10-20 years. © 2016 The Author(s).

  5. 47 CFR 27.16 - Network access requirements for Block C in the 746-757 and 776-787 MHz bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... jeopardizing network security. The potential for excessive bandwidth demand alone shall not constitute grounds... 47 Telecommunication 2 2013-10-01 2013-10-01 false Network access requirements for Block C in the... § 27.16 Network access requirements for Block C in the 746-757 and 776-787 MHz bands. (a) Applicability...

  6. 47 CFR 27.16 - Network access requirements for Block C in the 746-757 and 776-787 MHz bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... jeopardizing network security. The potential for excessive bandwidth demand alone shall not constitute grounds... 47 Telecommunication 2 2014-10-01 2014-10-01 false Network access requirements for Block C in the... § 27.16 Network access requirements for Block C in the 746-757 and 776-787 MHz bands. (a) Applicability...

  7. 47 CFR 27.16 - Network access requirements for Block C in the 746-757 and 776-787 MHz bands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... jeopardizing network security. The potential for excessive bandwidth demand alone shall not constitute grounds... 47 Telecommunication 2 2012-10-01 2012-10-01 false Network access requirements for Block C in the... § 27.16 Network access requirements for Block C in the 746-757 and 776-787 MHz bands. (a) Applicability...

  8. Browsing for the Best Internet Access Provider?

    ERIC Educational Resources Information Center

    Weil, Marty

    1996-01-01

    Highlights points to consider when choosing an Internet Service Provider. Serial Line Internet Protocol (SLIP) and Point to Point Protocol (PPP) are compared regarding price, performance, bandwidth, speed, and technical support. Obtaining access via local, national, consumer online, and telephone-company providers is discussed. A pricing chart and…

  9. Wide-Range Motion Estimation Architecture with Dual Search Windows for High Resolution Video Coding

    NASA Astrophysics Data System (ADS)

    Dung, Lan-Rong; Lin, Meng-Chun

    This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2dB for 720p HDTV clips coded at 8Mbits/sec.

  10. Paired comparisons of nonlinear frequency compression, extended bandwidth, and restricted bandwidth hearing-aid processing for children and adults with hearing loss

    PubMed Central

    Brennan, Marc A.; McCreery, Ryan; Kopun, Judy; Hoover, Brenda; Alexander, Joshua; Lewis, Dawna; Stelmachowicz, Patricia G.

    2014-01-01

    Background Preference for speech and music processed with nonlinear frequency compression and two controls (restricted and extended bandwidth hearing-aid processing) was examined in adults and children with hearing loss. Purpose Determine if stimulus type (music, sentences), age (children, adults) and degree of hearing loss influence listener preference for nonlinear frequency compression, restricted bandwidth and extended bandwidth. Research Design Within-subject, quasi-experimental study. Using a round-robin procedure, participants listened to amplified stimuli that were 1) frequency-lowered using nonlinear frequency compression, 2) low-pass filtered at 5 kHz to simulate the restricted bandwidth of conventional hearing aid processing, or 3) low-pass filtered at 11 kHz to simulate extended bandwidth amplification. The examiner and participants were blinded to the type of processing. Using a two-alternative forced-choice task, participants selected the preferred music or sentence passage. Study Sample Sixteen children (8–16 years) and 16 adults (19–65 years) with mild-to-severe sensorineural hearing loss. Intervention All subjects listened to speech and music processed using a hearing-aid simulator fit to the Desired Sensation Level algorithm v.5.0a (Scollie et al, 2005). Results Children and adults did not differ in their preferences. For speech, participants preferred extended bandwidth to both nonlinear frequency compression and restricted bandwidth. Participants also preferred nonlinear frequency compression to restricted bandwidth. Preference was not related to degree of hearing loss. For music, listeners did not show a preference. However, participants with greater hearing loss preferred nonlinear frequency compression to restricted bandwidth more than participants with less hearing loss. Conversely, participants with greater hearing loss were less likely to prefer extended bandwidth to restricted bandwidth. Conclusion Both age groups preferred access to high frequency sounds, as demonstrated by their preference for either the extended bandwidth or nonlinear frequency compression conditions over the restricted bandwidth condition. Preference for extended bandwidth can be limited for those with greater degrees of hearing loss, but participants with greater hearing loss may be more likely to prefer nonlinear frequency compression. Further investigation using participants with more severe hearing loss may be warranted. PMID:25514451

  11. Multiple access capacity trade-offs for a Ka-band personal access satellite system

    NASA Technical Reports Server (NTRS)

    Dessouky, Khaled; Motamedi, Masoud

    1990-01-01

    System capability is critical to the economic viability of a personal satellite communication system. Ka band has significant potential to support a high capacity multiple access system because of the availability of bandwidth. System design tradeoffs are performed and multiple access schemes are compared with the design goal of achieving the highest capacity and efficiency. Conclusions regarding the efficiency of the different schemes and the achievable capacities are given.

  12. On-demand virtual optical network access using 100 Gb/s Ethernet.

    PubMed

    Ishida, Osamu; Takamichi, Toru; Arai, Sachine; Kawate, Ryusuke; Toyoda, Hidehiro; Morita, Itsuro; Araki, Soichiro; Ichikawa, Toshiyuki; Hoshida, Takeshi; Murai, Hitoshi

    2011-12-12

    Our Terabit LAN initiatives attempt to enhance the scalability and utilization of lambda resources. This paper describes bandwidth-on-demand virtualized 100GE access to WDM networks on a field fiber test-bed using multi-domain optical-path provisioning. © 2011 Optical Society of America

  13. Study on the capability of four-level partial response equalization in RSOA-based WDM-PON

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Tran, An Vu

    2010-12-01

    The expected development of advanced video services with HDTV quality demands the delivery of more than Gb/s link to end users across the last mile connection. Future access networks are also required to have long reach for reduction in the number of central offices (CO). Fueled by those requirements, we propose a novel equalization scheme that increases the capacity and reach of the wavelength division multiplexing passive optical network (WDM-PON) based on a low bandwidth reflective semiconductor optical amplifier (RSOA). We investigate the characteristics of 10 Gb/s upstream transmission in WDM-PON using RSOA with only 1.2 GHz electrical bandwidth and various lengths of fiber. It is proven that the proposed four-level partial response equalizer (PRE) is capable of mitigating the impact of ISI in the received signals from optical network units (ONU) located 0 km to 75 km away from the optical line terminal (OLT).

  14. Context dependent off loading for cloudlet in mobile ad-hoc network

    NASA Astrophysics Data System (ADS)

    Bhatt, N.; Nadesh, R. K.; ArivuSelvan, K.

    2017-11-01

    Cloud Computing in Mobile Ad-hoc network is emerging part of research consideration as the demand and competency of mobile devices increased in last few years. To follow out operation within the remote cloud builds the postponement and influences the administration standard. To keep away from this trouble cloudlet is presented. Cloudlet gives identical support of the devices as cloud at low inactivity however at high transfer speed. Be that as it may, choice of a cloudlet for offloading calculation with flat energy is a noteworthy test if multiple cloud let is accessible adjacent. Here I proposed energy and bandwidth (Traffic overload for communication with cloud) aware cloudlet selection strategy based on the context dependency of the device location. It works on the basis of mobile device location and bandwidth availability of cloudlet. The cloudlet offloading and selection process using given solution is simulated in Cloud ~ Simulator.

  15. Protocol to Exploit Waiting Resources for UASNs.

    PubMed

    Hung, Li-Ling; Luo, Yung-Jeng

    2016-03-08

    The transmission speed of acoustic waves in water is much slower than that of radio waves in terrestrial wireless sensor networks. Thus, the propagation delay in underwater acoustic sensor networks (UASN) is much greater. Longer propagation delay leads to complicated communication and collision problems. To solve collision problems, some studies have proposed waiting mechanisms; however, long waiting mechanisms result in low bandwidth utilization. To improve throughput, this study proposes a slotted medium access control protocol to enhance bandwidth utilization in UASNs. The proposed mechanism increases communication by exploiting temporal and spatial resources that are typically idle in order to protect communication against interference. By reducing wait time, network performance and energy consumption can be improved. A performance evaluation demonstrates that when the data packets are large or sensor deployment is dense, the energy consumption of proposed protocol is less than that of existing protocols as well as the throughput is higher than that of existing protocols.

  16. An All-Optical Access Metro Interface for Hybrid WDM/TDM PON Based on OBS

    NASA Astrophysics Data System (ADS)

    Segarra, Josep; Sales, Vicent; Prat, Josep

    2007-04-01

    A new all-optical access metro network interface based on optical burst switching (OBS) is proposed. A hybrid wavelength-division multiplexing/time-division multiplexing (WDM/TDM) access architecture with reflective optical network units (ONUs), an arrayed-waveguide-grating outside plant, and a tunable laser stack at the optical line terminal (OLT) is presented as a solution for the passive optical network. By means of OBS and a dynamic bandwidth allocation (DBA) protocol, which polls the ONUs, the available access bandwidth is managed. All the network intelligence and costly equipment is located at the OLT, where the DBA module is centrally implemented, providing quality of service (QoS). To scale this access network, an optical cross connect (OXC) is then used to attain a large number of ONUs by the same OLT. The hybrid WDM/TDM structure is also extended toward the metropolitan area network (MAN) by introducing the concept of OBS multiplexer (OBS-M). The network element OBS-M bridges the MAN and access networks by offering all-optical cross connection, wavelength conversion, and data signaling. The proposed innovative OBS-M node yields a full optical data network, interfacing access and metro with a geographically distributed access control. The resulting novel access metro architectures are nonblocking and, with an improved signaling, provide QoS, scalability, and very low latency. Finally, numerical analysis and simulations demonstrate the traffic performance of the proposed access scheme and all-optical access metro interface and architectures.

  17. Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP.

    PubMed

    Tsai, Meng-Hsun; Chou, Chien-Ming; Lan, Kun-Chan

    2016-01-01

    Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance.

  18. Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP

    PubMed Central

    2016-01-01

    Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance. PMID:27529783

  19. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    PubMed

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  20. A Systematic Scheme for Multiple Access in Ethernet Passive Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Ma, Maode; Zhu, Yongqing; Hiang Cheng, Tee

    2005-11-01

    While backbone networks have experienced substantial changes in the last decade, access networks have not changed much. Recently, passive optical networks (PONs) seem to be ready for commercial deployment as access networks, due to the maturity of a number of enabling technologies. Among the PON technologies, Ethernet PON (EPON) standardized by the IEEE 802.3ah Ethernet in the First Mile (EFM) Task Force is the most attractive one because of its high speed, low cost, familiarity, interoperability, and low overhead. In this paper, we consider the issue of upstream channel sharing in the EPONs. We propose a novel multiple-access control scheme to provide bandwidth-guaranteed service for high-demand customers, while providing best effort service to low-demand customers according to the service level agreement (SLA). The analytical and simulation results prove that the proposed scheme performs best in what it is designed to do compared to another well-known scheme that has not considered providing differentiated services. With business customers preferring premium services with guaranteed bandwidth and residential users preferring low-cost best effort services, our scheme could benefit both groups of subscribers, as well as the operators.

  1. A Network and Visual Quality Aware N-Screen Content Recommender System Using Joint Matrix Factorization

    PubMed Central

    Ullah, Farman; Sarwar, Ghulam; Lee, Sungchang

    2014-01-01

    We propose a network and visual quality aware N-Screen content recommender system. N-Screen provides more ways than ever before to access multimedia content through multiple devices and heterogeneous access networks. The heterogeneity of devices and access networks present new questions of QoS (quality of service) in the realm of user experience with content. We propose, a recommender system that ensures a better visual quality on user's N-screen devices and the efficient utilization of available access network bandwidth with user preferences. The proposed system estimates the available bandwidth and visual quality on users N-Screen devices and integrates it with users preferences and contents genre information to personalize his N-Screen content. The objective is to recommend content that the user's N-Screen device and access network are capable of displaying and streaming with the user preferences that have not been supported in existing systems. Furthermore, we suggest a joint matrix factorization approach to jointly factorize the users rating matrix with the users N-Screen device similarity and program genres similarity. Finally, the experimental results show that we also enhance the prediction and recommendation accuracy, sparsity, and cold start issues. PMID:24982999

  2. Accessing Geospatial Services in Limited Bandwidth Service-Oriented Architecture (SOA) Environments

    ERIC Educational Resources Information Center

    Boggs, James D.

    2013-01-01

    First responders are continuously moving at an incident site and this movement requires them to access Service-Oriented Architecture services, such as a Web Map Service, via mobile wireless networks. First responders from inside a building often have problems in communicating to devices outside that building due to propagation obstacles. Dynamic…

  3. Hardware architecture design of a fast global motion estimation method

    NASA Astrophysics Data System (ADS)

    Liang, Chaobing; Sang, Hongshi; Shen, Xubang

    2015-12-01

    VLSI implementation of gradient-based global motion estimation (GME) faces two main challenges: irregular data access and high off-chip memory bandwidth requirement. We previously proposed a fast GME method that reduces computational complexity by choosing certain number of small patches containing corners and using them in a gradient-based framework. A hardware architecture is designed to implement this method and further reduce off-chip memory bandwidth requirement. On-chip memories are used to store coordinates of the corners and template patches, while the Gaussian pyramids of both the template and reference frame are stored in off-chip SDRAMs. By performing geometric transform only on the coordinates of the center pixel of a 3-by-3 patch in the template image, a 5-by-5 area containing the warped 3-by-3 patch in the reference image is extracted from the SDRAMs by burst read. Patched-based and burst mode data access helps to keep the off-chip memory bandwidth requirement at the minimum. Although patch size varies at different pyramid level, all patches are processed in term of 3x3 patches, so the utilization of the patch-processing circuit reaches 100%. FPGA implementation results show that the design utilizes 24,080 bits on-chip memory and for a sequence with resolution of 352x288 and frequency of 60Hz, the off-chip bandwidth requirement is only 3.96Mbyte/s, compared with 243.84Mbyte/s of the original gradient-based GME method. This design can be used in applications like video codec, video stabilization, and super-resolution, where real-time GME is a necessity and minimum memory bandwidth requirement is appreciated.

  4. Simple measurement-based admission control for DiffServ access networks

    NASA Astrophysics Data System (ADS)

    Lakkakorpi, Jani

    2002-07-01

    In order to provide good Quality of Service (QoS) in a Differentiated Services (DiffServ) network, a dynamic admission control scheme is definitely needed as an alternative to overprovisioning. In this paper, we present a simple measurement-based admission control (MBAC) mechanism for DiffServ-based access networks. Instead of using active measurements only or doing purely static bookkeeping with parameter-based admission control (PBAC), the admission control decisions are based on bandwidth reservations and periodically measured & exponentially averaged link loads. If any link load on the path between two endpoints is over the applicable threshold, access is denied. Link loads are periodically sent to Bandwidth Broker (BB) of the routing domain, which makes the admission control decisions. The information needed in calculating the link loads is retrieved from the router statistics. The proposed admission control mechanism is verified through simulations. Our results prove that it is possible to achieve very high bottleneck link utilization levels and still maintain good QoS.

  5. Free space optics: a viable last-mile alternative

    NASA Astrophysics Data System (ADS)

    Willebrand, Heinz A.; Clark, Gerald R.

    2001-10-01

    This paper explores Free Space Optics (FSO) as an access technology in the last mile of metropolitan area networks (MANs). These networks are based in part on fiber-optic telecommunications infrastructure, including network architectures of Synchronous Optical Network (commonly referred to as SONET), the North American standard for synchronous data transmission; and Synchronous Digital Hierarchy (commonly referred to as SDH), the international standard and equivalent of SONET. Several converging forces have moved FSO beyond a niche technology for use only in local area networks (LANs) as a bridge connecting two facilities. FSO now allows service providers to cost effectively provide optical bandwidth for access networks and accelerate the extension of metro optical networks bridging what has been termed by industry experts as the optical dead zone. The optical dead zone refers to both the slowdown in capital investment in the short-term future and the actual connectivity gap that exists today between core metro optical networks and the access optical networks. Service providers have built extensive core and minimal metro networks but have not yet provided optical bandwidth to the access market largely due to the non-compelling economics to bridge the dead zone with fiber. Historically, such infrastructure build-out slowdowns have been blamed on a combination of economics, time-to-market constraints and limited technology options. However, new technology developments and market acceptance of FSO give service providers a new cost-effective alternative to provide high-bandwidth services with optical bandwidth in the access networks. Merrill Lynch predicts FSO will grow into a $2 billion market by 2005. The drivers for this market are a mere 5%- 6% penetration of fiber to business buildings; cost effective solution versus RF or fiber; and significant capacity which can only be matched by a physical fiber link, Merrill Lynch reports. This paper will describe FSO technology, its capabilities and its limitations. The paper will investigate how FSO technology has evolved to its current stage for deployment in MANs, LANs, wireless backhaul and metropolitan network extensions - applications that fall within the category of last mile. The paper will address the market, drivers and the adoption of FSO, plus provide a projection of future FSO technology, based on today's product roadmaps. The paper concludes with a summary of findings and recommendations.

  6. Fault identification and localization for Ethernet Passive Optical Network using L-band ASE source and various types of fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Bakar, A. Ashrif A.; Ab-Rahman, Mohammad Syuhaimi

    2018-01-01

    This paper presents a centralized and fault localization technique for Ethernet Passive Optical Access Network. This technique employs L-band Amplified Spontaneous Emission (ASE) as the monitoring source and various fiber Bragg Gratings (FBGs) as the fiber's identifier. An FBG with a unique combination of Bragg wavelength, reflectivity and bandwidth is inserted at each distribution fiber. The FBG reflection spectrum will be analyzed using an optical spectrum analyzer (OSA) to monitor the condition of the distribution fiber. Various FBGs reflection spectra is employed to optimize the limited bandwidth of monitoring source, thus allows more fibers to be monitored. Basically, one Bragg wavelength is shared by two distinct FBGs with different reflectivity and bandwidth. The experimental result shows that the system is capable to monitor up to 32 customers with OSNR value of ∼1.2 dB and monitoring power received of -24 dBm. This centralized and simple monitoring technique demonstrates a low power, cost efficient and low bandwidth requirement system.

  7. WDM package enabling high-bandwidth optical intrasystem interconnects for high-performance computer systems

    NASA Astrophysics Data System (ADS)

    Schrage, J.; Soenmez, Y.; Happel, T.; Gubler, U.; Lukowicz, P.; Mrozynski, G.

    2006-02-01

    From long haul, metro access and intersystem links the trend goes to applying optical interconnection technology at increasingly shorter distances. Intrasystem interconnects such as data busses between microprocessors and memory blocks are still based on copper interconnects today. This causes a bottleneck in computer systems since the achievable bandwidth of electrical interconnects is limited through the underlying physical properties. Approaches to solve this problem by embedding optical multimode polymer waveguides into the board (electro-optical circuit board technology, EOCB) have been reported earlier. The principle feasibility of optical interconnection technology in chip-to-chip applications has been validated in a number of projects. For reasons of cost considerations waveguides with large cross sections are used in order to relax alignment requirements and to allow automatic placement and assembly without any active alignment of components necessary. On the other hand the bandwidth of these highly multimodal waveguides is restricted due to mode dispersion. The advance of WDM technology towards intrasystem applications will provide sufficiently high bandwidth which is required for future high-performance computer systems: Assuming that, for example, 8 wavelength-channels with 12Gbps (SDR1) each are given, then optical on-board interconnects with data rates a magnitude higher than the data rates of electrical interconnects for distances typically found at today's computer boards and backplanes can be realized. The data rate will be twice as much, if DDR2 technology is considered towards the optical signals as well. In this paper we discuss an approach for a hybrid integrated optoelectronic WDM package which might enable the application of WDM technology to EOCB.

  8. An ultrawide-bandwidth single-sideband modulator for terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Meijer, A. S.; Berden, G.; Arslanov, D. D.; Ozerov, M.; Jongma, R. T.; van der Zande, W. J.

    2016-11-01

    Wireless high-speed data communication using terahertz (THz) carrier frequencies is becoming reality with data rates beyond 100 Gbit s-1. Many of the mobile applications use internet access and require that THz wireless base stations are connected to a global network, such as the radio-over-fibre network. We present the realization of an ultrawide bandwidth THz optical single-sideband (OSSB) modulator for converting (free-space) THz signals to THz optical modulations with an increased spectral efficiency. THz OSSB will mitigate chromatic dispersion-induced propagation losses in optical fibres and support digital modulation schemes. We demonstrate THz OSSB for free-space radiation between 0.3 and 1.0 THz using a specially designed dichroic beamsplitter for signal and carrier, and a planar light-wave circuit with multimode interference structures. This arrangement of optical elements mimics the Hartley single-sideband modulator for electronics signals and accomplishes the required Hilbert transform without any frequency-dependent tuning element over an ultrawide THz spectrum.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Weikuan; Vetter, Jeffrey S

    Parallel NFS (pNFS) is touted as an emergent standard protocol for parallel I/O access in various storage environments. Several pNFS prototypes have been implemented for initial validation and protocol examination. Previous efforts have focused on realizing the pNFS protocol to expose the best bandwidth potential from underlying file and storage systems. In this presentation, we provide an initial characterization of two pNFS prototype implementations, lpNFS (a Lustre-based parallel NFS implementation) and spNFS (another reference implementation from Network Appliance, Inc.). We show that both lpNFS and spNFS can faithfully achieve the primary goal of pNFS, i.e., aggregating I/O bandwidth from manymore » storage servers. However, they both face the challenge of scalable metadata management. Particularly, the throughput of sp-NFS metadata operations degrades significanlty with an increasing number of data servers. Even for the better-performing lpNFS, we discuss its architecture and propose a direct I/O request flow protocol to improve its performance.« less

  10. Test scheduling optimization for 3D network-on-chip based on cloud evolutionary algorithm of Pareto multi-objective

    NASA Astrophysics Data System (ADS)

    Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan

    2018-03-01

    In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.

  11. RXIO: Design and implementation of high performance RDMA-capable GridFTP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yuan; Yu, Weikuan; Vetter, Jeffrey S.

    2011-12-21

    For its low-latency, high bandwidth, and low CPU utilization, Remote Direct Memory Access (RDMA) has established itself as an effective data movement technology in many networking environments. However, the transport protocols of grid run-time systems, such as GridFTP in Globus, are not yet capable of utilizing RDMA. In this study, we examine the architecture of GridFTP for the feasibility of enabling RDMA. An RDMA-capable XIO (RXIO) framework is designed and implemented to extend its XIO system and match the characteristics of RDMA. Our experimental results demonstrate that RDMA can significantly improve the performance of GridFTP, reducing the latency by 32%more » and increasing the bandwidth by more than three times. In achieving such performance improvements, RDMA dramatically cuts down CPU utilization of GridFTP clients and servers. In conclusion, these results demonstrate that RXIO can effectively exploit the benefits of RDMA for GridFTP. It offers a good prototype to further leverage GridFTP on wide-area RDMA networks.« less

  12. Free space optical wireless (FSOW) for broadband access

    NASA Astrophysics Data System (ADS)

    Khan, David A.

    2002-05-01

    The dramatic growth of the Internet and the optical core network that supports it has recently slowed down in spite of a growing appetite for bandwidth-hungry services and applications, particularly those with video content. One of the major reasons for the pause is the lack of affordable broadband access transport facilities extending optical rate connectivity over the last mile.

  13. Wireless Distribution Systems To Support Medical Response to Disasters

    PubMed Central

    Arisoylu, Mustafa; Mishra, Rajesh; Rao, Ramesh; Lenert, Leslie A.

    2005-01-01

    We discuss the design of multi-hop access networks with multiple gateways that supports medical response to disasters. We examine and implement protocols to ensure high bandwidth, robust, self-healing and secure wireless multi-hop access networks for extreme conditions. Address management, path setup, gateway discovery and selection protocols are described. Future directions and plans are also considered. PMID:16779171

  14. Bandwidth tunable microwave photonic filter based on digital and analog modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Jie; Li, Qiang; Wang, Yubing; Sun, Xian; Dong, Wei; Zhang, Xindong

    2018-05-01

    A bandwidth tunable microwave photonic filter based on digital and analog modulation is proposed and experimentally demonstrated. The digital modulation is used to broaden the effective gain spectrum and the analog modulation is to get optical lines. By changing the symbol rate of data pattern, the bandwidth is tunable from 50 MHz to 700 MHz. The interval of optical lines is set according to the bandwidth of gain spectrum which is related to the symbol rate. Several times of bandwidth increase are achieved compared to a single analog modulation and the selectivity of the response is increased by 3.7 dB compared to a single digital modulation.

  15. Optical interconnects for satellite payloads: overview of the state-of-the-art

    NASA Astrophysics Data System (ADS)

    Vervaeke, Michael; Debaes, Christof; Van Erps, Jürgen; Karppinen, Mikko; Tanskanen, Antti; Aalto, Timo; Harjanne, Mikko; Thienpont, Hugo

    2010-05-01

    The increased demand of broadband communication services like High Definition Television, Video On Demand, Triple Play, fuels the technologies to enhance the bandwidth of individual users towards service providers and hence the increase of aggregate bandwidths on terrestial networks. Optical solutions clearly leverage the bandwidth appetite easily whereas electrical interconnection schemes require an ever-increasing effort to counteract signal distortions at higher bitrates. Dense wavelength division multiplexing and all-optical signal regeneration and switching solve the bandwidth demands of network trunks. Fiber-to-the-home, and fiber-to-the-desk are trends towards providing individual users with greatly increased bandwidth. Operators in the satellite telecommunication sector face similar challenges fuelled by the same demands as for their terrestial counterparts. Moreover, the limited number of orbital positions for new satellites set the trend for an increase in payload datacommunication capacity using an ever-increasing number of complex multi-beam active antennas and a larger aggregate bandwidth. Only satellites with very large capacity, high computational density and flexible, transparent fully digital payload solutions achieve affordable communication prices. To keep pace with the bandwidth and flexibility requirements, designers have to come up with systems requiring a total digital througput of a few Tb/s resulting in a high power consuming satellite payload. An estimated 90 % of the total power consumption per chip is used for the off-chip communication lines. We have undertaken a study to assess the viability of optical datacommunication solutions to alleviate the demands regarding power consumption and aggregate bandwidth imposed on future satellite communication payloads. The review on optical interconnects given here is especially focussed on the demands of the satellite communication business and the particular environment in which the optics have to perform their functionality: space.

  16. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    PubMed

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  17. Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators: evaluation in the impedance analysis mode.

    PubMed

    Li, Jing; Thielemann, Christiane; Reuning, Ute; Johannsmann, Diethelm

    2005-01-15

    The quartz crystal microbalance (QCM) was used to monitor specific, integrin-mediated adhesion of human ovarian cancer cells to distinct extracellular matrix (ECM) proteins immobilized on gold-coated quartz crystal resonators. The QCM was operated in the impedance analysis mode, where frequency shift as well as bandwidth are accessible on a broad range of overtones. The increase in bandwidth caused by covering the quartz resonator with cells was reproducible and largely independent of overtone order, whereas the frequency shift displayed some variability. Thus the bandwidth proved to be the more robust parameter for sensing cell adhesive events. The bandwidth increased in proportion to the number of seeded cells to the quartz crystal as long as the number was below 150,000 cells/ml. Comparing the resonance parameters on different harmonics, one finds that viscoelastic modeling with homogeneous layer systems cannot reproduce the results: lateral heterogeneity has to be taken into account. The differences in adhesive strength of human ovarian cancer cells towards selected ECM proteins monitored by QCM was in good agreement with data obtained by conventional cell adhesion assays. Strong cell adhesion was observed to the ECM proteins vitronectin (VN) and fibronectin (FN), while only weak attachment occurred on laminin. In order to prove specific, integrin alphavbeta3-mediated cell adhesion to its ligands FN and VN, the cyclic integrin alphavbeta3-directed peptide c(RGDfV) was used as competitor and significantly reversed cell adhesion. Since integrin interaction with ECM proteins is dependent on the presence of bivalent cations, cell detachment was also seen after treatment of cell monolayers with the chelator ethylene-dinitro-tetra-acetic acid (EDTA). The QCM technique is a reliable method to monitor cell adsorption to ECM-pretreated surfaces in real time. It may be an alternative tool for screening specific and selective antagonists of integrin/ECM interaction.

  18. Designing a scalable video-on-demand server with data sharing

    NASA Astrophysics Data System (ADS)

    Lim, Hyeran; Du, David H.

    2000-12-01

    As current disk space and transfer speed increase, the bandwidth between a server and its disks has become critical for video-on-demand (VOD) services. Our VOD server consists of several hosts sharing data on disks through a ring-based network. Data sharing provided by the spatial-reuse ring network between servers and disks not only increases the utilization towards full bandwidth but also improves the availability of videos. Striping and replication methods are introduced in order to improve the efficiency of our VOD server system as well as the availability of videos. We consider tow kinds of resources of a VOD server system. Given a representative access profile, our intention is to propose an algorithm to find an initial condition, place videos on disks in the system successfully. If any copy of a video cannot be placed due to lack of resources, more servers/disks are added. When all videos are place on the disks by our algorithm, the final configuration is determined with indicator of how tolerable it is against the fluctuation in demand of videos. Considering it is a NP-hard problem, our algorithm generates the final configuration with O(M log M) at best, where M is the number of movies.

  19. Designing a scalable video-on-demand server with data sharing

    NASA Astrophysics Data System (ADS)

    Lim, Hyeran; Du, David H. C.

    2001-01-01

    As current disk space and transfer speed increase, the bandwidth between a server and its disks has become critical for video-on-demand (VOD) services. Our VOD server consists of several hosts sharing data on disks through a ring-based network. Data sharing provided by the spatial-reuse ring network between servers and disks not only increases the utilization towards full bandwidth but also improves the availability of videos. Striping and replication methods are introduced in order to improve the efficiency of our VOD server system as well as the availability of videos. We consider tow kinds of resources of a VOD server system. Given a representative access profile, our intention is to propose an algorithm to find an initial condition, place videos on disks in the system successfully. If any copy of a video cannot be placed due to lack of resources, more servers/disks are added. When all videos are place on the disks by our algorithm, the final configuration is determined with indicator of how tolerable it is against the fluctuation in demand of videos. Considering it is a NP-hard problem, our algorithm generates the final configuration with O(M log M) at best, where M is the number of movies.

  20. [Estimation of rice LAI by using NDVI at different spectral bandwidths].

    PubMed

    Wang, Fu-min; Huang, Jing-feng; Tang, Yan-lin; Wang, Xiu-zhen

    2007-11-01

    The canopy hyperspectral reflectance data of rice at its different development stages were collected from field measurement, and the corresponding NDVIs as well as the correlation coefficients of NDVIs and LAI were computed at extending bandwidth of TM red and near-infrared (NIR) spectra. According to the variation characteristics of best fitted R2 with spectral bandwidth, the optimal bandwidth was determined. The results showed that the correlation coefficients of LAI and ND-VI and the maximum R2 of the best fitted functions at different spectral bandwidths had the same variation trend, i.e., decreased with increasing bandwidth when the bandwidth was less than 60 nm. However, when the bandwidth was beyond 60 nm, the maximum R2 somewhat fluctuated due to the effect of NIR. The analysis of R2 variation with bandwidth indicated that 15 nm was the optimal bandwidth for the estimation of rice LAI by using NDVI.

  1. Defence Technology Strategy for the Demands of the 21st Century

    DTIC Science & Technology

    2006-10-01

    understanding of human capability in the CBM role. Ownership of the intellectual property behind algorithms may be sovereign10, but implementation will...synchronisation schemes. · coding schemes. · modulation techniques. · access schemes. · smart spectrum usage . · low probability of intercept. · implementation...modulation techniques; access schemes; smart spectrum usage ; low probability of intercept Spectrum and bandwidth management · cross layer technologies to

  2. Evaluating the ISDN Market.

    ERIC Educational Resources Information Center

    Liss, Alan

    1996-01-01

    Discusses bandwidth on demand technologies, including frame relay and ISDNs (integrated services digital networks). Topics include tariff policies; lack of standards; market conditions; growth in the Internet market and the World Wide Web; and the growing need for remote access. (LRW)

  3. Designing a VMEbus FDDI adapter card

    NASA Astrophysics Data System (ADS)

    Venkataraman, Raman

    1992-03-01

    This paper presents a system architecture for a VMEbus FDDI adapter card containing a node core, FDDI block, frame buffer memory and system interface unit. Most of the functions of the PHY and MAC layers of FDDI are implemented with National's FDDI chip set and the SMT implementation is simplified with a low cost microcontroller. The factors that influence the system bus bandwidth utilization and FDDI bandwidth utilization are the data path and frame buffer memory architecture. The VRAM based frame buffer memory has two sections - - LLC frame memory and SMT frame memory. Each section with an independent serial access memory (SAM) port provides an independent access after the initial data transfer cycle on the main port and hence, the throughput is maximized on each port of the memory. The SAM port simplifies the system bus master DMA design and the VMEbus interface can be designed with low-cost off-the-shelf interface chips.

  4. A Microstrip Patch-Fed Short Backfire Antenna for the Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) Array

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Kory, Carol L.; Lambert, Kevin M.; Acosta, Roberto J.

    2006-01-01

    Short Backfire Antennas (SBAs) are widely utilized for mobile satellite communications, tracking, telemetry, and wireless local area network (WLAN) applications due to their compact structure and excellent radiation characteristics [1-3]. Typically, these SBA s consist of an excitation element (i.e., a half-wavelength dipole), a reflective bottom plane, a planar sub-reflector located above the "exciter", and an outer circular rim. This configuration is capable of achieving gains on the order of 13-15 dBi, but with relatively narrow bandwidths (approx.3%-5%), making it incompatible with the requirements of the next generation enhanced Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) array [1]. Several attempts have been made to enhance the bandwidth performance of the common dipole-fed SBA by employing various other feeding mechanisms (e.g., waveguide, slot) with moderate success [4-5]. In this paper, a novel method of using a microstrip patch is employed for the first time to excite an SBA. The patch element is fed via two H-shaped slots electromagnetically coupled to a broadband hybrid coupler to maintain a wide bandwidth, as well as provide for dual circular polarization capabilities.

  5. Wavelength-agile high-power sources via four-wave mixing in higher-order fiber modes.

    PubMed

    Demas, J; Prabhakar, G; He, T; Ramachandran, S

    2017-04-03

    Frequency doubling of conventional fiber lasers in the near-infrared remains the most promising method for generating integrated high-peak-power lasers in the visible, while maintaining the benefits of a fiber geometry; but since the shortest wavelength power-scalable fiber laser sources are currently restricted to either the 10XX nm or 15XX nm wavelength ranges, accessing colors other than green or red remains a challenge with this schematic. Four-wave mixing using higher-order fiber modes allows for control of dispersion while maintaining large effective areas, thus enabling a power-scalable method to extend the bandwidth of near-infrared fiber lasers, and in turn, the bandwidth of potential high-power sources in the visible. Here, two parametric sources using the LP0,7 and LP0,6 modes of two step-index multi-mode fibers are presented. The output wavelengths for the sources are 880, 974, 1173, and 1347 nm with peak powers of 10.0, 16.2, 14.7, and 6.4 kW respectively, and ~300-ps pulse durations. The efficiencies of the sources are analyzed, along with a discussion of wavelength tuning and further power scaling, representing an advance in increasing the bandwidth of near-infrared lasers as a step towards high-peak-power sources at wavelengths across the visible spectrum.

  6. A narrowband CDMA communications payload for little LEOS applications

    NASA Astrophysics Data System (ADS)

    Michalik, H.; Hävecker, W.; Ginati, A.

    1996-09-01

    In recent years Code Division Multiple Access (CDMA) techniques have been investigated for application in Local Area Networks [J. A. Salehi, IEEE Trans. Commun. 37 (1989)]as well as in Mobile Communications [R. Kohno et al., IEEE Commun. Mag. Jan (1995)]. The main attraction of these techniques is due to potential higher throughput and capacity of such systems under certain conditions compared to conventional multi-access schemes like frequency and time division multiplexing. Mobile communication over a Satellite Link represents in some terms the "worst case" for operating a CDMA-system. Considering e.g. the uplink case from mobile to satellite, the imperfections due to different and time varying channel conditions will add to the well known effects of Multiple Access Interference (MAI) between the simultaneously active users at the satellite receiver. In addition, bandwidth constraints due to the non-availability of large bandwidth channels in the interesting frequency bands, exist for small systems. As a result, for a given service in terms of user data rates, the practical code sequence lengths are limited as well as the available number of codes within a code set. In this paper a communications payload for Small Satellite Applications with CDMA uplink and C/TDMA downlink under the constraint of bandwidth limitations is proposed. To optimise the performance under the above addressed imperfections the system provides ability for power control and synchronisation for the CDMA uplink. The major objectives of this project are studying, development and testing of such a system for educational purposes and technology development at Hochschule Bremen.

  7. Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea

    Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.

  8. Integrated multi-channel vehicle-vehicle and vehicle-roadside communications for ITS

    DOT National Transportation Integrated Search

    2008-12-01

    This research describes a medium access control (MAC) protocol to Enable multi-channel operation for dedicated short-range communication (DSRC). In particular, we focus on the challenge of supporting potentially high-bandwidth commercial or infotainm...

  9. The Internet: Trends and Directions.

    ERIC Educational Resources Information Center

    Anderson, Byron

    1996-01-01

    Examines current trends and directions in information technology and telecommunications. Discusses legislation; mergers and acquisitions; Internet service providers; fiscal control in libraries and the pooling of electronic information access through consortiums; demand for more bandwidth; technology selection; Internet usage patterns; the…

  10. Germanium:gallium photoconductors for far infrared heterodyne detection

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.; Grossman, E. N.; Watson, Dan M.

    1988-01-01

    Highly compensated Ge:Ga photoconductors for high bandwidth heterodyne detection have been fabricated and evaluated. Bandwidths up to 60 MHz have been achieved with a corresponding current responsivity of 0.01 A/W. The expected dependence of bandwidth on bias field is obtained. It is noted that increased bandwidth is obtained at the price of greater required local oscillator power.

  11. QoS support over ultrafast TDM optical networks

    NASA Astrophysics Data System (ADS)

    Narvaez, Paolo; Siu, Kai-Yeung; Finn, Steven G.

    1999-08-01

    HLAN is a promising architecture to realize Tb/s access networks based on ultra-fast optical TDM technologies. This paper presents new research results on efficient algorithms for the support of quality of service over the HLAN network architecture. In particular, we propose a new scheduling algorithm that emulates fair queuing in a distributed manner for bandwidth allocation purpose. The proposed scheduler collects information on the queue of each host on the network and then instructs each host how much data to send. Our new scheduling algorithm ensures full bandwidth utilization, while guaranteeing fairness among all hosts.

  12. Analysis of Online DBA Algorithm with Adaptive Sleep Cycle in WDM EPON

    NASA Astrophysics Data System (ADS)

    Pajčin, Bojan; Matavulj, Petar; Radivojević, Mirjana

    2018-05-01

    In order to manage Quality of Service (QoS) and energy efficiency in the optical access network, an online Dynamic Bandwidth Allocation (DBA) algorithm with adaptive sleep cycle is presented. This DBA algorithm has the ability to allocate an additional bandwidth to the end user within a single sleep cycle whose duration changes depending on the current buffers occupancy. The purpose of this DBA algorithm is to tune the duration of the sleep cycle depending on the network load in order to provide service to the end user without violating strict QoS requests in all network operating conditions.

  13. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    NASA Astrophysics Data System (ADS)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  14. Real-time access of large volume imagery through low-bandwidth links

    NASA Astrophysics Data System (ADS)

    Phillips, James; Grohs, Karl; Brower, Bernard; Kelly, Lawrence; Carlisle, Lewis; Pellechia, Matthew

    2010-04-01

    Providing current, time-sensitive imagery and geospatial information to deployed tactical military forces or first responders continues to be a challenge. This challenge is compounded through rapid increases in sensor collection volumes, both with larger arrays and higher temporal capture rates. Focusing on the needs of these military forces and first responders, ITT developed a system called AGILE (Advanced Geospatial Imagery Library Enterprise) Access as an innovative approach based on standard off-the-shelf techniques to solving this problem. The AGILE Access system is based on commercial software called Image Access Solutions (IAS) and incorporates standard JPEG 2000 processing. Our solution system is implemented in an accredited, deployable form, incorporating a suite of components, including an image database, a web-based search and discovery tool, and several software tools that act in concert to process, store, and disseminate imagery from airborne systems and commercial satellites. Currently, this solution is operational within the U.S. Government tactical infrastructure and supports disadvantaged imagery users in the field. This paper presents the features and benefits of this system to disadvantaged users as demonstrated in real-world operational environments.

  15. Design of an Efficient CAC for a Broadband DVB-S/DVB-RCS Satellite Access Network

    NASA Astrophysics Data System (ADS)

    Inzerilli, Tiziano; Montozzi, Simone

    2003-07-01

    This paper deals with efficient utilization of network resources in an advanced broadband satellite access system. It proposes a technique for admission control of IP streams with guaranteed QoS which does not interfere with the particular BoD (Bandwidth on Demand) algorithm that handles access to uplink bandwidth, an essential part of a DVB- RCS architecture. This feature of the admission control greatly simplify its integration in the satellite network. The purpose of this admission control algorithm in particular is to suitably and dynamically configure the overall traffic control parameters, in the access terminal of the user and service segment, with a simple approach which does not introduces limitations and/or constraints to the BoD algorithm. Performance of the proposed algorithm is evaluated thorugh Opnet simulations using an ad-hoc platform modeling DVB-based satellite access.The results presented in this paper were obtained within SATIP6 project, which is sponsored within the 5th EU Research Programme, IST. The aims of the project are to evaluate and demonstrate key issues of the integration of satellite-based access networks into the Internet in order to support multimedia services over wide areas. The satellite link layer is based on DVB-S on the forward link and DVB-RCS on the return link. Adaptation and optimization of the DVB-RCS access standard in order to support QoS provision are central issues of the project. They are handled through an integration of Connection Admission Control (CAC), Traffic Shaping and Policing techniques.

  16. Fast access to the CMS detector condition data employing HTML5 technologies

    NASA Astrophysics Data System (ADS)

    Pierro, Giuseppe Antonio; Cavallari, Francesca; Di Guida, Salvatore; Innocente, Vincenzo

    2011-12-01

    This paper focuses on using HTML version 5 (HTML5) for accessing condition data for the CMS experiment, evaluating the benefits and risks posed by the use of this technology. According to the authors of HTML5, this technology attempts to solve issues found in previous iterations of HTML and addresses the needs of web applications, an area previously not adequately covered by HTML. We demonstrate that employing HTML5 brings important benefits in terms of access performance to the CMS condition data. The combined use of web storage and web sockets allows increasing the performance and reducing the costs in term of computation power, memory usage and network bandwidth for client and server. Above all, the web workers allow creating different scripts that can be executed using multi-thread mode, exploiting multi-core microprocessors. Web workers have been employed in order to substantially decrease the web page rendering time to display the condition data stored in the CMS condition database.

  17. MobileASL: intelligibility of sign language video over mobile phones.

    PubMed

    Cavender, Anna; Vanam, Rahul; Barney, Dane K; Ladner, Richard E; Riskin, Eve A

    2008-01-01

    For Deaf people, access to the mobile telephone network in the United States is currently limited to text messaging, forcing communication in English as opposed to American Sign Language (ASL), the preferred language. Because ASL is a visual language, mobile video phones have the potential to give Deaf people access to real-time mobile communication in their preferred language. However, even today's best video compression techniques can not yield intelligible ASL at limited cell phone network bandwidths. Motivated by this constraint, we conducted one focus group and two user studies with members of the Deaf Community to determine the intelligibility effects of video compression techniques that exploit the visual nature of sign language. Inspired by eye tracking results that show high resolution foveal vision is maintained around the face, we studied region-of-interest encodings (where the face is encoded at higher quality) as well as reduced frame rates (where fewer, better quality, frames are displayed every second). At all bit rates studied here, participants preferred moderate quality increases in the face region, sacrificing quality in other regions. They also preferred slightly lower frame rates because they yield better quality frames for a fixed bit rate. The limited processing power of cell phones is a serious concern because a real-time video encoder and decoder will be needed. Choosing less complex settings for the encoder can reduce encoding time, but will affect video quality. We studied the intelligibility effects of this tradeoff and found that we can significantly speed up encoding time without severely affecting intelligibility. These results show promise for real-time access to the current low-bandwidth cell phone network through sign-language-specific encoding techniques.

  18. WDM-PON Architecture for FTTx Networks

    NASA Astrophysics Data System (ADS)

    Iannone, E.; Franco, P.; Santoni, S.

    Broadband services for residential users in European countries have until now largely relied on xDSL technologies, while FTTx technologies have been mainly exploited in Asia and North America. The increasing bandwidth demand and the growing penetration of new services are pushing the deployment of optical access networks, and major European operators are now announcing FTTx projects. While FTTH is recognized as the target solution to bring broadband services to residential users, the identification of an FTTx evolutionary path able to seamlessly migrate to FTTH is key to enabling a massive deployment, easing the huge investments needed. WDM-PON architecture is an interesting solution that is able to accommodate the strategic need of building a new fiber-based access infrastructure with the possibility of adapting investments to actual demands and evolving to FTTH without requiring further interventions on fiber infrastructures.

  19. Enabling technology for future gigabit-symmetric FTTH: coherent OCDMA over WDM-PON

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-ichi; Wang, Xu; Wada, Naoya

    2006-09-01

    For the future broadband Fiber-To-The-Home (FTTH) services, it will be revealed to be a myth that the low bit-rate uplink may be deployed, while only the downlink has to be high bit-rate. Current FTTH system forces the customers a stressful access in the uplink due to its MAC based on TDMA under always-on service provisionings. Without an abundant bandwidth of uplink available, peer-to-peer applications such as exchanging gigabyte files of uncompressed 1.2 Gbps high-definition (HD) TV class or even 6Gbps super-high-definition (SHD)class digital movies as well as teleconferencing and bi-directional medical applications such as tele-diagnosis and -surgery won't become widewpread. With a narrowband uplink, even non peer-to-peer customers will be put in a disadvantageous position by being forced to share the limited bandwidth with a limited number of bandwidth-hungry users.

  20. The Army's Use of the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Ilse, Kenneth

    1996-01-01

    Tactical operations require military commanders to be mobile and have a high level of independence in their actions. Communications capabilities providing intelligence and command orders in these tactical situations have been limited to simple voice communications or low-rate narrow bandwidth communications because of the need for immediate reliable connectivity. The Advanced Communications Technology Satellite (ACTS) has brought an improved communications tool to the tactical commander giving the ability to gain access to a global communications system using high data rates and wide bandwidths. The Army has successfully tested this new capability of bandwidth-on-demand and high data rates for commanders in real-world conditions during Operation UPHOLD DEMOCRACY in Haiti during the fall and winter of 1994. This paper examines ACTS use by field commanders and details the success of the ACTS system in support of a wide variety of field condition command functions.

  1. Directing Traffic: Managing Internet Bandwidth Fairly

    ERIC Educational Resources Information Center

    Paine, Thomas A.; Griggs, Tyler J.

    2008-01-01

    Educational institutions today face budgetary restraints and scarce resources, complicating the decision of how to allot bandwidth for campus network users. Additionally, campus concerns over peer-to-peer networking (specifically outbound Internet traffic) have increased because of bandwidth and copyright issues. In this article, the authors…

  2. Enabling Virtual Access to Latin-American Southern Observatories

    NASA Astrophysics Data System (ADS)

    Filippi, G.

    2010-12-01

    EVALSO (Enabling Virtual Access to Latin-American Southern Observatories) is an international consortium of nine astronomical organisations and research network operators, part-funded under the European Commission FP7, to create and exploit high-speed bandwidth connections to South American observatories. A brief description of the project is presented. The EVALSO Consortium inaugurated a fibre link between the Paranal Observatory and international networks on 4 November 2010 capable of 10 Gigabit per second.

  3. Interactive Scripting for Analysis and Visualization of Arbitrarily Large, Disparately Located Climate Data Ensembles Using a Progressive Runtime Server

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Summa, B.; Scorzelli, G.; Lee, J. W.; Venkat, A.; Bremer, P. T.; Pascucci, V.

    2017-12-01

    Massive datasets are becoming more common due to increasingly detailed simulations and higher resolution acquisition devices. Yet accessing and processing these huge data collections for scientific analysis is still a significant challenge. Solutions that rely on extensive data transfers are increasingly untenable and often impossible due to lack of sufficient storage at the client side as well as insufficient bandwidth to conduct such large transfers, that in some cases could entail petabytes of data. Large-scale remote computing resources can be useful, but utilizing such systems typically entails some form of offline batch processing with long delays, data replications, and substantial cost for any mistakes. Both types of workflows can severely limit the flexible exploration and rapid evaluation of new hypotheses that are crucial to the scientific process and thereby impede scientific discovery. In order to facilitate interactivity in both analysis and visualization of these massive data ensembles, we introduce a dynamic runtime system suitable for progressive computation and interactive visualization of arbitrarily large, disparately located spatiotemporal datasets. Our system includes an embedded domain-specific language (EDSL) that allows users to express a wide range of data analysis operations in a simple and abstract manner. The underlying runtime system transparently resolves issues such as remote data access and resampling while at the same time maintaining interactivity through progressive and interruptible processing. Computations involving large amounts of data can be performed remotely in an incremental fashion that dramatically reduces data movement, while the client receives updates progressively thereby remaining robust to fluctuating network latency or limited bandwidth. This system facilitates interactive, incremental analysis and visualization of massive remote datasets up to petabytes in size. Our system is now available for general use in the community through both docker and anaconda.

  4. Breaking Free with Wireless Networks.

    ERIC Educational Resources Information Center

    Fleischman, John

    2002-01-01

    Discusses wireless local area networks (LANs) which typically consist of laptop computers that connect to fixed access points via infrared or radio signals. Topics include wide area networks; personal area networks; problems, including limitations of available bandwidth, interference, and security concerns; use in education; interoperability;…

  5. Content Management and the Future of Academic Libraries.

    ERIC Educational Resources Information Center

    Wu, Yuhfen Diana; Liu, Mengxiong

    2001-01-01

    Discusses Internet-based electronic content management in digital libraries and considers the future of academic libraries. Topics include digital technologies; content management systems; standards; bandwidth; security and privacy concerns; legal matters, including copyrights and ownership; lifecycle; and multilingual access and interface. (LRW)

  6. Achieving increased bandwidth for 4 degree of freedom self-tuning energy harvester

    NASA Astrophysics Data System (ADS)

    Staaf, L. G. H.; Smith, A. D.; Köhler, E.; Lundgren, P.; Folkow, P. D.; Enoksson, P.

    2018-04-01

    The frequency response of a self-tuning energy harvester composed of two piezoelectric cantilevers connected by a middle beam with a sliding mass is investigated. Measurements show that incorporation of a free-sliding mass increases the bandwidth. Using an analytical model, the system is explained through close investigation of the resonance modes. Resonance mode behavior further suggests that, by breaking the symmetry of the system, even broader bandwidths are achievable.

  7. Fiber Access Networks: Reliability Analysis and Swedish Broadband Market

    NASA Astrophysics Data System (ADS)

    Wosinska, Lena; Chen, Jiajia; Larsen, Claus Popp

    Fiber access network architectures such as active optical networks (AONs) and passive optical networks (PONs) have been developed to support the growing bandwidth demand. Whereas particularly Swedish operators prefer AON, this may not be the case for operators in other countries. The choice depends on a combination of technical requirements, practical constraints, business models, and cost. Due to the increasing importance of reliable access to the network services, connection availability is becoming one of the most crucial issues for access networks, which should be reflected in the network owner's architecture decision. In many cases protection against failures is realized by adding backup resources. However, there is a trade off between the cost of protection and the level of service reliability since improving reliability performance by duplication of network resources (and capital expenditures CAPEX) may be too expensive. In this paper we present the evolution of fiber access networks and compare reliability performance in relation to investment and management cost for some representative cases. We consider both standard and novel architectures for deployment in both sparsely and densely populated areas. While some recent works focused on PON protection schemes with reduced CAPEX the current and future effort should be put on minimizing the operational expenditures (OPEX) during the access network lifetime.

  8. An Adaptive OFDMA-Based MAC Protocol for Underwater Acoustic Wireless Sensor Networks

    PubMed Central

    Khalil, Issa M.; Gadallah, Yasser; Hayajneh, Mohammad; Khreishah, Abdallah

    2012-01-01

    Underwater acoustic wireless sensor networks (UAWSNs) have many applications across various civilian and military domains. However, they suffer from the limited available bandwidth of acoustic signals and harsh underwater conditions. In this work, we present an Orthogonal Frequency Division Multiple Access (OFDMA)-based Media Access Control (MAC) protocol that is configurable to suit the operating requirements of the underwater sensor network. The protocol has three modes of operation, namely random, equal opportunity and energy-conscious modes of operation. Our MAC design approach exploits the multi-path characteristics of a fading acoustic channel to convert it into parallel independent acoustic sub-channels that undergo flat fading. Communication between node pairs within the network is done using subsets of these sub-channels, depending on the configurations of the active mode of operation. Thus, the available limited bandwidth gets fully utilized while completely avoiding interference. We derive the mathematical model for optimal power loading and subcarrier selection, which is used as basis for all modes of operation of the protocol. We also conduct many simulation experiments to evaluate and compare our protocol with other Code Division Multiple Access (CDMA)-based MAC protocols. PMID:23012517

  9. An adaptive OFDMA-based MAC protocol for underwater acoustic wireless sensor networks.

    PubMed

    Khalil, Issa M; Gadallah, Yasser; Hayajneh, Mohammad; Khreishah, Abdallah

    2012-01-01

    Underwater acoustic wireless sensor networks (UAWSNs) have many applications across various civilian and military domains. However, they suffer from the limited available bandwidth of acoustic signals and harsh underwater conditions. In this work, we present an Orthogonal Frequency Division Multiple Access (OFDMA)-based Media Access Control (MAC) protocol that is configurable to suit the operating requirements of the underwater sensor network. The protocol has three modes of operation, namely random, equal opportunity and energy-conscious modes of operation. Our MAC design approach exploits the multi-path characteristics of a fading acoustic channel to convert it into parallel independent acoustic sub-channels that undergo flat fading. Communication between node pairs within the network is done using subsets of these sub-channels, depending on the configurations of the active mode of operation. Thus, the available limited bandwidth gets fully utilized while completely avoiding interference. We derive the mathematical model for optimal power loading and subcarrier selection, which is used as basis for all modes of operation of the protocol. We also conduct many simulation experiments to evaluate and compare our protocol with other Code Division Multiple Access (CDMA)-based MAC protocols.

  10. Local multipoint distribution system (LDMS) versus free-space optical (FSO) networks

    NASA Astrophysics Data System (ADS)

    Willebrand, Heinz A.; Clark, Gerald R.; Willson, Bryan; Andreu von Euw, Christian G.; Roy, Joe; Mayhew, Laurel M.

    2001-11-01

    This paper compares two emerging broadband access methodologies, Free Space Optics (FSO) and Local Multipoint Distribution System (LMDS) and the atmospheric propagation characteristics of each when exposed to a dynamically changing channel. The comparison focuses on bandwidth, availability, and distance requirements for the new broadband market and how LMDS and FSO can be used to meet these requirements. Possible network topologies and their associated costs are examined. This comparison takes into account the total cost of deployment, including equipment costs, installation fees, access fees, and spectrum licensing fees. LMDS and FSO are compared on speed of deployment, scalability, aggregate bandwidth, and bandwidth per customer. Present and projected capabilities of each technology are considered for their suitability in different locations in the network, from the Wide Area Network (WAN), to the Metropolitan Area Network (MAN), all the way to Last Mile Access. There is a discussion on the relative performance of LMDS and FSO, focusing on the different factors that can affect link availability. Since network design is a large factor in assuring overall reliability, the flexibility of each technology with regard to network design is compared. LMDS and FSO are both line of sight, space-propagated technologies, and as such, they are both susceptible to path impediments and atmospheric attenuation, dispersion, scattering, and absorption. LMDS and FSO are affected very differently by different meteorological phenomena. Problematic atmospheric conditions are, specifically scintillation, rainfall, and fog, are examined. In addition to a discussion of these conditions, various techniques for minimizing atmospheric and environmental effects are investigated. The paper concludes with a summary of findings and recommendations for a number of broadband wireless applications.

  11. High-throughput and low-latency 60GHz small-cell network architectures over radio-over-fiber technologies

    NASA Astrophysics Data System (ADS)

    Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.

    2017-01-01

    Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.

  12. Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces

    NASA Astrophysics Data System (ADS)

    Shi, J. H.; Ma, H. F.; Guan, C. Y.; Wang, Z. P.; Cui, T. J.

    2014-04-01

    A broadband asymmetric transmission of linearly polarized waves with totally suppressed copolarization transmission is experimentally demonstrated in ultrathin 90°-twisted Babinet-inverted metasurfaces constructed by an array of asymmetrically split ring apertures. The only accessible direction-dependent cross-polarization transmission is allowed in this anisotropic chiral metamaterial. Through full-wave simulation and experiment results, the bilayered Babinet-inverted metasurface reveals broadband artificial chirality and asymmetric transmission, with a transmission contrast that is better than 17.7 dB within a 50% relative bandwidth for two opposite directions. In particular, we can modify polarization conversion efficiency and the bandwidth of asymmetric transmission via parametric study.

  13. Effect of Stimulus Level and Bandwidth on Speech-Evoked Envelope Following Responses in Adults With Normal Hearing.

    PubMed

    Easwar, Vijayalakshmi; Purcell, David W; Aiken, Steven J; Parsa, Vijay; Scollie, Susan D

    2015-01-01

    The use of auditory evoked potentials as an objective outcome measure in infants fitted with hearing aids has gained interest in recent years. This article proposes a test paradigm using speech-evoked envelope following responses (EFRs) for use as an objective-aided outcome measure. The method uses a running speech-like, naturally spoken stimulus token /susa∫i/ (fundamental frequency [f0] = 98 Hz; duration 2.05 sec), to elicit EFRs by eight carriers representing low, mid, and high frequencies. Each vowel elicited two EFRs simultaneously, one from the region of formant one (F1) and one from the higher formants region (F2+). The simultaneous recording of two EFRs was enabled by lowering f0 in the region of F1 alone. Fricatives were amplitude modulated to enable recording of EFRs from high-frequency spectral regions. The present study aimed to evaluate the effect of level and bandwidth on speech-evoked EFRs in adults with normal hearing. As well, the study aimed to test convergent validity of the EFR paradigm by comparing it with changes in behavioral tasks due to bandwidth. Single-channel electroencephalogram was recorded from the vertex to the nape of the neck over 300 sweeps in two polarities from 20 young adults with normal hearing. To evaluate the effects of level in experiment I, EFRs were recorded at test levels of 50 and 65 dB SPL. To evaluate the effects of bandwidth in experiment II, EFRs were elicited by /susa∫i/ low-pass filtered at 1, 2, and 4 kHz, presented at 65 dB SPL. The 65 dB SPL condition from experiment I represented the full bandwidth condition. EFRs were averaged across the two polarities and estimated using a Fourier analyzer. An F test was used to determine whether an EFR was detected. Speech discrimination using the University of Western Ontario Distinctive Feature Differences test and sound quality rating using the Multiple Stimulus Hidden Reference and Anchors paradigm were measured in identical bandwidth conditions. In experiment I, the increase in level resulted in a significant increase in response amplitudes for all eight carriers (mean increase of 14 to 50 nV) and the number of detections (mean increase of 1.4 detections). In experiment II, an increase in bandwidth resulted in a significant increase in the number of EFRs detected until the low-pass filtered 4 kHz condition and carrier-specific changes in response amplitude until the full bandwidth condition. Scores in both behavioral tasks increased with bandwidth up to the full bandwidth condition. The number of detections and composite amplitude (sum of all eight EFR amplitudes) significantly correlated with changes in behavioral test scores. Results suggest that the EFR paradigm is sensitive to changes in level and audible bandwidth. This may be a useful tool as an objective-aided outcome measure considering its running speech-like stimulus, representation of spectral regions important for speech understanding, level and bandwidth sensitivity, and clinically feasible test times. This paradigm requires further validation in individuals with hearing loss, with and without hearing aids.

  14. A Bandwidth-Optimized Multi-Core Architecture for Irregular Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    This paper presents an architecture template for next-generation high performance computing systems specifically targeted to irregular applications. We start our work by considering that future generation interconnection and memory bandwidth full-system numbers are expected to grow by a factor of 10. In order to keep up with such a communication capacity, while still resorting to fine-grained multithreading as the main way to tolerate unpredictable memory access latencies of irregular applications, we show how overall performance scaling can benefit from the multi-core paradigm. At the same time, we also show how such an architecture template must be coupled with specific techniquesmore » in order to optimize bandwidth utilization and achieve the maximum scalability. We propose a technique based on memory references aggregation, together with the related hardware implementation, as one of such optimization techniques. We explore the proposed architecture template by focusing on the Cray XMT architecture and, using a dedicated simulation infrastructure, validate the performance of our template with two typical irregular applications. Our experimental results prove the benefits provided by both the multi-core approach and the bandwidth optimization reference aggregation technique.« less

  15. Network bandwidth utilization forecast model on high bandwidth networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wuchert; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  16. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  17. Introduction of a new opto-electrical phase-locked loop in CMOS technology: the PMD-PLL

    NASA Astrophysics Data System (ADS)

    Ringbeck, Thorsten; Schwarte, Rudolf; Buxbaum, Bernd

    1999-12-01

    The huge and increasing need of information in the industrial world demands an enormous potential of bandwidth in telecommunication systems. Optical communication provides all participants with the whole spectrum of digital services like videophone, cable TV, video conferencing and online services. Especially fast and low cost opto-electrical receivers are badly needed in order to expand fiber networks to every home (FTTH--fiber to the home or FTTD--fiber to the desk, respectively). This paper proposes a new receiver structure which is designed to receiver optical data which are encoded by code division multiple access techniques (CDMA). For data recovery in such CDMA networks phase locked loops (PLL) are needed, which synchronize the local oscillator with the incoming clock. In optical code division multiple access networks these PLLs could be realized either with an electrical PLL after opto-electrical converting or directly in the optical path with a pure optical PLL.

  18. Dynamic file-access characteristics of a production parallel scientific workload

    NASA Technical Reports Server (NTRS)

    Kotz, David; Nieuwejaar, Nils

    1994-01-01

    Multiprocessors have permitted astounding increases in computational performance, but many cannot meet the intense I/O requirements of some scientific applications. An important component of any solution to this I/O bottleneck is a parallel file system that can provide high-bandwidth access to tremendous amounts of data in parallel to hundreds or thousands of processors. Most successful systems are based on a solid understanding of the expected workload, but thus far there have been no comprehensive workload characterizations of multiprocessor file systems. This paper presents the results of a three week tracing study in which all file-related activity on a massively parallel computer was recorded. Our instrumentation differs from previous efforts in that it collects information about every I/O request and about the mix of jobs running in a production environment. We also present the results of a trace-driven caching simulation and recommendations for designers of multiprocessor file systems.

  19. Enhanced spectral efficiency using bandwidth switchable SAW filtering for mobile satellite communications systems

    NASA Technical Reports Server (NTRS)

    Peach, Robert; Malarky, Alastair

    1990-01-01

    Currently proposed mobile satellite communications systems require a high degree of flexibility in assignment of spectral capacity to different geographic locations. Conventionally this results in poor spectral efficiency which may be overcome by the use of bandwidth switchable filtering. Surface acoustic wave (SAW) technology makes it possible to provide banks of filters whose responses may be contiguously combined to form variable bandwidth filters with constant amplitude and phase responses across the entire band. The high selectivity possible with SAW filters, combined with the variable bandwidth capability, makes it possible to achieve spectral efficiencies over the allocated bandwidths of greater than 90 percent, while retaining full system flexibility. Bandwidth switchable SAW filtering (BSSF) achieves these gains with a negligible increase in hardware complexity.

  20. Techno-Economic Analysis of FiWi Access Networks Based on 802.11ac WLAN and NG-PON2 Networks

    NASA Astrophysics Data System (ADS)

    Breskovic, Damir; Begusic, Dinko

    2017-05-01

    In this article, techno-economic analysis of a fiber-wireless access network is presented. With high bandwidth capacity of the gigabit passive optical network and with cost-effectiveness of very high throughput 802.11ac wireless local area networks that enable user mobility in the wireless segment, fiber-wireless access networks can be considered as an alternative to the fiber-to-the-home architecture for next generation access networks. Analysis based on the proposed scenario here, shows that a fiber-wireless access network is a more cost-effective solution in densely populated areas, but with some introduced improvements, even other geotypes can be considered as a commercially-viable solution.

  1. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  2. Frequency Bandwidth Optimization of Left-Handed Metamaterial

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.

    2004-01-01

    Recently, left-handed metamaterials (LHM s) have been demonstrated with an effective negative index of refraction and with antiparallel group and phase velocities for microwave radiation over a narrow frequency bandwidth. In order to take advantage of these characteristics for practical applications, it will be beneficial to develop LHM s with increased frequency bandwidth response and lower losses. In this paper a commercial three-dimensional electromagnetic simulation code is used to explore the effects of geometry parameter variations on the frequency bandwidth of a LHM at microwave frequencies. Utilizing an optimizing routine in the code, a geometry was generated with a bandwidth more than twice as large as the original geometry.

  3. Gain and power optimization of the wireless optical system with multilevel modulation.

    PubMed

    Liu, Xian

    2008-06-01

    When used in an outdoor environment to expedite networking access, the performance of wireless optical communication systems is affected by transmitter sway. In the design of such systems, much attention has been paid to developing power-efficient schemes. However, the bandwidth efficiency is also an important issue. One of the most natural approaches to promote bandwidth efficiency is to use multilevel modulation. This leads to multilevel pulse amplitude modulation in the context of intensity modulation and direct detection. We develop a model based on the four-level pulse amplitude modulation. We show that the model can be formulated as an optimization problem in terms of the transmitter power, bit error probability, transmitter gain, and receiver gain. The technical challenges raised by modeling and solving the problem include the analytical and numerical treatments for the improper integrals of the Gaussian functions coupled with the erfc function. The results demonstrate that, at the optimal points, the power penalty paid to the doubled bandwidth efficiency is around 3 dB.

  4. FPGA cluster for high-performance AO real-time control system

    NASA Astrophysics Data System (ADS)

    Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.

    2006-06-01

    Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.

  5. WebPresent: a World Wide Web-based telepresentation tool for physicians

    NASA Astrophysics Data System (ADS)

    Sampath-Kumar, Srihari; Banerjea, Anindo; Moshfeghi, Mehran

    1997-05-01

    In this paper, we present the design architecture and the implementation status of WebPresent - a world wide web based tele-presentation tool. This tool allows a physician to use a conference server workstation and make a presentation of patient cases to a geographically distributed audience. The audience consists of other physicians collaborating on patients' health care management and physicians participating in continuing medical education. These physicians are at several locations with networks of different bandwidth and capabilities connecting them. Audiences also receive the patient case information on different computers ranging form high-end display workstations to laptops with low-resolution displays. WebPresent is a scalable networked multimedia tool which supports the presentation of hypertext, images, audio, video, and a white-board to remote physicians with hospital Intranet access. WebPresent allows the audience to receive customized information. The data received can differ in resolution and bandwidth, depending on the availability of resources such as display resolution and network bandwidth.

  6. Opto-microwave Butler matrixes based front-end for a multi-beam large direct radiating array antenna

    NASA Astrophysics Data System (ADS)

    Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.

    2017-09-01

    The evolution of broadband communication satellites shows a clear trend towards beam forming and beam-switching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible.

  7. Communities of Practice and Professional Development

    ERIC Educational Resources Information Center

    Chalmers, Lex; Keown, Paul

    2006-01-01

    The Internet has had a transformative effect on many aspects of contemporary living. While there may be a tendency to overstate the impacts of this technology, workplaces and work practices in many societies have been greatly affected by almost instant access to massive amounts of information, delivered through broadening bandwidth. This paper…

  8. The Indonesian Digital Library Network Is Born To Struggle with the Digital Divide.

    ERIC Educational Resources Information Center

    Fahmi, Ismail

    2002-01-01

    Describes the Indonesian Digital Library Network that is designed to develop Indonesia as a knowledge-based society. Highlights include the digital divide; problems in a developing country, including Internet accessibility, bandwidth capacity, and network delays; gathering information about national assets; information infrastructure; data…

  9. Models and Methodologies for Multimedia Courseware Production.

    ERIC Educational Resources Information Center

    Barker, Philip; Giller, Susan

    Many new technologies are now available for delivering and/or providing access to computer-based learning (CBL) materials. These technologies vary in sophistication in many important ways, depending upon the bandwidth that they provide, the interactivity that they offer and the types of end-user connectivity that they support.Invariably,…

  10. Library Web Proxy Use Survey Results.

    ERIC Educational Resources Information Center

    Murray, Peter E.

    2001-01-01

    Outlines the use of proxy Web servers by libraries and reports on a survey on their use in libraries. Highlights include proxy use for remote resource access, for filtering, for bandwidth conservation, and for gathering statistics; privacy policies regarding the use of proxy server log files; and a copy of the survey. (LRW)

  11. Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Feng

    2018-03-01

    Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.

  12. Priority and Negotiation Based Dynamic Spectrum Allocation Scheme for Multiple Radio Access Network Operators

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Hyon, Taein; Lee, Yeonwoo

    Most of previous works have presented the dynamic spectrum allocation (DSA) gain achieved by utilizing the time or regional variations in traffic demand between multi-network operators (NOs). In this paper, we introduce the functionalities required for the entities related with the spectrum sharing and allocation and propose a spectrum allocation algorithm while considering the long-term priority between NOs, the priority between multiple class services, and the urgent bandwidth request. To take into account the priorities among the NOs and the priorities of multiple class services, a spectrum sharing metric (SSM) is proposed, while a negotiation procedure is proposed to treat the urgent bandwidth request.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rey, D.; Ryan, W.; Ross, M.

    A method for more efficiently utilizing the frequency bandwidth allocated for data transmission is presented. Current space and range communication systems use modulation and coding schemes that transmit 0.5 to 1.0 bits per second per Hertz of radio frequency bandwidth. The goal in this LDRD project is to increase the bandwidth utilization by employing advanced digital communications techniques. This is done with little or no increase in the transmit power which is usually very limited on airborne systems. Teaming with New Mexico State University, an implementation of trellis coded modulation (TCM), a coding and modulation scheme pioneered by Ungerboeck, wasmore » developed for this application and simulated on a computer. TCM provides a means for reliably transmitting data while simultaneously increasing bandwidth efficiency. The penalty is increased receiver complexity. In particular, the trellis decoder requires high-speed, application-specific digital signal processing (DSP) chips. A system solution based on the QualComm Viterbi decoder and the Graychip DSP receiver chips is presented.« less

  14. EMG-Torque Dynamics Change With Contraction Bandwidth.

    PubMed

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  15. Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation

    NASA Astrophysics Data System (ADS)

    Korobko, M.; Kleybolte, L.; Ast, S.; Miao, H.; Chen, Y.; Schnabel, R.

    2017-04-01

    The shot-noise limited peak sensitivity of cavity-enhanced interferometric measurement devices, such as gravitational-wave detectors, can be improved by increasing the cavity finesse, even when comparing fixed intracavity light powers. For a fixed light power inside the detector, this comes at the price of a proportional reduction in the detection bandwidth. High sensitivity over a large span of signal frequencies, however, is essential for astronomical observations. It is possible to overcome this standard sensitivity-bandwidth limit using nonclassical correlations in the light field. Here, we investigate the internal squeezing approach, where the parametric amplification process creates a nonclassical correlation directly inside the interferometer cavity. We theoretically analyze the limits of the approach and measure 36% increase in the sensitivity-bandwidth product compared to the classical case. To our knowledge, this is the first experimental demonstration of an improvement in the sensitivity-bandwidth product using internal squeezing, opening the way for a new class of optomechanical force sensing devices.

  16. Packet spacing : an enabling mechanism for delivering multimedia content in computational grids /

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, A. C.; Feng, W. C.; Belford, Geneva G.

    2001-01-01

    Streaming multimedia with UDP has become increasingly popular over distributed systems like the Internet. Scientific applications that stream multimedia include remote computational steering of visualization data and video-on-demand teleconferencing over the Access Grid. However, UDP does not possess a self-regulating, congestion-control mechanism; and most best-efort traflc is served by congestion-controlled TCF! Consequently, UDP steals bandwidth from TCP such that TCP$ows starve for network resources. With the volume of Internet traffic continuing to increase, the perpetuation of UDP-based streaming will cause the Internet to collapse as it did in the mid-1980's due to the use of non-congestion-controlled TCP. To address thismore » problem, we introduce the counterintuitive notion of inter-packet spacing with control feedback to enable UDP-based applications to perform well in the next-generation Internet and computational grids. When compared with traditional UDP-based streaming, we illustrate that our approach can reduce packet loss over SO% without adversely afecting delivered throughput. Keywords: network protocol, multimedia, packet spacing, streaming, TCI: UDlq rate-adjusting congestion control, computational grid, Access Grid.« less

  17. Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers

    NASA Astrophysics Data System (ADS)

    Nikandish, Gholamreza; Medi, Ali

    2015-02-01

    The transformer-feedback (TRFB) interstage bandwidth enhancement technique for broadband multistage amplifiers is presented. Theory of the TRFB bandwidth enhancement and the design conditions for maximum bandwidth, maximally flat gain, and maximally flat group delay are provided. It is shown that the TRFB bandwidth enhancement can provide higher bandwidth compared to the conventional techniques based on reactive impedance matching networks. A three-stage low-noise amplifier (LNA) monolithic microwave integrated circuit with the TRFB between its consecutive stages is designed and implemented in a 0.1- μm GaAs pHEMT process. The TRFB is realized by coupling between the drain bias lines of transistors. The reuse of bias lines leads to bandwidth enhancement without increasing the chip area and power consumption. The LNA features average gain of 23 dB and 3-dB bandwidth of 11-39 GHz. It provides a noise figure of 2.1-3.0 dB and an output 1-dB compression point of 8.6 dBm, while consuming 40 mA of current from a 2-V supply.

  18. Modulation bandwidth enhancement for coupled twin-square microcavity lasers.

    PubMed

    Xiao, Zhi-Xiong; Huang, Yong-Zhen; Yang, Yue-De; Tang, Min; Xiao, Jin-Long

    2017-08-15

    Modulation bandwidth enhancements are investigated for coupled twin-square microcavity lasers due to photon-photon resonance effect. For a coupled twin-square microcavity laser with the square side length of 20 μm, we demonstrate the increase of 3-dB modulation bandwidth from 9.6 GHz to 19.5 GHz, by adjusting the resonance mode wavelength interval between two square microcavities. The enhanced modulation bandwidth is explained by rate equation analysis, and numerical simulations are conducted for large signal modulation with improved eye-diagrams at 40 Gbit/s.

  19. Experimental high-speed network

    NASA Astrophysics Data System (ADS)

    McNeill, Kevin M.; Klein, William P.; Vercillo, Richard; Alsafadi, Yasser H.; Parra, Miguel V.; Dallas, William J.

    1993-09-01

    Many existing local area networking protocols currently applied in medical imaging were originally designed for relatively low-speed, low-volume networking. These protocols utilize small packet sizes appropriate for text based communication. Local area networks of this type typically provide raw bandwidth under 125 MHz. These older network technologies are not optimized for the low delay, high data traffic environment of a totally digital radiology department. Some current implementations use point-to-point links when greater bandwidth is required. However, the use of point-to-point communications for a total digital radiology department network presents many disadvantages. This paper describes work on an experimental multi-access local area network called XFT. The work includes the protocol specification, and the design and implementation of network interface hardware and software. The protocol specifies the Physical and Data Link layers (OSI layers 1 & 2) for a fiber-optic based token ring providing a raw bandwidth of 500 MHz. The protocol design and implementation of the XFT interface hardware includes many features to optimize image transfer and provide flexibility for additional future enhancements which include: a modular hardware design supporting easy portability to a variety of host system buses, a versatile message buffer design providing 16 MB of memory, and the capability to extend the raw bandwidth of the network to 3.0 GHz.

  20. All-optical virtual private network system in OFDM based long-reach PON using RSOA re-modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hun; Jung, Sang-Min; Kang, Su-Min; Han, Sang-Kook

    2015-01-01

    We propose an all-optical virtual private network (VPN) system in an orthogonal frequency division multiplexing (OFDM) based long reach PON (LR-PON). In the optical access network field, technologies based on fundamental upstream (U/S) and downstream (D/S) have been actively researched to accommodate explosion of data capacity. However, data transmission among the end users which is arisen from cloud computing, file-sharing and interactive game takes a large weight inside of internet traffic. Moreover, this traffic is predicted to increase more if Internet of Things (IoT) services are activated. In a conventional PON, VPN data is transmitted through ONU-OLT-ONU via U/S and D/S carriers. It leads to waste of bandwidth and energy due to O-E-O conversion in the OLT and round-trip propagation between OLT and remote node (RN). Also, it causes inevitable load to the OLT for electrical buffer, scheduling and routing. The network inefficiency becomes more critical in a LR-PON which has been researched as an effort to reduce CAPEX and OPEX through metro-access consolidation. In the proposed system, the VPN data is separated from conventional U/S and re-modulated on the D/S carrier by using RSOA in the ONUs to avoid bandwidth consumption of U/S and D/S unlike in previously reported system. Moreover, the transmitted VPN data is re-directed to the ONUs by wavelength selective reflector device in the RN without passing through the OLT. Experimental demonstration for the VPN communication system in an OFDM based LR-PON has been verified.

  1. The Ottawa telehealth project.

    PubMed

    Cheung, S T; Davies, R F; Smith, K; Marsh, R; Sherrard, H; Keon, W J

    1998-01-01

    To examine the telehealth system as a means of improving access to cardiac consultations and specialized health services in remote areas of Ontario. The University of Ottawa Heart Institute has set up a telehealth test program, Healthcare and Education Access for Remote Residents by Telecommunications (HEARRT), in collaboration with industry and the provincial and federal government, as well as several remote clinical test sites. The program makes off-site cardiology consultations possible. History taking and physical examinations are conducted by video and electronic stethoscope. Laboratory results and echocardiograms are transmitted by document camera and VCR. The technology is being tested in both stable outpatient and emergency situations. Various telecommunications bandwidths and encoding systems are being evaluated, including satellite and terrestrial-based asynchronous transfer-mode circuits. Patient satisfaction and cost-effectiveness are also being assessed. Bandwidths from as low as 384 kbps using H.320 encoders to 40 Mbps using digital transport of NTSC video signals have been evaluated. Although lower bandwidths are sufficient for sending echocardiographic and electrocardiogram data, bandwidths with transport speeds of 4 to 6 Mbps appear necessary to capture the nuances of the cardiac physical examination. A preliminary satisfaction survey of 19 patients noted that all felt that they could communicate effectively with the cardiologist by video, and each had confidence in the advice offered. None reported that he or she would rather have traveled to the doctor in person. Initial and projected examination of the costs suggested that telehealth will effectively reduce overall health care spending while decreasing travel expenses for rural patients. Telehealth technology is sufficiently sophisticated to allow off-site cardiology assessments. Preliminary results suggest there is a sound business case for the implementation of telehealth technology to meet the needs of remote residents in northern Ontario. Working closely with government and industry, we will develop a marketing and commercialization plan to support the use of this technology throughout Ontario and expand application to patient education and continuing medical education.

  2. Dispersion and nonlinear effects in OFDM-RoF system

    NASA Astrophysics Data System (ADS)

    Alhasson, Bader H.; Bloul, Albe M.; Matin, M.

    2010-08-01

    The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.

  3. Tunable bandgaps in a deployable metamaterial

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Karami, M. Amin

    2018-03-01

    In this manuscript, we envision deployable structures (such as solar arrays) and origami-inspired foldable structures as metamaterials capable of tunable wave manipulation. Specifically, we present a metamaterial whose bandgaps can be modulated by changing the fold angle of adjacent panels. The repeating unit cell of the structure consists of a beam (representing a panel) and a torsional spring (representing the folding mechanism). Two important cases are considered. Firstly, the fold angle (angle between adjacent beams), Ψ, is zero and only flexural waves propagate. In the second case, the fold angle is greater than zero (Ψ > 0). This causes longitudinal and transverse vibration to be coupled. FEM models are used to validate both these analyses. Increasing the fold angle was found to inflict profound changes to the wave transmission characteristics of the structure. In general, increasing the fold angles caused the bandwidth of bandgaps to increase significantly. For the lowest four bandgaps we found bandwidth increases of 252 %, 177 %, 230 % and 163 % respectively at Ψ = 90 deg (relative to the bandwidths at Ψ = 0). In addition, significant increase in bandwidth of the odd-numbered bandgaps occurs even at small fold angles- the bandwidth for the first and third bandgaps effectively double in size (increase by 100%) at Ψ = 20 deg relative to those at Ψ = 0. This has important ramifications in the context of tunable wave manipulation and adaptive filtering. In addition, by expanding out the characteristic equation of transfer matrix for the straight structure, we prove that the upper band edge of the nth bandgap will always equal the nth simply supported natural frequency of the constituent beam. Further, we found that the ratio (EI/kt) is an important parameter affecting the bandwidth of bandgaps. For low values of the ratio, effectively, no bandgap exists. For higher values of the ratio (EI/kt), we obtain a relatively large bandgap over which no waves propagate. This can have important ramifications for the design of foldable structures. As an alternative to impedance-based structural health monitoring, these insights can aid in health monitoring of deployable structures by tracking the bandwidth of bandgaps which can provide important clues about the mechanical parameters of the structure.

  4. Tunable bandgaps in a deployable metamaterial

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Karami, M. A.

    2018-06-01

    In this manuscript, we investigate deployable structures (such as solar arrays) and origami-inspired foldable structures as metamaterials capable of tunable wave manipulation. Specifically, we present a metamaterial whose bandgaps can be modulated by changing the fold angle of adjacent panels. The repeating unit cell of the structure consists of a beam (representing a panel) and a torsional spring (representing the folding mechanism). Two important cases are considered. Firstly, the fold angle (angle between adjacent beams), Ψ, is zero and only flexural waves propagate. In the second case, the fold angle is greater than zero (Ψ > 0). This causes longitudinal and transverse vibration to be coupled. FEM models are used to validate both these analyses. Increasing the fold angle was found to inflict notable changes to the wave transmission characteristics of the structure. In general, increasing the fold angles caused the bandwidth of bandgaps to increase. For the lowest four bandgaps we found bandwidth increases of 252 %, 177 %, 230 % and 163 % respectively at Ψ = 90 deg (relative to the bandwidths at Ψ = 0). In addition, non-trivial increases in bandwidth of the odd-numbered bandgaps occurs even at small fold angles-the bandwidth for the first and third bandgaps effectively double in size (increase by 100 %) at Ψ = 20 deg relative to those at Ψ = 0. This could have ramifications in the context of tunable wave manipulation and adaptive filtering. In addition, by expanding out the characteristic equation of transfer matrix for the straight structure, we prove that the upper band edge of the nth bandgap will always equal the nth simply supported natural frequency of the constituent beam. Further, we found that the ratio (EI/kt) is a pertinent parameter affecting the bandwidth of bandgaps. For low values of the ratio, effectively, no bandgap exists. For higher values of the ratio (EI/kt), we obtain a relatively large bandgap over which no waves propagate. This can have ramifications for the design of foldable structures. As an alternative to impedance-based structural health monitoring, these insights can aid in health monitoring of deployable structures by tracking the bandwidth of bandgaps which can provide clues about the mechanical parameters of the structure.

  5. Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Yang, James; Hu, Frank

    2017-05-01

    In 2016, we presented a low SWaP wirelessly controlled MEMS mirror-based LiDAR prototype which utilized an OEM laser rangefinder for distance measurement [1]. The MEMS mirror was run in open loop based on its exceptionally fast design and high repeatability performance. However, to further extend the bandwidth and incorporate necessary eyesafety features, we recently focused on providing mirror position feedback and running the system in closed loop control. Multiple configurations of optical position sensors, mounted on both the front- and the back-side of the MEMS mirror, have been developed and will be presented. In all cases, they include a light source (LED or laser) and a 2D photosensor. The most compact version is mounted on the backside of the MEMS mirror ceramic package and can "view" the mirror's backside through openings in the mirror's PCB and its ceramic carrier. This version increases the overall size of the MEMS mirror submodule from 12mm x 12mm x 4mm to 15mm x 15mm x 7mm. The sensors also include optical and electronic filtering to reduce effects of any interference from the application laser illumination. With relatively simple FPGA-based PID control running at the sample rate of 100 kHz, we could configure the overall response of the system to fully utilize the MEMS mirror's native bandwidth which extends well beyond its first resonance. When compared to the simple open loop method of suppressing overshoot and ringing which significantly limits bandwidth utilization, running the mirrors in closed loop control increased the bandwidth to nearly 3.7 times. A 2.0mm diameter integrated MEMS mirror with a resonant frequency of 1300 Hz was limited to 500Hz bandwidth in open loop driving but was increased to 3kHz bandwidth with the closed loop controller. With that bandwidth it is capable of very sharply defined uniform-velocity scans (sawtooth or triangle waveforms) which are highly desired in scanned mirror LiDAR systems. A 2.4mm diameter mirror with +/-12° of scan angle achieves over 1.3kHz of flat response, allowing sharp triangle waveforms even at 300Hz (600 uniform velocity lines per second). The same methodology is demonstrated with larger, bonded mirrors. Here closed loop control is more challenging due to the additional resonance and a more complex system dynamic. Nevertheless, results are similar - a 5mm diameter mirror bandwidth was increased from 150Hz to 500Hz.

  6. How Fast Is Fast Enough?

    ERIC Educational Resources Information Center

    Henke, Karen Greenwood

    2007-01-01

    Just how much bandwidth does the average student in the United States have access to today, and how much will he or she need in the future? That depends, according to district CTOs, state technology directors, industry experts, and classroom teachers. The National Center for Education Statistics reports that 97 percent of U.S. public schools with…

  7. Application of Mobile Agents in Web-Based Learning Environment.

    ERIC Educational Resources Information Center

    Hong Hong, Kinshuk; He, Xiaoqin; Patel, Ashok; Jesshope, Chris

    Web-based learning environments are strongly driven by the information revolution and the Internet, but they have a number of common deficiencies, such as slow access, no adaptivity to the individual student, limitation by bandwidth, and more. This paper outlines the benefits of mobile agents technology, and describes its application in Web-based…

  8. Network coding multiuser scheme for indoor visible light communications

    NASA Astrophysics Data System (ADS)

    Zhang, Jiankun; Dang, Anhong

    2017-12-01

    Visible light communication (VLC) is a unique alternative for indoor data transfer and developing beyond point-to-point. However, for realizing high-capacity networks, VLC is facing challenges including the constrained bandwidth of the optical access point and random occlusion. A network coding scheme for VLC (NC-VLC) is proposed, with increased throughput and system robustness. Based on the Lambertian illumination model, theoretical decoding failure probability of the multiuser NC-VLC system is derived, and the impact of the system parameters on the performance is analyzed. Experiments demonstrate the proposed scheme successfully in the indoor multiuser scenario. These results indicate that the NC-VLC system shows a good performance under the link loss and random occlusion.

  9. Planning and deployment of DWDM systems: a reality

    NASA Astrophysics Data System (ADS)

    Mishra, Data S.

    2001-10-01

    The new definition and implementation of new communication network architectures and elements in the present data-centric world are due to dramatic change in technology, explosive growth in bandwidth requirement and de-regulated, privatized and competitive telecommunication market. Network Convergence, Disruptive Technology and Convulsive Market are the basic forces who are pushing the future network towards Packet based Optical Core Network and varieties of Access Network along with integrated NMS. Well-known Moore's law governs the result of progress in silicon processing and accordingly the present capacity of network must be multiplied by 100 times in 10 years. To build a global network which is 100 times powerful than present one by scaling up today's technology can not be a practical solution due to requirement of 100 fold increase in cost, power and size. Today's two network (Low delay, fixed bandwidth, Poisson voice traffic based, circuit-switched PSTN/PLMN and variable delay, variable bandwidth, no-guaranteed QoS based packet switched internet) are converging towards two-layer network (IP and ATM in lower layer; DWDM in network layer). SDH Network which was well drafted before explosive data traffic and was best suitable for Interoperability, Survivability, Reliability and Manageability will be taken over by DWDM Network by 2005 due to 90% of data traffic. This paper describes the way to build the Communication Network (either by migration or by overlay) with an overview of the equipment and technologies required to design the DWDM Network. Service Providers are facing tough challenges for selection of emerging technologies and advances in network standard for bandwidth hungry, valued customers. The reduction of cost of services due to increased competition , explosive growth of internet and 10GbE Ethernet (which is being considered as an end-to-end network solution) have given surprise to many network architects and designers. To provide transparency to data-rate and data-format the gap between electrical layer and Optical backbone layer has to be filled. By partitioning the Optical Bandwidth of Optical Fibre Cable into the wavelengths (32 to 120) Wavelength Division Multiplexing can transport data rate from 10MB/s to 10GB/s on each wavelength. In this paper we will analyze the difficult strategies of suppliers and obstacles in the way of service providers to make DWDM a reality in the field either as Upgrade or Overlay or New Network. The difficult constraint of protection scheme with respect to compatibility with existing network and network under development has to sorted out along with present standard of Optical Fibre to carry DWDM signal in cost effective way to Access , Edge and Metro part of our network. The future of IP under DWDM is going to be key element for Network Planners in future. Fundamental limitation of bit manipulation in Photonic domain will have implication on the network design, cost and migration to all optical network because Photons are computer un-friendly and not mature enough to give memory and logic devices. In the environment of heterogeneous traffic the DWDM based All Optical Network should behave as per expectation of users whose primary traffic will be multi-media IP type. The quality of service (QoS), Virtual Path Network (VPN) over DWDM, OXC and intelligence at the edge will play a major role in future deployment of DWDM in our network . The development of improved fiber characteristics, EDFAs and Photonic component has led the carriers to go for Dense WDM Network.

  10. Wide-bandwidth, wide-beamwidth, high-resolution, millimeter-wave imaging for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, A. Mark; Lechelt, Wayne M.; Severtsen, Ronald H.

    2013-05-01

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The cylindrical imaging techniques used in the deployed systems are based on licensed technology developed at the Pacific Northwest National Laboratory. The cylindrical and a related planar imaging technique form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images of the person being screened. The resolution, clothing penetration, and image illumination quality obtained with these techniques can be significantly enhanced through the selection of the aperture size, antenna beamwidth, center frequency, and bandwidth. The lateral resolution can be improved by increasing the center frequency, or it can be increased with a larger antenna beamwidth. The wide beamwidth approach can significantly improve illumination quality relative to a higher frequency system. Additionally, a wide antenna beamwidth allows for operation at a lower center frequency resulting in less scattering and attenuation from the clothing. The depth resolution of the system can be improved by increasing the bandwidth. Utilization of extremely wide bandwidths of up to 30 GHz can result in depth resolution as fine as 5 mm. This wider bandwidth operation may allow for improved detection techniques based on high range resolution. In this paper, the results of an extensive imaging study that explored the advantages of using extremely wide beamwidth and bandwidth are presented, primarily for 10-40 GHz frequency band.

  11. Dynamic characteristics of undoped and p-doped Fabry-Perot InAs/InP quantum dash based ridge waveguide lasers for access/metro networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollet, O., E-mail: oriane.mollet@lpn.cnrs.fr; Martinez, A.; Merghem, K.

    In this paper, we report the characteristics of InAs/InP quantum dashes (QDash) based lasers emitting around 1.55 μm. An unprecedented high modal gain of ∼100 cm{sup −1} is obtained for an optimized active structure by stacking 12 QDash layers. Directly modulated lasers allowed achieving a modulation bandwidth of ∼10 GHz and a Henry factor around 5. Thanks to p-type doping, the Henry factor value is reduced down to 2.7 while the modulation bandwidth still amounts to ∼10 GHz. This shows that doping of the active region is important to improve the dynamic characteristics of QDash lasers.

  12. High power communication satellites power systems study

    NASA Astrophysics Data System (ADS)

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  13. JPEG XS-based frame buffer compression inside HEVC for power-aware video compression

    NASA Astrophysics Data System (ADS)

    Willème, Alexandre; Descampe, Antonin; Rouvroy, Gaël.; Pellegrin, Pascal; Macq, Benoit

    2017-09-01

    With the emergence of Ultra-High Definition video, reference frame buffers (FBs) inside HEVC-like encoders and decoders have to sustain huge bandwidth. The power consumed by these external memory accesses accounts for a significant share of the codec's total consumption. This paper describes a solution to significantly decrease the FB's bandwidth, making HEVC encoder more suitable for use in power-aware applications. The proposed prototype consists in integrating an embedded lightweight, low-latency and visually lossless codec at the FB interface inside HEVC in order to store each reference frame as several compressed bitstreams. As opposed to previous works, our solution compresses large picture areas (ranging from a CTU to a frame stripe) independently in order to better exploit the spatial redundancy found in the reference frame. This work investigates two data reuse schemes namely Level-C and Level-D. Our approach is made possible thanks to simplified motion estimation mechanisms further reducing the FB's bandwidth and inducing very low quality degradation. In this work, we integrated JPEG XS, the upcoming standard for lightweight low-latency video compression, inside HEVC. In practice, the proposed implementation is based on HM 16.8 and on XSM 1.1.2 (JPEG XS Test Model). Through this paper, the architecture of our HEVC with JPEG XS-based frame buffer compression is described. Then its performance is compared to HM encoder. Compared to previous works, our prototype provides significant external memory bandwidth reduction. Depending on the reuse scheme, one can expect bandwidth and FB size reduction ranging from 50% to 83.3% without significant quality degradation.

  14. Ring modulator small-signal response analysis based on pole-zero representation.

    PubMed

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-04-04

    We present a closed-form expression for the small-signal response of a depletion-mode ring modulator and verify it by measurement results. Both electrical and optical behavior of micro-ring modulator as well as the loss variation due to the index modulation is considered in the derivation. This expression suggests that a ring modulator is a third-order system with one real pole, one zero and a pair of complex-conjugate poles. The exact positions of the poles/zero are given and shown to be dependent upon parameters such as electrical bandwidth, coupling condition, optical loss, and sign/value of laser detunings. We show that the location of zero is different for positive and negative detuning, and therefore, the ring modulator frequency response is asymmetric. We use the gain-bandwidth product as a figure of merit and calculate it for various pole/zero locations. We show that gain-bandwidth for the over-coupled ring modulator is superior compared to other coupling conditions. Also, we show that the gain-bandwidth product can be increased to a limit by increasing the electrical bandwidth.

  15. Striped tertiary storage arrays

    NASA Technical Reports Server (NTRS)

    Drapeau, Ann L.

    1993-01-01

    Data stripping is a technique for increasing the throughput and reducing the response time of large access to a storage system. In striped magnetic or optical disk arrays, a single file is striped or interleaved across several disks; in a striped tape system, files are interleaved across tape cartridges. Because a striped file can be accessed by several disk drives or tape recorders in parallel, the sustained bandwidth to the file is greater than in non-striped systems, where access to the file are restricted to a single device. It is argued that applying striping to tertiary storage systems will provide needed performance and reliability benefits. The performance benefits of striping for applications using large tertiary storage systems is discussed. It will introduce commonly available tape drives and libraries, and discuss their performance limitations, especially focusing on the long latency of tape accesses. This section will also describe an event-driven tertiary storage array simulator that is being used to understand the best ways of configuring these storage arrays. The reliability problems of magnetic tape devices are discussed, and plans for modeling the overall reliability of striped tertiary storage arrays to identify the amount of error correction required are described. Finally, work being done by other members of the Sequoia group to address latency of accesses, optimizing tertiary storage arrays that perform mostly writes, and compression is discussed.

  16. Edge-Enabled Tactical Systems (Poster)

    DTIC Science & Technology

    2014-10-23

    Recently added capabilities allow fine grained network and data optimization in Disconnected, Intermittent, Low-Bandwidth (DIL) environments by...Research Focus Establishing Trusted Identities in Disconnected Tactical Environments We will develop trusted identity solutions that work within the...constraints of DIL environments in which there is no consistent access to third-party online trusted authorities that validate the credentials of

  17. Using VirtualGL/TurboVNC Software on the Peregrine System |

    Science.gov Websites

    High-Performance Computing | NREL VirtualGL/TurboVNC Software on the Peregrine System Using , allowing users to access and share large-memory visualization nodes with high-end graphics processing units may be better than just using X11 forwarding when connecting from a remote site with low bandwidth and

  18. The Design of Passive Optical Networking+Ethernet over Coaxial Cable Access Networking and Video-on-Demand Services Carrying

    NASA Astrophysics Data System (ADS)

    Ji, Wei

    2013-07-01

    Video on demand is a very attractive service used for entertainment, education, and other purposes. The design of passive optical networking+Ethernet over coaxial cable accessing and a home gateway system is proposed. The network integrates the passive optical networking and Ethernet over coaxial cable to provide high dedicated bandwidth for the metropolitan video-on-demand services. Using digital video broadcasting, IP television protocol, unicasting, and broadcasting mechanisms maximizes the system throughput. The home gateway finishes radio frequency signal receiving and provides three kinds of interfaces for high-definition video, voice, and data, which achieves triple-play and wire/wireless access synchronously.

  19. Novel Schemes for Local Area Network Emulation in Passive Optical Networks With RF Subcarrier Multiplexed Customer Traffic

    NASA Astrophysics Data System (ADS)

    Nadarajah, Nishaanthan; Attygalle, Manik; Wong, Elaine; Nirmalathas, Ampalavanapillai

    2005-10-01

    This paper proposes two novel optical layer schemes for intercommunication between customers in a passive optical network (PON). The proposed schemes use radio frequency (RF) subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office (CO) at baseband. One scheme employs a narrowband fiber Bragg grating (FBG) placed close to the star coupler in the feeder fiber of the PON, while the other uses an additional short-length distribution fiber from the star coupler to each customer unit for the redirection of customer traffic. In both schemes, only one optical transmitter is required at each optical network unit (ONU) for the transmission of customer traffic and upstream access traffic. Moreover, downstream bandwidth is not consumed by customer traffic unlike in previously reported techniques. The authors experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the CO and 155 Mb/s customer data transmission on the RF carrier. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme. Further, the proposed schemes were discussed in terms of upgradability of the transmission bit rates for the upstream access traffic, bandwidth requirements at the customer premises, dispersion tolerance, and stability issues for the practical implementations of the network.

  20. Application of inexpensive, low-cost, low-bandwidth silhouette profiling UGS systems to current remote sensing operations

    NASA Astrophysics Data System (ADS)

    Haskovic, Emir Y.; Walsh, Sterling; Cloud, Glenn; Winkelman, Rick; Jia, Yingqing; Vishnyakov, Sergey; Jin, Feng

    2013-05-01

    Low cost, power and bandwidth UGS can be used to fill the growing need for surveillance in remote environments. In particular, linear and 2D thermal sensor systems can run for up to months at a time and their deployment can be scaled to suit the size of the mission. Thermal silhouette profilers like Brimrose's SPOT system reduce power and bandwidth requirements by performing elementary classification and only transmitting binary data using optimized compression methods. These systems satisfy the demands for an increasing number of surveillance operations where reduced bandwidth and power consumption are mission critical.

  1. Hermitian symmetry free optical-single-carrier frequency division multiple access for visible light communication

    NASA Astrophysics Data System (ADS)

    Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine

    2018-05-01

    Optical-orthogonal frequency division multiplexing (O-OFDM) is an effective scheme for visible light communications (VLC), offering a candid extension to multiple access (MA) scenarios, i.e., O-OFDMA. However, O-OFDMA exhibits high peak-to-average power ratio (PAPR), which exacerbates the non-linear distortions from the light emitting diode (LED). To overcome high PAPR while sustaining MA, optical-single-carrier frequency-division multiple access (O-SCFDMA) is used. For both O-OFDMA and O-SCFDMA, Hermitian symmetry (HS) constraint is imposed in frequency-domain (FD) to obtain a real-valued time-domain (TD) signal for intensity modulation-direct detection (IM-DD) implementation of VLC. Howbeit, HS results in an increase of PAPR for O-SCFDMA. In this regard, we propose HS free (HSF) O-SCFDMA (HSFO-SCFDMA). We compare HSFO-SCFDMA with several approaches in key parameters, such as, bit error rate (BER), optical power penalty, PAPR, quantization, electrical power efficiency and system complexity. BER performance and optical power penalty is evaluated considering multipath VLC channel and taking into account the bandwidth limitation of LED in combination with its optimized driver. It is illustrated that HSFO-SCFDMA outperforms other alternatives.

  2. A New Era of Multidisciplinary Expeditions: Recent Opportunities and Progress to Advance the Telepresence Paradigm

    NASA Astrophysics Data System (ADS)

    Cantwell, K. L.; Kennedy, B. R.; Malik, M.; Gray, L. M.; Elliott, K.; Lobecker, E.; Drewniak, J.; Reser, B.; Crum, E.; Lovalvo, D.

    2016-02-01

    Since it's commissioning in 2008, NOAA Ship Okeanos Explorer has used telepresence technology both as an outreach tool and as a new way to conduct interdisciplinary science expeditions. NOAA's Office of Ocean Exploration and Research (OER) has developed a set of collaboration tools and protocols to enable extensive shore-based participation. Telepresence offers unique advantages including access to a large pool of expertise on shore and flexibility to react to new discoveries as they occur. During early years, the telepresence experience was limited to Internet 2 enabled Exploration Command Centers, but with advent of improved bandwidth and new video transcoders, scientists from anywhere with an internet connection can participate in a telepresence expedition. Scientists have also capitalized on social media (Twitter, Facebook, Reddit etc.) by sharing discoveries to leverage the intellectual capital of scientists worldwide and engaging the general public in real-time. Aside from using telepresence to stream video off the ship, the high-bandwidth satellite connection allows for the transfer of large quantities of data in near real-time. This enables not only ship - shore data transfers, but can also support ship - ship collaborations as demonstrated during the 2015 and 2014 seasons where Okeanos worked directly with science teams onboard other vessels to share data and immediately follow up on features of interest, leading to additional discoveries. OER continues to expand its use of telepresence by experimenting with procedures to offload roles previously tied to the ship, such as data acquisition watch standers; prototyping tools for distributed user data analysis and video annotation; and incorporating in-situ sampling devices. OER has also developed improved tools to provide access to archived data to increase data distribution and facilitate additional discoveries post-expedition.

  3. The QoE implications of ultra-high definition video adaptation strategies

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Awobuluyi, Olatunde; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos

    2016-04-01

    As the capabilities of high-end consumer devices increase, streaming and playback of Ultra-High Definition (UHD) is set to become commonplace. The move to these new, higher resolution, video services is one of the main factors contributing to the predicted continuation of growth in video related traffic in the Internet. This massive increases in bandwidth requirement, even when mitigated by the use of new video compression standards such as H.265, will place an ever-increasing burden on network service providers. This will be especially true in mobile environments where users have come to expect ubiquitous access to content. Consequently, delivering UHD and Full UHD (FUHD) video content is one of the key drivers for future Fifth Generation (5G) mobile networks. One often voiced, but as yet unanswered question, is whether users of mobile devices with modest screen sizes (e.g. smartphones or smaller tablet) will actually benefit from consuming the much higher bandwidth required to watch online UHD video, in terms of an improved user experience. In this paper, we use scalable H.265 encoded video streams to conduct a subjective evaluation of the impact on a user's perception of video quality across a comprehensive range of adaptation strategies, covering each of the three adaptation domains, for UHD and FUHD video. The results of our subjective study provide insightful and useful indications of which methods of adapting UHD and FUHD streams have the least impact on user's perceived QoE. In particular, it was observed that, in over 70% of cases, users were unable to distinguish between full HD (1080p) and UHD (4K) videos when they were unaware of which version was being shown to them. Our results from this evaluation can be used to provide adaptation rule sets that will facilitate fast, QoE aware in-network adaptation of video streams in support of realtime adaptation objectives. Undoubtedly they will also promote discussion around how network service providers manage their relationships with end users and how service level agreements might be shaped to account for what may be viewed as `unproductive' use of bandwidth to deliver very marginal or imperceptible improvements in viewing experience.

  4. Two-Way Satellite Time and Frequency Transfer Using 1 MChips/s Codes

    DTIC Science & Technology

    2009-11-01

    Abstract The Ku-band transatlantic and Europe-to-Europe two-way satellite time and frequency transfer ( TWSTFT ) operations used 2.5 MChip/s...pseudo-random codes with 3.5 MHz bandwidth until the end of July 2009. The cost of TWSTFT operation is associated with the bandwidth used on a...geostationary satellite. The transatlantic and Europe-to-Europe TWSTFT operations faced a significant increase in cost for using 3.5 MHz bandwidth on a new

  5. Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines

    PubMed Central

    Torres, Víctor; Ortuño, Rubén; Rodríguez-Ulibarri, Pablo; Griol, Amadeu; Martínez, Alejandro; Navarro-Cía, Miguel; Beruete, Miguel; Sorolla, Mario

    2014-01-01

    We present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17 THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling of infrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications. PMID:24393839

  6. A novel PON-based mobile distributed cluster of antennas approach to provide impartial and broadband services to end users

    NASA Astrophysics Data System (ADS)

    Sana, Ajaz; Saddawi, Samir; Moghaddassi, Jalil; Hussain, Shahab; Zaidi, Syed R.

    2010-01-01

    In this research paper we propose a novel Passive Optical Network (PON) based Mobile Worldwide Interoperability for Microwave Access (WiMAX) access network architecture to provide high capacity and performance multimedia services to mobile WiMAX users. Passive Optical Networks (PON) networks do not require powered equipment; hence they cost lower and need less network management. WiMAX technology emerges as a viable candidate for the last mile solution. In the conventional WiMAX access networks, the base stations and Multiple Input Multiple Output (MIMO) antennas are connected by point to point lines. Ideally in theory, the Maximum WiMAX bandwidth is assumed to be 70 Mbit/s over 31 miles. In reality, WiMAX can only provide one or the other as when operating over maximum range, bit error rate increases and therefore it is required to use lower bit rate. Lowering the range allows a device to operate at higher bit rates. Our focus in this research paper is to increase both range and bit rate by utilizing distributed cluster of MIMO antennas connected to WiMAX base stations with PON based topologies. A novel quality of service (QoS) algorithm is also proposed to provide admission control and scheduling to serve classified traffic. The proposed architecture presents flexible and scalable system design with different performance requirements and complexity.

  7. Scalable Motion Estimation Processor Core for Multimedia System-on-Chip Applications

    NASA Astrophysics Data System (ADS)

    Lai, Yeong-Kang; Hsieh, Tian-En; Chen, Lien-Fei

    2007-04-01

    In this paper, we describe a high-throughput and scalable motion estimation processor architecture for multimedia system-on-chip applications. The number of processing elements (PEs) is scalable according to the variable algorithm parameters and the performance required for different applications. Using the PE rings efficiently and an intelligent memory-interleaving organization, the efficiency of the architecture can be increased. Moreover, using efficient on-chip memories and a data management technique can effectively decrease the power consumption and memory bandwidth. Techniques for reducing the number of interconnections and external memory accesses are also presented. Our results demonstrate that the proposed scalable PE-ringed architecture is a flexible and high-performance processor core in multimedia system-on-chip applications.

  8. Driving Innovation in Optical Networking

    NASA Astrophysics Data System (ADS)

    Colizzi, Ernesto

    Over the past 30 years, network applications have changed with the advent of innovative services spanning from high-speed broadband access to mobile data communications and to video signal distribution. To support this service evolution, optical transport infrastructures have changed their role. Innovations in optical networking have not only allowed the pure "bandwidth per fiber" increase, but also the realization of highly dependable and easy-to-manage networks. This article analyzes the innovations that have characterized the optical networking solutions from different perspectives, with a specific focus on the advancements introduced by Alcatel-Lucent's research and development laboratories located in Italy. The advancements of optical networking will be explored and discussed through Alcatel-Lucent's optical products to contextualize each innovation with the market evolution.

  9. Dispersion Characteristics of a Helix Loaded Waveguide.

    DTIC Science & Technology

    1985-09-01

    be employed to increase the bandwidth of gyroton amplifiers. The structure consists of helical wires contained concentrially 6. in a cylindrical...bandwidth of gyroton amplifiers. The structure consists of helical wires contained concentrially in a cylindrical conductor. The helical wires are close

  10. Nonadditivity of forward and simultaneous maskinga

    PubMed Central

    Svec, Adam; Joshi, Suyash N.; Jesteadt, Walt

    2013-01-01

    The current study measured the additional masking obtained for combinations of forward and simultaneous maskers as a function of forward masker bandwidth, signal delay, and simultaneous masker level. The effects of the two individual maskers were equated in all conditions. Additional masking increased with increasing masker level, increasing signal delay, and decreasing masker bandwidth. The portion of the simultaneous masker that made the greater contribution to additional masking was the part that overlapped with the signal, not with the forward masker. The changes in additional masking observed as a function of forward masker bandwidth and the interaction between the effects of forward and simultaneous maskers call into question the use of additional masking as a measure of basilar membrane compression and present problems for the use of simultaneous noise to simulate hearing loss. PMID:24116423

  11. Urban sparrows respond to a sexually selected trait with increased aggression in noise.

    PubMed

    Phillips, Jennifer N; Derryberry, Elizabeth P

    2018-05-14

    Animals modify acoustic communication signals in response to noise pollution, but consequences of these modifications are unknown. Vocalizations that transmit best in noise may not be those that best signal male quality, leading to potential conflict between selection pressures. For example, slow paced, narrow bandwidth songs transmit better in noise but are less effective in mate choice and competition than fast paced, wide bandwidth songs. We test the hypothesis that noise affects response to song pace and bandwidth in the context of competition using white-crowned sparrows (Zonotrichia leucophrys). We measure male response to song variation along a gradient of ambient noise levels in San Francisco, CA. We find that males discriminate between wide and narrow bandwidth songs but not between slow and fast paced songs. These findings are biologically relevant because songs in noisy areas tend to have narrow bandwidths. Therefore, this song phenotype potentially increases transmission distance in noise, but elicits weaker responses from competitors. Further, we find that males respond more strongly to stimuli in noisier conditions, supporting the 'urban anger' hypothesis. We suggest that noise affects male responsiveness to song, possibly leading to more territorial conflict in urban areas.

  12. Concatenated Coding Using Trellis-Coded Modulation

    NASA Technical Reports Server (NTRS)

    Thompson, Michael W.

    1997-01-01

    In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.

  13. Reducing I/O variability using dynamic I/O path characterization in petascale storage systems

    DOE PAGES

    Son, Seung Woo; Sehrish, Saba; Liao, Wei-keng; ...

    2016-11-01

    In petascale systems with a million CPU cores, scalable and consistent I/O performance is becoming increasingly difficult to sustain mainly because of I/O variability. Furthermore, the I/O variability is caused by concurrently running processes/jobs competing for I/O or a RAID rebuild when a disk drive fails. We present a mechanism that stripes across a selected subset of I/O nodes with the lightest workload at runtime to achieve the highest I/O bandwidth available in the system. In this paper, we propose a probing mechanism to enable application-level dynamic file striping to mitigate I/O variability. We also implement the proposed mechanism inmore » the high-level I/O library that enables memory-to-file data layout transformation and allows transparent file partitioning using subfiling. Subfiling is a technique that partitions data into a set of files of smaller size and manages file access to them, making data to be treated as a single, normal file to users. Here, we demonstrate that our bandwidth probing mechanism can successfully identify temporally slower I/O nodes without noticeable runtime overhead. Experimental results on NERSC’s systems also show that our approach isolates I/O variability effectively on shared systems and improves overall collective I/O performance with less variation.« less

  14. Plasma channel undulator excited by high-order laser modes

    DOE PAGES

    Wang, J. W.; Schroeder, C. B.; Li, R.; ...

    2017-12-04

    The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven by the great potential to decrease the threshold for accessing such sources, which are mainly provided by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL instability to develop. Here in this paper, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate that a plasma undulator generated by the beating of amore » mixture of high-order laser modes propagating inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator can reach unity, the period can be less than a millimeter, and the number of undulator periods can be significantly increased by a phase locking technique based on the longitudinal tapering. Polarization control of such an undulator can be achieved by appropriately choosing the phase of the modes. According to our results, in the fully beam loaded regime, the electron current in the plasma undulator can reach 0.3 kA level, making such an undulator a potential candidate towards a table-Top FEL.« less

  15. An energy saving mechanism of EPON networks for real time video transmission

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Ping; Wu, Ho-Ting; Chiang, Yun-Ting; Chien, Shieh-Chieh; Ke, Kai-Wei

    2015-07-01

    Modern access networks are constructed widely by passive optical networks (PONs) to meet the growing bandwidth demand. However, higher bandwidth means more energy consumption. To save energy, a few research works propose the dual-mode energy saving mechanism that allows the ONU to operate between active and sleep modes periodically. However, such dual-mode energy saving design may induce unnecessary power consumption or packet delay increase in the case where only downstream data exist for most of the time. In this paper, we propose a new tri-mode energy saving scheme for Ethernet PON (EPON). The new tri-mode energy saving design, combining the dual-mode saving mechanism with the doze mode, allows the ONU to switch among these three modes alternatively. In the doze mode, the ONU may receive downstream data while keeping its transmitter close. Such scenario is often observed for real time video downstream transmission. Furthermore, the low packet delay of high priority upstream data can be attained through the use of early wake-up mechanism employed in both energy saving modes. The energy saving and system efficiency can thus be achieved jointly while maintaining the differentiated QoS for data with various priorities. Performance results via simulation have demonstrated the effectiveness of such mechanism.

  16. Asymptotically reliable transport of multimedia/graphics over wireless channels

    NASA Astrophysics Data System (ADS)

    Han, Richard Y.; Messerschmitt, David G.

    1996-03-01

    We propose a multiple-delivery transport service tailored for graphics and video transported over connections with wireless access. This service operates at the interface between the transport and application layers, balancing the subjective delay and image quality objectives of the application with the low reliability and limited bandwidth of the wireless link. While techniques like forward-error correction, interleaving and retransmission improve reliability over wireless links, they also increase latency substantially when bandwidth is limited. Certain forms of interactive multimedia datatypes can benefit from an initial delivery of a corrupt packet to lower the perceptual latency, as long as reliable delivery occurs eventually. Multiple delivery of successively refined versions of the received packet, terminating when a sufficiently reliable version arrives, exploits the redundancy inherently required to improve reliability without a traffic penalty. Modifications to acknowledgment-repeat-request (ARQ) methods to implement this transport service are proposed, which we term `leaky ARQ'. For the specific case of pixel-coded window-based text/graphics, we describe additional functions needed to more effectively support urgent delivery and asymptotic reliability. X server emulation suggests that users will accept a multi-second delay between a (possibly corrupt) packet and the ultimate reliably-delivered version. The relaxed delay for reliable delivery can be exploited for traffic capacity improvement using scheduling of retransmissions.

  17. Plasma channel undulator excited by high-order laser modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J. W.; Schroeder, C. B.; Li, R.

    The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven by the great potential to decrease the threshold for accessing such sources, which are mainly provided by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL instability to develop. Here in this paper, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate that a plasma undulator generated by the beating of amore » mixture of high-order laser modes propagating inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator can reach unity, the period can be less than a millimeter, and the number of undulator periods can be significantly increased by a phase locking technique based on the longitudinal tapering. Polarization control of such an undulator can be achieved by appropriately choosing the phase of the modes. According to our results, in the fully beam loaded regime, the electron current in the plasma undulator can reach 0.3 kA level, making such an undulator a potential candidate towards a table-Top FEL.« less

  18. THz-bandwidth photonic Hilbert transformers based on fiber Bragg gratings in transmission.

    PubMed

    Fernández-Ruiz, María R; Wang, Lixian; Carballar, Alejandro; Burla, Maurizio; Azaña, José; LaRochelle, Sophie

    2015-01-01

    THz-bandwidth photonic Hilbert transformers (PHTs) are implemented for the first time, to the best of our knowledge, based on fiber Bragg grating (FBG) technology. To increase the practical bandwidth limitation of FBGs (typically <200  GHz), a superstructure based on two superimposed linearly-chirped FBGs operating in transmission has been employed. The use of a transmission FBG involves first a conversion of the non-minimum phase response of the PHT into a minimum-phase response by adding an anticipated instantaneous component to the desired system temporal impulse response. Using this methodology, a 3-THz-bandwidth integer PHT and a fractional (order 0.81) PHT are designed, fabricated, and successfully characterized.

  19. Characteristics of III-nitride based laser diode employed for short range underwater wireless optical communications

    NASA Astrophysics Data System (ADS)

    Xue, Bin; Liu, Zhe; Yang, Jie; Feng, Liangsen; Zhang, Ning; Wang, Junxi; Li, Jinmin

    2018-03-01

    An off-the-shelf green laser diode (LD) was measured to investigate its temperature dependent characteristics. Performance of the device was severely restricted by rising temperature in terms of increasing threshold current and decreasing modulation bandwidth. The observation reveals that dynamic characteristics of the LD is sensitive to temperature. Influence of light attenuation on the modulation bandwidth of the green LD was also studied. The impact of light attenuation on the modulation bandwidth of the LD in short and low turbid water channel was not obvious while slight difference in modulation bandwidth under same injection level was observed between water channel and free space even at short range.

  20. 3.5G based mobile remote monitoring system.

    PubMed

    Bajracharya, Aman; Gale, Timothy J; Stack, Clive R; Turner, Paul

    2008-01-01

    Low bandwidth has long been a reason for the unsuitability of wireless internet in telemedicine. However with the advent of extended third generation wireless as an economically accessible high speed network, more opportunities are being created in this area of telemedicine. This paper explores the opportunity created by the latest wireless broadband technology for remote monitoring of patients in the home.

  1. PACE: Power-Aware Computing Engines

    DTIC Science & Technology

    2005-02-01

    more costly than compu- tation on our test platform, and it is memory access that dominates most lossless data compression algorithms . In fact, even...Performance and implementation concerns A compression algorithm may be implemented with many different, yet reasonable, data structures (including...Related work This section discusses data compression for low- bandwidth devices and optimizing algorithms for low energy. Though much work has gone

  2. From District to Desktop: Making the Most of Broadband in Florida Schools. A White Paper

    ERIC Educational Resources Information Center

    Everhart, Nancy; Mardis, Marcia; Johnston, Melissa; Smith, Daniella

    2009-01-01

    For Americans to engage in a global information society, it is critical that they have access to high-speed, high-bandwidth Internet, meaning broadband. Network connectivity opens up a wealth of possibilities to K-12 educators. While it has the potential to result in fundamental changes in teaching methods, it can definitely be used to enhance…

  3. 47 CFR 27.53 - Emission limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operations shall be limited to a maximum power flux density of −197 dBW/m2/4 kHz in the 2370-2390 MHz band at... displacement from the channel center frequency and measurement bandwidth. In the following tables, “(s... section of the printed volume and on GPO Access. Effective Date Note: At 79 FR 48539, Aug. 15, 2014, § 27...

  4. Integrating Sensor-Collected Intelligence

    DTIC Science & Technology

    2008-11-01

    collecting, processing, data storage and fusion, and the dissemination of information collected by Intelligence, Surveillance, and Reconnaissance (ISR...Grid – Bandwidth Expansion (GIG-BE) program) to provide the capability to transfer data from sensors to accessible storage and satellite and airborne...based ISR is much more fragile. There was a purposeful drawdown of these systems following the Cold War and modernization programs were planned to

  5. Boosting Bandwidth: Colleges Are Upgrading Their Network Infrastructure to Support Next-Generation Technologies

    ERIC Educational Resources Information Center

    Wong, Wylie

    2014-01-01

    In October 2013, nearly half of U.S. community colleges--46.2 percent-- said upgrading their campus networks is a "very important priority" within the next three years, according to The Campus Computing Project, a survey of 94 community colleges. More robust networks are needed to support a host of new wireless access points and the…

  6. Data Acquisition Based on Stable Matching of Bipartite Graph in Cooperative Vehicle–Infrastructure Systems †

    PubMed Central

    Tang, Xiaolan; Hong, Donghui; Chen, Wenlong

    2017-01-01

    Existing studies on data acquisition in vehicular networks often take the mobile vehicular nodes as data carriers. However, their autonomous movements, limited resources and security risks impact the quality of services. In this article, we propose a data acquisition model using stable matching of bipartite graph in cooperative vehicle-infrastructure systems, namely, DAS. Contents are distributed to roadside units, while vehicular nodes support supplementary storage. The original distribution problem is formulated as a stable matching problem of bipartite graph, where the data and the storage cells compose two sides of vertices. Regarding the factors relevant with the access ratio and delay, the preference rankings for contents and roadside units are calculated, respectively. With a multi-replica preprocessing algorithm to handle the potential one-to-many mapping, the matching problem is addressed in polynomial time. In addition, vehicular nodes carry and forward assistant contents to deliver the failed packets because of bandwidth competition. Furthermore, an incentive strategy is put forward to boost the vehicle cooperation and to achieve a fair bandwidth allocation at roadside units. Experiments show that DAS achieves a high access ratio and a small storage cost with an acceptable delay. PMID:28594359

  7. Performance Analysis of Optical Mobile Fronthaul for Cloud Radio Access Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Xiao, Yuming; Li, Hui; Ji, Yuefeng

    2017-10-01

    Cloud radio access networks (C-RAN) separates baseband units (BBU) of conventional base station to a centralized pool which connects remote radio heads (RRH) through mobile fronthaul. Mobile fronthaul is a new network segment of C-RAN, it is designed to transport digital sampling data between BBU and RRH. Optical transport networks that provide large bandwidth and low latency is a promising fronthaul solution. In this paper, we discuss several optical transport networks which are candidates for mobile fronthaul, analyze their performances including the number of used wavelength, round-trip latency and wavelength utilization.

  8. High bandwidth deflection readout for atomic force microscopes.

    PubMed

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz.

  9. High bandwidth deflection readout for atomic force microscopes

    NASA Astrophysics Data System (ADS)

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62 fm / √{ Hz } .

  10. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.

    PubMed

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Design and Analysis of In0.53Ga0.47As/InP Symmetric Gain Optoelectronic Mixers

    DTIC Science & Technology

    2010-01-01

    Adding gain to the OEM allows the following transimpedance amplifier ?s gain to be reduced, increasing bandwidth and improving the system?s noise...following transimpedance ampli- fier’s gain to be reduced, increasing bandwidth and improving the system’s noise performance. A sym- metric gain...is also obtained. As the OEM output is the low frequency difference signal, the gain of the following trans- impedance amplifier (TZA) can be increased

  12. A Low-Cost Tele-Imaging Platform for Developing Countries

    PubMed Central

    Adambounou, Kokou; Adjenou, Victor; Salam, Alex P.; Farin, Fabien; N’Dakena, Koffi Gilbert; Gbeassor, Messanvi; Arbeille, Philippe

    2014-01-01

    Purpose: To design a “low-cost” tele-imaging method allowing real-time tele-ultrasound expertise, delayed tele-ultrasound diagnosis, and tele-radiology between remote peripherals hospitals and clinics (patient centers) and university hospital centers (expert center). Materials and methods: A system of communication via internet (IP camera and remote access software) enabling transfer of ultrasound videos and images between two centers allows a real-time tele-radiology expertise in the presence of a junior sonographer or radiologist at the patient center. In the absence of a sonographer or radiologist at the patient center, a 3D reconstruction program allows a delayed tele-ultrasound diagnosis with images acquired by a lay operator (e.g., midwife, nurse, technician). The system was tested both with high and low bandwidth. The system can further accommodate non-ultrasound tele-radiology (conventional radiography, mammography, and computer tomography for example). The system was tested on 50 patients between CHR Tsevie in Togo (40 km from Lomé-Togo and 4500 km from Tours-France) and CHU Campus at Lomé and CHU Trousseau in Tours. Results: A real-time tele-expertise was successfully performed with a delay of approximately 1.5 s with an internet bandwidth of around 1 Mbps (IP Camera) and 512 kbps (remote access software). A delayed tele-ultrasound diagnosis was also performed with satisfactory results. The transmission of radiological images from the patient center to the expert center was of adequate quality. Delayed tele-ultrasound and tele-radiology was possible even in the presence of a low-bandwidth internet connection. Conclusion: This tele-imaging method, requiring nothing by readily available and inexpensive technology and equipment, offers a major opportunity for telemedicine in developing countries. PMID:25250306

  13. Tropospheric scintillation prediction models for a high elevation angle based on measured data from a tropical region

    NASA Astrophysics Data System (ADS)

    Abdul Rahim, Nadirah Binti; Islam, Md. Rafiqul; J. S., Mandeep; Dao, Hassan; Bashir, Saad Osman

    2013-12-01

    The recent rapid evolution of new satellite services, including VSAT for internet access, LAN interconnection and multimedia applications, has triggered an increasing demand for bandwidth usage by satellite communications. However, these systems are susceptible to propagation effects that become significant as the frequency increases. Scintillation is the rapid signal fluctuation of the amplitude and phase of a radio wave, which is significant in tropical climates. This paper presents the analysis of the tropospheric scintillation data for satellite to Earth links at the Ku-band. Twelve months of data (January-December 2011) were collected and analyzed to evaluate the effect of tropospheric scintillation. Statistics were then further analyzed to inspect the seasonal, worst-month, diurnal and rain-induced scintillation effects. By employing the measured scintillation data, a modification of the Karasawa model for scintillation fades and enhancements is proposed based on data measured in Malaysia.

  14. The European project Merlin on multi-gigabit, energy-efficient, ruggedized lightwave engines for advanced on-board digital processors

    NASA Astrophysics Data System (ADS)

    Stampoulidis, L.; Kehayas, E.; Karppinen, M.; Tanskanen, A.; Heikkinen, V.; Westbergh, P.; Gustavsson, J.; Larsson, A.; Grüner-Nielsen, L.; Sotom, M.; Venet, N.; Ko, M.; Micusik, D.; Kissinger, D.; Ulusoy, A. C.; King, R.; Safaisini, R.

    2017-11-01

    Modern broadband communication networks rely on satellites to complement the terrestrial telecommunication infrastructure. Satellites accommodate global reach and enable world-wide direct broadcasting by facilitating wide access to the backbone network from remote sites or areas where the installation of ground segment infrastructure is not economically viable. At the same time the new broadband applications increase the bandwidth demands in every part of the network - and satellites are no exception. Modern telecom satellites incorporate On-Board Processors (OBP) having analogue-to-digital (ADC) and digital-to-analogue converters (DAC) at their inputs/outputs and making use of digital processing to handle hundreds of signals; as the amount of information exchanged increases, so do the physical size, mass and power consumption of the interconnects required to transfer massive amounts of data through bulk electric wires.

  15. A wide bandwidth CCD buffer memory system

    NASA Technical Reports Server (NTRS)

    Siemens, K.; Wallace, R. W.; Robinson, C. R.

    1978-01-01

    A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. CCD shift register memories (8K bit) were used to construct a feasibility model 128 K-bit buffer memory system. Serial data that can have rates between 150 kHz and 4.0 MHz can be stored in 4K-bit, randomly-accessible memory blocks. Peak power dissipation during a data transfer is less than 7 W, while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. System expansion to accommodate parallel inputs or a greater number of memory blocks can be performed in a modular fashion. Since the control logic does not increase proportionally to increase in memory capacity, the power requirements per bit of storage can be reduced significantly in a larger system.

  16. Variable Bandwidth Filtering for Improved Sensitivity of Cross-Frequency Coupling Metrics

    PubMed Central

    McDaniel, Jonathan; Liu, Song; Cornew, Lauren; Gaetz, William; Roberts, Timothy P.L.; Edgar, J. Christopher

    2012-01-01

    Abstract There is an increasing interest in examining cross-frequency coupling (CFC) between groups of oscillating neurons. Most CFC studies examine how the phase of lower-frequency brain activity modulates the amplitude of higher-frequency brain activity. This study focuses on the signal filtering that is required to isolate the higher-frequency neuronal activity which is hypothesized to be amplitude modulated. In particular, previous publications have used a filter bandwidth fixed to a constant for all assessed modulation frequencies. The present article demonstrates that fixed bandwidth filtering can destroy amplitude modulation and create false-negative CFC measures. To overcome this limitation, this study presents a variable bandwidth filter that ensures preservation of the amplitude modulation. Simulated time series data were created with theta-gamma, alpha-gamma, and beta-gamma phase-amplitude coupling. Comparisons between filtering methods indicate that the variable bandwidth approach presented in this article is preferred when examining amplitude modulations above the theta band. The variable bandwidth method of filtering an amplitude modulated signal is proposed to preserve amplitude modulation and enable accurate CFC measurements. PMID:22577870

  17. Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser

    NASA Astrophysics Data System (ADS)

    Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.

    2018-02-01

    Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.

  18. Progressive data transmission for anatomical landmark detection in a cloud.

    PubMed

    Sofka, M; Ralovich, K; Zhang, J; Zhou, S K; Comaniciu, D

    2012-01-01

    In the concept of cloud-computing-based systems, various authorized users have secure access to patient records from a number of care delivery organizations from any location. This creates a growing need for remote visualization, advanced image processing, state-of-the-art image analysis, and computer aided diagnosis. This paper proposes a system of algorithms for automatic detection of anatomical landmarks in 3D volumes in the cloud computing environment. The system addresses the inherent problem of limited bandwidth between a (thin) client, data center, and data analysis server. The problem of limited bandwidth is solved by a hierarchical sequential detection algorithm that obtains data by progressively transmitting only image regions required for processing. The client sends a request to detect a set of landmarks for region visualization or further analysis. The algorithm running on the data analysis server obtains a coarse level image from the data center and generates landmark location candidates. The candidates are then used to obtain image neighborhood regions at a finer resolution level for further detection. This way, the landmark locations are hierarchically and sequentially detected and refined. Only image regions surrounding landmark location candidates need to be trans- mitted during detection. Furthermore, the image regions are lossy compressed with JPEG 2000. Together, these properties amount to at least 30 times bandwidth reduction while achieving similar accuracy when compared to an algorithm using the original data. The hierarchical sequential algorithm with progressive data transmission considerably reduces bandwidth requirements in cloud-based detection systems.

  19. Performance Analysis of a New Coded TH-CDMA Scheme in Dispersive Infrared Channel with Additive Gaussian Noise

    NASA Astrophysics Data System (ADS)

    Hamdi, Mazda; Kenari, Masoumeh Nasiri

    2013-06-01

    We consider a time-hopping based multiple access scheme introduced in [1] for communication over dispersive infrared links, and evaluate its performance for correlator and matched filter receivers. In the investigated time-hopping code division multiple access (TH-CDMA) method, the transmitter benefits a low rate convolutional encoder. In this method, the bit interval is divided into Nc chips and the output of the encoder along with a PN sequence assigned to the user determines the position of the chip in which the optical pulse is transmitted. We evaluate the multiple access performance of the system for correlation receiver considering background noise which is modeled as White Gaussian noise due to its large intensity. For the correlation receiver, the results show that for a fixed processing gain, at high transmit power, where the multiple access interference has the dominant effect, the performance improves by the coding gain. But at low transmit power, in which the increase of coding gain leads to the decrease of the chip time, and consequently, to more corruption due to the channel dispersion, there exists an optimum value for the coding gain. However, for the matched filter, the performance always improves by the coding gain. The results show that the matched filter receiver outperforms the correlation receiver in the considered cases. Our results show that, for the same bandwidth and bit rate, the proposed system excels other multiple access techniques, like conventional CDMA and time hopping scheme.

  20. Crossing the digital divide: the contribution of information technology to the professional performance of malaria researchers in Africa.

    PubMed

    Royall, Julia; van Schayk, Ingeborg; Bennett, Mark; Kamau, Nancy; Alilio, Martin

    2005-09-01

    The US National Library of Medicine supports the Multilateral Initiative on Malaria (MIM) through the design, implementation, and operation of the Multilateral Initiative on Malaria Communications Network (MIMCom.) MIMCom makes possible enhanced access to the Internet and to medical literature. The main objectives of the present study were to examine the use of MIMCom supported information technology (IT) by scientists, students, and administrative personnel to facilitate communication, retrieve information, obtain documents, write proposals, and prepare papers for publication; and to determine the contribution of this intervention to their professional performance. The authors analyzed the contribution of enhanced Internet connectivity and access to electronic information resources to the performance of malaria research staff and their institutes through a cross-sectional questionnaire survey of 181 respondents at 14 health research centers in Africa. Separate reviews of bandwidth usage, requests for document delivery, and publications in peer reviewed journals support the data of the survey. The MIMCom network makes a positive contribution to the performance of malaria researchers and support staff at the sites reviewed by improving e-mail exchange, access to published literature, and research proposal development and submission. Implications of these findings are discussed. By providing full access to the Internet and the resources of the WorldWide Web, MIMCom has been shown to be invaluable to malaria researchers and their institutes in Africa. This access has increased visibility of scientists in their respective institutions and provided opportunities for stronger engagement with the international scientific community.

  1. Application of a modified complementary filtering technique for increased aircraft control system frequency bandwidth in high vibration environment

    NASA Technical Reports Server (NTRS)

    Garren, J. F., Jr.; Niessen, F. R.; Abbott, T. S.; Yenni, K. R.

    1977-01-01

    A modified complementary filtering technique for estimating aircraft roll rate was developed and flown in a research helicopter to determine whether higher gains could be achieved. Use of this technique did, in fact, permit a substantial increase in system frequency bandwidth because, in comparison with first-order filtering, it reduced both noise amplification and control limit-cycle tendencies.

  2. Developing Strategies for Affordable Bandwidth.

    ERIC Educational Resources Information Center

    Educause Quarterly, 2000

    2000-01-01

    Written by Educause's Net@EDU Broadband Pricing Working Group, this article discusses what institutions of higher education can do to develop good partnerships with broadband vendors in order to negotiate affordable pricing for increased bandwidth. Describes problems with the marketplace, examples from a few universities, and points to remember…

  3. Quick Vegas: Improving Performance of TCP Vegas for High Bandwidth-Delay Product Networks

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Cheng; Lin, Chia-Liang; Ho, Cheng-Yuan

    An important issue in designing a TCP congestion control algorithm is that it should allow the protocol to quickly adjust the end-to-end communication rate to the bandwidth on the bottleneck link. However, the TCP congestion control may function poorly in high bandwidth-delay product networks because of its slow response with large congestion windows. In this paper, we propose an enhanced version of TCP Vegas called Quick Vegas, in which we present an efficient congestion window control algorithm for a TCP source. Our algorithm improves the slow-start and congestion avoidance techniques of original Vegas. Simulation results show that Quick Vegas significantly improves the performance of connections as well as remaining fair when the bandwidth-delay product increases.

  4. Bandwidth Efficient Modulation and Coding Techniques for NASA's Existing Ku/Ka-Band 225 MHz Wide Service

    NASA Technical Reports Server (NTRS)

    Gioannini, Bryan; Wong, Yen; Wesdock, John

    2005-01-01

    The National Aeronautics and Space Administration (NASA) has recently established the Tracking and Data Relay Satellite System (TDRSS) K-band Upgrade Project (TKUP), a project intended to enhance the TDRSS Ku-band and Ka-band Single Access Return 225 MHz (Ku/KaSAR-225) data service by adding the capability to process bandwidth efficient signal design and to replace the White Sand Complex (WSC) KSAR high data rate ground equipment and high rate switches which are nearing obsolescence. As a precursor to this project, a modulation and coding study was performed to identify signal structures which maximized the data rate through the Ku/KaSAR-225 channel, minimized the required customer EIRP and ensured acceptable hardware complexity on the customer platform. This paper presents the results and conclusions of the TKUP modulation and coding study.

  5. Optimum ArFi laser bandwidth for 10nm node logic imaging performance

    NASA Astrophysics Data System (ADS)

    Alagna, Paolo; Zurita, Omar; Timoshkov, Vadim; Wong, Patrick; Rechtsteiner, Gregory; Baselmans, Jan; Mailfert, Julien

    2015-03-01

    Lithography process window (PW) and CD uniformity (CDU) requirements are being challenged with scaling across all device types. Aggressive PW and yield specifications put tight requirements on scanner performance, especially on focus budgets resulting in complicated systems for focus control. In this study, an imec N10 Logic-type test vehicle was used to investigate the E95 bandwidth impact on six different Metal 1 Logic features. The imaging metrics that track the impact of light source E95 bandwidth on performance of hot spots are: process window (PW), line width roughness (LWR), and local critical dimension uniformity (LCDU). In the first section of this study, the impact of increasing E95 bandwidth was investigated to observe the lithographic process control response of the specified logic features. In the second section, a preliminary assessment of the impact of lower E95 bandwidth was performed. The impact of lower E95 bandwidth on local intensity variability was monitored through the CDU of line end features and the LWR power spectral density (PSD) of line/space patterns. The investigation found that the imec N10 test vehicle (with OPC optimized for standard E95 bandwidth of300fm) features exposed at 200fm showed pattern specific responses, suggesting areas of potential interest for further investigation.

  6. High Bandwidth, Fine Resolution Deformable Mirror Design.

    DTIC Science & Technology

    1980-03-01

    Low Temperature Solders 68 B.6 Influence Function Parameters 68 APPENDIX C 19 Capacitance Measurement 69 ACCESSION for NTIS white Sectloo ODC Buff...Multilayer actuator: Dilatation versus applied electric field 10 Figure 3 - Multilayer actuator: Influence function 11 Figure 4 - Honeycomb device...bimorph 20 Figure 8 - Bimorph device: Influence function of a bimorph device which has a glass plate 0.20 cm thick 24 Figure 9 - Bimorph device

  7. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  8. A generalized transmultiplexer and its application to mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Ichiyoshi, Osamu

    1990-01-01

    A generalization of digital transmultiplexer technology is presented. The proposed method can realize transmultiplexer (TMUX) and transdemultiplexer (TDUX) filter banks whose element filters have bandwidths greater than the channel spacing frequency. This feature is useful in many communications applications. As an example, a satellite switched (SS) Frequency Division Multiple Access (FDMA) system is proposed for spot beam satellite communications, particularly for mobile satellite communications.

  9. Elementary Teachers' Use of Technology for Teaching and Parent Communication in Low Socio-Economic Classrooms: A Case Study

    ERIC Educational Resources Information Center

    Cumbee, Crystal M. V.

    2017-01-01

    Rural areas have less technology access due to an inadequate amount of income and limited internet bandwidth availabilities, perpetuating the digital gap between rural schools and schools in urban or suburban locations. The problem addressed in this study is that U.S. legislation requires all public school students to be prepared to function in a…

  10. Social Media and the Army

    DTIC Science & Technology

    2010-04-01

    certain social networking sites such as YouTube and MySpace, though commanders can still restrict access due to security concerns or bandwidth... social networking sites is almost always linked back to traditional Army websites, lending validity to the news. The goal is a conversation and... networking sites , including Facebook, You- Tube, Twitter, and Flickr. Leaders at the highest levels are embracing social media. 65MILITARY REVIEW

  11. Fast Faraday Cup With High Bandwidth

    DOEpatents

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  12. Noise and Bandwidth Measurements of Diffusion-Cooled Nb Hot-Electron Bolometer Mixers at Frequencies Above the Superconductive Energy Gap

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Karasik, B. S.; McGrath, W. R.; Bumble, B.; LeDuc, H.

    1999-01-01

    Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.

  13. Listening Effort and Speech Recognition with Frequency Compression Amplification for Children and Adults with Hearing Loss.

    PubMed

    Brennan, Marc A; Lewis, Dawna; McCreery, Ryan; Kopun, Judy; Alexander, Joshua M

    2017-10-01

    Nonlinear frequency compression (NFC) can improve the audibility of high-frequency sounds by lowering them to a frequency where audibility is better; however, this lowering results in spectral distortion. Consequently, performance is a combination of the effects of increased access to high-frequency sounds and the detrimental effects of spectral distortion. Previous work has demonstrated positive benefits of NFC on speech recognition when NFC is set to improve audibility while minimizing distortion. However, the extent to which NFC impacts listening effort is not well understood, especially for children with sensorineural hearing loss (SNHL). To examine the impact of NFC on recognition and listening effort for speech in adults and children with SNHL. Within-subject, quasi-experimental study. Participants listened to amplified nonsense words that were (1) frequency-lowered using NFC, (2) low-pass filtered at 5 kHz to simulate the restricted bandwidth (RBW) of conventional hearing aid processing, or (3) low-pass filtered at 10 kHz to simulate extended bandwidth (EBW) amplification. Fourteen children (8-16 yr) and 14 adults (19-65 yr) with mild-to-severe SNHL. Participants listened to speech processed by a hearing aid simulator that amplified input signals to fit a prescriptive target fitting procedure. Participants were blinded to the type of processing. Participants' responses to each nonsense word were analyzed for accuracy and verbal-response time (VRT; listening effort). A multivariate analysis of variance and linear mixed model were used to determine the effect of hearing-aid signal processing on nonsense word recognition and VRT. Both children and adults identified the nonsense words and initial consonants better with EBW and NFC than with RBW. The type of processing did not affect the identification of the vowels or final consonants. There was no effect of age on recognition of the nonsense words, initial consonants, medial vowels, or final consonants. VRT did not change significantly with the type of processing or age. Both adults and children demonstrated improved speech recognition with access to the high-frequency sounds in speech. Listening effort as measured by VRT was not affected by access to high-frequency sounds. American Academy of Audiology

  14. Internet-Based Delivery of Evidence-Based Health Promotion Programs Among American Indian and Alaska Native Youth: A Case Study

    PubMed Central

    Craig Rushing, Stephanie; Jessen, Cornelia; Gorman, Gwenda; Torres, Jennifer; Lambert, William E; Prokhorov, Alexander V; Miller, Leslie; Allums-Featherston, Kelly; Addy, Robert C; Peskin, Melissa F; Shegog, Ross

    2016-01-01

    Background American Indian and Alaska Native (AI/AN) youth face multiple health challenges compared to other racial/ethnic groups, which could potentially be ameliorated by the dissemination of evidence-based adolescent health promotion programs. Previous studies have indicated that limited trained personnel, cultural barriers, and geographic isolation may hinder the reach and implementation of evidence-based health promotion programs among AI/AN youth. Although Internet access is variable in AI/AN communities across the United States, it is swiftly and steadily improving, and it may provide a viable strategy to disseminate evidence-based health promotion programs to this underserved population. Objective We explored the potential of using the Internet to disseminate evidence-based health promotion programs on multiple health topics to AI/AN youth living in diverse communities across 3 geographically dispersed regions of the United States. Specifically, we assessed the Internet’s potential to increase the reach and implementation of evidence-based health promotion programs for AI/AN youth, and to engage AI/AN youth. Methods This randomized controlled trial was conducted in 25 participating sites in Alaska, Arizona, and the Pacific Northwest. Predominantly AI/AN youth, aged 12-14 years, accessed 6 evidence-based health promotion programs delivered via the Internet, which focused on sexual health, hearing loss, alcohol use, tobacco use, drug use, and nutrition and physical activity. Adult site coordinators completed computer-based education inventory surveys, connectivity and bandwidth testing to assess parameters related to program reach (computer access, connectivity, and bandwidth), and implementation logs to assess barriers to implementation (program errors and delivery issues). We assessed youths’ perceptions of program engagement via ratings on ease of use, understandability, credibility, likeability, perceived impact, and motivational appeal, using previously established measures. Results Sites had sufficient computer access and Internet connectivity to implement the 6 programs with adequate fidelity; however, variable bandwidth (ranging from 0.24 to 93.5 megabits per second; mean 25.6) and technical issues led some sites to access programs via back-up modalities (eg, uploading the programs from a Universal Serial Bus drive). The number of youth providing engagement ratings varied by program (n=40-191; 48-60% female, 85-90% self-identified AI/AN). Across programs, youth rated the programs as easy to use (68-91%), trustworthy (61-89%), likeable (59-87%), and impactful (63-91%). Most youth understood the words in the programs (60-83%), although some needed hints to complete the programs (16-49%). Overall, 37-66% of the participants would recommend the programs to a classmate, and 62-87% found the programs enjoyable when compared to other school lessons. Conclusions Findings demonstrate the potential of the Internet to enhance the reach and implementation of evidence-based health promotion programs, and to engage AI/AN youth. Provision of back-up modalities is recommended to address possible connectivity or technical issues. The dissemination of Internet-based health promotion programs may be a promising strategy to address health disparities for this underserved population. Trial Registration Clinicaltrials.gov NCT01303575; https://clinicaltrials.gov/ct2/show/NCT01303575 (Archived by WebCite at http://www.webcitation.org/6m7DO4g7c) PMID:27872037

  15. Internet-Based Delivery of Evidence-Based Health Promotion Programs Among American Indian and Alaska Native Youth: A Case Study.

    PubMed

    Markham, Christine M; Craig Rushing, Stephanie; Jessen, Cornelia; Gorman, Gwenda; Torres, Jennifer; Lambert, William E; Prokhorov, Alexander V; Miller, Leslie; Allums-Featherston, Kelly; Addy, Robert C; Peskin, Melissa F; Shegog, Ross

    2016-11-21

    American Indian and Alaska Native (AI/AN) youth face multiple health challenges compared to other racial/ethnic groups, which could potentially be ameliorated by the dissemination of evidence-based adolescent health promotion programs. Previous studies have indicated that limited trained personnel, cultural barriers, and geographic isolation may hinder the reach and implementation of evidence-based health promotion programs among AI/AN youth. Although Internet access is variable in AI/AN communities across the United States, it is swiftly and steadily improving, and it may provide a viable strategy to disseminate evidence-based health promotion programs to this underserved population. We explored the potential of using the Internet to disseminate evidence-based health promotion programs on multiple health topics to AI/AN youth living in diverse communities across 3 geographically dispersed regions of the United States. Specifically, we assessed the Internet's potential to increase the reach and implementation of evidence-based health promotion programs for AI/AN youth, and to engage AI/AN youth. This randomized controlled trial was conducted in 25 participating sites in Alaska, Arizona, and the Pacific Northwest. Predominantly AI/AN youth, aged 12-14 years, accessed 6 evidence-based health promotion programs delivered via the Internet, which focused on sexual health, hearing loss, alcohol use, tobacco use, drug use, and nutrition and physical activity. Adult site coordinators completed computer-based education inventory surveys, connectivity and bandwidth testing to assess parameters related to program reach (computer access, connectivity, and bandwidth), and implementation logs to assess barriers to implementation (program errors and delivery issues). We assessed youths' perceptions of program engagement via ratings on ease of use, understandability, credibility, likeability, perceived impact, and motivational appeal, using previously established measures. Sites had sufficient computer access and Internet connectivity to implement the 6 programs with adequate fidelity; however, variable bandwidth (ranging from 0.24 to 93.5 megabits per second; mean 25.6) and technical issues led some sites to access programs via back-up modalities (eg, uploading the programs from a Universal Serial Bus drive). The number of youth providing engagement ratings varied by program (n=40-191; 48-60% female, 85-90% self-identified AI/AN). Across programs, youth rated the programs as easy to use (68-91%), trustworthy (61-89%), likeable (59-87%), and impactful (63-91%). Most youth understood the words in the programs (60-83%), although some needed hints to complete the programs (16-49%). Overall, 37-66% of the participants would recommend the programs to a classmate, and 62-87% found the programs enjoyable when compared to other school lessons. Findings demonstrate the potential of the Internet to enhance the reach and implementation of evidence-based health promotion programs, and to engage AI/AN youth. Provision of back-up modalities is recommended to address possible connectivity or technical issues. The dissemination of Internet-based health promotion programs may be a promising strategy to address health disparities for this underserved population. Clinicaltrials.gov NCT01303575; https://clinicaltrials.gov/ct2/show/NCT01303575 (Archived by WebCite at http://www.webcitation.org/6m7DO4g7c). ©Christine M Markham, Stephanie Craig Rushing, Cornelia Jessen, Gwenda Gorman, Jennifer Torres, William E Lambert, Alexander V Prokhorov, Leslie Miller, Kelly Allums-Featherston, Robert C Addy, Melissa F Peskin, Ross Shegog. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 21.11.2016.

  16. Fronthaul evolution: From CPRI to Ethernet

    NASA Astrophysics Data System (ADS)

    Gomes, Nathan J.; Chanclou, Philippe; Turnbull, Peter; Magee, Anthony; Jungnickel, Volker

    2015-12-01

    It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved.

  17. A Comparison Between Jerusalem Cross and Square Patch Frequency Selective Surfaces for Low Profile Antenna Applications

    NASA Technical Reports Server (NTRS)

    Cure, David; Weller, Thomas; Miranda, Felix A.

    2011-01-01

    In this paper, a comparison between Jerusalem Cross (JC) and Square Patch (SP) based Frequency Selected Surfaces (FSS) for low profile antenna applications is presented. The comparison is aimed at understanding the performance of low profile antennas backed by high impedance surfaces. In particular, an end loaded planar open sleeve dipole (ELPOSD) antenna is examined due to the various parameters within its configuration, offering significant design flexibility and a wide operating bandwidth. Measured data of the antennas demonstrate that increasing the number of unit cells improves the fractional bandwidth. The antenna bandwidth increased from 0.8% to 1.8% and from 0.8% to 2.7% for the JC and SP structures, respectively. The number of unit cells was increased from 48 to 80 for the JC-FSS and from 24 to 48 for the SP-FSS.

  18. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    PubMed Central

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide. PMID:28071681

  19. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths comparedmore » to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.« less

  20. Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer

    NASA Astrophysics Data System (ADS)

    Moaddel Haghighi, I.; Malossi, N.; Natali, R.; Di Giuseppe, G.; Vitali, D.

    2018-03-01

    An optoelectromechanical system formed by a nanomembrane capacitively coupled to an L C resonator and to an optical interferometer has recently been employed for the highly sensitive optical readout of rf signals [T. Bagci et al., Nature (London) 507, 81 (2013), 10.1038/nature13029]. We propose and experimentally demonstrate how the bandwidth of such a transducer can be increased by controlling the interference between two electromechanical interaction pathways of a two-mode mechanical system. With a proof-of-principle device operating at room temperature, we achieve a sensitivity of 300 nV /√{Hz } over a bandwidth of 15 kHz in the presence of radio-frequency noise, and an optimal shot-noise-limited sensitivity of 10 nV /√{Hz } over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multimode transducer can achieve a bandwidth significantly larger than that for a single-mode one.

  1. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    NASA Astrophysics Data System (ADS)

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.

  2. Cooperation and information replication in wireless networks.

    PubMed

    Poularakis, Konstantinos; Tassiulas, Leandros

    2016-03-06

    A significant portion of today's network traffic is due to recurring downloads of a few popular contents. It has been observed that replicating the latter in caches installed at network edges-close to users-can drastically reduce network bandwidth usage and improve content access delay. Such caching architectures are gaining increasing interest in recent years as a way of dealing with the explosive traffic growth, fuelled further by the downward slope in storage space price. In this work, we provide an overview of caching with a particular emphasis on emerging network architectures that enable caching at the radio access network. In this context, novel challenges arise due to the broadcast nature of the wireless medium, which allows simultaneously serving multiple users tuned into a multicast stream, and the mobility of the users who may be frequently handed off from one cell tower to another. Existing results indicate that caching at the wireless edge has a great potential in removing bottlenecks on the wired backbone networks. Taking into consideration the schedule of multicast service and mobility profiles is crucial to extract maximum benefit in network performance. © 2016 The Author(s).

  3. A New Compression Method for FITS Tables

    NASA Technical Reports Server (NTRS)

    Pence, William; Seaman, Rob; White, Richard L.

    2010-01-01

    As the size and number of FITS binary tables generated by astronomical observatories increases, so does the need for a more efficient compression method to reduce the amount disk space and network bandwidth required to archive and down1oad the data tables. We have developed a new compression method for FITS binary tables that is modeled after the FITS tiled-image compression compression convention that has been in use for the past decade. Tests of this new method on a sample of FITS binary tables from a variety of current missions show that on average this new compression technique saves about 50% more disk space than when simply compressing the whole FITS file with gzip. Other advantages of this method are (1) the compressed FITS table is itself a valid FITS table, (2) the FITS headers remain uncompressed, thus allowing rapid read and write access to the keyword values, and (3) in the common case where the FITS file contains multiple tables, each table is compressed separately and may be accessed without having to uncompress the whole file.

  4. Negative inductance circuits for metamaterial bandwidth enhancement

    NASA Astrophysics Data System (ADS)

    Avignon-Meseldzija, Emilie; Lepetit, Thomas; Ferreira, Pietro Maris; Boust, Fabrice

    2017-12-01

    Passive metamaterials have yet to be translated into applications on a large scale due in large part to their limited bandwidth. To overcome this limitation many authors have suggested coupling metamaterials to non-Foster circuits. However, up to now, the number of convincing demonstrations based on non-Foster metamaterials has been very limited. This paper intends to clarify why progress has been so slow, i.e., the fundamental difficulty in making a truly broadband and efficient non-Foster metamaterial. To this end, we consider two families of metamaterials, namely Artificial Magnetic Media and Artificial Magnetic Conductors. In both cases, it turns out that bandwidth enhancement requires negative inductance with almost zero resistance. To estimate bandwidth enhancement with actual non-Foster circuits, we consider two classes of such circuits, namely Linvill and gyrator. The issue of stability being critical, both metamaterial families are studied with equivalent circuits that include advanced models of these non-Foster circuits. Conclusions are different for Artificial Magnetic Media coupled to Linvill circuits and Artificial Magnetic Conductors coupled to gyrator circuits. In the first case, requirements for bandwidth enhancement and stability are very hard to meet simultaneously whereas, in the second case, an adjustment of the transistor gain does significantly increase bandwidth.

  5. A Novel Cost-effective OFDM WDM-PON Radio Over Fiber System Employing FBG to Generate Optical mm-wave

    NASA Astrophysics Data System (ADS)

    Nguyen, HoangViet

    2015-03-01

    We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.

  6. Multiple Access Schemes for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie; Hamkins, Jon; Stocklin, Frank J.

    2010-01-01

    Two years ago, the NASA Coding, Modulation, and Link Protocol (CMLP) study was completed. The study, led by the authors of this paper, recommended codes, modulation schemes, and desired attributes of link protocols for all space communication links in NASA's future space architecture. Portions of the NASA CMLP team were reassembled to resolve one open issue: the use of multiple access (MA) communication from the lunar surface. The CMLP-MA team analyzed and simulated two candidate multiple access schemes that were identified in the original CMLP study: Code Division MA (CDMA) and Frequency Division MA (FDMA) based on a bandwidth-efficient Continuous Phase Modulation (CPM) with a superimposed Pseudo-Noise (PN) ranging signal (CPM/PN). This paper summarizes the results of the analysis and simulation of the CMLP-MA study and describes the final recommendations.

  7. Interactive access to LP DAAC satellite data archives through a combination of open-source and custom middleware web services

    USGS Publications Warehouse

    Davis, Brian N.; Werpy, Jason; Friesz, Aaron M.; Impecoven, Kevin; Quenzer, Robert; Maiersperger, Tom; Meyer, David J.

    2015-01-01

    Current methods of searching for and retrieving data from satellite land remote sensing archives do not allow for interactive information extraction. Instead, Earth science data users are required to download files over low-bandwidth networks to local workstations and process data before science questions can be addressed. New methods of extracting information from data archives need to become more interactive to meet user demands for deriving increasingly complex information from rapidly expanding archives. Moving the tools required for processing data to computer systems of data providers, and away from systems of the data consumer, can improve turnaround times for data processing workflows. The implementation of middleware services was used to provide interactive access to archive data. The goal of this middleware services development is to enable Earth science data users to access remote sensing archives for immediate answers to science questions instead of links to large volumes of data to download and process. Exposing data and metadata to web-based services enables machine-driven queries and data interaction. Also, product quality information can be integrated to enable additional filtering and sub-setting. Only the reduced content required to complete an analysis is then transferred to the user.

  8. Cardinality enhancement utilizing Sequential Algorithm (SeQ) code in OCDMA system

    NASA Astrophysics Data System (ADS)

    Fazlina, C. A. S.; Rashidi, C. B. M.; Rahman, A. K.; Aljunid, S. A.

    2017-11-01

    Optical Code Division Multiple Access (OCDMA) has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ) code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI) and improve Bit Error Rate (BER), Phase Induced Intensity Noise (PIIN) and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage

  9. Self-organizing feature maps for dynamic control of radio resources in CDMA microcellular networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1998-03-01

    The application of artificial neural networks to the channel assignment problem for cellular code-division multiple access (CDMA) cellular networks has previously been investigated. CDMA takes advantage of voice activity and spatial isolation because its capacity is only interference limited, unlike time-division multiple access (TDMA) and frequency-division multiple access (FDMA) where capacities are bandwidth-limited. Any reduction in interference in CDMA translates linearly into increased capacity. To satisfy the high demands for new services and improved connectivity for mobile communications, microcellular and picocellular systems are being introduced. For these systems, there is a need to develop robust and efficient management procedures for the allocation of power and spectrum to maximize radio capacity. Topology-conserving mappings play an important role in the biological processing of sensory inputs. The same principles underlying Kohonen's self-organizing feature maps (SOFMs) are applied to the adaptive control of radio resources to minimize interference, hence, maximize capacity in direct-sequence (DS) CDMA networks. The approach based on SOFMs is applied to some published examples of both theoretical and empirical models of DS/CDMA microcellular networks in metropolitan areas. The results of the approach for these examples are informally compared to the performance of algorithms, based on Hopfield- Tank neural networks and on genetic algorithms, for the channel assignment problem.

  10. Time-Series Forecast Modeling on High-Bandwidth Network Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less

  11. Time-Series Forecast Modeling on High-Bandwidth Network Measurements

    DOE PAGES

    Yoo, Wucherl; Sim, Alex

    2016-06-24

    With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less

  12. Bidirectional multi-optical line terminals incorporated converged WSN-PON network using M/M/1 queuing

    NASA Astrophysics Data System (ADS)

    Kumar, Love; Sharma, Vishal; Singh, Amarpal

    2017-12-01

    Wireless Sensor Networks (WSNs) have an assortment of application areas, for instance, civil, military, and video surveillance with restricted power resources and transmission link. To accommodate the massive traffic load in hefty sensor networks is another key issue. Subsequently, there is a necessity to backhaul the sensed information of such networks and prolong the transmission link to access the distinct receivers. Passive Optical Network (PON), a next-generation access technology, comes out as a suitable candidate for the convergence of the sensed data to the core system. The earlier demonstrated work with single-OLT-PON introduces an overloaded buffer akin to video surveillance scenarios. In this paper, to combine the bandwidth potential of PONs with the mobility capability of WSNs, the viability for the convergence of PONs and WSNs incorporating multi-optical line terminals is demonstrated to handle the overloaded OLTs. The existing M/M/1 queue theory with interleaving polling with adaptive cycle time as dynamic bandwidth algorithm is used to shun the probability of packets clash. Further, the proposed multi-sink WSN and multi-OLT PON converged structure is investigated in bidirectional mode analytically and through computer simulations. The observations establish the proposed structure competent to accommodate the colossal data traffic through less time consumption.

  13. Storage media pipelining: Making good use of fine-grained media

    NASA Technical Reports Server (NTRS)

    Vanmeter, Rodney

    1993-01-01

    This paper proposes a new high-performance paradigm for accessing removable media such as tapes and especially magneto-optical disks. In high-performance computing the striping of data across multiple devices is a common means of improving data transfer rates. Striping has been used very successfully for fixed magnetic disks improving overall system reliability as well as throughput. It has also been proposed as a solution for providing improved bandwidth for tape and magneto-optical subsystems. However, striping of removable media has shortcomings, particularly in the areas of latency to data and restricted system configurations, and is suitable primarily for very large I/Os. We propose that for fine-grained media, an alternative access method, media pipelining, may be used to provide high bandwidth for large requests while retaining the flexibility to support concurrent small requests and different system configurations. Its principal drawback is high buffering requirements in the host computer or file server. This paper discusses the possible organization of such a system including the hardware conditions under which it may be effective, and the flexibility of configuration. Its expected performance is discussed under varying workloads including large single I/O's and numerous smaller ones. Finally, a specific system incorporating a high-transfer-rate magneto-optical disk drive and autochanger is discussed.

  14. Chirp-enhanced fast light in semiconductor optical amplifiers.

    PubMed

    Sedgwick, F G; Pesala, Bala; Uskov, Alexander V; Chang-Hasnain, C J

    2007-12-24

    We present a novel scheme to increase the THz-bandwidth fast light effect in semiconductor optical amplifiers and increase the number of advanced pulses. By introducing a linear chirp to the input pulses before the SOA and recompressing at the output with an opposite chirp, the advance-bandwidth product reached 3.5 at room temperature, 1.55 microm wavelength. This is the largest number reported, to the best of our knowledge, for a semiconductor slow/fast light device.

  15. Static and Dynamic Effects of Lateral Carrier Diffusion in Semiconductor Lasers

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. It is well known that the value of diffusion coefficients affects the threshold pumping current of a semiconductor laser. At the same time, the strength of carrier diffusion process is expected to affect the modulation bandwidth of an AC-modulated laser. It is important not only to investigate the combined DC and AC effects due to carrier diffusion, but also to separate the AC effects from that of the combined effects in order to provide design insights for high speed modulation. In this presentation, we apply a hydrodynamic model developed by the present authors recently from the semiconductor Bloch equations. The model allows microscopic calculation of the lateral carrier diffusion coefficient, which is a nonlinear function of the carrier density and plasma temperature. We first studied combined AC and DC effects of lateral carrier diffusion by studying the bandwidth dependence on diffusion coefficient at a given DC current under small signal modulation. The results show an increase of modulation bandwidth with decrease in the diffusion coefficient. We simultaneously studied the effects of nonlinearity in the diffusion coefficient. To clearly identify how much of the bandwidth increase is a result of decrease in the threshold pumping current for smaller diffusion coefficient, thus an effective increase of DC pumping, we study the bandwidth dependence on diffusion coefficient at a given relative pumping. A detailed comparison of the two cases will be presented.

  16. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit.

    PubMed

    Cozmuta, Ioana; Rasky, Daniel J

    2017-09-01

    Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that "killer app": technologically competitive, economically viable, and with the ability to close the business case.

  17. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit

    PubMed Central

    Rasky, Daniel J.

    2017-01-01

    Abstract Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that “killer app”: technologically competitive, economically viable, and with the ability to close the business case. PMID:29375939

  18. Dynamic storage in resource-scarce browsing multimedia applications

    NASA Astrophysics Data System (ADS)

    Elenbaas, Herman; Dimitrova, Nevenka

    1998-10-01

    In the convergence of information and entertainment there is a conflict between the consumer's expectation of fast access to high quality multimedia content through narrow bandwidth channels versus the size of this content. During the retrieval and information presentation of a multimedia application there are two problems that have to be solved: the limited bandwidth during transmission of the retrieved multimedia content and the limited memory for temporary caching. In this paper we propose an approach for latency optimization in information browsing applications. We proposed a method for flattening hierarchically linked documents in a manner convenient for network transport over slow channels to minimize browsing latency. Flattening of the hierarchy involves linearization, compression and bundling of the document nodes. After the transfer, the compressed hierarchy is stored on a local device where it can be partly unbundled to fit the caching limits at the local site while giving the user availability to the content.

  19. RAID Disk Arrays for High Bandwidth Applications

    NASA Technical Reports Server (NTRS)

    Moren, Bill

    1996-01-01

    High bandwidth applications require large amounts of data transferred to/from storage devices at extremely high data rates. Further, these applications often are 'real time' in which access to the storage device must take place on the schedule of the data source, not the storage. A good example is a satellite downlink - the volume of data is quite large and the data rates quite high (dozens of MB/sec). Further, a telemetry downlink must take place while the satellite is overhead. A storage technology which is ideally suited to these types of applications is redundant arrays of independent discs (RAID). Raid storage technology, while offering differing methodologies for a variety of applications, supports the performance and redundancy required in real-time applications. Of the various RAID levels, RAID-3 is the only one which provides high data transfer rates under all operating conditions, including after a drive failure.

  20. Two-dimensional priority-based dynamic resource allocation algorithm for QoS in WDM/TDM PON networks

    NASA Astrophysics Data System (ADS)

    Sun, Yixin; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Rao, Lan

    2018-01-01

    Wavelength division multiplexing/time division multiplexing (WDM/TDM) passive optical networks (PON) is being viewed as a promising solution for delivering multiple services and applications. The hybrid WDM / TDM PON uses the wavelength and bandwidth allocation strategy to control the distribution of the wavelength channels in the uplink direction, so that it can ensure the high bandwidth requirements of multiple Optical Network Units (ONUs) while improving the wavelength resource utilization. Through the investigation of the presented dynamic bandwidth allocation algorithms, these algorithms can't satisfy the requirements of different levels of service very well while adapting to the structural characteristics of mixed WDM / TDM PON system. This paper introduces a novel wavelength and bandwidth allocation algorithm to efficiently utilize the bandwidth and support QoS (Quality of Service) guarantees in WDM/TDM PON. Two priority based polling subcycles are introduced in order to increase system efficiency and improve system performance. The fixed priority polling subcycle and dynamic priority polling subcycle follow different principles to implement wavelength and bandwidth allocation according to the priority of different levels of service. A simulation was conducted to study the performance of the priority based polling in dynamic resource allocation algorithm in WDM/TDM PON. The results show that the performance of delay-sensitive services is greatly improved without degrading QoS guarantees for other services. Compared with the traditional dynamic bandwidth allocation algorithms, this algorithm can meet bandwidth needs of different priority traffic class, achieve low loss rate performance, and ensure real-time of high priority traffic class in terms of overall traffic on the network.

  1. A Hybrid Lyot Coronagraph for the Direct Imaging and Spectroscopy of Exoplanet Systems: Recent Results and Prospects

    NASA Technical Reports Server (NTRS)

    Trauger, John; Moody, Dwight; Gordon, Brian; Krist, John; Mawet, Dimitri

    2011-01-01

    We report our best laboratory contrast demonstrations achieved to date. We review the design, fabrication, performance, and future prospects of a hybrid focal plane occulter for exoplanet coronagraphy. Composed of thickness-profiled metallic and dielectric thin films vacuum deposited on a fused silica substrate, the hybrid occulter uses two superimposed thin films for control over both the real and imaginary parts of the complex attenuation pattern. Together with a deformable mirror for adjustment of wavefront phase, the hybrid Lyot coronagraph potentially exceeds billion-to one contrast over dark fields extending to within angular separations of 3 lambda/D (3 x the cosmological constant / diameter of the telescope) from the central star, over spectral bandwidths of 20 percent or more, and with throughput efficiencies up to 60 percent. We report laboratory contrasts of 3 x 10 (sup -10) degrees over 2 percent bandwidths, 6 x 10 (sup -10) degrees over 10 percent bandwidths, and 2 x 10 (sup -9) over 20 percent bandwidths, achieved across high contrast fields extending from an inner working angle of 3 lambda/D to a radius of 15 lambda/D. Occulter performance is analyzed in light of recent experiments and optical models, and prospects for further improvements are summarized. The science capabilities of the hybrid Lyot coronagraph are compared with requirements of the ACCESS mission, a representative exoplanet space telescope concept study for the direct imaging and spectroscopy of exoplanet systems. This work has been supported by NASA's Technology Demonstration for Exoplanet Missions (TDEM) program.

  2. Layer-based buffer aware rate adaptation design for SHVC video streaming

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan

    2016-09-01

    This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.

  3. Corelli: a peer-to-peer dynamic replication service for supporting latency-dependent content in community networks

    NASA Astrophysics Data System (ADS)

    Tyson, Gareth; Mauthe, Andreas U.; Kaune, Sebastian; Mu, Mu; Plagemann, Thomas

    2009-01-01

    The quality of service for latency dependent content, such as video streaming, largely depends on the distance and available bandwidth between the consumer and the content. Poor provision of these qualities results in reduced user experience and increased overhead. To alleviate this, many systems operate caching and replication, utilising dedicated resources to move the content closer to the consumer. Latency-dependent content creates particular issues for community networks, which often display the property of strong internal connectivity yet poor external connectivity. However, unlike traditional networks, communities often cannot deploy dedicated infrastructure for both monetary and practical reasons. To address these issues, this paper proposes Corelli, a peer-to-peer replication infrastructure designed for use in community networks. In Corelli, high capacity peers in communities autonomously build a distributed cache to dynamically pre-fetch content early on in its popularity lifecycle. By exploiting the natural proximity of peers in the community, users can gain extremely low latency access to content whilst reducing egress utilisation. Through simulation, it is shown that Corelli considerably increases accessibility and improves performance for latency dependent content. Further, Corelli is shown to offer adaptive and resilient mechanisms that ensure that it can respond to variations in churn, demand and popularity.

  4. Self-centering fiber alignment structures for high-precision field installable single-mode fiber connectors

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Ebraert, Evert; Gao, Fei; Vervaeke, Michael; Berghmans, Francis; Beri, Stefano; Watté, Jan; Thienpont, Hugo

    2014-05-01

    There is a steady increase in the demand for internet bandwidth, primarily driven by cloud services and high-definition video streaming. Europe's Digital Agenda states the ambitious objective that by 2020 all Europeans should have access to internet at speeds of 30Mb/s or above, with 50% or more of households subscribing to connections of 100Mb/s. Today however, internet access in Europe is mainly based on the first generation of broadband, meaning internet accessed over legacy telephone copper and TV cable networks. In recent years, Fiber-To-The-Home (FTTH) networks have been adopted as a replacement of traditional electrical connections for the `last mile' transmission of information at bandwidths over 1Gb/s. However, FTTH penetration is still very low (< 5%) in most major Western economies. The main reason for this is the high deployment cost of FTTH networks. Indeed, the success and adoption of optical access networks critically depend on the quality and reliability of connections between optical fibers. In particular a further reduction of insertion loss of field- installable connectors must be achieved without a significant increase in component cost. This requires precise alignment of fibers that can differ in terms of ellipticity, eccentricity or diameter and seems hardly achievable using today's widespread ferrule-based alignment systems. In this paper, we present a field-installable connector based on deflectable/compressible spring structures, providing a self-centering functionality for the fiber. This way, it can accommodate for possible fiber cladding diameter variations (the tolerance on the cladding diameter of G.652 fiber is typically +/-0.7μm). The mechanical properties of the cantilever are derived through an analytical approximation and a mathematical model of the spring constant, and finite element-based simulations are carried out to find the maximum first principal stress as well as the stress distribution distribution in the fiber alignment structure. Elastic constants of the order of 104N=m are found to be compatible with a proof stress of 70 M Pa. We show the successful prototyping of 3-spring fiber alignment structures using deep proton writing and investigate their compatibility with replication techniques such as hot embossing and injection moulding. Fiber insertion in our self-centering alignment structures is achieved by means of a dedicated interferometric setup allowing assessment of the fiber facet quality, of the fiber's position in relation to the connector's front and of the spring deformation during fiber insertion. These self-centering structures have the potential to become the basic building blocks for a new generation of field-installable connectors, ultimately breaking the current paradigm of ferrule-based connectivity requiring extensive pre-engineering and highly specialized manpower for field deployment.

  5. Power and Efficiency Optimized in Traveling-Wave Tubes Over a Broad Frequency Bandwidth

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2001-01-01

    A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT's are critical components in deep space probes, communication satellites, and high-power radar systems. Power conversion efficiency is of paramount importance for TWT's employed in deep space probes and communication satellites. A previous effort was very successful in increasing efficiency and power at a single frequency (ref. 1). Such an algorithm is sufficient for narrow bandwidth designs, but for optimal designs in applications that require high radiofrequency power over a wide bandwidth, such as high-density communications or high-resolution radar, the variation of the circuit response with respect to frequency must be considered. This work at the NASA Glenn Research Center is the first to develop techniques for optimizing TWT efficiency and output power over a broad frequency bandwidth (ref. 2). The techniques are based on simulated annealing, which has the advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 3). Two new broadband simulated annealing algorithms were developed that optimize (1) minimum saturated power efficiency over a frequency bandwidth and (2) simultaneous bandwidth and minimum power efficiency over the frequency band with constant input power. The algorithms were incorporated into the NASA coupled-cavity TWT computer model (ref. 4) and used to design optimal phase velocity tapers using the 59- to 64-GHz Hughes 961HA coupled-cavity TWT as a baseline model. In comparison to the baseline design, the computational results of the first broad-band design algorithm show an improvement of 73.9 percent in minimum saturated efficiency (see the top graph). The second broadband design algorithm (see the bottom graph) improves minimum radiofrequency efficiency with constant input power drive by a factor of 2.7 at the high band edge (64 GHz) and increases simultaneous bandwidth by 500 MHz.

  6. Second year technical report on-board processing for future satellite communications systems

    NASA Technical Reports Server (NTRS)

    Brandon, W. T.; Green, W. K.; Hoffman, M.; Jean, P. N.; Neal, W. R.; White, B. E.

    1980-01-01

    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively.

  7. System level traffic shaping in disk servers with heterogeneous protocols

    NASA Astrophysics Data System (ADS)

    Cano, Eric; Kruse, Daniele Francesco

    2014-06-01

    Disk access and tape migrations compete for network bandwidth in CASTORs disk servers, over various protocols: RFIO, Xroot, root and GridFTP. As there are a limited number of tape drives, it is important to keep them busy all the time, at their nominal speed. With potentially 100s of user read streams per server, the bandwidth for the tape migrations has to be guaranteed to a controlled level, and not the fair share the system gives by default. Xroot provides a prioritization mechanism, but using it implies moving exclusively to the Xroot protocol, which is not possible in short to mid-term time frame, as users are equally using all protocols. The greatest commonality of all those protocols is not more than the usage of TCP/IP. We investigated the Linux kernel traffic shaper to control TCP/ IP bandwidth. The performance and limitations of the traffic shaper have been understood in test environment, and satisfactory working point has been found for production. Notably, TCP offload engines' negative impact on traffic shaping, and the limitations of the length of the traffic shaping rules were discovered and measured. A suitable working point has been found and the traffic shaping is now successfully deployed in the CASTOR production systems at CERN. This system level approach could be transposed easily to other environments.

  8. Second year technical report on-board processing for future satellite communications systems

    NASA Astrophysics Data System (ADS)

    Brandon, W. T.; Green, W. K.; Hoffman, M.; Jean, P. N.; Neal, W. R.; White, B. E.

    1980-10-01

    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively.

  9. Characterization of Yb{sup 3+}:Sr{sub 5{minus}x}Ba{sub x}(PO{sub 4}){sub 3}F crystals for diode pumped lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayramian, A.J.; Marshall, C.D.; Schaffers, K.I.

    Ytterbium-doped Sr{sub 5}(PO{sub 4}){sub 3}F (S-FAP) has been shown to be a useful material for diode pumping, since it displays high gain, low loss, and a long radiative lifetime. One of the issues with S-FAP is that it has a relatively narrow absorption bandwidth ({approximately}5 nm) at 900 nm, the diode-pumping wavelength, while the diode`s output bandwidth can be large ({approximately}10 nm). By changing the host slightly, the absorption feature can be broadened to better match the pump bandwidth. Four mixed crystal boules of Yb{sup 3+}:Sr{sub 5{minus}x}Ba{sub x}(PO{sub 4}){sub 3}F were grown by the Czochralski method with x = 0.25,more » 0.5, 1, and 2. The bandwidth of the 900-nm absorption feature was found to grow with increasing barium concentration from 4.7 nm to a maximum of 15.9 nm. Emission spectra showed a similar bandwidth increase with barium content from 4.9 nm to a maximum of 10 nm. Emission cross sections for these materials were deduced by the methods of reciprocity, the Einstein method, and small-signal gain. The absorption feature`s homogeneity was probed using a tunable pump source which qualitatively showed that the barium-broadened lines were at least partly inhomogeneous. Each of these materials lased with a variety of output couplers. This family of materials was found to provide suitable laser hosts where a broader absorption and/or emission bandwidth is desired.« less

  10. A monostable piezoelectric energy harvester for broadband low-level excitations

    NASA Astrophysics Data System (ADS)

    Fan, Kangqi; Tan, Qinxue; Zhang, Yiwei; Liu, Shaohua; Cai, Meiling; Zhu, Yingmin

    2018-03-01

    This letter presents a monostable piezoelectric energy harvester (PEH) for achieving enhanced energy extraction from low-level excitations. The proposed PEH is realized by introducing symmetric magnetic attraction to a piezoelectric cantilever beam and a pair of stoppers to confine the maximum deflection of the beam. The lumped parameter model of such a system is presented and experimentally validated. Theoretical simulations and experimental measurements demonstrate that the proposed design can bring about a wider operating bandwidth and higher output voltage than the linear PEH. Under a sinusoidal vibration with an amplitude of 3 m/s2, a 54% increase in the operating bandwidth and a 253% increase in the magnitude of output power are achieved compared to its linear counterpart. Moreover, the proposed PEH exhibits rich dynamic features, including the tunable operating bandwidth, adjustable voltage and power levels, and softening hysteresis.

  11. Low Bandwidth Robust Controllers for Flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1993-01-01

    Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

  12. Low bandwidth robust controllers for flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1993-01-01

    Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

  13. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    DOEpatents

    Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  14. Studies of bandwidth dependence of laser plasma instabilities driven by the Nike laser

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Kehne, D.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Brown, C. M.; Seely, J.; Feldman, U.

    2012-10-01

    Experiments at the Nike laser facility of the Naval Research Laboratory are exploring the influence of laser bandwidth on laser plasma instabilities (LPI) driven by a deep ultraviolet pump (248 nm) that incorporates beam smoothing by induced spatial incoherence (ISI). In early ISI studies with longer wavelength Nd:glass lasers (1054 nm and 527 nm),footnotetextObenschain, PRL 62(1989);Mostovych, PRL 62(1987);Peyser, Phys. Fluids B 3(1991). stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν/ν˜0.03-0.19%) pulses irradiated targets at moderate to high intensities (10^14-10^15 W/cm^2). The current studies will compare the emission signatures of LPI from planar CH targets during Nike operation at large bandwidth (δν˜1THz) to observations for narrower bandwidth operation (δν˜0.1-0.3THz). These studies will help clarify the relative importance of the short wavelength and wide bandwidth to the increased LPI intensity thresholds observed at Nike. New pulse shapes are being used to generate plasmas with larger electron density scale-lengths that are closer to conditions during pellet implosions for direct drive inertial confinement fusion.

  15. A micromachined efficient parametric array loudspeaker with a wide radiation frequency band.

    PubMed

    Je, Yub; Lee, Haksue; Been, Kyounghun; Moon, Wonkyu

    2015-04-01

    Parametric array (PA) loudspeakers generate directional audible sound via the PA effect, which can make private listening possible. The practical applications of PA loudspeakers include information technology devices that require large power efficiency transducers with a wide frequency bandwidth. Piezoelectric micromachined ultrasonic transducers (PMUTs) are compact and efficient units for PA sources [Je, Lee, and Moon, Ultrasonics 53, 1124-1134 (2013)]. This study investigated the use of an array of PMUTs to make a PA loudspeaker with high power efficiency and wide bandwidth. The achievable maximum radiation bandwidth of the driver was calculated, and an array of PMUTs with two distinct resonance frequencies (f1 = 100 kHz, f2 = 110 kHz) was designed. Out-of-phase driving was used with the dual-resonance transducer array to increase the bandwidth. The fabricated PMUT array exhibited an efficiency of up to 71%, together with a ±3-dB bandwidth of 17 kHz for directly radiated primary waves, and 19.5 kHz (500 Hz to 20 kHz) for the difference frequency waves (with equalization).

  16. Optimization of an optically implemented on-board FDMA demultiplexer

    NASA Technical Reports Server (NTRS)

    Fargnoli, J.; Riddle, L.

    1991-01-01

    Performance of a 30 GHz frequency division multiple access (FDMA) uplink to a processing satellite is modelled for the case where the onboard demultiplexer is implemented optically. Included in the performance model are the effects of adjacent channel interference, intersymbol interference, and spurious signals associated with the optical implementation. Demultiplexer parameters are optimized to provide the minimum bit error probability at a given bandwidth efficiency when filtered QPSK modulation is employed.

  17. A Concept of Operations for the Use of Emergent Open Internet Technologies as the Basis for a Network-Centric Environment

    DTIC Science & Technology

    2006-09-01

    automated agents , such as chatbots to acts as a relay between chatrooms and blogs or other systems. In particular, chatbots could be used to monitor...bandwidth connections and legacy systems. Chatbot Integration The use of connected autonomous agents that monitor chatrooms to allow users access...of Cell Phone GPS Tracking. .............84 Figure 35. Example of a Chatbot Creating a Blog Entry

  18. Science with the wideband Submillimeter Array: A Strategy for the Decade 2017-2027

    NASA Astrophysics Data System (ADS)

    Wilner, D.; Keto, E.; Bower, G.; Ching, T. C.; Gurwell, M.; Hirano, N.; Keating, G.; Lai, S. P.; Patel, N.; Petitpas, G.; Qi, C.; Sridharan, T. K.; Urata, Y.; Young, K.; Zhang, Q.; Zhao, J.-H.

    2017-01-01

    The Submillimeter Array (SMA) comprises eight movable 6-meter diameter antennas sited on Maunakea, Hawaii, designed for high spatial and spectral resolution observations at submillimeter wavelengths. Pioneering observations with the SMA have provided new insights into a wide variety of astrophysical phenomena, including the formation and evolution of galaxies, stars and planets, and the nature of the supermassive black hole at the center of the Milky Way. Following careful deliberation, the SMA project is embarking on an ambitious, staged, strategic upgrade that will increase its instantaneous bandwidth and dramatically improve its observational sensitivity and speed. The unique capabilities of this ultra-wideband SMA - the "wSMA" promise to spark a new era of forefront discoveries. In brief, the wSMA upgrade will provide a core receiver set providing dual-polarization observing bands covering the 345 GHz and 230 GHz atmospheric windows, each with 32 GHz of spectral coverage. Together with upgrades of the signal transport system and digital correlator, this brings a factor of 16 increase in instantaneous bandwidth from the original SMA capability. For continuum observations, speed increases linearly with bandwidth to a given level of sensitivity, enabling more observations to the same depth in the same amount of time. Or, for a given amount of time, the sensitivity increases as the square root of bandwidth, enabling deeper observations. For line observations, spectral coverage increases linearly with bandwidth, enabling observations of many lines simultaneously, all at high spectral resolution. In effect, every wSMA observation of an astronomical source is an imaging spectral line survey, and an enormous amount of information can be extracted from such data in conjunction with physical, chemical and dynamical models. This whitepaper elaborates on illustrative examples in key scientific areas, including the evolutionary state of protostellar sources, the chemistry of evolved star envelopes, the constituents of planetary atmospheres, starburst galaxies in the local Universe and at high redshifts, and even low-mass galaxies at high redshifts through the technique of intensity mapping. The wSMA speeds up observations to allow systematic, comparative studies of large numbers of spectral surveys for the first time. The wSMA also will be ideally suited for the study of sources in the time domain. Illustrative examples include the variability of the accretion flow onto the SgrA* black hole, capturing emission from gamma ray bursts from massive star deaths in the early universe and the mergers of compact objects that produce gravitational waves, and resolved spectroscopy of the pristine material that escapes from comets as they traverse the inner Solar System. The wSMA will be complementary to the larger international Atacama Large Millimeter/ submillimeter Array (ALMA) in Chile, which followed the SMA into submillimeter interferometry in 2011. The immense time pressure on ALMA from its many constituencies only creates an increasing need for the wSMA, notably for the large class of observations that do not require ALMA's full sensitivity or angular resolution, as well as for unique submillimeter access to the northern sky. The wSMA will play a leading role in select science areas in the ALMA era, including those requiring long-term programs to build large samples, or rapid response based on flexible scheduling, as well as for high risk seed studies specifically designed for subsequent ALMA follow-up. In addition, the wSMA will be a critical station for submillimeter VLBI observations of supermassive black holes in the global Event Horizon Telescope, which will be bolstered by the inclusion of ALMA in 2017. Finally, the wSMA design explicitly incorporates open space for additional instrumentation to pursue new and compelling science goals and technical innovations, continuing its role as a pathfinder for submillimeter astronomy.

  19. Simple video format for mobile applications

    NASA Astrophysics Data System (ADS)

    Smith, John R.; Miao, Zhourong; Li, Chung-Sheng

    2000-04-01

    With the advent of pervasive computing, there is a growing demand for enabling multimedia applications on mobile devices. Large numbers of pervasive computing devices, such as personal digital assistants (PDAs), hand-held computer (HHC), smart phones, portable audio players, automotive computing devices, and wearable computers are gaining access to online information sources. However, the pervasive computing devices are often constrained along a number of dimensions, such as processing power, local storage, display size and depth, connectivity, and communication bandwidth, which makes it difficult to access rich image and video content. In this paper, we report on our initial efforts in designing a simple scalable video format with low-decoding and transcoding complexity for pervasive computing. The goal is to enable image and video access for mobile applications such as electronic catalog shopping, video conferencing, remote surveillance and video mail using pervasive computing devices.

  20. Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot

    PubMed Central

    Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2015-01-01

    Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582

  1. Study of wavelength division multiplexing as a means of increasing the number of channels in multimode fiber optic communication links

    NASA Technical Reports Server (NTRS)

    Bates, Harry

    1990-01-01

    A number of optical communication lines are now in use at the Kennedy Space Center (KSC) for the transmission of voice, computer data, and video signals. Presently, all of these channels utilize a single carrier wavelength centered near 1300 nm. The theoretical bandwidth of the fiber far exceeds the utilized capacity. Yet, practical considerations limit the usable bandwidth. The fibers have the capability of transmitting a multiplicity of signals simultaneously in each of two separate bands (1300 and 1550 nm). Thus, in principle, the number of transmission channels can be increased without installing new cable if some means of wavelength division multiplexing (WDM) can be utilized. The main goal of these experiments was to demonstrate that a factor of 2 increase in bandwidth utilization can share the same fiber in both a unidirectional configuration and a bidirectional mode of operation. Both signal and multimode fiber are installed at KSC. The great majority is multimode; therefore, this effort concentrated on multimode systems.

  2. Analysis of compound parabolic concentrators and aperture averaging to mitigate fading on free-space optical links

    NASA Astrophysics Data System (ADS)

    Wasiczko, Linda M.; Smolyaninov, Igor I.; Davis, Christopher C.

    2004-01-01

    Free space optics (FSO) is one solution to the bandwidth bottleneck resulting from increased demand for broadband access. It is well known that atmospheric turbulence distorts the wavefront of a laser beam propagating through the atmosphere. This research investigates methods of reducing the effects of intensity scintillation and beam wander on the performance of free space optical communication systems, by characterizing system enhancement using either aperture averaging techniques or nonimaging optics. Compound Parabolic Concentrators, nonimaging optics made famous by Winston and Welford, are inexpensive elements that may be easily integrated into intensity modulation-direct detection receivers to reduce fading caused by beam wander and spot breakup in the focal plane. Aperture averaging provides a methodology to show the improvement of a given receiver aperture diameter in averaging out the optical scintillations over the received wavefront.

  3. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication.

    PubMed

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-02-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80-100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.

  4. Payload Performance of TDRS KL and Future Services

    NASA Technical Reports Server (NTRS)

    Toral, Marco A.; Heckler, Gregory W.; Pogorelc, Patricia M.; George, Nicholas E.; Han, Katherine S.

    2017-01-01

    NASA has accepted two of the 3nd generation Tracking and Data Relay Satellites, TDRS K, L, and M, designed and built by Boeing Defense, Space Security (DSS). TDRS K, L, and M provide S-band Multiple Access (MA) service and S-band, Ku-band and Ka-band Single Access (SA) services to near Earth orbiting satellites. The TDRS KLM satellites offer improved services relative to the 1st generation TDRS spacecraft, such as: an enhanced MA service featuring increased EIRPs and GT; and Ka-band SA capability which provides a 225 and 650 MHz return service (customer-to-TDRS direction) bandwidth and a 50 MHz forward service (TDRS-to-customer direction) bandwidth. MA services are provided through a 15 element forward phased array that forms up to two beams with onboard active beamforming and a 32 element return phased array supported by ground-based beamforming. SA services are provided through two 4.6m tri-band reflector antennas which support program track pointing and autotrack pointing. Prior to NASAs acceptance of the satellites, payload on-orbit testing was performed on each satellite to determine on-orbit compliance with design requirements. Performance parameters evaluated include: EIRP, GT, antenna gain patterns, SA antenna autotrack performance, and radiometric tracking performance. On-orbit antenna calibration and pointing optimization was also performed on the MA and SA antennas including 24 hour duration tests to characterize and calibrate out diurnal effects. Bit-Error-Rate (BER) tests were performed to evaluate the end-to-end link BER performance of service through a TDRS K and L spacecraft. The TDRS M is planned to be launched in August 2017. This paper summarizes the results of the TDRS KL communications payload on-orbit performance verification and end-to-end service characterization and compares the results with the performance of the 2nd generation TDRS J. The paper also provides a high-level overview of an optical communications application that will augment the data rates supported by the Space Network.

  5. Payload Performance of Third Generation TDRS and Future Services

    NASA Technical Reports Server (NTRS)

    Toral, Marco; Heckler, Gregory; Pogorelc, Patsy; George, Nicholas; Han, Katherine S.

    2017-01-01

    NASA has accepted two of the 3rd generation Tracking and Data Relay Satellites, TDRS K, L, and M, designed and built by Boeing Defense, Space & Security (DSS). TDRS K, L, and M provide S-band Multiple Access (MA) service and S-band, Ku-band and Ka-band Single Access (SA) services to near Earth orbiting satellites. The TDRS KLM satellites offer improved services relative to the 1st generation TDRS spacecraft, such as: an enhanced MA service featuring increased EIRPs and G/T; and Ka-band SA capability which provides a 225 and 650 MHz return service (customer-to-TDRS direction) bandwidth and a 50 MHz forward service (TDRS-to-customer direction) bandwidth. MA services are provided through a 15 element forward phased array that forms up to two beams with onboard active beamforming and a 32 element return phased array supported by ground-based beamforming. SA services are provided through two 4.6m tri-band reflector antennas which support program track pointing and autotrack pointing. Prior to NASAs acceptance of the satellites, payload on-orbit testing was performed on each satellite to determine on-orbit compliance with design requirements. Performance parameters evaluated include: EIRP, G/T, antenna gain patterns, SA antenna autotrack performance, and radiometric tracking performance. On-orbit antenna calibration and pointing optimization was also performed on the MA and SA antennas including 24 hour duration tests to characterize and calibrate out diurnal effects. Bit-Error-Rate (BER) tests were performed to evaluate the end-to-end link BER performance of service through a TDRS K and L spacecraft. The TDRS M is planned to be launched in August 2017. This paper summarizes the results of the TDRS KL communications payload on-orbit performance verification and end-to-end service characterization and compares the results with the performance of the 2nd generation TDRS J. The paper also provides a high-level overview of an optical communications application that will augment the data rates supported by the Space Network.

  6. Integrating free-space optical communication links with existing WiFi (WiFO) network

    NASA Astrophysics Data System (ADS)

    Liverman, S.; Wang, Q.; Chu, Y.; Duong, T.; Nguyen-Huu, D.; Wang, S.; Nguyen, T.; Wang, A. X.

    2016-02-01

    Recently, free-space optical (FSO) systems have generated great interest due to their large bandwidth potential and a line-of-sight physical layer of protection. In this paper, we propose WiFO, a novel hybrid system, FSO downlink and WiFi uplink, which will integrate currently available WiFi infrastructure with inexpensive infrared light emitting diodes. This system takes full advantage of the mobility inherent in WiFi networks while increasing the downlink bandwidth available to each end user. We report the results of our preliminary investigation that show the capabilities of our prototype design in terms of bandwidth, bit error rates, delays and transmission distances.

  7. pathChirp: Efficient Available Bandwidth Estimation for Network Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, Les

    2003-04-30

    This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sendermore » and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.« less

  8. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats

    NASA Astrophysics Data System (ADS)

    Li, Hao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10 μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications.

  9. Controlling Laser Plasma Instabilities Using Temporal Bandwidths Under Shock Ignition Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2017-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under plasma conditions relevant to experiments on the Nike laser with induced spatial incoherence (ISI). With ISI, the instantaneous laser intensity can be 3-4 times larger than the average intensity, leading to the excitation of additional TPD modes and producing electrons with larger angular spread. In our simulations, we observe that although ISI can increase the interaction regions for short bursts of time, time-averaged (over many pico-seconds) laser plasma interactions can be reduced by a factor of 2 in systems with sufficiently large bandwidths (where the inverse bandwidth is comparable with the linear growth time). We will quantify these effects and investigate higher dimensional effects such as laser speckles and the effects of Coulomb collisions. Work supported by NRL, NNSA, and NSF.

  10. Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  11. Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  12. FPGA-based prototype storage system with phase change memory

    NASA Astrophysics Data System (ADS)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  13. Reduced cost alternatives to premise wiring using ATM and microcellular technologies

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra R.

    1993-01-01

    The cost of premises wiring keeps increasing due to personnel moves, new equipment, capacity upgrades etc. It would be desirable to have a wireless interface from the workstations to the fixed network, so as to minimize the wiring changes needed. New technologies such as microcellular personal communication systems are promising to bring down the cost of wireless communication. Another promising technology is Code Division Multiple Access (CDMA), which could dramatically increase the bandwidth available for wireless connections. In addition, Asynchronous Transfer Mode (ATM) technology is emerging as a technique for integrated management of voice, data, and video traffic on a single network. The focus of this investigation will be to assess the future utility of these new technologies for reducing the premise wiring cost at KSC. One of the issues to be studied is the cost comparison of 'old' versus 'new,' especially as time and technology progress. An additional issue for closer study is a feasible time-line for progress in technological capability.

  14. Space Transportation and the Computer Industry: Learning from the Past

    NASA Technical Reports Server (NTRS)

    Merriam, M. L.; Rasky, D.

    2002-01-01

    Since the space shuttle began flying in 1981, NASA has made a number of attempts to advance the state of the art in space transportation. In spite of billions of dollars invested, and several concerted attempts, no replacement for the shuttle is expected before 2010. Furthermore, the cost of access to space has dropped very slowly over the last two decades. On the other hand, the same two decades have seen dramatic progress in the computer industry. Computational speeds have increased by about a factor of 1000 and available memory, disk space, and network bandwidth has seen similar increases. At the same time, the cost of computing has dropped by about a factor of 10000. Is the space transportation problem simply harder? Or is there something to be learned from the computer industry? In looking for the answers, this paper reviews the early history of NASA's experience with supercomputers and NASA's visionary course change in supercomputer procurement strategy.

  15. Design for minimum energy in interstellar communication

    NASA Astrophysics Data System (ADS)

    Messerschmitt, David G.

    2015-02-01

    Microwave digital communication at interstellar distances is the foundation of extraterrestrial civilization (SETI and METI) communication of information-bearing signals. Large distances demand large transmitted power and/or large antennas, while the propagation is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense of wide bandwidth (the opposite of terrestrial objectives) is advantageous. Wide bandwidth also results in simpler design and implementation, allowing circumvention of dispersion and scattering arising in the interstellar medium and motion effects and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph in 1836 comes closer to this minimum energy than approaches used in modern terrestrial radio. Rather than the terrestrial approach of adding phases and amplitudes increases information capacity while minimizing bandwidth, adding multiple time-frequency locations for carrier bursts increases capacity while minimizing energy per information bit. The resulting location code is simple and yet can approach the minimum energy as bandwidth is expanded. It is consistent with easy discovery, since carrier bursts are energetic and straightforward modifications to post-detection pattern recognition can identify burst patterns. Time and frequency coherence constraints leading to simple signal discovery are addressed, and observations of the interstellar medium by transmitter and receiver constrain the burst parameters and limit the search scope.

  16. An Adaptive Memory Interface Controller for Improving Bandwidth Utilization of Hybrid and Reconfigurable Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellana, Vito G.; Tumeo, Antonino; Ferrandi, Fabrizio

    Emerging applications such as data mining, bioinformatics, knowledge discovery, social network analysis are irregular. They use data structures based on pointers or linked lists, such as graphs, unbalanced trees or unstructures grids, which generates unpredictable memory accesses. These data structures usually are large, but difficult to partition. These applications mostly are memory bandwidth bounded and have high synchronization intensity. However, they also have large amounts of inherent dynamic parallelism, because they potentially perform a task for each one of the element they are exploring. Several efforts are looking at accelerating these applications on hybrid architectures, which integrate general purpose processorsmore » with reconfigurable devices. Some solutions, which demonstrated significant speedups, include custom-hand tuned accelerators or even full processor architectures on the reconfigurable logic. In this paper we present an approach for the automatic synthesis of accelerators from C, targeted at irregular applications. In contrast to typical High Level Synthesis paradigms, which construct a centralized Finite State Machine, our approach generates dynamically scheduled hardware components. While parallelism exploitation in typical HLS-generated accelerators is usually bound within a single execution flow, our solution allows concurrently running multiple execution flow, thus also exploiting the coarser grain task parallelism of irregular applications. Our approach supports multiple, multi-ported and distributed memories, and atomic memory operations. Its main objective is parallelizing as many memory operations as possible, independently from their execution time, to maximize the memory bandwidth utilization. This significantly differs from current HLS flows, which usually consider a single memory port and require precise scheduling of memory operations. A key innovation of our approach is the generation of a memory interface controller, which dynamically maps concurrent memory accesses to multiple ports. We present a case study on a typical irregular kernel, Graph Breadth First search (BFS), exploring different tradeoffs in terms of parallelism and number of memories.« less

  17. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOEmore » Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations.« less

  18. Discretization in time gives rise to noise-induced improvement of the signal-to-noise ratio in static nonlinearities.

    PubMed

    Davidović, A; Huntington, E H; Frater, M R

    2009-07-01

    For some nonlinear systems the performance can improve with an increasing noise level. Such noise-induced improvement in static nonlinearities is of great interest for practical applications since many systems can be modeled in that way (e.g., sensors, quantizers, limiters, etc.). We present experimental evidence that noise-induced performance improvement occurs in those systems as a consequence of discretization in time with the achievable signal-to-noise ratio (SNR) gain increasing with decreasing ratio of input noise bandwidth and total measurement bandwidth. By modifying the input noise bandwidth, noise-induced improvement with SNR gain larger than unity is demonstrated in a system where it was not previously thought possible. Our experimental results bring closer two different theoretical models for the same class of nonlinearities and shed light on the behavior of static nonlinear discrete-time systems.

  19. Optimization of the segmented method for optical compression and multiplexing system

    NASA Astrophysics Data System (ADS)

    Al Falou, Ayman

    2002-05-01

    Because of the constant increasing demands of images exchange, and despite the ever increasing bandwidth of the networks, compression and multiplexing of images is becoming inseparable from their generation and display. For high resolution real time motion pictures, electronic performing of compression requires complex and time-consuming processing units. On the contrary, by its inherent bi-dimensional character, coherent optics is well fitted to perform such processes that are basically bi-dimensional data handling in the Fourier domain. Additionally, the main limiting factor that was the maximum frame rate is vanishing because of the recent improvement of spatial light modulator technology. The purpose of this communication is to benefit from recent optical correlation algorithms. The segmented filtering used to store multi-references in a given space bandwidth product optical filter can be applied to networks to compress and multiplex images in a given bandwidth channel.

  20. Empirical evaluation of H.265/HEVC-based dynamic adaptive video streaming over HTTP (HEVC-DASH)

    NASA Astrophysics Data System (ADS)

    Irondi, Iheanyi; Wang, Qi; Grecos, Christos

    2014-05-01

    Real-time HTTP streaming has gained global popularity for delivering video content over Internet. In particular, the recent MPEG-DASH (Dynamic Adaptive Streaming over HTTP) standard enables on-demand, live, and adaptive Internet streaming in response to network bandwidth fluctuations. Meanwhile, emerging is the new-generation video coding standard, H.265/HEVC (High Efficiency Video Coding) promises to reduce the bandwidth requirement by 50% at the same video quality when compared with the current H.264/AVC standard. However, little existing work has addressed the integration of the DASH and HEVC standards, let alone empirical performance evaluation of such systems. This paper presents an experimental HEVC-DASH system, which is a pull-based adaptive streaming solution that delivers HEVC-coded video content through conventional HTTP servers where the client switches to its desired quality, resolution or bitrate based on the available network bandwidth. Previous studies in DASH have focused on H.264/AVC, whereas we present an empirical evaluation of the HEVC-DASH system by implementing a real-world test bed, which consists of an Apache HTTP Server with GPAC, an MP4Client (GPAC) with open HEVC-based DASH client and a NETEM box in the middle emulating different network conditions. We investigate and analyze the performance of HEVC-DASH by exploring the impact of various network conditions such as packet loss, bandwidth and delay on video quality. Furthermore, we compare the Intra and Random Access profiles of HEVC coding with the Intra profile of H.264/AVC when the correspondingly encoded video is streamed with DASH. Finally, we explore the correlation among the quality metrics and network conditions, and empirically establish under which conditions the different codecs can provide satisfactory performance.

  1. Application Performance Analysis and Efficient Execution on Systems with multi-core CPUs, GPUs and MICs: A Case Study with Microscopy Image Analysis

    PubMed Central

    Teodoro, George; Kurc, Tahsin; Andrade, Guilherme; Kong, Jun; Ferreira, Renato; Saltz, Joel

    2015-01-01

    We carry out a comparative performance study of multi-core CPUs, GPUs and Intel Xeon Phi (Many Integrated Core-MIC) with a microscopy image analysis application. We experimentally evaluate the performance of computing devices on core operations of the application. We correlate the observed performance with the characteristics of computing devices and data access patterns, computation complexities, and parallelization forms of the operations. The results show a significant variability in the performance of operations with respect to the device used. The performances of operations with regular data access are comparable or sometimes better on a MIC than that on a GPU. GPUs are more efficient than MICs for operations that access data irregularly, because of the lower bandwidth of the MIC for random data accesses. We propose new performance-aware scheduling strategies that consider variabilities in operation speedups. Our scheduling strategies significantly improve application performance compared to classic strategies in hybrid configurations. PMID:28239253

  2. A national survey of the infrastructure and IT policies required to deliver computerised cognitive behavioural therapy in the English NHS

    PubMed Central

    Andrewes, Holly; Kenicer, David; McClay, Carrie-Anne; Williams, Christopher

    2013-01-01

    Objective This study aimed to identify if patients have adequate access to Computerised Cognitive Behavioural Therapy (cCBT) programmes in all mental health trusts across England. Design The primary researcher contacted a targeted sample of information technology (IT) leads in each mental health trust in England to complete the survey. Setting Telephone, email and postal mail were used to contact an IT lead or nominated expert from each mental health trust. Participants 48 of the 56 IT experts from each mental health trust in England responded. The experts who were chosen had sufficient knowledge of the infrastructure, technology, policies and regulations to answer all survey questions. Results 77% of trusts provided computers for direct patient use, with computers in all except one trust meeting the specifications to access cCBT. However, 24% of trusts acknowledged that the number of computers provided was insufficient to provide a trust-wide service. 71% stated that the bandwidth available was adequate to provide access to cCBT sites, yet for many trusts, internet speed was identified as unpredictable and variable between locations. IT policies in only 56% of the trusts allowed National Health Service (NHS) staff to directly support patients as they complete cCBT courses via emails to the patients’ personal email account. Only 37% allowed support via internet video calls, and only 9% allowed support via instant messaging services. Conclusions Patient access to cCBT in English NHS mental health trusts is limited by the inadequate number of computers provided to patients, unpredictable bandwidth speed and inconsistent IT policies, which restrict patients from receiving the support needed to maximise the success of this therapy. English NHS mental health trusts need to alter IT policy and improve resources to reduce the waiting time for psychological resources required for patients seeking this evidence-based therapy. PMID:23377995

  3. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Chaffee, Paul H.

    1991-01-01

    A method and apparatus is disclosed that provides a laser output beam having a broad bandwidth and an intensity smooth over time. The bandwidth of the laser output can be varied easily by varying the intensity of a broadband source. The present invention includes an optical modulation apparatus comprising a narrowband laser that outputs a horizontally polarized beam (a "signal beam") and a broadband laser that outputs a vertically polarized beam (a "pump beam") whose intensity varies rapidly. The two beam are coupled into a birefringent laser material so that the respective polarizations coincide with the principal axes of the material. As the two beams travel through the material, the polarization preserving properties of the birefringent material maintain the respective polarizations of the two beam; however there is coupling between the two beams as a result of cross phase modulations, which induces a bandwidth change of the signal beam. The amount of bandwidth change is dependent upon the average intensity of the pump beam. The beams are coupled out from the birefringent material and the modulated signal beam is separated by a polarization selector. The modulated signal beam now has a wider bandwidth, and its shape remains smooth in time. This signal beam can be applied to incoherence inducing systems. The different bandwidths required by these different incoherence inducing systems can be obtained by varying the intensity of the pump beam. The United States Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  4. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Transport Protocol (Transmission Control Protocol/User Datagram Protocol [TCP/UDP]) Analysis

    DTIC Science & Technology

    2015-09-01

    the network Mac8 Medium Access Control ( Mac ) (Ethernet) address observed as destination for outgoing packets subsessionid8 Zero-based index of...15. SUBJECT TERMS tactical networks, data reduction, high-performance computing, data analysis, big data 16. SECURITY CLASSIFICATION OF: 17...Integer index of row cts_deid Device (instrument) Identifier where observation took place cts_collpt Collection point or logical observation point on

  5. Integrated Short Range, Low Bandwidth, Wearable Communications Networking Technologies

    DTIC Science & Technology

    2012-04-30

    Only (FOUO) Table of Contents Introduction 7 Research Discussions 7 1 Specifications 8 2 SAN Radio 9 2.1 R.F. Design Improvements 9 2.1.1 LNA...Characterization and Verification Testing 26 2.2 Digital Design Improvements 26 2.2.1 Improve Processor Access to Memory Resources 26 2.2.2...integrated and tested . A hybrid architecture of the automatic gain control (AGC) was designed to Page 7 of 116 For Official Use Only (FOUO

  6. An HTML5-Based Pure Website Solution for Rapidly Viewing and Processing Large-Scale 3D Medical Volume Reconstruction on Mobile Internet

    PubMed Central

    Chen, Xin; Zhang, Ye; Zhang, Jingna; Li, Ying; Mo, Xuemei; Chen, Wei

    2017-01-01

    This study aimed to propose a pure web-based solution to serve users to access large-scale 3D medical volume anywhere with good user experience and complete details. A novel solution of the Master-Slave interaction mode was proposed, which absorbed advantages of remote volume rendering and surface rendering. On server side, we designed a message-responding mechanism to listen to interactive requests from clients (Slave model) and to guide Master volume rendering. On client side, we used HTML5 to normalize user-interactive behaviors on Slave model and enhance the accuracy of behavior request and user-friendly experience. The results showed that more than four independent tasks (each with a data size of 249.4 MB) could be simultaneously carried out with a 100-KBps client bandwidth (extreme test); the first loading time was <12 s, and the response time of each behavior request for final high quality image remained at approximately 1 s, while the peak value of bandwidth was <50-KBps. Meanwhile, the FPS value for each client was ≥40. This solution could serve the users by rapidly accessing the application via one URL hyperlink without special software and hardware requirement in a diversified network environment and could be easily integrated into other telemedical systems seamlessly. PMID:28638406

  7. An HTML5-Based Pure Website Solution for Rapidly Viewing and Processing Large-Scale 3D Medical Volume Reconstruction on Mobile Internet.

    PubMed

    Qiao, Liang; Chen, Xin; Zhang, Ye; Zhang, Jingna; Wu, Yi; Li, Ying; Mo, Xuemei; Chen, Wei; Xie, Bing; Qiu, Mingguo

    2017-01-01

    This study aimed to propose a pure web-based solution to serve users to access large-scale 3D medical volume anywhere with good user experience and complete details. A novel solution of the Master-Slave interaction mode was proposed, which absorbed advantages of remote volume rendering and surface rendering. On server side, we designed a message-responding mechanism to listen to interactive requests from clients ( Slave model) and to guide Master volume rendering. On client side, we used HTML5 to normalize user-interactive behaviors on Slave model and enhance the accuracy of behavior request and user-friendly experience. The results showed that more than four independent tasks (each with a data size of 249.4 MB) could be simultaneously carried out with a 100-KBps client bandwidth (extreme test); the first loading time was <12 s, and the response time of each behavior request for final high quality image remained at approximately 1 s, while the peak value of bandwidth was <50-KBps. Meanwhile, the FPS value for each client was ≥40. This solution could serve the users by rapidly accessing the application via one URL hyperlink without special software and hardware requirement in a diversified network environment and could be easily integrated into other telemedical systems seamlessly.

  8. Trade-off between bandwidth and efficiency in semipolar (20 2 ¯ 1 ¯) InGaN/GaN single- and multiple-quantum-well light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Monavarian, M.; Rashidi, A.; Aragon, A. A.; Nami, M.; Oh, S. H.; DenBaars, S. P.; Feezell, D.

    2018-05-01

    InGaN/GaN light-emitting diodes (LEDs) with large modulation bandwidths are desirable for visible-light communication. Along with modulation speed, the consideration of the internal quantum efficiency (IQE) under operating conditions is also important. Here, we report the modulation characteristics of semipolar (20 2 ¯ 1 ¯ ) InGaN/GaN (LEDs) with single-quantum well (SQW) and multiple-quantum-well (MQW) active regions grown on free-standing semipolar GaN substrates with peak internal quantum efficiencies (IQEs) of 0.93 and 0.73, respectively. The MQW LEDs exhibit on average about 40-80% higher modulation bandwidth, reaching 1.5 GHz at 13 kA/cm2, but about 27% lower peak IQE than the SQW LEDs. We extract the differential carrier lifetimes (DLTs), RC parasitics, and carrier escape lifetimes and discuss their role in the bandwidth and IQE characteristics. A coulomb-enhanced capture process is shown to rapidly reduce the DLT of the MQW LED at high current densities. Auger recombination is also shown to play little role in increasing the speed of the LEDs. Finally, we investigate the trade-offs between the bandwidth and efficiency and introduce the bandwidth-IQE product as a potential figure of merit for optimizing speed and efficiency in InGaN/GaN LEDs.

  9. Improving the sensitivity of high-frequency subharmonic imaging with coded excitation: A feasibility study

    PubMed Central

    Shekhar, Himanshu; Doyley, Marvin M.

    2012-01-01

    Purpose: Subharmonic intravascular ultrasound imaging (S-IVUS) could visualize the adventitial vasa vasorum, but the high pressure threshold required to incite subharmonic behavior in an ultrasound contrast agent will compromise sensitivity—a trait that has hampered the clinical use of S-IVUS. The purpose of this study was to assess the feasibility of using coded-chirp excitations to improve the sensitivity and axial resolution of S-IVUS. Methods: The subharmonic response of Targestar-pTM, a commercial microbubble ultrasound contrast agent (UCA), to coded-chirp (5%–20% fractional bandwidth) pulses and narrowband sine-burst (4% fractional bandwidth) pulses was assessed, first using computer simulations and then experimentally. Rectangular windowed excitation pulses with pulse durations ranging from 0.25 to 3 μs were used in all studies. All experimental studies were performed with a pair of transducers (20 MHz/10 MHz), both with diameter of 6.35 mm and focal length of 50 mm. The size distribution of the UCA was measured with a CasyTM Cell counter. Results: The simulation predicted a pressure threshold that was an order of magnitude higher than that determined experimentally. However, all other predictions were consistent with the experimental observations. It was predicted that: (1) exciting the agent with chirps would produce stronger subharmonic response relative to those produced by sine-bursts; (2) increasing the fractional bandwidth of coded-chirp excitation would increase the sensitivity of subharmonic imaging; and (3) coded-chirp would increase axial resolution. The experimental results revealed that subharmonic-to-fundamental ratios obtained with chirps were 5.7 dB higher than those produced with sine-bursts of similar duration. The axial resolution achieved with 20% fractional bandwidth chirps was approximately twice that achieved with 4% fractional bandwidth sine-bursts. Conclusions: The coded-chirp method is a suitable excitation strategy for subharmonic IVUS imaging. At the 20 MHz transmission frequency and 20% fractional bandwidth, coded-chirp excitation appears to represent the ideal tradeoff between subharmonic strength and axial resolution. PMID:22482626

  10. MPEG-1 low-cost encoder solution

    NASA Astrophysics Data System (ADS)

    Grueger, Klaus; Schirrmeister, Frank; Filor, Lutz; von Reventlow, Christian; Schneider, Ulrich; Mueller, Gerriet; Sefzik, Nicolai; Fiedrich, Sven

    1995-02-01

    A solution for real-time compression of digital YCRCB video data to an MPEG-1 video data stream has been developed. As an additional option, motion JPEG and video telephone streams (H.261) can be generated. For MPEG-1, up to two bidirectional predicted images are supported. The required computational power for motion estimation and DCT/IDCT, memory size and memory bandwidth have been the main challenges. The design uses fast-page-mode memory accesses and requires only one single 80 ns EDO-DRAM with 256 X 16 organization for video encoding. This can be achieved only by using adequate access and coding strategies. The architecture consists of an input processing and filter unit, a memory interface, a motion estimation unit, a motion compensation unit, a DCT unit, a quantization control, a VLC unit and a bus interface. For using the available memory bandwidth by the processing tasks, a fixed schedule for memory accesses has been applied, that can be interrupted for asynchronous events. The motion estimation unit implements a highly sophisticated hierarchical search strategy based on block matching. The DCT unit uses a separated fast-DCT flowgraph realized by a switchable hardware unit for both DCT and IDCT operation. By appropriate multiplexing, only one multiplier is required for: DCT, quantization, inverse quantization, and IDCT. The VLC unit generates the video-stream up to the video sequence layer and is directly coupled with an intelligent bus-interface. Thus, the assembly of video, audio and system data can easily be performed by the host computer. Having a relatively low complexity and only small requirements for DRAM circuits, the developed solution can be applied to low-cost encoding products for consumer electronics.

  11. Solid-State Laser Source of Tunable Narrow-Bandwidth Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Goldberg, Lew; Kliner, Dahv A.; Koplow, Jeffrey P.

    1998-01-01

    A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system relies on light from a diode laser that preferably generates light at infrared frequencies. The light from the seed diode laser is pulse amplified in a light amplifier, and converted into the ultraviolet by frequency tripling, quadrupling, or quintupling the infrared light. The narrow bandwidth, or relatively pure light, of the seed laser is preserved, and the pulse amplifier generates high peak light powers to increase the efficiency of the nonlinear crystals in the frequency conversion stage. Higher output powers may be obtained by adding a fiber amplifier to power amplify the pulsed laser light prior to conversion.

  12. Improvement of modulation bandwidth in electroabsorption-modulated laser by utilizing the resonance property in bonding wire.

    PubMed

    Kwon, Oh Kee; Han, Young Tak; Baek, Yong Soon; Chung, Yun C

    2012-05-21

    We present and demonstrate a simple and cost-effective technique for improving the modulation bandwidth of electroabsorption-modulated laser (EML). This technique utilizes the RF resonance caused by the EML chip (i.e., junction capacitance) and bonding wire (i.e, wire inductance). We analyze the effects of the lengths of the bonding wires on the frequency responses of EML by using an equivalent circuit model. To verify this analysis, we package a lumped EML chip on the sub-mount and measure its frequency responses. The results show that, by using the proposed technique, we can increase the modulation bandwidth of EML from ~16 GHz to ~28 GHz.

  13. Using IKAROS as a data transfer and management utility within the KM3NeT computing model

    NASA Astrophysics Data System (ADS)

    Filippidis, Christos; Cotronis, Yiannis; Markou, Christos

    2016-04-01

    KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that - located at the bottom of the Mediterranean Sea - will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. IKAROS is a framework that enables creating scalable storage formations on-demand and helps addressing several limitations that the current file systems face when dealing with very large scale infrastructures. It enables creating ad-hoc nearby storage formations and can use a huge number of I/O nodes in order to increase the available bandwidth (I/O and network). IKAROS unifies remote and local access in the overall data flow, by permitting direct access to each I/O node. In this way we can handle the overall data flow at the network layer, limiting the interaction with the operating system. This approach allows virtually connecting, at the users level, the several different computing facilities used (Grids, Clouds, HPCs, Data Centers, Local computing Clusters and personal storage devices), on-demand, based on the needs, by using well known standards and protocols, like HTTP.

  14. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor.

    PubMed

    Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu

    2016-04-01

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  15. Toward broadband vibration energy harvesting via mechanical motion-rectification induced inertia nonlinearity

    NASA Astrophysics Data System (ADS)

    Liu, Mingyi; Tai, Wei-Che; Zuo, Lei

    2018-07-01

    Broad frequency bandwidth is a desired feature for most energy harvesting systems. Rotational electromagnetic generators are widely used in energy harvesting systems and the generator rotor is considered as an inerter. While a lot of research striving for increasing frequency bandwidth, we found out that the inerter makes the bandwidth narrow. To solve this problem, this paper proposes using inertia nonlinearity which is realized by mechanical motion rectification (MMR). The influence of the MMR on energy harvesting performance in inerter-based systems was numerically and experimentally investigated with harmonic excitations of constant displacement amplitude. Simulation is done by transforming the mechanical system to an analogous electrical system. The simulation results show that the bandwidth of the MMR based system is broader than that of the counterpart without MMR. System parameter was identified by parameter fitting and experiment was conducted to verify the numerical simulation. Moreover, in the MMR based system, the force transmitted from the harvester to the base was decreased compared to the counterpart without MMR. For excitations with constant force amplitude, MMR based energy harvesting systems also have much broader frequency bandwidth compared to the counterpart without MMR.

  16. Voltage-dependent K+ channels improve the energy efficiency of signalling in blowfly photoreceptors

    PubMed Central

    2017-01-01

    Voltage-dependent conductances in many spiking neurons are tuned to reduce action potential energy consumption, so improving the energy efficiency of spike coding. However, the contribution of voltage-dependent conductances to the energy efficiency of analogue coding, by graded potentials in dendrites and non-spiking neurons, remains unclear. We investigate the contribution of voltage-dependent conductances to the energy efficiency of analogue coding by modelling blowfly R1-6 photoreceptor membrane. Two voltage-dependent delayed rectifier K+ conductances (DRs) shape the membrane's voltage response and contribute to light adaptation. They make two types of energy saving. By reducing membrane resistance upon depolarization they convert the cheap, low bandwidth membrane needed in dim light to the expensive high bandwidth membrane needed in bright light. This investment of energy in bandwidth according to functional requirements can halve daily energy consumption. Second, DRs produce negative feedback that reduces membrane impedance and increases bandwidth. This negative feedback allows an active membrane with DRs to consume at least 30% less energy than a passive membrane with the same capacitance and bandwidth. Voltage-dependent conductances in other non-spiking neurons, and in dendrites, might be organized to make similar savings. PMID:28381642

  17. Voltage-dependent K+ channels improve the energy efficiency of signalling in blowfly photoreceptors.

    PubMed

    Heras, Francisco J H; Anderson, John; Laughlin, Simon B; Niven, Jeremy E

    2017-04-01

    Voltage-dependent conductances in many spiking neurons are tuned to reduce action potential energy consumption, so improving the energy efficiency of spike coding. However, the contribution of voltage-dependent conductances to the energy efficiency of analogue coding, by graded potentials in dendrites and non-spiking neurons, remains unclear. We investigate the contribution of voltage-dependent conductances to the energy efficiency of analogue coding by modelling blowfly R1-6 photoreceptor membrane. Two voltage-dependent delayed rectifier K + conductances (DRs) shape the membrane's voltage response and contribute to light adaptation. They make two types of energy saving. By reducing membrane resistance upon depolarization they convert the cheap, low bandwidth membrane needed in dim light to the expensive high bandwidth membrane needed in bright light. This investment of energy in bandwidth according to functional requirements can halve daily energy consumption. Second, DRs produce negative feedback that reduces membrane impedance and increases bandwidth. This negative feedback allows an active membrane with DRs to consume at least 30% less energy than a passive membrane with the same capacitance and bandwidth. Voltage-dependent conductances in other non-spiking neurons, and in dendrites, might be organized to make similar savings. © 2017 The Author(s).

  18. Gaussian entanglement distribution with gigahertz bandwidth.

    PubMed

    Ast, Stefan; Ast, Melanie; Mehmet, Moritz; Schnabel, Roman

    2016-11-01

    The distribution of entanglement with Gaussian statistic can be used to generate a mathematically proven secure key for quantum cryptography. The distributed secret key rate is limited by the entanglement strength, the entanglement bandwidth, and the bandwidth of the photoelectric detectors. The development of a source for strongly bipartite entangled light with high bandwidth promises an increased measurement speed and a linear boost in the secure data rate. Here, we present the experimental realization of a Gaussian entanglement source with a bandwidth of more than 1.25 GHz. The entanglement spectrum was measured with balanced homodyne detectors and was quantified via the inseparability criterion introduced by Duan and coworkers with a critical value of 4 below which entanglement is certified. Our measurements yielded an inseparability value of about 1.8 at a frequency of 300 MHz to about 2.8 at 1.2 GHz, extending further to about 3.1 at 1.48 GHz. In the experiment we used two 2.6 mm long monolithic periodically poled potassium titanyl phosphate (KTP) resonators to generate two squeezed fields at the telecommunication wavelength of 1550 nm. Our result proves the possibility of generating and detecting strong continuous-variable entanglement with high speed.

  19. Novel WRM-based architecture of hybrid PON featuring online access and full-fiber-fault protection for smart grid

    NASA Astrophysics Data System (ADS)

    Li, Xingfeng; Gan, Chaoqin; Liu, Zongkang; Yan, Yuqi; Qiao, HuBao

    2018-01-01

    In this paper, a novel architecture of hybrid PON for smart grid is proposed by introducing a wavelength-routing module (WRM). By using conventional optical passive components, a WRM with M ports is designed. The symmetry and passivity of the WRM makes it be easily integrated and very cheap in practice. Via the WRM, two types of network based on different ONU-interconnected manner can realize online access. Depending on optical switches and interconnecting fibers, full-fiber-fault protection and dynamic bandwidth allocation are realized in these networks. With the help of amplitude modulation, DPSK modulation and RSOA technology, wavelength triple-reuse is achieved. By means of injecting signals into left and right branches in access ring simultaneously, the transmission delay is decreased. Finally, the performance analysis and simulation of the network verifies the feasibility of the proposed architecture.

  20. EVALSO: A New High-speed Data Link to Chilean Observatories

    NASA Astrophysics Data System (ADS)

    2010-11-01

    Stretching 100 kilometres through Chile's harsh Atacama Desert, a newly inaugurated data cable is creating new opportunities at ESO's Paranal Observatory and the Observatorio Cerro Armazones. Connecting these facilities to the main Latin American scientific data backbone completes the last gap in the high-speed link between the observatories and Europe. This new cable is part of the EVALSO (Enabling Virtual Access to Latin American Southern Observatories) project [1], a European Commission FP7 [2] co-funded programme co-ordinated by the University of Trieste that includes ESO, Observatorio Cerro Armazones (OCA, part of Ruhr-Universität Bochum), the Chilean academic network REUNA and other organisations. As well as the cable itself, the EVALSO project involves buying capacity on existing infrastructure to complete a high-bandwidth connection from the Paranal area to ESO's headquarters near Munich, Germany. Project co-ordinator Fernando Liello said: "This project has been an excellent collaboration between the consortium members. As well as giving a fast connection to the two observatories, it brings wider benefits to the academic communities both in Europe and Latin America." The sites of Paranal and Armazones are ideal for astronomical observation due to their high altitude, clear skies and remoteness from light pollution. But their location means they are far from any pre-existing communications infrastructure, which until now has left them dependent on a microwave link to send scientific data back to a base station near Antofagasta. Telescopes at ESO's Paranal observatory produce well over 100 gigabytes of data per night, equivalent to more than 20 DVDs, even after compressing the files. While the existing link is sufficient to carry the data from the current generation of instruments at the Very Large Telescope (VLT), it does not have the bandwidth to handle data from the VISTA telescope (Visible and Infrared Survey Telescope for Astronomy, see eso0949), or for the new generation of VLT instruments coming online in the next few years. This means that for much of the data coming from Paranal, the only practical way to send it to ESO Headquarters has been to save it onto hard drives and send these by airmail. This can mean a wait of days or even weeks before observations from VISTA are ready for analysis. Even with this careful rationing of the connection and sophisticated data management to use the connection as efficiently as possible, the link can get saturated at peak times. While this causes no major problems at present, it indicates that the link is reaching capacity. ESO Director General Tim de Zeeuw said: "ESO's observatory at Paranal is growing, with new telescopes and instruments coming online. Our world-class scientific observatories need state-of-the-art infrastructure." In the place of the existing connection, which has a limit of 16 megabit/s (similar to home ADSL broadband), EVALSO will provide a much faster 10 gigabit/s link - a speed fast enough to transfer an entire DVD movie in a matter of seconds [3]. Mario Campolargo, Director, Emerging Technologies and Infrastructures at the European Commission, said: "It is strategically important that the community of astronomers of Europe gets the best access possible to the ESO observatories: this is one of the reasons why the European Union supports the deployment of regional e-infrastructures for science in Latin America and interlinks them with GÉANT [4] and other EU e-infrastructures." The dramatic increase in bandwidth will allow increased use of Paranal's data from a distance, in real-time. It will allow easier monitoring of the VISTA telescope's performance, and quicker access to VLT data, increasing the responsiveness of quality control. And with the expanded bandwidth, new opportunities will open up, such as astronomers and technicians taking part in meetings via high-definition videoconferencing without having to travel to Chile. Moreover, looking forward, the new link will provide enough bandwidth to keep up with the ever-growing volumes of information from Paranal and Armazones in future years, as new and bandwidth-intensive instruments come into use. Immediate remote access to data at a distant location is not just about saving money and making the observatory's work more efficient. For unexpected and unpredictable events, such as gamma-ray bursts, there is often not enough time for astronomers to travel to observatories, and EVALSO will give experts a chance to work remotely on these events almost as if they were at the observatory. Notes [1] EVALSO is funded under the European Commission FP7 and is a partnership among Universita degli Studi di Trieste (Italy), ESO, Ruhr-Universität Bochum (Germany), Consortium GARR (Gestione Ampliamento Rete Ricerca) (Italy), Universiteit Leiden (Netherlands), Istituto Nazionale di Astrofisica (Italy), Queen Mary, University of London (UK), Cooperacion LatinoAmericana de Redes Avanzasas (CLARA) (Uruguay), and Red Universitaria Nacional (REUNA) (Chile). [2] FP7 (the European Commission Seventh Framework Programme for Research and Technical Development) is the European Union's main instrument for funding research. Its aim is to make, or keep, the EU as a world leader in its priority areas in science and technology. [3] The newly laid cable has a bandwidth of 10 gigabit/s. The entire network infrastructure between Paranal to ESO HQ in Germany is theoretically capable of transferring data at a maximum of 1 gigabit/s. [4] GÉANT is a pan-European data network dedicated to the research and education community. It connects 40 million users across 40 countries. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  1. Network connectivity enhancement by exploiting all optical multicast in semiconductor ring laser

    NASA Astrophysics Data System (ADS)

    Siraj, M.; Memon, M. I.; Shoaib, M.; Alshebeili, S.

    2015-03-01

    The use of smart phone and tablet applications will provide the troops for executing, controlling and analyzing sophisticated operations with the commanders providing crucial documents directly to troops wherever and whenever needed. Wireless mesh networks (WMNs) is a cutting edge networking technology which is capable of supporting Joint Tactical radio System (JTRS).WMNs are capable of providing the much needed bandwidth for applications like hand held radios and communication for airborne and ground vehicles. Routing management tasks can be efficiently handled through WMNs through a central command control center. As the spectrum space is congested, cognitive radios are a much welcome technology that will provide much needed bandwidth. They can self-configure themselves, can adapt themselves to the user requirement, provide dynamic spectrum access for minimizing interference and also deliver optimal power output. Sometimes in the indoor environment, there are poor signal issues and reduced coverage. In this paper, a solution utilizing (CR WMNs) over optical network is presented by creating nanocells (PCs) inside the indoor environment. The phenomenon of four-wave mixing (FWM) is exploited to generate all-optical multicast using semiconductor ring laser (SRL). As a result same signal is transmitted at different wavelengths. Every PC is assigned a unique wavelength. By using CR technology in conjunction with PC will not only solve network coverage issue but will provide a good bandwidth to the secondary users.

  2. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format

    NASA Astrophysics Data System (ADS)

    Tian, Yue; Leng, Lufeng; Su, Yikai

    2008-11-01

    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  3. Going End to End to Deliver High-Speed Data

    NASA Technical Reports Server (NTRS)

    2005-01-01

    By the end of the 1990s, the optical fiber "backbone" of the telecommunication and data-communication networks had evolved from megabits-per-second transmission rates to gigabits-per-second transmission rates. Despite this boom in bandwidth, however, users at the end nodes were still not being reached on a consistent basis. (An end node is any device that does not behave like a router or a managed hub or switch. Examples of end node objects are computers, printers, serial interface processor phones, and unmanaged hubs and switches.) The primary reason that prevents bandwidth from reaching the end nodes is the complex local network topology that exists between the optical backbone and the end nodes. This complex network topology consists of several layers of routing and switch equipment which introduce potential congestion points and network latency. By breaking down the complex network topology, a true optical connection can be achieved. Access Optical Networks, Inc., is making this connection a reality with guidance from NASA s nondestructive evaluation experts.

  4. Collaboration tools and techniques for large model datasets

    USGS Publications Warehouse

    Signell, R.P.; Carniel, S.; Chiggiato, J.; Janekovic, I.; Pullen, J.; Sherwood, C.R.

    2008-01-01

    In MREA and many other marine applications, it is common to have multiple models running with different grids, run by different institutions. Techniques and tools are described for low-bandwidth delivery of data from large multidimensional datasets, such as those from meteorological and oceanographic models, directly into generic analysis and visualization tools. Output is stored using the NetCDF CF Metadata Conventions, and then delivered to collaborators over the web via OPeNDAP. OPeNDAP datasets served by different institutions are then organized via THREDDS catalogs. Tools and procedures are then used which enable scientists to explore data on the original model grids using tools they are familiar with. It is also low-bandwidth, enabling users to extract just the data they require, an important feature for access from ship or remote areas. The entire implementation is simple enough to be handled by modelers working with their webmasters - no advanced programming support is necessary. ?? 2007 Elsevier B.V. All rights reserved.

  5. MarFS, a Near-POSIX Interface to Cloud Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inman, Jeffrey Thornton; Vining, William Flynn; Ransom, Garrett Wilson

    The engineering forces driving development of “cloud” storage have produced resilient, cost-effective storage systems that can scale to 100s of petabytes, with good parallel access and bandwidth. These features would make a good match for the vast storage needs of High-Performance Computing datacenters, but cloud storage gains some of its capability from its use of HTTP-style Representational State Transfer (REST) semantics, whereas most large datacenters have legacy applications that rely on POSIX file-system semantics. MarFS is an open-source project at Los Alamos National Laboratory that allows us to present cloud-style object-storage as a scalable near-POSIX file system. We have alsomore » developed a new storage architecture to improve bandwidth and scalability beyond what’s available in commodity object stores, while retaining their resilience and economy. Additionally, we present a scheme for scaling the POSIX interface to allow billions of files in a single directory and trillions of files in total.« less

  6. MarFS, a Near-POSIX Interface to Cloud Objects

    DOE PAGES

    Inman, Jeffrey Thornton; Vining, William Flynn; Ransom, Garrett Wilson; ...

    2017-01-01

    The engineering forces driving development of “cloud” storage have produced resilient, cost-effective storage systems that can scale to 100s of petabytes, with good parallel access and bandwidth. These features would make a good match for the vast storage needs of High-Performance Computing datacenters, but cloud storage gains some of its capability from its use of HTTP-style Representational State Transfer (REST) semantics, whereas most large datacenters have legacy applications that rely on POSIX file-system semantics. MarFS is an open-source project at Los Alamos National Laboratory that allows us to present cloud-style object-storage as a scalable near-POSIX file system. We have alsomore » developed a new storage architecture to improve bandwidth and scalability beyond what’s available in commodity object stores, while retaining their resilience and economy. Additionally, we present a scheme for scaling the POSIX interface to allow billions of files in a single directory and trillions of files in total.« less

  7. Tri-Band CPW-Fed Stub-Loaded Slot Antenna Design for WLAN/WiMAX Applications

    NASA Astrophysics Data System (ADS)

    Li, Jianxing; Guo, Jianying; He, Bin; Zhang, Anxue; Liu, Qing Huo

    2016-11-01

    A novel uniplanar CPW-fed tri-band stub-loaded slot antenna is proposed for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. Dual resonant modes were effectively excited in the upper band by using two identical pairs of slot stubs and parasitic slots symmetrically along the arms of a traditional CPW-fed slot dipole, achieving a much wider bandwidth. The middle band was realized by the fundamental mode of the slot dipole. To obtain the lower band, two identical inverted-L-shaped open-ended slots were symmetrically etched in the ground plane. A prototype was fabricated and measured, showing that tri-band operation with 10-dB return loss bandwidths of 150 MHz from 2.375 to 2.525 GHz, 725 MHz from 3.075 to 3.8 GHz, and 1.9 GHz from 5.0 to 6.9 GHz has been achieved. Details of the antenna design as well as the measured and simulated results are presented and discussed.

  8. Performance Analysis of IEEE 802.15.3 MAC Protocol with Different ACK Polices

    NASA Astrophysics Data System (ADS)

    Mehta, S.; Kwak, K. S.

    The wireless personal area network (WPAN) is an emerging wireless technology for future short range indoor and outdoor communication applications. The IEEE 802.15.3 medium access control (MAC) is proposed, specially, for short range high data rates applications, to coordinate the access to the wireless medium among the competing devices. This paper uses analytical model to study the performance analysis of WPAN (IEEE 802.15.3) MAC in terms of throughput, efficient bandwidth utilization, and delay with various acknowledgment schemes under different parameters. Also, some important observations are obtained, which can be very useful to the protocol architectures. Finally, we come up with some important research issues to further investigate the possible improvements in the WPAN MAC.

  9. A Highly Flexible and Efficient Passive Optical Network Employing Dynamic Wavelength Allocation

    NASA Astrophysics Data System (ADS)

    Hsueh, Yu-Li; Rogge, Matthew S.; Yamamoto, Shu; Kazovsky, Leonid G.

    2005-01-01

    A novel and high-performance passive optical network (PON), the SUCCESS-DWA PON, employs dynamic wavelength allocation to provide bandwidth sharing across multiple physical PONs. In the downstream, tunable lasers, an arrayed waveguide grating, and coarse/fine filtering combine to create a flexible new optical access solution. In the upstream, several distributed and centralized schemes are proposed and investigated. The network performance is compared to conventional TDM-PONs under different traffic models, including the self-similar traffic model and the transaction-oriented model. Broadcast support and deployment issues are addressed. The network's excellent scalability can bridge the gap between conventional TDM-PONs and WDM-PONs. The powerful architecture is a promising candidate for next generation optical access networks.

  10. Packet communications in satellites with multiple-beam antennas and signal processing

    NASA Technical Reports Server (NTRS)

    Davies, R.; Chethik, F.; Penick, M.

    1980-01-01

    A communication satellite with a multiple-beam antenna and onboard signal processing is considered for use in a 'message-switched' data relay system. The signal processor may incorporate demodulation, routing, storage, and remodulation of the data. A system user model is established and key functional elements for the signal processing are identified. With the throughput and delay requirements as the controlled variables, the hardware complexity, operational discipline, occupied bandwidth, and overall user end-to-end cost are estimated for (1) random-access packet switching; and (2) reservation-access packet switching. Other aspects of this network (eg, the adaptability to channel switched traffic requirements) are examined. For the given requirements and constraints, the reservation system appears to be the most attractive protocol.

  11. A System for Open-Access 3He Human Lung Imaging at Very Low Field

    PubMed Central

    RUSET, I.C.; TSAI, L.L.; MAIR, R.W.; PATZ, S.; HROVAT, M.I.; ROSEN, M.S.; MURADIAN, I.; NG, J.; TOPULOS, G.P.; BUTLER, J.P.; WALSWORTH, R.L.; HERSMAN, F.W.

    2010-01-01

    We describe a prototype system built to allow open-access very-low-field MRI of human lungs using laser-polarized 3He gas. The system employs an open four-coil electromagnet with an operational B0 field of 4 mT, and planar gradient coils that generate gradient fields up to 0.18 G/cm in the x and y direction and 0.41 G/cm in the z direction. This system was used to obtain 1H and 3He phantom images and supine and upright 3He images of human lungs. We include discussion on challenges unique to imaging at 50 –200 kHz, including noise filtering and compensation for narrow-bandwidth coils. PMID:20354575

  12. Convergence of broadband optical and wireless access networks

    NASA Astrophysics Data System (ADS)

    Chang, Gee-Kung; Jia, Zhensheng; Chien, Hung-Chang; Chowdhury, Arshad; Hsueh, Yu-Ting; Yu, Jianjun

    2009-01-01

    This paper describes convergence of optical and wireless access networks for delivering high-bandwidth integrated services over optical fiber and air links. Several key system technologies are proposed and experimentally demonstrated. We report here, for the first ever, a campus-wide field trial demonstration of radio-over-fiber (RoF) system transmitting uncompressed standard-definition (SD) high-definition (HD) real-time video contents, carried by 2.4-GHz radio and 60- GHz millimeter-wave signals, respectively, over 2.5-km standard single mode fiber (SMF-28) through the campus fiber network at Georgia Institute of Technology (GT). In addition, subsystem technologies of Base Station and wireless tranceivers operated at 60 GHz for real-time video distribution have been developed and tested.

  13. Orbital angular momentum in four channel spatial domain multiplexing system for multi-terabit per second communication architectures

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Muralikrishnan, Hari P.; Kozaitis, Samuel P.

    2012-06-01

    Bandwidth increase has always been an important area of research in communications. A novel multiplexing technique known as Spatial Domain Multiplexing (SDM) has been developed at the Optronics Laboratory of Florida Institute of Technology to increase the bandwidth to T-bits/s range. In this technique, space inside the fiber is used effectively to transmit up to four channels of same wavelength at the same time. Experimental and theoretical analysis shows that these channels follow independent helical paths inside the fiber without interfering with each other. Multiple pigtail laser sources of exactly the same wavelength are used to launch light into a single carrier fiber in a fashion that resulting channels follow independent helical trajectories. These helically propagating light beams form optical vortices inside the fiber and carry their own Orbital Angular Momentum (OAM). The outputs of these beams appear as concentric donut shaped rings when projected on a screen. This endeavor presents the experimental outputs and simulated results for a four channel spatially multiplexed system effectively increasing the system bandwidth by a factor of four.

  14. Method and apparatus for telemetry adaptive bandwidth compression

    NASA Technical Reports Server (NTRS)

    Graham, Olin L.

    1987-01-01

    Methods and apparatus are provided for automatic and/or manual adaptive bandwidth compression of telemetry. An adaptive sampler samples a video signal from a scanning sensor and generates a sequence of sampled fields. Each field and range rate information from the sensor are hence sequentially transmitted to and stored in a multiple and adaptive field storage means. The field storage means then, in response to an automatic or manual control signal, transfers the stored sampled field signals to a video monitor in a form for sequential or simultaneous display of a desired number of stored signal fields. The sampling ratio of the adaptive sample, the relative proportion of available communication bandwidth allocated respectively to transmitted data and video information, and the number of fields simultaneously displayed are manually or automatically selectively adjustable in functional relationship to each other and detected range rate. In one embodiment, when relatively little or no scene motion is detected, the control signal maximizes sampling ratio and causes simultaneous display of all stored fields, thus maximizing resolution and bandwidth available for data transmission. When increased scene motion is detected, the control signal is adjusted accordingly to cause display of fewer fields. If greater resolution is desired, the control signal is adjusted to increase the sampling ratio.

  15. Communications satellites in the national and global health care information infrastructure: their role, impact, and issues

    NASA Technical Reports Server (NTRS)

    Zuzek, J. E.; Bhasin, K. B.

    1996-01-01

    Health care services delivered from a distance, known collectively as telemedicine, are being increasingly demonstrated on various transmission media. Telemedicine activities have included diagnosis by a doctor at a remote location, emergency and disaster medical assistance, medical education, and medical informatics. The ability of communications satellites to offer communication channels and bandwidth on demand, connectivity to mobile, remote and under served regions, and global access will afford them a critical role for telemedicine applications within the National and Global Information Infrastructure (NII/GII). The importance that communications satellites will have in telemedicine applications within the NII/GII the differences in requirements for NII vs. GII, the major issues such as interoperability, confidentiality, quality, availability, and costs, and preliminary conclusions for future usability based on the review of several recent trails at national and global levels are presented.

  16. Optical RRH working in an all-optical fronthaul network

    NASA Astrophysics Data System (ADS)

    Zakrzewski, Zbigniew

    2017-12-01

    The paper presents an example of an optical RRH (Remote Radio Head) design, which is equipped with photonic components for direct connection to an all-optical network. The features that can be fulfilled by an all-optical network are indicated to support future 5G mobile networks. The demand for optical bandwidth in fronthaul/midhaul distribution network links, working in D-RoF and A-RoF formats was performed. The increase in demand is due to the very large traffic generated by the Optical Massive-MIMO RRH/RRU will work in format of an Active-Distributed Antenna System (A-DAS). An exemplary next-generation mobile network that will utilize O-RRH and an all-optical backbone is presented. All components of presented network will work in the Centralized/Cloud Radio Access Network (C-RAN) architecture, which is achievable by control with the use of the OpenFlow (OF).

  17. Privacy enabling technology for video surveillance

    NASA Astrophysics Data System (ADS)

    Dufaux, Frédéric; Ouaret, Mourad; Abdeljaoued, Yousri; Navarro, Alfonso; Vergnenègre, Fabrice; Ebrahimi, Touradj

    2006-05-01

    In this paper, we address the problem privacy in video surveillance. We propose an efficient solution based on transformdomain scrambling of regions of interest in a video sequence. More specifically, the sign of selected transform coefficients is flipped during encoding. We address more specifically the case of Motion JPEG 2000. Simulation results show that the technique can be successfully applied to conceal information in regions of interest in the scene while providing with a good level of security. Furthermore, the scrambling is flexible and allows adjusting the amount of distortion introduced. This is achieved with a small impact on coding performance and negligible computational complexity increase. In the proposed video surveillance system, heterogeneous clients can remotely access the system through the Internet or 2G/3G mobile phone network. Thanks to the inherently scalable Motion JPEG 2000 codestream, the server is able to adapt the resolution and bandwidth of the delivered video depending on the usage environment of the client.

  18. A Routing Mechanism for Cloud Outsourcing of Medical Imaging Repositories.

    PubMed

    Godinho, Tiago Marques; Viana-Ferreira, Carlos; Bastião Silva, Luís A; Costa, Carlos

    2016-01-01

    Web-based technologies have been increasingly used in picture archive and communication systems (PACS), in services related to storage, distribution, and visualization of medical images. Nowadays, many healthcare institutions are outsourcing their repositories to the cloud. However, managing communications between multiple geo-distributed locations is still challenging due to the complexity of dealing with huge volumes of data and bandwidth requirements. Moreover, standard methodologies still do not take full advantage of outsourced archives, namely because their integration with other in-house solutions is troublesome. In order to improve the performance of distributed medical imaging networks, a smart routing mechanism was developed. This includes an innovative cache system based on splitting and dynamic management of digital imaging and communications in medicine objects. The proposed solution was successfully deployed in a regional PACS archive. The results obtained proved that it is better than conventional approaches, as it reduces remote access latency and also the required cache storage space.

  19. A RESTful image gateway for multiple medical image repositories.

    PubMed

    Valente, Frederico; Viana-Ferreira, Carlos; Costa, Carlos; Oliveira, José Luis

    2012-05-01

    Mobile technologies are increasingly important components in telemedicine systems and are becoming powerful decision support tools. Universal access to data may already be achieved by resorting to the latest generation of tablet devices and smartphones. However, the protocols employed for communicating with image repositories are not suited to exchange data with mobile devices. In this paper, we present an extensible approach to solving the problem of querying and delivering data in a format that is suitable for the bandwidth and graphic capacities of mobile devices. We describe a three-tiered component-based gateway that acts as an intermediary between medical applications and a number of Picture Archiving and Communication Systems (PACS). The interface with the gateway is accomplished using Hypertext Transfer Protocol (HTTP) requests following a Representational State Transfer (REST) methodology, which relieves developers from dealing with complex medical imaging protocols and allows the processing of data on the server side.

  20. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication

    PubMed Central

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-01-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80–100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes. PMID:28145513

  1. The Galley Parallel File System

    NASA Technical Reports Server (NTRS)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    Most current multiprocessor file systems are designed to use multiple disks in parallel, using the high aggregate bandwidth to meet the growing I/0 requirements of parallel scientific applications. Many multiprocessor file systems provide applications with a conventional Unix-like interface, allowing the application to access multiple disks transparently. This interface conceals the parallelism within the file system, increasing the ease of programmability, but making it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. In addition to providing an insufficient interface, most current multiprocessor file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic scientific multiprocessor workloads. We discuss Galley's file structure and application interface, as well as the performance advantages offered by that interface.

  2. The implementation of a lossless data compression module in an advanced orbiting system: Analysis and development

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Miller, Warner H.; Venbrux, Jack; Liu, Norley; Rice, Robert F.

    1993-01-01

    Data compression has been proposed for several flight missions as a means of either reducing on board mass data storage, increasing science data return through a bandwidth constrained channel, reducing TDRSS access time, or easing ground archival mass storage requirement. Several issues arise with the implementation of this technology. These include the requirement of a clean channel, onboard smoothing buffer, onboard processing hardware and on the algorithm itself, the adaptability to scene changes and maybe even versatility to the various mission types. This paper gives an overview of an ongoing effort being performed at Goddard Space Flight Center for implementing a lossless data compression scheme for space flight. We will provide analysis results on several data systems issues, the performance of the selected lossless compression scheme, the status of the hardware processor and current development plan.

  3. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    NASA Astrophysics Data System (ADS)

    Dykstra, D.; Bockelman, B.; Blomer, J.; Herner, K.; Levshina, T.; Slyz, M.

    2015-12-01

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called "alien cache" to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached locally on the site with a convenient POSIX interface. This paper discusses the details of the architecture and reports performance measurements.

  4. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykstra, D.; Bockelman, B.; Blomer, J.

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliarymore » data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called 'alien cache' to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached locally on the site with a convenient POSIX interface. This paper discusses the details of the architecture and reports performance measurements.« less

  5. A Next-Generation Parallel File System Environment for the OLCF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillow, David A; Fuller, Douglas; Gunasekaran, Raghul

    2012-01-01

    When deployed in 2008/2009 the Spider system at the Oak Ridge National Laboratory s Leadership Computing Facility (OLCF) was the world s largest scale Lustre parallel file system. Envisioned as a shared parallel file system capable of delivering both the bandwidth and capacity requirements of the OLCF s diverse computational environment, Spider has since become a blueprint for shared Lustre environments deployed worldwide. Designed to support the parallel I/O requirements of the Jaguar XT5 system and other smallerscale platforms at the OLCF, the upgrade to the Titan XK6 heterogeneous system will begin to push the limits of Spider s originalmore » design by mid 2013. With a doubling in total system memory and a 10x increase in FLOPS, Titan will require both higher bandwidth and larger total capacity. Our goal is to provide a 4x increase in total I/O bandwidth from over 240GB=sec today to 1TB=sec and a doubling in total capacity. While aggregate bandwidth and total capacity remain important capabilities, an equally important goal in our efforts is dramatically increasing metadata performance, currently the Achilles heel of parallel file systems at leadership. We present in this paper an analysis of our current I/O workloads, our operational experiences with the Spider parallel file systems, the high-level design of our Spider upgrade, and our efforts in developing benchmarks that synthesize our performance requirements based on our workload characterization studies.« less

  6. Design optimization for 25 Gbit/s DML InGaAlAs/InGaAsP/InP SL-MQW laser diode incorporating temperature effect

    NASA Astrophysics Data System (ADS)

    Ke, Cheng; Li, Xun; Xi, Yanping; Yu, Yang

    2017-11-01

    In this paper, a detailed carrier dynamics model for quantum well lasers is used to study the modulation bandwidth of the directly modulated strained-layer multiple quantum well (SL-MQW) laser. The active region of the directly modulated laser (DML) is optimized in terms of the number of QWs and barrier height. To compromise the device dynamic performance at different operating temperatures, we present an overall optimized design for a 25 Gbps DML under an ambient temperature ranging from 25 to 85°C. To further enhance the modulation bandwidth, we have also proposed a mixed QWs design that increases the 3 dB bandwidth by almost 44% compared to the one without undergoing optimization. The experimental results show that the 3 dB bandwidth of the optimized DML can reach 19 GHz. A clear eye diagram with a bit rate of 25 Gbps was observed at 25°C.

  7. Effect of pumping delay on the modulation bandwidth in double tunneling-injection quantum dot lasers.

    PubMed

    Asryan, Levon V

    2017-01-01

    The modulation bandwidth of double tunneling-injection (DTI) quantum dot (QD) lasers is studied, taking into account noninstantaneous pumping of QDs. In this advanced type of semiconductor lasers, carriers are first captured from the bulk waveguide region into two-dimensional regions (quantum wells [QWs]); then they tunnel from the QWs into zero-dimensional regions (QDs). The two processes are noninstantaneous and, thus, could delay the delivery of the carriers to the QDs. Here, the modulation bandwidth of DTI QD lasers is calculated as a function of two characteristic times (the capture time from the waveguide region into the QW and the tunneling time from the QW into the QD ensemble) and is shown to increase as either of these times is reduced. The capture and tunneling times of 1 and 0.1 ps, respectively, are shown to characterize fast capture and tunneling processes; as the capture and tunneling times are brought below 1 and 0.1 ps, the bandwidth remains almost unchanged and close to its upper limit.

  8. A 0.4-2.3 GHz broadband power amplifier extended continuous class-F design technology

    NASA Astrophysics Data System (ADS)

    Chen, Peng; He, Songbai

    2015-08-01

    A 0.4-2.3 GHz broadband power amplifier (PA) extended continuous class-F design technology is proposed in this paper. Traditional continuous class-F PA performs in high-efficiency only in one octave bandwidth. With the increasing development of wireless communication, the PA is in demand to cover the mainstream communication standards' working frequencies from 0.4 GHz to 2.2 GHz. In order to achieve this objective, the bandwidths of class-F and continuous class-F PA are analysed and discussed by Fourier series. Also, two criteria, which could reduce the continuous class-F PA's implementation complexity, are presented and explained to investigate the overlapping area of the transistor's current and voltage waveforms. The proposed PA design technology is based on the continuous class-F design method and divides the bandwidth into two parts: the first part covers the bandwidth from 1.3 GHz to 2.3 GHz, where the impedances are designed by the continuous class-F method; the other part covers the bandwidth from 0.4 GHz to 1.3 GHz, where the impedance to guarantee PA to be in high-efficiency over this bandwidth is selected and controlled. The improved particle swarm optimisation is employed for realising the multi-impedances of output and input network. A PA based on a commercial 10 W GaN high electron mobility transistor is designed and fabricated to verify the proposed design method. The simulation and measurement results show that the proposed PA could deliver 40-76% power added efficiency and more than 11 dB power gain with more than 40 dBm output power over the bandwidth from 0.4-2.3 GHz.

  9. Fiber-Optic Terahertz Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.

    1994-01-01

    Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.

  10. Project: Micromachined High-Frequency Circuits For Sub-mm-wave Sensors

    NASA Technical Reports Server (NTRS)

    Papapolymerou, Ioannis John

    2004-01-01

    A novel micromachined resonator at 45 GHz based on a defect in a periodic electromagnetic bandgap structure (EBG) and a two-pole Tchebysbev filter with 1.4% 0.15 dB equiripple bandwidth and 2.3 dB loss employing this resonator are presented in this letter. The periodic bandgap structure is realized on a 400 micron thick high-resistivity silicon wafer using deep reactive ion etching techniques. The resonator and filter can be accessed via coplanar waveguide feeds.

  11. Characterizing parallel file-access patterns on a large-scale multiprocessor

    NASA Technical Reports Server (NTRS)

    Purakayastha, Apratim; Ellis, Carla Schlatter; Kotz, David; Nieuwejaar, Nils; Best, Michael

    1994-01-01

    Rapid increases in the computational speeds of multiprocessors have not been matched by corresponding performance enhancements in the I/O subsystem. To satisfy the large and growing I/O requirements of some parallel scientific applications, we need parallel file systems that can provide high-bandwidth and high-volume data transfer between the I/O subsystem and thousands of processors. Design of such high-performance parallel file systems depends on a thorough grasp of the expected workload. So far there have been no comprehensive usage studies of multiprocessor file systems. Our CHARISMA project intends to fill this void. The first results from our study involve an iPSC/860 at NASA Ames. This paper presents results from a different platform, the CM-5 at the National Center for Supercomputing Applications. The CHARISMA studies are unique because we collect information about every individual read and write request and about the entire mix of applications running on the machines. The results of our trace analysis lead to recommendations for parallel file system design. First the file system should support efficient concurrent access to many files, and I/O requests from many jobs under varying load conditions. Second, it must efficiently manage large files kept open for long periods. Third, it should expect to see small requests predominantly sequential access patterns, application-wide synchronous access, no concurrent file-sharing between jobs appreciable byte and block sharing between processes within jobs, and strong interprocess locality. Finally, the trace data suggest that node-level write caches and collective I/O request interfaces may be useful in certain environments.

  12. Phase locked loop synchronization for direct detection optical PPM communication systems

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1985-01-01

    Receiver timing synchronization of an optical pulse position modulation (PPM) communication system can be achieved using a phase locked loop (PLL) if the photodetector output is properly processed. The synchronization performance is shown to improve with increasing signal power and decreasing loop bandwidth. Bit error rate (BER) of the PLL synchronized PPM system is analyzed and compared to that for the perfectly synchronized system. It is shown that the increase in signal power needed to compensate for the imperfect synchronization is small (less than 0.1 dB) for loop bandwidths less than 0.1% of the slot frequency.

  13. 47 CFR 24.133 - Emission limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement...

  14. 47 CFR 24.133 - Emission limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement...

  15. 47 CFR 24.133 - Emission limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement...

  16. 47 CFR 24.133 - Emission limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement...

  17. 47 CFR 24.133 - Emission limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement...

  18. Joint transform correlator optical encryption system: Extensions of the recorded encrypted signal and its inverse Fourier transform

    NASA Astrophysics Data System (ADS)

    Galizzi, Gustavo E.; Cuadrado-Laborde, Christian

    2015-10-01

    In this work we study the joint transform correlator setup, finding two analytical expressions for the extensions of the joint power spectrum and its inverse Fourier transform. We found that an optimum efficiency is reached, when the bandwidth of the key code is equal to the sum of the bandwidths of the image plus the random phase mask (RPM). The quality of the decryption is also affected by the ratio between the bandwidths of the RPM and the input image, being better as this ratio increases. In addition, the effect on the decrypted image when the detection area is lower than the encrypted signal extension was analyzed. We illustrate these results through several numerical examples.

  19. Broadband locally resonant metamaterials with graded hierarchical architecture

    NASA Astrophysics Data System (ADS)

    Liu, Chenchen; Reina, Celia

    2018-03-01

    We investigate the effect of hierarchical designs on the bandgap structure of periodic lattice systems with inner resonators. A detailed parameter study reveals various interesting features of structures with two levels of hierarchy as compared with one level systems with identical static mass. In particular: (i) their overall bandwidth is approximately equal, yet bounded above by the bandwidth of the single-resonator system; (ii) the number of bandgaps increases with the level of hierarchy; and (iii) the spectrum of bandgap frequencies is also enlarged. Taking advantage of these features, we propose graded hierarchical structures with ultra-broadband properties. These designs are validated over analogous continuum models via finite element simulations, demonstrating their capability to overcome the bandwidth narrowness that is typical of resonant metamaterials.

  20. FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Increase of the bandwidth and of the efficiency of integrated optical traveling-wave modulators

    NASA Astrophysics Data System (ADS)

    Zolotov, Evgenii M.; Pelekhatyĭ, V. M.; Tavlykaev, R. F.

    1990-05-01

    A simultaneous increase in the frequency bandwidth and a reduction in the control (drive) power of integrated optical traveling-wave modulators can be achieved as a result of the electrooptic interaction in accordance with a linear frequency-modulated oscillatory law derived by inverse Fourier transformation of a rectangular amplitude-frequency characteristic and a quadratic phase-frequency characteristic of a modulator. This oscillatory law is realized using planar electrode structures with triangular or trapezoidal toothed edges. The tooth repetition frequency is governed by the linearly frequency-modulated oscillations and it rises on increase in the light modulation frequency.

  1. Development of a Hybrid Course on Wheelchair Service Provision for clinicians in international contexts.

    PubMed

    Burrola-Mendez, Yohali; Goldberg, Mary; Gartz, Rachel; Pearlman, Jon

    2018-01-01

    Wheelchair users worldwide are at high risk of developing secondary health conditions and premature death due to inappropriate wheelchair provision by untrained providers. The International Society of Wheelchair Professionals (ISWP) has developed a Hybrid Course based on the World Health Organization's Wheelchair Service Training Package-Basic Level. The Hybrid Course leverages online modules designed for low-bandwidth internet access that reduces the in-person training exposure from five to three and a half days, making it less expensive and more convenient for both trainees and trainers. The Hybrid Course was designed using a systematic approach guided by an international group of stakeholders. The development followed the Quality Matters Higher Educational Rubric, web design guidelines for low bandwidth, experts' opinions, and the best practices for blended course design. A quasi-experimental approach was used to evaluate the effectiveness of the Hybrid Course taken by six graduate students in Rehabilitation Sciences at the University of Pittsburgh by measuring pre- and post knowledge using the validated ISWP Wheelchair Service Provision-Basic Test. The outcome measure was assessed using a paired sample t-test between pretest and posttest scores. The quality of the Hybrid Course was evaluated by three external reviewers using the Quality Matters Higher Educational Rubric who were blind to each others' evaluation and the results of the training intervention. Hybrid Course participants reported significant increases in scores on the ISWP Wheelchair Service Provision-Basic Test after participating in the training, with an average increase of 10.84±5.42, p = 0.004, Cohen's d = 1.99. In addition, the Hybrid Course met the Quality Matters Standards in two out of three evaluations and reported a percentage of agreement between evaluators of 84%. The Hybrid Course met quality standards and proved to be effective in increasing basic level wheelchair knowledge in a group of Rehabilitation Science graduate students.

  2. An effective method to increase bandwidth of EIK at 0.34 THz

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Wang, Guangqiang; Wang, Dongyang

    2018-02-01

    To increase the bandwidth of Extended Interaction Klystron (EIK) at 0.34 THz, the method of staggered tuning on cavities' configurations is proposed. Based on the analysis of phase relationship between gap voltage and the bunched beam, the buncher cavities in EIK are reasonably staggered-tuned to achieve various resonance frequencies, which is helpful to flat the gain response of the whole device. The characteristics of output cavities with different numbers of gaps are then researched and the issue of start current for the self-oscillation mode is also involved, leading to the optimum number of gaps to enhance the interaction and avoid the instability. By comparing the performances of various typical stagger-tuned models, the final configuration is accordingly confirmed. Particle-in-cell simulation is eventually applied to study performance of the optimised structure, whose gain is 34.8 dB in peak and -3 dB bandwidth reaches about 500 MHz, which is double that of the synchronous-tuned structure.

  3. Bandwidth Dependence of Laser Plasma Instabilities Driven by the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Oh, J.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Phillips, L.; Lehmberg, R. H.; McLean, E.; Manka, C.; Feldman, U.

    2011-10-01

    The Nike krypton-fluoride (KrF) laser at the Naval Research Laboratory operates in the deep UV (248 nm) and employs beam smoothing by induced spatial incoherence (ISI). In the first ISI studies at longer wavelengths (1054 nm and 527 nm) [Obenschain, PRL 62, 768(1989);Mostovych, PRL, 59, 1193(1987); Peyser, Phys. Fluids B 3, 1479(1991)], stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν / ν ~ 0.03-0.19%) pulses irradiated targets at moderate to high intensities (1014-1015W/cm2) . Recent Nike work showed that the threshold for quarter critical instabilities increased with the expected wavelength scaling, without accounting for the large bandwidth (δν ~ 1-3 THz). New experiments will compare laser plasma instabilities (LPI) driven by narrower bandwidth pulses to those observed with the standard operation. The bandwidth of KrF lasers can be reduced by adding narrow filters (etalons or gratings) in the initial stages of the laser. This talk will discuss the method used to narrow the output spectrum of Nike, the laser performance for this new operating mode, and target observations of LPI in planar CH targets. Work supported by DoE/NNSA.

  4. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing

    2016-04-15

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7more » Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.« less

  5. Advanced Optical Burst Switched Network Concepts

    NASA Astrophysics Data System (ADS)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network would have to securely transport 1.2 GB of data every 30 s [230]. According to the above explanation it is clear that these types of applications need a new network infrastructure and transport technology that makes large amounts of bandwidth at subwavelength granularity, storage, computation, and visualization resources potentially available to a wide user base for specified time durations. As these types of collaborative and network-based applications evolve addressing a wide range and large number of users, it is infeasible to build dedicated networks for each application type or category. Consequently, there should be an adaptive network infrastructure able to support all application types, each with their own access, network, and resource usage patterns. This infrastructure should offer flexible and intelligent network elements and control mechanism able to deploy new applications quickly and efficiently.

  6. Information and communication technology needs for distributed communication and coordination during expedition-class spaceflight.

    PubMed

    Caldwell, B S

    2000-09-01

    AO-lU. Expedition-class missions are distinct from historical human presence in space in ways that significantly affect information flow and information technology designs for such missions. The centrality of Mission Control in these missions is challenged by the distances, associated communication delays, and durations of expeditions, all of which require crews to have more local resources available to manage on-board situations. The author's current research investigates how ground controllers effectively allocate communications bandwidth, cognitive resources, and knowledge sharing skills during time critical routine and non-routine situations. The research focus is on team-based information and communication technology (ICT) use to provide recommendations for improvements to support adaptive bandwidth allocations and improved sharing of data and knowledge in Mission Control contexts. In order to further improve communication and coordination between controllers and crew, additional ICT support resources will be needed to provide shared context knowledge and dynamic assessment of costs and benefits for accessing local information vs. remote expertise. Crew members will have critical needs to understand the goals, intentions, and situational constraints associated with mission information resources in order to use them most effectively in conditions where ground-based expertise is insufficient or requires more time to access and coordinate than local task demands permit. Results of this research will serve to improve the design and implementation of ICT systems to improve human performance capabilities and system operating tolerances for exploration missions. (Specific research data were not available at the time of publication.)

  7. Commercialization of Advanced Communications Technology Satellite (ACTS) technology

    NASA Astrophysics Data System (ADS)

    Plecity, Mark S.; Strickler, Walter M.; Bauer, Robert A.

    1996-03-01

    In an on-going effort to maintain United States leadership in communication satellite technology, the National Aeronautics and Space Administration (NASA), led the development of the Advanced Communications Technology Satellite (ACTS). NASA's ACTS program provides industry, academia, and government agencies the opportunity to perform both technology and telecommunication service experiments with a leading-edge communication satellite system. Over 80 organizations are using ACTS as a multi server test bed to establish communication technologies and services of the future. ACTS was designed to provide demand assigned multiple access (DAMA) digital communications with a minimum switchable circuit bandwidth of 64 Kbps, and a maximum channel bandwidth of 900 MHZ. It can, therefore, provide service to thin routes as well as connect fiber backbones in supercomputer networks, across oceans, or restore full communications in the event of national or manmade disaster. Service can also be provided to terrestrial and airborne mobile users. Commercial applications of ACTS technologies include: telemedicine; distance education; Department of Defense operations; mobile communications, aeronautical applications, terrestrial applications, and disaster recovery. This paper briefly describes the ACTS system and the enabling technologies employed by ACTS including Ka-band hopping spot beams, on-board routing and switching, and rain fade compensation. When used in conjunction with a time division multiple access (TDMA) architecture, these technologies provide a higher capacity, lower cost satellite system. Furthermore, examples of completed user experiments, future experiments, and plans of organizations to commercialize ACTS technology in their own future offerings will be discussed.

  8. A system's view of metro and regional optical networks

    NASA Astrophysics Data System (ADS)

    Lam, Cedric F.; Way, Winston I.

    2009-01-01

    Developments in fiber optic communications have been rejuvenated after the glut of the overcapacity at the turn of the century. The boom of video-centric network applications finally resulted in another wave of vast build-outs of broadband access networks such as FTTH, DOCSIS 3.0 and WI-FI systems, which in turn also drove up the bandwidth demands in metro and regional WDM networks. These new developments have rekindled research interests on technologies not only to meet the surging demand, but also to upgrade legacy network infrastructures in an evolutionary manner without disrupting existing services and incurring significant capital penalties. Standard bodies such as IEEE, ITU and OIF have formed task forces to ratify 100Gb/s interface standards. Thanks to the seemingly unlimited bandwidth in single-mode fibers, advances in optical networks has traditionally been fueled by more capable physical components such as more powerful laser, cleaner and wider bandwidth optical amplifier, faster modulator and photo-detectors, etc. In the meanwhile, the mainstream modulation technique for fiber optic communication systems has remained the most rudimentary form of on-off keying (OOK) and direct power detection for a very long period of time because spectral efficiency had never been a concern. This scenario, however, is no longer valid as demand for bandwidth is pushing the limit of current of current WDM technologies. In terms of spectral use, all the 100-GHz ITU grids in the C-band have been populated with 10Gb/s wavelengths in most of the WDM transport networks, and we are exhausting the power and bandwidth offered on existing fiber plant EDFAs. Beyond 10Gb/s, increasing the transmission to 40Gb/s by brute force OOK approach incurs significant penalties due to chromatic and polarization mode dispersion. With conventional modulation schemes, transmission impairments at 40Gb/s speed and above already become such difficult challenges that the efforts to manage these problem have severely hindered the rate of return on the investment from an economical viewpoint, let alone 100Gb/s transmission. In addition, to enable fast turn-up of new services and reduce network operation costs, carriers are also deploying reconfigurable optical add/drop multiplexers (ROADMs) and transparent optical networks. ROADMs impose more impairments to transmitted signals and are important considerations in designing backbone transmission links. Recently, advanced modulation schemes have been investigated in both the academia and industry as ways to improve the spectral efficiency and alleviate transmission impairments. Signal processing techniques familiar to traditional telecommunication engineers are also playing more and more important roles in optical communications because of the fast advance in mixed signal processing and growing abundance of computational power. In this invited talk, we review the current challenges faced in upgrading existing 10Gb/s metro and regional WDM networks and the potential solutions to enable 40 and 100Gb/s wavelength services.

  9. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    PubMed

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  10. Electromagnetic Radiation from Corona Discharges.

    DTIC Science & Technology

    1977-01-25

    a 3 MHz bandwidth to cover frequencies below I GHz. Various TWT preamplifiers were used to increase the system gain. R-f energy from the corona point...100 MHz CENTER FREQUENCYr 0.05 mv/div 5 ps/div FIGURE 11. DETECTED I.F SIGNALS RECEIVED FROM A 20’ PIPE IN CORONA 29 the broadband impulsive background...noise at sea, with a secondary objective of measuring background noise at narrower bandwidths on a swept frequency basis. The broadband measurement

  11. The National Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.

    2001-06-01

    The National Virtual Observatory is a distributed computational facility that will provide access to the ``virtual sky''-the federation of astronomical data archives, object catalogs, and associated information services. The NVO's ``virtual telescope'' is a common framework for requesting, retrieving, and manipulating information from diverse, distributed resources. The NVO will make it possible to seamlessly integrate data from the new all-sky surveys, enabling cross-correlations between multi-Terabyte catalogs and providing transparent access to the underlying image or spectral data. Success requires high performance computational systems, high bandwidth network services, agreed upon standards for the exchange of metadata, and collaboration among astronomers, astronomical data and information service providers, information technology specialists, funding agencies, and industry. International cooperation at the onset will help to assure that the NVO simultaneously becomes a global facility. .

  12. Ultra-Wideband Massive MIMO Communications Using Multi-mode Antennas

    NASA Astrophysics Data System (ADS)

    Hoeher, P. A.; Manteuffel, D.; Doose, N.; Peitzmeier, N.

    2017-09-01

    An ultra-wideband system design is presented which supports wireless internet access and similar short-range applications with data rates of the order of 100 Gbps. Unlike concurrent work exploring the 60 GHz regime and beyond for this purpose, our focus is on the 6.0 -8.5 GHz frequency band. Hence, a bandwidth efficiency of about 50 bps/Hz is necessary. This sophisticated goal is targeted by employing two key enabling techniques: massive MIMO communications in conjunction with multi-mode antennas. This concept is suitable both for small-scale terminals like smartphones, as well as for powerful access points. Compared to millimeter wave and THz band communications, the 6.0 -8.5 GHz frequency band offers more robustness in NLOS scenarios and is more mature with respect to system components.

  13. Wide band fiber-optic communications

    NASA Technical Reports Server (NTRS)

    Bates, Harry E.

    1993-01-01

    A number of optical communication lines are now in use at the Kennedy Space Center (KSC) for the transmission of voice, computer data and video signals. At the present time most of these channels utilize a single carrier wavelength centered near 1300 nm. As a result of previous work the bandwidth capacity of a number of these channels is being increased by transmitting another signal in the 1550 nm region on the same fiber. This is accomplished by means of wavelength division multiplexing (WDM). It is therefore important to understand the bandwidth properties of the installed fiber plant. This work developed new procedures for measuring the bandwidth of fibers in both the 1300nm and 1550nm region. In addition, a preliminary study of fiber links terminating in the Engineering Development Laboratory was completed.

  14. Magnetoresistive Current Sensors for High Accuracy, High Bandwidth Current Measurement in Spacecraft Power Electronics

    NASA Astrophysics Data System (ADS)

    Slatter, Rolf; Goffin, Benoit

    2014-08-01

    The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.

  15. From truck to optical fibre: the coming-of-age of eVLBI

    NASA Astrophysics Data System (ADS)

    Szomoru, A.; Biggs, A.; Garrett, M.; van Langevelde, H. J.; Olnon, F.; Paragi, Z.; Parsley, S.; Pogrebenko, S.; Reynolds, C.

    Spurred by the advent of disk-based recording systems and the nearly explosive increase of internet bandwidth, eVLBI (Parsley et al. te{parsley}) has undergone a remarkable development over the past two years. From ftp-based transfers of small amounts of astronomical data, through near real-time correlation (disk-buffered at the correlator), it has culminated this spring in the first three telescope real-time correlation at JIVE (Onsala, Westerbork and Jodrell Bank). In this paper we will give a review of this development and the current state of affairs. We will also address the current limitations and the way we may improve both bandwidth and reliability and finally we will discuss the opportunities a true high-bandwidth real-time VLBI correlator will provide. (astro-ph/0412686)

  16. Application-oriented integrated control center (AICC) for heterogeneous optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhang, Jie; Cao, Xuping; Wang, Dajiang; Wu, Koubo; Cai, Yinxiang; Gu, Wanyi

    2011-12-01

    Various broad bandwidth services have being swallowing the bandwidth resource of optical networks, such as the data center application and cloud computation. There are still some challenges for future optical networks although the available bandwidth is increasing with the development of transmission technologies. The relationship between upper application layer and lower network resource layer is necessary to be researched further. In order to improve the efficiency of network resources and capability of service provisioning, heterogeneous optical networks resource can be abstracted as unified Application Programming Interfaces (APIs) which can be open to various upper applications through Application-oriented Integrated Control Center (AICC) proposed in the paper. A novel Openflow-based unified control architecture is proposed for the optimization of cross layer resources. Numeric results show good performance of AICC through simulation experiments.

  17. Portable emergency telemedicine system over wireless broadband and 3G networks.

    PubMed

    Hong, SungHye; Kim, SangYong; Kim, JungChae; Lim, DongKyu; Jung, SeokMyung; Kim, DongKeun; Yoo, Sun K

    2009-01-01

    The telemedicine system aims at monitoring patients remotely without limit in time and space. However the existing telemedicine systems exchange medical information simply in a specified location. Due to increasing speed in processing data and expanding bandwidth of wireless networks, it is possible to perform telemedicine services on personal digital assistants (PDA). In this paper, a telemedicine system on PDA was developed using wideband mobile networks such as Wi-Fi, HSDPA, and WiBro for high speed bandwidths. This system enables to utilize and exchange variety and reliable patient information of video, biosignals, chatting messages, and triage data. By measuring bandwidths of individual data of the system over wireless networks, and evaluating the performance of this system using PDA, we demonstrated the feasibility of the designed portable emergency telemedicine system.

  18. An Offload NIC for NASA, NLR, and Grid Computing

    NASA Technical Reports Server (NTRS)

    Awrach, James

    2013-01-01

    This work addresses distributed data management and access dynamically configurable high-speed access to data distributed and shared over wide-area high-speed network environments. An offload engine NIC (network interface card) is proposed that scales at nX10-Gbps increments through 100-Gbps full duplex. The Globus de facto standard was used in projects requiring secure, robust, high-speed bulk data transport. Novel extension mechanisms were derived that will combine these technologies for use by GridFTP, bandwidth management resources, and host CPU (central processing unit) acceleration. The result will be wire-rate encrypted Globus grid data transactions through offload for splintering, encryption, and compression. As the need for greater network bandwidth increases, there is an inherent need for faster CPUs. The best way to accelerate CPUs is through a network acceleration engine. Grid computing data transfers for the Globus tool set did not have wire-rate encryption or compression. Existing technology cannot keep pace with the greater bandwidths of backplane and network connections. Present offload engines with ports to Ethernet are 32 to 40 Gbps f-d at best. The best of ultra-high-speed offload engines use expensive ASICs (application specific integrated circuits) or NPUs (network processing units). The present state of the art also includes bonding and the use of multiple NICs that are also in the planning stages for future portability to ASICs and software to accommodate data rates at 100 Gbps. The remaining industry solutions are for carrier-grade equipment manufacturers, with costly line cards having multiples of 10-Gbps ports, or 100-Gbps ports such as CFP modules that interface to costly ASICs and related circuitry. All of the existing solutions vary in configuration based on requirements of the host, motherboard, or carriergrade equipment. The purpose of the innovation is to eliminate data bottlenecks within cluster, grid, and cloud computing systems, and to add several more capabilities while reducing space consumption and cost. Provisions were designed for interoperability with systems used in the NASA HEC (High-End Computing) program. The new acceleration engine consists of state-ofthe- art FPGA (field-programmable gate array) core IP, C, and Verilog code; novel communication protocol; and extensions to the Globus structure. The engine provides the functions of network acceleration, encryption, compression, packet-ordering, and security added to Globus grid or for cloud data transfer. This system is scalable in nX10-Gbps increments through 100-Gbps f-d. It can be interfaced to industry-standard system-side or network-side devices or core IP in increments of 10 GigE, scaling to provide IEEE 40/100 GigE compliance.

  19. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  20. Multicore Architecture-aware Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasa, Avinash

    Modern high performance systems are becoming increasingly complex and powerful due to advancements in processor and memory architecture. In order to keep up with this increasing complexity, applications have to be augmented with certain capabilities to fully exploit such systems. These may be at the application level, such as static or dynamic adaptations or at the system level, like having strategies in place to override some of the default operating system polices, the main objective being to improve computational performance of the application. The current work proposes two such capabilites with respect to multi-threaded scientific applications, in particular a largemore » scale physics application computing ab-initio nuclear structure. The first involves using a middleware tool to invoke dynamic adaptations in the application, so as to be able to adjust to the changing computational resource availability at run-time. The second involves a strategy for effective placement of data in main memory, to optimize memory access latencies and bandwidth. These capabilties when included were found to have a significant impact on the application performance, resulting in average speedups of as much as two to four times.« less

  1. Parallel Implementation of MAFFT on CUDA-Enabled Graphics Hardware.

    PubMed

    Zhu, Xiangyuan; Li, Kenli; Salah, Ahmad; Shi, Lin; Li, Keqin

    2015-01-01

    Multiple sequence alignment (MSA) constitutes an extremely powerful tool for many biological applications including phylogenetic tree estimation, secondary structure prediction, and critical residue identification. However, aligning large biological sequences with popular tools such as MAFFT requires long runtimes on sequential architectures. Due to the ever increasing sizes of sequence databases, there is increasing demand to accelerate this task. In this paper, we demonstrate how graphic processing units (GPUs), powered by the compute unified device architecture (CUDA), can be used as an efficient computational platform to accelerate the MAFFT algorithm. To fully exploit the GPU's capabilities for accelerating MAFFT, we have optimized the sequence data organization to eliminate the bandwidth bottleneck of memory access, designed a memory allocation and reuse strategy to make full use of limited memory of GPUs, proposed a new modified-run-length encoding (MRLE) scheme to reduce memory consumption, and used high-performance shared memory to speed up I/O operations. Our implementation tested in three NVIDIA GPUs achieves speedup up to 11.28 on a Tesla K20m GPU compared to the sequential MAFFT 7.015.

  2. Experimental demonstration of high spectral efficient 4 × 4 MIMO SCMA-OFDM/OQAM radio over multi-core fiber system.

    PubMed

    Liu, Chang; Deng, Lei; He, Jiale; Li, Di; Fu, Songnian; Tang, Ming; Cheng, Mengfan; Liu, Deming

    2017-07-24

    In this paper, 4 × 4 multiple-input multiple-output (MIMO) radio over 7-core fiber system based on sparse code multiple access (SCMA) and OFDM/OQAM techniques is proposed. No cyclic prefix (CP) is required by properly designing the prototype filters in OFDM/OQAM modulator, and non-orthogonally overlaid codewords by using SCMA is help to serve more users simultaneously under the condition of using equal number of time and frequency resources compared with OFDMA, resulting in the increase of spectral efficiency (SE) and system capacity. In our experiment, 11.04 Gb/s 4 × 4 MIMO SCMA-OFDM/OQAM signal is successfully transmitted over 20 km 7-core fiber and 0.4 m air distance in both uplink and downlink. As a comparison, 6.681 Gb/s traditional MIMO-OFDM signal with the same occupied bandwidth has been evaluated for both uplink and downlink transmission. The experimental results show that SE could be increased by 65.2% with no bit error rate (BER) performance degradation compared with the traditional MIMO-OFDM technique.

  3. MEMS-based wide-bandwidth electromagnetic energy harvester with electroplated nickel structure

    NASA Astrophysics Data System (ADS)

    Sun, Shi; Dai, Xuhan; Sun, Yunna; Xiang, Xiaojian; Ding, Guifu; Zhao, Xiaolin

    2017-11-01

    A novel nickel-based nonlinear electromagnetic energy harvester has been designed, fabricated, and characterized in this work. Electroplated nickel is very suitable for a stretching-based mechanism to broaden the bandwidth due to its good process and mechanical properties. A strong hardening nonlinearity is induced due to the large deformation of the thin nickel based guided-beam structure. Combining the merits of both the mechanical properties and guided-beam structure, the energy harvester shows good bandwidth performance. It is found that increasing the thickness of the central platform could guarantee nonlinearity. Static and dynamic models of the energy harvester are simulated and validated. Test results show that the energy harvester has good repeatability without any destruction under a large deformation condition. At the acceleration of 0.5 g, comparative large bandwidths of 129 and 59 Hz are obtained for displacement and RMS output voltage, respectively. Power output of 3.4 µW and normalized power density of 125.92 µW cm-3 g-2 are achieved with the load resistance of 38 Ω.

  4. Characteristic analysis of diaphragm-type transducer that is thick relative to its size

    NASA Astrophysics Data System (ADS)

    Ishiguro, Yuya; Zhu, Jing; Tagawa, Norio; Okubo, Tsuyoshi; Okubo, Kan

    2017-07-01

    In recent years, high-performance piezoelectric micromachined ultrasonic transducers (PMUTs) have been fabricated by micro electro mechanical systems (MEMS) technology. For high-resolution imaging, it is important to broaden the frequency bandwidth. By reducing the diaphragm size to increase the resonance frequency, the film thickness becomes relatively larger and hence the transmitting and receiving characteristics may different from those of a usual thin diaphragm. In this study, we examine the performance of a square-diaphragm-type lead zirconate titanate (PZT) transducer through simulations. To realize the desired resonance frequency of 20 MHz, firstly, the diaphragm size and the thickness of the layers of PZT and Si constituting a PMUT are examined, and then, three PZT/Si models with different thicknesses are selected. Subsequently, using the models, we analyze the transmitting efficiency, transmitting bandwidth, receiving sensitivity (piezoelectric voltage/electric charge), and receiving bandwidth using an FEM simulator. It is found that the proposed models can transmit ultrasound independently of the diaphragm vibration and have wide bandwidth of the receiving frequency as compared with that of a typical PMUT.

  5. Theory of controlling band-width broadening in terahertz sideband generation in semiconductors by a direct current electric field

    NASA Astrophysics Data System (ADS)

    Liu, Houquan; Zhang, Xingchu

    2017-03-01

    In a semiconductor, optically excited electron-hole pairs, driven by a strong terahertz (THz) field, can recombine to create THz sidebands in the optical spectrum. The sideband spectrum exhibits a "plateau" up to a cutoff frequency of 3.17Up, where Up is the ponderomotive energy. In this letter, we predict that the bandwidth of this sideband spectrum plateau can be broadened by applying an additional direct-current (DC) electric field. We find that if applying a DC field of EDC=0.2ETHz (where EDC and ETHz are the amplitudes of the DC field and THz field, respectively), the sideband spectrum presents three plateaus with 5.8Up, 10.05Up and 16Up being the cutoff frequencies of the first, second and third plateaus, respectively. This bandwidth broadening occurs because the DC field can increase the kinetic energy that an electron-hole pair can gain from the THz field. This effect means that the bandwidth of the sideband spectrum can be controlled flexibly by changing the DC field, thereby facilitating the ultrafast electro-optical applications of THz sideband generation.

  6. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    NASA Astrophysics Data System (ADS)

    Ullah, M. Habib; Islam, M. T.

    2014-08-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.

  7. Efficient Graph Based Assembly of Short-Read Sequences on Hybrid Core Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sczyrba, Alex; Pratap, Abhishek; Canon, Shane

    2011-03-22

    Advanced architectures can deliver dramatically increased throughput for genomics and proteomics applications, reducing time-to-completion in some cases from days to minutes. One such architecture, hybrid-core computing, marries a traditional x86 environment with a reconfigurable coprocessor, based on field programmable gate array (FPGA) technology. In addition to higher throughput, increased performance can fundamentally improve research quality by allowing more accurate, previously impractical approaches. We will discuss the approach used by Convey?s de Bruijn graph constructor for short-read, de-novo assembly. Bioinformatics applications that have random access patterns to large memory spaces, such as graph-based algorithms, experience memory performance limitations on cache-based x86more » servers. Convey?s highly parallel memory subsystem allows application-specific logic to simultaneously access 8192 individual words in memory, significantly increasing effective memory bandwidth over cache-based memory systems. Many algorithms, such as Velvet and other de Bruijn graph based, short-read, de-novo assemblers, can greatly benefit from this type of memory architecture. Furthermore, small data type operations (four nucleotides can be represented in two bits) make more efficient use of logic gates than the data types dictated by conventional programming models.JGI is comparing the performance of Convey?s graph constructor and Velvet on both synthetic and real data. We will present preliminary results on memory usage and run time metrics for various data sets with different sizes, from small microbial and fungal genomes to very large cow rumen metagenome. For genomes with references we will also present assembly quality comparisons between the two assemblers.« less

  8. A study of IEEE 802.15.4 security framework for wireless body area networks.

    PubMed

    Saleem, Shahnaz; Ullah, Sana; Kwak, Kyung Sup

    2011-01-01

    A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN.

  9. A Study of IEEE 802.15.4 Security Framework for Wireless Body Area Networks

    PubMed Central

    Saleem, Shahnaz; Ullah, Sana; Kwak, Kyung Sup

    2011-01-01

    A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN. PMID:22319358

  10. Data analysis-based autonomic bandwidth adjustment in software defined multi-vendor optical transport networks.

    PubMed

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Jing, Ruiquan

    2017-11-27

    Network operators generally provide dedicated lightpaths for customers to meet the demand for high-quality transmission. Considering the variation of traffic load, customers usually rent peak bandwidth that exceeds the practical average traffic requirement. In this case, bandwidth provisioning is unmetered and customers have to pay according to peak bandwidth. Supposing that network operators could keep track of traffic load and allocate bandwidth dynamically, bandwidth can be provided as a metered service and customers would pay for the bandwidth that they actually use. To achieve cost-effective bandwidth provisioning, this paper proposes an autonomic bandwidth adjustment scheme based on data analysis of traffic load. The scheme is implemented in a software defined networking (SDN) controller and is demonstrated in the field trial of multi-vendor optical transport networks. The field trial shows that the proposed scheme can track traffic load and realize autonomic bandwidth adjustment. In addition, a simulation experiment is conducted to evaluate the performance of the proposed scheme. We also investigate the impact of different parameters on autonomic bandwidth adjustment. Simulation results show that the step size and adjustment period have significant influences on bandwidth savings and packet loss. A small value of step size and adjustment period can bring more benefits by tracking traffic variation with high accuracy. For network operators, the scheme can serve as technical support of realizing bandwidth as metered service in the future.

  11. Parallel In Situ Indexing for Data-intensive Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinoh; Abbasi, Hasan; Chacon, Luis

    2011-09-09

    As computing power increases exponentially, vast amount of data is created by many scientific re- search activities. However, the bandwidth for storing the data to disks and reading the data from disks has been improving at a much slower pace. These two trends produce an ever-widening data access gap. Our work brings together two distinct technologies to address this data access issue: indexing and in situ processing. From decades of database research literature, we know that indexing is an effective way to address the data access issue, particularly for accessing relatively small fraction of data records. As data sets increasemore » in sizes, more and more analysts need to use selective data access, which makes indexing an even more important for improving data access. The challenge is that most implementations of in- dexing technology are embedded in large database management systems (DBMS), but most scientific datasets are not managed by any DBMS. In this work, we choose to include indexes with the scientific data instead of requiring the data to be loaded into a DBMS. We use compressed bitmap indexes from the FastBit software which are known to be highly effective for query-intensive workloads common to scientific data analysis. To use the indexes, we need to build them first. The index building procedure needs to access the whole data set and may also require a significant amount of compute time. In this work, we adapt the in situ processing technology to generate the indexes, thus removing the need of read- ing data from disks and to build indexes in parallel. The in situ data processing system used is ADIOS, a middleware for high-performance I/O. Our experimental results show that the indexes can improve the data access time up to 200 times depending on the fraction of data selected, and using in situ data processing system can effectively reduce the time needed to create the indexes, up to 10 times with our in situ technique when using identical parallel settings.« less

  12. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  13. Research on Optical Transmitter and Receiver Module Used for High-Speed Interconnection between CPU and Memory

    NASA Astrophysics Data System (ADS)

    He, Huimin; Liu, Fengman; Li, Baoxia; Xue, Haiyun; Wang, Haidong; Qiu, Delong; Zhou, Yunyan; Cao, Liqiang

    2016-11-01

    With the development of the multicore processor, the bandwidth and capacity of the memory, rather than the memory area, are the key factors in server performance. At present, however, the new architectures, such as fully buffered DIMM (FBDIMM), hybrid memory cube (HMC), and high bandwidth memory (HBM), cannot be commercially applied in the server. Therefore, a new architecture for the server is proposed. CPU and memory are separated onto different boards, and optical interconnection is used for the communication between them. Each optical module corresponds to each dual inline memory module (DIMM) with 64 channels. Compared to the previous technology, not only can the architecture realize high-capacity and wide-bandwidth memory, it also can reduce power consumption and cost, and be compatible with the existing dynamic random access memory (DRAM). In this article, the proposed module with system-in-package (SiP) integration is demonstrated. In the optical module, the silicon photonic chip is included, which is a promising technology to be applied in the next-generation data exchanging centers. And due to the bandwidth-distance performance of the optical interconnection, SerDes chips are introduced to convert the 64-bit data at 800 Mbps from/to 4-channel data at 12.8 Gbps after/before they are transmitted though optical fiber. All the devices are packaged on cheap organic substrates. To ensure the performance of the whole system, several optimization efforts have been performed on the two modules. High-speed interconnection traces have been designed and simulated with electromagnetic simulation software. Steady-state thermal characteristics of the transceiver module have been evaluated by ANSYS APLD based on finite-element methodology (FEM). Heat sinks are placed at the hotspot area to ensure the reliability of all working chips. Finally, this transceiver system based on silicon photonics is measured, and the eye diagrams of data and clock signals are verified.

  14. Quantitative susceptibility mapping across two clinical field strengths: Contrast-to-noise ratio enhancement at 1.5T.

    PubMed

    Ippoliti, Matteo; Adams, Lisa C; Winfried, Brenner; Hamm, Bernd; Spincemaille, Pascal; Wang, Yi; Makowski, Marcus R

    2018-04-16

    Quantitative susceptibility mapping (QSM) is an MRI postprocessing technique that allows quantification of the spatial distribution of tissue magnetic susceptibility in vivo. Contributing sources include iron, blood products, calcium, myelin, and lipid content. To evaluate the reproducibility and consistency of QSM across clinical field strengths of 1.5T and 3T and to optimize the contrast-to-noise ratio (CNR) at 1.5T through bandwidth tuning. Prospective. Sixteen healthy volunteers (10 men, 6 women; age range 24-37; mean age 27.8 ± 3.2 years). 1.5T and 3T systems from the same vendor. Four spoiled gradient echo (SPGR) sequences were designed with different acquisition bandwidths. QSM reconstruction was achieved through a nonlinear morphology-enabled dipole inversion (MEDI) algorithm employing L1 regularization. CNR was calculated in seven regions of interest (ROIs), while reproducibility and consistency of QSM measurements were evaluated through voxel-based and region-specific linear correlation analyses and Bland-Altman plots. Interclass correlation, Wilcoxon rank sum test, linear regression analysis, Bland-Altman analysis, Welch's t-test. CNR analysis showed a statistically significant (P < 0.05) increase in four out of seven ROIs for the lowest bandwidth employed with respect to the highest (25.18% increase in CNR of caudate nucleus). All sequences reported an excellent correlation across field strength and bandwidth variation (R ≥ 0.96, widest limits of agreement from -18.7 to 25.8 ppb) in the ROI-based analysis, while the correlation was found to be good for the voxel-based analysis of averaged maps (R ≥ 0.90, widest limits of agreement from -9.3 to 9.1 ppb). CNR of QSM images reconstructed from 1.5T acquisitions can be enhanced through bandwidth tuning. MEDI-based QSM reconstruction demonstrated to be reproducible and consistent both across field strengths (1.5T and 3T) and bandwidth variation. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  15. Convolutional coding combined with continuous phase modulation

    NASA Technical Reports Server (NTRS)

    Pizzi, S. V.; Wilson, S. G.

    1985-01-01

    Background theory and specific coding designs for combined coding/modulation schemes utilizing convolutional codes and continuous-phase modulation (CPM) are presented. In this paper the case of r = 1/2 coding onto a 4-ary CPM is emphasized, with short-constraint length codes presented for continuous-phase FSK, double-raised-cosine, and triple-raised-cosine modulation. Coding buys several decibels of coding gain over the Gaussian channel, with an attendant increase of bandwidth. Performance comparisons in the power-bandwidth tradeoff with other approaches are made.

  16. A Reliable Data Transmission Model for IEEE 802.15.4e Enabled Wireless Sensor Network under WiFi Interference.

    PubMed

    Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin

    2017-06-07

    The IEEE 802.15.4e standard proposes Medium Access Control (MAC) to support collision-free wireless channel access mechanisms for industrial, commercial and healthcare applications. However, unnecessary wastage of energy and bandwidth consumption occur due to inefficient backoff management and collisions. In this paper, a new channel access mechanism is designed for the buffer constraint sensor devices to reduce the packet drop rate, energy consumption and collisions. In order to avoid collision due to the hidden terminal problem, a new frame structure is designed for the data transmission. A new superframe structure is proposed to mitigate the problems due to WiFi and ZigBee interference. A modified superframe structure with a new retransmission opportunity for failure devices is proposed to reduce the collisions and retransmission delay with high reliability. Performance evaluation and validation of our scheme indicate that the packet drop rate, throughput, reliability, energy consumption and average delay of the nodes can be improved significantly.

  17. An integrated voice and data multiple-access scheme for a land-mobile satellite system

    NASA Technical Reports Server (NTRS)

    Li, V. O. K.; Yan, T.-Y.

    1984-01-01

    An analytical study is performed of the satellite requirements for a land mobile satellite system (LMSS). The spacecraft (MSAT-X) would be in GEO and would be compatible with multiple access by mobile radios and antennas and fixed stations. The FCC has received a petition from NASA to reserve the 821-825 and 866-870 MHz frequencies for the LMSS, while communications with fixed earth stations would be in the Ku band. MSAT-X transponders would alter the frequencies of signal and do no processing in the original configuration considered. Channel use would be governed by an integrated demand-assigned, multiple access protocol, which would divide channels into reservation and information channels, governed by a network management center. Further analyses will cover tradeoffs between data and voice users, probability of blocking, and the performance impacts of on-board switching and variable bandwidth assignment. Initial calculations indicate that a large traffic volume can be handled with acceptable delays and voice blocking probabilities.

  18. An integrated voice and data multiple-access scheme for a land-mobile satellite system

    NASA Astrophysics Data System (ADS)

    Li, V. O. K.; Yan, T.-Y.

    1984-11-01

    An analytical study is performed of the satellite requirements for a land mobile satellite system (LMSS). The spacecraft (MSAT-X) would be in GEO and would be compatible with multiple access by mobile radios and antennas and fixed stations. The FCC has received a petition from NASA to reserve the 821-825 and 866-870 MHz frequencies for the LMSS, while communications with fixed earth stations would be in the Ku band. MSAT-X transponders would alter the frequencies of signal and do no processing in the original configuration considered. Channel use would be governed by an integrated demand-assigned, multiple access protocol, which would divide channels into reservation and information channels, governed by a network management center. Further analyses will cover tradeoffs between data and voice users, probability of blocking, and the performance impacts of on-board switching and variable bandwidth assignment. Initial calculations indicate that a large traffic volume can be handled with acceptable delays and voice blocking probabilities.

  19. A network-based training environment: a medical image processing paradigm.

    PubMed

    Costaridou, L; Panayiotakis, G; Sakellaropoulos, P; Cavouras, D; Dimopoulos, J

    1998-01-01

    The capability of interactive multimedia and Internet technologies is investigated with respect to the implementation of a distance learning environment. The system is built according to a client-server architecture, based on the Internet infrastructure, composed of server nodes conceptually modelled as WWW sites. Sites are implemented by customization of available components. The environment integrates network-delivered interactive multimedia courses, network-based tutoring, SIG support, information databases of professional interest, as well as course and tutoring management. This capability has been demonstrated by means of an implemented system, validated with digital image processing content, specifically image enhancement. Image enhancement methods are theoretically described and applied to mammograms. Emphasis is given to the interactive presentation of the effects of algorithm parameters on images. The system end-user access depends on available bandwidth, so high-speed access can be achieved via LAN or local ISDN connections. Network based training offers new means of improved access and sharing of learning resources and expertise, as promising supplements in training.

  20. Network issues for large mass storage requirements

    NASA Technical Reports Server (NTRS)

    Perdue, James

    1992-01-01

    File Servers and Supercomputing environments need high performance networks to balance the I/O requirements seen in today's demanding computing scenarios. UltraNet is one solution which permits both high aggregate transfer rates and high task-to-task transfer rates as demonstrated in actual tests. UltraNet provides this capability as both a Server-to-Server and Server-to-Client access network giving the supercomputing center the following advantages highest performance Transport Level connections (to 40 MBytes/sec effective rates); matches the throughput of the emerging high performance disk technologies, such as RAID, parallel head transfer devices and software striping; supports standard network and file system applications using SOCKET's based application program interface such as FTP, rcp, rdump, etc.; supports access to the Network File System (NFS) and LARGE aggregate bandwidth for large NFS usage; provides access to a distributed, hierarchical data server capability using DISCOS UniTree product; supports file server solutions available from multiple vendors, including Cray, Convex, Alliant, FPS, IBM, and others.

  1. A Reliable Data Transmission Model for IEEE 802.15.4e Enabled Wireless Sensor Network under WiFi Interference

    PubMed Central

    Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin

    2017-01-01

    The IEEE 802.15.4e standard proposes Medium Access Control (MAC) to support collision-free wireless channel access mechanisms for industrial, commercial and healthcare applications. However, unnecessary wastage of energy and bandwidth consumption occur due to inefficient backoff management and collisions. In this paper, a new channel access mechanism is designed for the buffer constraint sensor devices to reduce the packet drop rate, energy consumption and collisions. In order to avoid collision due to the hidden terminal problem, a new frame structure is designed for the data transmission. A new superframe structure is proposed to mitigate the problems due to WiFi and ZigBee interference. A modified superframe structure with a new retransmission opportunity for failure devices is proposed to reduce the collisions and retransmission delay with high reliability. Performance evaluation and validation of our scheme indicate that the packet drop rate, throughput, reliability, energy consumption and average delay of the nodes can be improved significantly. PMID:28590434

  2. Quality of Service Control Based on Virtual Private Network Services in a Wide Area Gigabit Ethernet Optical Test Bed

    NASA Astrophysics Data System (ADS)

    Rea, Luca; Pompei, Sergio; Valenti, Alessandro; Matera, Francesco; Zema, Cristiano; Settembre, Marina

    We report an experimental investigation about the Virtual Private LAN Service technique to guarantee the quality of service in the metro/core network and also in the presence of access bandwidth bottleneck. We also show how the virtual private network can be set up for answering to a user request in a very fast way. The tests were performed in a GMPLS test bed with GbE core routers linked with long (tens of kilometers) GbE G.652 fiber links.

  3. A High Performance Computing Approach to the Simulation of Fluid Solid Interaction Problems with Rigid and Flexible Components (Open Access Author’s Manuscript)

    DTIC Science & Technology

    2014-08-01

    searchrequired for SPH are described in Sect. 3. Section 4 contains aperformance analysis of the algorithm using Kepler -type GPUcards. 2. Numerical...generation of Kepler architecture, code nameGK104, which is also implemented in Tesla K10. The Keplerarchitecture relies on a Graphics Processing Cluster (GPC...lat-ter is 512 KB large and has a bandwidth of 512 B/clockcycle. Constant memory (read only per grid): 48 KB per Kepler SM.Used to hold constants

  4. Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter

    NASA Astrophysics Data System (ADS)

    Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji

    This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.

  5. Methodology for designing and implementing a class for service for the transmission of medical images over a common network

    NASA Astrophysics Data System (ADS)

    Dimond, David A.; Burgess, Robert; Barrios, Nolan; Johnson, Neil D.

    2000-05-01

    Traditionally, to guarantee the network performance of medical image data transmission, imaging traffic was isolated on a separate network. Organizations are depending on a new generation of multi-purpose networks to transport both normal information and image traffic as they expand access to images throughout the enterprise. These organi want to leverage their existing infrastructure for imaging traffic, but are not willing to accept degradations in overall network performance. To guarantee 'on demand' network performance for image transmissions anywhere at any time, networks need to be designed with the ability to 'carve out' bandwidth for specific applications and to minimize the chances of network failures. This paper will present the methodology Cincinnati Children's Hospital Medical Center (CHMC) used to enhance the physical and logical network design of the existing hospital network to guarantee a class of service for imaging traffic. PACS network designs should utilize the existing enterprise local area network i.e. (LAN) infrastructure where appropriate. Logical separation or segmentation provides the application independence from other clinical and administrative applications as required, ensuring bandwidth and service availability.

  6. MPCM: a hardware coder for super slow motion video sequences

    NASA Astrophysics Data System (ADS)

    Alcocer, Estefanía; López-Granado, Otoniel; Gutierrez, Roberto; Malumbres, Manuel P.

    2013-12-01

    In the last decade, the improvements in VLSI levels and image sensor technologies have led to a frenetic rush to provide image sensors with higher resolutions and faster frame rates. As a result, video devices were designed to capture real-time video at high-resolution formats with frame rates reaching 1,000 fps and beyond. These ultrahigh-speed video cameras are widely used in scientific and industrial applications, such as car crash tests, combustion research, materials research and testing, fluid dynamics, and flow visualization that demand real-time video capturing at extremely high frame rates with high-definition formats. Therefore, data storage capability, communication bandwidth, processing time, and power consumption are critical parameters that should be carefully considered in their design. In this paper, we propose a fast FPGA implementation of a simple codec called modulo-pulse code modulation (MPCM) which is able to reduce the bandwidth requirements up to 1.7 times at the same image quality when compared with PCM coding. This allows current high-speed cameras to capture in a continuous manner through a 40-Gbit Ethernet point-to-point access.

  7. A chip-integrated coherent photonic-phononic memory.

    PubMed

    Merklein, Moritz; Stiller, Birgit; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J

    2017-09-18

    Controlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at five orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with gigahertz bandwidth and show operation at separate wavelengths with negligible cross-talk.Optical storage implementations based on optomechanical resonator are limited to one wavelength. Here, exploiting stimulated Brillouin scattering, the authors demonstrate a coherent optical memory based on a planar integrated waveguide, which can operate at different wavelengths without cross-talk.

  8. Adaptive data rate SSMA system for personal and mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Takahashi, Takashi; Arakaki, Yoshiya; Wakana, Hiromitsu

    1995-01-01

    An adaptive data rate SSMA (spread spectrum multiple access) system is proposed for mobile and personal multimedia satellite communications without the aid of system control earth stations. This system has a constant occupied bandwidth and has variable data rates and processing gains to mitigate communication link impairments such as fading, rain attenuation and interference as well as to handle variable data rate on demand. Proof of concept hardware for 6MHz bandwidth transponder is developed, that uses offset-QPSK (quadrature phase shift keying) and MSK (minimum shift keying) for direct sequence spread spectrum modulation and handle data rates of 4k to 64kbps. The RS422 data interface, low rate voice and H.261 video codecs are installed. The receiver is designed with coherent matched filter technique to achieve fast code acquisition, AFC (automatic frequency control) and coherent detection with minimum hardware losses in a single matched filter circuit. This receiver structure facilitates variable data rate on demand during a call. This paper shows the outline of the proposed system and the performance of the prototype equipment.

  9. Frequency encoded auditory display of the critical tracking task

    NASA Technical Reports Server (NTRS)

    Stevenson, J.

    1984-01-01

    The use of auditory displays for selected cockpit instruments was examined. In auditory, visual, and combined auditory-visual compensatory displays of a vertical axis, critical tracking task were studied. The visual display encoded vertical error as the position of a dot on a 17.78 cm, center marked CRT. The auditory display encoded vertical error as log frequency with a six octave range; the center point at 1 kHz was marked by a 20-dB amplitude notch, one-third octave wide. Asymptotic performance on the critical tracking task was significantly better when using combined displays rather than the visual only mode. At asymptote, the combined display was slightly, but significantly, better than the visual only mode. The maximum controllable bandwidth using the auditory mode was only 60% of the maximum controllable bandwidth using the visual mode. Redundant cueing increased the rate of improvement of tracking performance, and the asymptotic performance level. This enhancement increases with the amount of redundant cueing used. This effect appears most prominent when the bandwidth of the forcing function is substantially less than the upper limit of controllability frequency.

  10. Multiple Power-Saving MSSs Scheduling Methods for IEEE802.16e Broadband Wireless Networks

    PubMed Central

    2014-01-01

    This work proposes two enhanced multiple mobile subscriber stations (MSSs) power-saving scheduling methods for IEEE802.16e broadband wireless networks. The proposed methods are designed for the Unsolicited Grant Service (UGS) of IEEE802.16e. To reduce the active periods of all power-saving MSSs, the base station (BS) allocates each MSS fewest possible transmission frames to retrieve its data from the BS. The BS interlaces the active periods of each MSS to increase the amount of scheduled MSSs and splits the overflowing transmission frames to maximize the bandwidth utilization. Simulation results reveal that interlacing the active periods of MSSs can increase the number of scheduled MSSs to more than four times of that in the Direct scheduling method. The bandwidth utilization can thus be improved by 60%–70%. Splitting the overflowing transmission frames can improve bandwidth utilization by more than 10% over that achieved using the method of interlacing active periods, with a sacrifice of only 1% of the sleep periods in the interlacing active period method. PMID:24523656

  11. Measuring the critical band for speech.

    PubMed

    Healy, Eric W; Bacon, Sid P

    2006-02-01

    The current experiments were designed to measure the frequency resolution employed by listeners during the perception of everyday sentences. Speech bands having nearly vertical filter slopes and narrow bandwidths were sharply partitioned into various numbers of equal log- or ERBN-width subbands. The temporal envelope from each partition was used to amplitude modulate a corresponding band of low-noise noise, and the modulated carriers were combined and presented to normal-hearing listeners. Intelligibility increased and reached asymptote as the number of partitions increased. In the mid- and high-frequency regions of the speech spectrum, the partition bandwidth corresponding to asymptotic performance matched current estimates of psychophysical tuning across a number of conditions. These results indicate that, in these regions, the critical band for speech matches the critical band measured using traditional psychoacoustic methods and nonspeech stimuli. However, in the low-frequency region, partition bandwidths at asymptote were somewhat narrower than would be predicted based upon psychophysical tuning. It is concluded that, overall, current estimates of psychophysical tuning represent reasonably well the ability of listeners to extract spectral detail from running speech.

  12. Printed wide-slot antenna design with bandwidth and gain enhancement on low-cost substrate.

    PubMed

    Samsuzzaman, M; Islam, M T; Mandeep, J S; Misran, N

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS.

  13. Printed Wide-Slot Antenna Design with Bandwidth and Gain Enhancement on Low-Cost Substrate

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.; Mandeep, J. S.; Misran, N.

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS. PMID:24696661

  14. Equalizing Si photodetectors fabricated in standard CMOS processes

    NASA Astrophysics Data System (ADS)

    Guerrero, E.; Aguirre, J.; Sánchez-Azqueta, C.; Royo, G.; Gimeno, C.; Celma, S.

    2017-05-01

    This work presents a new continuous-time equalization approach to overcome the limited bandwidth of integrated CMOS photodetectors. It is based on a split-path topology that features completely decoupled controls for boosting and gain; this capability allows a better tuning of the equalizer in comparison with other architectures based on the degenerated differential pair, which is particularly helpful to achieve a proper calibration of the system. The equalizer is intended to enhance the bandwidth of CMOS standard n-well/p-bulk differential photodiodes (DPDs), which falls below 10MHz representing a bottleneck in fully integrated optoelectronic interfaces to fulfill the low-cost requirements of modern smart sensors. The proposed equalizer has been simulated in a 65nm CMOS process and biased with a single supply voltage of 1V, where the bandwidth of the DPD has been increased up to 3 GHz.

  15. High-frequency chaotic dynamics enabled by optical phase-conjugation

    PubMed Central

    Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc

    2016-01-01

    Wideband chaos is of interest for applications such as random number generation or encrypted communications, which typically use optical feedback in a semiconductor laser. Here, we show that replacing conventional optical feedback with phase-conjugate feedback improves the chaos bandwidth. In the range of achievable phase-conjugate mirror reflectivities, the bandwidth increase reaches 27% when compared with feedback from a conventional mirror. Experimental measurements of the time-resolved frequency dynamics on nanosecond time-scales show that the bandwidth enhancement is related to the onset of self-pulsing solutions at harmonics of the external-cavity frequency. In the observed regime, the system follows a chaotic itinerancy among these destabilized high-frequency external-cavity modes. The recorded features are unique to phase-conjugate feedback and distinguish it from the long-standing problem of time-delayed feedback dynamics. PMID:26739806

  16. Decoherence in attosecond photoionization.

    PubMed

    Pabst, Stefan; Greenman, Loren; Ho, Phay J; Mazziotti, David A; Santra, Robin

    2011-02-04

    The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, but it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence, even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral bandwidth, the coherence can only be increased by increasing the mean photon energy.

  17. Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism

    PubMed Central

    Gupta, Rahul Kumar; Shi, Qiongfeng; Dhakar, Lokesh; Wang, Tao; Heng, Chun Huat; Lee, Chengkuo

    2017-01-01

    Over the years, several approaches have been devised to widen the operating bandwidth, but most of them can only be triggered at high accelerations. In this work, we investigate a broadband energy harvester based on combination of non-linear stiffening effect and multimodal energy harvesting to obtain high bandwidth over wide range of accelerations (0.1 g–2.0 g). In order to achieve broadband behavior, a polymer based spring exhibiting multimodal energy harvesting is used. Besides, non-linear stiffening effect is introduced by using mechanical stoppers. At low accelerations (<0.5 g), the nearby mode frequencies of polymer spring contribute to broadening characteristics, while proof mass engages with mechanical stoppers to introduce broadening by non-linear stiffening at higher accelerations. The electromagnetic mechanism is employed in this design to enhance its output at low accelerations when triboelectric output is negligible. Our device displays bandwidth of 40 Hz even at low acceleration of 0.1 g and it is increased up to 68 Hz at 2 g. When non-linear stiffening is used along with multimodal energy-harvesting, the obtained bandwidth increases from 23 Hz to 68 Hz with percentage increment of 295% at 1.8 g. Further, we have demonstrated the triboelectric output measured as acceleration sensing signals in terms of voltage and current sensitivity of 4.7 Vg−1 and 19.7 nAg−1, respectively. PMID:28120924

  18. Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism

    NASA Astrophysics Data System (ADS)

    Gupta, Rahul Kumar; Shi, Qiongfeng; Dhakar, Lokesh; Wang, Tao; Heng, Chun Huat; Lee, Chengkuo

    2017-01-01

    Over the years, several approaches have been devised to widen the operating bandwidth, but most of them can only be triggered at high accelerations. In this work, we investigate a broadband energy harvester based on combination of non-linear stiffening effect and multimodal energy harvesting to obtain high bandwidth over wide range of accelerations (0.1 g-2.0 g). In order to achieve broadband behavior, a polymer based spring exhibiting multimodal energy harvesting is used. Besides, non-linear stiffening effect is introduced by using mechanical stoppers. At low accelerations (<0.5 g), the nearby mode frequencies of polymer spring contribute to broadening characteristics, while proof mass engages with mechanical stoppers to introduce broadening by non-linear stiffening at higher accelerations. The electromagnetic mechanism is employed in this design to enhance its output at low accelerations when triboelectric output is negligible. Our device displays bandwidth of 40 Hz even at low acceleration of 0.1 g and it is increased up to 68 Hz at 2 g. When non-linear stiffening is used along with multimodal energy-harvesting, the obtained bandwidth increases from 23 Hz to 68 Hz with percentage increment of 295% at 1.8 g. Further, we have demonstrated the triboelectric output measured as acceleration sensing signals in terms of voltage and current sensitivity of 4.7 Vg-1 and 19.7 nAg-1, respectively.

  19. Ambient and Cryogenic, Decade Bandwidth, Low Noise Receiving System for Radio Astronomy Using Sinuous Antenna

    NASA Astrophysics Data System (ADS)

    Gawande, Rohit Sudhir

    Traditionally, radio astronomy receivers have been limited to bandwidths less than an octave, and as a result multiple feeds and receivers are necessary to observe over a wide bandwidth. Next generation of instruments for radio astronomy will benefit greatly from reflector antenna feeds that demonstrate very wide instantaneous bandwidth, and exhibit low noise behavior. There is an increasing interest in wideband systems from both the cost and science point of view. A wideband feed will allow simultaneous observations or sweeps over a decade or more bandwidth. Instantaneous wide bandwidth is necessary for detection of short duration pulses. Future telescopes like square kilometer array (SKA), consisting of 2000 to 3000 coherently connected antennas and covering a frequency range of 70 MHz to 30 GHz, will need decade bandwidth single pixel feeds (SPFs) along with integrated LNAs to achieve the scientific objectives in a cost effective way. This dissertation focuses on the design and measurement of a novel decade bandwidth sinuous-type, dual linear polarized, fixed phase center, low loss feed with an integrated LNA. A decade bandwidth, low noise amplifier is specially designed for noise match to the higher terminal impedance encountered by this antenna yielding an improved sensitivity over what is possible with conventional 50 O amplifiers. The self-complementary, frequency independent nature of the planar sinuous geometry results in a nearly constant beam pattern and fixed phase center over more than a 10:1 operating frequency range. In order to eliminate the back-lobe response over such a wide frequency range, we have projected the sinuous pattern onto a cone, and a ground plane is placed directly behind the cone's apex. This inverted, conical geometry assures wide bandwidth operation by locating each sinuous resonator a quarter wavelength above the ground plane. The presence of a ground plane near a self complementary antenna destroys the self complementary nature of the composite structure resulting in frequency dependent impedance variations. We demonstrate, using simulations and measurements, how the return loss can be improved by modifying the sinuous geometry. The feed-LNA combination is characterized for important properties such as return loss, system noise, far field beam patterns including cross-polarization over a wide frequency range. The system is developed as a feed for a parabolic reflector. The overall system performance is calculated in terms of the A/Tsys ratio. A cryogenic version would have a direct impact on specialized observing applications requiring large instantaneous bandwidths with high sensitivity. A novel cryogenic implementation of this system is demonstrated using a Stirling cycle, one-stage refrigerator. The cryocooler offers advantages like low cost, light weight, small size, low power consumption, and does not require routine maintenance. The higher antenna input impedance and a balanced feeding method for the sinuous antenna offers a unique set of challenges when developing a cryogenic system.

  20. Orchestrating Bulk Data Movement in Grid Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralizedmore » data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.« less

  1. A web Accessible Framework for Discovery, Visualization and Dissemination of Polar Data

    NASA Astrophysics Data System (ADS)

    Kirsch, P. J.; Breen, P.; Barnes, T. D.

    2007-12-01

    A web accessible information framework, currently under development within the Physical Sciences Division of the British Antarctic Survey is described. The datasets accessed are generally heterogeneous in nature from fields including space physics, meteorology, atmospheric chemistry, ice physics, and oceanography. Many of these are returned in near real time over a 24/7 limited bandwidth link from remote Antarctic Stations and ships. The requirement is to provide various user groups - each with disparate interests and demands - a system incorporating a browsable and searchable catalogue; bespoke data summary visualization, metadata access facilities and download utilities. The system allows timely access to raw and processed datasets through an easily navigable discovery interface. Once discovered, a summary of the dataset can be visualized in a manner prescribed by the particular projects and user communities or the dataset may be downloaded, subject to accessibility restrictions that may exist. In addition, access to related ancillary information including software, documentation, related URL's and information concerning non-electronic media (of particular relevance to some legacy datasets) is made directly available having automatically been associated with a dataset during the discovery phase. Major components of the framework include the relational database containing the catalogue, the organizational structure of the systems holding the data - enabling automatic updates of the system catalogue and real-time access to data -, the user interface design, and administrative and data management scripts allowing straightforward incorporation of utilities, datasets and system maintenance.

  2. Mechanisms underlying intensity-dependent changes in cortical selectivity for frequency-modulated sweeps.

    PubMed

    Razak, K A

    2012-04-01

    Frequency-modulated (FM) sweeps are common components of species-specific vocalizations. The intensity of FM sweeps can cover a wide range in the natural environment, but whether intensity affects neural selectivity for FM sweeps is unclear. Bats, such as the pallid bat, which use FM sweeps for echolocation, are suited to address this issue, because the intensity of echoes will vary with target distance. In this study, FM sweep rate selectivity of pallid bat auditory cortex neurons was measured using downward sweeps at different intensities. Neurons became more selective for FM sweep rates present in the bat's echolocation calls as intensity increased. Increased selectivity resulted from stronger inhibition of responses to slower sweep rates. The timing and bandwidth of inhibition generated by frequencies on the high side of the excitatory tuning curve [sideband high-frequency inhibition (HFI)] shape rate selectivity in cortical neurons in the pallid bat. To determine whether intensity-dependent changes in FM rate selectivity were due to altered inhibition, the timing and bandwidth of HFI were quantified at multiple intensities using the two-tone inhibition paradigm. HFI arrived faster relative to excitation as sound intensity increased. The bandwidth of HFI also increased with intensity. The changes in HFI predicted intensity-dependent changes in FM rate selectivity. These data suggest that neural selectivity for a sweep parameter is not static but shifts with intensity due to changes in properties of sideband inhibition.

  3. Wideband Agile Digital Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Brown, Shannon T.; Ruf, Christopher; Gross, Steven

    2012-01-01

    The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.

  4. Interference-free SDMA for FBMC-OQAM

    NASA Astrophysics Data System (ADS)

    Horlin, François; Fickers, Jessica; Deleu, Thibault; Louveaux, Jérome

    2013-12-01

    Filter-bank multi-carrier (FBMC) modulations have recently been considered for the emerging wireless communication systems as a means to improve the utilization of the physical resources and the robustness to channel time variations. FBMC divides the overall frequency channel in a set of subchannels of bandwidth proportionally decreasing with the number of subchannels. If the number of subchannels is high enough, the bandwidth of each subchannel is small enough to assume that it is approximately flat. On the other hand, space-division multiple access (SDMA) is a recognized technique to support multiple access in the downlink of a multi-user system. The user signals are precoded at the base station equipped with multiple antennas to separate the users in the spatial domain. The application of SDMA to FBMC is unfortunately difficult when the channel is too frequency selective (or when the number of subchannels to too small) to assume flat subchannels. In that case, the system suffers from inter-symbol and inter-subchannel interference, besides the multi-user interference inherent to SDMA. State-of-the art solutions simply neglect the inter-symbol/subchannel interference. This article proposes a new SDMA precoder for FBMC capable of mitigating the three sources of interference. It is constructed per subchannel in order to keep an acceptable complexity and has the structure of a filter applied on each subchannel and its neighbors at twice the symbol rate. Numerical results demonstrate that the precoder can get rid of all the interference present in the system and benefit therefore from the diversity and power gains achievable with multiple antenna systems.

  5. Optimized tracking of RF carriers with phase noise, including Pioneer 10 results

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Hurd, W. J.; Brown, D. H.

    1987-01-01

    The ability to track very weak signals from distant spacecraft is limited by the phase instabilities of the received signal and of the local oscillator employed by the receiver. These instabilities ultimately limit the minimum loop bandwidth that can be used in a phase-coherent receiver, and hence limit the ratio of received carrier power to noise spectral density which can be tracked phase coherently. A method is presented for near real time estimation of the received carrier phase and additive noise spectrum, and optimization of the phase locked loop bandwidth. The method was used with the breadboard Deep Space Network (DSN) Advanced Receiver to optimize tracking of very weak signals from the Pioneer 10 spacecraft, which is now more distant that the edge of the solar system. Tracking with bandwidths of 0.1 Hz to 1.0 Hz reduces tracking signal threshold and increases carrier loop signal to noise ratio (SNR) by 5 dB to 15 dB compared to the 3 Hz bandwidth of the receivers now used operationally in the DSN. This will enable the DSN to track Pioneer 10 until its power sources fails near the end of the century.

  6. In-line interferometer for broadband near-field scanning optical spectroscopy.

    PubMed

    Brauer, Jens; Zhan, Jinxin; Chimeh, Abbas; Korte, Anke; Lienau, Christoph; Gross, Petra

    2017-06-26

    We present and investigate a novel approach towards broad-bandwidth near-field scanning optical spectroscopy based on an in-line interferometer for homodyne mixing of the near field and a reference field. In scattering-type scanning near-field optical spectroscopy, the near-field signal is usually obscured by a large amount of unwanted background scattering from the probe shaft and the sample. Here we increase the light reflected from the sample by a semi-transparent gold layer and use it as a broad-bandwidth, phase-stable reference field to amplify the near-field signal in the visible and near-infrared spectral range. We experimentally demonstrate that this efficiently suppresses the unwanted background signal in monochromatic near-field measurements. For rapid acquisition of complete broad-bandwidth spectra we employ a monochromator and a fast line camera. Using this fast acquisition of spectra and the in-line interferometer we demonstrate the measurement of pure near-field spectra. The experimental observations are quantitatively explained by analytical expressions for the measured optical signals, based on Fourier decomposition of background and near field. The theoretical model and in-line interferometer together form an important step towards broad-bandwidth near-field scanning optical spectroscopy.

  7. Monolithically Integrated SiGe/Si PIN-HBT Front-End Transimpedance Photoreceivers

    NASA Technical Reports Server (NTRS)

    Rieh, J.-S.; Qasaimeh, O.; Klotzkin, D.; Lu, L.-H.; Katehi, L. P. B.; Yang, K.; Bhattacharya, P.; Croke, E. T.

    1997-01-01

    The demand for monolithically integrated photoreceivers based on Si-based technology keeps increasing as low cost and high reliability products are required for the expanding commercial market. Higher speed and wider operating frequency range are expected when SiGe/Si heterojunction is introduced to the circuit design. In this paper, a monolithic SiGe/Si PIN-HBT front-end transimpedance photoreceiver is demonstrated for the first time. For this purpose, mesa-type SiGe/Si PIN-HBT technology was developed. Fabricated HBTs exhibit f(sub max) of 34 GHz with DC gain of 25. SiGe/Si PIN photodiodes, which share base and collector layers of HBTs, demonstrate responsivity of 0.3 A/W at lambda=850 nm and bandwidth of 450 MHz. Based on these devices, single- and dual-feedback transimpedance amplifiers were fabricated and they exhibited the bandwidth of 3.2 GHz and 3.3 GHz with the transimpedance gain of 45.2 dB(Omega) and 47.4 dB(Omega) respectively. Monolithically integrated single-feedback PIN-HBT photoreceivers were implemented and the bandwidth was measured to be approx. 0.5 GHz, which is limited by the bandwidth of PIN photodiodes.

  8. Optimal apparent damping as a function of the bandwidth of an array of vibration absorbers.

    PubMed

    Vignola, Joseph; Glean, Aldo; Judge, John; Ryan, Teresa

    2013-08-01

    The transient response of a resonant structure can be altered by the attachment of one or more substantially smaller resonators. Considered here is a coupled array of damped harmonic oscillators whose resonant frequencies are distributed across a frequency band that encompasses the natural frequency of the primary structure. Vibration energy introduced to the primary structure, which has little to no intrinsic damping, is transferred into and trapped by the attached array. It is shown that, when the properties of the array are optimized to reduce the settling time of the primary structure's transient response, the apparent damping is approximately proportional to the bandwidth of the array (the span of resonant frequencies of the attached oscillators). Numerical simulations were conducted using an unconstrained nonlinear minimization algorithm to find system parameters that result in the fastest settling time. This minimization was conducted for a range of system characteristics including the overall bandwidth of the array, the ratio of the total array mass to that of the primary structure, and the distributions of mass, stiffness, and damping among the array elements. This paper reports optimal values of these parameters and demonstrates that the resulting minimum settling time decreases with increasing bandwidth.

  9. Correlated evolution of beak morphology and song in the neotropical woodcreeper radiation.

    PubMed

    Derryberry, Elizabeth Perrault; Seddon, Nathalie; Claramunt, Santiago; Tobias, Joseph Andrew; Baker, Adam; Aleixo, Alexandre; Brumfield, Robb Thomas

    2012-09-01

    Mating signals may diversify as a byproduct of morphological adaptation to different foraging niches, potentially driving speciation. Although many studies have focused on the direct influence of ecological and sexual selection on signal divergence, the role of indirect mechanisms remains poorly understood. Using phenotypic and molecular datasets, we explored the interplay between morphological and vocal evolution in an avian radiation characterized by dramatic beak variation, the Neotropical woodcreepers (Dendrocolaptinae). We found evidence of a trade-off between the rate of repetition of song syllables and frequency bandwidth: slow paced songs had either narrow or wide frequency bandwidths, and bandwidth decreased as song pace increased. This bounded phenotypic space for song structure supports the hypothesis that passerine birds face a motor constraint during song production. Diversification of acoustic characters within this bounded space was correlated with diversification of beak morphology. In particular, species with larger beaks produced slower songs with narrower frequency bandwidths, suggesting that ecological selection on beak morphology influences the diversification of woodcreeper songs. Because songs in turn mediate mate choice and species recognition in birds, these results indicate a broader role for ecology in avian diversification. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  10. Bandwidth efficient coding for satellite communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Costello, Daniel J., Jr.; Miller, Warner H.; Morakis, James C.; Poland, William B., Jr.

    1992-01-01

    An error control coding scheme was devised to achieve large coding gain and high reliability by using coded modulation with reduced decoding complexity. To achieve a 3 to 5 dB coding gain and moderate reliability, the decoding complexity is quite modest. In fact, to achieve a 3 dB coding gain, the decoding complexity is quite simple, no matter whether trellis coded modulation or block coded modulation is used. However, to achieve coding gains exceeding 5 dB, the decoding complexity increases drastically, and the implementation of the decoder becomes very expensive and unpractical. The use is proposed of coded modulation in conjunction with concatenated (or cascaded) coding. A good short bandwidth efficient modulation code is used as the inner code and relatively powerful Reed-Solomon code is used as the outer code. With properly chosen inner and outer codes, a concatenated coded modulation scheme not only can achieve large coding gains and high reliability with good bandwidth efficiency but also can be practically implemented. This combination of coded modulation and concatenated coding really offers a way of achieving the best of three worlds, reliability and coding gain, bandwidth efficiency, and decoding complexity.

  11. Improved cyberinfrastructure for integrated hydrometeorological predictions within the fully-coupled WRF-Hydro modeling system

    NASA Astrophysics Data System (ADS)

    gochis, David; hooper, Rick; parodi, Antonio; Jha, Shantenu; Yu, Wei; Zaslavsky, Ilya; Ganapati, Dinesh

    2014-05-01

    The community WRF-Hydro system is currently being used in a variety of flood prediction and regional hydroclimate impacts assessment applications around the world. Despite its increasingly wide use certain cyberinfrastructure bottlenecks exist in the setup, execution and post-processing of WRF-Hydro model runs. These bottlenecks result in wasted time, labor, data transfer bandwidth and computational resource use. Appropriate development and use of cyberinfrastructure to setup and manage WRF-Hydro modeling applications will streamline the entire workflow of hydrologic model predictions. This talk will present recent advances in the development and use of new open-source cyberinfrastructure tools for the WRF-Hydro architecture. These tools include new web-accessible pre-processing applications, supercomputer job management applications and automated verification and visualization applications. The tools will be described successively and then demonstrated in a set of flash flood use cases for recent destructive flood events in the U.S. and in Europe. Throughout, an emphasis on the implementation and use of community data standards for data exchange is made.

  12. FDM and DMT performance comparison in high capacity point-to-point fibre links for intra/inter-datacentre connections

    NASA Astrophysics Data System (ADS)

    Gatto, A.; Parolari, P.; Boffi, P.

    2018-05-01

    Frequency division multiplexing (FDM) is attractive to achieve high capacities in multiple access networks characterized by direct modulation and direct detection. In this paper we take into account point-to-point intra- and inter-datacenter connections to understand the performance of FDM operation compared with the ones achievable with standard multiple carrier modulation approach based on discrete multitone (DMT). DMT and FDM allow to match the non-uniform and bandwidth-limited response of the system under test, associated with the employment of low-cost directly-modulated sources, such as VCSELs with high-frequency chirp, and with fibre-propagation in presence of chromatic dispersion. While for very short distances typical of intra-datacentre communications, the huge number of DMT subcarriers permits to increase the transported capacity with respect to the FDM employment, in case of few tens-km reaches typical of inter-datacentre connections, the capabilities of FDM are more evident, providing system performance similar to the case of DMT application.

  13. Investigating the efficiency of IEEE 802.15.4 for medical monitoring applications.

    PubMed

    Pelegris, P; Banitsas, K

    2011-01-01

    Recent advancements in wireless communications technologies bring us one step closer to provide reliable Telecare services as an alternative to patients staying in a hospital mainly for monitoring purposes. In this research we investigate the efficiency of IEEE 802.15.4 in a simple scenario where a patient is being monitored using an ECG and a blood analysis module. This approach binds well with assisted living solutions, by sharing the network infrastructure for both monitoring and control while taking advantage of the low power features of the protocol. Such applications are becoming more and more realistic to implement as IEEE 802.15.4 compatible hardware becomes increasingly available. Our aim is to examine the impact of Beacon and Superframe Order in the medium access delay, dropped packets, end to end delay, average retransmission attempts and consumed power focusing on this bandwidth demanding situation where the network load does not allow low duty cycles, in order to draw some conclusions on the effect that this will have to telemonitoring applications.

  14. Strain-engineering stabilization of BaTi O3 -based polar metals

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Jin, Kui-juan; Ge, Chen; Yang, Guo-zhen

    2018-03-01

    Polar metals, which possess ferroelectriclike polar structure and conductivity simultaneously, have attracted wide interest since the first solid example, LiOs O3 (below 140 K), was discovered. However, the lack of room-temperature polar metals hinders further research and applications. Thus abundant properties of polar metals are unexplored. Here, with first-principles calculations, we report that the polar metal phase can be stabilized in the strain-engineered BaTi O3 with electron doping. The mechanism relates to the competition between the shifting of the t2 g energy levels and the narrowing of their bandwidth. Surprisingly, it is predicted that the ferroelectric-to-paraelectric transition temperature can be increased by electron doping when the strain is large enough, which holds potential for room-temperature polar metals. Our results indicate that strain engineering is a promising way to achieve BaTi O3 -based polar metals, and they should have practical significance for obtaining easily accessible, ecofriendly, and potential room-temperature polar metals.

  15. Reaching the Ionic Current Detection Limit in Silicon-Based Nanopores

    NASA Astrophysics Data System (ADS)

    Puster, Matthew; Rodriguez-Manzo, Julio Alejandro; Nicolai, Adrien; Meunier, Vincent; Drndic, Marija

    2015-03-01

    Solid-state nanopores act as single-molecule sensors whereby passage of an individual molecule in aqueous electrolyte through a nanopore is registered as a change in ionic conductance (ΔG). Future nanopore applications such as DNA sequencing at high bandwidth require high ΔG for optimal signal-to-noise ratio. Reducing the nanopore diameter and thickness increase ΔG. Molecule size limits the diameter, thus efforts concentrate on minimizing the thickness by thinning oxide/nitride films or using 2D materials. Weighted by electrolyte conductivity the highest ΔG reported to date for DNA translocations were obtained with nanopores made in oxide/nitride films. We present a controlled electron irradiation technique to thin such films to the limit of their stability, producing nanopores tailored to molecule size in amorphous Si with thicknesses less than 2 nm. We compare ΔG values with results found in the literature for DNA translocation through these nanopores, where access resistance becomes comparable to the resistance through the nanopore itself.

  16. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  17. Overcoming the detection bandwidth limit in precision spectroscopy: The analytical apparatus function for a stepped frequency scan

    NASA Astrophysics Data System (ADS)

    Rohart, François

    2017-01-01

    In a previous paper [Rohart et al., Phys Rev A 2014;90(042506)], the influence of detection-bandwidth properties on observed line-shapes in precision spectroscopy was theoretically modeled for the first time using the basic model of a continuous sweeping of the laser frequency. Specific experiments confirmed general theoretical trends but also revealed several insufficiencies of the model in case of stepped frequency scans. As a consequence in as much as up-to-date experiments use step-by-step frequency-swept lasers, a new model of the influence of the detection-bandwidth is developed, including a realistic timing of signal sampling and frequency changes. Using Fourier transform techniques, the resulting time domain apparatus function gets a simple analytical form that can be easily implemented in line-shape fitting codes without any significant increase of computation durations. This new model is then considered in details for detection systems characterized by 1st and 2nd order bandwidths, underlining the importance of the ratio of detection time constant to frequency step duration, namely for the measurement of line frequencies. It also allows a straightforward analysis of corresponding systematic deviations on retrieved line frequencies and broadenings. Finally, a special attention is paid to consequences of a finite detection-bandwidth in Doppler Broadening Thermometry, namely to experimental adjustments required for a spectroscopic determination of the Boltzmann constant at the 1-ppm level of accuracy. In this respect, the interest of implementing a Butterworth 2nd order filter is emphasized.

  18. Optical air-coupled NDT system with ultra-broad frequency bandwidth (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fischer, Balthasar; Rohringer, Wolfgang; Heine, Thomas

    2017-05-01

    We present a novel, optical ultrasound airborne acoustic testing setup exhibiting a frequency bandwidth of 1MHz in air. The sound waves are detected by a miniaturized Fabry-Pérot interferometer (2mm cavity) whilst the sender consists of a thermoacoustic emitter or a short laser pulse We discuss characterization measurements and C-scans of a selected set of samples, including Carbon fiber reinforced polymer (CFRP). The high detector sensitivity allows for an increased penetration depth. The high frequency and the small transducer dimensions lead to a compelling image resolution.

  19. Network Implementation Trade-Offs in Existing Homes

    NASA Astrophysics Data System (ADS)

    Keiser, Gerd

    2013-03-01

    The ever-increasing demand for networking of high-bandwidth services in existing homes has resulted in several options for implementing an in-home network. Among the options are power-line communication techniques, twisted-pair copper wires, wireless links, and plastic or glass optical fibers. Whereas it is easy to install high-bandwidth optical fibers during the construction of new living units, retrofitting of existing homes with networking capabilities requires some technology innovations. This article addresses some trade-offs that need to be made on what transmission media can be retrofitted most effectively in existing homes.

  20. Bandwidth increasing mechanism by introducing a curve fixture to the cantilever generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weiqun, E-mail: weiqunliu@home.swjtu.edu.cn; Liu, Congzhi; Ren, Bingyu

    2016-07-25

    A nonlinear wideband generator architecture by clamping the cantilever beam generator with a curve fixture is proposed. Devices with different nonlinear stiffness can be obtained by properly choosing the fixture curve according to the design requirements. Three available generator types are presented and discussed for polynomial curves. Experimental investigations show that the proposed mechanism effectively extends the operation bandwidth with good power performance. Especially, the simplicity and easy feasibility allow the mechanism to be widely applied for vibration generators in different scales and environments.

  1. Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch

    NASA Astrophysics Data System (ADS)

    König, Friedrich; Wong, Franco N. C.

    2004-03-01

    Under extended phase-matching conditions, the first frequency derivative of the wave-vector mismatch is zero and the phase-matching bandwidth is greatly increased. We present extensive three-wave mixing measurements of the wave-vector mismatch and obtain improved Sellmeier equations for KTiOPO4. We observed a type-II extended phase-matching bandwidth of 100 nm for second-harmonic generation in periodically poled KTiOPO4, centered at the fundamental wavelength of 1584 nm. Applications in quantum entanglement and frequency metrology are discussed.

  2. High-speed quantum networking by ship

    NASA Astrophysics Data System (ADS)

    Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; van Meter, Rodney

    2016-11-01

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  3. Optimality based repetitive controller design for track-following servo system of optical disk drives.

    PubMed

    Chen, Wentao; Zhang, Weidong

    2009-10-01

    In an optical disk drive servo system, to attenuate the external periodic disturbances induced by inevitable disk eccentricity, repetitive control has been used successfully. The performance of a repetitive controller greatly depends on the bandwidth of the low-pass filter included in the repetitive controller. However, owing to the plant uncertainty and system stability, it is difficult to maximize the bandwidth of the low-pass filter. In this paper, we propose an optimality based repetitive controller design method for the track-following servo system with norm-bounded uncertainties. By embedding a lead compensator in the repetitive controller, both the system gain at periodic signal's harmonics and the bandwidth of the low-pass filter are greatly increased. The optimal values of the repetitive controller's parameters are obtained by solving two optimization problems. Simulation and experimental results are provided to illustrate the effectiveness of the proposed method.

  4. High-speed quantum networking by ship

    PubMed Central

    Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; Van Meter, Rodney

    2016-01-01

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet. PMID:27805001

  5. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays.

    PubMed

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-02-16

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.

  6. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    PubMed Central

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-01-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615

  7. Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated Raman scattering.

    PubMed

    Semrau, Daniel; Killey, Robert; Bayvel, Polina

    2017-06-12

    As the bandwidths of optical communication systems are increased to maximize channel capacity, the impact of stimulated Raman scattering (SRS) on the achievable information rates (AIR) in ultra-wideband coherent WDM systems becomes significant, and is investigated in this work, for the first time. By modifying the GN-model to account for SRS, it is possible to derive a closed-form expression that predicts the optical signal-to-noise ratio of all channels at the receiver for bandwidths of up to 15 THz, which is in excellent agreement with numerical calculations. It is shown that, with fixed modulation and coding rate, SRS leads to a drop of approximately 40% in achievable information rates for bandwidths higher than 15 THz. However, if adaptive modulation and coding rates are applied across the entire spectrum, this AIR reduction can be limited to only 10%.

  8. High-speed quantum networking by ship.

    PubMed

    Devitt, Simon J; Greentree, Andrew D; Stephens, Ashley M; Van Meter, Rodney

    2016-11-02

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, Steven H.; Karlin, Ian; Marinak, Marty M.

    HYDRA is used to simulate a variety of experiments carried out at the National Ignition Facility (NIF) [4] and other high energy density physics facilities. HYDRA has packages to simulate radiation transfer, atomic physics, hydrodynamics, laser propagation, and a number of other physics effects. HYDRA has over one million lines of code and includes both MPI and thread-level (OpenMP and pthreads) parallelism. This paper measures the performance characteristics of HYDRA using hardware counters on an IBM BlueGene/Q system. We report key ratios such as bytes/instruction and memory bandwidth for several different physics packages. The total number of bytes read andmore » written per time step is also reported. We show that none of the packages which use significant time are memory bandwidth limited on a Blue Gene/Q. HYDRA currently issues very few SIMD instructions. The pressure on memory bandwidth will increase if high levels of SIMD instructions can be achieved.« less

  10. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  11. Fiber-optic three axis magnetometer prototype development

    NASA Technical Reports Server (NTRS)

    Wang, Thomas D.; Mccomb, David G.; Kingston, Bradley R.; Dube, C. Michael; Poehls, Kenneth A.; Wanser, Keith

    1989-01-01

    The goal of this research program was to develop a high sensitivity, fiber optic, interferometric, three-axis magnetometer for interplanetary spacecraft applications. Dynamics Technology, Inc. (DTI) has successfully integrated a low noise, high bandwidth interferometer with high sensitivity metallic glass transducers. Also, DTI has developed sophisticated signal processing electronics and complete data acquisition, filtering, and display software. The sensor was packaged in a compact, low power and weight unit which facilitates deployment. The magnetic field sensor had subgamma sensitivity and a dynamic range of 10(exp 5) gamma in a 10 Hz bandwidth. Furthermore, the vector instrument exhibited the lowest noise level when only one axis was in operation. A system noise level of 1 gamma rms was observed in a 1 Hz bandwidth. However, with the other two channels operating, the noise level increased by about one order of magnitude. Higher system noise was attributed to cross-channel interference among the dither fields.

  12. High school students as a seismic network analysts

    NASA Astrophysics Data System (ADS)

    Filatov, P.; Fedorenko, Yu.; Beketova, E.; Husebye, E.

    2003-04-01

    Many research organizations have a large amount of collected seismological data. Some data centers keep data closed from scientists, others have a specific interfaces for access, what is not acceptable for education. For SeisSchool Network in Norway we have developed an universal interface for research and study. The main principles of our interface are: bullet Accessibility - it should provides data access for everybody any where via Internet without restrictions of hardware platform, operational system, Internet browser or bandwidth of connection. bullet Informativity - it should visualize data, have examples of processing routines (filters, envelopes) including phase picking and event location. Also it provides access to various seismology information. bullet Scalability - provide storage for various types of seismic data and a multitude of services for many user levels. This interface (http://pcg1.ifjf.uib.no) helps analysts in basic research and together with information of our Web site we introduces students to theory and practice of seismology. Based on our Web interface group of students won a Norwegian Young Scientists award. In this presentation we demonstrate advantages of our interface, on-line data processing and how to monitoring our network in near real time.

  13. Thirty Years of Innovation in Seismology with the IRIS Consortium

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Aderhold, K.; Ahern, T. K.; Anderson, K. R.; Busby, R.; Detrick, R. S.; Evers, B.; Frassetto, A.; Hafner, K.; Simpson, D. W.; Sweet, J. R.; Taber, J.

    2015-12-01

    The United States academic seismology community, through the National Science Foundation (NSF)-funded Incorporated Research Institutions for Seismology (IRIS) Consortium, has promoted and encouraged a rich environment of innovation and experimentation in areas such as seismic instrumentation, data processing and analysis, teaching and curriculum development, and academic science. As the science continually evolves, IRIS helps drive the market for new research tools that enable science by establishing a variety of standards and goals. This has often involved working directly with manufacturers to better define the technology required, co-funding key development work or early production prototypes, and purchasing initial production runs. IRIS activities have helped establish de-facto international standards and impacted the commercial sector in areas such as seismic instrumentation, open-access data management, and professional development. Key institutional practices, conducted and refined over IRIS' thirty-year history of operations, have focused on open-access data availability, full retention of maximum-bandwidth, continuous data, and direct community access to state-of-the-art seismological instrumentation and software. These practices have helped to cultivate and support a thriving commercial ecosystem, and have been a key element in the professional development of multiple generations of seismologists who now work in both industry and academia. Looking toward the future, IRIS is increasing its engagement with industry to better enable bi-directional exchange of techniques and technology, and enhancing the development of tomorrow's workforce. In this presentation, we will illustrate how IRIS has promoted innovations grown out of the academic community and spurred technological advances in both academia and industry.

  14. Floquet topological polaritons in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Ge, R.; Broer, W.; Liew, T. C. H.

    2018-05-01

    We propose and model Floquet topological polaritons in semiconductor microcavities, using the interference of frequency-detuned coherent fields to provide a time-periodic potential. For arbitrarily weak field strength, where the Floquet frequency is larger than the relevant bandwidth of the system, a Chern insulator is obtained. As the field strength is increased, a topological phase transition is observed with an unpaired Dirac cone proclaiming the anomalous Floquet topological insulator. As the relevant bandwidth increases even further, an exotic Chern insulator with flatband is observed with unpaired Dirac cone at the second critical point. Considering the polariton spin degree of freedom, we find that the choice of field polarization allows oppositely polarized polaritons to either copropagate or counterpropagate in chiral edge states.

  15. High-bandwidth generation of duobinary and alternate-mark-inversion modulation formats using SOA-based signal processing.

    PubMed

    Dailey, James M; Power, Mark J; Webb, Roderick P; Manning, Robert J

    2011-12-19

    We report on the novel all-optical generation of duobinary (DB) and alternate-mark-inversion (AMI) modulation formats at 42.6 Gb/s from an input on-off keyed signal. The modulation converter consists of two semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer gates. A detailed SOA model numerically confirms the operational principles and experimental data shows successful AMI and DB conversion at 42.6 Gb/s. We also predict that the operational bandwidth can be extended beyond 40 Gb/s by utilizing a new pattern-effect suppression scheme, and demonstrate dramatic reductions in patterning up to 160 Gb/s. We show an increasing trade-off between pattern-effect reduction and mean output power with increasing bitrate.

  16. The Effects of Acoustic Bandwidth on Simulated Bimodal Benefit in Children and Adults with Normal Hearing.

    PubMed

    Sheffield, Sterling W; Simha, Michelle; Jahn, Kelly N; Gifford, René H

    2016-01-01

    The primary purpose of this study was to examine the effect of acoustic bandwidth on bimodal benefit for speech recognition in normal-hearing children with a cochlear implant (CI) simulation in one ear and low-pass filtered stimuli in the contralateral ear. The effect of acoustic bandwidth on bimodal benefit in children was compared with the pattern of adults with normal hearing. Our hypothesis was that children would require a wider acoustic bandwidth than adults to (1) derive bimodal benefit, and (2) obtain asymptotic bimodal benefit. Nineteen children (6 to 12 years) and 10 adults with normal hearing participated in the study. Speech recognition was assessed via recorded sentences presented in a 20-talker babble. The AzBio female-talker sentences were used for the adults and the pediatric AzBio sentences (BabyBio) were used for the children. A CI simulation was presented to the right ear and low-pass filtered stimuli were presented to the left ear with the following cutoff frequencies: 250, 500, 750, 1000, and 1500 Hz. The primary findings were (1) adults achieved higher performance than children when presented with only low-pass filtered acoustic stimuli, (2) adults and children performed similarly in all the simulated CI and bimodal conditions, (3) children gained significant bimodal benefit with the addition of low-pass filtered speech at 250 Hz, and (4) unlike previous studies completed with adult bimodal patients, adults and children with normal hearing gained additional significant bimodal benefit with cutoff frequencies up to 1500 Hz with most of the additional benefit gained with energy below 750 Hz. Acoustic bandwidth effects on simulated bimodal benefit were similar in children and adults with normal hearing. Should the current results generalize to children with CIs, these results suggest pediatric CI recipients may derive significant benefit from minimal acoustic hearing (<250 Hz) in the nonimplanted ear and increasing benefit with broader bandwidth. Knowledge of the effect of acoustic bandwidth on bimodal benefit in children may help direct clinical decisions regarding a second CI, continued bimodal hearing, and even optimizing acoustic amplification for the nonimplanted ear.

  17. 47 CFR 95.633 - Emission bandwidth.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... is 4 kHz. The authorized bandwidth for emission type A1D or A3E is 8 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz. (b) The authorized bandwidth for any emission type transmitted by an R/C transmitter is 8 kHz. (c) The authorized bandwidth for emission type F3E or F2D...

  18. 47 CFR 95.633 - Emission bandwidth.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is 4 kHz. The authorized bandwidth for emission type A1D or A3E is 8 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz. (b) The authorized bandwidth for any emission type transmitted by an R/C transmitter is 8 kHz. (c) The authorized bandwidth for emission type F3E or F2D...

  19. 47 CFR 95.633 - Emission bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... is 4 kHz. The authorized bandwidth for emission type A1D or A3E is 8 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz. (b) The authorized bandwidth for any emission type transmitted by an R/C transmitter is 8 kHz. (c) The authorized bandwidth for emission type F3E or F2D...

  20. All-optical LAN architectures based on arrayed waveguide grating multiplexers

    NASA Astrophysics Data System (ADS)

    Woesner, Hagen

    1998-10-01

    The paper presents optical LAN topologies which are made possible using an Arrayed Waveguide Grating Multiplexer (AWGM) instead of a passive star coupler to interconnect stations in an all-optical LAN. Due to the collision-free nature of an AWGM it offers the n-fold bandwidth compared to the star coupler. Virtual ring topologies appear (one ring on each wavelength) if the number of stations attached to the AWGM is a prime number. A method to construct larger networks using Cayley graphs is shown. An access protocol to avoid collisions on the proposed network is outlined.

  1. Overview of technical trend of optical fiber/cable and research and development strategy of Samsung

    NASA Astrophysics Data System (ADS)

    Kim, Jin H.

    2005-01-01

    Fiber-to-the-Premise (FTTP), a keyword in the current fiber and cable industry, leads us variegated directions of the research and development activities. In fact, this momentum of industry seems to be weak yet, since the bandwidth demand by market is still unbalanced to the capacity in the several market segments. However, the recent gradual recovery in metro and access network indicates a positive sign for FTTP deployment projects. It is the very preferable for us to optimize R&D strategy applicable to the current market trend of sequential investment.

  2. Interferometric fibre-optic curvature sensing for structural, directional vibration measurements

    NASA Astrophysics Data System (ADS)

    Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.

    2017-06-01

    Dynamic fibre-optic curvature sensing using fibre segment interferometry is demonstrated using a cost-effective rangeresolved interferometry interrogation system. Differential strain measurements from four fibre strings, each containing four fibre segments of gauge length 20 cm, allow the inference of lateral vibrations as well as the direction of the vibration of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range over a 21 kHz interferometric bandwidth demonstrate the suitability of this approach for highly sensitive fibre-optic directional vibration measurements, complementing existing laser vibrometry techniques by removing the need for side access to the structure under test.

  3. Holographic optical disc

    NASA Astrophysics Data System (ADS)

    Zhou, Gan; An, Xin; Pu, Allen; Psaltis, Demetri; Mok, Fai H.

    1999-11-01

    The holographic disc is a high capacity, disk-based data storage device that can provide the performance for next generation mass data storage needs. With a projected capacity approaching 1 terabit on a single 12 cm platter, the holographic disc has the potential to become a highly efficient storage hardware for data warehousing applications. The high readout rate of holographic disc makes it especially suitable for generating multiple, high bandwidth data streams such as required for network server computers. Multimedia applications such as interactive video and HDTV can also potentially benefit from the high capacity and fast data access of holographic memory.

  4. Experimental and theoretical investigation of an impact vibration harvester with triboelectric transduction

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alwathiqbellah; Ramini, Abdallah; Towfighian, Shahrzad

    2018-03-01

    There has been remarkable interest in triboelectric mechanisms because of their high efficiency, wide availability, and low-cost generation of sustainable power. Using impact vibrations, we introduce piece-wise stiffness to the system to enlarge frequency bandwidth. The triboelectric layers consist of Aluminum, which also serves as an electrode, and Polydimethylsiloxane (PDMS) with micro semi-cylindrical patterns. At the bottom of the PDMS layer, there is another Al electrode. The layers are sandwiched between the center mass of a clamped-clamped beam and its base. The center mass enhances the impact force on the triboelectric layers subjected to external vibrations. Upon impact, alternating current, caused by the contact electrification and electrostatic induction, flows between the Al electrodes. Because of the impact, the equivalent stiffness of the structure increases and as a result, the frequency bandwidth gets wider. The output voltage and power reach as large as 5.5 V, 15 μW, respectively at 0.8 g vibrational amplitude. In addition, we report how the surface charge density increases with the excitation levels. The analysis delineates the interactions between impact vibrations and triboelectric transductions. The ability of the system to achieve wider bandwidth paves the way for efficient triboelectric vibrational energy harvesters.

  5. Modeling and Simulation of Linear and Nonlinear MEMS Scale Electromagnetic Energy Harvesters for Random Vibration Environments

    PubMed Central

    Sassani, Farrokh

    2014-01-01

    The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063

  6. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  7. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  8. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  9. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  10. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  11. Optimal Bandwidth for Multitaper Spectrum Estimation

    DOE PAGES

    Haley, Charlotte L.; Anitescu, Mihai

    2017-07-04

    A systematic method for bandwidth parameter selection is desired for Thomson multitaper spectrum estimation. We give a method for determining the optimal bandwidth based on a mean squared error (MSE) criterion. When the true spectrum has a second-order Taylor series expansion, one can express quadratic local bias as a function of the curvature of the spectrum, which can be estimated by using a simple spline approximation. This is combined with a variance estimate, obtained by jackknifing over individual spectrum estimates, to produce an estimated MSE for the log spectrum estimate for each choice of time-bandwidth product. The bandwidth that minimizesmore » the estimated MSE then gives the desired spectrum estimate. Additionally, the bandwidth obtained using our method is also optimal for cepstrum estimates. We give an example of a damped oscillatory (Lorentzian) process in which the approximate optimal bandwidth can be written as a function of the damping parameter. Furthermore, the true optimal bandwidth agrees well with that given by minimizing estimated the MSE in these examples.« less

  12. Situational Awareness from a Low-Cost Camera System

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Ward, David; Lesage, John

    2010-01-01

    A method gathers scene information from a low-cost camera system. Existing surveillance systems using sufficient cameras for continuous coverage of a large field necessarily generate enormous amounts of raw data. Digitizing and channeling that data to a central computer and processing it in real time is difficult when using low-cost, commercially available components. A newly developed system is located on a combined power and data wire to form a string-of-lights camera system. Each camera is accessible through this network interface using standard TCP/IP networking protocols. The cameras more closely resemble cell-phone cameras than traditional security camera systems. Processing capabilities are built directly onto the camera backplane, which helps maintain a low cost. The low power requirements of each camera allow the creation of a single imaging system comprising over 100 cameras. Each camera has built-in processing capabilities to detect events and cooperatively share this information with neighboring cameras. The location of the event is reported to the host computer in Cartesian coordinates computed from data correlation across multiple cameras. In this way, events in the field of view can present low-bandwidth information to the host rather than high-bandwidth bitmap data constantly being generated by the cameras. This approach offers greater flexibility than conventional systems, without compromising performance through using many small, low-cost cameras with overlapping fields of view. This means significant increased viewing without ignoring surveillance areas, which can occur when pan, tilt, and zoom cameras look away. Additionally, due to the sharing of a single cable for power and data, the installation costs are lower. The technology is targeted toward 3D scene extraction and automatic target tracking for military and commercial applications. Security systems and environmental/ vehicular monitoring systems are also potential applications.

  13. Inactivation of the infragranular striate cortex broadens orientation tuning of supragranular visual neurons in the cat.

    PubMed

    Allison, J D; Bonds, A B

    1994-01-01

    Intracortical inhibition is believed to enhance the orientation tuning of striate cortical neurons, but the origin of this inhibition is unclear. To examine the possible influence of ascending inhibitory projections from the infragranular layers of striate cortex on the orientation selectivity of neurons in the supragranular layers, we measured the spatiotemporal response properties of 32 supragranular neurons in the cat before, during, and after neural activity in the infragranular layers beneath the recorded cells was inactivated by iontophoretic administration of GABA. During GABA iontophoresis, the orientation tuning bandwidth of 15 (46.9%) supragranular neurons broadened as a result of increases in response amplitude to stimuli oriented about +/- 20 degrees away from the preferred stimulus angle. The mean (+/- SD) baseline orientation tuning bandwidth (half width at half height) of these neurons was 13.08 +/- 2.3 degrees. Their mean tuning bandwidth during inactivation of the infragranular layers increased to 19.59 +/- 2.54 degrees, an increase of 49.7%. The mean percentage increase in orientation tuning bandwidth of the individual neurons was 47.4%. Four neurons exhibited symmetrical changes in their orientation tuning functions, while 11 neurons displayed asymmetrical changes. The change in form of the orientation tuning functions appeared to depend on the relative vertical alignment of the recorded neuron and the infragranular region of inactivation. Neurons located in close vertical register with the inactivated infragranular tissue exhibited symmetric changes in their orientation tuning functions. The neurons exhibiting asymmetric changes in their orientation tuning functions were located just outside the vertical register. Eight of these 11 neurons also demonstrated a mean shift of 6.67 +/- 5.77 degrees in their preferred stimulus orientation. The magnitude of change in the orientation tuning functions increased as the delivery of GABA was prolonged. Responses returned to normal approximately 30 min after the delivery of GABA was discontinued. We conclude that inhibitory projections from neurons within the infragranular layers of striate cortex in cats can enhance the orientation selectivity of supragranular striate cortical neurons.

  14. 47 CFR 87.135 - Bandwidth of emission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bandwidth of emission. 87.135 Section 87.135 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Technical Requirements § 87.135 Bandwidth of emission. (a) Occupied bandwidth is the width of a frequency...

  15. Secure dissemination of electronic healthcare records in distributed wireless environments.

    PubMed

    Belsis, Petros; Vassis, Dimitris; Skourlas, Christos; Pantziou, Grammati

    2008-01-01

    A new networking paradigm has emerged with the appearance of wireless computing. Among else ad-hoc networks, mobile and ubiquitous environments can boost the performance of systems in which they get applied. Among else, medical environments are a convenient example of their applicability. With the utilisation of wireless infrastructures, medical data may be accessible to healthcare practitioners, enabling continuous access to medical data. Due to the critical nature of medical information, the design and implementation of these infrastructures demands special treatment in order to meet specific requirements; among else, special care should be taken in order to manage interoperability, security, and in order to deal with bandwidth and hardware resource constraints that characterize the wireless topology. In this paper we present an architecture that attempts to deal with these issues; moreover, in order to prove the validity of our approach we have also evaluated the performance of our platform through simulation in different operating scenarios.

  16. A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink

    NASA Astrophysics Data System (ADS)

    He, Chao; Tan, Ze-fu; Shao, Yu-feng; Cai, Li; Pu, He-sheng; Zhu, Yun-le; Huang, Si-si; Liu, Yu

    2016-09-01

    A full-duplex optical passive access scheme is proposed and verified by simulation, in which hybrid 64/16/4-quadrature amplitude modulation (64/16/4QAM) orthogonal frequency division multiplexing (OFDM) optical signal is for downstream transmission and non-return-to-zero (NRZ) optical signal is for upstream transmission. In view of the transmitting and receiving process for downlink optical signal, in-phase/quadrature-phase (I/Q) modulation based on Mach-Zehnder modulator (MZM) and homodyne coherent detection technology are employed, respectively. The simulation results show that the bit error ratio ( BER) less than hardware decision forward error correction (HD-FEC) threshold is successfully obtained over transmission path with 20-km-long standard single mode fiber (SSMF) for hybrid downlink modulation OFDM optical signal. In addition, by dividing the system bandwidth into several subchannels consisting of some continuous subcarriers, it is convenient for users to select different channels depending on requirements of communication.

  17. Performance analysis and improvement of WPAN MAC for home networks.

    PubMed

    Mehta, Saurabh; Kwak, Kyung Sup

    2010-01-01

    The wireless personal area network (WPAN) is an emerging wireless technology for future short range indoor and outdoor communication applications. The IEEE 802.15.3 medium access control (MAC) is proposed to coordinate the access to the wireless medium among the competing devices, especially for short range and high data rate applications in home networks. In this paper we use analytical modeling to study the performance analysis of WPAN (IEEE 802.15.3) MAC in terms of throughput, efficient bandwidth utilization, and delay with various ACK policies under error channel condition. This allows us to introduce a K-Dly-ACK-AGG policy, payload size adjustment mechanism, and Improved Backoff algorithm to improve the performance of the WPAN MAC. Performance evaluation results demonstrate the impact of our improvements on network capacity. Moreover, these results can be very useful to WPAN application designers and protocol architects to easily and correctly implement WPAN for home networking.

  18. Minimal-delay traffic grooming for WDM star networks

    NASA Astrophysics Data System (ADS)

    Choi, Hongsik; Garg, Nikhil; Choi, Hyeong-Ah

    2003-10-01

    All-optical networks face the challenge of reducing slower opto-electronic conversions by managing assignment of traffic streams to wavelengths in an intelligent manner, while at the same time utilizing bandwidth resources to the maximum. This challenge becomes harder in networks closer to the end users that have insufficient data to saturate single wavelengths as well as traffic streams outnumbering the usable wavelengths, resulting in traffic grooming which requires costly traffic analysis at access nodes. We study the problem of traffic grooming that reduces the need to analyze traffic, for a class of network architecture most used by Metropolitan Area Networks; the star network. The problem being NP-complete, we provide an efficient twice-optimal-bound greedy heuristic for the same, that can be used to intelligently groom traffic at the LANs to reduce latency at the access nodes. Simulation results show that our greedy heuristic achieves a near-optimal solution.

  19. High-speed zero-copy data transfer for DAQ applications

    NASA Astrophysics Data System (ADS)

    Pisani, Flavio; Cámpora Pérez, Daniel Hugo; Neufeld, Niko

    2015-05-01

    The LHCb Data Acquisition (DAQ) will be upgraded in 2020 to a trigger-free readout. In order to achieve this goal we will need to connect around 500 nodes with a total network capacity of 32 Tb/s. To get such an high network capacity we are testing zero-copy technology in order to maximize the theoretical link throughput without adding excessive CPU and memory bandwidth overhead, leaving free resources for data processing resulting in less power, space and money used for the same result. We develop a modular test application which can be used with different transport layers. For the zero-copy implementation we choose the OFED IBVerbs API because it can provide low level access and high throughput. We present throughput and CPU usage measurements of 40 GbE solutions using Remote Direct Memory Access (RDMA), for several network configurations to test the scalability of the system.

  20. Performance Analysis and Improvement of WPAN MAC for Home Networks

    PubMed Central

    Mehta, Saurabh; Kwak, Kyung Sup

    2010-01-01

    The wireless personal area network (WPAN) is an emerging wireless technology for future short range indoor and outdoor communication applications. The IEEE 802.15.3 medium access control (MAC) is proposed to coordinate the access to the wireless medium among the competing devices, especially for short range and high data rate applications in home networks. In this paper we use analytical modeling to study the performance analysis of WPAN (IEEE 802.15.3) MAC in terms of throughput, efficient bandwidth utilization, and delay with various ACK policies under error channel condition. This allows us to introduce a K-Dly-ACK-AGG policy, payload size adjustment mechanism, and Improved Backoff algorithm to improve the performance of the WPAN MAC. Performance evaluation results demonstrate the impact of our improvements on network capacity. Moreover, these results can be very useful to WPAN application designers and protocol architects to easily and correctly implement WPAN for home networking. PMID:22319274

  1. Traffic placement policies for a multi-band network

    NASA Technical Reports Server (NTRS)

    Maly, Kurt J.; Foudriat, E. C.; Game, David; Mukkamala, R.; Overstreet, C. Michael

    1990-01-01

    Recently protocols were introduced that enable the integration of synchronous traffic (voice or video) and asynchronous traffic (data) and extend the size of local area networks without loss in speed or capacity. One of these is DRAMA, a multiband protocol based on broadband technology. It provides dynamic allocation of bandwidth among clusters of nodes in the total network. A number of traffic placement policies for such networks are proposed and evaluated. Metrics used for performance evaluation include average network access delay, degree of fairness of access among the nodes, and network throughput. The feasibility of the DRAMA protocol is established through simulation studies. DRAMA provides effective integration of synchronous and asychronous traffic due to its ability to separate traffic types. Under the suggested traffic placement policies, the DRAMA protocol is shown to handle diverse loads, mixes of traffic types, and numbers of nodes, as well as modifications to the network structure and momentary traffic overloads.

  2. Security Risks of Cloud Computing and Its Emergence as 5th Utility Service

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq

    Cloud Computing is being projected by the major cloud services provider IT companies such as IBM, Google, Yahoo, Amazon and others as fifth utility where clients will have access for processing those applications and or software projects which need very high processing speed for compute intensive and huge data capacity for scientific, engineering research problems and also e- business and data content network applications. These services for different types of clients are provided under DASM-Direct Access Service Management based on virtualization of hardware, software and very high bandwidth Internet (Web 2.0) communication. The paper reviews these developments for Cloud Computing and Hardware/Software configuration of the cloud paradigm. The paper also examines the vital aspects of security risks projected by IT Industry experts, cloud clients. The paper also highlights the cloud provider's response to cloud security risks.

  3. Decoupling PI Controller Design for a Normal Conducting RF Cavity Using a Recursive LEVENBERG-MARQUARDT Algorithm

    NASA Astrophysics Data System (ADS)

    Kwon, Sung-il; Lynch, M.; Prokop, M.

    2005-02-01

    This paper addresses the system identification and the decoupling PI controller design for a normal conducting RF cavity. Based on the open-loop measurement data of an SNS DTL cavity, the open-loop system's bandwidths and loop time delays are estimated by using batched least square. With the identified system, a PI controller is designed in such a way that it suppresses the time varying klystron droop and decouples the In-phase and Quadrature of the cavity field. The Levenberg-Marquardt algorithm is applied for nonlinear least squares to obtain the optimal PI controller parameters. The tuned PI controller gains are downloaded to the low-level RF system by using channel access. The experiment of the closed-loop system is performed and the performance is investigated. The proposed tuning method is running automatically in real time interface between a host computer with controller hardware through ActiveX Channel Access.

  4. Availability of free-space optics (FSO) and hybrid FSO/RF systems

    NASA Astrophysics Data System (ADS)

    Kim, Isaac I.; Korevaar, Eric J.

    2001-11-01

    Free Space Optics (FSO) has become a viable, high-bandwidth wireless alternative to fiber optic cabling. The primary advantages of FSO over fiber are its rapid deployment time and significant cost savings. The disadvantage of FSO over fiber is that laser power attenuation through the atmosphere is variable and difficult to predict, since it is weather airports, the link availability as a function of distance can be predicted for any FSO system. These availability curves provide a good indication of the reasonable link distances for FSO systems in a particular geographical area. FSO link distances can vary greatly from desert areas like Las Vegas to heavy-fog cities like St. Johns NF. Another factor in determining FSO distance limitations is the link availability expectation of the application. For enterprise applications, link availability requirements are generally greater than 99%. This allows for longer FSO link ranges, based on the availability curves. The enterprise market is where the majority of FSO systems have been deployed. The carriers and ISPs are another potential large user of FSO systems, especially for last-mile metro access applications. If FSO systems are to be used in telecommunication applications, they will need to meet much higher availability requirements. Carrier-class availability is generally considered to be 99.999% (5 nines). An analysis of link budgets and visibility-limiting weather conditions indicates that to meet carrier-class availability, FSO links should normally be less than 140m (there are cities like Phoenix and Las Vegas where this 99.999% distance limitation increases significantly). This calculation is based on a 53 dB link budget. This concept is extended to the best possible FSO system, which would have a 10 W transmitter and a photocounting detector with a sensitivity of 1 nW. This FSO system would have a 100 dB link margin, which would only increase the 99.999% link distance to 286 m. A more practical solution to extending the high availability range would be to back up the FSO link with a lower data rate radio frequency (RF) link. This hybrid FSO/RF system would extend the 99.999% link range to longer distances and open up a much larger metro/access market to the carriers. It is important to realize that as the link range increases, there will be a slight decrease in overall bandwidth. To show the geographical dependence of FSO performance, the first map of FSO availabilities contoured over North America is presented. This map is the first step to developing an attenuation map for predicting FSO performance, which could be used in similar fashion to the International Telecommunication Union (ITU)/Crane maps for predicting microwave performance.

  5. Open Access to Multi-Domain Collaborative Analysis of Geospatial Data Through the Internet

    NASA Astrophysics Data System (ADS)

    Turner, A.

    2009-12-01

    The internet has provided us with a high bandwidth, low latency, globally connected network in which to rapidly share realtime data from sensors, reports, and imagery. In addition, the availability of this data is even easier to obtain, consume and analyze. Another aspect of the internet has been the increased approachability of complex systems through lightweight interfaces - with additional complex services able to provide more advanced connections into data services. These analyses and discussions have primarily been siloed within single domains, or kept out of the reach of amateur scientists and interested citizens. However, through more open access to analytical tools and data, experts can collaborate with citizens to gather information, provide interfaces for experimenting and querying results, and help make improved insights and feedback for further investigation. For example, farmers in Uganda are able to use their mobile phones to query, analyze, and be alerted to banana crop disease based on agriculture and climatological data. In the U.S., local groups use online social media sharing sites to gather data on storm-water runoff and stream siltation in order to alert wardens and environmental agencies. This talk will present various web-based geospatial visualization and analysis techniques and tools such as Google Earth and GeoCommons that have emerged that provide for a collaboration between experts of various domains as well as between experts, government, and citizen scientists. Through increased communication and the sharing of data and tools, it is possible to gain broad insight and development of joint, working solutions to a variety of difficult scientific and policy related questions.

  6. Improving the Bandwidth Selection in Kernel Equating

    ERIC Educational Resources Information Center

    Andersson, Björn; von Davier, Alina A.

    2014-01-01

    We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…

  7. Advance reservation access control using software-defined networking and tokens

    DOE PAGES

    Chung, Joaquin; Jung, Eun-Sung; Kettimuthu, Rajkumar; ...

    2017-03-09

    Advance reservation systems allow users to reserve dedicated bandwidth connection resources from advanced high-speed networks. A common use case for such systems is data transfers in distributed science environments in which a user wants exclusive access to the reservation. However, current advance network reservation methods cannot ensure exclusive access of a network reservation to the specific flow for which the user made the reservation. We present in this paper a novel network architecture that addresses this limitation and ensures that a reservation is used only by the intended flow. We achieve this by leveraging software-defined networking (SDN) and token-based authorization.more » We use SDN to orchestrate and automate the reservation of networking resources, end-to-end and across multiple administrative domains, and tokens to create a strong binding between the user or application that requested the reservation and the flows provisioned by SDN. Finally, we conducted experiments on the ESNet 100G SDN testbed, and demonstrated that our system effectively protects authorized flows from competing traffic in the network.« less

  8. A baseline maritime satellite communication system

    NASA Technical Reports Server (NTRS)

    Durrani, S. H.; Mcgregor, D. N.

    1974-01-01

    This paper describes a baseline system for maritime communications via satellite during the 1980s. The system model employs three geostationary satellites with global coverage antennas. Access to the system is controlled by a master station; user access is based on time-ordered polling or random access. Each Thor-Delta launched satellite has an RF power of 100 W (spinner) or 250 W (three-axis stabilized), and provides 10 equivalent duplex voice channels for up to 1500 ships with average waiting times of approximately 2.5 minutes. The satellite capacity is bounded by the available bandwidth to 50 such channels, which can serve up to 10,000 ships with an average waiting time of 5 minutes. The ships must have peak antenna gains of approximately 15.5 dB or 22.5 dB for the two cases (10 or 50 voice channels) when a spinner satellite is used; the required gains are 4 dB lower if a three-axis stabilized satellite is used. The ship antenna requirements can be reduced by 8 to 10 dB by employing a high-gain multi-beam phased array antenna on the satellite.

  9. Advance reservation access control using software-defined networking and tokens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Joaquin; Jung, Eun-Sung; Kettimuthu, Rajkumar

    Advance reservation systems allow users to reserve dedicated bandwidth connection resources from advanced high-speed networks. A common use case for such systems is data transfers in distributed science environments in which a user wants exclusive access to the reservation. However, current advance network reservation methods cannot ensure exclusive access of a network reservation to the specific flow for which the user made the reservation. We present in this paper a novel network architecture that addresses this limitation and ensures that a reservation is used only by the intended flow. We achieve this by leveraging software-defined networking (SDN) and token-based authorization.more » We use SDN to orchestrate and automate the reservation of networking resources, end-to-end and across multiple administrative domains, and tokens to create a strong binding between the user or application that requested the reservation and the flows provisioned by SDN. Finally, we conducted experiments on the ESNet 100G SDN testbed, and demonstrated that our system effectively protects authorized flows from competing traffic in the network.« less

  10. Advance reservation access control using software-defined networking and tokens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Joaquin; Jung, Eun-Sung; Kettimuthu, Rajkumar

    Advance reservation systems allow users to reserve dedicated bandwidth connection resources from advanced high-speed networks. A common use case for such systems is data transfers in distributed science environments in which a user wants exclusive access to the reservation. However, current advance network reservation methods cannot ensure exclusive access of a network reservation to the specific flow for which the user made the reservation. We present here a novel network architecture that addresses this limitation and ensures that a reservation is used only by the intended flow. We achieve this by leveraging software-defined networking (SDN) and token-based authorization. We usemore » SDN to orchestrate and automate the reservation of networking resources, end-to-end and across multiple administrative domains, and tokens to create a strong binding between the user or application that requested the reservation and the flows provisioned by SDN. We conducted experiments on the ESNet 100G SDN testbed, and demonstrated that our system effectively protects authorized flows from competing traffic in the network. (C) 2017 Elsevier B.V. All rights reserved.« less

  11. Popularity Prediction Tool for ATLAS Distributed Data Management

    NASA Astrophysics Data System (ADS)

    Beermann, T.; Maettig, P.; Stewart, G.; Lassnig, M.; Garonne, V.; Barisits, M.; Vigne, R.; Serfon, C.; Goossens, L.; Nairz, A.; Molfetas, A.; Atlas Collaboration

    2014-06-01

    This paper describes a popularity prediction tool for data-intensive data management systems, such as ATLAS distributed data management (DDM). It is fed by the DDM popularity system, which produces historical reports about ATLAS data usage, providing information about files, datasets, users and sites where data was accessed. The tool described in this contribution uses this historical information to make a prediction about the future popularity of data. It finds trends in the usage of data using a set of neural networks and a set of input parameters and predicts the number of accesses in the near term future. This information can then be used in a second step to improve the distribution of replicas at sites, taking into account the cost of creating new replicas (bandwidth and load on the storage system) compared to gain of having new ones (faster access of data for analysis). To evaluate the benefit of the redistribution a grid simulator is introduced that is able replay real workload on different data distributions. This article describes the popularity prediction method and the simulator that is used to evaluate the redistribution.

  12. A slotted access control protocol for metropolitan WDM ring networks

    NASA Astrophysics Data System (ADS)

    Baziana, P. A.; Pountourakis, I. E.

    2009-03-01

    In this study we focus on the serious scalability problems that many access protocols for WDM ring networks introduce due to the use of a dedicated wavelength per access node for either transmission or reception. We propose an efficient slotted MAC protocol suitable for WDM ring metropolitan area networks. The proposed network architecture employs a separate wavelength for control information exchange prior to the data packet transmission. Each access node is equipped with a pair of tunable transceivers for data communication and a pair of fixed tuned transceivers for control information exchange. Also, each access node includes a set of fixed delay lines for synchronization reasons; to keep the data packets, while the control information is processed. An efficient access algorithm is applied to avoid both the data wavelengths and the receiver collisions. In our protocol, each access node is capable of transmitting and receiving over any of the data wavelengths, facing the scalability issues. Two different slot reuse schemes are assumed: the source and the destination stripping schemes. For both schemes, performance measures evaluation is provided via an analytic model. The analytical results are validated by a discrete event simulation model that uses Poisson traffic sources. Simulation results show that the proposed protocol manages efficient bandwidth utilization, especially under high load. Also, comparative simulation results prove that our protocol achieves significant performance improvement as compared with other WDMA protocols which restrict transmission over a dedicated data wavelength. Finally, performance measures evaluation is explored for diverse numbers of buffer size, access nodes and data wavelengths.

  13. Medical e-commerce for regional Australia.

    PubMed

    Kumar, D K; Mikelaitis, P

    2001-12-01

    The residents of rural and regional Australia have less access to health care services than in capital cities. There is a reluctance of General Practitioners to practice in the country. New information technology and government initiatives are now addressing this problem. High bandwidth videoconferencing is now being routinely used to provide psychiatric consultations to areas without this service. But this (like many other implementations of telecommunication technologies to health) has resulted in loss of revenue to regional Australia while benefiting capital cities. Thus, the current implementation of telecommunication technology to health has resulted in loss of revenue of the regions while increasing the bias towards the cities. Further, the system is not economically viable and requires the Government to inject funds for the smooth operation of the system. This paper proposes the use of telecommunication technology for enabling the communities of regional Australia to access health facilities via physical and virtual clinics. The proposed technique is self supporting and is based in the country with the intent to prevent the drain of resources from regional Australia. The technique attempts to eradicate the problem at the root level by providing a business opportunity that is based in and to cater for the needs of the remote communities. The proposed system would provide health services by physical and virtual clinics and while serving the communities would be profit centres- and thus attracting doctors and other resources to the remote communities.

  14. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    PubMed

    Rechner, Ole; Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants.

  15. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  16. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    PubMed Central

    Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants. PMID:29190278

  17. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission.

    PubMed

    Liu, Xin; Shu, Xuewen

    2017-08-20

    All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.

  18. Out-of-Band 40 DB Bandwidth of EESS (Active) Spaceborne SARS

    NASA Technical Reports Server (NTRS)

    Huneycutt, Bryan L.

    2005-01-01

    This document presents a study of out of band (OOB) 40 dB bandwidth requirements of spaceborne SARs in the Earth Exploration-Satellite Service (active) and Space Research Service (active). The purpose of the document is to study the OOB 40 dB bandwidth requirements and compare the 40 dB bandwidth B-40 as measured in simulations with that calculated using the ITU-R Rec SM.1541 equations. The spectra roll-off and resulting OOB 40 dB bandwidth of the linear FM signal is affected by the time-bandwidth product and the rise/fall times. Typical values of these waveform characteristics are given for existing EESS (active) sensors.

  19. Operation bandwidth optimization of photonic differentiators.

    PubMed

    Yan, Siqi; Zhang, Yong; Dong, Jianji; Zheng, Aoling; Liao, Shasha; Zhou, Hailong; Wu, Zhao; Xia, Jinsong; Zhang, Xinliang

    2015-07-27

    We theoretically investigate the operation bandwidth limitation of the photonic differentiator including the upper limitation, which is restrained by the device operation bandwidth and the lower limitation, which is restrained by the energy efficiency (EE) and detecting noise level. Taking the silicon photonic crystal L3 nano-cavity (PCN) as an example, for the first time, we experimentally demonstrate that the lower limitation of the operation bandwidth does exist and differentiators with different bandwidths have significantly different acceptable pulse width range of input signals, which are consistent to the theoretical prediction. Furthermore, we put forward a novel photonic differentiator scheme employing cascaded PCNs with different Q factors, which is likely to expand the operation bandwidth range of photonic differentiator dramatically.

  20. High-speed duplex optical wireless communication system for indoor personal area networks.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2010-11-22

    In this paper a new hybrid wireless access system incorporating high bandwidth line-of-sight free space optical wireless and radio frequency localization is proposed and demonstrated. This system is capable of supporting several gigabits/second up-stream and down-stream data transmission and ideally suited for high bandwidth indoor applications such as personal area networks. A radio frequency signal is used to achieve localization of subscribers, offering limited mobility to subscribers within a practical office scenario. Even with the modest transmitted power of 5 dBm, we demonstrate satisfactory performance of bit error rates better than 10(-9) over the entire room in the presence of strong background light. Using simulations, the effectiveness of the proposed system architecture is investigated and the key performance trade-offs identified. Proof-of-concept experiments have also been carried out to validate simulation model, and initial experimental results successfully demonstrate the feasibility of the system capable of supporting 2.5 Gbps over a 1-2 m optical wireless link (limited by the length of the sliding rail used in the experiment) with a 45 degrees diffused beam in an indoor environment for the first time.

Top