Sample records for access comprehensive reservoir

  1. Bilinguals Show Weaker Lexical Access during Spoken Sentence Comprehension

    ERIC Educational Resources Information Center

    Shook, Anthony; Goldrick, Matthew; Engstler, Caroline; Marian, Viorica

    2015-01-01

    When bilinguals process written language, they show delays in accessing lexical items relative to monolinguals. The present study investigated whether this effect extended to spoken language comprehension, examining the processing of sentences with either low or high semantic constraint in both first and second languages. English-German…

  2. RESIS-II: An Updated Version of the Original Reservoir Sedimentation Survey Information System (RESIS) Database

    USGS Publications Warehouse

    Ackerman, Katherine V.; Mixon, David M.; Sundquist, Eric T.; Stallard, Robert F.; Schwarz, Gregory E.; Stewart, David W.

    2009-01-01

    The Reservoir Sedimentation Survey Information System (RESIS) database, originally compiled by the Soil Conservation Service (now the Natural Resources Conservation Service) in collaboration with the Texas Agricultural Experiment Station, is the most comprehensive compilation of data from reservoir sedimentation surveys throughout the conterminous United States (U.S.). The database is a cumulative historical archive that includes data from as early as 1755 and as late as 1993. The 1,823 reservoirs included in the database range in size from farm ponds to the largest U.S. reservoirs (such as Lake Mead). Results from 6,617 bathymetric surveys are available in the database. This Data Series provides an improved version of the original RESIS database, termed RESIS-II, and a report describing RESIS-II. The RESIS-II relational database is stored in Microsoft Access and includes more precise location coordinates for most of the reservoirs than the original database but excludes information on reservoir ownership. RESIS-II is anticipated to be a template for further improvements in the database.

  3. A reservoir morphology database for the conterminous United States

    USGS Publications Warehouse

    Rodgers, Kirk D.

    2017-09-13

    The U.S. Geological Survey, in cooperation with the Reservoir Fisheries Habitat Partnership, combined multiple national databases to create one comprehensive national reservoir database and to calculate new morphological metrics for 3,828 reservoirs. These new metrics include, but are not limited to, shoreline development index, index of basin permanence, development of volume, and other descriptive metrics based on established morphometric formulas. The new database also contains modeled chemical and physical metrics. Because of the nature of the existing databases used to compile the Reservoir Morphology Database and the inherent missing data, some metrics were not populated. One comprehensive database will assist water-resource managers in their understanding of local reservoir morphology and water chemistry characteristics throughout the continental United States.

  4. Pre- and postprocessing for reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.

    1991-05-01

    This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less

  5. Online interactive U.S. Reservoir Sedimentation Survey Database

    USGS Publications Warehouse

    Gray, J.B.; Bernard, J.M.; Schwarz, G.E.; Stewart, D.W.; Ray, K.T.

    2009-01-01

    In April 2009, the U.S. Geological Survey and the Natural Resources Conservation Service (prior to 1994, the Soil Conservation Service) created the Reservoir Sedimentation Survey Database (RESSED) and Web site, the most comprehensive compilation of data from reservoir bathymetric and dry basin surveys in the United States. RESSED data can be useful for a number of purposes, including calculating changes in reservoir storage characteristics, quantifying rates of sediment delivery to reservoirs, and estimating erosion rates in a reservoir's watershed.

  6. Surrogate Reservoir Model

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab

    2010-05-01

    Surrogate Reservoir Model (SRM) is new solution for fast track, comprehensive reservoir analysis (solving both direct and inverse problems) using existing reservoir simulation models. SRM is defined as a replica of the full field reservoir simulation model that runs and provides accurate results in real-time (one simulation run takes only a fraction of a second). SRM mimics the capabilities of a full field model with high accuracy. Reservoir simulation is the industry standard for reservoir management. It is used in all phases of field development in the oil and gas industry. The routine of simulation studies calls for integration of static and dynamic measurements into the reservoir model. Full field reservoir simulation models have become the major source of information for analysis, prediction and decision making. Large prolific fields usually go through several versions (updates) of their model. Each new version usually is a major improvement over the previous version. The updated model includes the latest available information incorporated along with adjustments that usually are the result of single-well or multi-well history matching. As the number of reservoir layers (thickness of the formations) increases, the number of cells representing the model approaches several millions. As the reservoir models grow in size, so does the time that is required for each run. Schemes such as grid computing and parallel processing helps to a certain degree but do not provide the required speed for tasks such as: field development strategies using comprehensive reservoir analysis, solving the inverse problem for injection/production optimization, quantifying uncertainties associated with the geological model and real-time optimization and decision making. These types of analyses require hundreds or thousands of runs. Furthermore, with the new push for smart fields in the oil/gas industry that is a natural growth of smart completion and smart wells, the need for real time

  7. Optimization modeling to maximize population access to comprehensive stroke centers

    PubMed Central

    Branas, Charles C.; Kasner, Scott E.; Wolff, Catherine; Williams, Justin C.; Albright, Karen C.; Carr, Brendan G.

    2015-01-01

    Objective: The location of comprehensive stroke centers (CSCs) is critical to ensuring rapid access to acute stroke therapies; we conducted a population-level virtual trial simulating change in access to CSCs using optimization modeling to selectively convert primary stroke centers (PSCs) to CSCs. Methods: Up to 20 certified PSCs per state were selected for conversion to maximize the population with 60-minute CSC access by ground and air. Access was compared across states based on region and the presence of state-level emergency medical service policies preferentially routing patients to stroke centers. Results: In 2010, there were 811 Joint Commission PSCs and 0 CSCs in the United States. Of the US population, 65.8% had 60-minute ground access to PSCs. After adding up to 20 optimally located CSCs per state, 63.1% of the US population had 60-minute ground access and 86.0% had 60-minute ground/air access to a CSC. Across states, median CSC access was 55.7% by ground (interquartile range 35.7%–71.5%) and 85.3% by ground/air (interquartile range 59.8%–92.1%). Ground access was lower in Stroke Belt states compared with non–Stroke Belt states (32.0% vs 58.6%, p = 0.02) and lower in states without emergency medical service routing policies (52.7% vs 68.3%, p = 0.04). Conclusion: Optimal system simulation can be used to develop efficient care systems that maximize accessibility. Under optimal conditions, a large proportion of the US population will be unable to access a CSC within 60 minutes. PMID:25740858

  8. Optimization modeling to maximize population access to comprehensive stroke centers.

    PubMed

    Mullen, Michael T; Branas, Charles C; Kasner, Scott E; Wolff, Catherine; Williams, Justin C; Albright, Karen C; Carr, Brendan G

    2015-03-24

    The location of comprehensive stroke centers (CSCs) is critical to ensuring rapid access to acute stroke therapies; we conducted a population-level virtual trial simulating change in access to CSCs using optimization modeling to selectively convert primary stroke centers (PSCs) to CSCs. Up to 20 certified PSCs per state were selected for conversion to maximize the population with 60-minute CSC access by ground and air. Access was compared across states based on region and the presence of state-level emergency medical service policies preferentially routing patients to stroke centers. In 2010, there were 811 Joint Commission PSCs and 0 CSCs in the United States. Of the US population, 65.8% had 60-minute ground access to PSCs. After adding up to 20 optimally located CSCs per state, 63.1% of the US population had 60-minute ground access and 86.0% had 60-minute ground/air access to a CSC. Across states, median CSC access was 55.7% by ground (interquartile range 35.7%-71.5%) and 85.3% by ground/air (interquartile range 59.8%-92.1%). Ground access was lower in Stroke Belt states compared with non-Stroke Belt states (32.0% vs 58.6%, p = 0.02) and lower in states without emergency medical service routing policies (52.7% vs 68.3%, p = 0.04). Optimal system simulation can be used to develop efficient care systems that maximize accessibility. Under optimal conditions, a large proportion of the US population will be unable to access a CSC within 60 minutes. © 2015 American Academy of Neurology.

  9. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro

    NASA Astrophysics Data System (ADS)

    Dechristopher, Brian A.; Loy, Brian A.; Marsden, Matthew D.; Schrier, Adam J.; Zack, Jerome A.; Wender, Paul A.

    2012-09-01

    Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.

  10. Direct-access retrieval during sentence comprehension: Evidence from Sluicing

    PubMed Central

    Martin, Andrea E.; McElree, Brian

    2011-01-01

    Language comprehension requires recovering meaning from linguistic form, even when the mapping between the two is indirect. A canonical example is ellipsis, the omission of information that is subsequently understood without being overtly pronounced. Comprehension of ellipsis requires retrieval of an antecedent from memory, without prior prediction, a property which enables the study of retrieval in situ (Martin & McElree, 2008, 2009). Sluicing, or inflectional phrase ellipsis, in the presence of a conjunction, presents a test case where a competing antecedent position is syntactically licensed, in contrast with most cases of nonadjacent dependency, including verb phrase ellipsis. We present speed-accuracy tradeoff and eye-movement data inconsistent with the hypothesis that retrieval is accomplished via a syntactically guided search, a particular variant of search not examined in past research. The observed timecourse profiles are consistent with the hypothesis that antecedents are retrieved via a cue-dependent direct-access mechanism susceptible to general memory variables. PMID:21580797

  11. Prevention and Control of Dental Disease through Improved Access to Comprehensive Care.

    ERIC Educational Resources Information Center

    American Dental Association, Chicago, IL.

    Prevention of dental disease is the key to improving the nation's oral health. The American Dental Association (ADA) program of prevention and control of dental disease through improved access to comprehensive care concentrates on those who have special difficulties in receiving care: the poor, the elderly, the handicapped, the institutionalized…

  12. Identification and evaluation of fluvial-dominated deltaic (Class 1 oil) reservoirs in Oklahoma. Yearly technical progress report, January 1--December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection, evaluation, and distribution of information on all of Oklahoma`s FDD oil reservoirs and the recovery technologies that can be applied to those reservoirs with commercial success. Exhaustive literature searches are being conducted for these plays, both through published sources and through unpublished theses from regional universities. A bibliographic database hasmore » been developed to record these literature sources and their related plays. Trend maps are being developed to identify the FDD portions of the relevant reservoirs, through accessing current production databases and through compiling the literature results. A reservoir database system also has been developed, to record specific reservoir data elements that are identified through the literature, and through public and private data sources. Thus far, the initial demonstration for one has been completed, and second is nearly completed. All of the information gathered through these efforts will be transferred to the Oklahoma petroleum industry through a series of publications and workshops. Additionally, plans are being developed, and hardware and software resources are being acquired, in preparation for the opening of a publicly-accessible computer users laboratory, one component of the technology transfer program.« less

  13. The impact of a comprehensive course in advanced minimal access surgery on surgeon practice

    PubMed Central

    Birch MD, Daniel W.; MD, Cliff Sample; MD, Rohit Gupta

    2007-01-01

    Introduction Practising surgeons need an effective means for learning new skills and procedures in advanced minimal access surgery (MASA). Currently, available educational methods include traditional continuing medical education symposia (1-day courses), instructional videos, mentoring, or comprehensive courses that combine lectures, skills laboratories and live surgery. The impact of comprehensive courses in advanced MASA on surgeons' knowledge, skills and practice has not been clearly established. Methods We completed a survey of all physicians who attended comprehensive courses in advanced gastrointestinal MASA held at the Centre for Minimal Access Surgery (CMAS) in Hamilton, Ont. Results Of 158 course attendees, we received 65 responses (response rate 41%). Fifty-sex men and 9 women responded, with a mean age of 44.9 years and a mean practice duration of 12.3 years. Eighty-seven percent of respondents were community-based surgeons. As a result of attending CMAS courses, respondents felt they experienced a substantial improvement in the knowledge and skills required to complete MASA. After a comprehensive course at CMAS, most respondents reported that they had introduced MASA procedures into their practice. The mean overall impact of a course on a surgeon's practice (with respect to patient referrals, procedural armamentarium and personal satisfaction) was rated by respondents at 3.92 (standard deviation [SD] 0.71; Likert scale 1–5, 1=negative, 5=positive). Conclusions A comprehensive course in advanced MASA has a positive impact on attendees' knowledge and skills. Ultimately, surgeons attending MASA courses will begin to introduce new MASA procedures into surgical practice. These courses have a distinct role in the teaching of MASA to surgeons in practice. PMID:17391609

  14. Structural barriers to comprehensive, coordinated HIV care: geographic accessibility in the US South.

    PubMed

    Kimmel, April D; Masiano, Steven P; Bono, Rose S; Martin, Erika G; Belgrave, Faye Z; Adimora, Adaora A; Dahman, Bassam; Galadima, Hadiza; Sabik, Lindsay M

    2018-05-30

    Structural barriers to HIV care are particularly challenging in the US South, which has higher HIV diagnosis rates, poverty, uninsurance, HIV stigma, and rurality, and fewer comprehensive public health programs versus other US regions. Focusing on one structural barrier, we examined geographic accessibility to comprehensive, coordinated HIV care (HIVCCC) in the US South. We integrated publicly available data to study travel time to HIVCCC in 16 Southern states and District of Columbia. We geocoded HIVCCC service locations and estimated drive time between the population-weighted county centroid and closest HIVCCC facility. We evaluated drive time in aggregate, and by county-level HIV prevalence quintile, urbanicity, and race/ethnicity. Optimal drive time was ≤30 min, a common primary care accessibility threshold. We identified 228 service locations providing HIVCCC across 1422 Southern counties, with median drive time to care of 70 min (IQR 64 min). For 368 counties in the top HIV prevalence quintile, median drive time is 50 min (IQR 61 min), exceeding 60 min in over one-third of these counties. Among counties in the top HIV prevalence quintile, drive time to care is six-folder higher for rural versus super-urban counties. Counties in the top HIV prevalence quintiles for non-Hispanic Blacks and for Hispanics have >50% longer drive time to care versus for non-Hispanic Whites. Including another potential care source-publicly-funded health centers serving low-income populations-could double the number of high-HIV burden counties with drive time ≤30 min, representing nearly 35,000 additional people living with HIV with accessible HIVCCC. Geographic accessibility to HIVCCC is inadequate in the US South, even in high HIV burden areas, and geographic and racial/ethnic disparities exist. Structural factors, such as geographic accessibility to care, may drive disparities in health outcomes. Further research on programmatic policies, and evidence

  15. Identification and evaluation of fluvial-dominated deltaic (Class 1 oil) reservoirs in Oklahoma. Yearly technical progress report, January 1--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey and the University of Oklahoma are engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection, evaluation, and distribution of information on all of Oklahoma`s FDD oil reservoirs and the recovery technologies that can be applied to those reservoirs with commercial success. To date, the lead geologists have defined the initial geographic extents of Oklahoma`s FDD plays, and compiled known information about those plays. Nine plays have been defined, all of them Pennsylvanian in age and most from the Cherokeemore » Group. A bibliographic database has been developed to record the literature sources and their related plays. Trend maps are being developed to identify the FDD portions of the relevant reservoirs, through accessing current production databases and through compiling the literature results. A reservoir database system also has been developed, to record specific reservoir data elements that are identified through the literature, and through public and private data sources. The project team is working with the Oklahoma Nomenclature Committee of the Mid-Continent Oil and Gas Association to update oil field boundary definitions in the project area. Also, team members are working with several private companies to develop demonstration reservoirs for the reservoir characterization and simulation activities. All of the information gathered through these efforts will be transferred to the Oklahoma petroleum industry through a series of publications and workshops. Additionally, plans are being developed, and hardware and software resources are being acquired, in preparation for the opening of a publicly-accessible computer users laboratory, one component of the technology transfer program.« less

  16. Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)

  17. Recovery of the Three-Gorges Reservoir Impoundment Signal from ICESat altimetry and GRACE

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Boy, J.; Luthcke, S. B.; Harding, D. J.; Rowlands, D. D.; Lemoine, F. G.

    2006-12-01

    The Three Gorges Dam along the Yangtze River in China is one of the largest dams in the world. The water impoundment of the Three-Gorges Reservoir started in June 2003, and the volume of water will continuously increase up to about 40 km3 in 2009, over a length of about 600 km. Although water-level changes along the Yangtze River and the Three Gorges Reservoir are measured by in situ water gauges, access to these data can be quite difficult. Estimates of inland water height and extent can also be recovered from altimetry measurements performed from satellite platforms, such as those acquired by the Geoscience laser Altimetry System (GLAS) on board the Ice, Cloud and Land Elevation Satellite (ICESat). ICESat has produced a comprehensive, highly precise, set of along-track elevation measurements, every three months since its launch in 2003, which intersect the Yangtze River along its East-West extent. In addition, the water impoundment of major artificial reservoirs induces variations of global geodetic quantities, such as the gravity field and Earth rotation (Chao, 1995, Boy & Chao, 2002). Water level changes within the reservoir are compared to GRACE (Gravity Recovery And Climate Experiment) recovered water mass changes. In addition, we compare the GRACE observations of mass change in the Yangtze region to hydrological changes computed from different global soil-moisture and snow models, such as GLDAS (Global Land Data Assimilation System).

  18. Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance.

    PubMed

    Weingarten, Rebecca A; Johnson, Ryan C; Conlan, Sean; Ramsburg, Amanda M; Dekker, John P; Lau, Anna F; Khil, Pavel; Odom, Robin T; Deming, Clay; Park, Morgan; Thomas, Pamela J; Henderson, David K; Palmore, Tara N; Segre, Julia A; Frank, Karen M

    2018-02-06

    mortality associated with these resistant Gram-negative bacteria. Horizontal plasmid transfer spreads the resistance mechanism to new bacteria, and understanding the plasmid ecology of the hospital environment can assist in the design of control strategies to prevent nosocomial infections. A 5-year genomic and epidemiological survey was undertaken to study the CPOs in the patient-accessible environment, as well as in the plumbing system removed from the patient. This comprehensive survey revealed a vast, unappreciated reservoir of CPOs in wastewater, which was in contrast to the low positivity rate in both the patient population and the patient-accessible environment. While there were few patient-environmental isolate associations, there were plasmid backbones common to both populations. These results are relevant to all hospitals for which CPO colonization may not yet be defined through extensive surveillance.

  19. Effects of Dimensions of Word Knowledge and Their Accessibility on Different Levels of Reading Comprehension in Adolescent EFL Learners

    ERIC Educational Resources Information Center

    Choi, Yunjeong

    2017-01-01

    Researchers have investigated that different dimensions of word knowledge (breadth versus depth) may play distinct roles in second language (L2) reading comprehension. Yet, little research has addressed how learners' efficiency of accessing those dimensions of knowledge functions in their comprehension (i.e., the issue of knowledge availability…

  20. Longitudinal gradients along a reservoir cascade

    USGS Publications Warehouse

    Miranda, L.E.; Habrat, M.D.; Miyazono, S.

    2008-01-01

    Reservoirs have traditionally been regarded as spatially independent entities rather than as longitudinal segments of a river system that are connected upstream and downstream to the river and other reservoirs. This view has frustrated advancement in reservoir science by impeding adequate organization of available information and by hindering interchanges with allied disciplines that often consider impounded rivers at the basin scale. We analyzed reservoir morphology, water quality, and fish assemblage data collected in 24 reservoirs of the Tennessee River; we wanted to describe longitudinal changes occurring at the scale of the entire reservoir series (i.e., cascade) and to test the hypothesis that fish communities and environmental factors display predictable gradients like those recognized for unimpounded rivers. We used a data set collected over a 7-year period; over 3 million fish representing 94 species were included in the data set. Characteristics such as reservoir mean depth, relative size of the limnetic zone, water retention time, oxygen stratification, thermal stratification, substrate size, and water level fluctuations increased in upstream reservoirs. Conversely, reservoir area, extent of riverine and littoral zones, access to floodplains and associated wetlands, habitat diversity, and nutrient and sediment inputs increased in downstream reservoirs. Upstream reservoirs included few, largely lacustrine, ubiquitous fish taxa that were characteristic of the lentic upper reaches of the basin. Fish species richness increased in a downstream direction from 12 to 67 species/ reservoir as riverine species became more common. Considering impoundments at a basin scale by viewing them as sections in a river or links in a chain may generate insight that is not always available when the impoundments are viewed as isolated entities. Basin-scale variables are rarely controllable but constrain the expression of processes at smaller scales and can facilitate the

  1. High resolution multi-facies realizations of sedimentary reservoir and aquifer analogs

    PubMed Central

    Bayer, Peter; Comunian, Alessandro; Höyng, Dominik; Mariethoz, Gregoire

    2015-01-01

    Geological structures are by nature inaccessible to direct observation. This can cause difficulties in applications where a spatially explicit representation of such structures is required, in particular when modelling fluid migration in geological formations. An increasing trend in recent years has been to use analogs to palliate this lack of knowledge, i.e., exploiting the spatial information from sites where the geology is accessible (outcrops, quarry sites) and transferring the observed properties to a study site deemed geologically similar. While this approach is appealing, it is difficult to put in place because of the lack of access to well-documented analog data. In this paper we present comprehensive analog data sets which characterize sedimentary structures from important groundwater hosting formations in Germany and Brazil. Multiple 2-D outcrop faces are described in terms of hydraulic, thermal and chemical properties and interpolated in 3-D using stochastic techniques. These unique data sets can be used by the wider community to implement analog approaches for characterizing reservoir and aquifer formations. PMID:26175910

  2. Reservoir Identification: Parameter Characterization or Feature Classification

    NASA Astrophysics Data System (ADS)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  3. [A method for the implementation and promotion of access to comprehensive and complementary primary healthcare practices].

    PubMed

    Santos, Melissa Costa; Tesser, Charles Dalcanale

    2012-11-01

    The rendering of integrated and complementary practices in the Brazilian Unified Health System is fostered to increase the comprehensiveness of care and access to same, though it is a challenge to incorporate them into the services. Our objective is to provide a simple method of implementation of such practices in Primary Healthcare, derived from analysis of experiences in municipalities, using partial results of a master's thesis that employed research-action methodology. The method involves four stages: 1 - defininition of a nucleus responsible for implementation and consolidation thereof; 2 - situational analysis, with definition of the existing competent professionals; 3 - regulation, organization of access and legitimation; and 4 - implementation cycle: local plans, mentoring and ongoing education in health. The phases are described, justified and briefly discussed. The method encourages the development of rational and sustainable actions, sponsors participatory management, the creation of comprehensivenessand the broadening of care provided in Primary Healthcare by offering progressive and sustainable comprehensive and complementary practices.

  4. The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment

    NASA Astrophysics Data System (ADS)

    Amann, Florian; Gischig, Valentin; Evans, Keith; Doetsch, Joseph; Jalali, Reza; Valley, Benoît; Krietsch, Hannes; Dutler, Nathan; Villiger, Linus; Brixel, Bernard; Klepikova, Maria; Kittilä, Anniina; Madonna, Claudio; Wiemer, Stefan; Saar, Martin O.; Loew, Simon; Driesner, Thomas; Maurer, Hansruedi; Giardini, Domenico

    2018-02-01

    In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock

  5. The Alphabet Soup of HIV Reservoir Markers.

    PubMed

    Sharaf, Radwa R; Li, Jonathan Z

    2017-04-01

    Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays. The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques. The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.

  6. Organic carbon burial in global lakes and reservoirs

    USGS Publications Warehouse

    Mendonça, Raquel; Müller, Roger A.; Clow, David W.; Verpoorter, Charles; Raymond, Peter; Tranvik, Lars; Sobek, Sebastian

    2017-01-01

    Burial in sediments removes organic carbon (OC) from the short-term biosphere-atmosphere carbon (C) cycle, and therefore prevents greenhouse gas production in natural systems. Although OC burial in lakes and reservoirs is faster than in the ocean, the magnitude of inland water OC burial is not well constrained. Here we generate the first global-scale and regionally resolved estimate of modern OC burial in lakes and reservoirs, deriving from a comprehensive compilation of literature data. We coupled statistical models to inland water area inventories to estimate a yearly OC burial of 0.15 (range, 0.06–0.25) Pg C, of which ~40% is stored in reservoirs. Relatively higher OC burial rates are predicted for warm and dry regions. While we report lower burial than previously estimated, lake and reservoir OC burial corresponded to ~20% of their C emissions, making them an important C sink that is likely to increase with eutrophication and river damming.

  7. Gradients in Catostomid assemblages along a reservoir cascade

    USGS Publications Warehouse

    Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.

    2017-01-01

    Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions

  8. Development of a national, dynamic reservoir-sedimentation database

    USGS Publications Warehouse

    Gray, J.R.; Bernard, J.M.; Stewart, D.W.; McFaul, E.J.; Laurent, K.W.; Schwarz, G.E.; Stinson, J.T.; Jonas, M.M.; Randle, T.J.; Webb, J.W.

    2010-01-01

    The importance of dependable, long-term water supplies, coupled with the need to quantify rates of capacity loss of the Nation’s re servoirs due to sediment deposition, were the most compelling reasons for developing the REServoir- SEDimentation survey information (RESSED) database and website. Created under the auspices of the Advisory Committee on Water Information’s Subcommittee on Sedimenta ion by the U.S. Geological Survey and the Natural Resources Conservation Service, the RESSED database is the most comprehensive compilation of data from reservoir bathymetric and dry-basin surveys in the United States. As of March 2010, the database, which contains data compiled on the 1950s vintage Soil Conservation Service’s Form SCS-34 data sheets, contained results from 6,616 surveys on 1,823 reservoirs in the United States and two surveys on one reservoir in Puerto Rico. The data span the period 1755–1997, with 95 percent of the surveys performed from 1930–1990. The reservoir surface areas range from sub-hectare-scale farm ponds to 658 km2 Lake Powell. The data in the RESSED database can be useful for a number of purposes, including calculating changes in reservoir-storage characteristics, quantifying sediment budgets, and estimating erosion rates in a reservoir’s watershed. The March 2010 version of the RESSED database has a number of deficiencies, including a cryptic and out-of-date database architecture; some geospatial inaccuracies (although most have been corrected); other data errors; an inability to store all data in a readily retrievable manner; and an inability to store all data types that currently exist. Perhaps most importantly, the March 2010 version of RESSED database provides no publically available means to submit new data and corrections to existing data. To address these and other deficiencies, the Subcommittee on Sedimentation, through the U.S. Geological Survey and the U.S. Army Corps of Engineers, began a collaborative project in

  9. Exploring Factors that Affect the Accessibility of Reading Comprehension Assessments for Students with Disabilities: A Study of Segmented Text. CRESST Report 746

    ERIC Educational Resources Information Center

    Abedi, Jamal; Kao, Jenny C.; Leon, Seth; Sullivan, Lisa; Herman, Joan L.; Pope, Rita; Nambiar, Veena; Mastergeorge, Ann M.

    2008-01-01

    This study sought to explore factors that affect the accessibility of reading comprehension assessments for students with disabilities. The study consisted of testing students using reading comprehension passages that were broken down into shorter "segments" or "chunks." The results of the segmenting study indicated that: (a)…

  10. Development of a method for comprehensive water quality forecasting and its application in Miyun reservoir of Beijing, China.

    PubMed

    Zhang, Lei; Zou, Zhihong; Shan, Wei

    2017-06-01

    Water quality forecasting is an essential part of water resource management. Spatiotemporal variations of water quality and their inherent constraints make it very complex. This study explored a data-based method for short-term water quality forecasting. Prediction of water quality indicators including dissolved oxygen, chemical oxygen demand by KMnO 4 and ammonia nitrogen using support vector machine was taken as inputs of the particle swarm algorithm based optimal wavelet neural network to forecast the whole status index of water quality. Gubeikou monitoring section of Miyun reservoir in Beijing, China was taken as the study case to examine effectiveness of this approach. The experiment results also revealed that the proposed model has advantages of stability and time reduction in comparison with other data-driven models including traditional BP neural network model, wavelet neural network model and Gradient Boosting Decision Tree model. It can be used as an effective approach to perform short-term comprehensive water quality prediction. Copyright © 2016. Published by Elsevier B.V.

  11. Floodplains within reservoirs promote earlier spawning of white crappies Pomoxis annularis

    USGS Publications Warehouse

    Miranda, Leandro E.; Dagel, Jonah D.; Kaczka, Levi J.; Mower, Ethan; Wigen, S. L.

    2015-01-01

    Reservoirs impounded over floodplain rivers are unique because they may include within their upper reaches extensive shallow water stored over preexistent floodplains. Because of their relatively flat topography and riverine origin, floodplains in the upper reaches of reservoirs provide broad expanses of vegetation within a narrow range of reservoir water levels. Elsewhere in the reservoir, topography creates a band of shallow water along the contour of the reservoir where vegetation often does not grow. Thus, as water levels rise, floodplains may be the first vegetated habitats inundated within the reservoir. We hypothesized that shallow water in reservoir floodplains would attract spawning white crappies Pomoxis annularis earlier than reservoir embayments. Crappie relative abundance over five years in floodplains and embayments of four reservoirs increased as spawning season approached, peaked, and decreased as fish exited shallow water. Relative abundance peaked earlier in floodplains than embayments, and the difference was magnified with higher water levels. Early access to suitable spawning habitat promotes earlier spawning and may increase population fitness. Recognition of the importance of reservoir floodplains, an understanding of how reservoir water levels can be managed to provide timely connectivity to floodplains, and conservation of reservoir floodplains may be focal points of environmental management in reservoirs.

  12. Comprehensive Understanding of the Zipingpu Reservoir to the Ms8.0 Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Pang, Y. J.; Zhang, H.; Shi, Y.

    2014-12-01

    After the Wenchuan earthquake occurred, whether the big earthquake triggered by the storage of the Zipingpu Reservoir has attracted wide attention in international academic community. In addition to the qualitative discussion, many scholars also adopted the quantitative analysis methods to calculate the stress changes, but due to the different results, they draw very different conclusions. Here, we take the dispute of different teams in the quantitative calculation of Zipingpu reservoir as a starting point. In order to find out the key influence factors of quantitative calculation and know about the existing uncertainty elements during the numerical simulation, we analyze factors which may cause the differences. The preliminary results show that the calculation methods (analytical method or numerical method), dimension of models (2-D or 3-D), diffusion model, diffusion coefficient and focal mechanism are the main factors resulted in the differences, especially the diffusion coefficient of the fractured rock mass. The change of coulomb failure stress of the epicenter of Wenchuan earthquake attained from 2-D model is about 3 times of that of 3-D model. And it is not reasonable that only considering the fault permeability (assuming the permeability of rock mass as infinity) or only considering homogeneous isotropic rock mass permeability (ignoring the fault permeability). The different focal mechanisms also could dramatically affect the change of coulomb failure stress of the epicenter of Wenchuan earthquake, and the differences can research 2-7 times. And the differences the change of coulomb failure stress can reach several hundreds times, when selecting different diffusion coefficients. According to existing research that the magnitude of coulomb failure stress change is about several kPa, we could not rule out the possibility that the Zipingpu Reservoir may trigger the 2008 Wenchuan earthquake. However, for the background stress is not clear and coulomb failure

  13. Towards comprehensive early abortion service delivery in high income countries: insights for improving universal access to abortion in Australia.

    PubMed

    Dawson, Angela; Bateson, Deborah; Estoesta, Jane; Sullivan, Elizabeth

    2016-10-22

    Improving access to safe abortion is an essential strategy in the provision of universal access to reproductive health care. Australians are largely supportive of the provision of abortion and its decriminalization. However, the lack of data and the complex legal and service delivery situation impacts upon access for women seeking an early termination of pregnancy. There are no systematic reviews from a health services perspective to help direct health planners and policy makers to improve access comprehensive medical and early surgical abortion in high income countries. This review therefore aims to identify quality studies of abortion services to provide insight into how access to services can be improved in Australia. We undertook a structured search of six bibliographic databases and hand-searching to ascertain peer reviewed primary research in English between 2005 and 2015. Qualitative and quantitative study designs were deemed suitable for inclusion. A deductive content analysis methodology was employed to analyse selected manuscripts based upon a framework we developed to examine access to early abortion services. This review identified the dimensions of access to surgical and medical abortion at clinic or hospital-outpatient based abortion services, as well as new service delivery approaches utilising a remote telemedicine approach. A range of factors, mostly from studies in the United Kingdom and United States of America were found to facilitate improved access to abortion, in particular, flexible service delivery approaches that provide women with cost effective options and technology based services. Standards, recommendations and targets were also identified that provided services and providers with guidance regarding the quality of abortion care. Key insights for service delivery in Australia include the: establishment of standards, provision of choice of procedure, improved provider education and training and the expansion of telemedicine for medical

  14. Reservoir management strategy for East Randolph Field, Randolph Township, Portage County, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safley, L.E.; Salamy, S.P.; Young, M.A.

    1998-07-01

    The primary objective of the Reservoir Management Field Demonstration Program is to demonstrate that multidisciplinary reservoir management teams using appropriate software and methodologies with efforts scaled to the size of the resource are a cost-effective method for: Increasing current profitability of field operations; Forestalling abandonment of the reservoir; and Improving long-term economic recovery for the company. The primary objective of the Reservoir Management Demonstration Project with Belden and Blake Corporation is to develop a comprehensive reservoir management strategy to improve the operational economics and optimize oil production from East Randolph field, Randolph Township, Portage County, Ohio. This strategy identifies themore » viable improved recovery process options and defines related operational and facility requirements. In addition, strategies are addressed for field operation problems, such as paraffin buildup, hydraulic fracture stimulation, pumping system optimization, and production treatment requirements, with the goal of reducing operating costs and improving oil recovery.« less

  15. Monitoring Reservoirs Using MERIS And LANDSAT Fused Images : A Case Study Of Polyfitos Reservoir - West Macedonia - Greece

    NASA Astrophysics Data System (ADS)

    Stefouli, M.; Charou, E.; Vasileiou, E.; Stathopoulos, N.; Perrakis, A.

    2012-04-01

    Research and monitoring is essential to assess baseline conditions in reservoirs and their watershed and provide necessary information to guide decision-makers. Erosion and degradation of mountainous areas can lead to gradual aggradation of reservoirs reducing their lifetime. Collected measurements and observations have to be communicated to the managers of the reservoirs so as to achieve a common / comprehensive management of a large watershed and reservoir system. At this point Remote Sensing could help as the remotely sensed data are repeatedly and readily available to the end users. Aliakmon is the longest river in Greece, it's length is about 297 km and the surface of the river basin is 9.210 km2.The flow of the river starts from Northwest of Greece and ends in Thermaikos Gulf. The riverbed is not natural throughout the entire route, because constructed dams restrict water and create artificial lakes, such as lake of Polyfitos, that prevent flooding. This lake is used as reservoir, for covering irrigational water needs and the water is used to produce energy from the hydroelectric plant of Public Power Corporation-PPC. The catchment basin of Polyfitos' reservoir covers an area of 847.76 km2. Soil erosion - degradation in the mountainous watershed of streams of Polyfitos reservoir is taking place. It has been estimated that an annual volume of sediments reaching the reservoir is of the order of 244 m3. Geomatic based techniques are used in processing multiple data of the study area. A data inventory was formulated after the acquisition of topographic maps, compilation of geological and hydro-geological maps, compilation of digital elevation model for the area of interest based on satellite data and available maps. It also includes the acquisition of various hydro-meteorological data when available. On the basis of available maps and satellite data, digital elevation models are used in order to delineate the basic sub-catchments of the Polyfytos basin as well as

  16. A reservoir optimization study--El Bunduq Field, Abu Dhabi, Qatar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blashbush, J.L.; Nagai, R.B.; Ogimoto, T.

    El Bunduq reservoir is located in the offshore area of Abu Dhabi and Qatar. The field was shut-in in July 1979 due to production with high gas-oil ratios. Pressure differences of 200-400 psi between the flanks and the central part of the reservoir were still present almost four years after the field was shut-in. A comprehensive reservoir engineering study determined that the reasons for this behavior were the deteriorating qualities of the reservoir rock downstructure and the presence of a tar mat around the field. After the field behavior was history matched, model studies of a representative sector of themore » field indicated that peripheral waterflooding would recover less than 15 percent of the OOIP in a period of 30 years. However, pattern injection recoveries were calculated to be at least twice as high. Several full field alternatives were investigated to optimize the development of the reservoir under a pattern waterflood. This paper summarizes the various studies that led to the acceptance of the idea of pattern development over peripheral injection, as a result of the unique characteristics of this field.« less

  17. An R package for the design, analysis and operation of reservoir systems

    NASA Astrophysics Data System (ADS)

    Turner, Sean; Ng, Jia Yi; Galelli, Stefano

    2016-04-01

    We present a new R package - named "reservoir" - which has been designed for rapid and easy routing of runoff through storage. The package comprises well-established tools for capacity design (e.g., the sequent peak algorithm), performance analysis (storage-yield-reliability and reliability-resilience-vulnerability analysis) and release policy optimization (Stochastic Dynamic Programming). Operating rules can be optimized for water supply, flood control and amenity objectives, as well as for maximum hydropower production. Storage-depth-area relationships are in-built, allowing users to incorporate evaporation from the reservoir surface. We demonstrate the capabilities of the software for global studies using thousands of reservoirs from the Global Reservoir and Dam (GRanD) database fed by historical monthly inflow time series from a 0.5 degree gridded global runoff dataset. The package is freely available through the Comprehensive R Archive Network (CRAN).

  18. The Regional Comprehensive Economic Partnership, Intellectual Property Protection, and Access to Medicines.

    PubMed

    Townsend, Belinda; Gleeson, Deborah; Lopert, Ruth

    2016-11-01

    The inclusion of elevated standards of intellectual property (IP) protection in the recently negotiated Trans-Pacific Partnership (TPP) agreement has raised serious public health concerns regarding access to medicines. A lesser-known trade agreement under negotiation in the Asia-Pacific region is the Regional Comprehensive Economic Partnership (RCEP). Framed as an attempt to reassert ASEAN's position in response to the United States-led TPP, RCEP includes key players China and India as well as several low- and middle-income countries (LMICs). Leaked drafts of IP provisions proposed by Japan and South Korea raise similar concerns in the Asia-Pacific region. This article identifies TRIPS (Trade Related Aspects of Intellectual Property Rights agreement)-Plus provisions in leaked negotiating texts and examines their implications for LMICs that are not also parties to the TPP: Cambodia, Indonesia, Laos, Myanmar, the Philippines, Thailand, China, and India. We find that higher levels of IP protection delay the market entry of generic medicines, giving rise to increased costs to governments and reduced access to essential medicines. The article concludes that the public health community should recognize risks inherent in trade agreements that promote expansions of IP rights and engage with governments to ensure that public health is adequately and explicitly protected in trade and investment negotiations. © 2016 APJPH.

  19. A comprehensive surface-groundwater flow model

    NASA Astrophysics Data System (ADS)

    Arnold, Jeffrey G.; Allen, Peter M.; Bernhardt, Gilbert

    1993-02-01

    In this study, a simple groundwater flow and height model was added to an existing basin-scale surface water model. The linked model is: (1) watershed scale, allowing the basin to be subdivided; (2) designed to accept readily available inputs to allow general use over large regions; (3) continuous in time to allow simulation of land management, including such factors as climate and vegetation changes, pond and reservoir management, groundwater withdrawals, and stream and reservoir withdrawals. The model is described, and is validated on a 471 km 2 watershed near Waco, Texas. This linked model should provide a comprehensive tool for water resource managers in development and planning.

  20. Evaluating School and Parent Reports of the National Student Achievement Testing System (SIMCE) in Chile: Access, Comprehension, and Use

    ERIC Educational Resources Information Center

    Taut, Sandy; Cortes, Flavio; Sebastian, Christian; Preiss, David

    2009-01-01

    This evaluation examined school and parent reports of the national student achievement testing system (SIMCE) in Chile regarding three dimensions: access, comprehension, and use. We conducted phone surveys with a representative sample of directors (N = 375), teachers (N = 1145) and parents (N = 625), and we collected more in-depth data through…

  1. Avoidable costs of comprehensive case management.

    PubMed

    Issel, L M; Anderson, R A

    1999-01-01

    Comprehensive case management has become an industry standard and its pervasiveness raises questions about the ubiquitous need for this service. Analyzed from the perspective of transaction cost analysis and access, we argue that in some cases comprehensive case management is an avoidable cost incurred because of system problems that limit access to otherwise eligible clients. Implications are discussed.

  2. The Effects of Web-Based Patient Access to Laboratory Results in British Columbia: A Patient Survey on Comprehension and Anxiety.

    PubMed

    Mák, Geneviève; Smith Fowler, Heather; Leaver, Chad; Hagens, Simon; Zelmer, Jennifer

    2015-08-04

    Web-based patient access to personal health information is limited but increasing in Canada and internationally. This exploratory study aimed to increase understanding of how Web-based access to laboratory test results in British Columbia (Canada), which has been broadly available since 2010, affects patients' experiences. In November 2013, we surveyed adults in British Columbia who had had a laboratory test in the previous 12 months. Using a retrospective cohort design, we compared reported wait-time for results, test result comprehension, and anxiety levels of "service users" who had Web-based access to their test results (n=2047) with those of a general population panel that did not have Web-based access (n=1245). The vast majority of service users (83.99%, 95% CI 82.31-85.67) said they received their results within "a few days", compared to just over a third of the comparison group (37.84%, 95% CI 34.96-40.73). Most in both groups said they understood their test results, but the rate was lower for service users than the comparison group (75.55%, 95% CI 73.58-77.49 vs 84.69%, 95% CI 82.59-86.81). There was no significant difference between groups in levels of reported anxiety after receiving test results. While most patients who received their laboratory test results online reported little anxiety after receiving their results and were satisfied with the service, there may be opportunities to improve comprehension of results.

  3. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  4. CPMs: A Kinesthetic Comprehension Strategy

    ERIC Educational Resources Information Center

    Block, Cathy Collins; Parris, Sheri R.; Whiteley, Cinnamon S.

    2008-01-01

    This article discusses a study to determine whether primary grade students can learn comprehension processes via hand motions to portray these mental processes. Comprehension Process Motions (CPMs) were designed to provide students with a way to make abstract comprehension processes more consciously accessible and also to give teachers a way to…

  5. Heavy metal pollution in sediments of the largest reservoir (Three Gorges Reservoir) in China: a review.

    PubMed

    Zhao, Xingjuan; Gao, Bo; Xu, Dongyu; Gao, Li; Yin, Shuhua

    2017-09-01

    The Three Gorges Dam in China is the world's largest dam. Upon its completion in 2003, the Three Gorges Reservoir (TGR) became the largest reservoir in China and plays an important role in economic development and national drinking water safety. However, as a sink and source of heavy metals, there is a lack of continuous and comparative data on heavy metal pollution in sediments. This study reviewed all available literatures published on heavy metals in TGR sediments and further provided a comprehensive assessment of the pollution tendency of these heavy metals. The results showed that heavy metal concentrations in TGR sediments varied spatially and temporally. Temporal variations indicated that Hg in tributaries, as well as As, Cd, Cr, Cu, Ni, Pb, and Zn in the mainstream, exhibited a higher probability to exceed background values after the impoundment of TGR. Pollution assessments by contamination factor, geoaccumulation index, and potential ecological risk were similar. High Cd and Hg concentrations in both the mainstream and tributaries are a cause for much concern. However, sediment quality guidelines produced different results, as most previous studies adopted different sampling and measurement strategies. The data inconsistencies and lack of continuity regarding the reservoir confirm the need for a continuous monitoring network and the development of quality criteria relevant to the sediments of the TGR in the future.

  6. Direct-Access Retrieval during Sentence Comprehension: Evidence from Sluicing

    ERIC Educational Resources Information Center

    Martin, Andrea E.; McElree, Brian

    2011-01-01

    Language comprehension requires recovering meaning from linguistic form, even when the mapping between the two is indirect. A canonical example is ellipsis, the omission of information that is subsequently understood without being overtly pronounced. Comprehension of ellipsis requires retrieval of an antecedent from memory, without prior…

  7. A comprehensive school-based/linked dental program: an essential piece of the California access to care puzzle.

    PubMed

    Fine, Jared I; Isman, Robert E; Grant, Catherine B

    2012-03-01

    California children suffer more from dental disease than any other chronic childhood disease. Disparities in access and oral health are disproportionately represented among children from minority and low-income families. A comprehensive school-based/linked dental program is one essential ingredient in addressing these problems. Described here are the goals, program elements, and challenges of building a seamless dental services system that could reduce barriers care, maximize resources, and employ best practices to improve oral health.

  8. Discussion of case study of a stimulation experiment in a fluvial, tight-sandstone gas reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azari, M.; Wooden, W.

    The authors found Warpinski et al.'s paper (Case Study of a Stimulation Experiment in Fluvial, Tight-Sandstone Gas Reservoir. Nov. 1990 SPE Production Engineering, Pages 403-10) to be very thorough and informative. That paper considered geological, logging, completion, and pressure-transient data to produce a comprehensive formation evaluation of a fluvial, tight-sandstone gas reservoir. The purpose of this paper is to present the author's view on the peculiar pressure-transient responses shown.

  9. Formatting modifications in GRADE evidence profiles improved guideline panelists comprehension and accessibility to information. A randomized trial.

    PubMed

    Vandvik, Per Olav; Santesso, Nancy; Akl, Elie A; You, John; Mulla, Sohail; Spencer, Frederick A; Johnston, Bradley C; Brozek, Jan; Kreis, Julia; Brandt, Linn; Zhou, Qi; Schünemann, Holger J; Guyatt, Gordon

    2012-07-01

    To determine the effects of formatting alternatives in Grading of Recommendations Assessment, Development, and Evaluation (GRADE) evidence profiles on guideline panelists' preferences, comprehension, and accessibility. We randomized 116 antithrombotic therapy guideline panelists to review one of two table formats with four formatting alternatives. After answering relevant questions, panelists reviewed the other format and reported their preferences for specific formatting alternatives. Panelists (88 of 116 invited [76%]) preferred presentation of study event rates over no study event rates (median 1 [interquartile range (IQR) 1] on 1-7 scale), absolute risk differences over absolute risks (median 2 [IQR 3]), and additional information in table cells over footnotes (median 1 [IQR 2]). Panelists presented with time frame information in the tables, and not only in footnotes, were more likely to correctly answer questions regarding time frame (58% vs. 11%, P<0.0001), and those presented with risk differences and not absolute risks were more likely to correctly interpret confidence intervals for absolute effects (95% vs. 54%, P<0.0001). Information was considered easy to find, easy to comprehend, and helpful in making recommendations regardless of table format (median 6, IQR 0-1). Panelists found information in GRADE evidence profiles accessible. Correct comprehension of some key information was improved by providing additional information in table and presenting risk differences. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    PubMed

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  11. Accessibility and Barriers to Oncology Appointments at 40 National Cancer Institute-Designated Comprehensive Cancer Centers: Results of a Mystery Shopper Project.

    PubMed

    Hamlyn, Geoffrey S; Hutchins, Kathryn E; Johnston, Abby L; Thomas, Rishonda T; Tian, James; Kamal, Arif H

    2016-10-01

    Patients turn to National Cancer Institute (NCI) -designated comprehensive cancer centers because of perceived better quality and more timely access to care. However, recent studies have found that patients at various institutions may struggle to gain access to an appointment or obtain consistent information from attendants. Our study employs a mystery shopper format to identify and quantify barriers faced by patients seeking to make a first consultation appointment across a homogenous sample of 40 NCI-designated comprehensive cancer centers. Five mystery shoppers used a standardized call script to inquire about first available appointment times and service offerings. When inquiring about a date for a first available appointment, 29% of callers were unable to secure an estimated date without registering into the center's database, 51% were able to secure an estimated date, and 20% were provided with an actual date. Of estimated or actual dates for a first available appointment, 74% were greater than 1 week away. There was no statistically significant variation between appointment availability across insurance type or US region. Our study highlights the difficulty of accessing information about appointment availability. Although not statistically significant, inquiries regarding first available appointments for Medicaid patients resulted in longer estimated or actual wait times than those for patients with private insurance, and Medicaid shoppers noted qualitative differences. Although our study was limited by small sample size and imperfect analytic methods, our results suggest the need for more efficient and accessible care for patients at our nation's top cancer centers.

  12. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.

    PubMed

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs

    2015-09-10

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  13. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions

    PubMed Central

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N.; Stern, Richard A.; D’Abzac, Francois-Xavier; Schaltegger, Urs

    2015-01-01

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 103 to 104 years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption. PMID:26356304

  14. Geolocation of man-made reservoirs across terrains of varying complexity using GIS

    NASA Astrophysics Data System (ADS)

    Mixon, David M.; Kinner, David A.; Stallard, Robert F.; Syvitski, James P. M.

    2008-10-01

    The Reservoir Sedimentation Survey Information System (RESIS) is one of the world's most comprehensive databases of reservoir sedimentation rates, comprising nearly 6000 surveys for 1819 reservoirs across the continental United States. Sediment surveys in the database date from 1904 to 1999, though more than 95% of surveys were entered prior to 1980, making RESIS largely a historical database. The use of this database for large-scale studies has been limited by the lack of precise coordinates for the reservoirs. Many of the reservoirs are relatively small structures and do not appear on current USGS topographic maps. Others have been renamed or have only approximate (i.e. township and range) coordinates. This paper presents a method scripted in ESRI's ARC Macro Language (AML) to locate the reservoirs on digital elevation models using information available in RESIS. The script also delineates the contributing watersheds and compiles several hydrologically important parameters for each reservoir. Evaluation of the method indicates that, for watersheds larger than 5 km 2, the correct outlet is identified over 80% of the time. The importance of identifying the watershed outlet correctly depends on the application. Our intent is to collect spatial data for watersheds across the continental United States and describe the land use, soils, and topography for each reservoir's watershed. Because of local landscape similarity in these properties, we show that choosing the incorrect watershed does not necessarily mean that the watershed characteristics will be misrepresented. We present a measure termed terrain complexity and examine its relationship to geolocation success rate and its influence on the similarity of nearby watersheds.

  15. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-01-01

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources. PMID:24919129

  16. Sedimentation in Rio La Venta Canyon in Netzahualcoyotl Reservoir, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    de La Fuente, J. A.; Lisle, T.; Velasquez, J.; Allison, B. L.; Miller, A.

    2002-12-01

    Sedimentation of Rio La Venta as it enters the Netzahualcoyotl Reservoir in Chiapas, Mexico, threatens a unique part of the aquatic ecosystem. Rio La Venta enters the reservoir via a narrow canyon about 16 km long with spectacular, near-vertical limestone bluffs up to 320 m high and inhabited by the flora and fauna of a pristine tropical forest. Karst terrain underlies most of the Rio La Venta basin in the vicinity of the reservoir, while deeply weathered granitic terrain underlies the Rio Negro basin, and the headwaters of the Rio La Venta to the south. The Rio Negro joins Rio La Venta 3 km downstream of the upper limit of the reservoir and delivers the bulk of the total clastic sediment (mostly sand and finer material). The canyon and much of the contributing basin lie within the Reserva de la Biosfera, Selva El Ocote, administered by the Comision Nacional de Areas Naturales Protegidas, part of the Secretaria de Medioambiente y Recursos Naturales. The Klamath National Forest Forest has cooperated with its Mexican counterparts since 1993 in natural resource management, neo-tropical bird inventories, wildfire management, and more recently in watershed analyses. Rates of sedimentation are estimated from bathymetric surveys conducted in March, 2002. A longitudinal profile down the inundated canyon during a high reservoir level shows an inflection from a slope of 0.0017 to one of 0.0075 at 7.2 km downstream of the mouth of Rio Negro. The bed elevation at this point corresponds to the lowest reservoir level, suggesting that the gentler sloping bed upstream is formed by fluvial processes during drawdown and that downstream by pluvial processes. Using accounts that boats could access Rio Negro during low water levels in 1984, we estimate an annual sedimentation rate of roughly 3 million cubic meters per year. This suggests that boats might no longer be able to access the most spectacular section of canyon upstream of Rio Negro within a decade, depending on how the

  17. Geolocation of man-made reservoirs across terrains of varying complexity using GIS

    USGS Publications Warehouse

    Mixon, D.M.; Kinner, D.A.; Stallard, R.F.; Syvitski, J.P.M.

    2008-01-01

    The Reservoir Sedimentation Survey Information System (RESIS) is one of the world's most comprehensive databases of reservoir sedimentation rates, comprising nearly 6000 surveys for 1819 reservoirs across the continental United States. Sediment surveys in the database date from 1904 to 1999, though more than 95% of surveys were entered prior to 1980, making RESIS largely a historical database. The use of this database for large-scale studies has been limited by the lack of precise coordinates for the reservoirs. Many of the reservoirs are relatively small structures and do not appear on current USGS topographic maps. Others have been renamed or have only approximate (i.e. township and range) coordinates. This paper presents a method scripted in ESRI's ARC Macro Language (AML) to locate the reservoirs on digital elevation models using information available in RESIS. The script also delineates the contributing watersheds and compiles several hydrologically important parameters for each reservoir. Evaluation of the method indicates that, for watersheds larger than 5 km2, the correct outlet is identified over 80% of the time. The importance of identifying the watershed outlet correctly depends on the application. Our intent is to collect spatial data for watersheds across the continental United States and describe the land use, soils, and topography for each reservoir's watershed. Because of local landscape similarity in these properties, we show that choosing the incorrect watershed does not necessarily mean that the watershed characteristics will be misrepresented. We present a measure termed terrain complexity and examine its relationship to geolocation success rate and its influence on the similarity of nearby watersheds. ?? 2008 Elsevier Ltd. All rights reserved.

  18. Aedes aegypti breeding site in an underground rainwater reservoir: a warning

    PubMed Central

    Bermudi, Patricia Marques Moralejo; Kowalski, Fernanda; Menzato, Marcela Mori; Ferreira, Millene da Cruz; dos Passos, Willian Brendo Silva; Oku, Vivian Janine Ambriola; Kumow, Aline; Lucio, Taís Vargas Freire Martins; Lima-Camara, Tamara Nunes; Urbinatti, Paulo Roberto; Chiaravalloti, Francisco

    2017-01-01

    ABSTRACT We describe the discovery of Aedes aegypti underground breeding site in the Pinheiros neighborhood of São Paulo, SP, during an entomological survey program performed in 2016. Even with intense surveillance and vector control, large numbers of mosquitoes were present in this area. A detailed investigation allowed for the detection of Ae. aegypti in an underground reservoir used for rainwater storage. After the implementation of protection screens in the accesses, the presence of the vector was no longer detected. In this study, we discuss the frequent use of this type of reservoir structure and its risk for mosquito production. PMID:29236877

  19. Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers.

    PubMed

    Kuriki, Yoma; Nakayama, Joma; Takano, Kosuke; Uchida, Atsushi

    2018-03-05

    We experimentally investigate delay-based photonic reservoir computing using semiconductor lasers with optical feedback and injection. We apply different types of temporal mask signals, such as digital, chaos, and colored-noise mask signals, as the weights between the input signal and the virtual nodes in the reservoir. We evaluate the performance of reservoir computing by using a time-series prediction task for the different mask signals. The chaos mask signal shows superior performance than that of the digital mask signals. However, similar prediction errors can be achieved for the chaos and colored-noise mask signals. Mask signals with larger amplitudes result in better performance for all mask signals in the range of the amplitude accessible in our experiment. The performance of reservoir computing is strongly dependent on the cut-off frequency of the colored-noise mask signals, which is related to the resonance of the relaxation oscillation frequency of the laser used as the reservoir.

  20. Carbon Sequestration in Unconventional Reservoirs: Advantages and Limitations

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Slagle, A. L.; Goldberg, D.

    2014-12-01

    To make a significant impact on anthropogenic CO2 emissions, geologic carbon sequestration would require thousands of CO2 repositories around the world. Unconventional reservoirs, such as igneous rocks and fractured formations, may add substantial storage capacity and diversify CO2 storage options. In particular, basaltic rocks represent a promising target due to their widespread occurrence, potentially suitable reservoir structure and high reactivity with CO2, but a comprehensive evaluation of worldwide CO2 sequestration capacity in unconventional reservoirs is lacking. In this presentation we summarize available data on storage potential of basaltic rocks and fractured formations illustrated by field examples from the Columbia River Basalt, the Newark Rift Basin and IODP Site 1256, and discuss potential limiting factors, such as effective porosity and the risk of inducing earthquakes by CO2 injections. Large Igneous Provinces (LIPs), low-volume flows and intrusions, and ocean floor basalt represent three general classes of basaltic reservoirs, each characterized by different structure and storage capacity. Oceanic plateaus and LIPs are projected to have the highest CO2 storage capacity, on the order of thousands gigatons (Gt) per site, followed by continental LIPs and ocean floor basalts (hundreds to thousands Gt per site). Isolated basalt flows and intrusions are likely to offer only low- to moderate-capacity options. An important limiting factor on CO2 injection volumes and rates is the risk of inducing earthquakes by increasing pore pressure in the subsurface. On continents, available in situ stress analysis suggests that local stress perturbations at depth may create relaxed stress conditions, allowing for pore pressure increase without reactivating fractures and faults. Remote storage sites on oceanic plateaus and below the seafloor are advantageous due to low impact of potential seismic and/or leakage events. Other effects, such as thermal stresses created

  1. Large reservoirs: Chapter 17

    USGS Publications Warehouse

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  2. A chemical EOR benchmark study of different reservoir simulators

    NASA Astrophysics Data System (ADS)

    Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy

    2016-09-01

    Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve

  3. A Comprehensive Literature Review of Comprehension Strategies in Core Content Areas for Students with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Knight, Victoria F.; Sartini, Emily

    2015-01-01

    Understanding text can increase access to educational, vocational, and recreational activities for individuals with autism spectrum disorder (ASD); however, limited research has been conducted investigating instructional practices to remediate or compensate for these comprehension challenges. The current comprehensive literature review expanded…

  4. Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs.

    PubMed

    Baxter, Amy E; O'Doherty, Una; Kaufmann, Daniel E

    2018-02-02

    Recent years have seen a substantial increase in the number of tools available to monitor and study HIV reservoirs. Here, we discuss recent technological advances that enable an understanding of reservoir dynamics beyond classical assays to measure the frequency of cells containing provirus able to propagate a spreading infection (replication-competent reservoir). Specifically, we focus on the characterization of cellular reservoirs containing proviruses able to transcribe viral mRNAs (so called transcription-competent) and translate viral proteins (translation-competent). We suggest that the study of these alternative reservoirs provides complementary information to classical approaches, crucially at a single-cell level. This enables an in-depth characterization of the cellular reservoir, both following reactivation from latency and, importantly, directly ex vivo at baseline. Furthermore, we propose that the study of cellular reservoirs that may not contain fully replication-competent virus, but are able to produce HIV mRNAs and proteins, is of biological importance. Lastly, we detail some of the key contributions that the study of these transcription and translation-competent reservoirs has made thus far to investigations into HIV persistence, and outline where these approaches may take the field next.

  5. Interaction of cold-water aquifers with exploited reservoirs of the Cerro Prieto geothermal system

    USGS Publications Warehouse

    Truesdell, Alfred; Lippmann, Marcelo

    1990-01-01

    Cerro Prieto geothermal reservoirs tend to exhibit good hydraulic communication with adjacent cool groundwater aquifers. Under natural state conditions the hot fluids mix with the surrounding colder waters along the margins of the geothermal system, or discharge to shallow levels by flowing up fault L. In response to exploitation reservoir pressures decrease, leading to changes in the fluid flow pattern in the system and to groundwater influx. The various Cerro Prieto reservoirs have responded differently to production, showing localized near-well or generalized boiling, depending on their access to cool-water recharge. Significant cooling by dilution with groundwater has only been observed in wells located near the edges of the field. In general, entry of cool water at Cerro Prieto is beneficial because it tends to maintain reservoir pressures, restrict boiling, and lengthen the life and productivity of wells.

  6. HESS Opinions: Linking Darcy's equation to the linear reservoir

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.

    2018-03-01

    In groundwater hydrology, two simple linear equations exist describing the relation between groundwater flow and the gradient driving it: Darcy's equation and the linear reservoir. Both equations are empirical and straightforward, but work at different scales: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they appear similar, it is not trivial to upscale Darcy's equation to the watershed scale without detailed knowledge of the structure or shape of the underlying aquifers. This paper shows that these two equations, combined by the water balance, are indeed identical provided there is equal resistance in space for water entering the subsurface network. This implies that groundwater systems make use of an efficient drainage network, a mostly invisible pattern that has evolved over geological timescales. This drainage network provides equally distributed resistance for water to access the system, connecting the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance. As a result, the timescale of the linear reservoir appears to be inversely proportional to Darcy's conductance, the proportionality being the product of the porosity and the resistance to entering the drainage network. The main question remaining is which physical law lies behind pattern formation in groundwater systems, evolving in a way that resistance to drainage is constant in space. But that is a fundamental question that is equally relevant for understanding the hydraulic properties of leaf veins in plants or of blood veins in animals.

  7. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensormore » packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and

  8. Effects of water-supply reservoirs on streamflow in Massachusetts

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    spillage under average pumping conditions from 2000 to 2004.For sites with insufficient data to simulate daily water balances, a proxy method to estimate the three spillage metrics was developed. A series of 4,000 Monte Carlo simulations of the reservoir water balance were run. In each simulation, streamflow, physical reservoir characteristics, and daily climate inputs were randomly varied. Tobit regression equations that quantify the relation between streamflow alteration and physical and operational characteristics of reservoirs were developed from the results of the Monte Carlo simulations and can be used to estimate each of the three spillage metrics using only the withdrawal ratio and the ratio of the surface area to the drainage area, which are available statewide for all reservoirs.A graphical user-interface for the Massachusetts Reservoir Simulation Tool was developed in a Microsoft Access environment. The simulation tool contains information for 70 reservoirs in Massachusetts and allows for simulation of additional scenarios than the ones considered in this report, including controlled releases, dam seepage and leakage, demand management plans, and alternative water withdrawal and transfer rules.

  9. Quantifying Changes in Accessible Water in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  10. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    NASA Astrophysics Data System (ADS)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  11. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com; Rock Fluid Imaging Lab., Bandung; Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied aboutmore » the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.« less

  12. Health System Features That Enhance Access to Comprehensive Primary Care for Women Living with HIV in High-Income Settings: A Systematic Mixed Studies Review.

    PubMed

    O'Brien, Nadia; Hong, Quan Nha; Law, Susan; Massoud, Sarah; Carter, Allison; Kaida, Angela; Loutfy, Mona; Cox, Joseph; Andersson, Neil; de Pokomandy, Alexandra

    2018-04-01

    Women living with HIV in high-income settings continue to experience modifiable barriers to care. We sought to determine the features of care that facilitate access to comprehensive primary care, inclusive of HIV, comorbidity, and sexual and reproductive healthcare. Using a systematic mixed studies review design, we reviewed qualitative, mixed methods, and quantitative studies identified in Ovid MEDLINE, EMBASE, and CINAHL databases (January 2000 to August 2017). Eligibility criteria included women living with HIV; high-income countries; primary care; and healthcare accessibility. We performed a thematic synthesis using NVivo. After screening 3466 records, we retained 44 articles and identified 13 themes. Drawing on a social-ecological framework on engagement in HIV care, we situated the themes across three levels of the healthcare system: care providers, clinical care environments, and social and institutional factors. At the care provider level, features enhancing access to comprehensive primary care included positive patient-provider relationships and availability of peer support, case managers, and/or nurse navigators. Within clinical care environments, facilitators to care were appointment reminder systems, nonidentifying clinic signs, women and family spaces, transportation services, and coordination of care to meet women's HIV, comorbidity, and sexual and reproductive healthcare needs. Finally, social and institutional factors included healthcare insurance, patient and physician education, and dispelling HIV-related stigma. This review highlights several features of care that are particularly relevant to the care-seeking experience of women living with HIV. Improving their health through comprehensive care requires a variety of strategies at the provider, clinic, and greater social and institutional levels.

  13. Benefits of access management.

    DOT National Transportation Integrated Search

    2003-01-01

    This brochure serves as a guide to the major benefits of several : access management techniques in use across the United States. The : purpose of this brochure is to provide a comprehensive and succinct : examination of the benefits of access managem...

  14. Multiple reservoirs contribute to intraoperative bacterial transmission.

    PubMed

    Loftus, Randy W; Brown, Jeremiah R; Koff, Matthew D; Reddy, Sundara; Heard, Stephen O; Patel, Hetal M; Fernandez, Patrick G; Beach, Michael L; Corwin, Howard L; Jensen, Jens T; Kispert, David; Huysman, Bridget; Dodds, Thomas M; Ruoff, Kathryn L; Yeager, Mark P

    2012-06-01

    % environment, 23% patient, and 30% provider) stopcock transmission. The environment was a more likely source of stopcock contamination than provider hands (relative risk [RR] 1.91, confidence interval [CI] 1.09 to 3.35, P = 0.029) or patients (RR 2.56, CI 1.34 to 4.89, P = 0.002). Hospital site (odds ratio [OR] 5.09, CI 2.02 to 12.86, P = 0.001) and case 2 (OR 6.82, CI 4.03 to 11.5, P < 0.001) were significant predictors of stopcock contamination. Stopcock contamination was associated with increased mortality (OR 58.5, CI 2.32 to 1477, P = 0.014). Intraoperative bacterial contamination of patients and provider hands was linked to 30-day postoperative infections. Bacterial contamination of patients, provider hands, and the environment contributes to stopcock transmission events, but the surrounding patient environment is the most likely source. Stopcock contamination is associated with increased patient mortality. Patient and provider bacterial reservoirs contribute to 30-day postoperative infections. Multimodal programs designed to target each of these reservoirs in parallel should be studied intensely as a comprehensive approach to reducing intraoperative bacterial transmission.

  15. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  16. Access to Medicare-funded annual comprehensive health assessments for rural people with intellectual disability.

    PubMed

    Burton, Heather; Walters, Lucie

    2013-01-01

    People with intellectual disability (ID) comprise 2-3% of the Australian population. They mostly rely on their GP for primary health care. In rural areas where there are issues with health workforce shortages, there is a risk that people with ID may not get timely access to primary care or may not be aware of the range of healthcare services available to support them. Internationally, research has shown that regular health assessments are beneficial for people with ID. Annual comprehensive health assessments (ACHAs) have been shown to result in increased detection of medical conditions and could assist in reducing the gap in mortality between people with ID and the broader population. In Australia, people with ID have been eligible to access ACHAs under Medicare since 2007. These provide for a regular review of the person's physical, psychological and social functioning. This study explored the extent to which rural people with ID were accessing these ACHAs, and factors which affected their access to ACHAs. In this qualitative study in-depth interviews were conducted with 18 participants including people with ID, carers/support workers and rural doctors. Interviews were then coded and analysed for themes. Seven themes were identified: (1) healthcare barriers in rural areas; (2) cohesion of rural communities; (3) the way rural doctors practice; (4) lack of knowledge/understanding; (5) venturing into new territory; (6) the role of the practice nurse; and (7) the health communication triangle. Despite the well-known problems of lack of services and distance to specialists in rural Australia, there are compensatory factors which were perceived as improving the wellbeing of people with ID, such as increased social cohesion and community connectedness. More education is needed to ensure that the rationale for ACHAs for people with ID is understood and that doctors feel confident to use them. The number of Medicare reforms implemented in a relatively short period

  17. Reservoirs in the United States

    USGS Publications Warehouse

    Thomas, N.O.; Harbeck, G. Earl

    1956-01-01

    Reservoir storage facilities in the United States play an important part in the national economy. Storage facilities have enabled the country to utilize to a much fuller extent one of the most valuable natural resources: water. During recent years the construction of reservoirs has continued at a high rate. This report shows the status of these facilities on January 1, 1954, and describes briefly some of the reasons for growth of reservoir facilities in the United States. Descriptive data are given for reservoirs having a capacity of 5, 000 acre-feet or more and for natural lakes having a usable capacity of 5,000 acre-feet or more. Included are reservoirs and lakes completed as of January 1, 1954, and reservoirs under construction on that date. The total number of such reservoirs and lakes is 1, 300. A descriptive list of reservoirs in the United States was first published by the United States Geological Survey in March 1948. That report, Geological Survey Circular 23, entitled Reservoirs in the United States, included reservoirs completed as of January 1, 1947. Since January 1, 1947, reservoirs representing a total usable capacity of 115,000,000 acre-feet, or an increase of 71 percent, have been constructed or are under construction. Data about these new reservoirs are presented herein, and the data shown for reservoirs constructed before 1947 have been corrected on the basis of the latest available survey to determine reservoir capacity. The total usable capacity of reservoirs and lakes included in this compilation amounts to 278, 120, 000 acre-feet, and the corresponding surface area totals 11, 046, 000 acres.

  18. Ecological risk assessment based on IHA-RVA in the lower Xiaolangdi reservoir under changed hydrological situation

    NASA Astrophysics Data System (ADS)

    Bai, Tao; Ma, Pan-pan; Kan, Yan-bin; Huang, Qiang

    2017-12-01

    Ecological risk assessment of river is an important content for protection and improvement of ecological environment. In this paper, taking Xiaolangdi reservoir for example, ecological risk assessments are studied based on the 1956-1997 and 2002-2008 dairy runoff data as the pre and post of construction of Xiaolangdi reservoir. Considering pre and post hydrological regime of construction of Xiaolangdi, ecological risk assessment index systems of downstream are established based on Index of Hydrologic Alteration-Range of Variability Approach method (IHA-RVA), which considering characters of flow, time, frequency, delay and change rate. Then ecological risk fuzzy comprehensive evaluation assessment model downstream is established based on risk index and RVA method. The results show that after the construction of Xiaolangdi reservoir, ecological risk occurred in the downstream of Yellow River for changed hydrological indexes, such as monthly average flow, frequency and duration of extreme annual flow and so on, which probably destroy the whole ecosystems of the river. For example, ecological risk downstream of Xiaolangdi reservoir upgrade to level two in 2008. Research results make reference values and scientific basis both in ecological risk assessment and management of reservoir after construction.

  19. Microbial Food-Web Drivers in Tropical Reservoirs.

    PubMed

    Domingues, Carolina Davila; da Silva, Lucia Helena Sampaio; Rangel, Luciana Machado; de Magalhães, Leonardo; de Melo Rocha, Adriana; Lobão, Lúcia Meirelles; Paiva, Rafael; Roland, Fábio; Sarmento, Hugo

    2017-04-01

    Element cycling in aquatic systems is driven chiefly by planktonic processes, and the structure of the planktonic food web determines the efficiency of carbon transfer through trophic levels. However, few studies have comprehensively evaluated all planktonic food-web components in tropical regions. The aim of this study was to unravel the top-down controls (metazooplankton community structure), bottom-up controls (resource availability), and hydrologic (water residence time) and physical (temperature) variables that affect different components of the microbial food web (MFW) carbon stock in tropical reservoirs, through structural equation models (SEM). We conducted a field study in four deep Brazilian reservoirs (Balbina, Tucuruí, Três Marias, and Funil) with different trophic states (oligo-, meso-, and eutrophic). We found evidence of a high contribution of the MFW (up to 50% of total planktonic carbon), especially in the less-eutrophic reservoirs (Balbina and Tucuruí). Bottom-up and top-down effects assessed through SEM indicated negative interactions between soluble reactive phosphorus and phototrophic picoplankton (PPP), dissolved inorganic nitrogen, and heterotrophic nanoflagellates (HNF). Copepods positively affected ciliates, and cladocerans positively affected heterotrophic bacteria (HB) and PPP. Higher copepod/cladoceran ratios and an indirect positive effect of copepods on HB might strengthen HB-HNF coupling. We also found low values for the degree of uncoupling (D) and a low HNF/HB ratio compared with literature data (mostly from temperate regions). This study demonstrates the importance of evaluating the whole size spectrum (including microbial compartments) of the different planktonic compartments, in order to capture the complex carbon dynamics of tropical aquatic ecosystems.

  20. A Comprehensive Well Testing Implementation during Exploration Phase in Rantau Dedap, Indonesia

    NASA Astrophysics Data System (ADS)

    Humaedi, M. T.; Alfiady; Putra, A. P.; Martikno, R.; Situmorang, J.

    2016-09-01

    This paper describes the implementation of comprehensive well testing programs during the 2014-2015 exploration drilling in Rantau Dedap Geothermal Field. The well testing programs were designed to provide reliable data as foundation for resource assessment as well as useful information for decision making during drilling. A series of well testing survey consisting of SFTT, completion test, heating-up downhole logging, discharge test, chemistry sampling was conducted to understand individual wells characteristics such as thermodynamic state of the reservoir fluid, permeability distribution, well output and fluid chemistry. Furthermore, interference test was carried out to investigate the response of reservoir to exploitation.

  1. Size of age-0 crappies (Pomoxis spp.) relative to reservoir habitats and water levels

    USGS Publications Warehouse

    Kaczka, Levi J.; Miranda, Leandro E.

    2014-01-01

    Variable year-class strength is common in crappie Pomoxis spp. populations in many reservoirs, yet the mechanisms behind this variability are poorly understood. Size-dependent mortality of age-0 fishes has long been recognized in the population ecology literature; however, investigations about the effects of environmental factors on age-0 crappie size are lacking. The objective of this study was to determine if differences existed in total length of age-0 crappies between embayment and floodplain habitats in reservoirs, while accounting for potential confounding effects of water level and crappie species. To this end, we examined size of age-0 crappies in four flood-control reservoirs in northwest Mississippi over 4years. Age-0 crappies inhabiting uplake floodplain habitats grew to a larger size than fish in downlake embayments, but this trend depended on species, length of time a reservoir was dewatered in the months preceding spawning, and reservoir water level in the months following spawning. The results from our study indicate that water-level management may focus not only on allowing access to quality nursery habitat, but that alternating water levels on a multiyear schedule could increase the quality of degraded littoral habitats.

  2. Megacrystals track magma convection between reservoir and surface

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Oppenheimer, Clive; Scaillet, Bruno; Buisman, Iris; Kimball, Christine; Dunbar, Nelia; Burgisser, Alain; Ian Schipper, C.; Andújar, Joan; Kyle, Philip

    2015-03-01

    Active volcanoes are typically fed by magmatic reservoirs situated within the upper crust. The development of thermal and/or compositional gradients in such magma chambers may lead to vigorous convection as inferred from theoretical models and evidence for magma mixing recorded in volcanic rocks. Bi-directional flow is also inferred to prevail in the conduits of numerous persistently-active volcanoes based on observed gas and thermal emissions at the surface, as well as experiments with analogue models. However, more direct evidence for such exchange flows has hitherto been lacking. Here, we analyse the remarkable oscillatory zoning of anorthoclase feldspar megacrystals erupted from the lava lake of Erebus volcano, Antarctica. A comprehensive approach, combining phase equilibria, solubility experiments and melt inclusion and textural analyses shows that the chemical profiles are best explained as a result of multiple episodes of magma transport between a deeper reservoir and the lava lake at the surface. Individual crystals have repeatedly travelled up-and-down the plumbing system, over distances of up to several kilometers, presumably as a consequence of entrainment in the bulk magma flow. Our findings thus corroborate the model of bi-directional flow in magmatic conduits. They also imply contrasting flow regimes in reservoir and conduit, with vigorous convection in the former (regular convective cycles of ∼150 days at a speed of ∼0.5 mm s-1) and more complex cycles of exchange flow and re-entrainment in the latter. We estimate that typical, 1-cm-wide crystals should be at least 14 years old, and can record several (from 1 to 3) complete cycles between the reservoir and the lava lake via the conduit. This persistent recycling of phonolitic magma is likely sustained by CO2 fluxing, suggesting that accumulation of mafic magma in the lower crust is volumetrically more significant than that of evolved magma within the edifice.

  3. Assessing the Benefits Provided by SWOT Data Towards Estimating Reservoir Residence Time in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2016-12-01

    The Mekong River Basin is undergoing rapid hydropower development. Nine dams are planned on the main stem of the Mekong and many more on its extensive tributaries. Understanding the effects that current and future dams have on the river system and water cycle as a whole is vital for the millions of people living in the basin. reservoir residence time, the amount of time water spends stored in a reservoir, is a key parameter in investigating these impacts. The forthcoming Surface Water and Ocean Topography (SWOT) mission is poised to provide an unprecedented amount of surface water observations. SWOT, when augmented by current satellite missions, will provide the necessary information to estimate the residence time of reservoirs across the entire basin in a more comprehensive way than ever before. In this study, we first combine observations from current satellite missions (altimetry, spectral imaging, precipitation) to estimate the residence times of existing reservoirs. We then use this information to project how future reservoirs will increase the residence time of the river system. Next, we explore how SWOT observations can be used to improve residence time estimation by examining the accuracy of reservoir surface area and elevation observations as well as the accuracy of river discharge observations.

  4. Effect of a seasonal diffuse pollution migration on natural organic matter behavior in a stratified dam reservoir.

    PubMed

    Yu, Soon Ju; Lee, Jae Yil; Ha, Sung Ryong

    2010-01-01

    This article aims to describe the influence of diffuse pollution on the temporal and spatial characteristics of natural organic matter (NOM) in a stratified dam reservoir, the Daecheong Dam, on the basis of intensive observation results and the dynamic water quality simulation using CE-QUAL-W2. Turbidity is regarded as a comprehensive representation of allochothonous organic matter from diffuse sources in storm season because the turbidity concentration showed reasonable significance in a statistical correlation with the UV absorbance at 254 nm and total phosphorus. CE-QUAL-W2 simulation results showed good consistency with the observed data in terms of dissolved organic matter (DOM) including refractory dissolved organic carbon (RDOC) and labile DOC and also well explained the internal movement of constituents and stratification phenomenon in the reservoir. Instead turbidity and NOM were related well in the upper region of the reservoir according to flow distance, gradually as changing to dissolved form of organic matter, RDOM affected organic matter concentration of reservoir water quality compared to turbidity. To control the increase of soluble organic matters in the dam reservoir, appropriate dam water discharge gate operation provided effective measurement. Because of the gate operation let avoid the accumulation of organic matter within a dam reservoir by shorten of turbid regime retention time.

  5. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir

  6. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  7. Daily reservoir sedimentation model: Case study from the Fena Valley Reservoir, Guam

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.

    2017-01-01

    A model to compute reservoir sedimentation rates at daily timescales is presented. The model uses streamflow and sediment load data from nearby stream gauges to obtain an initial estimate of sediment yield for the reservoir’s watershed; it is then calibrated to the total deposition calculated from repeat bathymetric surveys. Long-term changes to reservoir trapping efficiency are also taken into account. The model was applied to the Fena Valley Reservoir, a water supply reservoir on the island of Guam. This reservoir became operational in 1951 and was recently surveyed in 2014. The model results show that the highest rate of deposition occurred during two typhoons (Typhoon Alice in 1953 and Typhoon Tingting in 2004); each storm decreased reservoir capacity by approximately 2–3% in only a few days. The presented model can be used to evaluate the impact of an extreme event, or it can be coupled with a watershed runoff model to evaluate potential impacts to storage capacity as a result of climate change or other hydrologic modifications.

  8. Bilingual lexical access in context: evidence from eye movements during reading.

    PubMed

    Libben, Maya R; Titone, Debra A

    2009-03-01

    Current models of bilingualism (e.g., BIA+) posit that lexical access during reading is not language selective. However, much of this research is based on the comprehension of words in isolation. The authors investigated whether nonselective access occurs for words embedded in biased sentence contexts (e.g., A. I. Schwartz & J. F. Kroll, 2006). Eye movements were recorded as French-English bilinguals read English sentences containing cognates (e.g., piano), interlingual homographs (e.g., coin, meaning corner in French), or matched control words. Sentences provided a low or high semantic constraint for target-language meanings. Both early-stage comprehension measures (e.g., first fixation duration, gaze duration, and skipping) and late-stage comprehension measures (e.g., go-past time and total reading time) showed significant cognate facilitation and interlingual homograph interference for low-constraint sentences. For high-constraint sentences, however, only early-stage comprehension measures were consistent with nonselective access. There was no evidence of cognate facilitation or interlingual homograph interference for late-stage comprehension measures. Thus, nonselective bilingual lexical access at early stages of comprehension is rapidly resolved in semantically biased contexts at later stages of comprehension. (c) 2009 APA, all rights reserved

  9. Transit losses and traveltimes of reservoir releases along the Arkansas River from Pueblo Reservoir to John Martin Reservoir, southeastern Colorado

    USGS Publications Warehouse

    Livingston, Russell K.

    1978-01-01

    The need for accurate information regarding the transit losses and traveltimes associated with releases from Pueblo Reservoir has been stimulated by construction of the U.S. Bureau of Reclamation's Fryingpan-Arkansas Project and a proposed winter-water storage program in Pueblo Reservoir. To meet this need, the U.S. Geological Survey, in cooperation with the Southeastern Colorado Water Conservancy District, studied the Arkansas River from Pueblo Reservoir to John Martin Reservoir, a distance of 142 river miles.The volumes of reservoir releases are decreased or delayed during tran-sit by bank storage, channel storage, and evaporation. Results from a com-puter model, calibrated by a controlled-test release from Pueblo Reservoir, indicate transit losses are greatest for small releases of short duration that are made during periods of low antecedent streamflow. For equivalent releases, transit losses during the winter are about 7 percent less than losses during the summer.Based on available streamflow records, the traveltime of reservoir releases in the study reach ranges from about 1.67 hours per mile at the downstream end of the study reach when antecedent streamflow is 10 cubic feet per second, to about 0.146 hour per mile at the upstream end of the study reach when antecedent streamflow is 3,000 cubic feet per second. Consequently, the traveltime of a release increases as antecedent streamflow diminishes.Management practices that may be used to benefit water users in the study area include selection of the optimum time, rate, and duration of a reservoir release to minimize the transit losses, determination of an accurate traveltime, and diversion at several incremental rates.

  10. [Access barriers to comprehensive care for people affected by tuberculosis and human immunodeficiency virus coinfection in Peru, 2010-2015].

    PubMed

    García-Fernández, Lisset; Benites, Carlos; Huamán, Byelca

    2017-05-25

    Identify the programmatic barriers that hinder access to comprehensive care of patients with tuberculosis and human immunodeficiency virus (TB/HIV) coinfection. This is a mixed-method study. Qualitative research was conducted via in-depth interviews with key actors and the quantitative component involved cross-sectional descriptive analysis of programmatic data from 2010-2015 on tuberculosis and HIV programs at health facilities in the cities of Lima and Iquitos. Twenty-two key actors in seven establishments were interviewed. The identified barriers were: little or no coordination between tuberculosis and HIV teams, separate management of tuberculosis and HIV cases at different levels of care, insufficient financing, limited or poorly trained human resources, and lack of an integrated information system. It was found that HIV screening in TB patients increased (from 18.8% in 2011 to 95.2% in 2015), isoniazid coverage of HIV patients declined (from 62% to 9%), and the proportion of deaths among TB/HIV coinfection cases averaged 20%. There is poor coordination between HIV and TB health strategies. Management of TB/HIV coinfection is fragmented into different levels of care, which has an impact on comprehensive patient care. As a result of this research, a technical document was prepared to establish joint procedures that should be implemented to improve comprehensive care of TB/HIV coinfection.

  11. The Need for Comprehensive Reform: From Access to Completion

    ERIC Educational Resources Information Center

    Bailey, Thomas

    2016-01-01

    This chapter examines why typical reforms at community colleges in recent years have not improved institutional graduation rates. It argues that substantially increasing college completion requires comprehensive institutional reform with a focus on measurable student success, an intentional and cohesive package of programmatic components, and a…

  12. A welfare study into capture fisheries in cirata reservoir: a bio-economic model

    NASA Astrophysics Data System (ADS)

    Anna, Z.; Hindayani, P.

    2018-04-01

    Capture fishery in inland such as reservoirs can be a source of food security and even the economy and public welfare of the surrounding community. This research was conducted on Cirata reservoir fishery in West Java, to see how far reservoir capture fishery can contribute economically in the form of resource rents. The method used is the bioeconomic model Copes, which can analyze the demand and supply functions to calculate the optimization of stakeholders’ welfare in various management regimes. The results showed that the management of capture fishery using Maximum Economic Yield regime (MEY) gave the most efficient result, where fewer inputs would produce maximum profit. In the MEY management, the producer surplus obtained is IDR 2,610.203.099, - per quarter and IDR 273.885.400,- of consumer surplus per quarter. Furthermore, researches showed that sustainable management regime policy MEY result in the government rent/surplus ofIDR 217.891,345, - per quarter with the average price of fish per kg being IDR 13.929. In open access fishery, it was shown that the producer surplus becomesIDR 0. Thus the implementation of the MEY-based instrument policy becomes a necessity for Cirata reservoir capture fishery.

  13. [Distribution Characteristics and Pollution Status Evaluation of Sediments Nutrients in a Drinking Water Reservoir].

    PubMed

    Huang, Ting-lin; Liu, Fei; Shi, Jian-chao

    2016-01-15

    The main purpose of this paper is to illustrate the influence of nutrients distribution in sediments on the eutrophication of drinking water reservoir. The sediments of three representative locations were field-sampled and analyzed in laboratory in March 2015. The distribution characteristics of TOC, TN and TP were measured, and the pollution status of sediments was evaluated by the comprehensive pollution index and the manual for sediment quality assessment. The content of TOC in sediments decreased with depth, and there was an increasing trend of the nitrogen content. The TP was enriched in surface sediment, implying the nutrients load in Zhoucun Reservoir was aggravating as the result of human activities. Regression analysis indicated that the content of TOC in sediments was positively correlated with contents of TN and TP in sediments. The TOC/TN values reflected that the vascular land plants, which contain cellulose, were the main source of organic matter in sediments. The comprehensive pollution index analysis result showed that the surface sediments in all three sampling sites were heavily polluted. The contents of TN and TP of surface sediments in three sampling sites were 3273-4870 mg x kg(-1) and 653-2969 mg x kg(-1), and the content of TOC was 45.65-83.00 mg x g(-1). According to the manual for sediment quality assessment, the TN, TP and TOC contents in sediments exceed the standard values for the lowest level of ecotoxicity, so there is a risk of eutrophication in Zhoucun Reservoir.

  14. Landslide study at Sacele reservoir in Romania

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Ambrosi, Christian; Spataro, Alessio; Martin, James; Olgun, Guney

    2010-05-01

    Sacele reservoir is locate on the river Tàrlung, about 3 Km upstream from Sacele and about 12 Km from Brasov (Romania). It represents the main drinking water source for Brasov. The Sacele reservoir is recognized as a dam of exceptional importance and therefore it requires special surveillance. In the East side of the basin, in proximity of the barrage, the slope shows evidences of instability; for this reason stabilization works, mainly consisting in re-profiling the slope, and drainage installation, has been conducted without success. This study, financed by the World Bank, aims to provide important information for the estabilishment of an authomatic monitoring system able to reduce the existing risk. Conducted studies includes: - analysis of existing informations - data acquisition by mean of field survey (geodetical and gelogical) and in situ investigation (boreholes, geophisical, sample test) - developement of GIS based geological model - developement of landslide models based on FLAC and FLAC3D Finally the model results leading to the identification of the triggering factors are discussed. The conducted work is a comprehensive study (from data to models) that highligth some interesting conclusions showing how the "stabilization" works increased total displacements and shear strain, and produced a new deeper cinematic.

  15. The aging of America's reservoirs: In-reservoir and downstream physical changes and habitat implications

    USGS Publications Warehouse

    Juracek, Kyle E.

    2015-01-01

    Reservoirs are important for various purposes including flood control, water supply, power generation, and recreation. The aging of America's reservoirs and progressive loss of water storage capacity resulting from ongoing sedimentation, coupled with increasing societal needs, will cause the social, economic, environmental, and political importance of reservoirs to continually increase. The short- and medium-term (<50 years) environmental consequences of reservoir construction and operation are well known and include an altered flow regime, lost connectivity (longitudinal, floodplain), an altered sediment regime, substrate compositional change, and downstream channel degradation. In general, reservoir-related changes have had adverse consequences for the natural ecosystem. Longer term (>50 years) environmental changes as reservoirs enter “old” age are less understood. Additional research is needed to help guide the future management of aging reservoir systems and support the difficult decisions that will have to be made. Important research directions include assessment of climate change effects on aging and determination of ecosystem response to ongoing aging and various management actions that may be taken with the intent of minimizing or reversing the physical effects of aging.

  16. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  17. Hydromechanics of Reservoir Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Dura-Gomez, Inmaculada

    Data from five reservoirs were analyzed to investigate the various factors and possible pore pressure thresholds associated with Reservoir Induced Seismicity (RIS). Data was obtained from the following reservoirs: Koyna and Warna Reservoirs in India, Itoiz Reservoir in the western Pyrenees, Spain, and Jocassee and Monticello Reservoirs in South Carolina, U.S.A. Koyna Reservoir is one out of four reservoirs in the world where M≥6.0 induced earthquakes have occurred, whereas Warna Reservoir accounts for one out of ten cases with 5.0≤M≤5.9 induced earthquakes. Induced seismicity in the Koyna-Warna region is associated with annual filling cycles in the two reservoirs, large water level changes (30 to 45 m) and the presence of regional scale fractures. The Koyna-Warna case includes 19 M≥5.0 earthquakes at non-repeating hypocenters. The calculation of excess pore pressures associated with these earthquakes suggests values >300 kPa or >600 kPa, before or after 1993 respectively. The need for larger pore pressures from 1993 suggests that M≥5 earthquakes were induced on stronger faults in the region. The exceedance of the previous water level maxima (stress memory) is the most important, although not determining factor in inducing these M≥5.0 earthquakes. Itoiz Reservoir is one of twenty nine reservoirs with 4.0≤M≤4.9 induced earthquakes. The analysis of the RIS associated with the Itoiz Reservoir impoundment, between January 2004 and the end of 2008, shows that that pore pressures diffuse away from Itoiz Reservoir through the carbonate megabreccia systems of the Early to Middle Eocene Hecho Group, and a series of near-vertical thrust faults above the gently dipping Gavarnie thrust. Excess diffused pore pressures destabilize saturated critically stressed seismogenic fractures where RIS takes place. In particular, M≥3.0 earthquakes in the region are associated with excess pore pressures of the order of 100 to 200 kPa. Jocassee and Monticello Reservoirs in

  18. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling

    USGS Publications Warehouse

    Lee, Casey; Foster, Guy

    2013-01-01

    In-stream sensors are increasingly deployed as part of ambient water quality-monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in-stream flow and water quality monitoring stations were coupled with the two-dimensional hydrodynamic CE-QUAL-W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east-central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two-dimensional model was used to estimate the residence time of 55 equal-volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in-stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life.

  19. Trap efficiency of reservoirs

    USGS Publications Warehouse

    Brune, Gunnar M.

    1953-01-01

    Forty-four records of reservoir trap efficiency and the factors affecting trap efficiency are analyzed. The capacity-inflow (C/I) ratio is found to offer a much closer correlation with trap efficiency than the capacity-watershed (C/W) ratio heretofore widely used. It appears likely from the cases studied that accurate timing of venting or sluicing operations to intercept gravity underflows can treble or quadruple the amount of sediment discharged from a reservoir. Desilting basins, because of their shape and method of operation, may have trap efficiencies above 90 pct even with very low C/I ratios.Semi-dry reservoirs with high C/I ratios, like John Martin Reservoir, may have trap efficiencies as low as 60 pct. Truly “dry” reservoirs, such as those in the Miami Conservancy District, probably have trap efficiencies in the 10 to 40 pct range, depending upon C/I ratio

  20. All-optical reservoir computing.

    PubMed

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  1. Identification and evaluation of fluvial-dominated deltaic (class 1 oil) reservoirs in Oklahoma. Quarterly technical progress report, April 1, 1994--June 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs.« less

  2. Comparison of Strategies for Climate Change Adaptation of Water Supply and Flood Control Reservoirs

    NASA Astrophysics Data System (ADS)

    Ng, T. L.; Yang, P.; Bhushan, R.

    2016-12-01

    With climate change, streamflows are expected to become more fluctuating, with more frequent and intense floods and droughts. This complicates reservoir operation, which is highly sensitive to inflow variability. We make a comparative evaluation of three strategies for adapting reservoirs to climate-induced shifts in streamflow patterns. Specifically, we examine the effectiveness of (i) expanding the capacities of reservoirs by way of new off-stream reservoirs, (ii) introducing wastewater reclamation to augment supplies, and (iii) improving real-time streamflow forecasts for more optimal decision-making. The first two are hard strategies involving major infrastructure modifications, while the third a soft strategy entailing adjusting the system operation. A comprehensive side-by-side comparison of the three strategies is as yet lacking in the literature despite the many past studies investigating the strategies individually. To this end, we developed an adaptive forward-looking linear program that solves to yield the optimal decisions for the current time as a function of an ensemble forecast of future streamflows. Solving the model repeatedly on a rolling basis with regular updating of the streamflow forecast simulates the system behavior over the entire operating horizon. Results are generated for two hypothetical water supply and flood control reservoirs of differing inflows and demands. Preliminary findings suggest that of the three strategies, improving streamflow forecasts to be most effective in mitigating the effects of climate change. We also found that, in average terms, both additional reservoir capacity and wastewater reclamation have potential to reduce water shortage and downstream flooding. However, in the worst case, the potential of the former to reduce water shortage is limited, and similarly so the potential of the latter to reduce downstream flooding.

  3. Land Development and Subdivision Regulations that Support Access Management

    DOT National Transportation Integrated Search

    1993-01-01

    This report examines the role of the comprehensive plan in developing an access : management program, aspects of current regulatory practice that contribute to : access problems, and regulatory techniques that support access management : principles. ...

  4. Cognitive Processing in Oral and Silent Reading Comprehension.

    ERIC Educational Resources Information Center

    Salasoo, Aita

    1986-01-01

    Reading rates and comprehension measures that probed recognition of various levels of text structure were collected for passages read orally and silently by 16 college students. Results showed that memory traces of text microstructure created in oral reading were accessed faster during memory-based comprehension tasks than traces established by…

  5. Hydrologic data collected in Maumelle and Winona reservoir systems, central Arkansas, May 1989 through October 1992

    USGS Publications Warehouse

    Green, W. Reed; Louthian, Bobbie L.

    1993-01-01

    Physical, chemical, and biological water-quality data were collected and compiled for sites located in the Lakes Maumelle and Winona reservoir systems May 5, 1989, to October 30, 1992. Data were collected in order to establish a comprehensive water-quality data base for the two systems and will be used in water-quality interpretive chemical variables (temperature, pH, specific conductance, dissolved oxygen, light transparency, and penetration); solids, and major cations and anions); trace metals; organics (pesticides and industrial organic chemicals); and biological components (bacteria and chlorophyll-a); and nutrients, trace metals, and organic contaminants in bed material. Reservoir sedimentation was measured by comparing fathometry measurements taken during the study to pre-impoundment tophographic maps.

  6. Trophic feasibility of reintroducing anadromous salmonids in three reservoirs on the north fork Lewis River, Washington: Prey supply and consumption demand of resident fishes

    USGS Publications Warehouse

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Beauchamp, David A.

    2016-01-01

    The reintroduction of anadromous salmonids in reservoirs is being proposed with increasing frequency, requiring baseline studies to evaluate feasibility and estimate the capacity of reservoir food webs to support reintroduced populations. Using three reservoirs on the north fork Lewis River as a case study, we demonstrate a method to determine juvenile salmonid smolt rearing capacities for lakes and reservoirs. To determine if the Lewis River reservoirs can support reintroduced populations of juvenile stream-type Chinook Salmon Oncorhynchus tshawytscha, we evaluated the monthly production of daphniaDaphnia spp. (the primary zooplankton consumed by resident salmonids in the system) and used bioenergetics to model the consumption demand of resident fishes in each reservoir. To estimate the surplus of Daphnia prey available for reintroduced salmonids, we assumed a maximum sustainable exploitation rate and accounted for the consumption demand of resident fishes. The number of smolts that could have been supported was estimated by dividing any surplus Daphnia production by the simulated consumption demand of an individual Chinook Salmon fry rearing in the reservoir to successful smolt size. In all three reservoirs, densities of Daphnia were highest in the epilimnion, but warm epilimnetic temperatures and the vertical distribution of planktivores suggested that access to abundant epilimnetic prey was limited. By comparing accessible prey supply and demand on a monthly basis, we were able to identify potential prey supply bottlenecks that could limit smolt production and growth. These results demonstrate that a bioenergetics approach can be a valuable method of examining constraints on lake and reservoir rearing capacity, such as thermal structure and temporal food supply. This method enables numerical estimation of rearing capacity, which is a useful metric for managers evaluating the feasibility of reintroducing Pacific salmon Oncorhynchus spp. in lentic systems.

  7. Use of XML and Java for collaborative petroleum reservoir modeling on the Internet

    NASA Astrophysics Data System (ADS)

    Victorine, John; Watney, W. Lynn; Bhattacharya, Saibal

    2005-11-01

    The GEMINI (Geo-Engineering Modeling through INternet Informatics) is a public-domain, web-based freeware that is made up of an integrated suite of 14 Java-based software tools to accomplish on-line, real-time geologic and engineering reservoir modeling. GEMINI facilitates distant collaborations for small company and academic clients, negotiating analyses of both single and multiple wells. The system operates on a single server and an enterprise database. External data sets must be uploaded into this database. Feedback from GEMINI users provided the impetus to develop Stand Alone Web Start Applications of GEMINI modules that reside in and operate from the user's PC. In this version, the GEMINI modules run as applets, which may reside in local user PCs, on the server, or Java Web Start. In this enhanced version, XML-based data handling procedures are used to access data from remote and local databases and save results for later access and analyses. The XML data handling process also integrates different stand-alone GEMINI modules enabling the user(s) to access multiple databases. It provides flexibility to the user to customize analytical approach, database location, and level of collaboration. An example integrated field-study using GEMINI modules and Stand Alone Web Start Applications is provided to demonstrate the versatile applicability of this freeware for cost-effective reservoir modeling.

  8. Use of XML and Java for collaborative petroleum reservoir modeling on the Internet

    USGS Publications Warehouse

    Victorine, J.; Watney, W.L.; Bhattacharya, S.

    2005-01-01

    The GEMINI (Geo-Engineering Modeling through INternet Informatics) is a public-domain, web-based freeware that is made up of an integrated suite of 14 Java-based software tools to accomplish on-line, real-time geologic and engineering reservoir modeling. GEMINI facilitates distant collaborations for small company and academic clients, negotiating analyses of both single and multiple wells. The system operates on a single server and an enterprise database. External data sets must be uploaded into this database. Feedback from GEMINI users provided the impetus to develop Stand Alone Web Start Applications of GEMINI modules that reside in and operate from the user's PC. In this version, the GEMINI modules run as applets, which may reside in local user PCs, on the server, or Java Web Start. In this enhanced version, XML-based data handling procedures are used to access data from remote and local databases and save results for later access and analyses. The XML data handling process also integrates different stand-alone GEMINI modules enabling the user(s) to access multiple databases. It provides flexibility to the user to customize analytical approach, database location, and level of collaboration. An example integrated field-study using GEMINI modules and Stand Alone Web Start Applications is provided to demonstrate the versatile applicability of this freeware for cost-effective reservoir modeling. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Survey design for lakes and reservoirs in the United States to assess contaminants in fish tissue.

    PubMed

    Olsen, Anthony R; Snyder, Blaine D; Stahl, Leanne L; Pitt, Jennifer L

    2009-03-01

    The National Lake Fish Tissue Study (NLFTS) was the first survey of fish contamination in lakes and reservoirs in the 48 conterminous states based on a probability survey design. This study included the largest set (268) of persistent, bioaccumulative, and toxic (PBT) chemicals ever studied in predator and bottom-dwelling fish species. The U.S. Environmental Protection Agency (USEPA) implemented the study in cooperation with states, tribal nations, and other federal agencies, with field collection occurring at 500 lakes and reservoirs over a four-year period (2000-2003). The sampled lakes and reservoirs were selected using a spatially balanced unequal probability survey design from 270,761 lake objects in USEPA's River Reach File Version 3 (RF3). The survey design selected 900 lake objects, with a reserve sample of 900, equally distributed across six lake area categories. A total of 1,001 lake objects were evaluated to identify 500 lake objects that met the study's definition of a lake and could be accessed for sampling. Based on the 1,001 evaluated lakes, it was estimated that a target population of 147,343 (+/-7% with 95% confidence) lakes and reservoirs met the NLFTS definition of a lake. Of the estimated 147,343 target lakes, 47% were estimated not to be sampleable either due to landowner access denial (35%) or due to physical barriers (12%). It was estimated that a sampled population of 78,664 (+/-12% with 95% confidence) lakes met the NLFTS lake definition, had either predator or bottom-dwelling fish present, and could be sampled.

  10. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  11. Testing the Injectivity of CO2 in a Sub-surface Heterogeneous Reservoir

    NASA Astrophysics Data System (ADS)

    Sundal, A.; Nystuen, J.; Dypvik, H.; Aagaard, P.

    2011-12-01

    This case study on subsurface reservoir characterization, considers the effect of geological heterogeneities on the storage capacity and injectivity of the Johansen Formation, which is a deep, saline aquifer underlying the Troll Gas Field off the Norwegian coast. The Johansen Formation has been interpreted as a sandy, prograding unit, deposited in a shallow marine environment during Early Jurassic time, and is overlain by a shaly unit; the Amundsen Formation. It appears as a wedge shaped sandstone body, up to 140m thick, with an areal extent in the order of 10 000 km2. The Johansen Formation is currently being considered for large scale CO2 storage from two gas power plants situated on the west coast of Norway, both of which will operate with full scale CO2 handling, as proposed by Norwegian authorities. The storage capacity needed is in the order of 3 Mt CO2/year. With access to a new 3D seismic survey (Gassnova, 2010), and based on existing well log data from 25 penetrating wells, we have studied large scale geometries and intra-formational features, and built a geo-conceptual model of the Johansen Formation. The reservoir is heterogeneous, with distinct permeability zonation within clinothems separated by less permeable layers. In order to obtain better understanding of crucial reservoir parameters and supplement limited data, comparison of data from easily accessible analogue rock units is useful. For this purpose the unit should be well exposed and thoroughly documented, such as the Panther Tongue Member (Star Point Formation, Mesa Verde Group) in Book Cliffs, from which we have collected some comparable permeability estimates for the model. On a micro scale, mineralogy, grain size/shape and pore geometry constitue major controls on reservoir porosity and permeability. Direct geological information is at this point in time limited to a few meters of core, from which detailed mineralogical information has been derived (optical microscopy, SEM, XRD), and some

  12. Identification and evaluation of fluvial-dominated deltaic (Class I oil) reservoirs in Oklahoma. Quarterly technical progress report, January 1, 1993--March 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Grasmick, M.K.

    The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma have engaged in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery.« less

  13. Identification and evaluation of fluvial-dominated deltaic (Class 1 oil) reservoirs in Oklahoma. Quarterly technical progress report, October 1, 1994--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery.« less

  14. Identification and evaluation of fluvial-dominated deltaic (class 1 oil) reservoirs in Oklahoma. Quarterly technical progress report, July 1, 1993--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery.« less

  15. Identification and evaluation of fluvial-dominated deltaic (Class I oil) reservoirs in Oklahoma. Quarterly technical progress report, April 1, 1993--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, G.J.; Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery-technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all of Oklahoma`smore » oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery.« less

  16. Application of Fractal Geometry in Evaluation of Effective Stimulated Reservoir Volume in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong

    According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.

  17. Hydrocarbon reservoirs of Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, P.K.

    1988-01-01

    The statistical distribution of over 12,000 producible hydrocarbon reservoirs from various biostratigraphic intervals of the Gulf of Mexico is presented. The average number, thickness, volume, subsurface depth, and ecozone of depositional environments of the reservoirs are grouped according to biostratigraphic intervals, trends, and geographic areas. The upper Pliocene and Pleistocene reservoirs account for more than 77% of the total number. Within the Miocene trend, Bigenerina H in the western Gulf of Bigenerina A and Bigenerina 2 in the central Gulf show significant concentration of reservoirs. The average depth of production for all trends gets deeper, both from west and east,more » toward Ship Shoal-South Timbalier areas. The average thickness varies slightly between trends; however, variation between areas is more significant. A significant majority of the reservoirs of all trends in the entire Gulf is reported from the outer shelf-upper slope ecozones (E3 and E4). According to volume, the E3-E5 reservoirs can be classified into three groups; larger than 10,000 acre-ft/reservoir, 5,000 to 10,000 acre-ft/reservoir, and smaller than 5,000 acre-ft/reservoir.« less

  18. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... 49 Transportation 5 2011-10-01 2011-10-01 false Reservoirs required. 393.50 Section 393.50... trailers manufactured on or after January 1, 1975, must meet the reservoir requirements of FMVSS No. 121...

  19. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... 49 Transportation 5 2010-10-01 2010-10-01 false Reservoirs required. 393.50 Section 393.50... trailers manufactured on or after January 1, 1975, must meet the reservoir requirements of FMVSS No. 121...

  20. Reservoir management cost-cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulati, M.S.

    This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.

  1. Temperature changes in Three Gorges Reservoir Area and linkage with Three Gorges Project

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Liang, Shunlin; Feng, Lian; He, Tao; Song, Xiao-Peng; Zhang, Lei

    2017-05-01

    The Three Gorges Project (TGP) is one of the largest hydroelectric projects throughout the world. It has brought many benefits to the society but also led to endless debates about its environmental and climatic impacts. Monitoring the spatiotemporal variations of temperature in the Three Gorges Reservoir Area (TGRA) is important for understanding the climatic impacts of the TGP. In this study, we used remote sensing-based land surface temperature (LST) and ground-measured air temperature data to investigate temperature changes in the TGRA. Results showed that during the daytime in summer, LST exhibited significant cooling (1-5°C) in the downstream region of the reservoir, whereas LST during the nighttime in winter exhibited significant warming (1-5°C) across the entire reservoir. However, these cooling and warming effects were both locally constrained within 5 km buffer along the reservoir. The changes in air temperature were consistent with those in LST, with 0.67°C cooling in summer and 0.33°C warming in winter. The temperature changes along the reservoir not only resulted from the land-water conversion induced by the dam impounding but were also related to the increase of vegetation cover caused by the ecological restoration projects. Significant warming trends were also found in the upstream of TGRA, especially during the daytime in summer, with up to 5°C for LST and 0.52°C for air temperature. The warming was caused mainly by urban expansion, which was driven in part by the population resettlement of TGP. Based on satellite observations, we investigated the comprehensive climatic impacts of TGP caused by multiple factors.

  2. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... projects. 8.1Lands for reservoir construction and operation. 8.2Additional lands for correlative purposes... potentials of each reservoir. 8.1Lands for reservoir construction and operation. The fee title will be... 32 National Defense 4 2011-07-01 2011-07-01 false Reservoir projects. 644.4 Section 644.4 National...

  3. 32 CFR 644.4 - Reservoir Projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... projects. 8.1Lands for reservoir construction and operation. 8.2Additional lands for correlative purposes... potentials of each reservoir. 8.1Lands for reservoir construction and operation. The fee title will be... 32 National Defense 4 2010-07-01 2010-07-01 true Reservoir Projects. 644.4 Section 644.4 National...

  4. Post flooding damage assessment of earth dams and historical reservoirs using non-invasive geophysical techniques

    NASA Astrophysics Data System (ADS)

    Sentenac, Philippe; Benes, Vojtech; Budinsky, Vladimir; Keenan, Helen; Baron, Ron

    2017-11-01

    This paper describes the use of four geophysical techniques to map the structural integrity of historical earth reservoir embankments which are susceptible to natural decay with time. The four techniques that were used to assess the post flood damage were 1. A fast scanning technique using a dipole electromagnetic profile apparatus (GEM2), 2. Electrical Resistivity Tomography (ERT) in order to obtain a high resolution image of the shape of the damaged/seepage zone, 3. Self-Potential surveys were carried out to relate the detected seepage evolution and change of the water displacement inside the embankment, 4. The washed zone in the areas with piping was characterised with microgravimetry. The four geophysical techniques used were evaluated against the case studies of two reservoirs in South Bohemia, Czech Republic. A risk approach based on the Geophysical results was undertaken for the reservoir embankments. The four techniques together enabled a comprehensive non-invasive assessment whereby remedial action could be recommended where required. Conclusions were also drawn on the efficiency of the techniques to be applied for embankments with wood structures.

  5. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  6. Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

    NASA Astrophysics Data System (ADS)

    Stopa, Jerzy; Wiśniowski, Rafał; Wojnarowski, Paweł; Janiga, Damian; Skrzypaszek, Krzysztof

    2018-03-01

    Accumulation and flow mechanisms in unconventional reservoir are different compared to conventional. This requires a special approach of field management with drilling and stimulation treatments as major factor for further production. Integrated approach of unconventional reservoir production optimization assumes coupling drilling project with full scale reservoir simulation for determine best well placement, well length, fracturing treatment design and mid-length distance between wells. Full scale reservoir simulation model emulate a part of polish shale - gas field. The aim of this paper is to establish influence of technical factor for gas production from shale gas field. Due to low reservoir permeability, stimulation treatment should be direct towards maximizing the hydraulic contact. On the basis of production scenarios, 15 stages hydraulic fracturing allows boost gas production over 1.5 times compared to 8 stages. Due to the possible interference of the wells, it is necessary to determine the distance between the horizontal parts of the wells trajectories. In order to determine the distance between the wells allowing to maximize recovery factor of resources in the stimulated zone, a numerical algorithm based on a dynamic model was developed and implemented. Numerical testing and comparative study show that the most favourable arrangement assumes a minimum allowable distance between the wells. This is related to the volume ratio of the drainage zone to the total volume of the stimulated zone.

  7. Reservoir floodplains support distinct fish assemblages

    USGS Publications Warehouse

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Fundamental reform of payment for adult primary care: comprehensive payment for comprehensive care.

    PubMed

    Goroll, Allan H; Berenson, Robert A; Schoenbaum, Stephen C; Gardner, Laurence B

    2007-03-01

    Primary care is essential to the effective and efficient functioning of health care delivery systems, yet there is an impending crisis in the field due in part to a dysfunctional payment system. We present a fundamentally new model of payment for primary care, replacing encounter-based imbursement with comprehensive payment for comprehensive care. Unlike former iterations of primary care capitation (which simply bundled inadequate fee-for-service payments), our comprehensive payment model represents new investment in adult primary care, with substantial increases in payment over current levels. The comprehensive payment is directed to practices to include support for the modern systems and teams essential to the delivery of comprehensive, coordinated care. Income to primary physicians is increased commensurate with the high level of responsibility expected. To ensure optimal allocation of resources and the rewarding of desired outcomes, the comprehensive payment is needs/risk-adjusted and performance-based. Our model establishes a new social contract with the primary care community, substantially increasing payment in return for achieving important societal health system goals, including improved accessibility, quality, safety, and efficiency. Attainment of these goals should help offset and justify the costs of the investment. Field tests of this and other new models of payment for primary care are urgently needed.

  9. Fundamental Reform of Payment for Adult Primary Care: Comprehensive Payment for Comprehensive Care

    PubMed Central

    Berenson, Robert A.; Schoenbaum, Stephen C.; Gardner, Laurence B.

    2007-01-01

    Primary care is essential to the effective and efficient functioning of health care delivery systems, yet there is an impending crisis in the field due in part to a dysfunctional payment system. We present a fundamentally new model of payment for primary care, replacing encounter-based imbursement with comprehensive payment for comprehensive care. Unlike former iterations of primary care capitation (which simply bundled inadequate fee-for-service payments), our comprehensive payment model represents new investment in adult primary care, with substantial increases in payment over current levels. The comprehensive payment is directed to practices to include support for the modern systems and teams essential to the delivery of comprehensive, coordinated care. Income to primary physicians is increased commensurate with the high level of responsibility expected. To ensure optimal allocation of resources and the rewarding of desired outcomes, the comprehensive payment is needs/risk-adjusted and performance-based. Our model establishes a new social contract with the primary care community, substantially increasing payment in return for achieving important societal health system goals, including improved accessibility, quality, safety, and efficiency. Attainment of these goals should help offset and justify the costs of the investment. Field tests of this and other new models of payment for primary care are urgently needed. PMID:17356977

  10. Intergrated 3-D Ground-Penetrating Radar,Outcrop,and Boreholoe Data Applied to Reservoir Characterization and Flow Simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMechan et al.

    2001-08-31

    Existing reservoir models are based on 2-D outcrop;3-D aspects are inferred from correlation between wells,and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah.The study was conducted at two sites(Corbula Gulch Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground penetrating radar(GPR) images extend these reservoir characteristics into 3-D to allow developmentmore » of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentologic features and boundaries. The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of this project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulation through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs. To data,the team has presented five papers at GSA and AAPG meetings produced a technical manual, and completed 15 technical papers. The latter are the main content of this final report. In addition,the project became part of 5 PhD dissertations, 3 MS theses,and two senior undergraduate

  11. Optoelectronic Reservoir Computing

    PubMed Central

    Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.

    2012-01-01

    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations. PMID:22371825

  12. PomBase: a comprehensive online resource for fission yeast

    PubMed Central

    Wood, Valerie; Harris, Midori A.; McDowall, Mark D.; Rutherford, Kim; Vaughan, Brendan W.; Staines, Daniel M.; Aslett, Martin; Lock, Antonia; Bähler, Jürg; Kersey, Paul J.; Oliver, Stephen G.

    2012-01-01

    PomBase (www.pombase.org) is a new model organism database established to provide access to comprehensive, accurate, and up-to-date molecular data and biological information for the fission yeast Schizosaccharomyces pombe to effectively support both exploratory and hypothesis-driven research. PomBase encompasses annotation of genomic sequence and features, comprehensive manual literature curation and genome-wide data sets, and supports sophisticated user-defined queries. The implementation of PomBase integrates a Chado relational database that houses manually curated data with Ensembl software that supports sequence-based annotation and web access. PomBase will provide user-friendly tools to promote curation by experts within the fission yeast community. This will make a key contribution to shaping its content and ensuring its comprehensiveness and long-term relevance. PMID:22039153

  13. Identification and evaluation of fluvial-dominated deltaic (Class I oil) reservoirs in Oklahoma. Quarterly technical progress report, July 1--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional origins; collect, organize and analyze all available data conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs. Activities were focused primarily on technology transfer elements of the project. This included regional play analysis and mapping, geologic field studies, and reservoir modeling for secondary water flood simulations as used in publication folios and workshops. The computer laboratory was fully operational for operator use. Computer systems design and database development activities were ongoing.« less

  14. Comprehensive assessment of seldom monitored trace elements pollution in the riparian soils of the Miyun Reservoir, China.

    PubMed

    Han, Lanfang; Gao, Bo; Zhou, Yang; Xu, Dongyu; Gao, Li; Yu, Hui; Wang, Shiyan

    2016-10-01

    The South-to-North Water Diversion Project has aroused widespread concerns about the potential ecological risks posed by the project, especially for the Miyun Reservoir (MYR). The potential release risk of metals from the flooded riparian soils into MYR after water impoundment is one of key scientific problems. In this study, riparian soil samples were collected considering three vertical heights (130, 140, and 145 m) and four types of land uses in the MYR areas, namely, forestland, grassland, wasteland, and recreational land. We analyzed soils texture, the content and chemical fractionations of seldom monitored trace elements (SMTEs): Li, Be, B, V, Co, Ni, Ga, Sn, Sb, Tl, and Bi). Results showed that the four types of soils in MYR had the similar textures, while recreational land showed significantly higher contents of Ni and V. Additionally, there were no significant differences found for most SMTEs (except for V) at different vertical heights in each soil type, while the concentrations of V at 140 and 145 m in forestland and recreational land were significantly higher than those at 130 m. However, a comprehensive evaluation of potential ecological risk (contamination factor (CF), modified degree of contamination (mCd), and geoaccumulation factor (I geo )) consistently indicated the insignificant contaminations of all SMTEs in MYR soils before water impoundment. The Community Bureau of Reference (BCR) sequential extraction results showed that the chemical fractionations of SMTEs were independent of land use patterns and vertical heights. Co in reducible fractions and Ni were identified as the candidates which had potential to release into MYR when the lands were submerged. Principal component analysis (PCA) and cluster analysis (CA) results suggested that a portion of V, Co, and Ni may originate from anthropogenic activities, and the coal combustion was possibly the main anthropogenic source. The findings of this work would provide valuable information on the

  15. Community College Student Retention: Determining the Effects of a Comprehensive Support and Access Intervention Program Targeting Low-Income and Working Poor at a Large Urban Minority-Serving Institution

    ERIC Educational Resources Information Center

    Saltiel, Henry

    2011-01-01

    A quasi-experiment using quantitative methods was conducted to examine the effects on academic student outcomes when a cohort of employed low-SES community college commuter students (the treatment group, N=198) participated in a comprehensive support and access intervention program, compared with similar students (the matched comparison group,…

  16. Study on comprehensive planning of rocky desertification in karst area of Chongqing

    NASA Astrophysics Data System (ADS)

    Zang, Yajun

    2017-11-01

    Chongqing is a key area for comprehensive treatment of rocky desertification in karst areas of china. Strengthening the comprehensive management of karst rocky desertification area, for the maintenance of ecological safety of Three Gorges Reservoir area, expanding the karst rocky desertification area people survival and development space, and improving the regional ecological conditions, have important practical significance to the construction of ecological civilization and building a harmonious society. Based on the investigation, analysis and arrangement of the data in the rocky desertification area, the paper puts forward the corresponding measures and phased targets for the treatment of the Rocky Desertification in the karst areas of Chongqing.

  17. Andrew integrated reservoir description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, S.P.

    1996-12-31

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field`s relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the localmore » reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.« less

  18. Andrew integrated reservoir description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, S.P.

    1996-01-01

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field's relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the localmore » reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.« less

  19. HCHs and DDTs in Soils around Guanting Reservoir in Beijing, China: Spatial-Temporal Variation and Countermeasures

    PubMed Central

    Wang, Tie-yu; Tan, Bing; Lu, Yong-long

    2012-01-01

    The concentrations of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) in the topsoil samples around the Guanting Reservoir in Beijing were measured, and their spatial distribution and environmental risks were analyzed by GIS. The results showed that in 2003, 2007, and 2009, the HCHs concentrations were 0.66, 0.85, and 0.73 ng/g, and the DDTs concentrations were 9.50, 7.80, and 6.46 ng/g in the studied area, respectively. In the topsoil, the HCHs concentrations did not change much while the DDTs concentrations declined steadily. Most of the current residues in soil come from the POPs used in the past years but some new input is also detected in certain regions. The level of HCHs and DDTs residues in the south reservoir is lower than that in the north reservoir. The middle region has the highest HCHs and DDTs concentrations, especially near the Beixinpu town. The high risk regions of pollution of HCHs and DDTs are mainly distributed in the vicinity of Beixinpu town as well. Based on the aforementioned results, a comprehensive countermeasure is proposed entailing decision making, local implementation, scientific support, and public participation with regard to the long-term control and management of POPs around the Guanting Reservoir. PMID:23346019

  20. Water-balance simulations of runoff and reservoir storage for the Upper Helmand watershed and Kajakai Reservoir, central Afghanistan

    USGS Publications Warehouse

    Vining, Kevin C.; Vecchia, Aldo V.

    2007-01-01

    A study was performed to provide information on monthly historical and hypothetical future runoff for the Upper Helmand watershed and reservoir storage in Kajakai Reservoir that could be used by Afghanistan authorities to make economic and demographic decisions concerning reservoir design and operation, reservoir sedimentation, and development along the Helmand River. Estimated reservoir volume at the current spillway elevation of 1,033.5 meters decreased by about 365 million cubic meters from 1968 to 2006 because of sedimentation. Water-balance simulations indicated a good fit between modeled and recorded monthly runoff at the two gaging stations in the watershed for water years 1956-79 and indicated an excellent fit between modeled and recorded monthly changes in Kajakai Reservoir storage for water years 1956-79. Future simulations, which included low starting reservoir water levels and a spillway raised to an elevation of 1,045 meters, indicated that the reservoir is likely to fill within 2 years. Although Kajakai Reservoir is likely to fill quickly, multiyear deficits may still occur. If future downstream irrigation demand doubles but future precipitation, temperature, and reservoir sedimentation remain similar to historical conditions, the reservoir would have more than a 50-percent chance of being full during April or May of a typical year. Future simulations with a 10-percent reduction in precipitation indicated that supply deficits would occur more than 1 in 4 years, on average, during August, September, or October. The reservoir would be full during April or May fewer than 1 in 2 years, on average, and multiyear supply deficits could occur. Increased sedimentation had little effect on reservoir levels during April through July, but the frequency of deficits increased substantially during September and October.

  1. On the correlation between reservoir metrics and performance for time series classification under the influence of synaptic plasticity.

    PubMed

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-01-01

    Reservoir computing provides a simpler paradigm of training recurrent networks by initialising and adapting the recurrent connections separately to a supervised linear readout. This creates a problem, though. As the recurrent weights and topology are now separated from adapting to the task, there is a burden on the reservoir designer to construct an effective network that happens to produce state vectors that can be mapped linearly into the desired outputs. Guidance in forming a reservoir can be through the use of some established metrics which link a number of theoretical properties of the reservoir computing paradigm to quantitative measures that can be used to evaluate the effectiveness of a given design. We provide a comprehensive empirical study of four metrics; class separation, kernel quality, Lyapunov's exponent and spectral radius. These metrics are each compared over a number of repeated runs, for different reservoir computing set-ups that include three types of network topology and three mechanisms of weight adaptation through synaptic plasticity. Each combination of these methods is tested on two time-series classification problems. We find that the two metrics that correlate most strongly with the classification performance are Lyapunov's exponent and kernel quality. It is also evident in the comparisons that these two metrics both measure a similar property of the reservoir dynamics. We also find that class separation and spectral radius are both less reliable and less effective in predicting performance.

  2. The Cumberland River Flood of 2010 and Corps Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Charley, W.; Hanbali, F.; Rohrbach, B.

    2010-12-01

    On Saturday, May 1, 2010, heavy rain began falling in the Cumberland River Valley and continued through the following day. 13.5 inches was measured at Nashville, an unprecedented amount that doubled the previous 2-day record, and exceeded the May monthly total record of 11 inches. Elsewhere in the valley, amounts of over 19 inches were measured. The frequency of this storm was estimated to exceed the one-thousand year event. This historic rainfall brought large scale flooding to the Cumberland-Ohio-Tennessee River Valleys, and caused over 2 billion dollars in damages, despite the numerous flood control projects in the area, including eight U.S. Army Corps of Engineers projects. The vast majority of rainfall occurred in drainage areas that are uncontrolled by Corps flood control projects, which lead to the wide area flooding. However, preliminary analysis indicates that operations of the Corps projects reduced the Cumberland River flood crest in Nashville by approximately five feet. With funding from the American Recovery and Reinvestment Act (ARRA) of 2009, hydrologic, hydraulic and reservoir simulation models have just been completed for the Cumberland-Ohio-Tennessee River Valleys. These models are being implemented in the Corps Water Management System (CWMS), a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. The CWMS modeling component uses observed rainfall and forecasted rainfall to compute forecasts of river flows into and downstream of reservoirs, using HEC-HMS. Simulation of reservoir operations, utilizing either the HEC-ResSim or CADSWES RiverWare program, uses these flow scenarios to provide operational decision information for the engineer. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for these scenarios. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using Arc

  3. Enhancing water supply through reservoir reoperation

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Sterle, K. M.; Jose, L.; Coors, S.; Pohll, G.; Singletary, L.

    2017-12-01

    Snowmelt is a significant contributor to water supply in western U.S. which is stored in reservoirs for use during peak summer demand. The reservoirs were built to satisfy multiple objectives, but primarily to either enhance water supply and/or for flood mitigation. The operating rules for these water supply reservoirs are based on historical assumptions of stationarity of climate, assuming peak snowmelt occurs after April 1 and hence have to let water pass through if it arrived earlier. Using the Truckee River which originates in the eastern Sierra Nevada, has seven reservoirs and is shared between California and Nevada as an example, we show enhanced water storage by altering reservoir operating rules. These results are based on a coupled hydrology (Ground-Surface water Flow, GSFLOW) and water management model (RIverware) developed for the river system. All the reservoirs in the system benefit from altering the reservoir rules, but some benefit more than others. Prosser Creek reservoir for example, historically averaged 76% of capacity, which was lowered to 46% of capacity in the future as climate warms and shifts snowmelt to earlier days of the year. This reduction in storage can be mitigated by altering the reservoir operation rules and the reservoir storage increases to 64-76% of capacity. There are limitations to altering operating rules as reservoirs operated primarily for flood control are required to maintain lower storage to absorb a flood pulse, yet using modeling we show that there are water supply benefits to adopting a more flexible rules of operation. In the future, due to changing climate we anticipate the reservoirs in the western U.S. which were typically capturing spring- summer snowmelt will have to be managed more actively as the water stored in the snowpack becomes more variable. This study presents a framework for understanding, modeling and quantifying the consequences of such a shift in hydrology and water management.

  4. Understanding and improving access to prompt and effective malaria treatment and care in rural Tanzania: the ACCESS Programme.

    PubMed

    Hetzel, Manuel W; Iteba, Nelly; Makemba, Ahmed; Mshana, Christopher; Lengeler, Christian; Obrist, Brigit; Schulze, Alexander; Nathan, Rose; Dillip, Angel; Alba, Sandra; Mayumana, Iddy; Khatib, Rashid A; Njau, Joseph D; Mshinda, Hassan

    2007-06-29

    Prompt access to effective treatment is central in the fight against malaria. However, a variety of interlinked factors at household and health system level influence access to timely and appropriate treatment and care. Furthermore, access may be influenced by global and national health policies. As a consequence, many malaria episodes in highly endemic countries are not treated appropriately. The ACCESS Programme aims at understanding and improving access to prompt and effective malaria treatment and care in a rural Tanzanian setting. The programme's strategy is based on a set of integrated interventions, including social marketing for improved care seeking at community level as well as strengthening of quality of care at health facilities. This is complemented by a project that aims to improve the performance of drug stores. The interventions are accompanied by a comprehensive set of monitoring and evaluation activities measuring the programme's performance and (health) impact. Baseline data demonstrated heterogeneity in the availability of malaria treatment, unavailability of medicines and treatment providers in certain areas as well as quality problems with regard to drugs and services. The ACCESS Programme is a combination of multiple complementary interventions with a strong evaluation component. With this approach, ACCESS aims to contribute to the development of a more comprehensive access framework and to inform and support public health professionals and policy-makers in the delivery of improved health services.

  5. Understanding and improving access to prompt and effective malaria treatment and care in rural Tanzania: the ACCESS Programme

    PubMed Central

    Hetzel, Manuel W; Iteba, Nelly; Makemba, Ahmed; Mshana, Christopher; Lengeler, Christian; Obrist, Brigit; Schulze, Alexander; Nathan, Rose; Dillip, Angel; Alba, Sandra; Mayumana, Iddy; Khatib, Rashid A; Njau, Joseph D; Mshinda, Hassan

    2007-01-01

    Background Prompt access to effective treatment is central in the fight against malaria. However, a variety of interlinked factors at household and health system level influence access to timely and appropriate treatment and care. Furthermore, access may be influenced by global and national health policies. As a consequence, many malaria episodes in highly endemic countries are not treated appropriately. Project The ACCESS Programme aims at understanding and improving access to prompt and effective malaria treatment and care in a rural Tanzanian setting. The programme's strategy is based on a set of integrated interventions, including social marketing for improved care seeking at community level as well as strengthening of quality of care at health facilities. This is complemented by a project that aims to improve the performance of drug stores. The interventions are accompanied by a comprehensive set of monitoring and evaluation activities measuring the programme's performance and (health) impact. Baseline data demonstrated heterogeneity in the availability of malaria treatment, unavailability of medicines and treatment providers in certain areas as well as quality problems with regard to drugs and services. Conclusion The ACCESS Programme is a combination of multiple complementary interventions with a strong evaluation component. With this approach, ACCESS aims to contribute to the development of a more comprehensive access framework and to inform and support public health professionals and policy-makers in the delivery of improved health services. PMID:17603898

  6. Sediment and nutrient budgets are inherently dynamic: evidence from a long-term study of two subtropical reservoirs

    NASA Astrophysics Data System (ADS)

    O'Brien, Katherine R.; Weber, Tony R.; Leigh, Catherine; Burford, Michele A.

    2016-12-01

    Accurate reservoir budgets are important for understanding regional fluxes of sediment and nutrients. Here we present a comprehensive budget of sediment (based on total suspended solids, TSS), total nitrogen (TN) and total phosphorus (TP) for two subtropical reservoirs on rivers with highly intermittent flow regimes. The budget is completed from July 1997 to June 2011 on the Somerset and Wivenhoe reservoirs in southeast Queensland, Australia, using a combination of monitoring data and catchment model predictions. A major flood in January 2011 accounted for more than half of the water entering and leaving both reservoirs in that year, and approximately 30 % of water delivered to and released from Wivenhoe over the 14-year study period. The flood accounted for an even larger proportion of total TSS and nutrient loads: in Wivenhoe more than one-third of TSS inputs and two-thirds of TSS outputs between 1997 and 2011 occurred during January 2011. During non-flood years, mean historical concentrations provided reasonable estimates of TSS and nutrient loads leaving the reservoirs. Calculating loads from historical mean TSS and TP concentrations during January 2011, however, would have substantially underestimated outputs over the entire study period, by up to a factor of 10. The results have important implications for sediment and nutrient budgets in catchments with highly episodic flow. First, quantifying inputs and outputs during major floods is essential for producing reliable long-term budgets. Second, sediment and nutrient budgets are dynamic, not static. Characterizing uncertainty and variability is therefore just as important for meaningful reservoir budgets as accurate quantification of loads.

  7. Intermodal Access to U. S. Ports; Report on Survey Findings

    DOT National Transportation Integrated Search

    2002-08-01

    Presents the findings of the 2001 Intermodal Access Survey, a comprehensive survey of access conditions at U. S. ports. The survey gauged the state of roadway, rail and waterside access conditions and pinpointed potential actions for the future.

  8. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  9. Water resources review: Wheeler Reservoir, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is onemore » in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.« less

  10. 4. International reservoir characterization technical conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energymore » Science and Technology database.« less

  11. Single well productivity prediction of carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Le, Xu

    2018-06-01

    It is very important to predict the single-well productivity for the development of oilfields. The fracture structure of carbonate fractured-cavity reservoirs is complex, and the change of single-well productivity is inconsistent with that of sandstone reservoir. Therefore, the establishment of carbonate oil well productivity It is very important. Based on reservoir reality, three different methods for predicting the productivity of carbonate reservoirs have been established based on different types of reservoirs. (1) To qualitatively analyze the single-well capacity relations corresponding to different reservoir types, predict the production capacity according to the different wells encountered by single well; (2) Predict the productivity of carbonate reservoir wells by using numerical simulation technology; (3) According to the historical production data of oil well, fit the relevant capacity formula and make single-well productivity prediction; (4) Predict the production capacity by using oil well productivity formula of carbonate reservoir.

  12. Simulating reservoir leakage in ground-water models

    USGS Publications Warehouse

    Fenske, J.P.; Leake, S.A.; Prudic, David E.

    1997-01-01

    Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.

  13. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  14. Seismic Reservoir Characterization for Assessment of CO2 EOR at the Mississippian Reservoir in South-Central Kansas

    NASA Astrophysics Data System (ADS)

    Tsoflias, G. P.; Graham, B.; Haga, L.; Watney, L.

    2017-12-01

    The Mississippian in Kansas and Oklahoma is a highly heterogeneous, fractured, oil producing reservoir with thickness typically below seismic resolution. At Wellington field in south-central Kansas CO2 was injected in the Mississippian reservoir for enhanced oil recovery. This study examines the utility of active source surface seismic for characterization of Mississippian reservoir properties and monitoring CO2. Analysis of post-stack 3D seismic data showed the expected response of a gradational transition (ramp velocity) where thicker reservoir units corresponded with lower reflection amplitudes, lower frequency and a 90o phase change. Reflection amplitude could be correlated to reservoir thickness. Pre-stack gather analysis showed that porosity zones of the Mississippian reservoir exhibit characteristic AVO response. Simultaneous AVO inversion estimated P- and S-Impedances, which along with formation porosity logs and post-stack seismic data attributes were incorporated in multi-attribute linear-regression analysis and predicted reservoir porosity with an overall correlation of 0.90 to well data. The 3D survey gather azimuthal anisotropy analysis (AVAZ) provided information on the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of the CO2 in monitoring wells. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO2. Future work includes the assessment of time-lapse seismic, acquired after the injection of CO2. This work demonstrates that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and monitoring of CO2.

  15. Cooperative Learning in Reservoir Simulation Classes: Overcoming Disparate Entry Skills

    NASA Astrophysics Data System (ADS)

    Awang, Mariyamni

    2006-10-01

    Reservoir simulation is one of the core courses in the petroleum engineering curriculum and it requires knowledge and skills in three major disciplines, namely programming, numerical methods and reservoir engineering. However, there were often gaps in the students' readiness to undertake the course, even after completing the necessary requirements. The disparate levels of competency of the good and poor students made it difficult to target a certain level. Cooperative learning in the form of projects and peer teaching was designed to address the major concern of disparate entry skills, and at the same time the method used should also succeed in keeping students interest in class, developing communication skills and improving self-learning. Slower and weaker students were expected to benefit from being taught by good students, who were better prepared, and good students would gain deeper comprehension of the subject matter. From evaluations, the approach was considered successful since the overall passing rate was greater than 95% compared to previous years of around 70-80%. It had also succeeded in improving the learning environment in class. Future simulation classes will continue to use the cooperative approach with minor adjustments.

  16. Coralville Reservoir Water Quality Project

    DTIC Science & Technology

    2006-05-01

    Description of the Area and Scope of the Project The Coralville flood control dam is located in Johnson County, Iowa , about three miles north of Iowa City...out of the reservoir. USGS 05453100 Iowa River at Marengo, IA USGS 05453520 Iowa River below Coralville Dam near Coralville , IA max min average...26: Pesticides in Fish. Coralville Reservoir Water Quality Pesticides in Fish Reservoir (Near Lake McBride Spillway) Downstream ( Iowa

  17. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  18. Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA

    USGS Publications Warehouse

    Gray, J.E.; Hines, M.E.

    2009-01-01

    Salmon Falls Creek Reservoir (SFCR) in southern Idaho has been under a mercury (Hg) advisory since 2001 as fish in this reservoir contain elevated concentrations of Hg. Concentrations of total Hg (HgT) and methyl-Hg (MeHg) were measured in reservoir water, bottom sediment, and porewater to examine processes of Hg methylation at the sediment/water interface in this reservoir. Rates of Hg methylation and MeHg demethylation were also measured in reservoir bottom sediment using isotopic tracer techniques to further evaluate methylation of Hg in SFCR. The highest concentrations for HgT and MeHg in sediment were generally found at the sediment/water interface, and HgT and MeHg concentrations declined with depth. Porewater extracted from bottom sediment contained highly elevated concentrations of HgT ranging from 11-230??ng/L and MeHg ranging from 0.68-8.5??ng/L. Mercury methylation was active at all sites studied. Methylation rate experiments carried out on sediment from the sediment/water interface show high rates of Hg methylation ranging from 2.3-17%/day, which is significantly higher than those reported in other Hg contaminant studies. Using porewater MeHg concentrations, we calculated an upward diffusive MeHg flux of 197??g/year for the entire reservoir. This sediment derived MeHg is delivered to the overlying SFCR water column, and eventually transferred to biota, such as fish. This study indicates that methylation of Hg is highly influenced by the hypolimnetic and eutrophic conditions in SFCR.

  19. Static reservoir modeling of the Bahariya reservoirs for the oilfields development in South Umbarka area, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mohamed I.; Metwalli, Farouk I.; Mesilhi, El Sayed I.

    2018-02-01

    3D static reservoir modeling of the Bahariya reservoirs using seismic and wells data can be a relevant part of an overall strategy for the oilfields development in South Umbarka area (Western Desert, Egypt). The seismic data is used to build the 3D grid, including fault sticks for the fault modeling, and horizon interpretations and surfaces for horizon modeling. The 3D grid is the digital representation of the structural geology of Bahariya Formation. When we got a reasonably accurate representation, we fill the 3D grid with facies and petrophysical properties to simulate it, to gain a more precise understanding of the reservoir properties behavior. Sequential Indicator Simulation (SIS) and Sequential Gaussian Simulation (SGS) techniques are the stochastic algorithms used to spatially distribute discrete reservoir properties (facies) and continuous reservoir properties (shale volume, porosity, and water saturation) respectively within the created 3D grid throughout property modeling. The structural model of Bahariya Formation exhibits the trapping mechanism which is a fault assisted anticlinal closure trending NW-SE. This major fault breaks the reservoirs into two major fault blocks (North Block and South Block). Petrophysical models classified Lower Bahariya reservoir as a moderate to good reservoir rather than Upper Bahariya reservoir in terms of facies, with good porosity and permeability, low water saturation, and moderate net to gross. The Original Oil In Place (OOIP) values of modeled Bahariya reservoirs show hydrocarbon accumulation in economic quantity, considering the high structural dips at the central part of South Umbarka area. The powerful of 3D static modeling technique has provided a considerable insight into the future prediction of Bahariya reservoirs performance and production behavior.

  20. Estimating Western U.S. Reservoir Sedimentation

    NASA Astrophysics Data System (ADS)

    Bensching, L.; Livneh, B.; Greimann, B. P.

    2017-12-01

    Reservoir sedimentation is a long-term problem for water management across the Western U.S. Observations of sedimentation are limited to reservoir surveys that are costly and infrequent, with many reservoirs having only two or fewer surveys. This work aims to apply a recently developed ensemble of sediment algorithms to estimate reservoir sedimentation over several western U.S. reservoirs. The sediment algorithms include empirical, conceptual, stochastic, and processes based approaches and are coupled with a hydrologic modeling framework. Preliminary results showed that the more complex and processed based algorithms performed better in predicting high sediment flux values and in a basin transferability experiment. However, more testing and validation is required to confirm sediment model skill. This work is carried out in partnership with the Bureau of Reclamation with the goal of evaluating the viability of reservoir sediment yield prediction across the western U.S. using a multi-algorithm approach. Simulations of streamflow and sediment fluxes are validated against observed discharges, as well as a Reservoir Sedimentation Information database that is being developed by the US Army Corps of Engineers. Specific goals of this research include (i) quantifying whether inter-algorithm differences consistently capture observational variability; (ii) identifying whether certain categories of models consistently produce the best results, (iii) assessing the expected sedimentation life-span of several western U.S. reservoirs through long-term simulations.

  1. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  2. Encapsulated microsensors for reservoir interrogation

    DOEpatents

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  3. Massachusetts reservoir simulation tool—User’s manual

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  4. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Hong-Yi; Leung, L. Ruby

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximummore » flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.« less

  5. Monitoring of artificial water reservoirs in the Southern Brazilian Amazon with remote sensing data

    NASA Astrophysics Data System (ADS)

    Arvor, Damien; Daher, Felipe; Corpetti, Thomas; Laslier, Marianne; Dubreuil, Vincent

    2016-10-01

    The agricultural expansion in the Southern Brazilian Amazon has long been pointed out due to its severe impacts on tropical forests. But the last decade has been marked by a rapid agricultural transition which enabled to reduce pressure on forests through (i) the adoption of intensive agricultural practices and (ii) the diversification of activities. However, we suggest that this new agricultural model implies new pressures on environment and especially on water resources since many artificial water reservoirs have been built to ensure crop irrigation, generate energy, farm fishes, enable access to water for cattle or just for leisure. In this paper, we implemented a method to automatically map artificial water reservoirs based on time series of Landsat images. The method was tested in the county of Sorriso (State of Mato Grosso, Brazil) where we identified 521 water reservoirs by visual inspection on very high resolution images. 68 Landsat-8 images covering 4 scenes in 2015 were pre-classified and a final class (Terrestrial or Aquatic) was determined for each pixel based on a Dempster-Shafer fusion approach. Results confirmed the potential of the methodology to automatically and efficiently detect water reservoirs in the study area (overall accuracy = 0.952 and Kappa index = 0.904) although the methodology underestimates the total area in water bodies because of the spatial resolution of Landsat images. In the case of Sorriso, we mapped 19.4 km2 of the 20.8 km2 of water reservoirs initially delimited by visual interpretation, i.e. we underestimated the area by 5.9%.

  6. Carbon emission from global hydroelectric reservoirs revisited.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  7. Identification and evaluation of fluvial-dominated deltaic (Class 1 oil) reservoirs in Oklahoma. Quarterly technical progress report, January 1, 1995--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery. The elements of the technology transfer program include developing and publishing play portfolios, holding workshops to release play analyses and identify opportunities in each of the plays, and establishing a computer laboratory that is available for industry users.« less

  8. Reservoir assessment of the Nubian sandstone reservoir in South Central Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    El-Gendy, Nader; Barakat, Moataz; Abdallah, Hamed

    2017-05-01

    The Gulf of Suez is considered as one of the most important petroleum provinces in Egypt and contains the Saqqara and Edfu oil fields located in the South Central portion of the Gulf of Suez. The Nubian sandstone reservoir in the Gulf of Suez basin is well known for its great capability to store and produce large volumes of hydrocarbons. The Nubian sandstone overlies basement rocks throughout most of the Gulf of Suez region. It consists of a sequence of sandstones and shales of Paleozoic to Cretaceous age. The Nubian sandstone intersected in most wells has excellent reservoir characteristics. Its porosity is controlled by sedimentation style and diagenesis. The cementation materials are mainly kaolinite and quartz overgrowths. The permeability of the Nubian sandstone is mainly controlled by grain size, sorting, porosity and clay content especially kaolinite and decreases with increase of kaolinite. The permeability of the Nubian Sandstone is evaluated using the Nuclear Magnetic Resonance (NMR technology) and formation pressure data in addition to the conventional logs and the results were calibrated using core data. In this work, the Nubian sandstone was investigated and evaluated using complete suites of conventional and advanced logging techniques to understand its reservoir characteristics which have impact on economics of oil recovery. The Nubian reservoir has a complicated wettability nature which affects the petrophysical evaluation and reservoir productivity. So, understanding the reservoir wettability is very important for managing well performance, productivity and oil recovery.

  9. Reservoir and canal system regulation for operation of the Raymond Reservoir Hydro Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, H.D.; Davidson, B.

    1995-12-31

    In 1989 LIMA Engineering Ltd. of Lethbridge, Alberta, Canada and Tudor Engineering Company of Oakland, California investigated the feasibility of installing a hydroelectric facility for the St. Mary River Irrigation District at Raymond Chute. This chute is a 29.3 m (96 ft) drop structure on the District`s main canal outside of the town of Raymond in southern Alberta. The chute discharges into the east end of Raymond Reservoir, a small regulating reservoir. The engineering team concluded that the project could be made more attractive by combining the drop at Raymond Chute with an additional 17.7 m (58 ft) of headmore » available at the upstream Milk River Ridge Reservoir. The result was the 20 MW Raymond Reservoir Hydro Project which went into commercial operation in May, 1994. Combining these two drops in elevation required the construction of a complete bypass system with a new approach canal and tailrace discharging into the west end of Raymond Reservoir, approximately 5 km (3 miles) west of the Raymond Chute. The system allows up to 56.7 cms (2,000 cfs) to be diverted through the powerhouse and thereby bypass Milk River Ridge Reservoir, Raymond Chute and approximately 6.5 km (4 miles) of canal. No synchronous bypass valve or spill facility was provided at the powerhouse. Rather, a system of rehabilitated or new check structures and controls were provided to automatically transfer flow from the power canal to the original system and thereby maintain a constant pre-set discharge downstream of the powerhouse following load rejections. This constant discharge is essential for meeting downstream irrigation demand.« less

  10. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  11. 21 CFR 868.5320 - Reservoir bag.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Reservoir bag. 868.5320 Section 868.5320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5320 Reservoir bag. (a) Identification. A reservoir bag is a...

  12. 21 CFR 868.5320 - Reservoir bag.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Reservoir bag. 868.5320 Section 868.5320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5320 Reservoir bag. (a) Identification. A reservoir bag is a...

  13. Temperature and oxygen in Missouri reservoirs

    USGS Publications Warehouse

    Jones, John R.; Knowlton, Matthew F.; Obrecht, Daniel V.; Graham, Jennifer L.

    2011-01-01

    Vertical profiles of water temperature (n = 7193) and dissolved oxygen (n = 6516) were collected from 235 Missouri reservoirs during 1989–2007; most data were collected during May–August and provide a regional summary of summer conditions. Collectively, surface water temperature ranged from a mean of ~22 C in May to 28 C in July, and individual summer maxima typically were 28–32 C. Most (~95%) reservoirs stably stratify by mid-May, but few are deep enough to have hypolimnia with near-uniform temperatures. Among stratified reservoirs, maximum effective length and maximum depth accounted for 75% of the variation in mixed depth and thermocline depth. Ephemeral, near-surface thermoclines occurred in 39% of summer profiles and were most frequent in small, turbid reservoirs. Isotherms below the mixed layer deepen during stratification, and the water column is >20 C by August in all but the deepest reservoirs. Most reservoirs showed incipient dissolved oxygen (DO) depletion by mid-May, and by August, 80% of profiles had DO minima of 50% of variation in DO below the mixed layer during summer. Warm summer temperatures and widespread low DO often limit available fish habitat in Missouri reservoirs and compress warm-water fish communities into subsurface layers that exceed their thermal preferences. This study provides a regional baseline of reservoir temperature and oxygen conditions useful for future evaluations of eutrophication and the effects of a warming climate.

  14. Heavy oil reservoirs recoverable by thermal technology

    NASA Astrophysics Data System (ADS)

    Kujawa, P.

    1981-02-01

    Reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25(0) API gravity range and are susceptible to recovery by in situ combustion and steam drive are presented. The reservoirs for steam recovery are less than 2500 feet deep to comply with state of the art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collected from three source types: hands-on, once removed, and twice removed. In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. A complete listing of operators and projects is included as well as a bibliography of source material.

  15. Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow

    NASA Astrophysics Data System (ADS)

    Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne

    2014-05-01

    3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from

  16. Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing

    PubMed Central

    Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant

    2016-01-01

    Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876

  17. Volume sharing of reservoir water

    NASA Astrophysics Data System (ADS)

    Dudley, Norman J.

    1988-05-01

    Previous models optimize short-, intermediate-, and long-run irrigation decision making in a simplified river valley system characterized by highly variable water supplies and demands for a single decision maker controlling both reservoir releases and farm water use. A major problem in relaxing the assumption of one decision maker is communicating the stochastic nature of supplies and demands between reservoir and farm managers. In this paper, an optimizing model is used to develop release rules for reservoir management when all users share equally in releases, and computer simulation is used to generate an historical time sequence of announced releases. These announced releases become a state variable in a farm management model which optimizes farm area-to-irrigate decisions through time. Such modeling envisages the use of growing area climatic data by the reservoir authority to gauge water demand and the transfer of water supply data from reservoir to farm managers via computer data files. Alternative model forms, including allocating water on a priority basis, are discussed briefly. Results show lower mean aggregate farm income and lower variance of aggregate farm income than in the single decision-maker case. This short-run economic efficiency loss coupled with likely long-run economic efficiency losses due to the attenuated nature of property rights indicates the need for quite different ways of integrating reservoir and farm management.

  18. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  19. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  20. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  1. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Reservoir projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...

  2. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Reservoir projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...

  3. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Reservoir projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...

  4. Functional wettability in carbonate reservoirs

    DOE PAGES

    Brady, Patrick V.; Thyne, Geoffrey

    2016-10-11

    Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less

  5. Reservoir computing on the hypersphere

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    Reservoir Computing (RC) refers to a Recurrent Neural Network (RNNs) framework, frequently used for sequence learning and time series prediction. The RC system consists of a random fixed-weight RNN (the input-hidden reservoir layer) and a classifier (the hidden-output readout layer). Here, we focus on the sequence learning problem, and we explore a different approach to RC. More specifically, we remove the nonlinear neural activation function, and we consider an orthogonal reservoir acting on normalized states on the unit hypersphere. Surprisingly, our numerical results show that the system’s memory capacity exceeds the dimensionality of the reservoir, which is the upper bound for the typical RC approach based on Echo State Networks (ESNs). We also show how the proposed system can be applied to symmetric cryptography problems, and we include a numerical implementation.

  6. Effect of trans-reservoir water supply on carbon and nitrogen stable isotope composition in hydrologically connected reservoirs in China

    NASA Astrophysics Data System (ADS)

    Zhang, Huajun; Peng, Liang; Gu, Binhe; Han, Bo-Ping

    2017-09-01

    Dajingshan, Fenghuangshan and Meixi reservoirs are located in Zhuhai, a coastal city in southern China, and they function to supply drinking water to Zhuhai and Macau. For effectively supplying waster, they are hydrologically connected and Dajingshan Reservoir first receives the water pumped from the river at Guangchang Pumping Station, and then feeds Fenghuangshan Reservoir, and the two well-connected reservoirs are mesotrophic. Meixi Reservoir is a small and oligotrophic water body and feeds Dajingshan Reservoir only in wet seasons when overflow occurs. Particulate organic matter (POM) was collected from three hydrologically connected water supply reservoirs, and seasonal variations of POM were ascertained from stable carbon and nitrogen isotopes in wet and dry seasons, and the effects of pumping water and reservoir connectivity on POM variations and composition were demonstrated by the relationships of the stable isotope ratios of POM. Seasonality and similarity of stable carbon and nitrogen isotopes of POM varied with hydrodynamics, connectivity and trophic states of the four studied water bodies. The two well-connected reservoirs displayed more similar seasonality for δ13CPOM than those between the river station and the two reservoirs. However, the opposite seasonality appeared for δ15NPOM between the above waters and indicates different processes affecting the stable carbon and nitrogen isotopes of POM. δ13CPOM and δ15NPOM changed little between wet and dry seasons in Meixi Reservoir-a low productive and rain-driven system, suggesting little POM response to environmental changes in that water system. As expected, connectivity enhanced the similarity of the stable isotope ratios of POM between the water bodies.

  7. Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models

    USGS Publications Warehouse

    Saito, L.; Johnson, B.M.; Bartholow, J.; Hanna, R.B.

    2001-01-01

    We investigated the effects on the reservoir food web of a new temperature control device (TCD) on the dam at Shasta Lake, California. We followed a linked modeling approach that used a specialized reservoir water quality model to forecast operation-induced changes in phytoplankton production. A food web–energy transfer model was also applied to propagate predicted changes in phytoplankton up through the food web to the predators and sport fishes of interest. The food web–energy transfer model employed a 10% trophic transfer efficiency through a food web that was mapped using carbon and nitrogen stable isotope analysis. Stable isotope analysis provided an efficient and comprehensive means of estimating the structure of the reservoir's food web with minimal sampling and background data. We used an optimization procedure to estimate the diet proportions of all food web components simultaneously from their isotopic signatures. Some consumers were estimated to be much more sensitive than others to perturbations to phytoplankton supply. The linked modeling approach demonstrated that interdisciplinary efforts enhance the value of information obtained from studies of managed ecosystems. The approach exploited the strengths of engineering and ecological modeling methods to address concerns that neither of the models could have addressed alone: (a) the water quality model could not have addressed quantitatively the possible impacts to fish, and (b) the food web model could not have examined how phytoplankton availability might change due to reservoir operations.

  8. Geochemical analysis of reservoir continuity and connectivity, Arab-D and Hanifa Reservoirs, Abqaiq Field, Saudia Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdi, A.A.; Grover, G.; Hwang, R.

    1995-08-01

    Organic geochemistry and its integration with geologic and reservoir engineering data is becoming increasingly utilized to assist geologists and petroleum engineers in solving production related problems. In Abqaiq Field of eastern Saudi Arabia, gas chromatographic analysis (FSCOT) of produced oils from the Arab-D and Hanifa reservoirs was used to evaluate vertical and lateral continuity within and between these reservoirs. Bulk and molecular properties of produced Arab-D oils do not vary significantly over the 70 km length and 10 km width of the reservoir. Hanifa oils, however, do reflect two compositionally distinct populations that are hot in lateral communication, compatible withmore » the occurrence of a large oil pool in the southern part of the field, and a separate, and smaller northern accumulation. The Arab-D and underlying Hanifa oil pools are separated by over 450 feet of impermeable carbonates of the Jubaila Formation, yet the Southern Hanifa pool and the Arab-D have been in pressure communication since onset of Hanifa production in 1954. Recent borehole imaging and core data from horizontal Hanifa wells confirmed the long suspected occurrence of fractures responsible for fluid transmissibility within the porous (up to 35%) but tight (<10md matrix K) Hanifa reservoir, and between the Hanifa and Arab-D. The nearly identical hydrocarbon composition of oils from the Arab-D and southern Hanifa pool provided the final confirmation of fluid communication between the two reservoirs, and extension of a Hanifa fracture-fault network via the Jubaila Formation. This work lead to acquisition of 3-D seismic to image and map the fracture-fault system. The molecular fingerprinting approach demonstrated that produced oils can be used to evaluate vertical and lateral reservoir continuity, and at Abqaiq Field confirmed, in part, the need to produce the Hanifa reservoir via horizontal wells to arrest the reservoir communication that occurs with existing vertical wells.« less

  9. Ground-Water Contributions to Reservoir Storage and the Effect on Estimates of Firm Yield for Reservoirs in Massachusetts

    USGS Publications Warehouse

    Archfield, Stacey A.; Carlson, Carl S.

    2006-01-01

    Potential ground-water contributions to reservoir storage were determined for nine reservoirs in Massachusetts that had shorelines in contact with sand and gravel aquifers. The effect of ground water on firm yield was not only substantial, but furthermore, the firm yield of a reservoir in contact with a sand and gravel aquifer was always greater when the ground-water contribution was included in the water balance. Increases in firm yield ranged from 2 to 113 percent, with a median increase in firm yield of 10 percent. Additionally, the increase in firm yield in two reservoirs was greater than 85 percent. This study identified a set of equations that are based on an analytical solution to the ground-water-flow equation for the case of one-dimensional flow in a finite-width aquifer bounded by a linear surface-water feature such as a stream. These equations, which require only five input variables, were incorporated into an existing firm-yield-estimator (FYE) model, and the potential effect of ground water on firm yield was evaluated. To apply the FYE model to a reservoir in Massachusetts, the model requires that the drainage area to the reservoir be clearly defined and that some surface water flows into the reservoir. For surface-water-body shapes having a more realistic representation of a reservoir shoreline than a stream, a comparison of ground-water-flow rates simulated by the ground-water equations with flow rates simulated by a two-dimensional, finite-difference ground-water-flow model indicate that the agreement between the simulated flow rates is within ?10 percent when the ratio of the distance from the reservoir shoreline to the aquifer boundary to the length of shoreline in contact with the aquifer is between values of 0.5 and 3.5. Idealized reservoir-aquifer systems were assumed to verify that the ground-water-flow equations were implemented correctly into the existing FYE model; however, the modified FYE model has not been validated through a comparison

  10. Mathematical and field analysis of longitudinal reservoir infill

    NASA Astrophysics Data System (ADS)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  11. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece).

    PubMed

    Katsiapi, Matina; Moustaka-Gouni, Maria; Michaloudi, Evangelia; Kormas, Konstantinos Ar

    2011-10-01

    Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July-September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm³ l⁻¹). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir's water volume per day) driven by water withdrawal and occurring in pulses for a period of 15-25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both 'good' quality species and the tolerant to flushing 'nuisance' cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir's phytoplankton indicated a potential hazard for human health according to the World Health Organization.

  12. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    USGS Publications Warehouse

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  13. Rodent reservoirs of future zoonotic diseases

    PubMed Central

    Han, Barbara A.; Schmidt, John Paul; Bowden, Sarah E.; Drake, John M.

    2015-01-01

    The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States. PMID:26038558

  14. Numerical solution of fractured horizontal wells in shale gas reservoirs considering multiple transport mechanisms

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-long; Tang, Xu-chuan; Zhang, Lie-hui; Tang, Hong-ming; Tao, Zheng-Wu

    2018-06-01

    The multiscale pore size and specific gas storage mechanism in organic-rich shale gas reservoirs make gas transport in such reservoirs complicated. Therefore, a model that fully incorporates all transport mechanisms and employs an accurate numerical method is urgently needed to simulate the gas production process. In this paper, a unified model of apparent permeability was first developed, which took into account multiple influential factors including slip flow, Knudsen diffusion (KD), surface diffusion, effects of the adsorbed layer, permeability stress sensitivity, and ad-/desorption phenomena. Subsequently, a comprehensive mathematical model, which included the model of apparent permeability, was derived to describe gas production behaviors. Thereafter, on the basis of unstructured perpendicular bisection grids and finite volume method, a fully implicit numerical simulator was developed using Matlab software. The validation and application of the new model were confirmed using a field case reported in the literature. Finally, the impacts of related influencing factors on gas production were analyzed. The results showed that KD resulted in a negligible impact on gas production in the proposed model. The smaller the pore size was, the more obvious the effects of the adsorbed layer on the well production rate would be. Permeability stress sensitivity had a slight effect on well cumulative production in shale gas reservoirs. Adsorbed gas made a major contribution to the later flow period of the well; the greater the adsorbed gas content, the greater the well production rate would be. This paper can improve the understanding of gas production in shale gas reservoirs for petroleum engineers.

  15. 25 CFR 700.275 - Requests for access to records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... request, to gain access to his record or to any information pertaining to him which is contained in a... comprehensive to him, 5 U.S.C. 552a(d)(1). A request for access shall be submitted in accordance with the...

  16. How Darcy's equation is linked to the linear reservoir at catchment scale

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.

    2017-04-01

    In groundwater hydrology two simple linear equations exist that describe the relation between groundwater flow and the gradient that drives it: Darcy's equation and the linear reservoir. Both equations are empirical at heart: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they show similarity, without having detailed knowledge of the structure of the underlying aquifers it is not trivial to upscale Darcy's equation to the watershed scale. In this paper, a relatively simple connection is provided between the two, based on the assumption that the groundwater system is organized by an efficient drainage network, a mostly invisible pattern that has evolved over geological time scales. This drainage network provides equally distributed resistance to flow along the streamlines that connect the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance.

  17. basement reservoir geometry and properties

    NASA Astrophysics Data System (ADS)

    Walter, bastien; Geraud, yves; Diraison, marc

    2017-04-01

    Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre

  18. The Ogden Valley artesian reservoir

    USGS Publications Warehouse

    Thomas, H.E.

    1945-01-01

    Ogden Valley, in Weber County, Utah, contains an artesian reservoir from which the city of Ogden obtains all except a small part of its municipal water supply. A detailed investigation of the ground-water resources of Ogden Valley, and particularly of this artesian reservoir, was made by the Geological Survey, United States Department of the Interior, in cooperation with the city of Ogden between 1932 and 1934, and the results of this investigation have been reported by Leggette and Taylor.1 The present paper, which might be termed a sequel to that report, is based on data collected during those years, augmented by records that have been obtained (1935-1940) by the Geological Survey as part of a State-wide project in cooperation with the Utah State Engineer. The conclusions drawn from the study of these records and presented in detail in the following pages are as follows: (1) The artesian reservoir is filled to capacity nearly every year during the spring run-off from melting snow; (2) after the annual freshet, the recharge to the reservoir is insufficient to balance the discharge from artesian wells, which ordinarily is at a maximum during the summer; the reservoir is depleted and is not filled again until the following spring; (3) during the periods when the artesian reservoir is not full the rate of recharge is more or less proportional to the inflow to the valley by streams, except that rain on the recharge area may be of sufficient intensity to contribute some water by infiltration and deep penetration; and (4) the artesian reservoir thus serves to store water that would otherwise be lost to Great Salt Lake in the excess spring overflow, and available records indicate that water used by increased draft from wells would be replenished in normal years by increased recharge during the spring freshet.

  19. Improvements in the spatial representation of lakes and reservoirs in the contiguous United States for the National Water Model

    NASA Astrophysics Data System (ADS)

    Khan, S.; Salas, F.; Sampson, K. M.; Read, L. K.; Cosgrove, B.; Li, Z.; Gochis, D. J.

    2017-12-01

    The representation of inland surface water bodies in distributed hydrologic models at the continental scale is a challenge. The National Water Model (NWM) utilizes the National Hydrography Dataset Plus Version 2 (NHDPlusV2) "waterbody" dataset to represent lakes and reservoirs. The "waterbody" layer is a comprehensive dataset that represents surface water bodies using common features like lakes, ponds, reservoirs, estuaries, playas and swamps/marshes. However, a major issue that remains unresolved even in the latest revision of NHDPlus Version 2 is the inconsistency in waterbody digitization and delineation errors. Manually correcting the water body polygons becomes tedious and quickly impossible for continental-scale hydrologic models such as the NWM. In this study, we improved spatial representation of 6,802 lakes and reservoirs by analyzing 379,110 waterbodies in the contiguous United States (excluding the Laurentian Great Lakes). We performed a step-by- step process that integrates a set of geospatial analyses to identify, track, and correct the extent of lakes and reservoirs features that are larger than 0.75 km2. The following assumptions were applied while developing the new dataset: a) lakes and reservoirs cannot directly feed into each other; b) each waterbody must have one outlet; and c) a single lake or reservoir feature cannot have multiple parts. The majority of the NHDplusV2 waterbody features in the original dataset are delineated correctly. However approximately 3 % of the lake and reservoir polygons were found to be incorrect with topological errors and were corrected accordingly. It is important to fix these digitizing errors because the waterbody features are closely linked to the river topology. This new waterbody dataset will ensure that model-simulated water is directed into and through the lakes and reservoirs in a manner that supports the NWM code base and assumptions. The improved dataset will facilitate more effective integration of lakes

  20. Estimating the impacts of reservoir elevation changes on kokanee emergence in flaming Gorge Reservoir, Wyoming-Utah

    USGS Publications Warehouse

    Modde, T.; Jeric, R.J.; Hubert, W.A.; Gipson, R.D.

    1997-01-01

    Flaming Gorge Reservoir, like many western North American reservoirs, is managed to release water during the winter months to allow for water storage associated with melting snow and rain during spring. Decreases in reservoir elevation during winter can cause mortalities of kokanee Oncorhynchus nerka spawned along the shoreline the previous fall. This study compared data on depth distribution of embryos and depth-adjusted survival to estimate the relative survival of emergent kokanee at different depths and the effect of winter drawdown on the proportion of deposited eggs that survive to emergence. Estimates of decreases in kokanee survival to emergence were 8.3% and 38.1% for reservoir elevation reductions of 1.0 m and 5.0 m, respectively.

  1. Water quality of Rob Roy Reservoir and Lake Owen, Albany County, and Granite Springs and Crystal Lake Reservoirs, Laramie County, Wyoming, 1997-98

    USGS Publications Warehouse

    Ogle, Kathy Muller; Peterson, D.A.; Spillman, Bud; Padilla, Rosie

    1999-01-01

    The water quality of four reservoirs was assessed during 1997 and 1998 as a cooperative project between the Cheyenne Board of Public Utilities and the U. S. Geological Survey. The four reservoirs, Rob Roy, Lake Owen, Granite Springs, and Crystal Lake, provide approximately 75 percent of the public water supply for Cheyenne, Wyoming. Samples of water and bottom sediment were collected and analyzed for selected physical, chemical, and biological characteristics to provide data about the reservoirs. Water flows between the reservoirs through a series of pipelines and stream channels. The reservoirs differ in physical characteristics such as elevation, volume, and depth.Profiles of temperature, dissolved oxygen, specific conductance, and pH were examined. Three of the four reservoirs exhibited stratification during the summer. The profiles indicate that stratification develops in all reservoirs except Lake Owen. Stratification developed in Rob Roy, Granite Springs, and Crystal Lake Reservoirs by mid-July in 1998 and continued until September, with the thickness of the epilimnion increasing during that time. Secchi disk readings indicated Rob Roy Reservoir had the clearest water of the four reservoirs studied.The composition of the phytoplankton community was different in the upper two reservoirs from that in the lower two reservoirs. Many of the species found in Rob Roy Reservoir and Lake Owen are associated with oligotrophic, nutrient-poor conditions. In contrast, many of the species found in Granite Springs and Crystal Lake Reservoirs are associated with mesotrophic or eutrophic conditions. The total number of taxa identified also increased downstream.The chemical water type in the reservoirs was similar, but dissolved-solids concentrations were greater in the downstream reservoirs. Water in all four reservoirs was a calcium-bicarbonate type. In the fall of 1997, Rob Roy Reservoir had the lowest dissolved-solids concentration (19 milligrams per liter), whereas

  2. Niobrara Discrete Fracture Network: From Outcrop Surveys to Subsurface Reservoir Models

    NASA Astrophysics Data System (ADS)

    Grechishnikova, Alena

    Heterogeneity of an unconventional reservoir is one of the main factors affecting production. Well performance depends on the size and efficiency of the interconnected fracture "plumbing system", as influenced by multistage hydraulic fracturing. A complex, interconnected natural fracture network can significantly increase the size of stimulated reservoir volume, provide additional surface area contact and enhance permeability. In 2013 the Reservoir Characterization Project (RCP) at the Colorado School of Mines began Phase XV to study Niobrara shale reservoir management. Anadarko Petroleum Corporation and RCP jointly acquired time-lapse multicomponent seismic data in Wattenberg Field, Denver Basin. Anadarko also provided RCP with a regional 3D seismic survey and a rich well dataset. The purpose of this study is to characterize the natural fracture patterns occurring in the unconventional Niobrara reservoir and to determine the drivers that influenced fracture trends and distributions. The findings are integrated into a reservoir model though DFN (Discrete Fracture Network) for further prediction of reservoir performance using reservoir simulations. Aiming to better understand the complexity of the natural fracture system I began my fracture analysis work at an active mine site that provides a Niobrara exposure. Access to a "fresh" outcrop surface created a perfect natural laboratory. Ground-based LIDAR and photogrammetry facilitated construction of a geological model and a DFN model for the mine site. The work was carried into subsurface where the information gained served to improve reservoir characterization at a sub-seismic scale and can be used in well planning. I then embarked on a challenging yet essential task of outcrop-to-subsurface data calibration and application to RCP's Wattenberg Field study site. In this research the surface data was proven to be valid for comparative use in the subsurface. The subsurface fracture information was derived from image

  3. Functional age as an indicator of reservoir senescence

    USGS Publications Warehouse

    Miranda, Leandro E.; Krogman, R. M.

    2015-01-01

    It has been conjectured that reservoirs differ in the rate at which they manifest senescence, but no attempt has been made to find an indicator of senescence that performs better than chronological age. We assembled an indicator of functional age by creating a multimetric scale consisting of 10 metrics descriptive of reservoir environments that were expected to change directionally with reservoir senescence. In a sample of 1,022 U.S. reservoirs, chronological age was not correlated with functional age. Functional age was directly related to percentage of cultivated land in the catchment and inversely related to reservoir depth. Moreover, aspects of reservoir fishing quality and fish population characteristics were related to functional age. A multimetric scale to indicate reservoir functional age presents the possibility for management intervention from multiple angles. If a reservoir is functionally aging at an accelerated rate, action may be taken to remedy the conditions contributing most to functional age. Intervention to reduce scores of selected metrics in the scale can potentially reduce the rate of senescence and increase the life expectancy of the reservoir. This leads to the intriguing implication that steps can be taken to reduce functional age and actually make the reservoir grow younger.

  4. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    USGS Publications Warehouse

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water

  5. CarbonSAFE Rocky Mountain Phase I : Seismic Characterization of the Navajo Reservoir, Buzzard Bench, Utah

    NASA Astrophysics Data System (ADS)

    Haar, K. K.; Balch, R. S.; Lee, S. Y.

    2017-12-01

    The CarbonSAFE Rocky Mountain project team is in the initial phase of investigating the regulatory, financial and technical feasibility of commercial-scale CO2 capture and storage from two coal-fired power plants in the northwest region of the San Rafael Swell, Utah. The reservoir interval is the Jurassic Navajo Sandstone, an eolian dune deposit that at present serves as the salt water disposal reservoir for Ferron Sandstone coal-bed methane production in the Drunkards Wash field and Buzzard Bench area of central Utah. In the study area the Navajo sandstone is approximately 525 feet thick and is at an average depth of about 7000 feet below the surface. If sufficient porosity and permeability exist, reservoir depth and thickness would provide storage for up to 100,000 metric tonnes of CO2 per square mile, based on preliminary estimates. This reservoir has the potential to meet the DOE's requirement of having the ability to store at least 50 million metric tons of CO2 and fulfills the DOE's initiative to develop protocols for commercially sequestering carbon sourced from coal-fired power plants. A successful carbon storage project requires thorough structural and stratigraphic characterization of the reservoir, seal and faults, thereby allowing the creation of a comprehensive geologic model with subsequent simulations to evaluate CO2/brine migration and long-term effects. Target formation lithofacies and subfacies data gathered from outcrop mapping and laboratory analysis of core samples were developed into a geologic model. Synthetic seismic was modeled from this, allowing us to seismically characterize the lithofacies of the target formation. This seismic characterization data was then employed in the interpretation of 2D legacy lines which provided stratigraphic and structural control for more accurate model development of the northwest region of the San Rafael Swell. Developing baseline interpretations such as this are crucial toward long-term carbon storage

  6. It Matters Whether Reading Comprehension Is Conceptualised as Rate or Accuracy

    ERIC Educational Resources Information Center

    Rønberg, Louise Flensted; Petersen, Dorthe Klint

    2016-01-01

    This study shows that it makes a difference whether accuracy measures or rate measures are used when assessing reading comprehension. When the outcome is reading comprehension accuracy (i.e., the number of correct responses), word reading skills (measured as access to orthographic representations) account for a modest amount of the variance in the…

  7. Accessing and Selecting Word Meaning in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Henderson, L. M.; Clarke, P. J.; Snowling, M. J.

    2011-01-01

    Background: Comprehension difficulties are commonly reported in autism spectrum disorder (ASD) but the causes of these difficulties are poorly understood. This study investigates how children with ASD access and select meanings of ambiguous words to test four hypotheses regarding the nature of their comprehension difficulties: semantic deficit,…

  8. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  9. [Distribution and pollution assessment of heavy metals in soil of relocation areas from the Danjiangkou Reservoir].

    PubMed

    Zhang, Lei; Qin, Yan-Wen; Zheng, Bing-Hui; Shi, Yao; Han, Chao-Nan

    2013-01-01

    The aim of this article is to explore the pollution level and potential ecological risk of heavy metals in soil of the relocation areas from the Danjiangkou Reservoir. The contents and spatial distribution of Cd, Pb, Cu, Zn, Cr and As in soil of the relocation areas from the Danjiangkou Reservoir were analyzed. The integrated pollution index and potential ecological risk index were used to evaluate the contamination degree and potential ecological risk of these elements. The results indicated that the average contents of Cd, Pb, Cu, Zn, Cr and As in the samples were 0.61, 23.11, 58.25, 22.65, 58.99 and 16.95 mg x kg(-1), respectively. Compared with the background value of soils from Henan province, all these 6 elements except Zn were enriched to some extent, especially Cd. Similar patterns were observed for the spatial distribution of Cu, Zn, and Pb. Compared with the contents of heavy metals in surface sediments of the typical domestic reservoirs, Cd and As in soil of the relocation areas from the Danjiangkou Reservoir were heavily accumulated. The correlation analysis showed that there were significant positive correlations among Pb, Cu, and Zn. And there was also significant positive correlation between Cr and Pb. In contrast, negative correlation was found between Cr and As. To sum up, the comprehensive assessment results showed that Cd was the primary element with high ecological risk.

  10. Cue-dependent interference in comprehension

    PubMed Central

    Van Dyke, Julie A.

    2011-01-01

    The role of interference as a primary determinant of forgetting in memory has long been accepted, however its role as a contributor to poor comprehension is just beginning to be understood. The current paper reports two studies, in which speed-accuracy tradeoff and eye-tracking methodologies were used with the same materials to provide converging evidence for the role of syntactic and semantic cues as mediators of both proactive (PI) and retroactive interference (RI) during comprehension. Consistent with previous work (e.g., Van Dyke & Lewis, 2003), we found that syntactic constraints at the retrieval site are among the cues that drive retrieval in comprehension, and that these constraints effectively limit interference from potential distractors with semantic/pragmatic properties in common with the target constituent. The data are discussed in terms of a cue-overload account, in which interference both arises from and is mediated through a direct-access retrieval mechanism that utilizes a linear, weighted cue-combinatoric scheme. PMID:21927535

  11. Limno-reservoirs as a new landscape, environmental and touristic resource: Pareja Limno-reservoir as a case of study (Guadalajara, Spain)

    NASA Astrophysics Data System (ADS)

    Díaz-Carrión, I.; Sastre-Merlín, A.; Martínez-Pérez, S.; Molina-Navarro, E.; Bienes-Allas, R.

    2012-04-01

    A limno-reservoir is a hydrologic infrastructure with the main goal of generating a body of water with a constant level in the riverine zone of a reservoir, building a dam that makes de limno-reservoir independent from the main body of water. This dam can be built in the main river supplying the reservoir or any tributary as well flowing into it. Despite its novel conception and design, around a dozen are already operative in some Spanish reservoirs. This infrastructure allows the new water body to be independent of the main reservoir management, so the water level stability is its main distinctive characteristic. It leads to the development of environmental, sports and cultural initiatives; which may be included in a touristic exploitation in a wide sense. An opinion poll was designed in 2009 to be carried out the Pareja Limno-reservoir (Entrepeñas reservoir area, Tajo River Basin, central Spain). The results showed that for both, Pareja inhabitants and occasional visitors, the limno-reservoir has become an important touristic resource, mainly demanded during summer season. The performance of leisure activities (especially swimming) are being the main brand of this novel hydraulic and environmental infrastructure, playing a role as corrective and/or compensatory action which is needed to apply in order to mitigate the environmental impacts of the large hydraulic constructions.

  12. Building more realistic reservoir optimization models using data mining - A case study of Shelbyville Reservoir

    NASA Astrophysics Data System (ADS)

    Hejazi, Mohamad I.; Cai, Ximing

    2011-06-01

    In this paper, we promote a novel approach to develop reservoir operation routines by learning from historical hydrologic information and reservoir operations. The proposed framework involves a knowledge discovery step to learn the real drivers of reservoir decision making and to subsequently build a more realistic (enhanced) model formulation using stochastic dynamic programming (SDP). The enhanced SDP model is compared to two classic SDP formulations using Lake Shelbyville, a reservoir on the Kaskaskia River in Illinois, as a case study. From a data mining procedure with monthly data, the past month's inflow ( Qt-1 ), current month's inflow ( Qt), past month's release ( Rt-1 ), and past month's Palmer drought severity index ( PDSIt-1 ) are identified as important state variables in the enhanced SDP model for Shelbyville Reservoir. When compared to a weekly enhanced SDP model of the same case study, a different set of state variables and constraints are extracted. Thus different time scales for the model require different information. We demonstrate that adding additional state variables improves the solution by shifting the Pareto front as expected while using new constraints and the correct objective function can significantly reduce the difference between derived policies and historical practices. The study indicates that the monthly enhanced SDP model resembles historical records more closely and yet provides lower expected average annual costs than either of the two classic formulations (25.4% and 4.5% reductions, respectively). The weekly enhanced SDP model is compared to the monthly enhanced SDP, and it shows that acquiring the correct temporal scale is crucial to model reservoir operation for particular objectives.

  13. Assessment of reservoir system variable forecasts

    NASA Astrophysics Data System (ADS)

    Kistenmacher, Martin; Georgakakos, Aris P.

    2015-05-01

    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.

  14. The skin reservoir of sulphur mustard.

    PubMed

    Hattersley, I J; Jenner, J; Dalton, C; Chilcott, R P; Graham, J S

    2008-09-01

    Studies of the percutaneous reservoir of sulphur mustard (HD) formed during absorption carried out during WWI and WWII are inconclusive. More recent studies have indicated that a significant amount of unreacted HD remains in human epidermal membranes during percutaneous penetration studies in vitro. The present study investigated the nature and persistence of the HD reservoir formed during in vitro penetration studies using dermatomed slices of human and pig skin (0.5mm thick). Amounts of (14)C-HD that (a) penetrated, (b) remained on the surface, (c) were extractable from and (d) remained in the skin after extraction were estimated by liquid scintillation counting (confirmed using GC-MS analysis). The results demonstrated that there is a reservoir of HD in human and pig skin for up to 24 h after contamination of the skin surface in vitro with liquid agent. At least some of this reservoir could be extracted with acetonitrile, and the amounts of extracted and unextracted HD exceed the amount required to produce injury in vivo by at least 20 fold. The study demonstrated the presence of a reservoir whether the skin was covered (occluded) or left open to the air (unoccluded). The study concluded that the extractable reservoir was significant in terms of the amount of HD required to induce a vesicant response in human skin. The extractable reservoir was at least 20 times the amount required per cm(2) estimated to cause a response in all of the human population, as defined by studies carried out in human volunteers during the 1940s.

  15. 33 CFR 110.77 - Amistad Reservoir, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Amistad Reservoir, Tex. 110.77... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77 Amistad Reservoir, Tex. (a) Diablo East, Tex. That portion of the Amistad Reservoir enclosed by a line connecting the following points, excluding a 300-foot...

  16. Mercury speciation in the Valdeazogues River-La Serena Reservoir system: influence of Almadén (Spain) historic mining activities.

    PubMed

    Berzas Nevado, Juan J; Rodríguez Martín-Doimeadios, Rosa C; Moreno, María Jiménez

    2009-03-15

    Mercury (Hg) speciation and partitioning have been investigated in a river-reservoir system impacted by the Almadén mining activities, the world's largest Hg district. This study is the first to simultaneously investigate Hg dynamics from above the mining district and into the La Serena Reservoir (3219 Hm(3)), being the third largest reservoir in Europe and the largest in Spain. Water, sediment and biota were sampled at different seasons during a 2-year study from the Valdeazogues River, which flows east-west from the mining District, to La Serena Reservoir. Simultaneously, a comprehensive study was undertaken to determine the influence of some major physico-chemical parameters that potentially influence the fate of Hg within the watershed. Concentrations of dissolved Hg in water were below 0.14 microg/L, whereas particulate Hg ranged from 0.1 to 87 microg/g, with significant seasonal variation. Total Hg concentrations varied from 7 to 74 microg/g in sediment from the Valdeazogues River, while in sediments from La Serena Reservoir were below 2 microg/g. On the other hand, methyl-Hg reached concentrations up to 0.3 ng/L in water and 6 ng/g in sediment from La Serena Reservoir, whereas maximum concentrations in Valdeazogues River were 5 ng/L and 880 ng/g in water and sediment, respectively. The distribution of Hg species in the Valdeazogues River-La Serena Reservoir system indicated a source of Hg from the mine waste distributed along the river. Total Hg in water was strongly correlated with total dissolved solids and chlorophyll a concentrations, whereas organic carbon and Fe concentrations seem to play a role in methylation of inorganic Hg in sediment. Total Hg concentrations were low in fish from Valdeazogues River (0.8-8.6 ng/g, wet weight) and bivalves from La Serena Reservoir (10-110 ng/g, wet weight), but most was present as methyl-Hg.

  17. Method of extracting heat from dry geothermal reservoirs

    DOEpatents

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  18. The Impact of Corps Flood Control Reservoirs in the June 2008 Upper Mississippi Flood

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Stiman, J. A.

    2008-12-01

    The US Army Corps of Engineers is responsible for a multitude of flood control project on the Mississippi River and its tributaries, including levees that protect land from flooding, and dams to help regulate river flows. The first six months of 2008 were the wettest on record in the upper Mississippi Basin. During the first 2 weeks of June, rainfall over the Midwest ranged from 6 to as much as 16 inches, overwhelming the flood protection system, causing massive flooding and damage. Most severely impacted were the States of Iowa, Illinois, Indiana, Missouri, and Wisconsin. In Iowa, flooding occurred on almost every river in the state. On the Iowa River, record flooding occurred from Marshalltown, Iowa, downstream to its confluence with the Mississippi River. At several locations, flooding exceeded the 500-year event. The flooding affected agriculture, transportation, and infrastructure, including homes, businesses, levees, and other water-control structures. It has been estimated that there was at least 7 billion dollars in damages. While the flooding in Iowa was extraordinary, Corps of Engineers flood control reservoirs helped limit damage and prevent loss of life, even though some reservoirs were filled beyond their design capacity. Coralville Reservoir on the Iowa River, for example, filled to 135% of its design flood storage capacity, with stage a record five feet over the crest of the spillway. In spite of this, the maximum reservoir release was limited to 39,500 cfs, while a peak inflow of 57,000 cfs was observed. CWMS, the Corps Water Management System, is used to help regulate Corps reservoirs, as well as track and evaluate flooding and flooding potential. CWMS is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data

  19. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  20. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation

    PubMed Central

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (x¯), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir. PMID:26992168

  1. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation.

    PubMed

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (mean), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir.

  2. Reservoir description is key to steamflood planning and implementation, Webster Reservoir, Midway-Sunset Field, Kern County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, B.R.; Link, M.H.

    1988-01-01

    The Webster reservoir at Midway-Sunset field, Kern County, California, is an unconsolidated sand reservoir of Miocene age (''Stevens equivalent,'' Monterey Formation). The Webster was discovered in 1910 but, due to poor heavy oil (14/sup 0/ API) economics, development for primary production and subsequent enhanced recovery were sporadic. Currently, the reservoir produces by cyclic steam stimulation in approximately 35 wells. Cumulative oil production for the Webster since 1910 is about 13 million bbl. The Webster is subdivided into two reservoirs - the Webster Intermediate and Webster Main. The Webster Intermediate directly overlies the Webster Main in one area but it ismore » separated by up to 300 ft of shale elsewhere. The combined thickness of both Webster reservoirs averages 250 ft and is located at a drilling depth of 1,100-1,800 ft. From evaluation of modern core data and sand distribution maps, the Webster sands are interpreted to have been deposited by turbidity currents that flowed from southwest to northeast in this area. Oil is trapped in the Webster reservoir where these turbidites were subsequently folded on a northwest-southeast-trending anticline. Detailed recorrelation on wireline logs, stratigraphic zonation, detailed reservoir description by zone, and sedimentary facies identification in modern cores has led to development of a geologic model for the Webster. This model indicates that the Webster Intermediate was deposited predominately by strongly channelized turbidity currents, resulting in channel-fill sands, and that the Webster Main was deposited by less restricted flows, resulting in more lobate deposits.« less

  3. Reservoir Models for Gas Hydrate Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Boswell, R.

    2016-12-01

    Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple

  4. Features and selection of vascular access devices.

    PubMed

    Sansivero, Gail Egan

    2010-05-01

    To review venous anatomy and physiology, discuss assessment parameters before vascular access device (VAD) placement, and review VAD options. Journal articles, personal experience. A number of VAD options are available in clinical practice. Access planning should include comprehensive assessment, with attention to patient participation in the planning and selection process. Careful consideration should be given to long-term access needs and preservation of access sites. Oncology nurses are uniquely suited to perform a key role in VAD planning and placement. With knowledge of infusion therapy, anatomy and physiology, device options, and community resources, nurses can be key leaders in preserving vascular access and improving the safety and comfort of infusion therapy. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Addressing the Needs of Transgender Military Veterans: Better Access and More Comprehensive Care.

    PubMed

    Dietert, Michelle; Dentice, Dianne; Keig, Zander

    2017-01-01

    Purpose: There is a gap in social science literature addressing issues of access and quality of care for transgender military veterans. Psychologists, medical doctors, and other health professionals are beginning to address some of the barriers present in the Department of Veterans Affairs (VA) system that affect veterans who are also transgender and intersex. Over a 7-year period, between 2006 and 2013, 2600 transgender veterans were served by the VA. Data from several surveys revealed that most transgender veterans perceive the Veterans Health Administration (VHA) to be less than accommodating for their special needs. The goal of this study was to investigate the experiences of a sample of transgender veterans with regard to their experiences with healthcare services provided by the VHA. Methods: Using snowball sampling techniques, we were able to recruit 22 transgender military veterans to participate in our study. A combination of telephone interviews and questionnaires provided data from veterans in various branches of the military throughout the United States. Results: Findings indicate that even though the VHA is working to address issues of inequality for transgender veterans, our participants indicated that there are still some problems with administration of care, proper training of staff and physicians, and availability of comprehensive services for the unique healthcare needs of transgender individuals. Conclusion: Since our data were collected, the VA has worked to bridge the gap by focusing on increased training for VHA providers and staff and establishing LGBT programs at VA facilities. However, we suggest that one key area of importance should continue to focus on how mental health and medical providers and ancillary staff are trained to interact with and provide care for their transgender patients.

  6. Reservoir-Based Drug Delivery Systems Utilizing Microtechnology

    PubMed Central

    Stevenson, Cynthia L.; Santini, John T.; Langer, Robert

    2012-01-01

    This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783

  7. Adolescents and access to health care.

    PubMed Central

    Klein, J. D.; Slap, G. B.; Elster, A. B.; Cohn, S. E.

    1993-01-01

    The developmental characteristics and health behaviors of adolescents make the availability of certain services--including reproductive health services, diagnosis and treatment of sexually transmitted disease, mental health and substance abuse counseling and treatment--critically important. Furthermore, to serve adolescents appropriately, services must be available in a wide range of health care settings, including community-based adolescent health, family planning and public health clinics, school-based and school-linked health clinics, physicians' offices, HMOs, and hospitals. National, authoritative content standards (for example, the American Medical Association's Guidelines for Adolescent Preventive Services (GAPS), a multispecialty, interdisciplinary guideline for a package of clinical preventive services for adolescents may increase the possibility that insurers will cover adolescent preventive services, and that these services will become part of health professionals' curricula and thus part of routine practice. However, additional and specific guidelines mandating specific services that must be available to adolescents in clinical settings (whether in schools or in communities) are also needed. Although local government, parents, providers, and schools must assume responsibility for ensuring that health services are available and accessible to adolescents, federal and state financing mandates are also needed to assist communities and providers in achieving these goals. The limitations in what even comprehensive programs currently are able to provide, and the dismally low rates of preventive service delivery to adolescents, suggests that adolescents require multiple points of access to comprehensive, coordinated services, and that preventive health interventions must be actively and increasingly integrated across health care, school, and community settings. Unless access issues are dealt with in a rational, coordinated fashion, America's adolescents will

  8. Reservoir area of influence and implications for fisheries management

    USGS Publications Warehouse

    Martin, Dustin R.; Chizinski, Christopher J.; Pope, Kevin L.

    2015-01-01

    Understanding the spatial area that a reservoir draws anglers from, defined as the reservoir's area of influence, and the potential overlap of that area of influence between reservoirs is important for fishery managers. Our objective was to define the area of influence for reservoirs of the Salt Valley regional fishery in southeastern Nebraska using kernel density estimation. We used angler survey data obtained from in-person interviews at 17 reservoirs during 2009–2012. The area of influence, defined by the 95% kernel density, for reservoirs within the Salt Valley regional fishery varied, indicating that anglers use reservoirs differently across the regional fishery. Areas of influence reveal angler preferences in a regional context, indicating preferred reservoirs with a greater area of influence. Further, differences in areas of influences across time and among reservoirs can be used as an assessment following management changes on an individual reservoir or within a regional fishery. Kernel density estimation provided a clear method for creating spatial maps of areas of influence and provided a two-dimensional view of angler travel, as opposed to the traditional mean travel distance assessment.

  9. Current in nanojunctions: Effects of reservoir coupling

    NASA Astrophysics Data System (ADS)

    Yadalam, Hari Kumar; Harbola, Upendra

    2018-07-01

    We study the effect of system reservoir coupling on currents flowing through quantum junctions. We consider two simple double-quantum dot configurations coupled to two external fermionic reservoirs and study the net current flowing between the two reservoirs. The net current is partitioned into currents carried by the eigenstates of the system and by the coherences between the eigenstates induced due to coupling with the reservoirs. We find that current carried by populations is always positive whereas current carried by coherences are negative for large couplings. This results in a non-monotonic dependence of the net current on the coupling strength. We find that in certain cases, the net current can vanish at large couplings due to cancellation between currents carried by the eigenstates and by the coherences. These results provide new insights into the non-trivial role of system-reservoir couplings on electron transport through quantum dot junctions. In the presence of weak coulomb interactions, net current as a function of system reservoir coupling strength shows similar trends as for the non-interacting case.

  10. Bathymetric contours of Breckenridge Reservoir, Quantico, Virginia

    USGS Publications Warehouse

    Wicklein, S.M.; Lotspeich, R.R.; Banks, R.B.

    2012-01-01

    Breckenridge Reservoir, built in 1938, is fed by Chopawamsic Creek and South Branch Chopawamsic Creek. The Reservoir is a main source of drinking water for the U.S. Marine Corps (USMC) Base in Quantico, Virginia. The U.S. Geological Survey (USGS), in cooperation with the USMC, conducted a bathymetric survey of Breckenridge Reservoir in March 2009. The survey was conducted to provide the USMC Natural Resources and Environmental Affairs (NREA) with information regarding reservoir storage capacity and general bathymetric properties. The bathymetric survey can provide a baseline for future work on sediment loads and deposition rates for the reservoir. Bathymetric data were collected using a boat-mounted Wide Area Augmentation System (WAAS) differential global positioning system (DGPS), echo depth-sounding equipment, and computer software. Data were exported into a geographic information system (GIS) for mapping and calculating area and volume. Reservoir storage volume at the time of the survey was about 22,500,000 cubic feet (517 acre-feet) with a surface area of about 1,820,000 square feet (41.9 acres).

  11. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanks, Catherine

    and less reduction when saturated with saline water. This reduction in relative permeability can be explained by formation of ice crystals in the center of pores. Theoretically, the radius of ice formed in the center of the pore can be determined using the Kozeny–Carman Equation by assuming the pores and pore throats as a cube with ‘N’ identical parallel pipes embedded in it. Using the values of kro obtained from the experimental work as input to the Kozeny–Carman Equation at -10ºC, the radius of ice crystals dropped from 0.145 μm to 0.069 μm when flooding-water salinity is increased to 6467 ppm. This explains the reduction of relative permeability with decreasing salinity but does not take into consideration other effects such as variations in pore throat structure. In addition, fluids like deionized water, saline water, and antifreeze (a mixture of 60% ethylene or propylene glycol with 40% water) were tested to find the best flooding agent for frozen reservoirs. At 0ºC, 9% greater recovery was observed with antifreeze was used as a flooding agent as compared to using saline water. Antifreeze showed 48% recovery even at -10ºC, at which temperature the rest of the fluids failed to increase production. Preliminary evaluation of drilling fluids indicate that the brine-based muds caused significantly less swelling in the Umiat reservoir sands when compared to fresh-water based muds. However since freezing filtrate is another cause of formation damage, a simple water-based-mud may not a viable option. It is recommended that new fluids be tested, including different salts, brines, polymers and oil-based fluids. These fluids should be tested at low temperatures in order to determine the potential for formation damage, the fluid properties under these conditions and to ensure that the freezing point is below that of the reservoir. In order to reduce the surface footprint while accessing the maximum amount of the Lower Grandstand interval, simulations used

  12. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS.

    PubMed

    Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M

    2016-11-01

    The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.

  13. Petrophysics Features of the Hydrocarbon Reservoirs in the Precambrian Crystalline Basement

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina

    2014-05-01

    A prerequisite for determining the distribution patterns of reservoir zones on the section of crystalline basement (CB) is the solution of a number of problems connected with the study of the nature and structure of empty spaces of reservoirs with crystalline basement (CB) and the impact of petrological, and tectonic factors and the intensity of the secondary transformation of rocks. We decided to choose the Novoelhovskaya well # 20009 as an object of our research because of the following factors. Firstly, the depth of the drilling of the Precambrian crystalline rocks was 4077 m ( advance heading - 5881 m) and it is a maximum for the Volga-Urals region. Secondly, petrographic cut of the well is made on core and waste water, and the latter was sampled regularly and studied macroscopically. Thirdly, a wide range of geophysical studies were performed for this well, which allowed to identify promising areas of collector with high probability. Fourth, along with geological and technical studies that were carried out continuously (including washing and bore hole redressing periods), the studies of the gaseous component of deep samples of clay wash were also carried out, which indirectly helped us estimate reservoir properties and fluid saturation permeable zones. As a result of comprehensive analysis of the stone material and the results of the geophysical studies we could confidently distinguish 5 with strata different composition and structure in the cut of the well. The dominating role in each of them is performed by rocks belonging to one of the structural-material complexes of Archean, and local variations in composition and properties are caused by later processes of granitization on different stages and high temperature diaphthoresis imposed on them. Total capacity of reservoir zones identified according to geophysical studies reached 1034.2 m, which corresponds to 25.8% of the total capacity of 5 rock masses. However, the distribution of reservoirs within the cut

  14. Bathymetry and capacity of Shawnee Reservoir, Oklahoma, 2016

    USGS Publications Warehouse

    Ashworth, Chad E.; Smith, S. Jerrod; Smith, Kevin A.

    2017-02-13

    Shawnee Reservoir (locally known as Shawnee Twin Lakes) is a man-made reservoir on South Deer Creek with a drainage area of 32.7 square miles in Pottawatomie County, Oklahoma. The reservoir consists of two lakes connected by an equilibrium channel. The southern lake (Shawnee City Lake Number 1) was impounded in 1935, and the northern lake (Shawnee City Lake Number 2) was impounded in 1960. Shawnee Reservoir serves as a municipal water supply, and water is transferred about 9 miles by gravity to a water treatment plant in Shawnee, Oklahoma. Secondary uses of the reservoir are for recreation, fish and wildlife habitat, and flood control. Shawnee Reservoir has a normal-pool elevation of 1,069.0 feet (ft) above North American Vertical Datum of 1988 (NAVD 88). The auxiliary spillway, which defines the flood-pool elevation, is at an elevation of 1,075.0 ft.The U.S. Geological Survey (USGS), in cooperation with the City of Shawnee, has operated a real-time stage (water-surface elevation) gage (USGS station 07241600) at Shawnee Reservoir since 2006. For the period of record ending in 2016, this gage recorded a maximum stage of 1,078.1 ft on May 24, 2015, and a minimum stage of 1,059.1 ft on April 10–11, 2007. This gage did not report reservoir storage prior to this report (2016) because a sufficiently detailed and thoroughly documented bathymetric (reservoir-bottom elevation) survey and corresponding stage-storage relation had not been published. A 2011 bathymetric survey with contours delineated at 5-foot intervals was published in Oklahoma Water Resources Board (2016), but that publication did not include a stage-storage relation table. The USGS, in cooperation with the City of Shawnee, performed a bathymetric survey of Shawnee Reservoir in 2016 and released the bathymetric-survey data in 2017. The purposes of the bathymetric survey were to (1) develop a detailed bathymetric map of the reservoir and (2) determine the relations between stage and reservoir storage

  15. Fish habitat degradation in U.S. reservoirs

    USGS Publications Warehouse

    Miranda, L.E.; Spickard, M.; Dunn, T.; Webb, K.M.; Aycock, J.N.; Hunt, K.

    2010-01-01

    As the median age of the thousands of large reservoirs (> 200 ha) in the United States tops 50, many are showing various signs of fish habitat degradation. Our goal was to identify major factors degrading fish habitat in reservoirs across the country, and to explore regional degradation patterns. An online survey including 14 metrics was scored on a 0 (no degradation) to 5 (high degradation) point scale by 221 fisheries scientists (92% response rate) to describe degradation in 482 reservoirs randomly distributed throughout the continental United States. The highest scored sources of degradation were lack of aquatic macrophytes (41% of the reservoirs scored as 4-5), lack or loss of woody debris (35% scored 4-5), mistimed water level fluctuations (34% scored 4-5), and sedimentation (31% scored 4-5). Factor analysis identified five primary degradation factors that accounted for most of the variability in the 14 degradation metrics. The factors reflected siltation, structural habitat, eutrophication, water regime, and aquatic plants. Three degradation factors were driven principally by in-reservoir processes, whereas the other two were driven by inputs from the watershed. A comparison across U.S. regions indicated significant geographical differences in degradation relative to the factors emphasized by each region. Reservoirs sometimes have been dismissed as unnatural and disruptive, but they are a product of public policy, a critical feature of landscapes, and they cannot be overlooked if managers are to effectively conserve river systems. Protection and restoration of reservoir habitats may be enhanced with a broader perspective that includes watershed management, in addition to in reservoir activities.

  16. Analysis and application of classification methods of complex carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  17. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2001-08-08

    of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.« less

  18. Identification and evaluation of fluvial-dominated deltaic (Class I oil) reservoirs in Oklahoma. Final report, August 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma have engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program included a systematic and comprehensive collection and evaluation of information on all FDD oil reservoirs in Oklahoma and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. The execution of this project was approached in phases. The first phase began in January, 1993 and consisted of planning, play identificationmore » and analysis, data acquisition, database development, and computer systems design. By the middle of 1994, many of these tasks were completed or nearly finished including the identification of all FDD reservoirs in Oklahoma, data collection, and defining play boundaries. By early 1995, a preliminary workshop schedule had been developed for project implementation and technology transfer activities. Later in 1995, the play workshop and publication series was initiated with the Morrow and the Booch plays. Concurrent with the initiation of the workshop series was the opening of a computer user lab that was developed for use by the petroleum industry. Industry response to the facility initially was slow, but after the first year lab usage began to increase and is sustaining. The remaining six play workshops were completed through 1996 and 1997, with the project ending on December 31, 1997.« less

  19. Applicability of WRF-Lake System in Studying Reservoir-Induced Impacts on Local Climate: Case Study of Two Reservoirs with Contrasting Characteristics

    NASA Astrophysics Data System (ADS)

    Wang, F.; Zhu, D.; Ni, G.; Sun, T.

    2017-12-01

    Large reservoirs play a key role in regional hydrological cycles as well as in modulating the local climate. The emerging large reservoirs in concomitant with rapid hydropower exploitation in southwestern China warrant better understanding of their impacts on local and regional climates. One of the crucial pathways through which reservoirs impact the climate is lake-atmospheric interaction. Although such interactions have been widely studied with numeric weather prediction (NWP) models, an outstanding limitation across various NWPs resides on the poor thermodynamic representation of lakes. The recent version of Weather Research and Forecasting (WRF) system has been equipped with a one-dimensional lake model to better represent the thermodynamics of large water body and has been shown to enhance the its predication skill in the lake-atmospheric interaction. In this study, we further explore the applicability of the WRF-Lake system in two reservoirs with contrasting characteristics: Miyun Reservoir with an average depth of 30 meters in North China Plain, and Nuozhadu Reservoir with an average depth of 200 meters in the Tibetan Plateau Region. Driven by the high spatiotemporal resolution meteorological forcing data, the WRF-Lake system is used to simulate the water temperature and surface energy budgets of the two reservoirs after the evaluation against temperature observations. The simulated results show the WRF-Lake model can well predict the vertical profile of water temperature in Miyun Reservoir, but underestimates deep water temperature and overestimates surface temperature in the deeper Nuozhadu Reservoir. In addition, sensitivity analysis indicates the poor performance of the WRF-Lake system in Nuozhadu Reservoir could be attributed to the weak vertical mixing in the model, which can be improved by tuning the eddy diffusion coefficient ke . Keywords: reservoir-induced climatic impact; lake-atmospheric interaction; WRF-Lake system; hydropower exploitation

  20. Feedbacks between Reservoir Operation and Floodplain Development

    NASA Astrophysics Data System (ADS)

    Wallington, K.; Cai, X.

    2017-12-01

    The increased connectedness of socioeconomic and natural systems warrants the study of them jointly as Coupled Natural-Human Systems (CNHS) (Liu et al., 2007). One such CNHS given significant attention in recent years has been the coupled sociological-hydrological system of floodplains. Di Baldassarre et al. (2015) developed a model coupling floodplain development and levee heightening, a flood control measure, which demonstrated the "levee effect" and "adaptation effect" seen in observations. Here, we adapt the concepts discussed by Di Baldassarre et al. (2015) and apply them to floodplains in which the primary flood control measure is reservoir storage, rather than levee construction, to study the role of feedbacks between reservoir operation and floodplain development. Specifically, we investigate the feedback between floodplain development and optimal management of trade-offs between flood water conservation and flood control. By coupling a socio-economic model based on that of Di Baldassarre et al. (2015) with a reservoir optimization model based on that discussed in Ding et al. (2017), we show that reservoir operation rules can co-evolve with floodplain development. Furthermore, we intend to demonstrate that the model results are consistent with real-world data for reservoir operating curves and floodplain development. This model will help explain why some reservoirs are currently operated for purposes which they were not originally intended and thus inform reservoir design and construction.

  1. 3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher D. White

    2009-12-21

    Significant volumes of oil and gas occur in reservoirs formed by ancient river deltas. This has implications for the spatial distribution of rock types and the variation of transport properties. A between mudstones and sandstones may form baffles that influence productivity and recovery efficiency. Diagenetic processes such as compaction, dissolution, and cementation can also alter flow properties. A better understanding of these properties and improved methods will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high-resolution view of variability. Insights gleaned from these exposures canmore » be used to model analogous reservoirs, for which data is sparser. The Frontier Formation in central Wyoming provides an opportunity for high-resolution models. The same rocks exposed in the Tisdale anticline are productive in nearby oil fields. Kilometers of exposure are accessible, and bedding-plane exposures allow use of high-resolution ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct geostatistical and flow models. Strata-conforming grids were use to reproduce the observed geometries. A new Bayesian method integrates outcrop, core, and radar amplitude and phase data. The proposed method propagates measurement uncertainty and yields an ensemble of plausible models for calcite concretions. These concretions affect flow significantly. Models which integrate more have different flow responses from simpler models, as demonstrated an exhaustive two-dimensional reference image and in three dimensions. This method is simple to implement within widely available geostatistics packages. Significant volumes of oil and gas occur in reservoirs that are inferred to have been formed by ancient river deltas. This geologic setting has implications for the spatial

  2. Study on fracture identification of shale reservoir based on electrical imaging logging

    NASA Astrophysics Data System (ADS)

    Yu, Zhou; Lai, Fuqiang; Xu, Lei; Liu, Lin; Yu, Tong; Chen, Junyu; Zhu, Yuantong

    2017-05-01

    In recent years, shale gas exploration has made important development, access to a major breakthrough, in which the study of mud shale fractures is extremely important. The development of fractures has an important role in the development of gas reservoirs. Based on the core observation and the analysis of laboratory flakes and laboratory materials, this paper divides the lithology of the shale reservoirs of the XX well in Zhanhua Depression. Based on the response of the mudstone fractures in the logging curve, the fracture development and logging Response to the relationship between the conventional logging and electrical imaging logging to identify the fractures in the work, the final completion of the type of fractures in the area to determine and quantify the calculation of fractures. It is concluded that the fracture type of the study area is high and the microstructures are developed from the analysis of the XX wells in Zhanhua Depression. The shape of the fractures can be clearly seen by imaging logging technology to determine its type.

  3. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    PubMed

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Reservoir N2O data

    EPA Pesticide Factsheets

    Dissolved oxygen, dissolved nitrous oxide, and water temperature in reservoirs.This dataset is associated with the following publication:Beaulieu , J., C. Nietch , and J. Young. Source or sink: Insight on controls of nitrous oxide biogeochemistry from a 20 reservoir survey. Journal of Geophysical Research - Biogeosciences. American Geophysical Union, Washington, DC, USA, 120(10): 1995-2010, (2015).

  5. Research Note:An approach to integrated assessement of reservoir siltation: the Joaquín Costa reservoir as a case study

    NASA Astrophysics Data System (ADS)

    Navas, A.; Valero Garcés, B.; Machín, J.

    In 1932, the Esera river was dammed at the foothills of the Pyrenean External Ranges; since then, sedimentation has reduced its water storage capacity by a third. This study of the sediments in the Joaquín Costa reservoir has been based on detailed sedimentological examination and other analysis of mineralogy, grain size distribution and the chemical components of the materials accumulated at the bottom of the reservoir. Interpretations are based on results from four sediment cores collected at sites representative of the main environments in the reservoir. Records of known flood events and of reservoir management data have been combined with a 137Cs-derived chronology. Thus, it has been possible to ascribe the sedimentary record at the different reservoir environments to specific years, as well as some main changes in the facies types and sediment components. This methodology is a first approach to assessing siltation processes and dynamics in Mediterranean mountain reservoirs.

  6. Application of Decision Tree to Obtain Optimal Operation Rules for Reservoir Flood Control Considering Sediment Desilting-Case Study of Tseng Wen Reservoir

    NASA Astrophysics Data System (ADS)

    ShiouWei, L.

    2014-12-01

    Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan.  Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating.  Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the

  7. The WebACS - An Accessible Graphical Editor.

    PubMed

    Parker, Stefan; Nussbaum, Gerhard; Pölzer, Stephan

    2017-01-01

    This paper is about the solution to accessibility problems met when implementing a graphical editor, a major challenge being the comprehension of the relationships between graphical components, which needs to be guaranteed for blind and vision impaired users. In the concrete case the HTML5 canvas and Javascript were used. Accessibility was reached by implementing a list view of elements, which also enhances the usability of the editor.

  8. Development of a cerebrospinal fluid lateral reservoir model in rhesus monkeys (Macaca mulatta).

    PubMed

    Lester McCully, Cynthia M; Bacher, John; MacAllister, Rhonda P; Steffen-Smith, Emilie A; Saleem, Kadharbatcha; Thomas, Marvin L; Cruz, Rafael; Warren, Katherine E

    2015-02-01

    Rapid, serial, and humane collection of cerebrospinal fluid (CSF) in nonhuman primates (NHP) is an essential element of numerous research studies and is currently accomplished via two different models. The CSF reservoir model (FR) combines a catheter in the 4th ventricle with a flexible silastic reservoir to permit circulating CSF flow. The CSF lateral port model (LP) consists of a lateral ventricular catheter and an IV port that provides static access to CSF and volume restrictions on sample collection. The FR model is associated with an intensive, prolonged recovery and frequent postsurgical hydrocephalus and nonpatency, whereas the LP model is associated with an easier recovery. To maximize the advantages of both systems, we developed the CSF lateral reservoir model (LR), which combines the beneficial features of the 2 previous models but avoids their limitations by using a reservoir for circulating CSF flow combined with catheter placement in the lateral ventricle. Nine adult male rhesus monkeys were utilized in this study. Pre-surgical MRI was performed to determine the coordinates of the lateral ventricle and location of choroid plexus (CP). The coordinates were determined to avoid the CP and major blood vessels. The predetermined coordinates were 100% accurate, according to MRI validation. The LR system functioned successfully in 67% of cases for 221 d, and 44% remain functional at 426 to 510 d postoperatively. Compared with established models, our LR model markedly reduced postoperative complications and recovery time. Development of the LR model was successful in rhesus macaques and is a useful alternative to the FR and LP methods of CSF collection from nonhuman primates.

  9. Current Challenges in Geothermal Reservoir Simulation

    NASA Astrophysics Data System (ADS)

    Driesner, T.

    2016-12-01

    Geothermal reservoir simulation has long been introduced as a valuable tool for geothermal reservoir management and research. Yet, the current generation of simulation tools faces a number of severe challenges, in particular in the application for novel types of geothermal resources such as supercritical reservoirs or hydraulic stimulation. This contribution reviews a number of key problems: Representing the magmatic heat source of high enthalpy resources in simulations. Current practice is representing the deeper parts of a high enthalpy reservoir by a heat flux or temperature boundary condition. While this is sufficient for many reservoir management purposes it precludes exploring the chances of very high enthalpy resources in the deepest parts of such systems as well as the development of reliable conceptual models. Recent 2D simulations with the CSMP++ simulation platform demonstrate the potential of explicitly including the heat source, namely for understanding supercritical resources. Geometrically realistic incorporation of discrete fracture networks in simulation. A growing number of simulation tools can, in principle, handle flow and heat transport in discrete fracture networks. However, solving the governing equations and representing the physical properties are often biased by introducing strongly simplifying assumptions. Including proper fracture mechanics in complex fracture network simulations remains an open challenge. Improvements of the simulating chemical fluid-rock interaction in geothermal reservoirs. Major improvements have been made towards more stable and faster numerical solvers for multicomponent chemical fluid rock interaction. However, the underlying thermodynamic models and databases are unable to correctly address a number of important regions in temperature-pressure-composition parameter space. Namely, there is currently no thermodynamic formalism to describe relevant chemical reactions in supercritical reservoirs. Overcoming this

  10. Optimizing Fracture Treatments in a Mississippian "Chat" Reservoir, South-Central Kansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. David Newell; Saibal Bhattacharya; Alan Byrnes

    2005-10-01

    This project is a collaboration of Woolsey Petroleum Corporation (a small independent operator) and the Kansas Geological Survey. The project will investigate geologic and engineering factors critical for designing hydraulic fracture treatments in Mississippian ''chat'' reservoirs. Mississippian reservoirs, including the chat, account for 159 million m3 (1 billion barrels) of the cumulative oil produced in Kansas. Mississippian reservoirs presently represent {approx}40% of the state's 5.6*106m3 (35 million barrels) annual production. Although geographically widespread, the ''chat'' is a heterogeneous reservoir composed of chert, cherty dolomite, and argillaceous limestone. Fractured chert with micro-moldic porosity is the best reservoir in this 18- tomore » 30-m-thick (60- to 100-ft) unit. The chat will be cored in an infill well in the Medicine Lodge North field (417,638 m3 [2,626,858 bbls] oil; 217,811,000 m3 [7,692,010 mcf] gas cumulative production; discovered 1954). The core and modern wireline logs will provide geological and petrophysical data for designing a fracture treatment. Optimum hydraulic fracturing design is poorly defined in the chat, with poor correlation of treatment size to production increase. To establish new geologic and petrophysical guidelines for these treatments, data from core petrophysics, wireline logs, and oil-field maps will be input to a fracture-treatment simulation program. Parameters will be established for optimal size of the treatment and geologic characteristics of the predicted fracturing. The fracturing will be performed and subsequent wellsite tests will ascertain the results for comparison to predictions. A reservoir simulation program will then predict the rate and volumetric increase in production. Comparison of the predicted increase in production with that of reality, and the hypothetical fracturing behavior of the reservoir with that of its actual behavior, will serve as tests of the geologic and petrophysical

  11. The Obtaining of Oil from an Oil Reservoir.

    ERIC Educational Resources Information Center

    Dawe, R. A.

    1979-01-01

    Discusses the mechanics of how an actual oil reservoir works and provides some technical background in physics. An experiment which simulates an oil reservoir and demonstrates quantitatively all the basic concepts of oil reservoir rock properties is also presented. (HM)

  12. Fish habitat degradation in U.S. reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Spickard, M.; Dunn, T.; Webb, K.M.; Aycock, J.N.; Hunt, K.

    2010-01-01

    As the median age of the thousands of large reservoirs (> 200 ha) in the United States tops 50, many are showing various signs of fish habitat degradation. Our goal was to identify major factors degrading fish habitat in reservoirs across the country, and to explore regional degradation patterns. An online survey including 14 metrics was scored on a 0 (no degradation) to 5 (high degradation) point scale by 221 fisheries scientists (92% response rate) to describe degradation in 482 reservoirs randomly distributed throughout the continental United States. The highest scored sources of degradation were lack of aquatic macrophytes (41% of the reservoirs scored as 4–5), lack or loss of woody debris (35% scored 4–5), mistimed water level fluctuations (34% scored 4–5), and sedimentation (31% scored 4–5). Factor analysis identified five primary degradation factors that accounted for most of the variability in the 14 degradation metrics. The factors reflected siltation, structural habitat, eutrophication, water regime, and aquatic plants. Three degradation factors were driven principally by in-reservoir processes, whereas the other two were driven by inputs from the watershed. A comparison across U.S. regions indicated significant geographical differences in degradation relative to the factors emphasized by each region. Reservoirs sometimes have been dismissed as unnatural and disruptive, but they are a product of public policy, a critical feature of landscapes, and they cannot be overlooked if managers are to effectively conserve river systems. Protection and restoration of reservoir habitats may be enhanced with a broader perspective that includes watershed management, in addition to in reservoir activities.

  13. Microbial Life in an Underground Gas Storage Reservoir

    NASA Astrophysics Data System (ADS)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  14. Safety drain system for fluid reservoir

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2012-01-01

    A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.

  15. Geographic Accessibility to Higher Education on the Island of Ireland

    ERIC Educational Resources Information Center

    Walsh, Sharon; Flannery, Darragh; Cullinan, John

    2015-01-01

    This paper presents, for the first time, comprehensive measures of geographic accessibility to higher education both within and between the Republic of Ireland and Northern Ireland. Using geographic information system techniques, we find high levels of geographic accessibility to higher education in both jurisdictions. However, when we…

  16. Investigating the effects of rock porosity and permeability on the performance of nitrogen injection into a southern Iranian oil reservoirs through neural network

    NASA Astrophysics Data System (ADS)

    Gheshmi, M. S.; Fatahiyan, S. M.; Khanesary, N. T.; Sia, C. W.; Momeni, M. S.

    2018-03-01

    In this work, a comprehensive model for Nitrogen injection into an oil reservoir (southern Iranian oil fields) was developed and used to investigate the effects of rock porosity and permeability on the oil production rate and the reservoir pressure decline. The model was simulated and developed by using ECLIPSE300 software, which involved two scenarios as porosity change and permeability changes in the horizontal direction. We found that the maximum pressure loss occurs at a porosity value of 0.07, which later on, goes to pressure buildup due to reservoir saturation with the gas. Also we found that minimum pressure loss is encountered at porosity 0.46. Increases in both pressure and permeability in the horizontal direction result in corresponding increase in the production rate, and the pressure drop speeds up at the beginning of production as it increases. However, afterwards, this pressure drop results in an increase in pressure because of reservoir saturation. Besides, we determined the regression values, R, for the correlation between pressure and total production, as well as for the correlation between permeability and the total production, using neural network discipline.

  17. Monitoring Earth's reservoir and lake dynamics from space

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Eilander, D.; Schellekens, J.; Winsemius, H.; Gorelick, N.; Erickson, T.; Van De Giesen, N.

    2016-12-01

    Reservoirs and lakes constitute about 90% of the Earth's fresh surface water. They play a major role in the water cycle and are critical for the ever increasing demands of the world's growing population. Water from reservoirs is used for agricultural, industrial, domestic, and other purposes. Current digital databases of lakes and reservoirs are scarce, mainly providing only descriptive and static properties of the reservoirs. The Global Reservoir and Dam (GRanD) database contains almost 7000 entries while OpenStreetMap counts more than 500 000 entries tagged as a reservoir. In the last decade several research efforts already focused on accurate estimates of surface water dynamics, mainly using satellite altimetry, However, currently they are limited only to less than 1000 (mostly large) water bodies. Our approach is based on three main components. Firstly, a novel method, allowing automated and accurate estimation of surface area from (partially) cloud-free optical multispectral or radar satellite imagery. The algorithm uses satellite imagery measured by Landsat, Sentinel and MODIS missions. Secondly, a database to store reservoir static and dynamic parameters. Thirdly, a web-based tool, built on top of Google Earth Engine infrastructure. The tool allows estimation of surface area for lakes and reservoirs at planetary-scale at high spatial and temporal resolution. A prototype version of the method, database, and tool will be presented as well as validation using in-situ measurements.

  18. Optimal Reservoir Operation using Stochastic Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Sahu, R.; McLaughlin, D.

    2016-12-01

    Hydropower operations are typically designed to fulfill contracts negotiated with consumers who need reliable energy supplies, despite uncertainties in reservoir inflows. In addition to providing reliable power the reservoir operator needs to take into account environmental factors such as downstream flooding or compliance with minimum flow requirements. From a dynamical systems perspective, the reservoir operating strategy must cope with conflicting objectives in the presence of random disturbances. In order to achieve optimal performance, the reservoir system needs to continually adapt to disturbances in real time. Model Predictive Control (MPC) is a real-time control technique that adapts by deriving the reservoir release at each decision time from the current state of the system. Here an ensemble-based version of MPC (SMPC) is applied to a generic reservoir to determine both the optimal power contract, considering future inflow uncertainty, and a real-time operating strategy that attempts to satisfy the contract. Contract selection and real-time operation are coupled in an optimization framework that also defines a Pareto trade off between the revenue generated from energy production and the environmental damage resulting from uncontrolled reservoir spills. Further insight is provided by a sensitivity analysis of key parameters specified in the SMPC technique. The results demonstrate that SMPC is suitable for multi-objective planning and associated real-time operation of a wide range of hydropower reservoir systems.

  19. Diagnostic Assessment of the Difficulty Using Direct Policy Search in Many-Objective Reservoir Control

    NASA Astrophysics Data System (ADS)

    Zatarain-Salazar, J.; Reed, P. M.; Herman, J. D.; Giuliani, M.; Castelletti, A.

    2014-12-01

    Globally reservoir operations provide fundamental services to water supply, energy generation, recreation, and ecosystems. The pressures of expanding populations, climate change, and increased energy demands are motivating a significant investment in re-operationalizing existing reservoirs or defining operations for new reservoirs. Recent work has highlighted the potential benefits of exploiting recent advances in many-objective optimization and direct policy search (DPS) to aid in addressing these systems' multi-sector demand tradeoffs. This study contributes to a comprehensive diagnostic assessment of multi-objective evolutionary optimization algorithms (MOEAs) efficiency, effectiveness, reliability, and controllability when supporting DPS for the Conowingo dam in the Lower Susquehanna River Basin. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Seven benchmark and state-of-the-art MOEAs are tested on deterministic and stochastic instances of the Susquehanna test case. In the deterministic formulation, the operating objectives are evaluated over the historical realization of the hydroclimatic variables (i.e., inflows and evaporation rates). In the stochastic formulation, the same objectives are instead evaluated over an ensemble of stochastic inflows and evaporation rates realizations. The algorithms are evaluated in their ability to support DPS in discovering reservoir operations that compose the tradeoffs for six multi-sector performance objectives with thirty-two decision variables. Our diagnostic results highlight that many-objective DPS is very challenging for modern MOEAs and that epsilon dominance is critical for attaining high levels of performance. Epsilon dominance algorithms epsilon-MOEA, epsilon-NSGAII and the auto adaptive Borg

  20. Addressing the Needs of Transgender Military Veterans: Better Access and More Comprehensive Care

    PubMed Central

    Dietert, Michelle; Dentice, Dianne; Keig, Zander

    2017-01-01

    Abstract Purpose: There is a gap in social science literature addressing issues of access and quality of care for transgender military veterans. Psychologists, medical doctors, and other health professionals are beginning to address some of the barriers present in the Department of Veterans Affairs (VA) system that affect veterans who are also transgender and intersex. Over a 7-year period, between 2006 and 2013, 2600 transgender veterans were served by the VA. Data from several surveys revealed that most transgender veterans perceive the Veterans Health Administration (VHA) to be less than accommodating for their special needs. The goal of this study was to investigate the experiences of a sample of transgender veterans with regard to their experiences with healthcare services provided by the VHA. Methods: Using snowball sampling techniques, we were able to recruit 22 transgender military veterans to participate in our study. A combination of telephone interviews and questionnaires provided data from veterans in various branches of the military throughout the United States. Results: Findings indicate that even though the VHA is working to address issues of inequality for transgender veterans, our participants indicated that there are still some problems with administration of care, proper training of staff and physicians, and availability of comprehensive services for the unique healthcare needs of transgender individuals. Conclusion: Since our data were collected, the VA has worked to bridge the gap by focusing on increased training for VHA providers and staff and establishing LGBT programs at VA facilities. However, we suggest that one key area of importance should continue to focus on how mental health and medical providers and ancillary staff are trained to interact with and provide care for their transgender patients. PMID:28861546

  1. Greenhouse gas emissions from reservoir water surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs created by dams are thought to be an important source ofgreenhouse gases (GHGs) to the atmosphere. So far, efforts to quantify, model, andmanage these emissions have been limited by data availability and inconsistenciesin methodological approach. Here we synthesize worldwide reservoir methane,carbon dioxide, and nitrous oxide emission data with three main objectives: (1) togenerate a global estimate of GHG emissions from reservoirs, (2) to identify the bestpredictors of these emissions, and (3) to consider the effect of methodology onemission estimates. We estimate that GHG emission from reservoir water surfacesaccount for 0.8 (0.5-1.2) Pg CO2-equivalents per year, equal to ~1.3 % of allanthropogenic GHG emissions, with the majority (79%) of this forcing due tomethane. We also discuss the potential for several alternative pathways such as damdegassing and downstream emissions to contribute significantly to overall GHGemissions. Although prior studies have linked reservoir GHG emissions to systemage and latitude, we find that factors related to reservoir productivity are betterpredictors of emission. Finally, as methane contributed the most to total reservoirGHG emissions, it is important that future monitoring campaigns incorporatemethane emission pathways, especially ebullition. To inform the public.

  2. Nutrient budget for Saguling Reservoir, West Java, Indonesia.

    PubMed

    Hart, Barry T; van Dok, Wendy; Djuangsih, Nani

    2002-04-01

    A preliminary nutrient budget for Saguling Reservoir is reported as a first attempt to quantify the behaviour of nutrients entering this reservoir. This work is part of a larger Indonesia-Australia collaborative research and training project, involving Padjadjaran University and Monash University, established to study nutrient dynamics in Saguling Reservoir. Saguling Reservoir, the first of a chain of three large reservoirs (Saguling, Cirata and Jatilahur), built on the Citarum River in central Java, was completed in 1985. It has already become highly polluted, particularly with domestic and industrial effluent (organic matter, nutrients, heavy metals) from the urban areas of Bandung (population 2 million). The reservoir experiences major water quality problems, including excessive growths of floating plants, toxic cyanobacterial blooms and regular fish-kills. The work reported in this paper shows that Saguling receives a very large nutrient load from the city of Bandung and because of this, is highly eutrophic. It is unlikely that the water quality of Saguling will improve until a substantial part of Bandung is sewered and adequate discharge controls are placed on the many industries in the region upstream of the reservoir.

  3. Heavy oil reservoirs recoverable by thermal technology

    NASA Astrophysics Data System (ADS)

    Kujawa, P.

    1981-02-01

    Data are presented on reservoirs that contain heavy oil in the 8 to 25(0) API gravity range, contain at least ten million barrels of oil currently in place, and are noncarbonate in lithology. The reservoirs within these constraints were analyzed in light of applicable recovery technology, either steam drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. An extensive basis for heavy oil development is provided, however, it is recommended that data on carbonate reservoirs, and tar sands be compiled. It was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  4. An evaluation of seepage gains and losses in Indian Creek Reservoir, Ada County, Idaho, April 2010–November 2011

    USGS Publications Warehouse

    Williams, Marshall L.; Etheridge, Alexandra B.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, conducted an investigation on Indian Creek Reservoir, a small impoundment in east Ada County, Idaho, to quantify groundwater seepage into and out of the reservoir. Data from the study will assist the Idaho Water Resources Department’s Comprehensive Aquifer Management Planning effort to estimate available water resources in Ada County. Three independent methods were utilized to estimate groundwater seepage: (1) the water-budget method; (2) the seepage-meter method; and (3) the segmented Darcy method. Reservoir seepage was quantified during the periods of April through August 2010 and February through November 2011. With the water-budget method, all measureable sources of inflow to and outflow from the reservoir were quantified, with the exception of groundwater; the water-budget equation was solved for groundwater inflow to or outflow from the reservoir. The seepage-meter method relies on the placement of seepage meters into the bottom sediments of the reservoir for the direct measurement of water flux across the sediment-water interface. The segmented-Darcy method utilizes a combination of water-level measurements in the reservoir and in adjacent near-shore wells to calculate water-table gradients between the wells and the reservoir within defined segments of the reservoir shoreline. The Darcy equation was used to calculate groundwater inflow to and outflow from the reservoir. Water-budget results provided continuous, daily estimates of seepage over the full period of data collection, while the seepage-meter and segmented Darcy methods provided instantaneous estimates of seepage. As a result of these and other difference in methodologies, comparisons of seepage estimates provided by the three methods are considered semi-quantitative. The results of the water-budget derived estimates of seepage indicate seepage to be seasonally variable in terms of the direction and magnitude

  5. Are disease reservoirs special? Taxonomic and life history characteristics

    PubMed Central

    Burgess, Tristan L.; Eskew, Evan A.; Roth, Tara M.; Stephenson, Nicole; Foley, Janet E.

    2017-01-01

    Pathogens that spill over between species cause a significant human and animal health burden. Here, we describe characteristics of animal reservoirs that are required for pathogen spillover. We assembled and analyzed a database of 330 disease systems in which a pathogen spills over from a reservoir of one or more species. Three-quarters of reservoirs included wildlife, and 84% included mammals. Further, 65% of pathogens depended on a community of reservoir hosts, rather than a single species, for persistence. Among mammals, the most frequently identified reservoir hosts were rodents, artiodactyls, and carnivores. The distribution among orders of mammalian species identified as reservoirs did not differ from that expected by chance. Among disease systems with high priority pathogens and epidemic potential, we found birds, primates, and bats to be overrepresented. We also analyzed the life history traits of mammalian reservoir hosts and compared them to mammals as a whole. Reservoir species had faster life history characteristics than mammals overall, exhibiting traits associated with greater reproductive output rather than long-term survival. Thus, we find that in many respects, reservoirs of spillover pathogens are indeed special. The described patterns provide a useful resource for studying and managing emerging infectious diseases. PMID:28704402

  6. Assembling evidence for identifying reservoirs of infection

    PubMed Central

    Viana, Mafalda; Mancy, Rebecca; Biek, Roman; Cleaveland, Sarah; Cross, Paul C.; Lloyd-Smith, James O.; Haydon, Daniel T.

    2014-01-01

    Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems. PMID:24726345

  7. Assembling evidence for identifying reservoirs of infection

    USGS Publications Warehouse

    Mafalda, Viana; Rebecca, Mancy; Roman, Biek; Sarah, Cleaveland; Cross, Paul C.; James O, Lloyd-Smith; Daniel T, Haydon

    2014-01-01

    Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems.

  8. Three dimensional heat transport modeling in Vossoroca reservoir

    NASA Astrophysics Data System (ADS)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias

    2017-04-01

    Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to

  9. Seismic modeling of complex stratified reservoirs

    NASA Astrophysics Data System (ADS)

    Lai, Hung-Liang

    Turbidite reservoirs in deep-water depositional systems, such as the oil fields in the offshore Gulf of Mexico and North Sea, are becoming an important exploration target in the petroleum industry. Accurate seismic reservoir characterization, however, is complicated by the heterogeneous of the sand and shale distribution and also by the lack of resolution when imaging thin channel deposits. Amplitude variation with offset (AVO) is a very important technique that is widely applied to locate hydrocarbons. Inaccurate estimates of seismic reflection amplitudes may result in misleading interpretations because of these problems in application to turbidite reservoirs. Therefore, an efficient, accurate, and robust method of modeling seismic responses for such complex reservoirs is crucial and necessary to reduce exploration risk. A fast and accurate approach generating synthetic seismograms for such reservoir models combines wavefront construction ray tracing with composite reflection coefficients in a hybrid modeling algorithm. The wavefront construction approach is a modern, fast implementation of ray tracing that I have extended to model quasi-shear wave propagation in anisotropic media. Composite reflection coefficients, which are computed using propagator matrix methods, provide the exact seismic reflection amplitude for a stratified reservoir model. This is a distinct improvement over conventional AVO analysis based on a model with only two homogeneous half spaces. I combine the two methods to compute synthetic seismograms for test models of turbidite reservoirs in the Ursa field, Gulf of Mexico, validating the new results against exact calculations using the discrete wavenumber method. The new method, however, can also be used to generate synthetic seismograms for the laterally heterogeneous, complex stratified reservoir models. The results show important frequency dependence that may be useful for exploration. Because turbidite channel systems often display complex

  10. Chickamauga Reservoir 1992 fisheries monitoring cove rotenone results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerley, B.L.

    1993-06-01

    The Tennessee Valley Authority (TVA) is required by the National Pollutant Discharge Elimination System (NPDES) Permit for Sequoyah Nuclear Plant (SQN) to conduct and report annually a nonradiological operational monitoring program to evaluate potential effects of SQN on Chickamauga Reservoir. This monitoring program was initially designed to identify potential changes in water quality and biological communities in Chickamauga Reservoir resulting from operation of SQU. Chickamauga Reservoir cove rotenone sampling has also been conducted as part of the preoperational monitoring program for Watts Bar Nuclear Plant (WBN) to evaluate the combined effects of operating two nuclear facilities on one reservoir oncemore » WBU becomes operational. The purpose of this report is to present results of cove rotenone sampling conducted on Chickamauga Reservoir in 1992.« less

  11. A Comprehensive System for Monitoring Urban Accessibility in Smart Cities

    PubMed Central

    Pérez-del Hoyo, Raquel; Andújar-Montoya, María Dolores

    2017-01-01

    The present work discusses the possibilities offered by the evolution of Information and Communication Technologies with the aim of designing a system to dynamically obtain knowledge of accessibility issues in urban environments. This system is facilitated by technology to analyse the urban user experience and movement accessibility, which enabling accurate identification of urban barriers and monitoring its effectiveness over time. Therefore, the main purpose of the system is to meet the real needs and requirements of people with movement disabilities. The information obtained can be provided as a support service for decision-making to be used by city government, institutions, researchers, professionals and other individuals of society in general to improve the liveability and quality of the lives of citizens. The proposed system is a means of social awareness that makes the most vulnerable groups of citizens visible by involving them as active participants. To perform and implement the system, the latest communication and positioning technologies for smart sensing have been used, as well as the cloud computing paradigm. Finally, to validate the proposal, a case study has been presented using the university environment as a pre-deployment step in urban environments. PMID:28792476

  12. A Comprehensive System for Monitoring Urban Accessibility in Smart Cities.

    PubMed

    Mora, Higinio; Gilart-Iglesias, Virgilio; Pérez-Del Hoyo, Raquel; Andújar-Montoya, María Dolores

    2017-08-09

    The present work discusses the possibilities offered by the evolution of Information and Communication Technologies with the aim of designing a system to dynamically obtain knowledge of accessibility issues in urban environments. This system is facilitated by technology to analyse the urban user experience and movement accessibility, which enabling accurate identification of urban barriers and monitoring its effectiveness over time. Therefore, the main purpose of the system is to meet the real needs and requirements of people with movement disabilities. The information obtained can be provided as a support service for decision-making to be used by city government, institutions, researchers, professionals and other individuals of society in general to improve the liveability and quality of the lives of citizens. The proposed system is a means of social awareness that makes the most vulnerable groups of citizens visible by involving them as active participants. To perform and implement the system, the latest communication and positioning technologies for smart sensing have been used, as well as the cloud computing paradigm. Finally, to validate the proposal, a case study has been presented using the university environment as a pre-deployment step in urban environments.

  13. CO2 emissions from German drinking water reservoirs.

    PubMed

    Saidi, Helmi; Koschorreck, Matthias

    2017-03-01

    Globally, reservoirs are a significant source of atmospheric CO 2 . However, precise quantification of greenhouse gas emissions from drinking water reservoirs on the regional or national scale is still challenging. We calculated CO 2 fluxes for 39 German drinking water reservoirs during a period of 22years (1991-2013) using routine monitoring data in order to quantify total emission of CO 2 from drinking water reservoirs in Germany and to identify major drivers. All reservoirs were a net CO 2 source with a median flux of 167gCm -2 y -1 , which makes gaseous emissions a relevant process for the carbon budget of each reservoir. Fluxes varied seasonally with median fluxes of 13, 48, and 201gCm -2 y -1 in spring, summer, and autumn respectively. Differences between reservoirs appeared to be primarily caused by the concentration of CO 2 in the surface water rather than by the physical gas transfer coefficient. Consideration of short term fluctuations of the gas transfer coefficient due to varying wind speed had only a minor effect on the annual budgets. High CO 2 emissions only occurred in reservoirs with pH<7 and total alkalinity <0.2mEql -1 . Annual CO 2 emissions correlated exponentially with pH but not with dissolved organic carbon (DOC). There was significant correlation between land use in the catchment and CO 2 emissions. In total, German drinking water reservoirs emit 44000t of CO 2 annually, which makes them a negligible CO 2 source (<0.005% of national CO 2 emissions) in Germany. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    USGS Publications Warehouse

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62

  15. Plated wire random access memories

    NASA Technical Reports Server (NTRS)

    Gouldin, L. D.

    1975-01-01

    A program was conducted to construct 4096-work by 18-bit random access, NDRO-plated wire memory units. The memory units were subjected to comprehensive functional and environmental tests at the end-item level to verify comformance with the specified requirements. A technical description of the unit is given, along with acceptance test data sheets.

  16. Fractured reservoir characterization through injection, falloff, and flowback tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, C.P.; Singh, P.K.; Halvorsen, H.

    1992-09-01

    This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.

  17. 21 CFR 870.4400 - Cardiopulmonary bypass blood reservoir.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass blood reservoir. 870.4400... bypass blood reservoir. (a) Identification. A cardiopulmonary bypass blood reservoir is a device used in conjunction with short-term extracorporeal circulation devices to hold a reserve supply of blood in the bypass...

  18. 21 CFR 870.4400 - Cardiopulmonary bypass blood reservoir.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass blood reservoir. 870.4400... bypass blood reservoir. (a) Identification. A cardiopulmonary bypass blood reservoir is a device used in conjunction with short-term extracorporeal circulation devices to hold a reserve supply of blood in the bypass...

  19. 21 CFR 870.4400 - Cardiopulmonary bypass blood reservoir.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass blood reservoir. 870.4400... bypass blood reservoir. (a) Identification. A cardiopulmonary bypass blood reservoir is a device used in conjunction with short-term extracorporeal circulation devices to hold a reserve supply of blood in the bypass...

  20. 21 CFR 870.4400 - Cardiopulmonary bypass blood reservoir.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass blood reservoir. 870.4400... bypass blood reservoir. (a) Identification. A cardiopulmonary bypass blood reservoir is a device used in conjunction with short-term extracorporeal circulation devices to hold a reserve supply of blood in the bypass...

  1. 21 CFR 870.4400 - Cardiopulmonary bypass blood reservoir.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass blood reservoir. 870.4400... bypass blood reservoir. (a) Identification. A cardiopulmonary bypass blood reservoir is a device used in conjunction with short-term extracorporeal circulation devices to hold a reserve supply of blood in the bypass...

  2. The Comprehensive Addiction and Recovery Act: Opioid Use Disorder and Midwifery Practice.

    PubMed

    Murphy, Jeanne; Goodman, Daisy; Johnson, M Christina; Terplan, Mishka

    2018-03-01

    The federal response to the opioid use disorder crisis has included a mobilization of resources to encourage office-based pharmacotherapy with buprenorphine, an effort culminating in the 2016 Comprehensive Addiction and Recovery Act, signed into law as Public Law 114-198. The Comprehensive Addiction and Recovery Act was designed to increase access to treatment with special emphasis on services for pregnant women and follow-up for infants affected by prenatal substance exposure. In this effort, the Comprehensive Addiction and Recovery Act laudably expands eligibility for obtaining a waiver to prescribe buprenorphine to nurse practitioners and physician assistants. However, certified nurse-midwives and certified midwives, who care for a significant proportion of pregnant and postpartum women and attend a significant proportion of births in the United States, were not included in the Comprehensive Addiction and Recovery Act legislation. In this commentary, we argue that an "all-hands" approach to providing office-based medication-assisted treatment for opioid use disorder is essential to improving access to treatment. Introduced in the House of Representatives in September 2017, the Addiction Treatment Access Improvement Act (H.R. 3692) would allow midwives to apply for the federal waiver to prescribe buprenorphine and is supported by the American College of Obstetricians and Gynecologists and the American College of Nurse-Midwives. We support this change and encourage the U.S. Congress to act quickly to allow midwives to prescribe medication-assisted treatment for pregnant women with opioid use disorder.

  3. Improving efficiency and access to mental health care: combining integrated care and advanced access.

    PubMed

    Pomerantz, Andrew; Cole, Brady H; Watts, Bradley V; Weeks, William B

    2008-01-01

    To provide an example of implementation of a new program that enhances access to mental health care in primary care. A general and specialized mental health service was redesigned to introduce open access to comprehensive mental health care in a primary care clinic. Key variables measured before and after implementation of the clinic included numbers of completed referrals, waiting time for appointments and clinic productivity. Workload and pre/post-implementation waiting time data were gathered through a computerized electronic monitoring system. Waiting time for new appointments was shortened from a mean of 33 days to 19 min. Clinician productivity and evaluations of new referrals more than doubled. These improvements have been sustained for 4 years. Moving mental health services into primary care, initiating open access and increasing use of technological aids led to dramatic improvements in access to mental health care and efficient use of resources. Implementation and sustainability of the program were enhanced by using a quality improvement approach.

  4. Identifying Reservoirs of Infection: A Conceptual and Practical Challenge

    PubMed Central

    2002-01-01

    Many infectious agents, especially those that cause emerging diseases, infect more than one host species. Managing reservoirs of multihost pathogens often plays a crucial role in effective disease control. However, reservoirs remain variously and loosely defined. We propose that reservoirs can only be understood with reference to defined target populations. Therefore, we define a reservoir as one or more epidemiologically connected populations or environments in which the pathogen can be permanently maintained and from which infection is transmitted to the defined target population. Existence of a reservoir is confirmed when infection within the target population cannot be sustained after all transmission between target and nontarget populations has been eliminated. When disease can be controlled solely by interventions within target populations, little knowledge of potentially complex reservoir infection dynamics is necessary for effective control. We discuss the practical value of different approaches that may be used to identify reservoirs in the field. PMID:12498665

  5. Dry Volume Fracturing Simulation of Shale Gas Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, Guixi; Wang, Shuzhong; Luo, Xiangrong; Jing, Zefeng

    2017-11-01

    Application of CO2 dry fracturing technology to shale gas reservoir development in China has advantages of no water consumption, little reservoir damage and promoting CH4 desorption. This paper uses Meyer simulation to study complex fracture network extension and the distribution characteristics of shale gas reservoirs in the CO2 dry volume fracturing process. The simulation results prove the validity of the modified CO2 dry fracturing fluid used in shale volume fracturing and provides a theoretical basis for the following study on interval optimization of the shale reservoir dry volume fracturing.

  6. Analysis of the influence of reservoirs utilization to water quality profiles in Indonesia (Saguling - Jatiluhur) and Malaysia (Temengor - Chenderoh) with special references to cascade reservoirs

    NASA Astrophysics Data System (ADS)

    Subehi, Luki; Norasikin Ismail, Siti; Ridwansyah, Iwan; Hamid, Muzzalifah Abd; Mansor, Mashhor

    2018-02-01

    Tropical reservoir is the one ecosystem which is functioning in both ecological and economical services. As the settling of water volume, it harbors many species of fish. The objective of this study is to analyze the utilization and management of reservoirs related to their water quality conditions, represent by tropical reservoirs from Indonesia and Malaysia. Survey at Jatiluhur and Saguling (Indonesia) was conducted in March 2014 and September 2015, respectively while in Temengor and Chenderoh (Malaysia), the survey was done in January 2014 and April 2017, respectively. Based on elevation, Saguling and Temengor are upstream reservoirs. On the contrary, Jatiluhur and Chenderoh are downstream reservoirs. The results of the surveys in Jatiluhur and Saguling reservoirs showed that the average depths are 32.9m and 17.9m, respectively. On the other hand, Temengor and Chenderoh reservoirs are 100m and 16.2m, respectively. All of them play multi-functional roles including as a source of power plant, fisheries and tourism, as well as water sources for irrigation. In addition, Saguling and Temengor reservoirs are relatively dendritic in shape. In Indonesia, there are three consecutive reservoirs along Citarum River, whereas in Malaysia there are four consecutive reservoirs along Perak River. The results showed the potential impact of fish cages as pollutant, especially at Indonesian reservoirs. In addition, these tropical reservoirs have become famous tourism getaway. The capabilities of economic values of these reservoirs and ecosystem should be balanced. Basic ecological information is necessary for the next study.

  7. Influence of reservoirs on solute transport: A regional-scale approach

    USGS Publications Warehouse

    Kelly, V.J.

    2001-01-01

    Regional transport of water and dissolved constituents through heavily regulated river systems is influenced by the presence of reservoirs. Analysis of seasonal patterns in solute fluxes for salinity and nutrients indicates that in-reservoir processes within large storage reservoirs in the Rio Grande and Colorado basins (southwestern USA) are superimposed over the underlying watershed processes that predominate in relatively unregulated stream reaches. Connectivity of the aquatic system with the landscape is apparently disrupted by processes within the reservoir systems; these processes result in large changes in characteristics for solute transport that persist downstream in the absence of significant inputs. Additionally, reservoir processes may be linked for upstream/downstream reservoirs that are located relatively close in a series. In contrast, the regional effect of in-reservoir processes is negligible for solute transport through run-of-river reservoirs in the lower Columbia River (northwestern USA).

  8. Well pattern optimization in a low permeability sandstone reservoir: a case study from Erlian Basin in China

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Fu, Lixia; Yan, Aihua; Guo, Fajun; Wu, Cong; Chen, Hong; Wang, Xinying; Lu, Ming

    2018-02-01

    Study on optimization of development well patterns is the core content of oilfield development and is a prerequisite for rational and effective development of oilfield. The study on well pattern optimization mainly includes types of well patterns and density of well patterns. This paper takes the Aer-3 fault block as an example. Firstly, models were built for diamond-shaped inverted 9-spot patterns, rectangular 5-spot patterns, square inverted 9-spot patterns and inverted 7-spot patterns under the same well pattern density to correlate the effect of different well patterns on development; secondly, comprehensive analysis was conducted to well pattern density in terms of economy and technology using such methods as oil reservoir engineering, numerical simulation, economic limits and economic rationality. Finally, the development mode of vertical well + horizontal well was presented according to the characteristics of oil reservoirs in some well blocks, which has realized efficient development of this fault block.

  9. Modelling the impacts of altered management practices, land use and climate changes on the water quality of the Millbrook catchment-reservoir system in South Australia.

    PubMed

    Nguyen, Hong Hanh; Recknagel, Friedrich; Meyer, Wayne; Frizenschaf, Jacqueline; Shrestha, Manoj Kumar

    2017-11-01

    Sustainable management of drinking water reservoirs requires taking into account the potential effects of their catchments' development. This study is an attempt to estimate the daily patterns of nutrients transport in the catchment - reservoir systems through the application of the ensemble of complementary models SWAT-SALMO. SWAT quantifies flow, nitrate and phosphate loadings originating in catchments before entering downstream reservoirs meanwhile SALMO determines phosphate, nitrate, and chlorophyll-a concentrations within the reservoirs. The study applies to the semi-arid Millbrook catchment-reservoir system that supplies drinking water to north-eastern suburbs of Adelaide, South Australia. The catchment hosts viti- and horticultural land uses. The warm-monomictic, mesotrophic reservoir is artificially aerated in summer. After validating the simulation results for both Millbrook catchment and reservoir, a comprehensive scenario analysis has been conducted to reveal cascading effects of altered management practices, land uses and climate conditions on water quality in the reservoir. Results suggest that the effect on reservoir condition in summer would be severe, most likely resulting in chlorophyll-a concentrations of greater than 40 μg/l if the artificial destratification was not applied from early summer. A 50% curbing of water diversion from an external pipeline to the catchment will slightly limit chlorophyll-a concentrations by 1.22% as an effect of reduced inflow phosphate loads. The simulation of prospective land use scenarios converting 50% of present pasture in the Millbrook catchment into residential and orchards areas indicates an increase of summer chlorophyll-a concentrations by 9.5-107.9%, respectively in the reservoir. Global warming scenarios based on the high emission simulated by SWAT-SALMO did result in earlier growth of chlorophyll-a but overall the effects on water quality in the Millbrook reservoir was not significant. However scenarios

  10. Relationship of peroxyacetyl nitrate to active and total odd nitrogen at northern high latitudes - Influence of reservoir species on NO(x) and O3

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Herlth, D.; O'Hara, D.; Zahnle, K.; Bradshaw, J. D.; Sandholm, S. T.; Talbot, R.; Crutzen, P. J.; Kanakidou, M. A.

    1992-01-01

    The partitioning of relative nitrogen in the Arctic and the sub-Arctic troposphere based on measurements conducted during the 1988 Arctic Boundary Layer Expedition (ABLE 3A) is described. The first set of comprehensive odd nitrogen and O3 measurements from the Arctic/sub-Arctic free troposphere shows that a highly aged air mass that has persisted under very cold conditions is present. A large fraction of the odd nitrogen appears to be present in the form of reservoir species such as PAN. Significant quantities of as yet unknown reactive nitrogen species, such as complex alkyl nitrates and pernitrates, are expected to be present. Together with PAN, these nitrate and pernitrate reservoir species could control the entire NO(x) availability of the high-latitude troposphere and in turn influence the O3 photochemistry of the region. The role of PAN in influencing the O3 reservoir is shown to be important and may be responsible for the increasing O3 temporal trend observed at high latitudes.

  11. The influence of a severe reservoir drawdown on springtime zooplankton and larval fish assemblages in Red Willow Reservoir, Nebraska

    USGS Publications Warehouse

    DeBoer, Jason A.; Webber, Christa M.; Dixon, Taylor A.; Pope, Kevin L.

    2016-01-01

    Reservoirs can be dynamic systems, often prone to unpredictable and extreme water-level fluctuations, and can be environments where survival is difficult for zooplankton and larval fish. Although numerous studies have examined the effects of extreme reservoir drawdown on water quality, few have examined extreme drawdown on both abiotic and biotic characteristics. A fissure in the dam at Red Willow Reservoir in southwest Nebraska necessitated an extreme drawdown; the water level was lowered more than 6 m during a two-month period, reducing reservoir volume by 76%. During the subsequent low-water period (i.e., post-drawdown), spring sampling (April–June) showed dissolved oxygen concentration was lower, while turbidity and chlorophyll-a concentration were greater, relative to pre-drawdown conditions. Additionally, there was an overall increase in zooplankton density, although there were differences among taxa, and changes in mean size among taxa, relative to pre-drawdown conditions. Zooplankton assemblage composition had an average dissimilarity of 19.3% from pre-drawdown to post-drawdown. The ratio of zero to non-zero catches was greater post-drawdown for larval common carp and for all larval fishes combined, whereas we observed no difference for larval gizzard shad. Larval fish assemblage composition had an average dissimilarity of 39.7% from pre-drawdown to post-drawdown. Given the likelihood that other dams will need repair or replacement in the near future, it is imperative for effective reservoir management that we anticipate the likely abiotic and biotic responses of reservoir ecosystems as these management actions will continue to alter environmental conditions in reservoirs.

  12. Incorporating reservoir heterogeneity with geostatistics to investigate waterflood recoveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolcott, D.S.; Chopra, A.K.

    1993-03-01

    This paper presents an investigation of infill drilling performance and reservoir continuity with geostatistics and a reservoir simulator. The geostatistical technique provides many possible realizations and realistic descriptions of reservoir heterogeneity. Correlation between recovery efficiency and thickness of individual sand subunits is shown. Additional recovery from infill drilling results from thin, discontinuous subunits. The technique may be applied to variations in continuity for other sandstone reservoirs.

  13. Evaluation of web accessibility of consumer health information websites.

    PubMed

    Zeng, Xiaoming; Parmanto, Bambang

    2003-01-01

    The objectives of the study are to construct a comprehensive framework for web accessibility evaluation, to evaluate the current status of web accessibility of consumer health information websites and to investigate the relationship between web accessibility and property of the websites. We selected 108 consumer health information websites from the directory service of a Web search engine. We used Web accessibility specifications to construct a framework for the measurement of Web Accessibility Barriers (WAB) of website. We found that none of the websites is completely accessible to people with disabilities, but governmental and educational health information websites exhibit better performance on web accessibility than other categories of websites. We also found that the correlation between the WAB score and the popularity of a website is statistically significant.

  14. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique

    NASA Astrophysics Data System (ADS)

    Yang, T.; Gao, X.; Sorooshian, S.

    2014-12-01

    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  15. Risk Analysis of Extreme Rainfall Effects on the Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Ho, Y.; Lien, W.; Tung, C.

    2009-12-01

    Typhoon Morakot intruded Taiwan during 7th and 8th of August 2009, brought about 2,700 mm of total rainfall which caused serious flood and debris to the southern region of Taiwan. One of the serious flooded areas is in the downstream of Zengwen reservoir. People believed that the large amount of floodwater released from Zengwen reservoir led to the severe inundation. Therefore, the Shihmen reservoir is one of the important reservoirs in northern Taiwan. The Taipei metropolis, which is in downstream of Shihmen reservoir, is the political and economical center of Taiwan. If heavy rainfall as those brought by Typhoon Marakot falls in the Shihmen reservoir watershed, it may create a bigger disaster. This study focused on the impacts of a typhoon, like Morakot, in Shihmen reservoir. The hydrological model is used to simulate the reservoir inflows under different rainfall conditions. The reservoir water balance model is developed to calculate reservoir’s storage and outflows under the inflows and operational rules. The ability of flood mitigation is also evaluated. Besides, the released floodwater from reservoir and the inflows from different tributaries are used to determine whether or not the river stage will overtop levee. Also, the maximum released floodwater and other inflows which could lead to damages will be stated. Lastly, the criteria of rainfall conditions and initial stages of reservoir will be analyzed in this study.

  16. IMPROVING ACCESS TO INFORMATION ABOUT ORD PROJECTS

    EPA Science Inventory

    ORD project information is maintained in, and retrieved from, multiple systems and home pages. Not all sources of project information are Intranet accessible. Descriptive information may be abbreviated and not useful in conveying a comprehensive understanding of a project. The m...

  17. Pre-drilling prediction techniques on the high-temperature high-pressure hydrocarbon reservoirs offshore Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyu; Liu, Huaishan; Wu, Shiguo; Sun, Jin; Yang, Chaoqun; Xie, Yangbing; Chen, Chuanxu; Gao, Jinwei; Wang, Jiliang

    2018-02-01

    Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure (HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques (PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.

  18. Gas network model allows full reservoir coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Methnani, M.M.

    The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solutionmore » method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.« less

  19. CE-QUAL-W2 Modeling of Head-of-Reservoir Conditions at Shasta Reservoir, California

    NASA Astrophysics Data System (ADS)

    Clancey, K. M.; Saito, L.; Svoboda, C.; Bender, M. D.; Hannon, J.

    2014-12-01

    Restoration of Chinook salmon and steelhead is a priority in the Sacramento River Basin since they were listed under the Endangered Species Act in 1989 and 1998, respectively. Construction of Shasta Dam and Reservoir obstructed fish migration, resulting in severe population declines. Efforts have been undertaken to restore the fisheries, including evaluation of opportunities for reintroducing Chinook salmon upstream of the dam and providing juvenile fish passage downstream past Shasta Dam. Shasta Reservoir and the Sacramento River and McCloud River tributaries have been modeled with CE-QUAL-W2 (W2) to assess hydrodynamic and temperature conditions with and without surface curtains to be deployed in the tributaries. Expected head-of-reservoir tributary conditions of temperature and water depth are being simulated under dry, median and wet year conditions. Model output is analyzed during months of downstream migration of fish from upstream Sacramento and McCloud River tributaries. W2 will be used to determine presence of favorable conditions for juvenile rearing with proposed surface temperature curtains. Evaluation of favorable conditions for fish includes assessment of water temperature, velocities, and depth. Preliminary results for head-of-reservoir conditions and the influence of temperature curtains modeled with W2 will be presented. Study findings may assist in formulation of juvenile fish passage alternatives for Shasta Lake.

  20. Comprehensible Presentation of Topological Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Gunther H.; Beketayev, Kenes; Bremer, Peer-Timo

    2012-03-05

    Topological information has proven very valuable in the analysis of scientific data. An important challenge that remains is presenting this highly abstract information in a way that it is comprehensible even if one does not have an in-depth background in topology. Furthermore, it is often desirable to combine the structural insight gained by topological analysis with complementary information, such as geometric information. We present an overview over methods that use metaphors to make topological information more accessible to non-expert users, and we demonstrate their applicability to a range of scientific data sets. With the increasingly complex output of exascale simulations,more » the importance of having effective means of providing a comprehensible, abstract overview over data will grow. The techniques that we present will serve as an important foundation for this purpose.« less

  1. Mercury mass balance study in Wujiangdu and Dongfeng Reservoirs, Guizhou, China.

    PubMed

    Feng, Xinbin; Jiang, Hongmei; Qiu, Guangle; Yan, Haiyu; Li, Guanghui; Li, Zhonggen

    2009-10-01

    From October 2003 to September 2004, we conducted a detailed study on the mass balance of total mercury (THg) and methylmercury (MeHg) of Dongfeng (DF) and Wujiangdu (WJD) reservoirs, which were constructed in 1992 and 1979, respectively. Both reservoirs were net sinks for THg on an annual scale, absorbing 3319.5 g km(-2) for DF Reservoir, and 489.2 g km(-2) for WJD Reservoirs, respectively. However, both reservoirs were net sources of MeHg to the downstream ecosystems. DF Reservoir provided a source of 32.9 g MeHg km(-2) yr(-1), yielding 10.3% of the amount of MeHg that entered the reservoir, and WJD Reservoir provided 140.9 g MeHg km(-2) yr(-1), yielding 82.5% of MeHg inputs. Our results implied that water residence time is an important variable affecting Hg methylation rate in the reservoirs. Our study shows that building a series of reservoirs in line along a river changes the riverine system into a natural Hg methylation factory which markedly increases the %MeHg in the downstream reservoirs; in effect magnifying the MeHg buildup problem in reservoirs.

  2. Genetic research of fractures in carbonate reservoir: a case study of NT carbonate reservoir in the pre-Caspian basin

    NASA Astrophysics Data System (ADS)

    Fan, Zifei; Wang, Shuqin; Li, Jianxin; Zhao, Wenqi; Sun, Meng; Li, Weiqiang; Li, Changhai

    2018-02-01

    The degree of development and characteristics of fractures are key factors for the appraisal of carbonate reservoirs. In this paper, core data and well logging data from the NT oilfield in the Pre-Caspian Basin are used to study the formation mechanism and distribution characteristics of different genetic fractures, and analyze their influence on reservoir properties. Fractures in carbonate reservoirs can be divided into three categories according to their formation mechanism; these are tectonic fracture, dissolved fracture, and diagenetic fracture,which is further divided into interlayer fracture and stylolite. Fractures of different formation mechanism influence fluid seepage in different degree, tectonic fractures possessing strong connecting ability to pores, and dissolved fractures also improving reservoir properties effectively, however, diagenetic fractures contributing relatively little to fluid seepage.

  3. Water Operations Technical Support Program. Water Quality Management for Reservoirs and Tailwaters. Report 1. In-Reservoir Water Quality Management Techniques

    DTIC Science & Technology

    1989-01-01

    at rates sufficient to bring about increased production of algae and rooted plants and decreased reservoir volume. Associated with this process are...manganese, hydrogen sulfide, ammonia, and carbon dioxide. Further, the production and death of plants throughout the reservoir, followed by...increase in biological production and a decrease in volume or storage capacity. Figure 4 illustrates these incomes and some of the major in-reservoir

  4. Miniature Reservoir Cathode: An Update

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K.; Wintucky, Edwin G.

    2002-01-01

    We report on recent work to produce a small low power, low cost reservoir cathode capable of long life (more than 100,000 hours) at high loading (> 5 A/sq cm). Our objective is a highly manufacturable, commercial device costing less than $30. Small highly loaded cathodes are needed, especially for millimeter wave tubes, where focusing becomes difficult when area convergence ratios are too high. We currently have 3 models ranging from .060-inch diameter to. 125-inch diameter. Reservoir type barium dispenser cathodes have a demonstrated capability for simultaneous high emission density and long life. Seven reservoir cathodes continue to operate on the cathode life test facility at NSWC, Crane, Indiana at 2 and 4 amps/sq cm. They have accumulated nearly 100,000 hours with practically no change in emission levels or knee temperature.

  5. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 312 site, northern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myshakin, Evgeniy M.; Gaddipati, Manohar; Rose, Kelly

    2012-06-01

    In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from themore » Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a

  6. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S COMPREHENSIVE HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from nine U.S. studies related to human activities into one comprehensive data system that can be accessed via the world-wide web. The data system is called CHAD-Consolidated Human Activity Database-and it is ...

  7. Evaluation of Cognitively Accessible Software to Increase Independent Access to Cellphone Technology for People with Intellectual Disability

    ERIC Educational Resources Information Center

    Stock, S. E.; Davies, D. K.; Wehmeyer, M. L.; Palmer, S. B.

    2008-01-01

    Background: There are over two billion telephones in use worldwide. Yet, for millions of Americans with intellectual disabilities (ID), access to the benefits of cellphone technology is limited because of deficits in literacy, numerical comprehension, the proliferation of features and shrinking size of cellphone hardware and user interfaces.…

  8. Assembling evidence for identifying reservoirs of infection.

    PubMed

    Viana, Mafalda; Mancy, Rebecca; Biek, Roman; Cleaveland, Sarah; Cross, Paul C; Lloyd-Smith, James O; Haydon, Daniel T

    2014-05-01

    Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Dams, reservoirs, and withdrawals for water supply; historic trends

    USGS Publications Warehouse

    Langbein, W.B.

    1982-01-01

    The U.S. Geological Survey (USGS) from time to time has published an inventory of major reservoirs and controlled natural lakes. The latest available USGS report indicated that as of 1963, usable capacity in major reservoirs (those having 5 ,000 acre-ft of usable capacity) totaled 359 million acre-ft. The growth rate for total capacity averaged about 80%/decade until the early 1960's. Since then, reservoir capacity has increased at a markedly slower rate, the effects of approaching an asymptotic limit on capacity in some areas, compounded, by increasing public aversion toward reservoir construction. The trend toward non-structural measures places greater dependence on management skill and on better forecasts. At some point, the potentials of conservation and better management will become less effective than reservoirs and there will again be an upward trend in reservoir capacity. (Lantz-PTT)

  10. GPFA-AB_Phase1ReservoirTask2DataUpload

    DOE Data Explorer

    Teresa E. Jordan

    2015-10-22

    This submission to the Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) in support of Phase 1 Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. The files included in this zip file contain all data pertinent to the methods and results of this task’s output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified using a new metric, Reservoir Productivity Index, as explained in the Reservoirs Methodology Memo (included in zip file). Shapefile and images of the Reservoir Productivity and Reservoir Uncertainty are included as well.

  11. Authorized and Operating Purposes of Corps of Engineers Reservoirs

    DTIC Science & Technology

    1992-07-01

    Puerto Rico CERRILLOS DAM AND RESERVOIR Jacksonville E-9O PORTUGUES DAM AND RESERVOIR Jacksonville E-92 South Carolina HARTWELL DAM AND LAKE Savannah E...LAKE Missouri Kansas City E-12 POMONA LAKE Kansas Kansas City E-12 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 PRADO DAM (SANTA ANA...PROJECT Florida Jacksonville E-92 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 RODMAN LOCK AND DAM (CROSS FLORIDA BARGE CANAL Florida

  12. Test Review: ACCESS for ELLs[R

    ERIC Educational Resources Information Center

    Fox, Janna; Fairbairn, Shelley

    2011-01-01

    This article reviews Assessing Comprehension and Communication in English State-to-State for English Language Learners ("ACCESS for ELLs"[R]), which is a large-scale, high-stakes, standards-based, and criterion-referenced English language proficiency test administered in the USA annually to more than 840,000 English Language Learners (ELLs), in…

  13. Estimated cumulative sediment trapping in future hydropower reservoirs in Africa

    NASA Astrophysics Data System (ADS)

    Lucía, Ana; Berlekamp, Jürgen; Zarfl, Christiane

    2017-04-01

    Despite a rapid economic development in Sub-Saharan Africa, almost 70% of the human population in this area remain disconnected from electricity access (International Energy Agency 2011). Mitigating climate change and a search for renewable, "climate neutral" electricity resources are additional reasons why Africa will be one key centre for future hydropower dam building, with only 8% of the technically feasible hydropower potential actually exploited. About 300 major hydropower dams with a total capacity of 140 GW are currently under construction (11.4%) or planned (88.6%) (Zarfl et al. 2015). Despite the benefits of hydropower dams, fragmentation of the rivers changes the natural flow, temperature and sediment regime. This has consequences for a high number of people that directly depend on the primary sector linked to rivers and floodplains. But sediment trapping in the reservoir also affects dam operation and decreases its life span. Thus, the objective of this work is to quantify the dimension of sediment trapping by future hydropower dams in African river basins. Soil erosion is described with the universal soil loss equation (Wischmeier & Smith 1978) and combined with the connectivity index (Cavalli et al. 2013) to estimate the amount of eroded soil that reaches the fluvial network and finally ends up in the existing (Lehner et al. 2011) and future reservoirs (Zarfl et al. 2015) per year. Different scenarios assuming parameter values from the literature are developed to include model uncertainty. Estimations for existing dams will be compared with literature data to evaluate the applied estimation method and scenario assumptions. Based on estimations for the reservoir volume of the future dams we calculated the potential time-laps of the future reservoirs due to soil erosion and depending on their planned location. This approach could support sustainable decision making for the location of future hydropower dams. References Cavalli, M., Trevisani, S., Comiti

  14. Differences in Reservoir Bathymetry, Area, and Capacity Between December 20-22, 2005, and June 16-19, 2008, for Lower Taum Sauk Reservoir, Reynolds County, Missouri

    USGS Publications Warehouse

    Wilson, Gary L.; Richards, Joseph M.

    2008-01-01

    On December 14, 2005, the embankment of the upper reservoir at the Taum Sauk pump storage facility, Reynolds County, Missouri, catastrophically failed and flooded the East Fork Black River, depositing debris and sediment in Johnson's Shut-Ins State Park, the lower Taum Sauk Reservoir, and downstream in the Black River (location map). A bathymetric survey conducted December 20-22, 2005, documented the bathymetry of the lower Taum Sauk Reservoir after the upper reservoir failure (Rydlund, 2006). After subsequent excavation of sediment and debris from the lower reservoir by Ameren Union Electric (UE), the U.S. Geological Survey (USGS), in collaboration with Roux Associates Inc., conducted a bathymetric survey of the lower Taum Sauk Reservoir on June 16-19, 2008, to prepare a current (2008) bathymetric map (fig. 1) for the lower reservoir, establish a current (2008) elevation-area and capacity table, and determine reservoir area and capacity differences between the 2005 and 2008 bathymetric surveys.

  15. Memory Operations That Support Language Comprehension: Evidence From Verb-Phrase Ellipsis

    PubMed Central

    Martin, Andrea E.; McElree, Brian

    2010-01-01

    Comprehension of verb-phrase ellipsis (VPE) requires reevaluation of recently processed constituents, which often necessitates retrieval of information about the elided constituent from memory. A. E. Martin and B. McElree (2008) argued that representations formed during comprehension are content addressable and that VPE antecedents are retrieved from memory via a cue-dependent direct-access pointer rather than via a search process. This hypothesis was further tested by manipulating the location of interfering material—either before the onset of the antecedent (proactive interference; PI) or intervening between antecedent and ellipsis site (retroactive interference; RI). The speed–accuracy tradeoff procedure was used to measure the time course of VPE processing. The location of the interfering material affected VPE comprehension accuracy: RI conditions engendered lower accuracy than PI conditions. Crucially, location did not affect the speed of processing VPE, which is inconsistent with both forward and backward search mechanisms. The observed time-course profiles are consistent with the hypothesis that VPE antecedents are retrieved via a cue-dependent direct-access operation. PMID:19686017

  16. Geometrical and hydrogeological impact on the behaviour of deep-seated rock slides during reservoir impoundment

    NASA Astrophysics Data System (ADS)

    Lechner, Heidrun; Zangerl, Christian

    2015-04-01

    destabilisation is highly dependent on the ratio of the rock mass volume affected by buoyancy forces to the total volume of the rock slide. If a large rock mass volume ratio is submerged, huge buoyancy forces evolve and destabilize the slope significantly. Additionally, the influence of impoundment velocity on the rock slide behaviour and the impact of material properties of the rock masses are analysed. Reservoir water rapidly infiltrates into high-permeable rock slide masses evolving high pore pressures at the basal shear zone which leads to destabilisation. Conversely, reservoir water infiltrates slowly into low-permeable rock masses and the destabilizing effect of the pore water pressure might be compensated by a buttressing reservoir load over the low-permeable rock masses. Preliminary steady state calculations show that the factor of safety decreases constantly with increasing reservoir level until a certain threshold reservoir level and minimum factor of safety is reached. After exceeding this threshold level a further increase in reservoir impoundment leads to an increase of the factor of safety. This threshold reservoir level is reliant on the rock slide geometry and rock mass volume affected by buoyancy. Upcoming research is expected to provide new fundamentals for a comprehensive understanding of deformation and failure processes of deep-seated rock slides in order to perform reliable forecasts.

  17. Nanotechnology approaches to eradicating HIV reservoirs.

    PubMed

    Cao, Shijie; Woodrow, Kim A

    2018-06-04

    The advent of combination antiretroviral therapy (cART) has transformed HIV-1 infection into a controllable chronic disease, but these therapies are incapable of eradicating the virus to bring about an HIV cure. Multiple strategies have been proposed and investigated to eradicate latent viral reservoirs from various biological sanctuaries. However, due to the complexity of HIV infection and latency maintenance, a single drug is unlikely to eliminate all HIV reservoirs and novel strategies may be needed to achieve better efficacy while limiting systemic toxicity. In this review, we describe HIV latency in cellular and anatomical reservoirs, and present an overview of current strategies for HIV cure with a focus on their challenges for clinical translation. We also provide a summary of nanotechnology solutions that have been used to address challenges in HIV cure by delivering physicochemically diverse agents for combination therapy or targeting HIV reservoir sites. We also review nanocarrier-based gene delivery and immunotherapy used in cancer treatment but may have potential applications in HIV cure. Copyright © 2018. Published by Elsevier B.V.

  18. Sedimentary reservoir oxidation during geologic CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Lammers, Laura N.; Brown, Gordon E.; Bird, Dennis K.; Thomas, Randal B.; Johnson, Natalie C.; Rosenbauer, Robert J.; Maher, Katharine

    2015-04-01

    Injection of carbon dioxide into subsurface geologic reservoirs during geologic carbon sequestration (GCS) introduces an oxidizing supercritical CO2 phase into a subsurface geologic environment that is typically reducing. The resulting redox disequilibrium provides the chemical potential for the reduction of CO2 to lower free energy organic species. However, redox reactions involving carbon typically require the presence of a catalyst. Iron oxide minerals, including magnetite, are known to catalyze oxidation and reduction reactions of C-bearing species. If the redox conditions in the reservoir are modified by redox transformations involving CO2, such changes could also affect mineral stability, leading to dissolution and precipitation reactions and alteration of the long-term fate of CO2 in GCS reservoirs. We present experimental evidence that reservoirs with reducing redox conditions are favorable environments for the relatively rapid abiotic reduction of CO2 to organic molecules. In these experiments, an aqueous suspension of magnetite nanoparticles was reacted with supercritical CO2 under pressure and temperature conditions relevant to GCS in sedimentary reservoirs (95-210 °C and ∼100 bars of CO2). Hydrogen production was observed in several experiments, likely caused by Fe(II) oxidation either at the surface of magnetite or in the aqueous phase. Heating of the Fe(II)-rich system resulted in elevated PH2 and conditions favorable for the reduction of CO2 to acetic acid. Implications of these results for the long-term fate of CO2 in field-scale systems were explored using reaction path modeling of CO2 injection into reservoirs containing Fe(II)-bearing primary silicate minerals, with kinetic parameters for CO2 reduction obtained experimentally. The results of these calculations suggest that the reaction of CO2 with reservoir constituents will occur in two primary stages (1) equilibration of CO2 with organic acids resulting in mineral-fluid disequilibrium, and

  19. SU-E-T-112: Experimental Characterization of a Novel Thermal Reservoir for Consistent and Accurate Annealing of High-Sensitivity TLDs.

    PubMed

    Donahue, W; Bongiorni, P; Hearn, R; Rodgers, J; Nath, R; Chen, Z

    2012-06-01

    To develop and characterize a novel thermal reservoir for consistent and accurate annealing of high-sensitivity thermoluminescence dosimeters (TLD-100H) for dosimetry of brachytherapy sources. The sensitivity of TLD-100H is about 18 times that of TLD-100 which has clear advantages in for interstitial brachytherapy sources. However, the TLD-100H requires a short high temperature annealing cycle (15 min.) and opening and closing the oven door causes significant temperature fluctuations leading to unreliable measurements. A new thermal reservoir made of aluminum alloy was developed to provide stable temperature environment in a standard hot air oven. The thermal reservoir consisted of a 20 cm × 20 cm × 8 cm Al block with a machine-milled chamber in the middle to house the aluminum TLD holding tray. The thermal reservoir was placed inside the oven until it reaches thermal equilibrium with oven chamber. The temperatures of the oven chamber, heat reservoir, and TLD holding tray were monitored by two independent thermo-couples which interfaced digitally to a control computer. A LabView interface was written for monitoring and recording the temperatures in TLD holding tray, the thermal reservoir, and oven chamber. The temperature profiles were measured as a function of oven-door open duration. The settings for oven chamber temperature and oven door open-close duration were optimized to achieve a stable temperature of 240 0C in the TLD holding tray. Complete temperature profiles of the TLD annealing tray over the entire annealing process were obtained. A LabView interface was written for monitoring and recording the temperatures in TLD holding The use of the thermal reservoir has significantly reduced the temperature fluctuations caused by the opening of oven door when inserting the TLD holding tray into the oven chamber. It has enabled consistent annealing of high-sensitivity TLDs. A comprehensive characterization of a custom-built novel thermal reservoir for annealing

  20. Sediment deposition in the White River Reservoir, northwestern Wisconsin

    USGS Publications Warehouse

    Batten, W.G.; Hindall, S.M.

    1980-01-01

    The history of deposition in the White River Reservoir was reconstructed from a study of sediment in the reservoir. Suspended-sediment concentrations, particle size, and streamflow characteristics were measured at gaging stations upstream and downstream from the reservoir from November 1975 through September 1977. Characteristics of the sediments were determined from borings and samples taken while the reservoir was drained in September 1976. The sediment surface and the pre-reservoir topography were mapped. Sediment thickness ranged from less than 1 foot near the shore to more than 20 feet in the old stream channel. The original reservoir capacity and the volume of deposited sediment were calculated to be 815 acre-feet and 487 acre-feet, respectively. Sediment size ranged from clay and silt in the pool area to large cobbles and boulders at the upstream end of the reservoir. Analyses of all samples averaged 43 percent sand, 40 percent silt, and 17 percent clay, and particle size typically increased upstream. Cobbles, boulders, and gravel deposits were not sampled. The average density of the deposited sediment was about 80 pounds per cubic foot for the entire reservoir. The reservoir was able to trap about 80 percent of the sediment entering from upstream, early in its history. This trap efficiency has declined as the reservoir filled with sediment. Today (1976), it traps only sand and silt-sized sediment, or only about 20 percent of the sediment entering from upstream. Data collected during this study indicate that essentially all of the clay-sized sediment (<0.062 mm) passes through the reservoir. The gross rate of deposition was 7.0 acre-feet per year over the reservoir history, 1907-76. Rates during 1907-63 and 1963-76 were 7.4 and 5.7 acre-feet per year, respectively, determined by the cesium-137 method. Based on scant data, the average annual sediment yield of the total 279 square mile drainage area above the gaging station at the powerhouse was about 50 tons

  1. Limnology of Blue Mesa, Morrow Point, and Crystal Reservoirs, Curecanti National Recreation area, during 1999, and a 25-year retrospective of nutrient conditions in Blue Mesa Reservoir, Colorado

    USGS Publications Warehouse

    Bauch, Nancy J.; Malick, Matt

    2003-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation in Curecanti National Recreation Area in Colorado from April through December 1999. Current (as of 1999) limnological characteristics, including nutrients, phytoplankton, chlorophyll-a, trophic status, and the water quality of stream inflows and reservoir outflows, of Blue Mesa, Morrow Point, and Crystal Reservoirs were assessed, and a 25-year retrospective of nutrient conditions in Blue Mesa Reservoir was conducted. The three reservoirs are in a series on the Gunnison River, with an upstream to downstream order of Blue Mesa, Morrow Point, and Crystal Reservoirs. Physical properties and water-quality samples were collected four times during 1999 from reservoir, inflow, and outflow sites in and around the recreation area. Samples were analyzed for nutrients, phytoplankton and chlorophyll-a (reservoir sites only), and suspended sediment (stream inflows only). Nutrient concentrations in the reservoirs were low; median total nitrogen and phosphorus concentrations were less than 0.4 and 0.06 milligram per liter, respectively. During water-column stratification, samples collected at depth had higher nutrient concentrations than photic-zone samples. Phytoplankton community and density were affected by water temperature, nutrients, and water residence time. Diatoms were the dominant phytoplankton throughout the year in Morrow Point and Crystal Reservoirs and during spring and early winter in Blue Mesa Reservoir. Blue-green algae were dominant in Blue Mesa Reservoir during summer and fall. Phytoplankton density was highest in Blue Mesa Reservoir and lowest in Crystal Reservoir. Longer residence times and warmer temperatures in Blue Mesa Reservoir were favorable for phytoplankton growth and development. Shorter residence times and cooler temperatures in the downstream reservoirs probably limited phytoplankton growth and development. Median chlorophyll-a concentrations were higher

  2. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, <0,1>, was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  3. Design and development of bio-inspired framework for reservoir operation optimization

    NASA Astrophysics Data System (ADS)

    Asvini, M. Sakthi; Amudha, T.

    2017-12-01

    Frameworks for optimal reservoir operation play an important role in the management of water resources and delivery of economic benefits. Effective utilization and conservation of water from reservoirs helps to manage water deficit periods. The main challenge in reservoir optimization is to design operating rules that can be used to inform real-time decisions on reservoir release. We develop a bio-inspired framework for the optimization of reservoir release to satisfy the diverse needs of various stakeholders. In this work, single-objective optimization and multiobjective optimization problems are formulated using an algorithm known as "strawberry optimization" and tested with actual reservoir data. Results indicate that well planned reservoir operations lead to efficient deployment of the reservoir water with the help of optimal release patterns.

  4. Reservoir Structure and Wastewater-Induced Seismicity at the Val d'Agri Oilfield (Italy) Shown by Three-Dimensional Vp and Vp/Vs Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Improta, L.; Bagh, S.; De Gori, P.; Valoroso, L.; Pastori, M.; Piccinini, D.; Chiarabba, C.; Anselmi, M.; Buttinelli, M.

    2017-11-01

    Wastewater injection into a high-rate well in the Val d'Agri oilfield, the largest in onshore Europe, has induced swarm microseismicity since the initiation of disposal in 2006. To investigate the reservoir structure and to track seismicity, we performed a high-spatial resolution local earthquake tomography using 1,281 natural and induced earthquakes recorded by local networks. The properties of the carbonate reservoir (rock fracturing, pore fluid pressure) and inherited faults control the occurrence and spatiotemporal distribution of seismicity. A low-Vp, high-Vp/Vs region under the well represents a fluid saturated fault zone ruptured by induced seismicity. High-Vp, high-Vp/Vs bumps match reservoir culminations indicating saturated liquid-bearing zones, whereas a very low Vp, low Vp/Vs anomaly might represent a strongly fractured and depleted zone of the hydrocarbon reservoir characterized by significant fluid withdrawal. The comprehensive picture of the injection-linked seismicity obtained by integrating reservoir-scale tomography, high-precision earthquake locations, and geophysical and injection data suggests that the driving mechanism is the channeling of pore pressure perturbations through a high permeable fault damage zone within the reservoir. The damage zone surrounds a Pliocene reverse fault optimally oriented in the current extensional stress field. The ruptured damage zone measures 2 km along strike and 3 km along dip and is confined between low permeability ductile formations. Injection pressure is the primary parameter controlling seismicity rate. Our study underlines that local earthquake tomography also using wastewater-induced seismicity can give useful insights into the physical mechanism leading to these earthquakes.

  5. Evaluation of Web Accessibility of Consumer Health Information Websites

    PubMed Central

    Zeng, Xiaoming; Parmanto, Bambang

    2003-01-01

    The objectives of the study are to construct a comprehensive framework for web accessibility evaluation, to evaluate the current status of web accessibility of consumer health information websites and to investigate the relationship between web accessibility and property of the websites. We selected 108 consumer health information websites from the directory service of a Web search engine. We used Web accessibility specifications to construct a framework for the measurement of Web Accessibility Barriers (WAB) of website. We found that none of the websites is completely accessible to people with disabilities, but governmental and educational health information websites exhibit better performance on web accessibility than other categories of websites. We also found that the correlation between the WAB score and the popularity of a website is statistically significant. PMID:14728272

  6. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based onmore » marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  7. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on markermore » correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  8. A Statistical Graphical Model of the California Reservoir System

    NASA Astrophysics Data System (ADS)

    Taeb, A.; Reager, J. T.; Turmon, M.; Chandrasekaran, V.

    2017-11-01

    The recent California drought has highlighted the potential vulnerability of the state's water management infrastructure to multiyear dry intervals. Due to the high complexity of the network, dynamic storage changes in California reservoirs on a state-wide scale have previously been difficult to model using either traditional statistical or physical approaches. Indeed, although there is a significant line of research on exploring models for single (or a small number of) reservoirs, these approaches are not amenable to a system-wide modeling of the California reservoir network due to the spatial and hydrological heterogeneities of the system. In this work, we develop a state-wide statistical graphical model to characterize the dependencies among a collection of 55 major California reservoirs across the state; this model is defined with respect to a graph in which the nodes index reservoirs and the edges specify the relationships or dependencies between reservoirs. We obtain and validate this model in a data-driven manner based on reservoir volumes over the period 2003-2016. A key feature of our framework is a quantification of the effects of external phenomena that influence the entire reservoir network. We further characterize the degree to which physical factors (e.g., state-wide Palmer Drought Severity Index (PDSI), average temperature, snow pack) and economic factors (e.g., consumer price index, number of agricultural workers) explain these external influences. As a consequence of this analysis, we obtain a system-wide health diagnosis of the reservoir network as a function of PDSI.

  9. Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance

    PubMed Central

    2018-01-01

    ABSTRACT The hospital environment is a potential reservoir of bacteria with plasmids conferring carbapenem resistance. Our Hospital Epidemiology Service routinely performs extensive sampling of high-touch surfaces, sinks, and other locations in the hospital. Over a 2-year period, additional sampling was conducted at a broader range of locations, including housekeeping closets, wastewater from hospital internal pipes, and external manholes. We compared these data with previously collected information from 5 years of patient clinical and surveillance isolates. Whole-genome sequencing and analysis of 108 isolates provided comprehensive characterization of blaKPC/blaNDM-positive isolates, enabling an in-depth genetic comparison. Strikingly, despite a very low prevalence of patient infections with blaKPC-positive organisms, all samples from the intensive care unit pipe wastewater and external manholes contained carbapenemase-producing organisms (CPOs), suggesting a vast, resilient reservoir. We observed a diverse set of species and plasmids, and we noted species and susceptibility profile differences between environmental and patient populations of CPOs. However, there were plasmid backbones common to both populations, highlighting a potential environmental reservoir of mobile elements that may contribute to the spread of resistance genes. Clear associations between patient and environmental isolates were uncommon based on sequence analysis and epidemiology, suggesting reasonable infection control compliance at our institution. Nonetheless, a probable nosocomial transmission of Leclercia sp. from the housekeeping environment to a patient was detected by this extensive surveillance. These data and analyses further our understanding of CPOs in the hospital environment and are broadly relevant to the design of infection control strategies in many infrastructure settings. PMID:29437920

  10. Integrated specialty service readiness in health reform: connections in haemophilia comprehensive care.

    PubMed

    Pritchard, A M; Page, D

    2008-05-01

    The World Health Organization (WHO) has identified primary healthcare reform as a global priority whereby innovative practice changes are directed at improving health. This transformation to health reform in haemophilia service requires clarification of comprehensive care to reflect the WHO definition of health and key elements of primary healthcare reform. While comprehensive care supports effective healthcare delivery, comprehensive care must also be regarded beyond immediate patient management to reflect the broader system purpose in the care continuum with institutions, community agencies and government. Furthermore, health reform may be facilitated through integrated service delivery (ISD). ISD in specialty haemophilia care has the potential to reduce repetition of assessments, enhance care plan communication between providers and families, provide 24-h access to care, improve information availability regarding care quality and outcomes, consolidate access for multiple healthcare encounters and facilitate family self-efficacy and autonomy [1]. Three core aspects of ISD have been distinguished: clinical integration, information management and technology and vertical integration in local communities [2]. Selected examples taken from Canadian haemophilia comprehensive care illustrate how practice innovations are bridged with a broader system level approach and may support initiatives in other contexts. These innovations are thought to indicate readiness regarding ISD. Reflecting on the existing capacity of haemophilia comprehensive care teams will assist providers to connect and direct their existing strengths towards ISD and health reform.

  11. Health research needs more comprehensive accessibility measures: integrating time and transport modes from open data.

    PubMed

    Tenkanen, Henrikki; Saarsalmi, Perttu; Järv, Olle; Salonen, Maria; Toivonen, Tuuli

    2016-07-28

    In this paper, we demonstrate why and how both temporality and multimodality should be integrated in health related studies that include accessibility perspective, in this case healthy food accessibility. We provide evidence regarding the importance of using multimodal spatio-temporal accessibility measures when conducting research in urban contexts and propose a methodological approach for integrating different travel modes and temporality to spatial accessibility analyses. We use the Helsinki metropolitan area (Finland) as our case study region to demonstrate the effects of temporality and modality on the results. Spatial analyses were carried out on 250 m statistical grid squares. We measured travel times between the home location of inhabitants and open grocery stores providing healthy food at 5 p.m., 10 p.m., and 1 a.m. using public transportation and private cars. We applied the so-called door-to-door approach for the travel time measurements to obtain more realistic and comparable results between travel modes. The analyses are based on open access data and publicly available open-source tools, thus similar analyses can be conducted in urban regions worldwide. Our results show that both time and mode of transport have a prominent impact on the outcome of the analyses; thus, understanding the realities of accessibility in a city may be very different according to the setting of the analysis used. In terms of travel time, there is clear variation in the results at different times of the day. In terms of travel mode, our results show that when analyzed in a comparable manner, public transport can be an even faster mode than a private car to access healthy food, especially in central areas of the city where the service network is dense and public transportation system is effective. This study demonstrates that time and transport modes are essential components when modeling health-related accessibility in urban environments. Neglecting them from spatial

  12. Reservoirs in the United States

    USGS Publications Warehouse

    Harbeck, G. Earl

    1948-01-01

    Man has engaged in the control of flowing water since history began. Among his early recorded efforts were reservoirs for muncipal water-supplies constructed near ancient Jerusalem to store water which was brought there in masonry conduits. 1/  Irrigation was practiced in Egypt as early as 2000 B. C. There the "basin system" was used from ancient times until the 19th century. The land was divided , into basins of approximately 40,000 acres, separated by earthen dikes. 2/  Flood waters of the Nile generally inundated the basins through canals, many of which were built by the Pharaohs. Even then the economic consequences of a deficient annual flood were recognized. Lake Maeris, which according to Herodotus was an ancient storage reservoir, is said to have had an area of 30,000 acres. In India, the British found at the time of their occupancy of the Presidency of Madras about 50,000 reservoirs for irrigation, many believed to be of ancient construction. 3/ During the period 115-130 A. D. reservoirs were built to improve the water-supply of Athens. Much has been written concerning the elaborate collection and distribution system built to supply Rome, and parts of it remain to this day as monuments to the engineering skill employed by the Romans in solving the problem of large-scale municipal water-supplies.

  13. Unconventional Reservoirs: Ideas to Commercialization

    NASA Astrophysics Data System (ADS)

    Tinker, S. W.

    2015-12-01

    There is no shortage of coal, oil, and natural gas in the world. What are sometimes in short supply are fresh ideas. Scientific innovation combined with continued advances in drilling and completion technology revitalized the natural gas industry in North America by making production from shale economic. Similar advances are now happening in shale oil. The convergence of ideas and technology has created a commercial environment in which unconventional reservoirs could supply natural gas to the North American consumer for 50 years or more. And, although not as far along in terms of resource development, oil from the Eagle Ford and Bakken Shales and the oil sands in Alberta could have a similar impact. Without advanced horizontal drilling, geosteering, staged hydraulic-fracture stimulation, synthetic and natural proppants, evolution of hydraulic fluid chemistry, and high-end monitoring and simulation, many of these plays would not exist. Yet drilling and completion technology cannot stand alone. Also required for success are creative thinking, favorable economics, and a tolerance for risk by operators. Current understanding and completion practices will leave upwards of 80% of oil and natural gas in the shale reservoirs. The opportunity to enhance recovery through advanced reservoir understanding and imaging, as well as through recompletions and infill drilling, is considerable. The path from ideas to commercialization will continue to provide economic results in unconventional reservoirs.

  14. Aging Reservoirs in a Changing Climate: Examining Storage Loss of Large Reservoirs and Variability of Sedimentation Rate in a Dominant Cropland Region

    NASA Astrophysics Data System (ADS)

    Rahmani, V.; Kastens, J.; deNoyelles, F.; Huggins, D.; Martinko, E.

    2015-12-01

    Dam construction has multiple environmental and hydrological consequences including impacts on upstream and downstream ecosystems, water chemistry, and streamflow. Behind the dam the reservoir can trap sediment from the stream and fill over time. With increasing population and drinking and irrigation water demands, particularly in the areas that have highly variable weather and extended drought periods such as the United States Great Plains, reservoir sedimentation escalates water management concerns. Under nearly all projected climate change scenarios we expect that reservoir water storage and management will come under intense scrutiny because of the extensive use of interstate river compacts in the Great Plains. In the state of Kansas, located in the Great Plains, bathymetric surveys have been completed during the last decade for many major lakes by the Kansas Biological Survey, Kansas Water Office, and the U.S. Army Corps of Engineers. In this paper, we studied the spatial and temporal changes of reservoir characteristics including sedimentation yield, depletion rate, and storage capacity loss for 24 federally-operated reservoirs in Kansas. These reservoirs have an average age of about 50 years and collectively have lost approximately 15% of their original capacity, with the highest annual observed single-reservoir depletion rate of 0.84% and sedimentation yield of 1,685 m3 km-2 yr-1.

  15. Design and life-cycle considerations for unconventional-reservoir wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskimins, J.L.

    2009-05-15

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studiesmore » for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.« less

  16. Improved Maternal and Child Health Care Access in a Rural Community.

    ERIC Educational Resources Information Center

    Carcillo, Joseph A.; And Others

    1995-01-01

    Describes an underserved rural community in which health care initiatives increased access to comprehensive care. Over a 3-year period, increased accessibility to maternal and child health care also increased use of preventive services, thus decreasing emergency room visits and hospitalizations as well as low birth weight, risk of congenital…

  17. Bathymetry of Stevens Creek and Neal Shoals reservoirs, South Carolina, 1990

    USGS Publications Warehouse

    Stringfield, W.J.

    1995-01-01

    Stevens Creek Reservoir and Neal Shoals Reservoir are located in the Piedmont Province of South Carolina (fig. 1). The primary purposes for the reservoirs are hydroelectric power generation and recreational activities. Because there has been no bottom surveys of these reservoirs since they were formed in the early 1900's, there is concern about the decrease in reservoir volumes due to sedimen- tation. An investigation was begun in 1990 by the U.S. Geological Survey (USGS) in cooperation with the South Carolina Department of Natural Resources, Water Resources Division to provide information on present water depths, on areas of rapid-sediment deposition, and on changes in lake volume. This report documents the bathymetric surveys made of Stevens Creek and Neal Shoals Reservoirs during 1990 and provides maps that depict the depth of each reservoir. This report documents the bathymetric surveys made of Stevens Creek and Neal Shoals Reservoirs during 1990 and provides maps that depict the depth of each reservoir.

  18. Event-Based Plausibility Immediately Influences On-Line Language Comprehension

    ERIC Educational Resources Information Center

    Matsuki, Kazunaga; Chow, Tracy; Hare, Mary; Elman, Jeffrey L.; Scheepers, Christoph; McRae, Ken

    2011-01-01

    In some theories of sentence comprehension, linguistically relevant lexical knowledge, such as selectional restrictions, is privileged in terms of the time-course of its access and influence. We examined whether event knowledge computed by combining multiple concepts can rapidly influence language understanding even in the absence of selectional…

  19. Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Santiago, C. J. S.; Solatpour, R.; Kantzas, A.

    2017-12-01

    The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing

  20. Hydrographic and sedimentation survey of Kajakai Reservoir, Afghanistan

    USGS Publications Warehouse

    Perkins, Don C.; Culbertson, James K.

    1970-01-01

    A hydrographic and sedimentation survey of Band-e Kajakai (Kajakai Reservoir) on the Darya-ye Hirmand (Helmand River) was carried out during the period September through December 1968. Underwater mapping techniques were used to determine the reservoir capacity as of 1968. Sediment range lines were established and monumented to facilitate future sedimentation surveys. Afghanistan engineers and technicians were trained to carry out future reservoir surveys. Samples were obtained of the reservoir bed and in the river upstream from the reservoir. Virtually no sediments coarser than about 0.063 millimeter were found on the reservoir bed surface. The median diameter of sands being transported into the reservoir ranged from 0.040 to 0.110 millimeter. The average annual rate of sedimentation was 7,800 acre-feet. Assuming an average density of 50 pounds per cubic foot (800 kilograms per cubic meter), the estimated average sediment inflow to the reservoir was about 8,500,000 tons (7,700,000 metric tons) per year. The decrease in capacity at spillway elevation for the period 1953 to 1968 due to sediment deposition was 7.8 percent, or 117,700 acre-feet. Redefinition of several contours above the fill area resulted in an increase in capacity at spillway elevation of 13,600 acre-feet; thus, the net change in capacity was 7.0 percent, or 104,800 acre-feet. Based on current data and an estimated rate of compaction of deposited sediment, the assumption of no appreciable change in hydrologic conditions in the drainage area, the leading edge of the principal delta will reach the irrigation outlet in 40-45 years. It is recommended that a resurvey of sediment range lines be made during the period 1973-75.

  1. Hydrocarbon reservoirs of Gulf of Mexico: spatial and temporal distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, P.K.

    1988-02-01

    The statistical distribution of over 12,000 producible hydrocarbon reservoirs from various biostratigraphic intervals of the Gulf of Mexico is presented. The average number, thickness, volume, subsurface depth, and ecozone of depositional environments of the reservoirs are grouped according to biostratigraphic intervals, trends, and geographic areas. The upper Pliocene and Pleistocene reservoirs account for more than 77% of the total number. Within the Miocene trend, Bigenerina H in the western Gulf and Bigenerina A and Bigenerina 2 in the central Gulf show significant concentration of reservoirs. The average depth of production for all trends gets deeper, both from west and east,more » toward Ship Shoal-South Timbalier areas. The average thickness varies slightly between trends; however, variation between areas is more significant. A significant majority of the reservoirs of all trends in the entire Gulf is reported from the outer shelf-upper slope ecozones (E3 and E4). According to volume, the E3-E5 reservoirs can be classified into three groups; (a) larger than 10,000 acre-ft/reservoir, (b) 5000 to 10,000 acre-ft/reservoir, and (c) smaller than 5000 acre-ft/reservoir. The reservoirs of the middle Miocene trend of the central Gulf and lower Miocene of the western Gulf fall into group a, those of other trends of the western Gulf into group b, and the post-Amphistegina E reservoirs of the central Gulf into group c. Information obtained from this study, in combination with regional and detailed geological information, provides valuable input in further exploration of the matured shelf and scantily explored slope of the Gulf of Mexico.« less

  2. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mella, Michael

    The objective of this project was to develop and demonstrate an approach for tracking the evolution of circulation immediately following a hydraulic stimulation in an EGS reservoir. Series of high-resolution tracer tests using conservative and thermally reactive tracers were designed at recently created EGS reservoirs in order to track changes in fluid flow parameters such as reservoir pore volume, flow capacity, and effective reservoir temperature over time. Data obtained from the project would be available for the calibration of reservoir models that could serve to predict EGS performance following a hydraulic stimulation.

  3. Reservoir Sedimentation: Impact, Extent, and Mitigation

    NASA Astrophysics Data System (ADS)

    Hadley, Richard F.

    Storage reservoirs play an important role in water resources development throughout the world. The one problem with reservoirs that is universal is the continual reduction in usable capacity caused by siltation. This book reviews the world picture of erosion and sediment yield, the large variations that exist, and the physical phenomena related to reservoir siltation. The book is in the Technical Paper series of The World Bank (Technical Paper 71) and is not a formal publication. Rather, it is intended to be circulated to encourage discussion and comment and to communicate results quickly. The book is reproduced from typescript, but this does not detract from the value of the contents as a useful text for hydrologrsts, engineers, and soil conservationists in developing countries.

  4. Numerical simulation of water injection into vapor-dominated reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  5. Cassidy conducts MDCA Fuel Reservoir Remove and Replace OPS

    NASA Image and Video Library

    2013-04-10

    ISS035-E-017699 (10 April 2013) --- This is one of several photos documenting the Multi-user Droplet Combustion Apparatus (MDCA) Fuel Reservoir replacement. Here, Expedition 35 Flight Engineer Chris Cassidy removes and replaces one of the Fuel Reservoirs with the MDCA Chamber Insert Assembly (CIA) pulled partially out of the Combustion Chamber. The MDCA Fuel Reservoirs contain the liquid fuel used during droplet combustion experiments. This reservoir change-out was in support of the FLame EXtinguishment (FLEX)-2 experiment, scheduled to be executed by ground controllers.

  6. All-optical reservoir computer based on saturation of absorption.

    PubMed

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  7. Enhancing Memory Access for Less Skilled Readers

    ERIC Educational Resources Information Center

    Smith, Emily R.; O'Brien, Edward J.

    2016-01-01

    Less skilled readers' comprehension often suffers because they have an impoverished representation of text in long-term memory; this, in turn, increases the difficulty of gaining access to backgrounded information necessary for maintaining coherence. The results of four experiments demonstrated that providing less skilled readers with additional…

  8. Disability and Equity in Higher Education Accessibility

    ERIC Educational Resources Information Center

    Alphin, Henry C., Jr., Ed.; Lavine, Jennie, Ed.; Chan, Roy Y., Ed.

    2017-01-01

    Education is the foundation to almost all successful lives. It is vital that learning opportunities are available on a global scale, regardless of individual disabilities or differences, and to create more inclusive educational practices. "Disability and Equity in Higher Education Accessibility" is a comprehensive reference source for…

  9. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    PubMed

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.

  10. Optimal nonlinear information processing capacity in delay-based reservoir computers

    NASA Astrophysics Data System (ADS)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  11. Optimal nonlinear information processing capacity in delay-based reservoir computers

    PubMed Central

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-01-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature. PMID:26358528

  12. Optimal nonlinear information processing capacity in delay-based reservoir computers.

    PubMed

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-11

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  13. Why Atens Enjoy Enhanced Accessibility for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Adamo, Daniel R.

    2011-01-01

    Near-Earth objects can be grouped into multiple orbit classifications, among them being the Aten group, whose members have orbits crossing Earth's with semi-major axes less than 1 astronomical unit. Atens comprise well under 10% of known near-Earth objects. This is in dramatic contrast to results from recent human space flight near-Earth object accessibility studies, where the most favorable known destinations are typically almost 50% Atens. Geocentric dynamics explain this enhanced Aten accessibility and lead to an understanding of where the most accessible near-Earth objects reside. Without a comprehensive space-based survey, however, highly accessible Atens will remain largely unknown.

  14. 49 CFR 230.72 - Testing main reservoirs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and... longitudinal lap seams, an appropriate NDE method that can measure the wall thickness of the reservoir may be... or riveted longitudinal lap seam main reservoirs, an appropriate NDE method that can measure wall...

  15. Cassidy conducts MDCA Fuel Reservoir Remove and Replace OPS

    NASA Image and Video Library

    2013-04-10

    ISS035-E-017712 (10 April 2013)?-- This is one of several photos documenting the Multi-user Droplet Combustion Apparatus (MDCA) Fuel Reservoir replacement in the U.S. lab Destiny. Here, Expedition 35 Flight Engineer Chris Cassidy removes and replaces one of the Fuel Reservoirs with the MDCA Chamber Insert Assembly (CIA) pulled partially out of the Combustion Chamber. The MDCA Fuel Reservoirs contain the liquid fuel used during droplet combustion experiments. This reservoir change-out was in support of the FLame EXtinguishment (FLEX)-2 experiment, scheduled to be executed by ground controllers.

  16. Canadian Practice Guidelines for Comprehensive Community Treatment for Schizophrenia and Schizophrenia Spectrum Disorders.

    PubMed

    Addington, Donald; Anderson, Elizabeth; Kelly, Martina; Lesage, Alain; Summerville, Chris

    2017-09-01

    The objective of this review is to identify the features and components of a comprehensive system of services for people living with schizophrenia. A comprehensive system was conceived as one that served the full range of people with schizophrenia and was designed with consideration of the incidence and prevalence of schizophrenia. The system should provide access to the full range of evidence-based services, should be recovery oriented, and should provide patient-centred care. A systematic search was conducted for published guidelines for schizophrenia and schizophrenia spectrum disorders. The guidelines were rated by at least 2 raters, and recommendations adopted were primarily drawn from the National Institute for Clinical Excellence (2014) Guideline on Psychosis and Schizophrenia in adults and the Scottish Intercollegiate Guidelines Network guidelines on management of schizophrenia. The recommendations adapted for Canada cover the range of services required to provide comprehensive services. Comprehensive services for people with schizophrenia can be organized and delivered to improve the quality of life of people with schizophrenia and their carers. The services need to be organized in a system that provides access to those who need them.

  17. Representing Reservoir Stratification in Land Surface and Earth System Models

    NASA Astrophysics Data System (ADS)

    Yigzaw, W.; Li, H. Y.; Leung, L. R.; Hejazi, M. I.; Voisin, N.; Payn, R. A.; Demissie, Y.

    2017-12-01

    A one-dimensional reservoir stratification modeling has been developed as part of Model for Scale Adaptive River Transport (MOSART), which is the river transport model used in the Accelerated Climate Modeling for Energy (ACME) and Community Earth System Model (CESM). Reservoirs play an important role in modulating the dynamic water, energy and biogeochemical cycles in the riverine system through nutrient sequestration and stratification. However, most earth system models include lake models that assume a simplified geometry featuring a constant depth and a constant surface area. As reservoir geometry has important effects on thermal stratification, we developed a new algorithm for deriving generic, stratified area-elevation-storage relationships that are applicable at regional and global scales using data from Global Reservoir and Dam database (GRanD). This new reservoir geometry dataset is then used to support the development of a reservoir stratification module within MOSART. The mixing of layers (energy and mass) in the reservoir is driven by eddy diffusion, vertical advection, and reservoir inflow and outflow. Upstream inflow into a reservoir is treated as an additional source/sink of energy, while downstream outflow represented a sink. Hourly atmospheric forcing from North American Land Assimilation System (NLDAS) Phase II and simulated daily runoff by ACME land component are used as inputs for the model over the contiguous United States for simulations between 2001-2010. The model is validated using selected observed temperature profile data in a number of reservoirs that are subject to various levels of regulation. The reservoir stratification module completes the representation of riverine mass and heat transfer in earth system models, which is a major step towards quantitative understanding of human influences on the terrestrial hydrological, ecological and biogeochemical cycles.

  18. Restoring Natural Streamflow Variability by Modifying Multi-purpose Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Shiau, J.

    2010-12-01

    Multi-purpose reservoirs typically provide benefits of water supply, hydroelectric power, and flood mitigation. Hydroelectric power generations generally do not consume water. However, temporal distribution of downstream flows is highly changed due to hydro-peaking effects. Associated with offstream diversion of water supplies for municipal, industrial, and agricultural requirements, natural streamflow characteristics of magnitude, duration, frequency, timing, and rate of change is significantly altered by multi-purpose reservoir operation. Natural flow regime has long been recognized a master factor for ecosystem health and biodiversity. Restoration of altered flow regime caused by multi-purpose reservoir operation is the main objective of this study. This study presents an optimization framework that modifying reservoir operation to seeking balance between human and environmental needs. The methodology presented in this study is applied to the Feitsui Reservoir, located in northern Taiwan, with main purpose of providing stable water-supply and auxiliary purpose of electricity generation and flood-peak attenuation. Reservoir releases are dominated by two decision variables, i.e., duration of water releases for each day and percentage of daily required releases within the duration. The current releasing policy of the Feitsui Reservoir releases water for water-supply and hydropower purposes during 8:00 am to 16:00 pm each day and no environmental flows releases. Although greater power generation is obtained by 100% releases distributed within 8-hour period, severe temporal alteration of streamflow is observed downstream of the reservoir. Modifying reservoir operation by relaxing these two variables and reserve certain ratio of streamflow as environmental flow to maintain downstream natural variability. The optimal reservoir releasing policy is searched by the multi-criterion decision making technique for considering reservoir performance in terms of shortage ratio

  19. Integrated reservoir characterization for unconventional reservoirs using seismic, microseismic and well log data

    NASA Astrophysics Data System (ADS)

    Maity, Debotyam

    This study is aimed at an improved understanding of unconventional reservoirs which include tight reservoirs (such as shale oil and gas plays), geothermal developments, etc. We provide a framework for improved fracture zone identification and mapping of the subsurface for a geothermal system by integrating data from different sources. The proposed ideas and methods were tested primarily on data obtained from North Brawley geothermal field and the Geysers geothermal field apart from synthetic datasets which were used to test new algorithms before actual application on the real datasets. The study has resulted in novel or improved algorithms for use at specific stages of data acquisition and analysis including improved phase detection technique for passive seismic (and teleseismic) data as well as optimization of passive seismic surveys for best possible processing results. The proposed workflow makes use of novel integration methods as a means of making best use of the available geophysical data for fracture characterization. The methodology incorporates soft computing tools such as hybrid neural networks (neuro-evolutionary algorithms) as well as geostatistical simulation techniques to improve the property estimates as well as overall characterization efficacy. The basic elements of the proposed characterization workflow involves using seismic and microseismic data to characterize structural and geomechanical features within the subsurface. We use passive seismic data to model geomechanical properties which are combined with other properties evaluated from seismic and well logs to derive both qualitative and quantitative fracture zone identifiers. The study has resulted in a broad framework highlighting a new technique for utilizing geophysical data (seismic and microseismic) for unconventional reservoir characterization. It provides an opportunity to optimally develop the resources in question by incorporating data from different sources and using their temporal

  20. Optimal reservoir operation policies using novel nested algorithms

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri

    2015-04-01

    Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested

  1. Reconnaissance Report on Papillion Creek Reservoirs.

    DTIC Science & Technology

    1981-03-01

    The appearance of the reservoir and production of malodors are nonaesthetic. The general charateristics of the flood control reservoirs near Lincoln...characteristic of extremely unproductive soft transparent waters to extremely productive hard waters turbid with plankton. A more current trend in lake...quality and biological productivity . The process of nutrient enrichment does not always result in the degradation of water quality. Whether or not the

  2. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States

    USGS Publications Warehouse

    McDonald, Cory P.; Stets, Edward; Striegl, Robert G.; Butman, David

    2013-01-01

    Accurate quantification of CO2 flux across the air-water interface and identification of the mechanisms driving CO2 concentrations in lakes and reservoirs is critical to integrating aquatic systems into large-scale carbon budgets, and to predicting the response of these systems to changes in climate or terrestrial carbon cycling. Large-scale estimates of the role of lakes and reservoirs in the carbon cycle, however, typically must rely on aggregation of spatially and temporally inconsistent data from disparate sources. We performed a spatially comprehensive analysis of CO2 concentration and air-water fluxes in lakes and reservoirs of the contiguous United States using large, consistent data sets, and modeled the relative contribution of inorganic and organic carbon loading to vertical CO2 fluxes. Approximately 70% of lakes and reservoirs are supersaturated with respect to the atmosphere during the summer (June–September). Although there is considerable interregional and intraregional variability, lakes and reservoirs represent a net source of CO2 to the atmosphere of approximately 40 Gg C d–1 during the summer. While in-lake CO2 concentrations correlate with indicators of in-lake net ecosystem productivity, virtually no relationship exists between dissolved organic carbon and pCO2,aq. Modeling suggests that hydrologic dissolved inorganic carbon supports pCO2,aq in most supersaturated systems (to the extent that 12% of supersaturated systems simultaneously exhibit positive net ecosystem productivity), and also supports primary production in most CO2-undersaturated systems. Dissolved inorganic carbon loading appears to be an important determinant of CO2concentrations and fluxes across the air-water interface in the majority of lakes and reservoirs in the contiguous United States.

  3. Fluvial reservoir architecture in the Malay Basin: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, M.R.; Dharmarajan, K.

    1994-07-01

    Miocene fluvial sandstones are significant hydrocarbon-bearing reservoirs in the Malay Basin. These include high energy, braided stream deposits of group K, associated with late development of extensional half grabens and relatively lower energy, meandering, and anastomosing channel deposits of group I formed during the subsequent basin sag phase. Group K reservoirs are typically massive, commonly tens of meters thick, and cover an extensive part of the Malay Basin. These reservoirs have good porosity and permeability at shallow burial depths. However, reservoir quality deteriorates rapidly with increasing depth. Lateral and vertical reservoir continuity is generally good within a field, commonly formingmore » a single system. Good water drive enhances recovery. Seismic modeling to determine fluid type and the extent of interfluvial shales is possible due to reservoir homogeneity.« less

  4. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Aluminum main reservoirs. 229.51 Section 229.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.51 Aluminum main reservoirs. (a) Aluminum...

  5. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Aluminum main reservoirs. 229.51 Section 229.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.51 Aluminum main reservoirs. (a) Aluminum...

  6. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Aluminum main reservoirs. 229.51 Section 229.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.51 Aluminum main reservoirs. (a) Aluminum...

  7. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Aluminum main reservoirs. 229.51 Section 229.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.51 Aluminum main reservoirs. (a) Aluminum...

  8. Simulation of naturally fractured reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidi, A.M.

    1983-11-01

    A three-dimensional, three-phase reservoir simulator was developed to study the behavior of fully or partially fractured reservoirs. It is also demonstrated, that when a fractured reservoir is subject to a relatively large rate of pressure drop and/or it composed of relatively large blocks, the pseudo steady-state pressure concept gives large errors as compared with transient fromulation. In addition, when gravity drainage and imbibitum processes, which is the most important mechanism in the fractured reservoirs, are represented by a ''lumped parameter'' even larger errors can be produced in exchange flow between matrix and fractures. For these reasons, the matrix blocks aremore » gridded and the transfer between matrix and fractures are calculated using pressure and diffusion transient concept. In this way the gravity drainage is also calculated accurately. As the matrix-fracture exchange flow depends on the location of each matrix grid relative to the GOC and/or WOC in fracture, the exchange flow equation are derived and given for each possible case. The differential equation describing the flow of water, oil, and gas within the matrix and fracture system, each of which may contain six unknowns, are presented. The two sets of equations are solved implicitly for pressure water, and gas stauration in both matrix and fractures. The first twenty two years of the history of Haft Kel field was successfully matched with this model and the results are included.« less

  9. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  10. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  11. Research Spotlight: The varying life expectancies of American reservoirs

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-04-01

    Tasked with controlling floods, coping through droughts, generating electricity, maintaining the flow of drinking water, preserving species' habitats, and managing the local environment, the United States' large-scale freshwater management system is important. Unfortunately, as sediment is washed from river basins to reservoirs, the persistent addition of material eats away at a reservoir's capacity and, consequently, its useful life expectancy. Understanding the integrity of the reservoir system is particularly important, with climate projections anticipating warmer, drier conditions for some parts of the country. Using a database of sedimentation surveys conducted between 1775 and 1993, Graf et al. calculate the life expectancies of many of the nation's reservoirs. They find that although most of the country's large reservoirs were built between 1950 and 1960, they have a wide range of expiration dates. They find that most large reservoirs, those with capacities greater than 1.2 cubic kilometers (0.29 cubic mile), have useful life expectancies ranging from 200 to more than 1000 years, with the lowest average life expectancy in the interior West. (Water Resources Research, doi:10.1029/2009WR008836, 2010)

  12. Use of a geographic information system to assess accessibility to health facilities providing emergency obstetric and newborn care in Bangladesh.

    PubMed

    Chowdhury, Mahbub E; Biswas, Taposh K; Rahman, Monjur; Pasha, Kamal; Hossain, Mollah A

    2017-08-01

    To use a geographic information system (GIS) to determine accessibility to health facilities for emergency obstetric and newborn care (EmONC) and compare coverage with that stipulated by UN guidelines (5 EmONC facilities per 500 000 individuals, ≥1 comprehensive). A cross-sectional study was undertaken of all public facilities providing EmONC in 24 districts of Bangladesh from March to October 2012. Accessibility to each facility was assessed by applying GIS to estimate the proportion of catchment population (comprehensive 500 000; basic 100 000) able to reach the nearest facility within 2 hours and 1 hour of travel time, respectively, by existing road networks. The minimum number of public facilities providing comprehensive and basic EmONC services (1 and 5 per 500 000 individuals, respectively) was reached in 16 and 3 districts, respectively. However, after applying GIS, in no district did 100% of the catchment population have access to these services. A minimum of 75% and 50% of the population had accessibility to comprehensive services in 11 and 5 districts, respectively. For basic services, accessibility was much lower. Assessing only the number of EmONC facilities does not ensure universal coverage; accessibility should be assessed when planning health systems. © 2017 International Federation of Gynecology and Obstetrics.

  13. Physical, chemical, and biological characteristics of Pueblo Reservoir, Colorado, 1985-89

    USGS Publications Warehouse

    Lewis, Michael E.; Edelmann, Patrick

    1994-01-01

    Physical, chemical, and biological characteristics of Pueblo Reservoir are described on the basis of data collected from spring 1985 through fall 1989. Also included are discussions of water quality of the upper Arkansas River Basin and the reservoir as they relate to reservoir operations. Pueblo Reservoir is a multipurpose, main-stem reservoir on the Arkansas River about 6 miles west of Pueblo, Colorado. At the top of its conservation pool, the reservoir is more than 9 miles long and ranges in depth from a few feet at the inflow to about 155 feet at the dam. Pueblo Reservoir derives most of its contents from the Arkansas River, which comprises native and transmountain flow. With respect to water temperature, the reservoir typically was well mixed to weakly stratified during the early spring and gradually became strongly stratified by May. The strong thermal stratification and underflow of the Arkansas River generally persisted into August, at which time the reservoir surface began to cool and the reservoir subsequently underwent fall turnover. Following fall turnover, the reservoir was stratified to some degree in the shallow upstream part and well mixed in the deeper middle and downstream parts. Reservoir residence times were affected by the extent of stratification present. When the reservoir was well mixed, residence times were as long as several months. During the summer when the reservoir was strongly stratified, reservoir releases were large, and when underflow was the prevalent flow pattern of the Arkansas River, reservoir residence times were as short as 30 days.Most particulate matter settled from the water column between the inflow and a distance of about 5 miles downstream. On occasions of large streamflows and sediment loads from the Arkansas River, particulate matter was transported completely through the reservoir. Water transparency, as measured with a Secchi disk, increased in a downstream direction from the reservoir inflow. The increase probably

  14. 33 CFR 110.77 - Amistad Reservoir, Tex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Amistad Reservoir, Tex. 110.77 Section 110.77 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77 Amistad Reservoir, Tex. (a) Diablo East, Tex. That...

  15. 33 CFR 110.77 - Amistad Reservoir, Tex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Amistad Reservoir, Tex. 110.77 Section 110.77 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77 Amistad Reservoir, Tex. (a) Diablo East, Tex. That...

  16. 33 CFR 110.77 - Amistad Reservoir, Tex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Amistad Reservoir, Tex. 110.77 Section 110.77 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77 Amistad Reservoir, Tex. (a) Diablo East, Tex. That...

  17. 33 CFR 110.77 - Amistad Reservoir, Tex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Amistad Reservoir, Tex. 110.77 Section 110.77 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77 Amistad Reservoir, Tex. (a) Diablo East, Tex. That...

  18. Oral fluoride reservoirs and the prevention of dental caries.

    PubMed

    Vogel, Gerald Lee

    2011-01-01

    Current models for increasing the anti-caries effects of fluoride (F) agents emphasize the importance of maintaining a cariostatic concentration of F in oral fluids. The concentration of F in oral fluids is maintained by the release of this ion from bioavailable reservoirs on the teeth, oral mucosa and - most importantly, because of its association with the caries process - dental plaque. Oral F reservoirs appear to be of two types: (1) mineral reservoirs, in particular calcium fluoride or phosphate-contaminated 'calcium-fluoride-like' deposits; (2) biological reservoirs, in particular (with regard to dental plaque) F held to bacteria or bacterial fragments via calcium-fluoride bonds. The fact that all these reservoirs are mediated by calcium implies that their formation is limited by the low concentration of calcium in oral fluids. By using novel procedures which overcome this limitation, the formation of these F reservoirs after topical F application can be greatly increased. Although these increases are associated with substantive increases in salivary and plaque fluid F, and hence a potential increase in cariostatic effect, it is unclear if such changes are related to the increases in the amount of these reservoirs, or changes in the types of F deposits formed. New techniques have been developed for identifying and quantifying these deposits which should prove useful in developing agents that enhance formation of oral F reservoirs with optimum F release characteristics. Such research offers the prospect of decreasing the F content of topical agents while simultaneously increasing their cariostatic effect. Copyright © 2011 S. Karger AG, Basel.

  19. Optimizing Water Management for Collocated Conventional and Unconventional Reservoirs

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.; Walsh, M.

    2016-12-01

    With the U.S. producing much more water than oil from oil and gas reservoirs, managing produced water is becoming a critical issue. Here we quantify water production from collocated conventional and unconventional reservoirs using well by well analysis and evaluate various water management strategies using the U.S. Permian Basin as a case study. Water production during the past 15 years in the Permian Basin totaled 55×109 barrels (bbl), 95% from wells in conventional reservoirs resulting in an average water to oil ratio of 12 compared to ratios of 2-3 in wells in unconventional reservoirs. Some of this water ( 25%) is returned to the reservoir for secondary oil recovery (water flooding) while the remaining water is injected into an average of 18,000 salt water disposal wells. Total water production over the past 15 yr (2000 - 2015) exceeds water used for hydraulic fracturing by almost 40 times. Analyzing water injection into salt water disposal wells relative to water requirements for hydraulic fracturing at a 5 square mile grid scale based on 2014 data indicates that water disposal exceeds water requirements for hydraulic fracturing throughout most of the play. Reusing/recycling of produced water for hydraulic fracturing would reduce sourcing and disposal issues related to hydraulic fracturing. Because shales (unconventional reservoirs) provide the source rocks for many conventional reservoirs, coordinating water management from both conventional and unconventional reservoirs can help resolve issues related to sourcing of water for hydraulic fracturing and disposing of produced water. Reusing/recycling produced water can also help reduce water scarcity concerns in some regions.

  20. NEXIS Reservoir Cathode 2000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm

    2004-01-01

    The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.

  1. Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    Audio-magnetotelluric (AMT) sounding is widely employed in rapid resistivity delineation of objective geometry in near surface exploration. According to reservoir patterns and electrical parameters obtained in Qinshui Basin, China, two-dimensional and three-dimensional synthetic "objective anomaly" models were designed and inverted with the availability of a modular system for electromagnetic inversion (ModEM). The results revealed that 3-D full impedance inversion yielded the subsurface models closest to synthetic models. One or more conductive targets were correctly recovered. Therefore, conductive aquifers in the study area, including hydrous coalbed methane (CBM) reservoirs, were suggested to be the interpretation signs for reservoir characterization. With the aim of dynamic monitoring of CBM reservoirs, the AMT surveys in continuous years (June 2013-May 2015) were carried out. 3-D inversion results demonstrated that conductive anomalies accumulated around the producing reservoirs at the corresponding depths if CBM reservoirs were in high water production rates. In contrast, smaller conductive anomalies were generally identical with rapid gas production or stopping production of reservoirs. These analyses were in accordance with actual production history of CBM wells. The dynamic traces of conductive anomalies revealed that reservoir water migrated deep or converged in axial parts and wings of folds, which contributed significantly to formations of CBM traps. Then the well spacing scenario was also evaluated based on the dynamic production analysis. Wells distributed near closed faults or flat folds, rather than open faults, had CBM production potential to ascertain stable gas production. Therefore, three-dimensional AMT sounding becomes an attractive option with the ability of dynamic monitoring of CBM reservoirs, and lays a solid foundation of quantitative evaluation of reservoir parameters.

  2. Characterization of floodflows along the Arkansas River without regulation by Pueblo Reservoir, Portland to John Martin Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Little, John R.; Bauer, Daniel P.

    1981-01-01

    The need for a method for estimating flow characteristics of flood hydrographs between Portland, Colo., and John Martin Reservoir has been promoted with the construction of the Pueble Reservoir. To meet this need a procedure was developed for predicting floodflow peaks, traveltimes, and volumes at any point along the Arkansas River between Portland and John Martin Reservoir without considering the existing Pueble Reservoir detention effects. A streamflow-routing model was calibrated initially and then typical flood simulations were made for the 164.8-mile study reach. Simulations were completed for varying magnitudes of floods and antecedent streamflow conditions. Multiple regression techniques were then used with simulation results as input to provide predictive relationships for food peak, volume, and traveltime. Management practices that may be used to benefit water users in the area include providing methods for the distribution and allotment of the flood waters upstream of Portland to different downstream water users according to Colorado water law and also under the Arkansas River Compact. (USGS)

  3. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  4. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms

    PubMed Central

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production. PMID:26657698

  5. Access management : transportation policy considerations for a growing Virginia.

    DOT National Transportation Integrated Search

    1998-01-01

    This report analyzes comprehensive highway access management programs and looks at the potential benefits and legal limits to Virginia adopting such a program to replace Virginia's rather limited site specific permitting process. In 1942, Virginia pa...

  6. Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report

    DOE Data Explorer

    Buscheck, Thomas A.

    2012-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  7. The Contribution of Reservoirs to Global Land Surface Water Storage Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Nijssen, Bart; Gao, Huilin

    Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variationsmore » is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.258 latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60%of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10%of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72%of combined snow water equivalent and soil moisture storage.« less

  8. Bathymetry of Clear Creek Reservoir, Chaffee County, Colorado, 2016

    USGS Publications Warehouse

    Kohn, Michael S.; Kinzel, Paul J.; Mohrmann, Jacob S.

    2017-03-06

    To better characterize the water supply capacity of Clear Creek Reservoir, Chaffee County, Colorado, the U.S. Geological Survey, in cooperation with the Pueblo Board of Water Works and Colorado Mountain College, carried out a bathymetry survey of Clear Creek Reservoir. A bathymetry map of the reservoir is presented here with the elevation-surface area and the elevation-volume relations. The bathymetry survey was carried out June 6–9, 2016, using a man-operated boat-mounted, multibeam echo sounder integrated with a Global Positioning System and a terrestrial survey using real-time kinematic Global Navigation Satellite Systems. The two collected datasets were merged and imported into geographic information system software. The equipment and methods used in this study allowed water-resource managers to maintain typical reservoir operations, eliminating the need to empty the reservoir to carry out the survey.

  9. New policies and measures for saving a great manmade reservoir providing drinking water for 20 million people in the Republic of Korea.

    PubMed

    Ahn, K H

    2000-01-01

    Water quality of the Paldang reservoir, the largest drinking water supply source in the Republic Korea provides raw water for about 20 million people living in Seoul Metropolitan area. Water quality has been deteriorating mainly due to improperly treated livestock waste and domestic wastewater discharged from motels, restaurants, and private homes. A recent survey conducted by the Ministry of Environment (MOE) showed that the water quality of this reservoir has been identified as Class III must contain less than 6 ppm of BOD, which will require advanced purification treatment before it can be used as drinking water. The MOE also announced that this water source would no longer be potable unless wastewater in the catchment is treated efficiently. To protect drinking water resources, the MOE has set up comprehensive management. These programmes include new regulations, measures, land use planning and economic incentives.

  10. A reservoir of nitrate beneath desert soils.

    PubMed

    Walvoord, Michelle A; Phillips, Fred M; Stonestrom, David A; Evans, R Dave; Hartsough, Peter C; Newman, Brent D; Striegl, Robert G

    2003-11-07

    A large reservoir of bioavailable nitrogen (up to approximately 10(4) kilograms of nitrogen per hectare, as nitrate) has been previously overlooked in studies of global nitrogen distribution. The reservoir has been accumulating in subsoil zones of arid regions throughout the Holocene. Consideration of the subsoil reservoir raises estimates of vadose-zone nitrogen inventories by 14 to 71% for warm deserts and arid shrublands worldwide and by 3 to 16% globally. Subsoil nitrate accumulation indicates long-term leaching from desert soils, impelling further evaluation of nutrient dynamics in xeric ecosystems. Evidence that subsoil accumulations are readily mobilized raises concern about groundwater contamination after land-use or climate change.

  11. A reservoir of nitrate beneath desert soils

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Phillips, Fred M.; Stonestrom, David A.; Evans, R. Dave; Hartsough, Peter C.; Newman, Brent D.; Striegl, Robert G.

    2003-01-01

    A large reservoir of bioavailable nitrogen (up to ∼104 kilograms of nitrogen per hectare, as nitrate) has been previously overlooked in studies of global nitrogen distribution. The reservoir has been accumulating in subsoil zones of arid regions throughout the Holocene. Consideration of the subsoil reservoir raises estimates of vadose-zone nitrogen inventories by 14 to 71% for warm deserts and arid shrublands worldwide and by 3 to 16% globally. Subsoil nitrate accumulation indicates long-term leaching from desert soils, impelling further evaluation of nutrient dynamics in xeric ecosystems. Evidence that subsoil accumulations are readily mobilized raises concern about groundwater contamination after land-use or climate change.

  12. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Aluminum main reservoirs. 229.51 Section 229.51... as follows: (1) The heads and shell shall be made of Aluminum Association Alloy No. 5083-0, produced.... (4) Each aluminum main reservoir shall have at least two inspection openings to permit complete...

  13. Student-Accessible Science Texts: Elements of Design

    ERIC Educational Resources Information Center

    McTigue, Erin M.; Slough, Scott W.

    2010-01-01

    Within this article, we introduce our conception of text accessibility. First, we synthesize recent research on informational text quality and present key attributes proven to contribute to comprehension of science texts beyond the readability formula. These features include (a) the concreteness of text, (b) the voice of the author, (c) coherent…

  14. Mechanisms of HIV persistence in HIV reservoirs.

    PubMed

    Mzingwane, Mayibongwe L; Tiemessen, Caroline T

    2017-03-01

    The establishment and maintenance of HIV reservoirs that lead to persistent viremia in patients on antiretroviral drugs remains the greatest challenge of the highly active antiretroviral therapy era. Cellular reservoirs include resting memory CD4+ T lymphocytes, implicated as the major HIV reservoir, having a half-life of approximately 44 months while this is less than 6 hours for HIV in plasma. In some individuals, persistent viremia consists of invariant HIV clones not detected in circulating resting CD4+ T lymphocytes suggesting other possible sources of residual viremia. Some anatomical reservoirs that may harbor such cells include the brain and the central nervous system, the gastrointestinal tract and the gut-associated lymphoid tissue and other lymphoid organs, and the genital tract. The presence of immune cells and other HIV susceptible cells, occurring in differing compositions in anatomical reservoirs, coupled with variable and poor drug penetration that results in suboptimal drug concentrations in some sites, are all likely factors that fuel the continued low-level replication and persistent viremia during treatment. Latently, HIV-infected CD4+ T cells harboring replication-competent virus, HIV cell-to-cell spread, and HIV-infected T cell homeostatic proliferation due to chronic immune activation represent further drivers of this persistent HIV viremia during highly active antiretroviral therapy. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Effects of expanded and standard captions on deaf college students' comprehension of educational videos.

    PubMed

    Stinson, Michael S; Stevenson, Susan

    2013-01-01

    Twenty-two college students who were deaf viewed one instructional video with standard captions and a second with expanded captions, in which key terms were expanded in the form of vocabulary definitions, labeled illustrations, or concept maps. The students performed better on a posttest after viewing either type of caption than on a pretest; however, there was no difference in comprehension between standard and expanded captions. Camtasia recording software enabled examination of the extent to which the students accessed the expanded captions. The students accessed less than 20% of the available expanded captions. Thus, one explanation for the lack of difference in comprehension between the standard and expanded captions is that the students did not access the expanded captions sufficiently. Despite limited use of the expanded captions, the students stated, when interviewed, that they considered these captions beneficial in learning from the instructional video.

  16. Integrated workflow for characterizing and modeling fracture network in unconventional reservoirs using microseismic data

    NASA Astrophysics Data System (ADS)

    Ayatollahy Tafti, Tayeb

    We develop a new method for integrating information and data from different sources. We also construct a comprehensive workflow for characterizing and modeling a fracture network in unconventional reservoirs, using microseismic data. The methodology is based on combination of several mathematical and artificial intelligent techniques, including geostatistics, fractal analysis, fuzzy logic, and neural networks. The study contributes to scholarly knowledge base on the characterization and modeling fractured reservoirs in several ways; including a versatile workflow with a novel objective functions. Some the characteristics of the methods are listed below: 1. The new method is an effective fracture characterization procedure estimates different fracture properties. Unlike the existing methods, the new approach is not dependent on the location of events. It is able to integrate all multi-scaled and diverse fracture information from different methodologies. 2. It offers an improved procedure to create compressional and shear velocity models as a preamble for delineating anomalies and map structures of interest and to correlate velocity anomalies with fracture swarms and other reservoir properties of interest. 3. It offers an effective way to obtain the fractal dimension of microseismic events and identify the pattern complexity, connectivity, and mechanism of the created fracture network. 4. It offers an innovative method for monitoring the fracture movement in different stages of stimulation that can be used to optimize the process. 5. Our newly developed MDFN approach allows to create a discrete fracture network model using only microseismic data with potential cost reduction. It also imposes fractal dimension as a constraint on other fracture modeling approaches, which increases the visual similarity between the modeled networks and the real network over the simulated volume.

  17. Patient-centred access to health care: conceptualising access at the interface of health systems and populations

    PubMed Central

    2013-01-01

    Background Access is central to the performance of health care systems around the world. However, access to health care remains a complex notion as exemplified in the variety of interpretations of the concept across authors. The aim of this paper is to suggest a conceptualisation of access to health care describing broad dimensions and determinants that integrate demand and supply-side-factors and enabling the operationalisation of access to health care all along the process of obtaining care and benefiting from the services. Methods A synthesis of the published literature on the conceptualisation of access has been performed. The most cited frameworks served as a basis to develop a revised conceptual framework. Results Here, we view access as the opportunity to identify healthcare needs, to seek healthcare services, to reach, to obtain or use health care services, and to actually have a need for services fulfilled. We conceptualise five dimensions of accessibility: 1) Approachability; 2) Acceptability; 3) Availability and accommodation; 4) Affordability; 5) Appropriateness. In this framework, five corresponding abilities of populations interact with the dimensions of accessibility to generate access. Five corollary dimensions of abilities include: 1) Ability to perceive; 2) Ability to seek; 3) Ability to reach; 4) Ability to pay; and 5) Ability to engage. Conclusions This paper explains the comprehensiveness and dynamic nature of this conceptualisation of access to care and identifies relevant determinants that can have an impact on access from a multilevel perspective where factors related to health systems, institutions, organisations and providers are considered with factors at the individual, household, community, and population levels. PMID:23496984

  18. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... inch above the maximum working air pressure fixed by the chief mechanical officer of the carrier... reservoir of air under pressure to be used for operating those power controls. The reservoir shall be provided with means to automatically prevent the loss of pressure in the event of a failure of main air...

  19. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inch above the maximum working air pressure fixed by the chief mechanical officer of the carrier... reservoir of air under pressure to be used for operating those power controls. The reservoir shall be provided with means to automatically prevent the loss of pressure in the event of a failure of main air...

  20. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... inch above the maximum working air pressure fixed by the chief mechanical officer of the carrier... reservoir of air under pressure to be used for operating those power controls. The reservoir shall be provided with means to automatically prevent the loss of pressure in the event of a failure of main air...

  1. Bathymetry and capacity of Blackfoot Reservoir, Caribou County, Idaho, 2011

    USGS Publications Warehouse

    Wood, Molly S.; Skinner, Kenneth D.; Fosness, Ryan L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Shoshone-Bannock Tribes, surveyed the bathymetry and selected above-water sections of Blackfoot Reservoir, Caribou County, Idaho, in 2011. Reservoir operators manage releases from Government Dam on Blackfoot Reservoir based on a stage-capacity relation developed about the time of dam construction in the early 1900s. Reservoir operation directly affects the amount of water that is available for irrigation of agricultural land on the Fort Hall Indian Reservation and surrounding areas. The USGS surveyed the below-water sections of the reservoir using a multibeam echosounder and real-time kinematic global positioning system (RTK-GPS) equipment at full reservoir pool in June 2011, covering elevations from 6,090 to 6,119 feet (ft) above the North American Vertical Datum of 1988 (NAVD 88). The USGS used data from a light detection and ranging (LiDAR) survey performed in 2000 to map reservoir bathymetry from 6,116 to 6,124 ft NAVD 88, which were mostly in depths too shallow to measure with the multibeam echosounder, and most of the above-water section of the reservoir (above 6,124 ft NAVD 88). Selected points and bank erosional features were surveyed by the USGS using RTK-GPS and a total station at low reservoir pool in September 2011 to supplement and verify the LiDAR data. The stage-capacity relation was revised and presented in a tabular format. The datasets show a 2.0-percent decrease in capacity from the original survey, due to sedimentation or differences in accuracy between surveys. A 1.3-percent error also was detected in the previously used capacity table and measured water-level elevation because of questionable reference elevation at monitoring stations near Government Dam. Reservoir capacity in 2011 at design maximum pool of 6,124 ft above NAVD 88 was 333,500 acre-ft.

  2. Characterization of the deep microbial life in the Altmark natural gas reservoir

    NASA Astrophysics Data System (ADS)

    Morozova, D.; Alawi, M.; Vieth-Hillebrand, A.; Kock, D.; Krüger, M.; Wuerdemann, H.; Shaheed, M.

    2010-12-01

    ., Adicdovorax sp., Ralstonia sp., Pseudomonas sp.), thiosulfate-oxidising bacteria (Diaphorobacter sp.) and biocorrosive thermophilic microorganisms, which have not previously been cultivated. Furthermore, several uncultivated microorganisms were found, that were similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that the quantification of those microorganisms as well as the determination of microbial activity was not yet possible. Microbial monitoring methods have to be further developed to study microbial activities under these extreme conditions to access their influence on the EGR technique and on enhancing the long term safety of the process by fixation of carbon dioxide by precipitation of carbonates. We thank GDF SUEZ for providing the data for the Rotliegend reservoir, sample material and supporting sampling campaigns. The CLEAN project is funded by the German Federal Ministry of Education and Research (BMBF) in the framework of the GEOTECHNOLOGIEN Program.

  3. Information collection and processing of dam distortion in digital reservoir system

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Zhang, Chengming; Li, Yanling; Wu, Qiulan; Ge, Pingju

    2007-06-01

    The "digital reservoir" is usually understood as describing the whole reservoir with digital information technology to make it serve the human existence and development furthest. Strictly speaking, the "digital reservoir" is referred to describing vast information of the reservoir in different dimension and space-time by RS, GPS, GIS, telemetry, remote-control and virtual reality technology based on computer, multi-media, large-scale memory and wide-band networks technology for the human existence, development and daily work, life and entertainment. The core of "digital reservoir" is to realize the intelligence and visibility of vast information of the reservoir through computers and networks. The dam is main building of reservoir, whose safety concerns reservoir and people's safety. Safety monitoring is important way guaranteeing the dam's safety, which controls the dam's running through collecting the dam's information concerned and developing trend. Safety monitoring of the dam is the process from collection and processing of initial safety information to forming safety concept in the brain. The paper mainly researches information collection and processing of the dam by digital means.

  4. Deduction of reservoir operating rules for application in global hydrological models

    NASA Astrophysics Data System (ADS)

    Coerver, Hubertus M.; Rutten, Martine M.; van de Giesen, Nick C.

    2018-01-01

    A big challenge in constructing global hydrological models is the inclusion of anthropogenic impacts on the water cycle, such as caused by dams. Dam operators make decisions based on experience and often uncertain information. In this study information generally available to dam operators, like inflow into the reservoir and storage levels, was used to derive fuzzy rules describing the way a reservoir is operated. Using an artificial neural network capable of mimicking fuzzy logic, called the ANFIS adaptive-network-based fuzzy inference system, fuzzy rules linking inflow and storage with reservoir release were determined for 11 reservoirs in central Asia, the US and Vietnam. By varying the input variables of the neural network, different configurations of fuzzy rules were created and tested. It was found that the release from relatively large reservoirs was significantly dependent on information concerning recent storage levels, while release from smaller reservoirs was more dependent on reservoir inflows. Subsequently, the derived rules were used to simulate reservoir release with an average Nash-Sutcliffe coefficient of 0.81.

  5. Homeostatic plasticity for single node delay-coupled reservoir computing.

    PubMed

    Toutounji, Hazem; Schumacher, Johannes; Pipa, Gordon

    2015-06-01

    Supplementing a differential equation with delays results in an infinite-dimensional dynamical system. This property provides the basis for a reservoir computing architecture, where the recurrent neural network is replaced by a single nonlinear node, delay-coupled to itself. Instead of the spatial topology of a network, subunits in the delay-coupled reservoir are multiplexed in time along one delay span of the system. The computational power of the reservoir is contingent on this temporal multiplexing. Here, we learn optimal temporal multiplexing by means of a biologically inspired homeostatic plasticity mechanism. Plasticity acts locally and changes the distances between the subunits along the delay, depending on how responsive these subunits are to the input. After analytically deriving the learning mechanism, we illustrate its role in improving the reservoir's computational power. To this end, we investigate, first, the increase of the reservoir's memory capacity. Second, we predict a NARMA-10 time series, showing that plasticity reduces the normalized root-mean-square error by more than 20%. Third, we discuss plasticity's influence on the reservoir's input-information capacity, the coupling strength between subunits, and the distribution of the readout coefficients.

  6. Reservoir computing with a single time-delay autonomous Boolean node

    NASA Astrophysics Data System (ADS)

    Haynes, Nicholas D.; Soriano, Miguel C.; Rosin, David P.; Fischer, Ingo; Gauthier, Daniel J.

    2015-02-01

    We demonstrate reservoir computing with a physical system using a single autonomous Boolean logic element with time-delay feedback. The system generates a chaotic transient with a window of consistency lasting between 30 and 300 ns, which we show is sufficient for reservoir computing. We then characterize the dependence of computational performance on system parameters to find the best operating point of the reservoir. When the best parameters are chosen, the reservoir is able to classify short input patterns with performance that decreases over time. In particular, we show that four distinct input patterns can be classified for 70 ns, even though the inputs are only provided to the reservoir for 7.5 ns.

  7. Third workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.

    1977-12-15

    The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advancesmore » have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research

  8. The time-lapse AVO difference inversion for changes in reservoir parameters

    NASA Astrophysics Data System (ADS)

    Longxiao, Zhi; Hanming, Gu; Yan, Li

    2016-12-01

    The result of conventional time-lapse seismic processing is the difference between the amplitude and the post-stack seismic data. Although stack processing can improve the signal-to-noise ratio (SNR) of seismic data, it also causes a considerable loss of important information about the amplitude changes and only gives the qualitative interpretation. To predict the changes in reservoir fluid more precisely and accurately, we also need the quantitative information of the reservoir. To achieve this aim, we develop the method of time-lapse AVO (amplitude versus offset) difference inversion. For the inversion of reservoir changes in elastic parameters, we apply the Gardner equation as the constraint and convert the three-parameter inversion of elastic parameter changes into a two-parameter inversion to make the inversion more stable. For the inversion of variations in the reservoir parameters, we infer the relation between the difference of the reflection coefficient and variations in the reservoir parameters, and then invert reservoir parameter changes directly. The results of the theoretical modeling computation and practical application show that our method can estimate the relative variations in reservoir density, P-wave and S-wave velocity, calculate reservoir changes in water saturation and effective pressure accurately, and then provide reference for the rational exploitation of the reservoir.

  9. Identification and Evaluation of Fluvial-Dominated Deltaic (Class 1 Oil) Reservoirs in Oklahoma: Yearly technical progress report for January 1-December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banken, M.K.; Andrews, R.

    The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes a systematic and comprehensive collection and evaluation of information on all FDD oil reservoirs in Oklahoma and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. During 1996, three highly successful FDD workshops involving 6 producing formations (4 plays) were completed: (1) Layton and Osage-Layton April 17 (2)more » Prue and Skinner June 19 and 26 (3) Cleveland October 17 (4) Peru October 17 (combined with Cleveland play). Each play was presented individually using the adopted protocol of stratigraphic interpretations, a regional overview, and two or more detailed field studies. The project goal was to have one field study from each play selected for waterflood simulation in order to demonstrate enhanced recovery technologies that can be used to recovery secondary oil. In this effort, software utilized for reservoir simulation included Eclipse and Boast 111. In some cases, because of poor production records and inadequate geologic data, field studies completed in some plays were not suitable for modeling. All of the workshops included regional sandstone trend analysis, updated field boundary identification, a detailed bibliography and author reference map, and detailed field studies. Discussion of general FDD depositional concepts was also given. In addition to the main workshop agenda, the workshops provided computer mapping demonstrations and rock cores with lithologic and facies interpretations. In addition to the workshops, other elements of FDD program were improved during 1996. Most significant was the refinement of NRIS MAPS - a user-friendly computer program designed to

  10. The Role of Accessibility of Semantic Word Knowledge in Monolingual and Bilingual Fifth-Grade Reading

    ERIC Educational Resources Information Center

    Cremer, M.; Schoonen, R.

    2013-01-01

    The influences of word decoding, availability, and accessibility of semantic word knowledge on reading comprehension were investigated for monolingual "("n = 65) and bilingual children ("n" = 70). Despite equal decoding abilities, monolingual children outperformed bilingual children with regard to reading comprehension and…

  11. Effect of reservoir zones and hedging factor dynamism on reservoir adaptive capacity for climate change impacts

    NASA Astrophysics Data System (ADS)

    Adeloye, Adebayo J.; Soundharajan, Bankaru-Swamy

    2018-06-01

    When based on the zones of available water in storage, hedging has traditionally used a single hedged zone and a constant rationing ratio for constraining supply during droughts. Given the usual seasonality of reservoir inflows, it is also possible that hedging could feature multiple hedged zones and temporally varying rationing ratios but very few studies addressing this have been reported especially in relation to adaptation to projected climate change. This study developed and tested Genetic Algorithms (GA) optimised zone-based operating policies of various configurations using data for the Pong reservoir, Himachal Pradesh, India. The results show that hedging does lessen vulnerability, which dropped from ≥ 60 % without hedging to below 25 % with the single stage hedging. More complex hedging policies, e.g. two stage and/or temporally varying rationing ratios only produced marginal improvements in performance. All this shows that water hedging policies do not have to be overly complex to effectively offset reservoir vulnerability caused by water shortage resulting from e.g. projected climate change.

  12. Fingerprinting Persistent Turbidity in Sheep Creek Reservoir, Owhyee, Nevada

    NASA Astrophysics Data System (ADS)

    Ransom, R. N.; Hooper, R. L.; Kerner, D.; Nicols, S.

    2007-12-01

    Sheep Creek Reservoir near Owyhee, NV is historically a quality rainbow trout fishery. Persistent high-turbidity has been an issue since a major storm event in 2005 resulted in surface water runoff into the Reservoir. The high turbidity is adversely impacting the quality of the fishery. Initial turbidity measurements in 2005 were upwards of 80NTU and these numbers have only decreased to 30NTU over the past two summers. Field parameters indicate the turbidity is associated with high total suspended solids (TSS) and not algae. Five water samples collected from around the reservoir during June, 2007 indicated uniform TSS values in the range of 5 to 12mg/L and oriented powder x-ray diffraction(XRD) and transmission electron microscopy(TEM) analyses of suspended sediment shows very uniform suspended particulate mineralogy including smectite, mixed layer illite/smectite (I/S), discrete illite, lesser amounts of kaolin, sub-micron quartz and feldspar. Diatoms represent a ubiquitous but minor component of the suspended solids. Six soil samples collected from possible source areas around the reservoir were analyzed using both XRD and TEM to see if a source area for the suspended solids could be unambiguously identified. Soils on the east side of the reservoir contain smectite and mixed layer I/S but very little of the other clays. The less than 2 micron size fraction from soils collected from a playa on the topographic bench immediately to the west of the reservoir show a mineralogic finger-print essentially identical to the current suspended sediment. The suspended sediment probably originates on the bench to the west of the reservoir and cascades into the reservoir over the topographic break during extreme storm events. The topographic relief, short travel distance and lack of a suitable vegetated buffer zone to the west are all consistent with a primary persistent suspended sediment source from the west. Identification of the sediment source allows for design of a cost

  13. Stratigraphic and structural distribution of reservoirs in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanescu, M.O.

    1991-08-01

    In Romania, there are reservoirs at different levels of the whole Cambrian-Pliocene interval, but only some of these levels have the favorable structural conditions to accumulate hydrocarbons in commercial quantities. These levels are the Devonian, Triassic, Middle Jurassic, Lower Cretaceous (locally including the uppermost Jurassic), Eocene, Oligocene-lower Miocene, middle and upper Miocene, and Pliocene. The productive reservoirs are represented either by carbonate rocks (in Devonian, Middle Triassic and uppermost Jurassic-Lower Cretaceous) or by detrital rocks (in Lower and Upper Triassic, Middle Jurassic, Eocene, Oligocene, Miocene, and Pliocene). From the structural point of view, the Romanian territory is characterized by themore » coexistence both of platforms (East European, Scythian, and Moesian platforms) and of the strongly tectonized orogenes (North Dobrogea and Carpathian orogenes). Each importance crust shortening was followed by the accumulation of post-tectonic covers, some of them being folded during subsequently tectonic movements. The youngest post-tectonic cover is common both for the platforms (foreland) and Carpathian orogene, representing the Carpathian foredeep. Producing reservoirs are present in the East European and Moesian platforms, in the outer Carpathian units (Tarcau and Marginal folds nappes) and in certain post-tectonic covers which fill the Carpathian foredeep and the Transylvanian and Pannonian basins. In the platforms, hydrocarbons accumulated both in calcareous and detrital reservoirs, whereas in the Carpathian units and in their reservoirs, whereas in the Carpathian units and in their post-tectonic covers, hydrocarbons accumulated only in detrital reservoirs.« less

  14. Influence of Reservoir Water Level Fluctuations on Sediment ...

    EPA Pesticide Factsheets

    Mercury (Hg) is a pollutant of global concern due to its ability to accumulate as methylmercury (MeHg) in biota. Mercury is methylated by anaerobic microorganisms such as sulfate reducing bacteria (SRB) in water and sediment. Throughout North America, reservoirs tend to have elevated methylmercury (MeHg) concentrations compared to natural lakes and rivers. This impact is most pronounced in newly created reservoirs where methylation is fueled by the decomposition of flooded organic material, which can release Hg and enhance microbial activity. Much less is known about the longer-term water-level management impacts on Hg cycling in older reservoirs. The objective of our study was to understand the role of on-going water-level fluctuations on sediment MeHg concentrations and sulfur speciation within a reservoir 75 years after initial impoundment. The study was performed at the Cottage Grove Reservoir located 15 km downstream of the historical Black Butte Hg mine. For 8 months each year, the water level is lowered resulting in roughly half of the reservoir’s sediment being exposed to the atmosphere. Water samples from the inflow, water-column, outflow, and sediment were collected seasonally over a year for total-Hg, MeHg, and several ancillary parameters. The results showed that conditions in the reservoir were favorable to methylation with a much higher %MeHg observed in the outflowing water (34%) compared to the inflow (7%) during the late-summer. An

  15. Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids.

    PubMed

    Eichmann, Shannon L; Burnham, Nancy A

    2017-09-14

    Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.

  16. Applications of the SWOT Mission to Reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2017-12-01

    The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.

  17. Estimates of reservoir methane emissions based on a spatially ...

    EPA Pesticide Factsheets

    Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; however, error and bias associated with this approach can be large and difficult to quantify. Here we use a generalized random tessellation survey (GRTS) design to generate estimates of central tendency and variance at multiple spatial scales in a reservoir. GRTS survey designs are probabilistic and spatially balanced which eliminates bias associated with expert judgment in site selection. GRTS surveys also allow for variance estimates that account for spatial pattern in emission rates. Total CH4 emission rates (i.e. sum of ebullition and diffusive emissions) were 4.8 (±2.1), 33.0 (±10.7), and 8.3 (±2.2) mg CH4 m-2 h-1 in open-waters, tributary associated areas, and the entire reservoir for the period in August 2014 during which 115 sites were sampled across an 7.98 km2 reservoir in Southwestern, Ohio, USA. Tributary areas occupy 12% of the reservoir surface, but were the source of 41% of total CH4 emissions, highlighting the importance of riverine-lacustrine transition zones. Ebullition accounted for >90% of CH4 emission at all spatial scales. Confidence interval estimates that incorporated spatial pattern in CH4 emissions were up to 29% narrower than when spatial independence

  18. The Matter with Listening Comprehension Isn't the Ear: Hardware and Software.

    ERIC Educational Resources Information Center

    Harvey, T. Edward

    1978-01-01

    Reviews some technological advances and classroom games which may be used to increase listening comprehension skills in the foreign language classroom. These include the Random Access Memory (RAM), the Sens-it-Cell, and the SCUCHO game. (AM)

  19. Seismic determination of saturation in fractured reservoirs

    USGS Publications Warehouse

    Brown, R.L.; Wiggins, M.L.; Gupta, A.

    2002-01-01

    Detecting the saturation of a fractured reservoir using shear waves is possible when the fractures have a geometry that induces a component of movement perpendicular to the fractures. When such geometry is present, vertically traveling shear waves can be used to examine the saturation of the fractured reservoir. Tilted, corrugated, and saw-tooth fracture models are potential examples.

  20. The Increasing Incidence of Thyroid Cancer: The Influence of Access to Care

    PubMed Central

    Sikora, Andrew G.; Tosteson, Tor D.

    2013-01-01

    Background The rapidly rising incidence of papillary thyroid cancer may be due to overdiagnosis of a reservoir of subclinical disease. To conclude that overdiagnosis is occurring, evidence for an association between access to health care and the incidence of cancer is necessary. Methods We used Surveillance, Epidemiology, and End Results (SEER) data to examine U.S. papillary thyroid cancer incidence trends in Medicare-age and non–Medicare-age cohorts over three decades. We performed an ecologic analysis across 497 U.S. counties, examining the association of nine county-level socioeconomic markers of health care access and the incidence of papillary thyroid cancer. Results Papillary thyroid cancer incidence is rising most rapidly in Americans over age 65 years (annual percentage change, 8.8%), who have broad health insurance coverage through Medicare. Among those under 65, in whom health insurance coverage is not universal, the rate of increase has been slower (annual percentage change, 6.4%). Over three decades, the mortality rate from thyroid cancer has not changed. Across U.S. counties, incidence ranged widely, from 0 to 29.7 per 100,000. County papillary thyroid cancer incidence was significantly correlated with all nine sociodemographic markers of health care access: it was positively correlated with rates of college education, white-collar employment, and family income; and negatively correlated with the percentage of residents who were uninsured, in poverty, unemployed, of nonwhite ethnicity, non-English speaking, and lacking high school education. Conclusion Markers for higher levels of health care access, both sociodemographic and age-based, are associated with higher papillary thyroid cancer incidence rates. More papillary thyroid cancers are diagnosed among populations with wider access to healthcare. Despite the threefold increase in incidence over three decades, the mortality rate remains unchanged. Together with the large subclinical reservoir of

  1. Expanding Access to Early Head Start: State Initiatives for Infants & Toddlers at Risk

    ERIC Educational Resources Information Center

    Colvard, Jamie; Schmit, Stephanie

    2012-01-01

    The federal Early Head Start (EHS) program was created in 1994 to address the comprehensive needs of children under age 3 in low-income families and vulnerable low-income pregnant women. In addition to early learning opportunities, EHS's comprehensive early childhood development programs provide children and families with access to a range of…

  2. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  3. Microseismic monitoring: a tool for reservoir characterization.

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.

    2011-12-01

    Characterization of fluid-transport properties of rocks is one of the most important, yet one of most challenging goals of reservoir geophysics. There are some fundamental difficulties related to using active seismic methods for estimating fluid mobility. However, it would be very attractive to have a possibility of exploring hydraulic properties of rocks using seismic methods because of their large penetration range and their high resolution. Microseismic monitoring of borehole fluid injections is exactly the tool to provide us with such a possibility. Stimulation of rocks by fluid injections belong to a standard development practice of hydrocarbon and geothermal reservoirs. Production of shale gas and of heavy oil, CO2 sequestrations, enhanced recovery of oil and of geothermal energy are branches that require broad applications of this technology. The fact that fluid injection causes seismicity has been well-established for several decades. Observations and data analyzes show that seismicity is triggered by different processes ranging from linear pore pressure diffusion to non-linear fluid impact onto rocks leading to their hydraulic fracturing and strong changes of their structure and permeability. Understanding and monitoring of fluid-induced seismicity is necessary for hydraulic characterization of reservoirs, for assessments of reservoir stimulation and for controlling related seismic hazard. This presentation provides an overview of several theoretical, numerical, laboratory and field studies of fluid-induced microseismicity, and it gives an introduction into the principles of seismicity-based reservoir characterization.

  4. Educational Leadership and Comprehensive Reform for Improving Equity and Access for All

    ERIC Educational Resources Information Center

    Yavuz, Olcay

    2016-01-01

    Disparities in college access for underrepresented urban students are one of the most urgent educational problems of America's education system. In response to growing national concern, this longitudinal study investigated how school leaders worked collaboratively with key stakeholders to implement research-supported student services in order to…

  5. 78 FR 42030 - Reservoirs at Headwaters of the Mississippi River; Use and Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... the reservoirs, the Secretary of War prescribed regulations governing operation of the reservoirs on... reservoir may operate but also the absolute upper limit on reservoir operations, effectively providing a... DEPARTMENT OF DEFENSE Department of the Army, Corps of Engineers 33 CFR Part 207 Reservoirs at...

  6. Strategy Access Rods: A Hands-On Approach.

    ERIC Educational Resources Information Center

    Worthing, Bernadette; Laster, Barbara

    2002-01-01

    Describes Strategy Access Rods (SARs), balsa-wood, prism-like or rectangular rods on which a one-sentence reading strategy phrase in the first person is printed. Notes SARs serve as a visual, auditory, kinesthetic, and tactile reminder of the strategies available to developing readers. Discusses use of SARs for word recognition and comprehension.…

  7. High methane emissions from a midlatitude reservoir draining an agricultural watershed.

    PubMed

    Beaulieu, Jake J; Smolenski, Rebecca L; Nietch, Christopher T; Townsend-Small, Amy; Elovitz, Michael S

    2014-10-07

    Reservoirs are a globally significant source of methane (CH4), although most measurements have been made in tropical and boreal systems draining undeveloped watersheds. To assess the magnitude of CH4 emissions from reservoirs in midlatitude agricultural regions, we measured CH4 and carbon dioxide (CO2) emission rates from William H. Harsha Lake (Ohio, U.S.A.), an agricultural impacted reservoir, over a 13 month period. The reservoir was a strong source of CH4 throughout the year, emitting on average 176 ± 36 mg C m(-2) d(-1), the highest reservoir CH4 emissions profile documented in the United States to date. Contrary to our initial hypothesis, the largest CH4 emissions were during summer stratified conditions, not during fall turnover. The river-reservoir transition zone emitted CH4 at rates an order of magnitude higher than the rest of the reservoir, and total carbon emissions (i.e., CH4 + CO2) were also greater at the transition zone, indicating that the river delta supported greater carbon mineralization rates than elsewhere. Midlatitude agricultural impacted reservoirs may be a larger source of CH4 to the atmosphere than currently recognized, particularly if river deltas are consistent CH4 hot spots. We estimate that CH4 emissions from agricultural reservoirs could be a significant component of anthropogenic CH4 emissions in the U.S.A.

  8. 33 CFR 209.230 - Use of reservoir areas for recreation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Use of reservoir areas for... ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.230 Use of reservoir areas for recreation... administers plans to obtain the maximum sustained public benefit from the use of reservoir areas under its...

  9. 33 CFR 209.230 - Use of reservoir areas for recreation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Use of reservoir areas for... ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.230 Use of reservoir areas for recreation... administers plans to obtain the maximum sustained public benefit from the use of reservoir areas under its...

  10. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    NASA Astrophysics Data System (ADS)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  11. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  12. Modeling dolomitized carbonate-ramp reservoirs: A case study of the Seminole San Andres unit. Part 2 -- Seismic modeling, reservoir geostatistics, and reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F.P.; Dai, J.; Kerans, C.

    1998-11-01

    In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval andmore » scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.« less

  13. A Comprehensive Multi-Media Program to Prevent Smoking among Black Students.

    ERIC Educational Resources Information Center

    Kaufman, Joy S.; And Others

    1994-01-01

    Implemented program to decrease incidence of new smokers among black adolescents. Program combined school-based curriculum with comprehensive media intervention. There were two experimental conditions: one group participated in school-based intervention and was prompted to participate in multimedia intervention; other group had access to…

  14. The impact of lake and reservoir parameterization on global streamflow simulation.

    PubMed

    Zajac, Zuzanna; Revilla-Romero, Beatriz; Salamon, Peter; Burek, Peter; Hirpa, Feyera A; Beck, Hylke

    2017-05-01

    Lakes and reservoirs affect the timing and magnitude of streamflow, and are therefore essential hydrological model components, especially in the context of global flood forecasting. However, the parameterization of lake and reservoir routines on a global scale is subject to considerable uncertainty due to lack of information on lake hydrographic characteristics and reservoir operating rules. In this study we estimated the effect of lakes and reservoirs on global daily streamflow simulations of a spatially-distributed LISFLOOD hydrological model. We applied state-of-the-art global sensitivity and uncertainty analyses for selected catchments to examine the effect of uncertain lake and reservoir parameterization on model performance. Streamflow observations from 390 catchments around the globe and multiple performance measures were used to assess model performance. Results indicate a considerable geographical variability in the lake and reservoir effects on the streamflow simulation. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) metrics improved for 65% and 38% of catchments respectively, with median skill score values of 0.16 and 0.2 while scores deteriorated for 28% and 52% of the catchments, with median values -0.09 and -0.16, respectively. The effect of reservoirs on extreme high flows was substantial and widespread in the global domain, while the effect of lakes was spatially limited to a few catchments. As indicated by global sensitivity analysis, parameter uncertainty substantially affected uncertainty of model performance. Reservoir parameters often contributed to this uncertainty, although the effect varied widely among catchments. The effect of reservoir parameters on model performance diminished with distance downstream of reservoirs in favor of other parameters, notably groundwater-related parameters and channel Manning's roughness coefficient. This study underscores the importance of accounting for lakes and, especially, reservoirs and

  15. Effect of a comprehensive programme to provide universal access to care for sputum-smear-positive multidrug-resistant tuberculosis in China: a before-and-after study.

    PubMed

    Li, Renzhong; Ruan, Yunzhou; Sun, Qiang; Wang, Xiexiu; Chen, Mingting; Zhang, Hui; Zhao, Yanlin; Zhao, Jin; Chen, Cheng; Xu, Caihong; Su, Wei; Pang, Yu; Cheng, Jun; Chi, Junying; Wang, Qian; Fu, Yunting; Huan, Shitong; Wang, Lixia; Wang, Yu; Chin, Daniel P

    2015-04-01

    China has a quarter of all patients with multidrug-resistant tuberculosis (MDRTB) worldwide, but less than 5% are in quality treatment programmes. In a before-and-after study we aimed to assess the effect of a comprehensive programme to provide universal access to diagnosis, treatment, and follow-up for MDRTB in four Chinese cities (population 18 million). We designated city-level hospitals in each city to diagnose and treat MDRTB. All patients with smear-positive pulmonary tuberculosis diagnosed in Center for Disease Control (CDC) clinics and hospitals were tested for MDRTB with molecular and conventional drug susceptibility tests. Patients were treated with a 24 month treatment package for MDRTB based on WHO guidelines. Outpatients were referred to the CDC for directly observed therapy. We capped total treatment package cost at US$4644. Insurance reimbursement and project subsidies limited patients' expenses to 10% of charges for services within the package. We compared data from a 12 month programme period (2011) to those from a retrospective survey of all patients with MDRTB diagnosed in the same cities during a baseline period (2006-09). 243 patients were diagnosed with MDRTB or rifampicin-resistant tuberculosis during the 12 month programme period compared with 92 patients (equivalent to 24 per year) during the baseline period. 172 (71%) of 243 individuals were enrolled in the programme. Time from specimen collection for resistance testing to treatment initiation decreased by 90% (from median 139 days [IQR 69-207] to 14 days [10-21]), the proportion of patients who started on appropriate drug regimen increased 2·7 times (from nine [35%] of 26 patients treated to 166 [97%] of 172), and follow-up by the CDC after initial hospitalisation increased 24 times (from one [4%] of 23 patients to 163 [99%] of 164 patients). 6 months after starting treatment, the proportion of patients remaining on treatment increased ten times (from two [8%] of 26 patients to 137 [80

  16. Modelling mechanical behaviour of limestone under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Carvalho Coelho, Lúcia; Soares, Antonio Claudio; Ebecken, Nelson Francisco F.; Drummond Alves, José Luis; Landau, Luiz

    2006-12-01

    High porosity and low permeability limestone has presented pore collapse. As fluid is withdrawn from these reservoirs, the effective stresses acting on the rock increase. If the strength of the rock is overcome, pore collapse may occur, leading to irreversible compaction of porous media with permeability and porosity reduction. It impacts on fluid withdrawal. Most of reservoirs have been discovered in weak formations, which are susceptible to this phenomenon. This work presents a study on the mechanical behaviour of a porous limestone from a reservoir located in Campos Basin, offshore Brazil. An experimental program was undergone in order to define its elastic plastic behaviour. The tests reproduced the loading path conditions expected in a reservoir under production. Parameters of the cap model were fitted to these tests and numerical simulations were run. The numerical simulations presented a good agreement with the experimental tests. Copyright

  17. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs.

    PubMed

    Liang, Bo; Zhang, Kai; Wang, Li-Ying; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2018-01-01

    To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55-65°C) by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature ( p < 0.05). Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.

  18. The Heritage of the Operational Usda/nasa Global Reservoir and Lake Monitor

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Beckley, B. D.; Reynolds, C. A.

    2012-12-01

    Satellite radar altimetry has the ability to monitor variations in surface water height for large lakes and reservoirs. A clear advantage is the provision of data where in situ data are lacking or where there is restricted access to ground-based measurements. A USDA/NASA funded program is performing altimetric monitoring of the largest lakes and reservoirs around the world. The near-real time height measurements are currently derived from NASA/CNES Jason-2/OSTM mission data. Archived data are also utilized from the NASA/CNES Topex/Poseidon and Jason-1 missions, the NRL GFO mission, and the ESA ENVISAT mission. Lake level products are output within 1-2 weeks after satellite overpass, a time delay which will improve to a few days as the project moves into its next phase. The USDA/FAS utilize the products for assessing irrigation potential (and thus crop production estimates), and for general observation of high-water status and short-term drought. Other end-users explore the products to study climate trends, observe anthropogenic effects, and to consider water management and regional security issues. This presentation explores the heritage of the Global Reservoir and Lake Monitor (GRLM) which has its origins in the field of ocean surface topography and the exploration of radar altimetry techniques over non-ocean surfaces. The current system closely follows the software design of the historical NASA Ocean Pathfinder Project and utilizes a global lakes catalogue that was created for climate change/aridity studies. The output of lake level products, imagery and information also echoes an earlier trial (UNDP-funded) lakes database which first offered altimetric products via the world wide web and which enabled world-wide interest to be both assessed and highlighted.;

  19. Reservoir vital signs monitoring, 1990: Physical and chemical characteristics of water and sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinert, D.L.

    1991-05-01

    As part of Tennessee Valley Authority`s (TVA`s) Reservoir Vital Signs Monitoring program, physical/chemical measurements of water and sediment were made in 1990 on twelve TVA reservoirs (the nine main steam Tennessee river reservoirs - Kentucky through Fort Loudoun and three major tributary reservoirs - Cherokee, Douglas, and Norris). The objective of this monitoring program is to assess the health or integrity of these aquatic ecosystems. The physical/chemical water quality data collected in 1990 showed the water quality of these reservoirs to be very good. However, hypolimnetic anoxia during the summer months in Watts bars, Douglas, and Cherokee reservoir continues tomore » be a concern. High concentrations of nutrients were measured in the transition zones of Cherokee and Douglas reservoirs, resulting in highly productive and eutrophic conditions in the transition zones of these reservoirs. Fecal coliform organisms were frequently detected in the forebay area of Guntersville reservoir, and higher than expected ammonia nitrogen concentrations were found at the transition zone of Wheeler reservoir. Elevated concentrations of mercury were found in Pickwick and Watts bar reservoir sediment, and high lead concentrations were found in a sediment sample collected from Guntersville reservoir. A TVA Reservoir Water Quality Index (RWQI) was developed and used to summarize water quality conditions on a scale from 0 (worst) to 100 (best).« less

  20. Reservoir vital signs monitoring, 1990: Physical and chemical characteristics of water and sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinert, D.L.

    1991-05-01

    As part of Tennessee Valley Authority's (TVA's) Reservoir Vital Signs Monitoring program, physical/chemical measurements of water and sediment were made in 1990 on twelve TVA reservoirs (the nine main steam Tennessee river reservoirs - Kentucky through Fort Loudoun and three major tributary reservoirs - Cherokee, Douglas, and Norris). The objective of this monitoring program is to assess the health or integrity of these aquatic ecosystems. The physical/chemical water quality data collected in 1990 showed the water quality of these reservoirs to be very good. However, hypolimnetic anoxia during the summer months in Watts bars, Douglas, and Cherokee reservoir continues tomore » be a concern. High concentrations of nutrients were measured in the transition zones of Cherokee and Douglas reservoirs, resulting in highly productive and eutrophic conditions in the transition zones of these reservoirs. Fecal coliform organisms were frequently detected in the forebay area of Guntersville reservoir, and higher than expected ammonia nitrogen concentrations were found at the transition zone of Wheeler reservoir. Elevated concentrations of mercury were found in Pickwick and Watts bar reservoir sediment, and high lead concentrations were found in a sediment sample collected from Guntersville reservoir. A TVA Reservoir Water Quality Index (RWQI) was developed and used to summarize water quality conditions on a scale from 0 (worst) to 100 (best).« less

  1. Water quality of Calero Reservoir, Santa Clara County, California, 1981-83

    USGS Publications Warehouse

    Clifton, D.G.; Gloege, I.S.

    1987-01-01

    Data were collected from December 1980 to September 1983 to describe water quality conditions of Calero Reservoir and the Almaden-Calero canal, Santa Clara County, California. Results show that water in Calero Reservoir and the canal generally met water quality criteria, as identified by the California Regional Water Quality Control Board San Francisco Bay Region, for municipal and domestic supply, water contact and non-contact recreation, warm water fish habitat, wildlife habitat, and fish spawning. Water temperature profiles show that Calero Reservoir can be classified as a warm monomictic reservoir. Water transparency profiles showed rapid attenuation of light with depth in the water column. The depth of the euphotic zone ranged from .5 m to 5.0 m. In winter and spring, light-extinction values generally were high throughout the water column; in summer and fall, values generally were high near the reservoir bottom. Dissolved oxygen concentrations were < 5.0 mg/L in about 22% of the measurements. Median pH values were 7.9 in the reservoir and 8.4 in the canal. Mean specific conductance values were 299 microsiemens/cm at 25 C in the reservoir and 326 in the canal. Calcium and magnesium were the dominant cations and bicarbonate the dominant anion in Calero Reservoir. Concentrations of total recoverable mercury in the bottom sediments in Calero Reservoir ranged from 0.06 to 0.85 mg/kg, but concentrations in the water column were was generally < 1 mg/L. Mean total nitrogen concentration in the Reservoir was 1.00 mg/L, much of it in dissolved form (mean concentration was 0.85 mg/L). Mean total organic nitrogen concentration in Calero Reservoir was 0.65 mg/L, and mean total nitrate concentration was 0.21 mg/L. Mean total phosphorus and dissolved orthophosphorous concentrations were 0.05 and 0.019 mg/L, respectively. Net primary productivity in the euphotic zone ranged from -2,000 to 10,000 mg of oxygen/sq m/day; the median value was 930. Carlson 's trophic-state index

  2. Formation evaluation in liquid-dominated geothermal reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ershaghi, I.; Dougherty, E.E.; Handy, L.L.

    1981-04-01

    Studies relative to some formation evaluation aspects of geothermal reservoirs are reported. The particular reservoirs considered were the liquid dominated type with a lithology of the sedimentary nature. Specific problems of interest included the resistivity behavior of brines and rocks at elevated temperatures and studies on the feasibility of using the well log resistivity data to obtain estimates of reservoir permeability. Several papers summarizing the results of these studies were presented at various technical meetings for rapid dissemination of the results to potential users. These papers together with a summary of data most recently generated are included. A brief reviewmore » of the research findings precedes the technical papers. Separate abstracts were prepared for four papers. Five papers were abstracted previously for EDB.« less

  3. HIV reservoirs: the new frontier.

    PubMed

    Iglesias-Ussel, Maria D; Romerio, Fabio

    2011-01-01

    Current antiretroviral therapies suppress viremia to very low levels, but are ineffective in eliminating reservoirs of persistent HIV infection. Efforts toward the development of therapies aimed at HIV reservoirs are complicated by the evidence that HIV establishes persistent productive and nonproductive infection in a number of cell types and through a variety of mechanisms. Moreover, immunologically privileged sites such as the brain also act as HIV sanctuaries. To facilitate the advancement of our knowledge in this new area of research, in vitro models of HIV persistence in different cellular reservoirs have been developed, particularly in CD4+ T-cells that represent the largest pool of persistently infected cells in the body. Whereas each model presents clear advantages, they all share one common limitation: they are systems attempting to recapitulate extremely complex virus-cell interactions occurring in vivo, which we know very little about. Potentially conflicting results arising from different models may be difficult to interpret without validation with clinical samples. Addressing these issues, among others, merits careful consideration for the identification of valid targets and the design of effective strategies for therapy, which may increase the success of efforts toward HIV eradication.

  4. Endoscopic-Assisted Burr Hole Reservoir and Ventricle Catheter Placement.

    PubMed

    Antes, Sebastian; Tschan, Christoph A; Heckelmann, Michael; Salah, Mohamed; Senger, Sebastian; Linsler, Stefan; Oertel, Joachim

    2017-05-01

    Accurate positioning of a ventricle catheter is of utmost importance. Various techniques to ensure optimal positioning have been described. Commonly, after catheter placement, additional manipulation is necessary to connect a burr hole reservoir or shunt components. This manipulation can lead to accidental catheter dislocation and should be avoided. Here, we present a new technique that allows direct endoscopic insertion of a burr hole reservoir with an already mounted ventricle catheter. Before insertion, the ventricle catheter was slit at the tip, shortened to the correct length, and connected to the special burr hole reservoir. An intracatheter endoscope was then advanced through the reservoir and the connected catheter. This assemblage allowed using the endoscope as a stylet for shielded ventricular puncture. To confirm correct placement of the ventricle catheter, the endoscope was protruded a few millimeters beyond the catheter tip for inspection. The new technique was applied in 12 procedures. The modified burr hole reservoir was inserted for first-time ventriculoperitoneal shunting (n = 1), cerebrospinal fluid withdrawals and drug administration (n = 2), or different stenting procedures (n = 9). Optimal positioning of the catheter was achieved in 11 of 12 cases. No subcutaneous cerebrospinal fluid collection or fluid leakage through the wound occurred. No parenchymal damage or bleeding appeared. The use of the intracatheter endoscope combined with the modified burr hole reservoir provides a sufficient technique for accurate and safe placement. Connecting the ventricle catheter to the reservoir before the insertion reduces later manipulation and accidental dislocation of the catheter. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Total mercury and methylmercury levels in fish from hydroelectric reservoirs in Tanzania.

    PubMed

    Ikingura, J R; Akagi, H

    2003-03-20

    Total mercury (THg) and methylmercury (MeHg) levels have been determined in fish species representing various tropic levels in four major hydroelectric reservoirs (Mtera, Kidatu, Hale-Pangani, Nyumba ya Mungu) located in two distinct geographical areas in Tanzania. The Mtera and Kidatu reservoirs are located along the Great Ruaha River drainage basin in the southern central part of the country while the other reservoirs are located within the Pangani River basin in the north eastern part of Tanzania. Fish mercury levels ranged from 5 to 143 microg/kg (mean 40 microg/kg wet weight) in the Mtera Reservoir, and from 7 to 119 microg/kg (mean 21 microg/kg) in the Kidatu Reservoir downstream of the Great Ruaha River. The lowest THg levels, in the range 1-10 microg/kg (mean 5 microg/kg), were found in fish from the Nyumba ya Mungu (NyM) Reservoir, which is one of the oldest reservoirs in the country. Fish mercury levels in the Pangani and Hale mini-reservoirs, downstream of the NyM Reservoir, were in the order of 3-263 microg/kg, with an average level of 21 microg/kg. These THg levels are among the lowest to be reported in freshwater fish from hydroelectric reservoirs. Approximately 56-100% of the total mercury in the fish was methylmercury. Herbivorous fish species contained lower THg levels than the piscivorous species; this was consistent with similar findings in other fish studies. In general the fish from the Tanzanian reservoirs contained very low mercury concentrations, and differed markedly from fish in hydroelectric reservoirs of similar age in temperate and other regions, which are reported to contain elevated mercury concentrations. The low levels of mercury in the fish correlated with low background concentrations of THg in sediment and flooded soil (mean 2-8 microg/kg dry weight) in the reservoir surroundings. This suggested a relatively clean reservoir environment that has not been significantly impacted by mercury contamination from natural or anthropogenic

  6. Bathymetry of Totten Reservoir, Montezuma County, Colorado, 2011

    USGS Publications Warehouse

    Kohn, Michael S.

    2012-01-01

    In order to better characterize the water supply capacity of Totten Reservoir, Montezuma County, Colorado, the U.S. Geological Survey, in cooperation with the Dolores Water Conservancy District, conducted a bathymetric survey of Totten Reservoir. The study was performed in June 2011 using a man-operated boat-mounted multibeam echo sounder integrated with a global positioning system and a terrestrial real-time kinematic global positioning system. The two collected datasets were merged and imported into geographic information system software. A bathymetric map of the reservoir was generated in addition to plots for the stage-area and the stage-volume relations.

  7. Bathymetry of Groundhog Reservoir, Dolores County, Colorado, 2011

    USGS Publications Warehouse

    Kohn, Michael S.

    2012-01-01

    In order to better characterize the water supply capacity of Groundhog Reservoir, Dolores County, Colorado, the U.S. Geological Survey, in cooperation with the Dolores Water Conservancy District, conducted a bathymetric survey of Groundhog Reservoir. The study was performed in June 2011 using a man-operated boat-mounted multibeam echo sounder integrated with a global positioning system and a terrestrial real-time kinematic global positioning system. The two collected datasets were merged and imported into geographic information system software. A bathymetric map of the reservoir was generated in addition to plots for the stage-area and the stage-volume relations.

  8. Study of Nonclassical Fields in Phase-Sensitive Reservoirs

    NASA Technical Reports Server (NTRS)

    Kim, Myung Shik; Imoto, Nobuyuki

    1996-01-01

    We show that the reservoir influence can be modeled by an infinite array of beam splitters. The superposition of the input fields in the beam splitter is discussed with the convolution laws for their quasiprobabilities. We derive the Fokker-Planck equation for the cavity field coupled with a phase-sensitive reservoir using the convolution law. We also analyze the amplification in the phase-sensitive reservoir with use of the modified beam splitter model. We show the similarities and differences between the dissipation and amplification models. We show that a super-Poissonian input field cannot become sub-Poissonian by the phase-sensitive amplification.

  9. Petrofacies Analysis - A Petrophysical Tool for Geologic/Engineering Reservoir Characterization

    USGS Publications Warehouse

    Watney, W.L.; Guy, W.J.; Doveton, J.H.; Bhattacharya, S.; Gerlach, P.M.; Bohling, Geoffrey C.; Carr, T.R.

    1998-01-01

    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measurements of a reservoir. The word "petrofacies" makes an explicit link between petroleum engineers' concerns with pore characteristics as arbiters of production performance and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations are reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types (size and connectedness) for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production, such as bypassed pay behind pipe and in old exploration wells, or to assess zonation and continuity of the reservoir. Petrofacies analysis in this study was applied to distinguishing flow units and including discriminating pore type as an assessment of reservoir conformance and continuity. The analysis is facilitated through the use of colorimage cross sections depicting depositional sequences

  10. Frameworks for amending reservoir water management

    USGS Publications Warehouse

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Managing water storage and withdrawals in many reservoirs requires establishing seasonal targets for water levels (i.e., rule curves) that are influenced by regional precipitation and diverse water demands. Rule curves are established as an attempt to balance various water needs such as flood control, irrigation, and environmental benefits such as fish and wildlife management. The processes and challenges associated with amending rule curves to balance multiuse needs are complicated and mostly unfamiliar to non-US Army Corps of Engineers (USACE) natural resource managers and to the public. To inform natural resource managers and the public we describe the policies and process involved in amending rule curves in USACE reservoirs, including 3 frameworks: a general investigation, a continuing authority program, and the water control plan. Our review suggests that water management in reservoirs can be amended, but generally a multitude of constraints and competing demands must be addressed before such a change can be realized.

  11. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, mustmore » be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR.« less

  12. Early warning of limit-exceeding concentrations of cyanobacteria and cyanotoxins in drinking water reservoirs by inferential modelling.

    PubMed

    Recknagel, Friedrich; Orr, Philip T; Bartkow, Michael; Swanepoel, Annelie; Cao, Hongqing

    2017-11-01

    An early warning scheme is proposed that runs ensembles of inferential models for predicting the cyanobacterial population dynamics and cyanotoxin concentrations in drinking water reservoirs on a diel basis driven by in situ sonde water quality data. When the 10- to 30-day-ahead predicted concentrations of cyanobacteria cells or cyanotoxins exceed pre-defined limit values, an early warning automatically activates an action plan considering in-lake control, e.g. intermittent mixing and ad hoc water treatment in water works, respectively. Case studies of the sub-tropical Lake Wivenhoe (Australia) and the Mediterranean Vaal Reservoir (South Africa) demonstrate that ensembles of inferential models developed by the hybrid evolutionary algorithm HEA are capable of up to 30days forecasts of cyanobacteria and cyanotoxins using data collected in situ. The resulting models for Dolicospermum circinale displayed validity for up to 10days ahead, whilst concentrations of Cylindrospermopsis raciborskii and microcystins were successfully predicted up to 30days ahead. Implementing the proposed scheme for drinking water reservoirs enhances current water quality monitoring practices by solely utilising in situ monitoring data, in addition to cyanobacteria and cyanotoxin measurements. Access to routinely measured cyanotoxin data allows for development of models that predict explicitly cyanotoxin concentrations that avoid to inadvertently model and predict non-toxic cyanobacterial strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Varieties of semantic 'access' deficit in Wernicke's aphasia and semantic aphasia.

    PubMed

    Thompson, Hannah E; Robson, Holly; Lambon Ralph, Matthew A; Jefferies, Elizabeth

    2015-12-01

    Comprehension deficits are common in stroke aphasia, including in cases with (i) semantic aphasia, characterized by poor executive control of semantic processing across verbal and non-verbal modalities; and (ii) Wernicke's aphasia, associated with poor auditory-verbal comprehension and repetition, plus fluent speech with jargon. However, the varieties of these comprehension problems, and their underlying causes, are not well understood. Both patient groups exhibit some type of semantic 'access' deficit, as opposed to the 'storage' deficits observed in semantic dementia. Nevertheless, existing descriptions suggest that these patients might have different varieties of 'access' impairment-related to difficulty resolving competition (in semantic aphasia) versus initial activation of concepts from sensory inputs (in Wernicke's aphasia). We used a case series design to compare patients with Wernicke's aphasia and those with semantic aphasia on Warrington's paradigmatic assessment of semantic 'access' deficits. In these verbal and non-verbal matching tasks, a small set of semantically-related items are repeatedly presented over several cycles so that the target on one trial becomes a distractor on another (building up interference and eliciting semantic 'blocking' effects). Patients with Wernicke's aphasia and semantic aphasia were distinguished according to lesion location in the temporal cortex, but in each group, some individuals had additional prefrontal damage. Both of these aspects of lesion variability-one that mapped onto classical 'syndromes' and one that did not-predicted aspects of the semantic 'access' deficit. Both semantic aphasia and Wernicke's aphasia cases showed multimodal semantic impairment, although as expected, the Wernicke's aphasia group showed greater deficits on auditory-verbal than picture judgements. Distribution of damage in the temporal lobe was crucial for predicting the initially 'beneficial' effects of stimulus repetition: cases with

  14. A comparison of the dynamics and bioconcentration of mercury in Oregon reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.; Curtis, L.

    1995-12-31

    The authors assessed the extent of mercury pollution and its bioconcentration effects in fish in two Oregon reservoirs. Cottage Grove and Dorena Reservoirs are located in same ecoregions but distinguished by the history of mercury mining in the formers watershed. Past mercury mining activity deposited up to 271 {micro}g/g mercury and 2.6 mg/g sulfur in soils of near Black Butte Mine, OR. Sediment mercury concentration in the main tributary of Cottage Grove Reservoir, which drains the tailings of the past mercury mine, was ten times higher than in sediment from other tributaries to the reservoir. However there was no significantlymore » difference between mercury concentration in each tributary of Dorena Reservoir, which has no mercury mining history in its watershed. Average mercury concentration in sediment of Cottage Grove Reservoir (0.67 {micro}g/g dw) was higher than of Dorena Reservoir (0.12 {micro}g/g dw). The authors also determined percent volatile solid and grain size effect in sediment. Maximum mercury concentration exceeded the FDA limit 1 {micro}g/g ww for largemouth bass (Micropterus salmoides) and bluegill (Lepomis macrochirus) in Cottage Grove Reservoir. All fish species (largemouth bass, bluegill, crappie (Pomoxis nigromaculatus), catfish (Ictalurus nebulosus)) from Cottage Grove Reservoir had significantly higher levels of mercury than from Dorena Reservoir. Fish weight and age was positively correlated with mercury concentration in both-reservoirs and seasonal variation of mercury concentration in fish was examined. These results indicate that the Black Butte Mine is the main source of mercury and mercury bioconcentration in fish represents a management problem in Cottage Grove Reservoir.« less

  15. Reservoir Computing Beyond Memory-Nonlinearity Trade-off.

    PubMed

    Inubushi, Masanobu; Yoshimura, Kazuyuki

    2017-08-31

    Reservoir computing is a brain-inspired machine learning framework that employs a signal-driven dynamical system, in particular harnessing common-signal-induced synchronization which is a widely observed nonlinear phenomenon. Basic understanding of a working principle in reservoir computing can be expected to shed light on how information is stored and processed in nonlinear dynamical systems, potentially leading to progress in a broad range of nonlinear sciences. As a first step toward this goal, from the viewpoint of nonlinear physics and information theory, we study the memory-nonlinearity trade-off uncovered by Dambre et al. (2012). Focusing on a variational equation, we clarify a dynamical mechanism behind the trade-off, which illustrates why nonlinear dynamics degrades memory stored in dynamical system in general. Moreover, based on the trade-off, we propose a mixture reservoir endowed with both linear and nonlinear dynamics and show that it improves the performance of information processing. Interestingly, for some tasks, significant improvements are observed by adding a few linear dynamics to the nonlinear dynamical system. By employing the echo state network model, the effect of the mixture reservoir is numerically verified for a simple function approximation task and for more complex tasks.

  16. Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan

    NASA Astrophysics Data System (ADS)

    Fang, H. T.

    2015-12-01

    The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface

  17. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Gang; Gao, Huilin; Naz, Bibi S.

    2016-12-01

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, natural streamflow timing and magnitude have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land use/land cover and climate changes. To understand the fine scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is of desire. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrologymore » Soil Vegetation Model (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM model was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficients of determination (R2) and the Nash-Sutcliff Efficiency (NSE) are 0.85 and 0.75, respectively. These results suggest that this reservoir module has promise for use in sub-monthly hydrological simulations. Enabled with the new reservoir component, the DHSVM model provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less

  18. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    DOE PAGES

    Zhao, Gang; Gao, Huili; Naz, Bibi S; ...

    2016-10-14

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, timing and magnitude of natural streamflows have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land-use/land-cover and climate changes. To understand the fine-scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is desired. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Modelmore » (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficient of determination (R 2) and the Nash-Sutcliff Efficiency (NSE) were 0.85 and 0.75, respectively. These results suggest that this reservoir module holds promise for use in sub-monthly hydrological simulations. Furthermore, with the new reservoir component, the DHSVM provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less

  19. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Gang; Gao, Huili; Naz, Bibi S

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, timing and magnitude of natural streamflows have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land-use/land-cover and climate changes. To understand the fine-scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is desired. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Modelmore » (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficient of determination (R 2) and the Nash-Sutcliff Efficiency (NSE) were 0.85 and 0.75, respectively. These results suggest that this reservoir module holds promise for use in sub-monthly hydrological simulations. Furthermore, with the new reservoir component, the DHSVM provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less

  20. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars {open_quotes}Pink{close_quotes} reservoir, Mississippi Canyon Area, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.

    1996-12-31

    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the {open_quotes}E{close_quotes} or {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence within a salt withdrawal mini-basin.more » The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less

  1. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars [open quotes]Pink[close quotes] reservoir, Mississippi Canyon Area, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.

    1996-01-01

    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the [open quotes]E[close quotes] or [open quotes]Pink[close quotes] reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence withinmore » a salt withdrawal mini-basin. The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less

  2. Biological souring and mitigation in oil reservoirs.

    PubMed

    Gieg, Lisa M; Jack, Tom R; Foght, Julia M

    2011-10-01

    Souring in oil field systems is most commonly due to the action of sulfate-reducing prokaryotes, a diverse group of anaerobic microorganisms that respire sulfate and produce sulfide (the key souring agent) while oxidizing diverse electron donors. Such biological sulfide production is a detrimental, widespread phenomenon in the petroleum industry, occurring within oil reservoirs or in topside processing facilities, under low- and high-temperature conditions, and in onshore or offshore operations. Sulfate reducers can exist either indigenously in deep subsurface reservoirs or can be "inoculated" into a reservoir system during oil field development (e.g., via drilling operations) or during the oil production phase. In the latter, souring most commonly occurs during water flooding, a secondary recovery strategy wherein water is injected to re-pressurize the reservoir and sweep the oil towards production wells to extend the production life of an oil field. The water source and type of production operation can provide multiple components such as sulfate, labile carbon sources, and sulfate-reducing communities that influence whether oil field souring occurs. Souring can be controlled by biocides, which can non-specifically suppress microbial populations, and by the addition of nitrate (and/or nitrite) that directly impacts the sulfate-reducing population by numerous competitive or inhibitory mechanisms. In this review, we report on the diversity of sulfate reducers associated with oil reservoirs, approaches for determining their presence and effects, the factors that control souring, and the approaches (along with the current understanding of their underlying mechanisms) that may be used to successfully mitigate souring in low-temperature and high-temperature oil field operations.

  3. A dimension reduction method for flood compensation operation of multi-reservoir system

    NASA Astrophysics Data System (ADS)

    Jia, B.; Wu, S.; Fan, Z.

    2017-12-01

    Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.

  4. The History of Nontraditional or Ectopic Placement of Reservoirs in Prosthetic Urology.

    PubMed

    Perito, Paul; Wilson, Steven

    2016-04-01

    Reservoir placement during implantation of prosthetic urology devices has been problematic throughout the history of the surgical treatment of erectile dysfunction and urinary incontinence. We thought it would be interesting to review the history of reservoir placement leading up to current surgical techniques. To provide an overview of the past and present techniques for reservoir placement and discuss the evolutionary process leading to safe and effective placement of prosthetic reservoirs. We reviewed data pertaining to inflatable penile prosthesis (IPP) reservoirs and pressure-regulating balloons (PRB) in a chronological fashion, spanning 25 years. Main outcomes included a historical review of techniques for IPP reservoir and PRB placement leading to the subsequent incremental improvements in safety and efficacy when performing penile implants and artificial urinary sphincters. Prosthetic urologic reservoirs have traditionally been placed in the retropubic space. Over the years, urologists have attempted use of alternative spaces including peritoneal, epigastric, "ectopic," posterior to transversalis, and high submuscular. Current advances in prosthetic urologic reservoir placement allow safe and effective abdominal wall placement of reservoirs. These novel approaches appear to be so effective that urologists may now be able to cease using the traditional retropubic space for reservoir placement, even in the case of virgin pelves. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  5. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  6. Reservoir analog studies using multimodel photogrammetry: A new tool for the petroleum industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dueholm, K.S.; Olsen, T.

    1993-12-01

    Attempts to increase the recovery from hydrocarbon reservoirs involve high-precision geological work. Siliciclastic depositional environments must be interpreted accurately and combined with an analysis of the three-dimensional shape of the sand bodies. An advanced photogrammetric method called multimodel stereo restitution is a potential new tool for the petroleum industry when outcrop investigations are necessary, such as in reservoir analog studies. The method is based on very simple field photography techniques, allowing the geologist to use his own standard small-frame camera. It can be applied to geological studies of virtually any scale, and outcrop mapping is significantly improved in detail, accuracy,more » and volume. The method is especially useful when investigating poorly accessible exposures on steep mountain faces and canyon walls. The use of multimodel photogrammetry is illustrated by a study of Upper Cretaceous deltaic sediments from the Atane Formation of West Greenland. Further potential applications of the method in petroleum explorations are discussed. True-scale mapping of lithologies in large continuous exposures can be used in understanding basin evolution and in seismic modeling. Close-range applications can be used when modeling fault geometries, and in studies of individual bed forms, clay laminae, cemented horizons, and diagenetic fronts.« less

  7. Infrequent Reservoir-Related Complications of Urologic Prosthetics: A Case Series and Literature Review.

    PubMed

    Cui, Tao; Terlecki, Ryan; Mirzazadeh, Majid

    2015-12-01

    Complications related to inflatable penile prosthesis (IPP) and artificial urinary sphincter (AUS) reservoirs are rare, potentially life threatening, and poorly described in the literature. As more devices are implanted, the incidence of reservoir-related complications may increase, and it will be important to recognize the relevant signs and symptoms. We present a case series of reservoir-related complications presenting to our institution for treatment. We also reviewed all accounts of reservoir-related complications within the urologic literature. Three cases of reservoir-related complications are presented. Case 1 involves erosion of an intact AUS reservoir into the cecum of a patient with a history of myelomeningocele and bladder augmentation. Case 2 involves an IPP reservoir causing vascular compression, resulting in open exploration and repositioning of the reservoir. Case 3 involves intraperitoneal migration of a retained IPP reservoir to a subhepatic area, which was then removed laparoscopically. Literature review yielded descriptions of eight cases of intestinal complications, five cases of vascular complications, but zero reports of migration to a subhepatic area. Other notable complications include 20 reported cases of reservoir erosion into the bladder and inguinal herniation of the reservoir. Complications involving urologic prosthesis reservoirs, although rare, can have serious implications for patients. A high index of suspicion and familiarity with treatment options is required in order to allow timely diagnosis and appropriate treatment. Patients with prior major abdominal surgeries seem to be more prone to intestinal complications of reservoirs and warrant special concern. Cui T, Terlecki R, and Mirzazadeh M. Infrequent reservoir-related complications of urologic prosthetics: A case series and literature review. Sex Med 2015;3:334-338.

  8. Enabling Access and Enhancing Comprehension of Video Content for Postsecondary Students with Intellectual Disability

    ERIC Educational Resources Information Center

    Evmenova, Anya S.; Behrmann, Michael M.

    2014-01-01

    There is a great need for new innovative tools to integrate individuals with intellectual disability into educational experiences. This multiple baseline study examined the effects of various adaptations for improving factual and inferential comprehension of non-fiction videos by six postsecondary students with intellectual disability. Video…

  9. Access to Comprehensive School-Based Health Services for Children and Youth, 1999.

    ERIC Educational Resources Information Center

    Access, 1999

    1999-01-01

    This document is comprised of the three 1999 issues of the newsletter "Access," presenting information on public policy and research of interest to school-based health programs (SBHC) for children and youth. The Winter 1999 issue focuses on how SBHCs can help teachers do their jobs better by allowing them to concentrate their energies on…

  10. Climate Change Assessment of Precipitation in Tandula Reservoir System

    NASA Astrophysics Data System (ADS)

    Jaiswal, Rahul Kumar; Tiwari, H. L.; Lohani, A. K.

    2018-02-01

    The precipitation is the principle input of hydrological cycle affect availability of water in spatial and temporal scale of basin due to widely accepted climate change. The present study deals with the statistical downscaling using Statistical Down Scaling Model for rainfall of five rain gauge stations (Ambagarh, Bhanpura, Balod, Chamra and Gondli) in Tandula, Kharkhara and Gondli reservoirs of Chhattisgarh state of India to forecast future rainfall in three different periods under SRES A1B and A2 climatic forcing conditions. In the analysis, twenty-six climatic variables obtained from National Centers for Environmental Prediction were used and statistically tested for selection of best-fit predictors. The conditional process based statistical correlation was used to evolve multiple linear relations in calibration for period of 1981-1995 was tested with independent data of 1996-2003 for validation. The developed relations were further used to predict future rainfall scenarios for three different periods 2020-2035 (FP-1), 2046-2064 (FP-2) and 2081-2100 (FP-3) and compared with monthly rainfalls during base period (1981-2003) for individual station and all three reservoir catchments. From the analysis, it has been found that most of the rain gauge stations and all three reservoir catchments may receive significant less rainfall in future. The Thiessen polygon based annual and seasonal rainfall for different catchments confirmed a reduction of seasonal rainfall from 5.1 to 14.1% in Tandula reservoir, 11-19.2% in Kharkhara reservoir and 15.1-23.8% in Gondli reservoir. The Gondli reservoir may be affected the most in term of water availability in future prediction periods.

  11. Net Greenhouse Gas Emissions at the Eastmain 1 Reservoir, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Strachan, I. B.; Tremblay, A.; Bastien, J.; Bonneville, M.; Del Georgio, P.; Demarty, M.; Garneau, M.; Helie, J.; Pelletier, L.; Prairie, Y.; Roulet, N. T.; Teodoru, C. R.

    2010-12-01

    Canada has much potential to increase its already large use of hydroelectricity for energy production. However, hydroelectricity production in many cases requires the creation of reservoirs that inundate terrestrial ecosystems. While it has been reasonably well established that reservoirs emit GHGs, it has not been established what the net difference between the landscape scale exchange of GHGs would be before and after reservoir creation. Further, there is no indication of how that net difference may change over time from when the reservoir was first created to when it reaches a steady-state condition. A team of University and private sector researchers in partnership with Hydro-Québec has been studying net GHG emissions from the Eastmain 1 reservoir located in the boreal forest region of Québec, Canada. Net emissions are defined as those emitted following the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period in the absence of the reservoir. Sedimentation rates, emissions at the surface of the reservoir and natural water bodies, the degassing emissions downstream of the power house as well as the emissions/absorption of the natural ecosystems (forest, peatlands, lakes, streams and rivers) before and after the impoundment were measured using different techniques (Eddy covariance, floating chambers, automated systems, etc.). This project provides the first measurements of CO2 and CH4 between a new boreal reservoir and the atmosphere as the reservoir is being created, the development of the methodology to obtain these, and the first attempt at approaching the GHGs emissions from northern hydroelectric reservoirs as a land cover change issue. We will therefore provide: an estimate of the change in GHG source the atmosphere would see; an estimate of the net emissions that can be used for intercomparison of GHG contributions with other modes of power production; and a basis on which to develop

  12. Estimation of Carbon Dioxide Storage Capacity for Depleted Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Lai, Yen Ting; Shen, Chien-Hao; Tseng, Chi-Chung; Fan, Chen-Hui; Hsieh, Bieng-Zih

    2015-04-01

    A depleted gas reservoir is one of the best options for CO2 storage for many reasons. First of all, the storage safety or the caprock integrity has been proven because the natural gas was trapped in the formation for a very long period of time. Also the formation properties and fluid flow characteristics for the reservoir have been well studied since the discovery of the gas reservoir. Finally the surface constructions and facilities are very useful and relatively easy to convert for the use of CO2 storage. The purpose of this study was to apply an analytical approach to estimate CO2 storage capacity in a depleted gas reservoir. The analytical method we used is the material balance equation (MBE), which have been widely used in natural gas storage. We proposed a modified MBE for CO2 storage in a depleted gas reservoir by introducing the z-factors of gas, CO2 and the mixture of the two. The MBE can be derived to a linear relationship between the ratio of pressure to gas z-factor (p/z) and the cumulative term (Gp-Ginj, where Gp is the cumulative gas production and Ginj is the cumulative CO2 injection). The CO2 storage capacity can be calculated when constraints of reservoir recovery pressure are adopted. The numerical simulation was also used for the validation of the theoretical estimation of CO2 storage capacity from the MBE. We found that the quantity of CO2 stored is more than that of gas produced when the reservoir pressure is recovered from the abandon pressure to the initial pressure. This result was basically from the fact that the gas- CO2 mixture z-factors are lower than the natural gas z-factors in reservoir conditions. We also established a useful p/z plot to easily observe the pressure behavior of CO2 storage and efficiently calculate the CO2 storage capacity. The application of the MBE we proposed was demonstrated by a case study of a depleted gas reservoir in northwestern Taiwan. The estimated CO2 storage capacities from conducting reservoir simulation

  13. Parallel Numerical Simulations of Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Torres, Pedro; Mangiavacchi, Norberto

    2010-11-01

    The study of the water flow and scalar transport in water reservoirs is important for the determination of the water quality during the initial stages of the reservoir filling and during the life of the reservoir. For this scope, a parallel 2D finite element code for solving the incompressible Navier-Stokes equations coupled with scalar transport was implemented using the message-passing programming model, in order to perform simulations of hidropower water reservoirs in a computer cluster environment. The spatial discretization is based on the MINI element that satisfies the Babuska-Brezzi (BB) condition, which provides sufficient conditions for a stable mixed formulation. All the distributed data structures needed in the different stages of the code, such as preprocessing, solving and post processing, were implemented using the PETSc library. The resulting linear systems for the velocity and the pressure fields were solved using the projection method, implemented by an approximate block LU factorization. In order to increase the parallel performance in the solution of the linear systems, we employ the static condensation method for solving the intermediate velocity at vertex and centroid nodes separately. We compare performance results of the static condensation method with the approach of solving the complete system. In our tests the static condensation method shows better performance for large problems, at the cost of an increased memory usage. Performance results for other intensive parts of the code in a computer cluster are also presented.

  14. High resolution modeling of reservoir storage and extent dynamics at the continental scale

    NASA Astrophysics Data System (ADS)

    Shin, S.; Pokhrel, Y. N.

    2017-12-01

    Over the past decade, significant progress has been made in developing reservoir schemes in large scale hydrological models to better simulate hydrological fluxes and storages in highly managed river basins. These schemes have been successfully used to study the impact of reservoir operation on global river basins. However, improvements in the existing schemes are needed for hydrological fluxes and storages, especially at the spatial resolution to be used in hyper-resolution hydrological modeling. In this study, we developed a reservoir routing scheme with explicit representation of reservoir storage and extent at the grid scale of 5km or less. Instead of setting reservoir area to a fixed value or diagnosing it using the area-storage equation, which is a commonly used approach in the existing reservoir schemes, we explicitly simulate the inundated storage and area for all grid cells that are within the reservoir extent. This approach enables a better simulation of river-floodplain-reservoir storage by considering both the natural flood and man-made reservoir storage. Results of the seasonal dynamics of reservoir storage, river discharge at the downstream of dams, and the reservoir inundation extent are evaluated with various datasets from ground-observations and satellite measurements. The new model captures the dynamics of these variables with a good accuracy for most of the large reservoirs in the western United States. It is expected that the incorporation of the newly developed reservoir scheme in large-scale land surface models (LSMs) will lead to improved simulation of river flow and terrestrial water storage in highly managed river basins.

  15. Mercury deposition and methylmercury formation in Narraguinnep Reservoir, southwestern Colorado, USA

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Goldstein, Harland L.; Reynolds, Richard L.

    2014-01-01

    Narraguinnep Reservoir in southwestern Colorado is one of several water bodies in Colorado with a mercury (Hg) advisory as Hg in fish tissue exceed the 0.3 μg/g guideline to protect human health recommended by the State of Colorado. Concentrations of Hg and methyl-Hg were measured in reservoir bottom sediment and pore water extracted from this sediment. Rates of Hg methylation and methyl-Hg demethylation were also measured in reservoir bottom sediment. The objective of this study was to evaluate potential sources of Hg in the region and evaluate the potential of reservoir sediment to generate methyl-Hg, a human neurotoxin and the dominant form of Hg in fish. Concentrations of Hg (ranged from 1.1 to 5.8 ng/L, n = 15) and methyl-Hg (ranged from 0.05 to 0.14 ng/L, n = 15) in pore water generally were highest at the sediment/water interface, and overall, Hg correlated with methyl-Hg in pore water (R2 = 0.60, p = 0007, n = 15). Net Hg methylation flux in the top 3 cm of reservoir bottom sediment varied from 0.08 to 0.56 ng/m2/day (mean = 0.28 ng/m2/day, n = 5), which corresponded to an overall methyl-Hg production for the entire reservoir of 0.53 g/year. No significant point sources of Hg contamination are known to this reservoir or its supply waters, although several coal-fired power plants in the region emit Hg-bearing particulates. Narraguinnep Reservoir is located about 80 km downwind from two of the largest power plants, which together emit about 950 kg-Hg/year. Magnetic minerals separated from reservoir sediment contained spherical magnetite-bearing particles characteristic of coal-fired electric power plant fly ash. The presence of fly-ash magnetite in post-1970 sediment from Narraguinnep Reservoir indicates that the likely source of Hg to the catchment basin for this reservoir has been from airborne emissions from power plants, most of which began operation in the late-1960s and early 1970s in this region.

  16. VIEW LOOKING EAST. THE NORTH WALL OF SETTLING RESERVOIR NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING EAST. THE NORTH WALL OF SETTLING RESERVOIR NO. 3 IS AT THE LEFT. THE BLAISDELL SLOW SAND FILTER WASHING MACHINE IS SEEN AT THE UPPER LEFT AND SETTLING RESERVOIR NO. 4 IS SEEN BEYOND THE EAST WALL OF SETTLING RESERVOIR NO. 3. - Yuma Main Street Water Treatment Plant, Jones Street at foot of Main Street, Yuma, Yuma County, AZ

  17. The application of ANN for zone identification in a complex reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A.C.; Molnar, D.; Aminian, K.

    1995-12-31

    Reservoir characterization plays a critical role in appraising the economic success of reservoir management and development methods. Nearly all reservoirs show some degree of heterogeneity, which invariably impacts production. As a result, the production performance of a complex reservoir cannot be realistically predicted without accurate reservoir description. Characterization of a heterogeneous reservoir is a complex problem. The difficulty stems from the fact that sufficient data to accurately predict the distribution of the formation attributes are not usually available. Generally the geophysical logs are available from a considerable number of wells in the reservoir. Therefore, a methodology for reservoir description andmore » characterization utilizing only well logs data represents a significant technical as well as economic advantage. One of the key issues in the description and characterization of heterogeneous formations is the distribution of various zones and their properties. In this study, several artificial neural networks (ANN) were successfully designed and developed for zone identification in a heterogeneous formation from geophysical well logs. Granny Creek Field in West Virginia has been selected as the study area in this paper. This field has produced oil from Big Injun Formation since the early 1900`s. The water flooding operations were initiated in the 1970`s and are currently still in progress. Well log data on a substantial number of wells in this reservoir were available and were collected. Core analysis results were also available from a few wells. The log data from 3 wells along with the various zone definitions were utilized to train the networks for zone recognition. The data from 2 other wells with previously determined zones, based on the core and log data, were then utilized to verify the developed networks predictions. The results indicated that ANN can be a useful tool for accurately identifying the zones in complex reservoirs.« less

  18. The Methods for Connectivity Judgment on Reservoir Layers

    NASA Astrophysics Data System (ADS)

    Liang, Xiuguang; Dong, Qiang; Liu, Yunyang

    2017-12-01

    Determining reservoir layer connectivity is the base for an oil field development. The work should be done in the first time. It affects the effects of the following works. However, for some oil field with complex reservoir layers, the study hasn’t fully been done, that causes the oil production rate decreases rapidly and bad oil field development. On the other hand, the simpler the oil field is, the earlier the development should be, thus increasing oil production becomes more and more difficult today, lots of detail works should be done for a complex oil field, the study of reservoir layer connectivity is very important in it.

  19. Examining Reservoir Influences on Fluvial Sediment Supply to Estuaries and Coastal Oceans with Sediment Geochronologies: Example from Conowingo Reservoir (Upper Chesapeake Bay, USA)

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Russ, E.

    2016-12-01

    The flux of fluvial sediment to estuaries and coastal oceans is often interrupted by natural and anthropogenic influences. Here, we focus on river dams, which alter the connection between rivers and their receiving basins via sediment sequestration in their reservoirs. Sediments are effectively trapped until river discharge is high enough to create flow velocities capable of resuspending sediment. Sediment resuspension often varies within the reservoir, driven by morphological features such as channels and islands. Thus, sediment residence times in the reservoir are often highly variable in space and time. This study focuses on reading the sedimentary record in one such system - the reservoir upstream of Conowingo Dam, built in the late 1920s and the last and largest dam on the Susquehanna River (Maryland, USA) before it enters Chesapeake Bay. This study establishes geochronologies of reservoir sedimentation on seasonal to decadal time scales with a variety of techniques (e.g., natural and anthropogenic radioisotopes (7Be, 210Pb, 137Cs), coal from mining in the watershed) to interpret observed down-core sedimentary structures and characteristics (grain size, organic content). These observations reveal spatial and temporal patterns of sediment deposition and/or erosion. Placed within the broader context of reservoir geomorphology, these results can improve predictions of sediment supply to downstream environments, in this case Chesapeake Bay, where it can impact water quality and/or benthic organisms.

  20. SNL/SRNL Joint Project on degradation of mechanical properties in structural metals and welds for GTS reservoirs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronevich, Joseph Allen; Balch, Dorian K.; San Marchi, Christopher W.

    2015-12-01

    This project was intended to enable SNL-CA to produce appropriate specimens of relevant stainless steels for testing and perform baseline testing of weld heat-affected zone and weld fusion zone. One of the key deliverables in this project was to establish a procedure for fracture testing stainless steel weld fusion zone and heat affected zones that were pre-charged with hydrogen. Following the establishment of the procedure, a round robin was planned between SNL-CA and SRNL to ensure testing consistency between laboratories. SNL-CA and SRNL would then develop a comprehensive test plan, which would include tritium exposures of several years at SRNLmore » on samples delivered by SNL-CA. Testing would follow the procedures developed at SNL-CA. SRNL will also purchase tritium charging vessels to perform the tritium exposures. Although comprehensive understanding of isotope-induced fracture in GTS reservoir materials is a several year effort, the FY15 work would enabled us to jump-start the tests and initiate long-term tritium exposures to aid comprehensive future investigations. Development of a procedure and laboratory testing consistency between SNL-CA and SNRL ensures reliability in results as future evaluations are performed on aluminum alloys and potentially additively-manufactured components.« less

  1. Storage Capacity and Sedimentation of Loch Lomond Reservoir, Santa Cruz, California, 1998

    USGS Publications Warehouse

    McPherson, Kelly R.; Harmon, Jerry G.

    2000-01-01

    In 1998, a bathymetric survey was done to determine the storage capacity and the loss of capacity owing to sedimentation of Loch Lomond Reservoir in Santa Cruz County, California. Results of the survey indicate that the maximum capacity of the reservoir is 8,991 acre-feet in November 1998. The results of previous investigations indicate that storage capacity of the reservoir is less than 8,991 acre-feet. The storage capacity determined from those investigations probably were underestimated because of limitations of the methods and the equipment used. The volume of sedimentation in a reservoir is considered equal to the decrease in storage capacity. To determine sedimentation in Loch Lomond Reservoir, change in storage capacity was estimated for an upstream reach of the reservoir. The change in storage capacity was determined by comparing a 1998 thalweg profile (valley floor) of the reservoir with thalweg profiles from previous investigations; results of the comparison indicate that sedimentation is occurring in the upstream reach. Cross sections for 1998 and 1982 were compared to determine the magnitude of sedimentation in the upstream reach of the reservoir. Results of the comparison, which were determined from changes in the cross-sectional areas, indicate that the capacity of the reservoir decreased by 55 acre-feet.

  2. Poor readers' retrieval mechanism: efficient access is not dependent on reading skill

    PubMed Central

    Johns, Clinton L.; Matsuki, Kazunaga; Van Dyke, Julie A.

    2015-01-01

    A substantial body of evidence points to a cue-based direct-access retrieval mechanism as a crucial component of skilled adult reading. We report two experiments aimed at examining whether poor readers are able to make use of the same retrieval mechanism. This is significant in light of findings that poor readers have difficulty retrieving linguistic information (e.g., Perfetti, 1985). Our experiments are based on a previous demonstration of direct-access retrieval in language processing, presented in McElree et al. (2003). Experiment 1 replicates the original result using an auditory implementation of the Speed-Accuracy Tradeoff (SAT) method. This finding represents a significant methodological advance, as it opens up the possibility of exploring retrieval speeds in non-reading populations. Experiment 2 provides evidence that poor readers do use a direct-access retrieval mechanism during listening comprehension, despite overall poorer accuracy and slower retrieval speeds relative to skilled readers. The findings are discussed with respect to hypotheses about the source of poor reading comprehension. PMID:26528212

  3. Liquid oil production from shale gas condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, James J.

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  4. Monitoring Reservoir Storage in South Asia from Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Gao, H.; Naz, B.

    2013-12-01

    Realtime reservoir storage information is essential for accurate flood monitoring and prediction in South Asia, where the fatality rate (by area) due to floods is among the highest in the world. However, South Asia is dominated by international river basins where communications among neighboring countries about reservoir storage and management are extremely limited. In this study, we use a suite of NASA satellite observations to achieve high quality estimation of reservoir storage and storage variations at near realtime in South Asia. The monitoring approach employs vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day 250 m MOD13Q1 product and the surface elevation data from the Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat). This approach contains four steps: 1) identifying the reservoirs with ICESat GLAS overpasses and extracting the elevation data for these locations; 2) using the K-means method for water classification from MODIS andapplying a novel post-classification algorithm to enhance water area estimation accuracy; 3) deriving the relationship between the MODIS water surface area and the ICESat elevation; and 4) estimating the storage of reservoirs over time based on the elevation-area relationship and the MODIS water area time series. For evaluation purposes, we compared the satellite-based reservoir storage with gauge observations for 16 reservoirs in South Asia. The storage estimates were highly correlated with observations (R = 0.92 to 0.98), with values for the normalized root mean square error (NRMSE) ranging from 8.7% to 25.2%. Using this approach, storage and storage variations were estimated for 16 South Asia reservoirs from 2000 to 2012.

  5. Classical electrical and hydraulic Windkessel models validate physiological calculations of Windkessel (reservoir) pressure.

    PubMed

    Sridharan, Sarup S; Burrowes, Lindsay M; Bouwmeester, J Christopher; Wang, Jiun-Jr; Shrive, Nigel G; Tyberg, John V

    2012-05-01

    Our "reservoir-wave approach" to arterial hemodynamics holds that measured arterial pressure should be considered to be the sum of a volume-related pressure (i.e., reservoir pressure, P(reservoir)) and a wave-related pressure (P(excess)). Because some have questioned whether P(reservoir) (and, by extension, P(excess)) is a real component of measured physiological pressure, it was important to demonstrate that P(reservoir) is implicit in Westerhof's classical electrical and hydraulic models of the 3-element Windkessel. To test the validity of our P(reservoir) determinations, we studied a freeware simulation of the electrical model and a benchtop recreation of the hydraulic model, respectively, measuring the voltage and the pressure distal to the proximal resistance. These measurements were then compared with P(reservoir), as calculated from physiological data. Thus, the first objective of this study was to demonstrate that respective voltage and pressure changes could be measured that were similar to calculated physiological values of P(reservoir). The second objective was to confirm previous predictions with respect to the specific effects of systematically altering proximal resistance, distal resistance, and capacitance. The results of this study validate P(reservoir) and, thus, the reservoir-wave approach.

  6. Potential implementation of reservoir computing models based on magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Bourianoff, George; Pinna, Daniele; Sitte, Matthias; Everschor-Sitte, Karin

    2018-05-01

    Reservoir Computing is a type of recursive neural network commonly used for recognizing and predicting spatio-temporal events relying on a complex hierarchy of nested feedback loops to generate a memory functionality. The Reservoir Computing paradigm does not require any knowledge of the reservoir topology or node weights for training purposes and can therefore utilize naturally existing networks formed by a wide variety of physical processes. Most efforts to implement reservoir computing prior to this have focused on utilizing memristor techniques to implement recursive neural networks. This paper examines the potential of magnetic skyrmion fabrics and the complex current patterns which form in them as an attractive physical instantiation for Reservoir Computing. We argue that their nonlinear dynamical interplay resulting from anisotropic magnetoresistance and spin-torque effects allows for an effective and energy efficient nonlinear processing of spatial temporal events with the aim of event recognition and prediction.

  7. Reconnaissance of water quality of Pueblo Reservoir, Colorado: May through December 1985

    USGS Publications Warehouse

    Edelmann, Patrick

    1989-01-01

    Pueblo Reservoir is the farthest upstream, main-stream reservoir constructed on the Arkansas River and is located in Pueblo County approximately 6 miles upstream from the city of Pueblo, Colorado. During the 1985 sampling period, the reservoir was stratified, and underflow from the Arkansas River occurred that resulted in stratification with respect to specific conductance. Concentrations of dissolved solids decreased markedly below the thermocline during June. Later in the summer, dissolved-solids concentrations increased substantially below the thermocline. Substantial depletion of dissolved oxygen occurred near the bottom of the reservoir. The dissolved oxygen minimum of 0.1 mg/L occurred during August near the reservoir bottom at transect 7 (near the dam). The average total-inorganic-nitrogen concentration near the reservoir surface was about 0.2 mg/L; near the reservoir bottom, the average concentration was about 0.3 mg/L. Concentrations of total phosphorus ranged from less than 0.01 to 0.05 mg/L near the reservoir surface, and from less than 0.01 to 0.22 mg/L near the reservoir bottom. At transect 2 (about 7 miles upstream from the dam) near the bottom of the reservoir, concentrations of total iron exceeded aquatic-life standards, and dissolved-manganese concentrations exceeded standards for public water supply. Diatoms, green algae, blue-green algae, and cryptomonads comprised the majority of phytoplankton in Pueblo Reservoir in 1985. The maximum average of 41,000 cells/ml occurred in July. Blue-green algae dominated from June to September; diatoms were the dominant group of algae in October. The average concentrations of phytoplankton decreased from July to October. (USGS)

  8. Prediction of the fate and transport processes of atrazine in a reservoir.

    PubMed

    Chung, Se-Woong; Gu, Roy R

    2009-07-01

    The fate and transport processes of a toxic chemical such as atrazine, an herbicide, in a reservoir are significantly influenced by hydrodynamic regimes of the reservoir. The two-dimensional (2D) laterally-integrated hydrodynamics and mass transport model, CE-QUAL-W2, was enhanced by incorporating a submodel for toxic contaminants and applied to Saylorville Reservoir, Iowa. The submodel describes the physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. The simulation results from the enhanced 2D reservoir model were validated by measured temperatures and atrazine concentrations in the reservoir. Although a strong thermal stratification was not identified from both observed and predicted water temperatures, the spatial variation of atrazine concentrations was largely affected by seasonal flow circulation patterns in the reservoir. In particular, the results showed the effect of flow circulation on spatial distribution of atrazine during summer months as the river flow formed an underflow within the reservoir and resulted in greater concentrations near the surface of the reservoir. Atrazine concentrations in the reservoir peaked around the end of May and early June. A good agreement between predicted and observed times and magnitudes of peak concentrations was obtained. The use of time-variable decay rates of atrazine led to more accurate prediction of atrazine concentrations, while the use of a constant half-life (60 days) over the entire period resulted in a 40% overestimation of peak concentrations. The results provide a better understanding of the fate and transport of atrazine in the reservoir and information useful in the development of reservoir operation strategies with respect to timing, amount, and depth of withdrawal.

  9. Access to Orphan Drugs: A Comprehensive Review of Legislations, Regulations and Policies in 35 Countries.

    PubMed

    Gammie, Todd; Lu, Christine Y; Babar, Zaheer Ud-Din

    2015-01-01

    To review existing regulations and policies utilised by countries to enable patient access to orphan drugs. A review of the literature (1998 to 2014) was performed to identify relevant, peer-reviewed articles. Using content analysis, we synthesised regulations and policies for access to orphan drugs by type and by country. Fifty seven articles and 35 countries were included in this review. Six broad categories of regulation and policy instruments were identified: national orphan drug policies, orphan drug designation, marketing authorization, incentives, marketing exclusivity, and pricing and reimbursement. The availability of orphan drugs depends on individual country's legislation and regulations including national orphan drug policies, orphan drug designation, marketing authorization, marketing exclusivity and incentives such as tax credits to ensure research, development and marketing. The majority of countries (27/35) had in place orphan drug legislation. Access to orphan drugs depends on individual country's pricing and reimbursement policies, which varied widely between countries. High prices and insufficient evidence often limit orphan drugs from meeting the traditional health technology assessment criteria, especially cost-effectiveness, which may influence access. Overall many countries have implemented a combination of legislations, regulations and policies for orphan drugs in the last two decades. While these may enable the availability and access to orphan drugs, there are critical differences between countries in terms of range and types of legislations, regulations and policies implemented. Importantly, China and India, two of the largest countries by population size, both lack national legislation for orphan medicines and rare diseases, which could have substantial negative impacts on their patient populations with rare diseases.

  10. Suspended-sediment transport and storage: A demonstration of acoustic methods in the evaluation of reservoir management strategies for a small water-supply reservoir in western Colorado

    USGS Publications Warehouse

    Williams, Cory A.; Richards, Rodney J.; Collins, Kent L.

    2015-01-01

    The U.S. Bureau of Reclamation (USBR) and local stakeholder groups are evaluating reservoir-management strategies within Paonia Reservoir. This small reservoir fills to capacity each spring and requires approximately half of the snowmelt-runoff volume from its sediment-laden source waters, Muddy Creek. The U.S. Geological Survey is currently conducting high-resolution (15-minute data-recording interval) sediment monitoring to characterize incoming and outgoing sediment flux during reservoir operations at two sites on Muddy Creek. The high-resolution monitoring is being used to establish current rates of reservoir sedimentation, support USBR sediment transport and storage models, and assess the viability of water-storage recovery in Paonia Reservoir. These sites are equipped with in situ, single-frequency, side-looking acoustic Doppler current meters in conjunction with turbidity sensors to monitor sediment flux. This project serves as a demonstration of the capability of using surrogate techniques to predict suspended-sediment concentrations in small streams (less than 20 meters in width and 2 meters in depth). These two sites provide the ability to report near real-time suspended-sediment concentrations through the U.S. Geological Survey National Water Information System (NWIS) web interface and National Real-Time Water Quality websites (NRTWQ) to aid in reservoir operations and assessments.

  11. An Investigation of the Effects of Reader Characteristics on Reading Comprehension Of a General Chemistry Text

    NASA Astrophysics Data System (ADS)

    Neiles, Kelly Y.

    There is great concern in the scientific community that students in the United States, when compared with other countries, are falling behind in their scientific achievement. Increasing students' reading comprehension of scientific text may be one of the components involved in students' science achievement. To investigate students' reading comprehension this quantitative study examined the effects of different reader characteristics, namely, students' logical reasoning ability, factual chemistry knowledge, working memory capacity, and schema of the chemistry concepts, on reading comprehension of a chemistry text. Students' reading comprehension was measured through their ability to encode the text, access the meanings of words (lexical access), make bridging and elaborative inferences, and integrate the text with their existing schemas to make a lasting mental representation of the text (situational model). Students completed a series of tasks that measured the reader characteristic and reading comprehension variables. Some of the variables were measured using new technologies and software to investigate different cognitive processes. These technologies and software included eye tracking to investigate students' lexical accessing and a Pathfinder program to investigate students' schema of the chemistry concepts. The results from this study were analyzed using canonical correlation and regression analysis. The canonical correlation analysis allows for the ten variables described previously to be included in one multivariate analysis. Results indicate that the relationship between the reader characteristic variables and the reading comprehension variables is significant. The resulting canonical function accounts for a greater amount of variance in students' responses then any individual variable. Regression analysis was used to further investigate which reader characteristic variables accounted for the differences in students' responses for each reading comprehension

  12. Numerical Simulation of Two Dimensional Flows in Yazidang Reservoir

    NASA Astrophysics Data System (ADS)

    Huang, Lingxiao; Liu, Libo; Sun, Xuehong; Zheng, Lanxiang; Jing, Hefang; Zhang, Xuande; Li, Chunguang

    2018-01-01

    This paper studied the problem of water flow in the Yazid Ang reservoir. It built 2-D RNG turbulent model, rated the boundary conditions, used the finite volume method to discrete equations and divided the grid by the advancing-front method. It simulated the two conditions of reservoir flow field, compared the average vertical velocity of the simulated value and the measured value nearby the water inlet and the water intake. The results showed that the mathematical model could be applied to the similar industrial water reservoir.

  13. Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: Key to understanding reservoir performance and environmental issues

    USGS Publications Warehouse

    Pashin, J.C.

    2007-01-01

    The Black Warrior Basin of the southeastern United States hosts one of the world's most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na-HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na-Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases. Water produced from the fresh-water plumes may be disposed safely at the surface, whereas underground injection has been used locally to dispose of highly saline water. Wells in areas that had normal hydrostatic reservoir pressure prior to development tend to produce large volumes of water and may take up to 4 a to reach peak gas production. In contrast, wells drilled in naturally underpressured areas distal to the fresh-water plumes typically produce little water and achieve peak gas rates during the first year of production. Environmental debate has focused largely on issues associated with hydrologic communication between deep reservoir coal beds and shallow aquifers. In the coalbed methane fields of the Black Warrior Basin, a broad range of geologic evidence suggests that flow is effectively confined within coal and that the thick intervals of marine shale separating coal zones limit cross-formational flow. ?? 2007 Elsevier Ltd. All rights reserved.

  14. 43 CFR 418.22 - Future adjustments to Lahontan Reservoir storage targets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RECLAMATION PROJECT, NEVADA Operations and Management § 418.22 Future adjustments to Lahontan Reservoir storage targets. (a) The Lahontan Reservoir storage targets must be adjusted to accommodate changes in... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Future adjustments to Lahontan Reservoir...

  15. 43 CFR 418.22 - Future adjustments to Lahontan Reservoir storage targets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... RECLAMATION PROJECT, NEVADA Operations and Management § 418.22 Future adjustments to Lahontan Reservoir storage targets. (a) The Lahontan Reservoir storage targets must be adjusted to accommodate changes in... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Future adjustments to Lahontan Reservoir...

  16. Global Assessment of Exploitable Surface Reservoir Storage under Climate Change

    NASA Astrophysics Data System (ADS)

    Liu, L.; Parkinson, S.; Gidden, M.; Byers, E.; Satoh, Y.; Riahi, K.

    2016-12-01

    Surface water reservoirs provide us with reliable water supply systems, hydropower generation, flood control, and recreation services. Reliable reservoirs can be robust measures for water security and can help smooth out challenging seasonal variability of river flows. Yet, reservoirs also cause flow fragmentation in rivers and can lead to flooding of upstream areas, thereby displacing existing land-uses and ecosystems. The anticipated population growth, land use and climate change in many regions globally suggest a critical need to assess the potential for appropriate reservoir capacity that can balance rising demands with long-term water security. In this research, we assessed exploitable reservoir potential under climate change and human development constraints by deriving storage-yield relationships for 235 river basins globally. The storage-yield relationships map the amount of storage capacity required to meet a given water demand based on a 30-year inflow sequence. Runoff data is simulated with an ensemble of Global Hydrological Models (GHMs) for each of five bias-corrected general circulation models (GCMs) under four climate change pathways. These data are used to define future 30-year inflows in each river basin for time period between 2010 and 2080. The calculated capacity is then combined with geographical information of environmental and human development exclusion zones to further limit the storage capacity expansion potential in each basin. We investigated the reliability of reservoir potentials across different climate change scenarios and Shared Socioeconomic Pathways (SSPs) to identify river basins where reservoir expansion will be particularly challenging. Preliminary results suggest large disparities in reservoir potential across basins: some basins have already approached exploitable reserves, while some others display abundant potential. Exclusions zones pose significant impact on the amount of actual exploitable storage and firm yields

  17. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover

  18. Enhancement of seismic monitoring in hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Götz

    2017-04-01

    Hydraulic Fracturing (HF) is widely considered as one of the most significant enablers of the successful exploitation of hydrocarbons in North America. Massive usage of HF is currently adopted to increase the permeability in shale and tight-sand deep reservoirs, despite the economical downturn. The exploitation success is less due to the subsurface geology, but in technology that improves exploration, production, and decision-making. This includes monitoring of the reservoir, which is vital. Indeed, the general mindset in the industry is to keep enhancing seismic monitoring. It allows understanding and tracking processes in hydrocarbon reservoirs, which serves two purposes, a) to optimize recovery, and b) to help minimize environmental impact. This raises the question of how monitoring, and especially seismic techniques could be more efficient. There is a pressing demand from seismic service industry to evolve quickly and to meet the oil-gas industry's changing needs. Nonetheless, the innovative monitoring techniques, to achieve the purpose, must enhance the characterization or the visualization of a superior-quality images of the reservoir. We discuss recent applications of seismic monitoring in hydrocarbon reservoirs, detailing potential enhancement and eventual limitations. The aim is to test the validity of these seismic monitoring techniques, qualitatively discuss their potential application to energy fields that are not only limited to HF. Outcomes from our investigation may benefit operators and regulators in case of future massive HF applications in Europe, as well. This work is part of the FracRisk consortium (www.fracrisk.eu), funded by the Horizon2020 research programme, whose aims is to help minimize the environmental footprint of the shale-gas exploration and exploitation.

  19. Marketing of surplus water from Federal reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, J.M.

    1978-01-01

    Main-stem reservoirs were constructed and agricultural production flourished to the point of crop surpluses in the Missouri River basin. Consequently, the irrigation that was promised for the upper-basin states was not pursued as originally planned. The result was unappropriated surplus water available for commitments to future use. In recent years, when the nation's need for increased energy production became a reality, attention began focusing on the actual commitments of those surpluses. Conflicts between water for energy and water for agriculture were inevitable. On February 24, 1975 Secretaries of the Army and Interior entered into a ''Memorandum of Understanding'' concerning themore » marketing of surplus water from six reservoirs on the main stem of the Missouri River. The memorandum was executed in order to expedite plans for using large amounts of coal in the Dakotas, Montana, and Wyoming for developing new energy supplies. The purpose of the memorandum was to permit the possible execution of industrial-water-service contracts of approximately one million acre feet of main-stem storage water. This Comment examines two initial questions raised by the Federal proposals to sell impounded reservoir water to industrial users. First, what are the rights or powers of the states to control water within their borders, and second, what legal authority, constitutional, legislative, or otherwise, do the Departments of the Interior and Army have for industrial water marketing from Federal reservoirs. Other collateral yet significant issues are considered as well. One fact concluded is that the constitutional authority of the Federal government to control the disposition of water in Federal reservoirs is almost unlimited. (MCW)« less

  20. Integrated reservoir characterization and flow simulation for well targeting and reservoir management, Iagifu-Hedinia field, Southern Highlands Province, Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, S.P.; Livingston, J.E.; Fitzmorris, R.E.

    Infill drilling based on integrated reservoir characterization and flow simulation is increasing recoverable reserves by 20 MMBO, in lagifu-Hedinia Field (IHF). Stratigraphically-zoned models are input to window and full-field flow simulations, and results of the flow simulations target deviated and horizontal wells. Logging and pressure surveys facilitate detailed reservoir management. Flooding surfaces are the dominant control on differential depletion within and between reservoirs. The primary reservoir is the basal Cretaceous Toro Sandstone. Within the IHF, Toro is a 100 m quartz sandstone composed of stacked, coarsening-upward parasequences within a wave-dominated deltaic complex. Flooding surfaces are used to form a hydraulicmore » zonation. The zonation is refined using discontinuities in RIFT pressure gradients and logs from development wells. For flow simulation, models use 3D geostatistical techniques. First, variograms defining spatial correlation are developed. The variograms are used to construct 3D porosity and permeability models which reflect the stratigraphic facies models. Structure models are built using dipmeter, biostratigraphic, and surface data. Deviated wells often cross axial surfaces and geometry is predicted from dip domain and SCAT. Faults are identified using pressure transient data and dipmeter. The Toro reservoir is subnormally pressured and fluid contacts are hydrodynamically tilted. The hydrodynamic flow and tilted contacts are modeled by flow simulation and constrained by maps of the potentiometric surface.« less