Science.gov

Sample records for access memory cells

  1. Computer memory access technique

    NASA Technical Reports Server (NTRS)

    Zottarelli, L. J.

    1967-01-01

    Computer memory access commutator and steering gate configuration produces bipolar current pulses while still employing only the diodes and magnetic cores of the classic commutator, thereby appreciably reducing the complexity of the memory assembly.

  2. Ferroelectric random access memories.

    PubMed

    Ishiwara, Hiroshi

    2012-10-01

    Ferroelectric random access memory (FeRAM) is a nonvolatile memory, in which data are stored using hysteretic P-E (polarization vs. electric field) characteristics in a ferroelectric film. In this review, history and characteristics of FeRAMs are first introduced. It is described that there are two types of FeRAMs, capacitor-type and FET-type, and that only the capacitor-type FeRAM is now commercially available. In chapter 2, properties of ferroelectric films are discussed from a viewpoint of FeRAM application, in which particular attention is paid to those of Pb(Zr,Ti)O3, SrBi2Ta2O9, and BiFeO3. Then, cell structures and operation principle of the capacitor-type FeRAMs are discussed in chapter 3. It is described that the stacked technology of ferroelectric capacitors and development of new materials with large remanent polarization are important for fabricating high-density memories. Finally, in chapter 4, the optimized gate structure in ferroelectric-gate field-effect transistors is discussed and experimental results showing excellent data retention characteristics are presented. PMID:23421123

  3. Multilevel Cell Storage and Resistance Variability in Resistive Random Access Memory

    NASA Astrophysics Data System (ADS)

    Pantelis, D. I.; Karakizis, P. N.; Dragatogiannis, D. A.; Charitidis, C. A.

    2016-06-01

    Multilevel per cell (MLC) storage in resistive random access memory (ReRAM) is attractive in achieving high-density and low-cost memory and will be required in future. In this chapter, MLC storage and resistance variability and reliability of multilevel in ReRAM are discussed. Different MLC operation schemes with their physical mechanisms and a comprehensive analysis of resistance variability have been provided. Various factors that can induce variability and their effect on the resistance margin between the multiple resistance levels are assessed. The reliability characteristics and the impact on MLC storage have also been assessed.

  4. Nonvolatile random access memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)

    1994-01-01

    A nonvolatile magnetic random access memory can be achieved by an array of magnet-Hall effect (M-H) elements. The storage function is realized with a rectangular thin-film ferromagnetic material having an in-plane, uniaxial anisotropy and inplane bipolar remanent magnetization states. The thin-film magnetic element is magnetized by a local applied field, whose direction is used to form either a 0 or 1 state. The element remains in the 0 or 1 state until a switching field is applied to change its state. The stored information is detcted by a Hall-effect sensor which senses the fringing field from the magnetic storage element. The circuit design for addressing each cell includes transistor switches for providing a current of selected polarity to store a binary digit through a separate conductor overlying the magnetic element of the cell. To read out a stored binary digit, transistor switches are employed to provide a current through a row of Hall-effect sensors connected in series and enabling a differential voltage amplifier connected to all Hall-effect sensors of a column in series. To avoid read-out voltage errors due to shunt currents through resistive loads of the Hall-effect sensors of other cells in the same column, at least one transistor switch is provided between every pair of adjacent cells in every row which are not turned on except in the row of the selected cell.

  5. Extremely small test cell structure for resistive random access memory element with removable bottom electrode

    SciTech Connect

    Koh, Sang-Gyu; Kishida, Satoru; Kinoshita, Kentaro

    2014-02-24

    We established a method of preparing an extremely small memory cell by fabricating a resistive random access memory (ReRAM) structure on the tip of a cantilever of an atomic force microscope. This structure has the high robustness against the drift of the cantilever, and the effective cell size was estimated to be less than 10 nm in diameter due to the electric field concentration at the tip of the cantilever, which was confirmed using electric field simulation. The proposed structure, which has a removable bottom electrode, enables not only the preparation of a tiny ReRAM structure but also the performance of unique experiments, by making the most of its high robustness against the drift of the cantilever.

  6. Atomic memory access hardware implementations

    SciTech Connect

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  7. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    NASA Astrophysics Data System (ADS)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  8. Simulation study on heat conduction of a nanoscale phase-change random access memory cell.

    PubMed

    Kim, Junho; Song, Ki-Bong

    2006-11-01

    We have investigated heat transfer characteristics of a nano-scale phase-change random access memory (PRAM) cell using finite element method (FEM) simulation. Our PRAM cell is based on ternary chalcogenide alloy, Ge2Sb2Te5 (GST), which is used as a recording layer. For contact area of 100 x 100 nm2, simulations of crystallization and amorphization processes were carried out. Physical quantities such as electric conductivity, thermal conductivity, and specific heat were treated as temperature-dependent parameters. Through many simulations, it is concluded that one can reduce set current by decreasing both electric conductivities of amorphous GST and crystalline GST, and in addition to these conditions by decreasing electric conductivity of molten GST one can also reduce reset current significantly. PMID:17252792

  9. Is random access memory random?

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Most software is contructed on the assumption that the programs and data are stored in random access memory (RAM). Physical limitations on the relative speeds of processor and memory elements lead to a variety of memory organizations that match processor addressing rate with memory service rate. These include interleaved and cached memory. A very high fraction of a processor's address requests can be satified from the cache without reference to the main memory. The cache requests information from main memory in blocks that can be transferred at the full memory speed. Programmers who organize algorithms for locality can realize the highest performance from these computers.

  10. Remote direct memory access

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  11. Magnetic Analog Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Wu, Jiin-Chuan; Stadler, Henry L.

    1991-01-01

    Proposed integrated, solid-state, analog random-access memory base on principle of magnetic writing and magnetoresistive reading. Current in writing conductor magnetizes storage layer. Remanent magnetization in storage layer penetrates readout layer and detected by magnetoresistive effect or Hall effect. Memory cells are part of integrated circuit including associated reading and writing transistors. Intended to provide high storage density and rapid access, nonvolatile, consumes little power, and relatively invulnerable to ionizing radiation.

  12. Garnet Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Random-access memory (RAM) devices of proposed type exploit magneto-optical properties of magnetic garnets exhibiting perpendicular anisotropy. Magnetic writing and optical readout used. Provides nonvolatile storage and resists damage by ionizing radiation. Because of basic architecture and pinout requirements, most likely useful as small-capacity memory devices.

  13. Plated wire random access memories

    NASA Technical Reports Server (NTRS)

    Gouldin, L. D.

    1975-01-01

    A program was conducted to construct 4096-work by 18-bit random access, NDRO-plated wire memory units. The memory units were subjected to comprehensive functional and environmental tests at the end-item level to verify comformance with the specified requirements. A technical description of the unit is given, along with acceptance test data sheets.

  14. Flexible conductive-bridging random-access-memory cell vertically stacked with top Ag electrode, PEO, PVK, and bottom Pt electrode.

    PubMed

    Seung, Hyun-Min; Kwon, Kyoung-Cheol; Lee, Gon-Sub; Park, Jea-Gun

    2014-10-31

    Flexible conductive-bridging random-access-memory (RAM) cells were fabricated with a cross-bar memory cell stacked with a top Ag electrode, conductive polymer (poly(n-vinylcarbazole): PVK), electrolyte (polyethylene oxide: PEO), bottom Pt electrode, and flexible substrate (polyethersulfone: PES), exhibiting the bipolar switching behavior of resistive random access memory (ReRAM). The cell also exhibited bending-fatigue-free nonvolatile memory characteristics: i.e., a set voltage of 1.0 V, a reset voltage of -1.6 V, retention time of >1 × 10(5) s with a memory margin of 9.2 × 10(5), program/erase endurance cycles of >10(2) with a memory margin of 8.4 × 10(5), and bending-fatigue-free cycles of ∼1 × 10(3) with a memory margin (I(on)/I(off)) of 3.3 × 10(5). PMID:25297517

  15. Effect of embedded metal nanocrystals on the resistive switching characteristics in NiN-based resistive random access memory cells

    SciTech Connect

    Yun, Min Ju; Kim, Hee-Dong; Man Hong, Seok; Hyun Park, Ju; Su Jeon, Dong; Geun Kim, Tae

    2014-03-07

    The metal nanocrystals (NCs) embedded-NiN-based resistive random access memory cells are demonstrated using several metal NCs (i.e., Pt, Ni, and Ti) with different physical parameters in order to investigate the metal NC's dependence on resistive switching (RS) characteristics. First, depending on the electronegativity of metal, the size of metal NCs is determined and this affects the operating current of memory cells. If metal NCs with high electronegativity are incorporated, the size of the NCs is reduced; hence, the operating current is reduced owing to the reduced density of the electric field around the metal NCs. Second, the potential wells are formed by the difference of work function between the metal NCs and active layer, and the barrier height of the potential wells affects the level of operating voltage as well as the conduction mechanism of metal NCs embedded memory cells. Therefore, by understanding these correlations between the active layer and embedded metal NCs, we can optimize the RS properties of metal NCs embedded memory cells as well as predict their conduction mechanisms.

  16. Memory availability and referential access

    PubMed Central

    Johns, Clinton L.; Gordon, Peter C.; Long, Debra L.; Swaab, Tamara Y.

    2013-01-01

    Most theories of coreference specify linguistic factors that modulate antecedent accessibility in memory; however, whether non-linguistic factors also affect coreferential access is unknown. Here we examined the impact of a non-linguistic generation task (letter transposition) on the repeated-name penalty, a processing difficulty observed when coreferential repeated names refer to syntactically prominent (and thus more accessible) antecedents. In Experiment 1, generation improved online (event-related potentials) and offline (recognition memory) accessibility of names in word lists. In Experiment 2, we manipulated generation and syntactic prominence of antecedent names in sentences; both improved online and offline accessibility, but only syntactic prominence elicited a repeated-name penalty. Our results have three important implications: first, the form of a referential expression interacts with an antecedent’s status in the discourse model during coreference; second, availability in memory and referential accessibility are separable; and finally, theories of coreference must better integrate known properties of the human memory system. PMID:24443621

  17. Asymmetric dual-gate-structured one-transistor dynamic random access memory cells for retention characteristics improvement

    NASA Astrophysics Data System (ADS)

    Kim, Hyungjin; Lee, Jong-Ho; Park, Byung-Gook

    2016-08-01

    One of the major concerns of one-transistor dynamic random access memory (1T-DRAM) is poor retention time. In this letter, a 1T-DRAM cell with two separated asymmetric gates was fabricated and evaluated to improve sensing margin and retention characteristics. It was observed that significantly enhanced sensing margin and retention time over 1 s were obtained using a negatively biased second gate and trapped electrons in the nitride layer because of increased hole capacity in the floating body. These findings indicate that the proposed device could serve as a promising candidate for overcoming retention issues of 1T-DRAM cells.

  18. Non-volatile magnetic random access memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    Improvements are made in a non-volatile magnetic random access memory. Such a memory is comprised of an array of unit cells, each having a Hall-effect sensor and a thin-film magnetic element made of material having an in-plane, uniaxial anisotropy and in-plane, bipolar remanent magnetization states. The Hall-effect sensor is made more sensitive by using a 1 m thick molecular beam epitaxy grown InAs layer on a silicon substrate by employing a GaAs/AlGaAs/InAlAs superlattice buffering layer. One improvement avoids current shunting problems of matrix architecture. Another improvement reduces the required magnetizing current for the micromagnets. Another improvement relates to the use of GaAs technology wherein high electron-mobility GaAs MESFETs provide faster switching times. Still another improvement relates to a method for configuring the invention as a three-dimensional random access memory.

  19. An SEU (single event upset) tolerant memory cell derived from fundamental studies of SEU mechanisms in SRAM (static random access memories)

    SciTech Connect

    Weaver, H.T.; Axness, C.L.; McBrayer, J.D.; Browning, J.S.; Fu, J.S.; Ochoa, A. Jr.; Koga, R.

    1987-01-01

    A new single event upset (SEU) hardening concept, an LRAM cell, is demonstrated theoretically and experimentally. As basis for the LRAM idea, techniques were developed to measure time constants for ion induced voltage transients in conventional static random access memories, SRAM. Time constants of 0.8 and 6.0 nsec were measured for transients following strikes at the n- and p-channel drains, respectively - primary areas of SEU sensitivity. These data are the first transient time measurements on full memory chips and the large difference is fundamental to the LRAM concept. Decoupling resistors in the LRAM are used only to protect against the short transient; longer persisting pulses are blocked by a voltage divider, a basically new concept for SEU protection. In such a design, smaller resistors provide SEU tolerance, allowing higher performance, hardened memories. Test structures of the new design exhibit SEU tolerance with resistors 5-to-10 times smaller than currently used in SRAM. Our advanced transport-plus-circuit numerical simulations of the SEU process predicted this result and account for the LRAM experiments, as well as a variety of experiments on conventional SRAM. 16 refs., 6 figs., 1 tab.

  20. Accessing Epstein-Barr Virus-Specific T-Cell Memory with Peptide-Loaded Dendritic Cells

    PubMed Central

    Redchenko, I. V.; Rickinson, A. B.

    1999-01-01

    The conventional means of studying Epstein-Barr virus (EBV)-induced cytotoxic T-lymphocyte (CTL) memory, by in vitro stimulation with the latently infected autologous lymphoblastoid cell line (LCL), has important limitations. First, it gives no information on memory to lytic cycle antigens; second, it preferentially amplifies the dominant components of latent antigen-specific memory at the expense of key subdominant reactivities. Here we describe an alternative approach, based on in vitro stimulation with epitope peptide-loaded dendritic cells (DCs), which allows one to probe the CTL repertoire for any individual reactivity of choice; this method proved significantly more efficient than stimulation with peptide alone. Using this approach we first show that reactivities to the immunodominant and subdominant lytic cycle epitopes identified by T cells during primary EBV infection are regularly detectable in the CTL memory of virus carriers; this implies that in such carriers chronic virus replication remains under direct T-cell control. We further show that subdominant latent cycle reactivities to epitopes in the latent membrane protein LMP2, though rarely undetectable in LCL-stimulated populations, can be reactivated by DC stimulation and selectively expanded as polyclonal CTL lines; the adoptive transfer of such preparations may be of value in targeting certain EBV-positive malignancies. PMID:9847337

  1. Dynamic computing random access memory

    NASA Astrophysics Data System (ADS)

    Traversa, F. L.; Bonani, F.; Pershin, Y. V.; Di Ventra, M.

    2014-07-01

    The present von Neumann computing paradigm involves a significant amount of information transfer between a central processing unit and memory, with concomitant limitations in the actual execution speed. However, it has been recently argued that a different form of computation, dubbed memcomputing (Di Ventra and Pershin 2013 Nat. Phys. 9 200-2) and inspired by the operation of our brain, can resolve the intrinsic limitations of present day architectures by allowing for computing and storing of information on the same physical platform. Here we show a simple and practical realization of memcomputing that utilizes easy-to-build memcapacitive systems. We name this architecture dynamic computing random access memory (DCRAM). We show that DCRAM provides massively-parallel and polymorphic digital logic, namely it allows for different logic operations with the same architecture, by varying only the control signals. In addition, by taking into account realistic parameters, its energy expenditures can be as low as a few fJ per operation. DCRAM is fully compatible with CMOS technology, can be realized with current fabrication facilities, and therefore can really serve as an alternative to the present computing technology.

  2. Dynamic computing random access memory.

    PubMed

    Traversa, F L; Bonani, F; Pershin, Y V; Di Ventra, M

    2014-07-18

    The present von Neumann computing paradigm involves a significant amount of information transfer between a central processing unit and memory, with concomitant limitations in the actual execution speed. However, it has been recently argued that a different form of computation, dubbed memcomputing (Di Ventra and Pershin 2013 Nat. Phys. 9 200-2) and inspired by the operation of our brain, can resolve the intrinsic limitations of present day architectures by allowing for computing and storing of information on the same physical platform. Here we show a simple and practical realization of memcomputing that utilizes easy-to-build memcapacitive systems. We name this architecture dynamic computing random access memory (DCRAM). We show that DCRAM provides massively-parallel and polymorphic digital logic, namely it allows for different logic operations with the same architecture, by varying only the control signals. In addition, by taking into account realistic parameters, its energy expenditures can be as low as a few fJ per operation. DCRAM is fully compatible with CMOS technology, can be realized with current fabrication facilities, and therefore can really serve as an alternative to the present computing technology. PMID:24972387

  3. Memory access in shared virtual memory

    SciTech Connect

    Berrendorf, R. )

    1992-01-01

    Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.

  4. Memory access in shared virtual memory

    SciTech Connect

    Berrendorf, R.

    1992-09-01

    Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.

  5. Finding Oxygen Reservoir by Using Extremely Small Test Cell Structure for Resistive Random Access Memory with Replaceable Bottom Electrode

    PubMed Central

    Kinoshita, Kentaro; Koh, Sang-Gyu; Moriyama, Takumi; Kishida, Satoru

    2015-01-01

    Although the presence of an oxygen reservoir (OR) is assumed in many models that explain resistive switching of resistive random access memory (ReRAM) with electrode/metal oxide (MO)/electrode structures, the location of OR is not clear. We have previously reported a method, which involved the use of an AFM cantilever, for preparing an extremely small ReRAM cell that has a removable bottom electrode (BE). In this study, we used this cell structure to specify the location of OR. Because an anode is often assumed to work as OR, we investigated the effect of changing anodes without changing the MO layer and the cathode on the occurrence of reset. It was found that the reset occurred independently of the catalytic ability and Gibbs free energy (ΔG) of the anode. Our proposed structure enabled to determine that the reset was caused by repairing oxygen vacancies of which a filament consists due to the migration of oxygen ions from the surrounding area when high ΔG anode metal is used, whereas by oxidizing the anode due to the migration of oxygen ions from the MO layer when low ΔG anode metal is used, suggesting the location of OR depends on ΔG of the anode. PMID:26689682

  6. Finding Oxygen Reservoir by Using Extremely Small Test Cell Structure for Resistive Random Access Memory with Replaceable Bottom Electrode.

    PubMed

    Kinoshita, Kentaro; Koh, Sang-Gyu; Moriyama, Takumi; Kishida, Satoru

    2015-01-01

    Although the presence of an oxygen reservoir (OR) is assumed in many models that explain resistive switching of resistive random access memory (ReRAM) with electrode/metal oxide (MO)/electrode structures, the location of OR is not clear. We have previously reported a method, which involved the use of an AFM cantilever, for preparing an extremely small ReRAM cell that has a removable bottom electrode (BE). In this study, we used this cell structure to specify the location of OR. Because an anode is often assumed to work as OR, we investigated the effect of changing anodes without changing the MO layer and the cathode on the occurrence of reset. It was found that the reset occurred independently of the catalytic ability and Gibbs free energy (ΔG) of the anode. Our proposed structure enabled to determine that the reset was caused by repairing oxygen vacancies of which a filament consists due to the migration of oxygen ions from the surrounding area when high ΔG anode metal is used, whereas by oxidizing the anode due to the migration of oxygen ions from the MO layer when low ΔG anode metal is used, suggesting the location of OR depends on ΔG of the anode. PMID:26689682

  7. Finding Oxygen Reservoir by Using Extremely Small Test Cell Structure for Resistive Random Access Memory with Replaceable Bottom Electrode

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kentaro; Koh, Sang-Gyu; Moriyama, Takumi; Kishida, Satoru

    2015-12-01

    Although the presence of an oxygen reservoir (OR) is assumed in many models that explain resistive switching of resistive random access memory (ReRAM) with electrode/metal oxide (MO)/electrode structures, the location of OR is not clear. We have previously reported a method, which involved the use of an AFM cantilever, for preparing an extremely small ReRAM cell that has a removable bottom electrode (BE). In this study, we used this cell structure to specify the location of OR. Because an anode is often assumed to work as OR, we investigated the effect of changing anodes without changing the MO layer and the cathode on the occurrence of reset. It was found that the reset occurred independently of the catalytic ability and Gibbs free energy (ΔG) of the anode. Our proposed structure enabled to determine that the reset was caused by repairing oxygen vacancies of which a filament consists due to the migration of oxygen ions from the surrounding area when high ΔG anode metal is used, whereas by oxidizing the anode due to the migration of oxygen ions from the MO layer when low ΔG anode metal is used, suggesting the location of OR depends on ΔG of the anode.

  8. Chemical state of Ag in Conducting Bridge Random Access Memory cells: a depth resolved X-ray Absorption Spectroscopy investigation.

    NASA Astrophysics Data System (ADS)

    d'Acapito, F.; Souchier, E.; Noe, P.; Blaise, P.; Bernard, M.; Jousseaume, V.

    2016-05-01

    Conducting Bridge Random Access Memories (CBRAM) are a promising substitute for FLASH technology but problems with limited retention of the low resistance ON state still hamper their massive deployment. Depth resolved X-ray Absorption Spectroscopy has been used to describe the chemical state of the atoms of the active electrode (in this case Ag) and to reveal the role of Sb as stabilizer of the metallic state.

  9. Detailed analysis of minimum operation voltage of extraordinarily unstable cells in fully depleted silicon-on-buried-oxide six-transistor static random access memory

    NASA Astrophysics Data System (ADS)

    Mizutani, Tomoko; Yamamoto, Yoshiki; Makiyama, Hideki; Yamashita, Tomohiro; Oda, Hidekazu; Kamohara, Shiro; Sugii, Nobuyuki; Hiramoto, Toshiro

    2015-04-01

    The minimum operation voltage (Vmin) of very unstable cells in silicon-on-thin-buried-oxide (SOTB) six-transistor (6T) static random access memory (SRAM) is analyzed in detail. It is found that the worst cell in 16k SRAM is very unstable and the stability characteristics of the worst cell correspond to approximately 6σ from those of the median cell. It is also found that extraordinarily unstable cells are much more sensitive to VTH change than median cells and that the static noise margin (SNM) and Vmin well correlate only in extraordinarily unstable cells. A simple VTH model for evaluating Vmin is developed and validated by Vmin measured in extraordinarily unstable cells.

  10. Low latency memory access and synchronization

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2007-02-06

    A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processor only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.

  11. Low latency memory access and synchronization

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin; Steinmacher-Burow, Burkhard D.; Takken, Todd E. , Vranas; Pavlos M.

    2010-10-19

    A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Bach processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processor only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.

  12. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    SciTech Connect

    Oosthoek, J. L. M.; Kooi, B. J.; Voogt, F. C.; Attenborough, K.; Verheijen, M. A.; Hurkx, G. A. M.; Gravesteijn, D. J.

    2015-02-14

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.

  13. Memory T Cell Migration

    PubMed Central

    Zhang, Qianqian; Lakkis, Fadi G.

    2015-01-01

    Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review will focus on the mechanisms by which memory T cells migrate to the site where their target antigen is present, with particular emphasis on their migration to transplanted organs. First, we will define the known subsets of memory T cells (central, effector, and tissue resident) and their circulation patterns. Second, we will review the cellular and molecular mechanisms by which memory T cells migrate to inflamed and non-inflamed tissues and highlight the emerging paradigm of antigen-driven, trans-endothelial migration. Third, we will discuss the relevance of this knowledge to organ transplantation and the prevention or treatment of allograft rejection. PMID:26483794

  14. Evaluation of in-plane local stress distribution in stacked IC chip using dynamic random access memory cell array for highly reliable three-dimensional IC

    NASA Astrophysics Data System (ADS)

    Tanikawa, Seiya; Kino, Hisashi; Fukushima, Takafumi; Koyanagi, Mitsumasa; Tanaka, Tetsu

    2016-04-01

    As three-dimensional (3D) ICs have many advantages, IC performances can be enhanced without scaling down of transistor size. However, 3D IC has mechanical stresses inside Si substrates owing to its 3D stacking structure, which induces negative effects on transistor performances such as carrier mobility changes. One of the mechanical stresses is local bending stress due to organic adhesive shrinkage among stacked IC chips. In this paper, we have proposed an evaluation method for in-plane local stress distribution in the stacked IC chips using retention time modulation of a dynamic random access memory (DRAM) cell array. We fabricated a test structure composed of a DRAM chip bonded on a Si interposer with dummy Cu/Sn microbumps. As a result, we clarified that the DRAM cell array can precisely evaluate the in-plane local stress distribution in the stacked IC chips.

  15. Resistive random access memory utilizing ferritin protein with Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Uenuma, Mutsunori; Kawano, Kentaro; Zheng, Bin; Okamoto, Naofumi; Horita, Masahiro; Yoshii, Shigeo; Yamashita, Ichiro; Uraoka, Yukiharu

    2011-05-01

    This study reports controlled single conductive paths found in resistive random access memory (ReRAM) formed by embedding Pt nanoparticles (Pt NPs) in NiO film. Homogeneous Pt NPs produced and placed by ferritin protein produce electric field convergence which leads to controlled conductive path formation. The ReRAM with Pt NPs shows stable switching behavior. A Pt NP density decrease results in an increase of OFF state resistance and decrease of forming voltage, whereas ON resistance was independent of the Pt NP density, which indicates that a single metal NP in a memory cell will achieve low power and stable operation.

  16. Memory T Cells in Transplantation

    PubMed Central

    Su, Charles A.; Fairchild, Robert L.

    2014-01-01

    Following infections and environmental exposures, memory T cells are generated that provide long-term protective immunity. Compared to their naïve T cell counterparts, memory T cells possess unique characteristics that endow them with the ability to quickly and robustly respond to foreign antigens. While such memory T cells are beneficial in protecting their hosts from recurrent infection, memory cells reactive to donor antigens pose a major barrier to successful transplantation and tolerance induction. Significant progress has been made over the past several decades contributing to our understanding of memory T cell generation, their distinct biology, and their detrimental impact in clinical and animal models of transplantation. This review focuses on the unique features which make memory T cells relevant to the transplant community and discusses potential therapies targeting memory T cells which may ameliorate allograft rejection. PMID:25435071

  17. Remote direct memory access over datagrams

    DOEpatents

    Grant, Ryan Eric; Rashti, Mohammad Javad; Balaji, Pavan; Afsahi, Ahmad

    2014-12-02

    A communication stack for providing remote direct memory access (RDMA) over a datagram network is disclosed. The communication stack has a user level interface configured to accept datagram related input and communicate with an RDMA enabled network interface card (NIC) via an NIC driver. The communication stack also has an RDMA protocol layer configured to supply one or more data transfer primitives for the datagram related input of the user level. The communication stack further has a direct data placement (DDP) layer configured to transfer the datagram related input from a user storage to a transport layer based on the one or more data transfer primitives by way of a lower layer protocol (LLP) over the datagram network.

  18. Parallel Optical Random Access Memory (PORAM)

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.

    1989-01-01

    It is shown that the need to minimize component count, power and size, and to maximize packing density require a parallel optical random access memory to be designed in a two-level hierarchy: a modular level and an interconnect level. Three module designs are proposed, in the order of research and development requirements. The first uses state-of-the-art components, including individually addressed laser diode arrays, acousto-optic (AO) deflectors and magneto-optic (MO) storage medium, aimed at moderate size, moderate power, and high packing density. The next design level uses an electron-trapping (ET) medium to reduce optical power requirements. The third design uses a beam-steering grating surface emitter (GSE) array to reduce size further and minimize the number of components.

  19. Direct memory access transfer completion notification

    DOEpatents

    Chen, Dong; Giampapa, Mark E.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos

    2010-07-27

    Methods, compute nodes, and computer program products are provided for direct memory access (`DMA`) transfer completion notification. Embodiments include determining, by an origin DMA engine on an origin compute node, whether a data descriptor for an application message to be sent to a target compute node is currently in an injection first-in-first-out (`FIFO`) buffer in dependence upon a sequence number previously associated with the data descriptor, the total number of descriptors currently in the injection FIFO buffer, and the current sequence number for the newest data descriptor stored in the injection FIFO buffer; and notifying a processor core on the origin DMA engine that the message has been sent if the data descriptor for the message is not currently in the injection FIFO buffer.

  20. Conductance Quantization in Resistive Random Access Memory.

    PubMed

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-12-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects. PMID:26501832

  1. Conductance Quantization in Resistive Random Access Memory

    NASA Astrophysics Data System (ADS)

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-10-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  2. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  3. Highly Reliable 0.15 μm/14 F2 Cell Ferroelectric Random Access Memory Capacitor Using SrRuO3 Buffer Layer

    NASA Astrophysics Data System (ADS)

    Heo, Jang‑Eun; Bae, Byoung‑Jae; Yoo, Dong‑Chul; Nam, Sang‑Don; Lim, Ji‑Eun; Im, Dong‑Hyun; Joo, Suk‑Ho; Jung, Yong‑Ju; Choi, Suk‑Hun; Park, Soon‑Oh; Kim, Hee‑Seok; Chung, U‑In; Moon, Joo‑Tae

    2006-04-01

    We investigated a novel technique of modifying the interface between a Pb(ZrxTi1-x)O3 (PZT) thin film and electrodes for high density 64 Mbit ferroelectric random access memory (FRAM) device. Using a SrRuO3 buffer layer, we successfully developed highly reliable 0.15 μm/14 F2 cell FRAM capacitors with 75-nm-thick polycrystalline PZT thin films. The SrRuO3 buffer layer greatly enhanced ferroelectric characteristics due to the decrease in interfacial defect density. In PZT capacitors with a total thickness of 180 nm for whole capacitor stack, a remnant polarization of approximately 42 μC/cm2 was measured with a 1.4 V operation. In addition, an opposite state remnant polarization loss of less than 15% was observed after baking at 150 °C for 100 h. In particular, we found that the SrRuO3 buffer layer also played a key role in inhibiting the diffusion of Pb and O from the PZT thin films.

  4. 76 FR 55417 - In the Matter of Certain Dynamic Random Access Memory and Nand Flash Memory Devices and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... COMMISSION In the Matter of Certain Dynamic Random Access Memory and Nand Flash Memory Devices and Products... States after importation of certain dynamic random access memory and NAND flash memory devices and... the sale within the United States after importation of certain dynamic random access memory and...

  5. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    DOEpatents

    Ohmacht, Martin

    2014-09-09

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  6. Integration of lead zirconium titanate thin films for high density ferroelectric random access memory

    NASA Astrophysics Data System (ADS)

    Kim, Kinam; Lee, Sungyung

    2006-09-01

    Interests are being focused on types of nonvolatile memories such as ferroelectric random access memory (FRAM), phase change random access memory, or magnetoresistance random access memory due to their distinct memory properties such as excellent write performance which conventional nonvolatile memories do not possess. Among these types of nonvolatile memories, FRAM whose cell structure and operation are almost identical to dynamic random access memory (DRAM) can ideally realize cell size and speed of DRAM. Thus FRAM is the most appropriate candidate for future universal memory where all memory functions are performed with a single chip solution. Due to the poor ferroelectric properties of downscaled ultrathin lead zirconium titanate (PZT) capacitors as well as technical issues such as hydrogen and plasma related degradation arising from embedding ferroelectric metal-insulator-metal capacitors into conventional complementary metal oxide semiconductor processes, current FRAM still falls far below its ideally attainable cell size and performance. In this paper, based upon PZT capacitor, current mass-productive one pass transistor and one storage capacitor (1T1C), capacitor over bit line (COB) cell technologies are introduced upon which cell size of 0.937μm2 at 250nm minimum feature size technology node has been realized. And then, most recent 1T1C, COB cell technologies are discussed from which cell size of 0.27μm2 at 150nm minimum feature size technology node has been realized, and finally future three dimensional capacitor technologies for the FRAM with cell size of less than 0.08μm2 beyond 100nm minimum feature size technology node are suggested.

  7. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    NASA Astrophysics Data System (ADS)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-05-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  8. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    SciTech Connect

    Di Pendina, G. E-mail: eldar.zianbetov@cea.fr Zianbetov, E. E-mail: eldar.zianbetov@cea.fr; Beigne, E. E-mail: eldar.zianbetov@cea.fr

    2015-05-07

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  9. BCH codes for large IC random-access memory systems

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.

    1983-01-01

    In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed.

  10. Radiation Effects of Commercial Resistive Random Access Memories

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; LaBel, Kenneth; Berg, Melanie; Wilcox, Edward; Kim, Hak; Phan, Anthony; Figueiredo, Marco; Buchner, Stephen; Khachatrian, Ani; Roche, Nicolas

    2014-01-01

    We present results for the single-event effect response of commercial production-level resistive random access memories. We found that the resistive memory arrays are immune to heavy ion-induced upsets. However, the devices were susceptible to single-event functional interrupts, due to upsets from the control circuits. The intrinsic radiation tolerant nature of resistive memory makes the technology an attractive consideration for future space applications.

  11. The Dynamics of Access to Groups in Working Memory

    ERIC Educational Resources Information Center

    Farrell, Simon; Lelievre, Anna

    2012-01-01

    The finding that participants leave a pause between groups when attempting serial recall of temporally grouped lists has been taken to indicate access to a hierarchical representation of the list in working memory. An alternative explanation is that the dynamics of serial recall solely reflect output (rather than memorial) processes, with the…

  12. Direct access inter-process shared memory

    DOEpatents

    Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B

    2013-10-22

    A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.

  13. Memory for recently accessed visual attributes.

    PubMed

    Jiang, Yuhong V; Shupe, Joshua M; Swallow, Khena M; Tan, Deborah H

    2016-08-01

    Recent reports have suggested that the attended features of an item may be rapidly forgotten once they are no longer relevant for an ongoing task (attribute amnesia). This finding relies on a surprise memory procedure that places high demands on declarative memory. We used intertrial priming to examine whether the representation of an item's identity is lost completely once it becomes task irrelevant. If so, then the identity of a target on one trial should not influence performance on the next trial. In 3 experiments, we replicated the finding that a target's identity is poorly recognized in a surprise memory test. However, we also observed location and identity repetition priming across consecutive trials. These data suggest that, although explicit recognition on a surprise memory test may be impaired, some information about a particular target's identity can be retained after it is no longer needed for a task. (PsycINFO Database Record PMID:26844575

  14. Integrated semiconductor-magnetic random access memory system

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)

    2001-01-01

    The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.

  15. Cell memory-based therapy.

    PubMed

    Anjamrooz, Seyed Hadi

    2015-11-01

    Current cell therapies, despite all of the progress in this field, still faces major ethical, technical and regulatory hurdles. Because these issues possibly stem from the current, restricted, stereotypical view of cell ultrastructure and function, we must think radically about the nature of the cell. In this regard, the author's theory of the cell memory disc offers 'memory-based therapy', which, with the help of immune system rejuvenation, nervous system control and microparticle-based biodrugs, may have substantial therapeutic potential. In addition to its potential value in the study and prevention of premature cell aging, age-related diseases and cell death, memory therapy may improve the treatment of diseases that are currently limited by genetic disorders, risk of tumour formation and the availability and immunocompatibility of tissue transplants. PMID:26256679

  16. Cell memory-based therapy

    PubMed Central

    Anjamrooz, Seyed Hadi

    2015-01-01

    Current cell therapies, despite all of the progress in this field, still faces major ethical, technical and regulatory hurdles. Because these issues possibly stem from the current, restricted, stereotypical view of cell ultrastructure and function, we must think radically about the nature of the cell. In this regard, the author's theory of the cell memory disc offers ‘memory-based therapy’, which, with the help of immune system rejuvenation, nervous system control and microparticle-based biodrugs, may have substantial therapeutic potential. In addition to its potential value in the study and prevention of premature cell aging, age-related diseases and cell death, memory therapy may improve the treatment of diseases that are currently limited by genetic disorders, risk of tumour formation and the availability and immunocompatibility of tissue transplants. PMID:26256679

  17. Scaling Linear Algebra Kernels using Remote Memory Access

    SciTech Connect

    Krishnan, Manoj Kumar; Lewis, Robert R.; Vishnu, Abhinav

    2010-09-13

    This paper describes the scalability of linear algebra kernels based on remote memory access approach. The current approach differs from the other linear algebra algorithms by the explicit use of shared memory and remote memory access (RMA) communication rather than message passing. It is suitable for clusters and scalable shared memory systems. The experimental results on large scale systems (Linux-Infiniband cluster, Cray XT) demonstrate consistent performance advantages over ScaLAPACK suite, the leading implementation of parallel linear algebra algorithms used today. For example, on a Cray XT4 for a matrix size of 102400, our RMA-based matrix multiplication achieved over 55 teraflops while ScaLAPACK’s pdgemm measured close to 42 teraflops on 10000 processes.

  18. A Cerebellar-model Associative Memory as a Generalized Random-access Memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1989-01-01

    A versatile neural-net model is explained in terms familiar to computer scientists and engineers. It is called the sparse distributed memory, and it is a random-access memory for very long words (for patterns with thousands of bits). Its potential utility is the result of several factors: (1) a large pattern representing an object or a scene or a moment can encode a large amount of information about what it represents; (2) this information can serve as an address to the memory, and it can also serve as data; (3) the memory is noise tolerant--the information need not be exact; (4) the memory can be made arbitrarily large and hence an arbitrary amount of information can be stored in it; and (5) the architecture is inherently parallel, allowing large memories to be fast. Such memories can become important components of future computers.

  19. 75 FR 14467 - In the Matter of: Certain Dynamic Random Access Memory Semiconductors and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... COMMISSION In the Matter of: Certain Dynamic Random Access Memory Semiconductors and Products Containing Same... random access memory semiconductors and products containing same, including memory modules, by reason of... after importation of certain dynamic random access memory semiconductors or products containing the...

  20. Direct memory access transfer completion notification

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Parker, Jeffrey J.

    2011-02-15

    DMA transfer completion notification includes: inserting, by an origin DMA engine on an origin node in an injection first-in-first-out (`FIFO`) buffer, a data descriptor for an application message to be transferred to a target node on behalf of an application on the origin node; inserting, by the origin DMA engine, a completion notification descriptor in the injection FIFO buffer after the data descriptor for the message, the completion notification descriptor specifying a packet header for a completion notification packet; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; sending, by the origin DMA engine, the completion notification packet to a local reception FIFO buffer using a local memory FIFO transfer operation; and notifying, by the origin DMA engine, the application that transfer of the message is complete in response to receiving the completion notification packet in the local reception FIFO buffer.

  1. Magnetic Random Access Memory (MRAM) Device Development

    SciTech Connect

    Cerjan, C; Law, B P

    2000-01-18

    The recent discovery of materials that have anomalous magneto-resistive properties has generated renewed commercial interest in metal-based fast memory storage as an alternative to the currently used semiconductor-based devices. One particularly promising ternary alloy, fabricated at LLNL, appeared to have exceptional field response. This proposal extended the investigation of this class of materials by examining the scaling properties of test structures made from this material that could definitively verify the preliminary observations of high field sensitivity. Although the expected scaling was observed, technical issues, such as excessive oxidation, prevented a definitive assessment of the effect. Despite the difficulties encountered, several test structures demonstrated superior performance in a ''spin-valve'' configuration that might have applications for very high density recording heads.

  2. Access Analysis-Based Tight Localization of Abstract Memories

    NASA Astrophysics Data System (ADS)

    Oh, Hakjoo; Brutschy, Lucas; Yi, Kwangkeun

    On-the-fly localization of abstract memory states is vital for economical abstract interpretation of imperative programs. Such localization is sometimes called "abstract garbage collection" or "framing". In this article we present a new memory localization technique that is more effective than the conventional reachability-based approach. Our technique is based on a key observation that collecting the reachable memory parts is too conservative and the accessed parts are usually tiny subsets of the reachable. Our technique first estimates, by an efficient pre-analysis, the set of locations that will be accessed during the analysis of each code block. Then the main analysis uses the access-set results to trim the memory entries before analyzing code blocks. In experiments with an industrial-strength global C static analyzer, the technique is applied right before analyzing each procedure's body and reduces the average analysis time and memory by 92.1% and 71.2%, respectively, without sacrificing the analysis precision. Localizing more frequently such as at loop bodies and basic blocks as well as procedure bodies, the generalized localization additionally reduces analysis time by an average of 31.8%.

  3. Quantifying Locality in the Memory Access Patterns of HPCApplications

    SciTech Connect

    Weinberg, Jonathan; Snavely, Allan; McCracken, Michael O.; Strohmaier, Erich

    2005-07-25

    Several benchmarks for measuring memory performance of HPC systems along dimensions of spatial and temporal memory locality have recently been proposed. However, little is understood about the relationships of these benchmarks to real applications and to each other. In this paper, we propose a methodology for producing architecture-neutral characterizations of the spatial and temporal locality exhibited by the memory access patterns of applications. We demonstrate that the results track intuitive notions of spatial and temporal locality on several synthetic and application benchmarks. We employ the methodology to analyze the memory performance components of the HPC Challenge Benchmarks, the Apex-MAP benchmark, and their relationships to each other and other benchmarks and applications. We show that this analysis can be used to both increase understanding of the benchmarks and enhance their usefulness by mapping them, along with applications, to a 2-D space along axes of spatial and temporal locality.

  4. Kokkos: Enabling manycore performance portability through polymorphic memory access patterns

    SciTech Connect

    Carter Edwards, H.; Trott, Christian R.; Sunderland, Daniel

    2014-07-22

    The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread, and diversity of continually evolving manycore architectures. High performance computing (HPC) applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability on these devices. We found that a major obstacle to performance portability is the diverse and conflicting set of constraints on memory access patterns across devices. Contemporary portable programming models address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance portability on diverse manycore architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API), present performance results for unit-test kernels and mini-applications, and outline an incremental strategy for migrating legacy C++ codes to Kokkos. Furthermore, the Kokkos library is under active research and development to incorporate capabilities from new generations of manycore architectures, and to address a growing list of applications and domain libraries.

  5. Kokkos: Enabling manycore performance portability through polymorphic memory access patterns

    DOE PAGESBeta

    Carter Edwards, H.; Trott, Christian R.; Sunderland, Daniel

    2014-07-22

    The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread, and diversity of continually evolving manycore architectures. High performance computing (HPC) applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability on these devices. We found that a major obstacle to performance portability is the diverse and conflicting set of constraints on memory access patterns across devices. Contemporary portable programming models address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance portability on diversemore » manycore architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API), present performance results for unit-test kernels and mini-applications, and outline an incremental strategy for migrating legacy C++ codes to Kokkos. Furthermore, the Kokkos library is under active research and development to incorporate capabilities from new generations of manycore architectures, and to address a growing list of applications and domain libraries.« less

  6. Integrated, nonvolatile, high-speed analog random access memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor)

    1994-01-01

    This invention provides an integrated, non-volatile, high-speed random access memory. A magnetically switchable ferromagnetic or ferrimagnetic layer is sandwiched between an electrical conductor which provides the ability to magnetize the magnetically switchable layer and a magneto resistive or Hall effect material which allows sensing the magnetic field which emanates from the magnetization of the magnetically switchable layer. By using this integrated three-layer form, the writing process, which is controlled by the conductor, is separated from the storage medium in the magnetic layer and from the readback process which is controlled by the magnetoresistive layer. A circuit for implementing the memory in CMOS or the like is disclosed.

  7. Magnet/Hall-Effect Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1991-01-01

    In proposed magnet/Hall-effect random-access memory (MHRAM), bits of data stored magnetically in Perm-alloy (or equivalent)-film memory elements and read out by using Hall-effect sensors to detect magnetization. Value of each bit represented by polarity of magnetization. Retains data for indefinite time or until data rewritten. Speed of Hall-effect sensors in MHRAM results in readout times of about 100 nanoseconds. Other characteristics include high immunity to ionizing radiation and storage densities of order 10(Sup6)bits/cm(Sup 2) or more.

  8. Performance Evaluation of Remote Memory Access (RMA) Programming on Shared Memory Parallel Computers

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The purpose of this study is to evaluate the feasibility of remote memory access (RMA) programming on shared memory parallel computers. We discuss different RMA based implementations of selected CFD application benchmark kernels and compare them to corresponding message passing based codes. For the message-passing implementation we use MPI point-to-point and global communication routines. For the RMA based approach we consider two different libraries supporting this programming model. One is a shared memory parallelization library (SMPlib) developed at NASA Ames, the other is the MPI-2 extensions to the MPI Standard. We give timing comparisons for the different implementation strategies and discuss the performance.

  9. Paging memory from random access memory to backing storage in a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Inglett, Todd A; Ratterman, Joseph D; Smith, Brian E

    2013-05-21

    Paging memory from random access memory (`RAM`) to backing storage in a parallel computer that includes a plurality of compute nodes, including: executing a data processing application on a virtual machine operating system in a virtual machine on a first compute node; providing, by a second compute node, backing storage for the contents of RAM on the first compute node; and swapping, by the virtual machine operating system in the virtual machine on the first compute node, a page of memory from RAM on the first compute node to the backing storage on the second compute node.

  10. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    SciTech Connect

    Devulder, Wouter De Schutter, Bob; Detavernier, Christophe; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Muller, Robert; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Belmonte, Attilio

    2014-02-07

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu{sub 0.6}Te{sub 0.4} based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu{sub 0.6}Te{sub 0.4}-C/Al{sub 2}O{sub 3}/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al{sub 2}O{sub 3} under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al{sub 2}O{sub 3} before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.

  11. 76 FR 73676 - Certain Dynamic Random Access Memory Devices, and Products Containing Same; Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... COMMISSION Certain Dynamic Random Access Memory Devices, and Products Containing Same; Receipt of Complaint... complaint entitled In Re Certain Dynamic Random Access Memory Devices, and Products Containing Same, DN 2859... within the United States after importation of certain dynamic random access memory devices, and...

  12. 76 FR 80964 - Certain Dynamic Random Access Memory Devices, and Products Containing Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... COMMISSION Certain Dynamic Random Access Memory Devices, and Products Containing Same; Institution of... States after importation of certain dynamic random access memory devices, and products containing same by... dynamic random access memory devices, and products containing same that infringe one or more of claims...

  13. Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order

    NASA Technical Reports Server (NTRS)

    Wulf, William A. (Inventor); McKee, Sally A. (Inventor); Klenke, Robert (Inventor); Schwab, Andrew J. (Inventor); Moyer, Stephen A. (Inventor); Aylor, James (Inventor); Hitchcock, Charles Young (Inventor)

    2000-01-01

    A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time.

  14. Memory B cells in mouse models.

    PubMed

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases. PMID:23679222

  15. Nonvolatile GaAs Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Stadler, Henry L.; Wu, Jiin-Chuan

    1994-01-01

    Proposed random-access integrated-circuit electronic memory offers nonvolatile magnetic storage. Bits stored magnetically and read out with Hall-effect sensors. Advantages include short reading and writing times and high degree of immunity to both single-event upsets and permanent damage by ionizing radiation. Use of same basic material for both transistors and sensors simplifies fabrication process, with consequent benefits in increased yield and reduced cost.

  16. If memory serves, will language? Later verbal accessibility of early memories.

    PubMed

    Bauer, P J; Kroupina, M G; Schwade, J A; Dropik, P L; Wewerka, S S

    1998-01-01

    Of major interest to those concerned with early mnemonic process and function is the question of whether early memories likely encoded without the benefit of language later are accessible to verbal report. In the context of a controlled laboratory study, we examined this question in children who were 16 and 20 months at the time of exposure to specific target events and who subsequently were tested for their memories of the events after a delay of either 6 or 12 months (at 22-32 months) and then again at 3 years. At the first delayed-recall test, children evidenced memory both nonverbally and verbally. Nonverbal mnemonic expression was related to age at the time of test; verbal mnemonic expression was related to verbal fluency at the time of test. At the second delayed-recall test, children evidenced continued accessibility of their early memories. Verbal mnemonic expression was related to previous mnemonic expression, both nonverbal and verbal, each of which contributed unique variance. The relevance of these findings on memory for controlled laboratory events for issues of memory for traumatic experiences is discussed. PMID:9886220

  17. Random access memory immune to single event upset using a T-resistor

    DOEpatents

    Ochoa, Jr., Agustin

    1989-01-01

    In a random access memory cell, a resistance "T" decoupling network in each leg of the cell reduces random errors caused by the interaction of energetic ions with the semiconductor material forming the cell. The cell comprises two parallel legs each containing a series pair of complementary MOS transistors having a common gate connected to the node between the transistors of the opposite leg. The decoupling network in each leg is formed by a series pair of resistors between the transistors together with a third resistor interconnecting the junction between the pair of resistors and the gate of the transistor pair forming the opposite leg of the cell.

  18. A random access memory immune to single event upset using a T-Resistor

    DOEpatents

    Ochoa, A. Jr.

    1987-10-28

    In a random access memory cell, a resistance ''T'' decoupling network in each leg of the cell reduces random errors caused by the interaction of energetic ions with the semiconductor material forming the cell. The cell comprises two parallel legs each containing a series pair of complementary MOS transistors having a common gate connected to the node between the transistors of the opposite leg. The decoupling network in each leg is formed by a series pair of resistors between the transistors together with a third resistor interconnecting the junction between the pair of resistors and the gate of the transistor pair forming the opposite leg of the cell. 4 figs.

  19. A new laterally conductive bridge random access memory by fully CMOS logic compatible process

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Che; Chin, Yung-Wen; Lin, Yu-Cheng; Chih, Yu-Der; Tsai, Kan-Hsueh; Tsai, Ming-Jinn; King, Ya-Chin; Lin, Chrong Jung

    2014-01-01

    This paper proposes a novel laterally conductive bridge random access memory (L-CBRAM) module using a fully CMOS logic compatible process. A contact buffer layer between the poly-Si and contact plug enables the lateral Ti-based atomic layer to provide on/off resistance ratio via bipolar operations. The proposed device reached more than 100 pulse cycles with an on/off ratio over 10 and very stable data retention under high temperature operations. These results make this Ti-based L-CBRAM cell a promising solution for advanced embedded multi-time programmable (MTP) memory applications.

  20. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, Qi-Wen; Yu, Xue-Feng; Cui, Jiang-Wei; Guo, Qi; Ren, Di-Yuan; Cong, Zhong-Chao; Zhou, Hang

    2014-10-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device.

  1. Spin-transfer-torque efficiency enhanced by edge-damage of perpendicular magnetic random access memories

    SciTech Connect

    Song, Kyungmi; Lee, Kyung-Jin

    2015-08-07

    We numerically investigate the effect of magnetic and electrical damages at the edge of a perpendicular magnetic random access memory (MRAM) cell on the spin-transfer-torque (STT) efficiency that is defined by the ratio of thermal stability factor to switching current. We find that the switching mode of an edge-damaged cell is different from that of an undamaged cell, which results in a sizable reduction in the switching current. Together with a marginal reduction of the thermal stability factor of an edge-damaged cell, this feature makes the STT efficiency large. Our results suggest that a precise edge control is viable for the optimization of STT-MRAM.

  2. Memory B cells contribute to rapid Bcl6 expression by memory follicular helper T cells.

    PubMed

    Ise, Wataru; Inoue, Takeshi; McLachlan, James B; Kometani, Kohei; Kubo, Masato; Okada, Takaharu; Kurosaki, Tomohiro

    2014-08-12

    In primary humoral responses, B-cell lymphoma 6 (Bcl6) is a master regulator of follicular helper T (TFH) cell differentiation; however, its activation mechanisms and role in memory responses remain unclear. Here we demonstrate that survival of CXCR5(+) TFH memory cells, and thus subsequent recall antibody response, require Bcl6 expression. Furthermore, we show that, upon rechallenge with soluble antigen Bcl6 in memory TFH cells is rapidly induced in a dendritic cell-independent manner and that peptide:class II complexes (pMHC) on cognate memory B cells significantly contribute to this induction. Given the previous evidence that antigen-specific B cells residing in the follicles acquire antigens within minutes of injection, our results suggest that memory B cells present antigens to the cognate TFH memory cells, thereby contributing to rapid Bcl6 reexpression and differentiation of the TFH memory cells during humoral memory responses. PMID:25071203

  3. Memory B cells contribute to rapid Bcl6 expression by memory follicular helper T cells

    PubMed Central

    Ise, Wataru; Inoue, Takeshi; McLachlan, James B.; Kometani, Kohei; Kubo, Masato; Okada, Takaharu; Kurosaki, Tomohiro

    2014-01-01

    In primary humoral responses, B-cell lymphoma 6 (Bcl6) is a master regulator of follicular helper T (TFH) cell differentiation; however, its activation mechanisms and role in memory responses remain unclear. Here we demonstrate that survival of CXCR5+ TFH memory cells, and thus subsequent recall antibody response, require Bcl6 expression. Furthermore, we show that, upon rechallenge with soluble antigen Bcl6 in memory TFH cells is rapidly induced in a dendritic cell-independent manner and that peptide:class II complexes (pMHC) on cognate memory B cells significantly contribute to this induction. Given the previous evidence that antigen-specific B cells residing in the follicles acquire antigens within minutes of injection, our results suggest that memory B cells present antigens to the cognate TFH memory cells, thereby contributing to rapid Bcl6 reexpression and differentiation of the TFH memory cells during humoral memory responses. PMID:25071203

  4. Complex dynamics of semantic memory access in reading.

    PubMed

    Baggio, Giosué; Fonseca, André

    2012-02-01

    Understanding a word in context relies on a cascade of perceptual and conceptual processes, starting with modality-specific input decoding, and leading to the unification of the word's meaning into a discourse model. One critical cognitive event, turning a sensory stimulus into a meaningful linguistic sign, is the access of a semantic representation from memory. Little is known about the changes that activating a word's meaning brings about in cortical dynamics. We recorded the electroencephalogram (EEG) while participants read sentences that could contain a contextually unexpected word, such as 'cold' in 'In July it is very cold outside'. We reconstructed trajectories in phase space from single-trial EEG time series, and we applied three nonlinear measures of predictability and complexity to each side of the semantic access boundary, estimated as the onset time of the N400 effect evoked by critical words. Relative to controls, unexpected words were associated with larger prediction errors preceding the onset of the N400. Accessing the meaning of such words produced a phase transition to lower entropy states, in which cortical processing becomes more predictable and more regular. Our study sheds new light on the dynamics of information flow through interfaces between sensory and memory systems during language processing. PMID:21715401

  5. TCR Signaling in T Cell Memory

    PubMed Central

    Daniels, Mark A.; Teixeiro, Emma

    2015-01-01

    T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR–peptide–MHC interactions impact the multiple fates a T cell can adopt in the memory pool. PMID:26697013

  6. Administering an epoch initiated for remote memory access

    SciTech Connect

    Blocksome, Michael A; Miller, Douglas R

    2014-03-18

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  7. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A; Miller, Douglas R

    2012-10-23

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  8. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A.; Miller, Douglas R.

    2013-01-01

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  9. HIV-associated memory B cell perturbations

    PubMed Central

    Hu, Zhiliang; Luo, Zhenwu; Wan, Zhuang; Wu, Hao; Li, Wei; Zhang, Tong; Jiang, Wei

    2015-01-01

    Memory B-cell depletion, hyperimmunoglobulinemia, and impaired vaccine responses are the hallmark of B cell perturbations inhuman immunodeficiency virus (HIV) disease. Although B cells are not the targets for HIV infection, there is evidence for B cell, especially memory B cell dysfunction in HIV disease mediated by other cells or HIV itself. This review will focus on HIV-associated phenotypic and functional alterations in memory B cells. Additionally, we will discuss the mechanism underlying these perturbations and the effect of anti-retroviral therapy (ART) on these perturbations. PMID:25887082

  10. Resistive random access memory enabled by carbon nanotube crossbar electrodes.

    PubMed

    Tsai, Cheng-Lin; Xiong, Feng; Pop, Eric; Shim, Moonsub

    2013-06-25

    We use single-walled carbon nanotube (CNT) crossbar electrodes to probe sub-5 nm memory domains of thin AlOx films. Both metallic and semiconducting CNTs effectively switch AlOx bits between memory states with high and low resistance. The low-resistance state scales linearly with CNT series resistance down to ∼10 MΩ, at which point the ON-state resistance of the AlOx filament becomes the limiting factor. Dependence of switching behavior on the number of cross-points suggests a single channel to dominate the overall characteristics in multi-crossbar devices. We demonstrate ON/OFF ratios up to 5 × 10(5) and programming currents of 1 to 100 nA with few-volt set/reset voltages. Remarkably low reset currents enable a switching power of 10-100 nW and estimated switching energy as low as 0.1-10 fJ per bit. These results are essential for understanding the ultimate scaling limits of resistive random access memory at single-nanometer bit dimensions. PMID:23705675

  11. Subthreshold-swing-adjustable tunneling-field-effect-transistor-based random-access memory for nonvolatile operation

    NASA Astrophysics Data System (ADS)

    Huh, In; Cheon, Woo Young; Choi, Woo Young

    2016-04-01

    A subthreshold-swing-adjustable tunneling-field-effect-transistor-based random-access memory (SAT RAM) has been proposed and fabricated for low-power nonvolatile memory applications. The proposed SAT RAM cell demonstrates adjustable subthreshold swing (SS) depending on stored information: small SS in the erase state ("1" state) and large SS in the program state ("0" state). Thus, SAT RAM cells can achieve low read voltage (Vread) with a large memory window in addition to the effective suppression of ambipolar behavior. These unique features of the SAT RAM are originated from the locally stored charge, which modulates the tunneling barrier width (Wtun) of the source-to-channel tunneling junction.

  12. Efficient Memory Access with NumPy Global Arrays using Local Memory Access

    SciTech Connect

    Daily, Jeffrey A.; Berghofer, Dan C.

    2013-08-03

    This paper discusses the work completed working with Global Arrays of data on distributed multi-computer systems and improving their performance. The tasks completed were done at Pacific Northwest National Laboratory in the Science Undergrad Laboratory Internship program in the summer of 2013 for the Data Intensive Computing Group in the Fundamental and Computational Sciences DIrectorate. This work was done on the Global Arrays Toolkit developed by this group. This toolkit is an interface for programmers to more easily create arrays of data on networks of computers. This is useful because scientific computation is often done on large amounts of data sometimes so large that individual computers cannot hold all of it. This data is held in array form and can best be processed on supercomputers which often consist of a network of individual computers doing their computation in parallel. One major challenge for this sort of programming is that operations on arrays on multiple computers is very complex and an interface is needed so that these arrays seem like they are on a single computer. This is what global arrays does. The work done here is to use more efficient operations on that data that requires less copying of data to be completed. This saves a lot of time because copying data on many different computers is time intensive. The way this challenge was solved is when data to be operated on with binary operations are on the same computer, they are not copied when they are accessed. When they are on separate computers, only one set is copied when accessed. This saves time because of less copying done although more data access operations were done.

  13. Phase-change Random Access Memory: A Scalable Technology

    SciTech Connect

    Raoux, S.; Burr, G; Breitwisch, M; Rettner, C; Chen, Y; Shelby, R; Salinga, M; Krebs, D; Chen, S; Lung, H

    2008-01-01

    Nonvolatile RAM using resistance contrast in phase-change materials [or phase-change RAM (PCRAM)] is a promising technology for future storage-class memory. However, such a technology can succeed only if it can scale smaller in size, given the increasingly tiny memory cells that are projected for future technology nodes (i.e., generations). We first discuss the critical aspects that may affect the scaling of PCRAM, including materials properties, power consumption during programming and read operations, thermal cross-talk between memory cells, and failure mechanisms. We then discuss experiments that directly address the scaling properties of the phase-change materials themselves, including studies of phase transitions in both nanoparticles and ultrathin films as a function of particle size and film thickness. This work in materials directly motivated the successful creation of a series of prototype PCRAM devices, which have been fabricated and tested at phase-change material cross-sections with extremely small dimensions as low as 3 nm x 20 nm. These device measurements provide a clear demonstration of the excellent scaling potential offered by this technology, and they are also consistent with the scaling behavior predicted by extensive device simulations. Finally, we discuss issues of device integration and cell design, manufacturability, and reliability.

  14. Ratioless full-complementary 12-transistor static random access memory for ultra low supply voltage operation

    NASA Astrophysics Data System (ADS)

    Kondo, Takahiro; Yamamoto, Hiromasa; Hoketsu, Satoko; Imi, Hitoshi; Okamura, Hitoshi; Nakamura, Kazuyuki

    2015-04-01

    In this study, a ratioless full-complementary 12-transistor static random access memory (SRAM) was developed and measured to evaluate its operation under an ultra low supply voltage range. The ratioless SRAM design concept enables a memory cell design that is free from the consideration of the static noise margin (SNM). Furthermore, it enables a SRAM function without the restriction of transistor parameter (W/L) settings and the dependence on the variability of device characteristics. The test chips that include both conventional 6-transistor SRAM cells and the ratioless full-complementary 12-transistor SRAM cells were developed by a 180 nm CMOS process to compare their stable operations under an ultralow supply voltage condition. The measured results show that the ratioless full-complementary 12-transistor SRAM has superior immunity to device variability, and its inherent operating ability at the supply voltage of 0.22 V was experimentally confirmed.

  15. 9. ENGINE TEST CELL BUILDING INTERIOR. CELL ACCESS ELEVATOR, CELLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. ENGINE TEST CELL BUILDING INTERIOR. CELL ACCESS ELEVATOR, CELLS 2 AND 4, BASEMENT LEVEL. LOOKING SOUTHEAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  16. Nanoscale memory cell based on a nanoelectromechanical switched capacitor.

    PubMed

    Jang, Jae Eun; Cha, Seung Nam; Choi, Young Jin; Kang, Dae Joon; Butler, Tim P; Hasko, David G; Jung, Jae Eun; Kim, Jong Min; Amaratunga, Gehan A J

    2008-01-01

    The demand for increased information storage densities has pushed silicon technology to its limits and led to a focus on research on novel materials and device structures, such as magnetoresistive random access memory and carbon nanotube field-effect transistors, for ultra-large-scale integrated memory. Electromechanical devices are suitable for memory applications because of their excellent 'ON-OFF' ratios and fast switching characteristics, but they involve larger cells and more complex fabrication processes than silicon-based arrangements. Nanoelectromechanical devices based on carbon nanotubes have been reported previously, but it is still not possible to control the number and spatial location of nanotubes over large areas with the precision needed for the production of integrated circuits. Here we report a novel nanoelectromechanical switched capacitor structure based on vertically aligned multiwalled carbon nanotubes in which the mechanical movement of a nanotube relative to a carbon nanotube based capacitor defines 'ON' and 'OFF' states. The carbon nanotubes are grown with controlled dimensions at pre-defined locations on a silicon substrate in a process that could be made compatible with existing silicon technology, and the vertical orientation allows for a significant decrease in cell area over conventional devices. We have written data to the structure and it should be possible to read data with standard dynamic random access memory sensing circuitry. Simulations suggest that the use of high-k dielectrics in the capacitors will increase the capacitance to the levels needed for dynamic random access memory applications. PMID:18654446

  17. Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures.

    PubMed

    Loke, Desmond; Shi, Luping; Wang, Weijie; Zhao, Rong; Yang, Hongxin; Ng, Lung-Tat; Lim, Kian-Guan; Chong, Tow-Chong; Yeo, Yee-Chia

    2011-06-24

    Phase-change random access memory cells with superlattice-like (SLL) GeTe/Sb(2)Te(3) were demonstrated to have excellent scaling performance in terms of switching speed and operating voltage. In this study, the correlations between the cell size, switching speed and operating voltage of the SLL cells were identified and investigated. We found that small SLL cells can achieve faster switching speed and lower operating voltage compared to the large SLL cells. Fast amorphization and crystallization of 300 ps and 1 ns were achieved in the 40 nm SLL cells, respectively, both significantly faster than those observed in the Ge(2)Sb(2)Te(5) (GST) cells of the same cell size. 40 nm SLL cells were found to switch with low amorphization voltage of 0.9 V when pulse-widths of 5 ns were employed, which is much lower than the 1.6 V required by the GST cells of the same cell size. These effects can be attributed to the fast heterogeneous crystallization, low thermal conductivity and high resistivity of the SLL structures. Nanoscale PCRAM with SLL structure promises applications in high speed and low power memory devices. PMID:21572204

  18. One electron-controlled multiple-valued dynamic random-access-memory

    NASA Astrophysics Data System (ADS)

    Kye, H. W.; Song, B. N.; Lee, S. E.; Kim, J. S.; Shin, S. J.; Choi, J. B.; Yu, Y.-S.; Takahashi, Y.

    2016-02-01

    We propose a new architecture for a dynamic random-access-memory (DRAM) capable of storing multiple values by using a single-electron transistor (SET). The gate of a SET is designed to be connected to a plurality of DRAM unit cells that are arrayed at intersections of word lines and bitlines. In this SET-DRAM hybrid scheme, the multiple switching characteristics of SET enables multiple value data stored in a DRAM unit cell, and this increases the storage functionality of the device. Moreover, since refreshing data requires only a small amount of SET driving current, this enables device operating with low standby power consumption.

  19. SONOS Nonvolatile Memory Cell Programming Characteristics

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2010-01-01

    Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile memory is gaining favor over conventional EEPROM FLASH memory technology. This paper characterizes the SONOS write operation using a nonquasi-static MOSFET model. This includes floating gate charge and voltage characteristics as well as tunneling current, voltage threshold and drain current characterization. The characterization of the SONOS memory cell predicted by the model closely agrees with experimental data obtained from actual SONOS memory cells. The tunnel current, drain current, threshold voltage and read drain current all closely agreed with empirical data.

  20. Spin-Hall-assisted magnetic random access memory

    SciTech Connect

    Brink, A. van den Swagten, H. J. M.; Koopmans, B.; Cosemans, S.; Manfrini, M.; Van Roy, W.; Min, T.; Cornelissen, S.; Vaysset, A.; Departement elektrotechniek , KU Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee

    2014-01-06

    We propose a write scheme for perpendicular spin-transfer torque magnetoresistive random-access memory that significantly reduces the required tunnel current density and write energy. A sub-nanosecond in-plane polarized spin current pulse is generated using the spin-Hall effect, disturbing the stable magnetic state. Subsequent switching using out-of-plane polarized spin current becomes highly efficient. Through evaluation of the Landau-Lifshitz-Gilbert equation, we quantitatively assess the viability of this write scheme for a wide range of system parameters. A typical example shows an eight-fold reduction in tunnel current density, corresponding to a fifty-fold reduction in write energy, while maintaining a 1 ns write time.

  1. Materials selection for oxide-based resistive random access memories

    SciTech Connect

    Guo, Yuzheng; Robertson, John

    2014-12-01

    The energies of atomic processes in resistive random access memories (RRAMs) are calculated for four typical oxides, HfO{sub 2}, TiO{sub 2}, Ta{sub 2}O{sub 5}, and Al{sub 2}O{sub 3}, to define a materials selection process. O vacancies have the lowest defect formation energy in the O-poor limit and dominate the processes. A band diagram defines the operating Fermi energy and O chemical potential range. It is shown how the scavenger metal can be used to vary the O vacancy formation energy, via controlling the O chemical potential, and the mean Fermi energy. The high endurance of Ta{sub 2}O{sub 5} RRAM is related to its more stable amorphous phase and the adaptive lattice rearrangements of its O vacancy.

  2. Complementary resistive switching behavior for conductive bridge random access memory

    NASA Astrophysics Data System (ADS)

    Zheng, Hao-Xuan; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Shih, Chih-Cheng; Zhang, Rui; Chen, Kai-Huang; Wang, Ming-Hui; Zheng, Jin-Cheng; Lo, Ikai; Wu, Cheng-Hsien; Tseng, Yi-Ting; Sze, Simon M.

    2016-06-01

    In this study, a structure of Pt/Cu18Si12O70/TiN has been investigated. By co-sputtering the Cu and SiO2 targets in the switching layer, we can measure the operation mechanism of complementary resistive switching (CRS). This differs from conventional conductive bridge random access memory (CBRAM) that tends to use Cu electrodes rather than Cu18Si12O70. By changing the voltage and compliance current, we can control device operating characteristics. Because Cu distributes differently in the device depending on this setting, the operating end can be located at either the top or bottom electrode. Device current–voltage (I–V) curves are used to demonstrate that the CRS in the CBRAM device is a double-electrode operation.

  3. Taxing Working Memory during Retrieval of Emotional Memories Does Not Reduce Memory Accessibility When Cued with Reminders

    PubMed Central

    van Schie, Kevin; Engelhard, Iris M.; van den Hout, Marcel A.

    2015-01-01

    Earlier studies have shown that when individuals recall an emotional memory while simultaneously doing a demanding dual-task [e.g., playing Tetris, mental arithmetic, making eye movements (EM)], this reduces self-reported vividness and emotionality of the memory. These effects have been found up to 1 week later, but have largely been confined to self-report ratings. This study examined whether this dual-tasking intervention reduces memory performance (i.e., accessibility of emotional memories). Undergraduates (N = 60) studied word-image pairs and rated the retrieved image on vividness and emotionality when cued with the word. Then they viewed the cues and recalled the images with or without making EM. Finally, they re-rated the images on vividness and emotionality. Additionally, fragments from images from all conditions were presented and participants identified which fragment was paired earlier with which cue. Findings showed no effect of the dual-task manipulation on self-reported ratings and latency responses. Several possible explanations for the lack of effects are discussed, but the cued recall procedure in our experiment seems to explain the absence of effects best. The study demonstrates boundaries to the effects of the “dual-tasking” procedure. PMID:25729370

  4. Molecular regulation of effector and memory T cell differentiation

    PubMed Central

    Chang, John T; Wherry, E John; Goldrath, Ananda W

    2015-01-01

    Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream ‘pioneering’ factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy. PMID:25396352

  5. Non-volatile, high density, high speed, Micromagnet-Hall effect Random Access Memory (MHRAM)

    NASA Technical Reports Server (NTRS)

    Wu, Jiin C.; Katti, Romney R.; Stadler, Henry L.

    1991-01-01

    The micromagnetic Hall effect random access memory (MHRAM) has the potential of replacing ROMs, EPROMs, EEPROMs, and SRAMs because of its ability to achieve non-volatility, radiation hardness, high density, and fast access times, simultaneously. Information is stored magnetically in small magnetic elements (micromagnets), allowing unlimited data retention time, unlimited numbers of rewrite cycles, and inherent radiation hardness and SEU immunity, making the MHRAM suitable for ground based as well as spaceflight applications. The MHRAM device design is not affected by areal property fluctuations in the micromagnet, so high operating margins and high yield can be achieved in large scale integrated circuit (IC) fabrication. The MHRAM has short access times (less than 100 nsec). Write access time is short because on-chip transistors are used to gate current quickly, and magnetization reversal in the micromagnet can occur in a matter of a few nanoseconds. Read access time is short because the high electron mobility sensor (InAs or InSb) produces a large signal voltage in response to the fringing magnetic field from the micromagnet. High storage density is achieved since a unit cell consists only of two transistors and one micromagnet Hall effect element. By comparison, a DRAM unit cell has one transistor and one capacitor, and a SRAM unit cell has six transistors.

  6. Asymptomatic memory CD8+ T cells

    PubMed Central

    Khan, Arif Azam; Srivastava, Ruchi; Lopes, Patricia Prado; Wang, Christine; Pham, Thanh T; Cochrane, Justin; Thai, Nhi Thi Uyen; Gutierrez, Lucas; BenMohamed, Lbachir

    2014-01-01

    Generation and maintenance of high quantity and quality memory CD8+ T cells determine the level of protection from viral, bacterial, and parasitic re-infections, and hence constitutes a primary goal for T cell epitope-based human vaccines and immunotherapeutics. Phenotypically and functionally characterizing memory CD8+ T cells that provide protection against herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) infections, which cause blinding ocular herpes, genital herpes, and oro-facial herpes, is critical for better vaccine design. We have recently categorized 2 new major sub-populations of memory symptomatic and asymptomatic CD8+ T cells based on their phenotype, protective vs. pathogenic function, and anatomical locations. In this report we are discussing a new direction in developing T cell-based human herpes vaccines and immunotherapeutics based on the emerging new concept of “symptomatic and asymptomatic memory CD8+ T cells.” PMID:24499824

  7. Accessibility versus Accuracy in Retrieving Spatial Memory: Evidence for Suboptimal Assumed Headings

    ERIC Educational Resources Information Center

    Yerramsetti, Ashok; Marchette, Steven A.; Shelton, Amy L.

    2013-01-01

    Orientation dependence in spatial memory has often been interpreted in terms of accessibility: Object locations are encoded relative to a reference orientation that affords the most accurate access to spatial memory. An open question, however, is whether people naturally use this "preferred" orientation whenever recalling the space. We…

  8. 75 FR 44989 - In the Matter of Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ... December 10, 2008, based on a complaint filed by Rambus, Inc. of Los Altos, California (``Rambus''). 73 FR... COMMISSION In the Matter of Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory... chips having synchronous dynamic random access memory controllers and product containing the same...

  9. The Cost of Accessing an Object's Feature Stored in Visual Working Memory

    PubMed Central

    Woodman, Geoffrey F.; Vecera, Shaun P.

    2010-01-01

    The effects of accessing or retrieving information held in working memory are poorly understood compared to what we know about the nature of information storage in this limited-capacity memory system. Previous studies of object-based attention have often relied upon memory-demanding tasks, and this work could indicate that accessing a piece of information in visual working memory may have deleterious effects upon the other representations being maintained. In the present study, we tested the hypothesis that accessing a feature of an object represented in visual working memory degrades the representations of the other stored objects’ features. Our findings support this hypothesis and point to important new questions about the nature of effects resulting from accessing information stored in visual working memory. PMID:21221413

  10. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems.

    PubMed

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models. PMID:27413363

  11. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems

    PubMed Central

    Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models. PMID:27413363

  12. Modeling of Sonos Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memories (NVSMS) have many advantages. These memories are electrically erasable programmable read-only memories (EEPROMs). They utilize low programming voltages, endure extended erase/write cycles, are inherently resistant to radiation, and are compatible with high-density scaled CMOS for low power, portable electronics. The SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. The SONOS floating gate charge and voltage, tunneling current, threshold voltage, and drain current were characterized during an erase cycle. Comparisons were made between the model predictions and experimental device data.

  13. Modeling of SONOS Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  14. Microstructural Characterization in Reliability Measurement of Phase Change Random Access Memory

    NASA Astrophysics Data System (ADS)

    Bae, Junsoo; Hwang, Kyuman; Park, Kwangho; Jeon, Seongbu; Kang, Dae-hwan; Park, Soonoh; Ahn, Juhyeon; Kim, Seoksik; Jeong, Gitae; Chung, Chilhee

    2011-04-01

    The cell failures after cycling endurance in phase-change random access memory (PRAM) have been classified into three groups, which have been analyzed by transmission electron microscopy (TEM). Both stuck reset of the set state (D0) and stuck set of the reset state (D1) are due to a void created inside GeSbTe (GST) film or thereby lowering density of GST film. The decrease of the both set and reset resistances that leads to the tails from the reset distribution are induced from the Sb increase with cycles.

  15. Working memory capacity and retrieval limitations from long-term memory: an examination of differences in accessibility.

    PubMed

    Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A

    2012-01-01

    In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants. PMID:22800472

  16. Memory CD4 T cells in influenza.

    PubMed

    Zens, Kyra D; Farber, Donna L

    2015-01-01

    Influenza A virus is a significant cause of morbidity and mortality worldwide, particularly among young children and the elderly. Current vaccines induce neutralizing antibody responses directed toward highly variable viral surface proteins, resulting in limited heterosubtypic protection to new viral serotypes. By contrast, memory CD4 T cells recognize conserved viral proteins and are cross-reactive to multiple influenza strains. In humans, virus-specific memory CD4 T cells were found to be the protective correlate in human influenza challenge studies, suggesting their key role in protective immunity. In mouse models, memory CD4 T cells can mediate protective responses to secondary influenza infection independent of B cells or CD8 T cells, and can influence innate immune responses. Importantly, a newly defined, tissue-resident CD4 memory population has been demonstrated to be retained in lung tissue and promote optimal protective responses to an influenza infection. Here, we review the current state of results regarding the generation of memory CD4 T cells following primary influenza infection, mechanisms for their enhanced efficacy in protection from secondary challenge including their phenotype, localization, and function in the context of both mouse models and human infection. We also discuss the generation of memory CD4 T cells in response to influenza vaccines and its future implications for vaccinology. PMID:25005927

  17. Mapping virtual addresses to different physical addresses for value disambiguation for thread memory access requests

    DOEpatents

    Gala, Alan; Ohmacht, Martin

    2014-09-02

    A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memory access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.

  18. Viable chemical approach for patterning nanoscale magnetoresistive random access memory

    SciTech Connect

    Kim, Taeseung; Kim, Younghee; Chen, Jack Kun-Chieh; Chang, Jane P.

    2015-03-15

    A reactive ion etching process with alternating Cl{sub 2} and H{sub 2} exposures has been shown to chemically etch CoFe film that is an integral component in magnetoresistive random access memory (MRAM). Starting with systematic thermodynamic calculations assessing various chemistries and reaction pathways leading to the highest possible vapor pressure of the etch products reactions, the potential chemical combinations were verified by etch rate investigation and surface chemistry analysis in plasma treated CoFe films. An ∼20% enhancement in etch rate was observed with the alternating use of Cl{sub 2} and H{sub 2} plasmas, in comparison with the use of only Cl{sub 2} plasma. This chemical combination was effective in removing metal chloride layers, thus maintaining the desired magnetic properties of the CoFe films. Scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy showed visually and spectroscopically that the metal chloride layers generated by Cl{sub 2} plasma were eliminated with H{sub 2} plasma to yield a clean etch profile. This work suggests that the selected chemistries can be used to etch magnetic metal alloys with a smooth etch profile and this general strategy can be applied to design chemically based etch processes to enable the fabrication of highly integrated nanoscale MRAM devices.

  19. Radiation dosimetry using three-dimensional optical random access memories

    NASA Technical Reports Server (NTRS)

    Moscovitch, M.; Phillips, G. W.

    2001-01-01

    Three-dimensional optical random access memories (3D ORAMs) are a new generation of high-density data storage devices. Binary information is stored and retrieved via a light induced reversible transformation of an ensemble of bistable photochromic molecules embedded in a polymer matrix. This paper describes the application of 3D ORAM materials to radiation dosimetry. It is shown both theoretically and experimentally, that ionizing radiation in the form of heavy charged particles is capable of changing the information originally stored on the ORAM material. The magnitude and spatial distribution of these changes are used as a measure of the absorbed dose, particle type and energy. The effects of exposure on 3D ORAM materials have been investigated for a variety of particle types and energies, including protons, alpha particles and 12C ions. The exposed materials are observed to fluoresce when exposed to laser light. The intensity and the depth of the fluorescence is dependent on the type and energy of the particle to which the materials were exposed. It is shown that these effects can be modeled using Monte Carlo calculations. The model provides a better understanding of the properties of these materials. which should prove useful for developing systems for charged particle and neutron dosimetry/detector applications. c2001 Published by Elsevier Science B.V.

  20. Memory Engram Cells Have Come of Age.

    PubMed

    Tonegawa, Susumu; Liu, Xu; Ramirez, Steve; Redondo, Roger

    2015-09-01

    The idea that memory is stored in the brain as physical alterations goes back at least as far as Plato, but further conceptualization of this idea had to wait until the 20(th) century when two guiding theories were presented: the "engram theory" of Richard Semon and Donald Hebb's "synaptic plasticity theory." While a large number of studies have been conducted since, each supporting some aspect of each of these theories, until recently integrative evidence for the existence of engram cells and circuits as defined by the theories was lacking. In the past few years, the combination of transgenics, optogenetics, and other technologies has allowed neuroscientists to begin identifying memory engram cells by detecting specific populations of cells activated during specific learning epochs and by engineering them not only to evoke recall of the original memory, but also to alter the content of the memory. PMID:26335640

  1. Predicting fluctuations in widespread interest: memory decay and goal-related memory accessibility in internet search trends.

    PubMed

    Masicampo, E J; Ambady, Nalini

    2014-02-01

    Memory and interest respond in similar ways to people's shifting needs and motivations. We therefore tested whether memory and interest might produce similar, observable patterns in people's responses over time. Specifically, the present studies examined whether fluctuations in widespread interest (as measured by Internet search trends) resemble two well-established memory patterns: memory decay and goal-related memory accessibility. We examined national and international events (e.g., Nobel Prize selections, holidays) that produced spikes in widespread interest in certain people and foods. When the events that triggered widespread interest were incidental (e.g., the death of a celebrity), widespread interest conformed to memory decay patterns: It rose quickly, fell slowly according to a power function, and was higher after the event than before it. When the events that triggered widespread interest were goal related (e.g., political elections), widespread interest conformed to patterns of goal-related memory accessibility: It rose slowly, fell quickly according to a sigmoid function, and was lower after the event than before it. Fluctuations in widespread interest over time are thus similar to standard memory patterns observed at the individual level due perhaps to common mechanisms and functions. PMID:23127417

  2. Adult Age Differences in Accessing and Retrieving Information from Long-Term Memory.

    ERIC Educational Resources Information Center

    Petros, Thomas V.; And Others

    1983-01-01

    Investigated adult age differences in accessing and retrieving information from long-term memory. Results showed that older adults (N=26) were slower than younger adults (N=35) at feature extraction, lexical access, and accessing category information. The age deficit was proportionally greater when retrieval of category information was required.…

  3. Remote Memory Access Protocol Target Node Intellectual Property

    NASA Technical Reports Server (NTRS)

    Haddad, Omar

    2013-01-01

    The MagnetoSpheric Multiscale (MMS) mission had a requirement to use the Remote Memory Access Protocol (RMAP) over its SpaceWire network. At the time, no known intellectual property (IP) cores were available for purchase. Additionally, MMS preferred to implement the RMAP functionality with control over the low-level details of the design. For example, not all the RMAP standard functionality was needed, and it was desired to implement only the portions of the RMAP protocol that were needed. RMAP functionality had been previously implemented in commercial off-the-shelf (COTS) products, but the IP core was not available for purchase. The RMAP Target IP core is a VHDL (VHSIC Hardware Description Language description of a digital logic design suitable for implementation in an FPGA (field-programmable gate array) or ASIC (application-specific integrated circuit) that parses SpaceWire packets that conform to the RMAP standard. The RMAP packet protocol allows a network host to access and control a target device using address mapping. This capability allows SpaceWire devices to be managed in a standardized way that simplifies the hardware design of the device, as well as the development of the software that controls the device. The RMAP Target IP core has some features that are unique and not specified in the RMAP standard. One such feature is the ability to automatically abort transactions if the back-end logic does not respond to read/write requests within a predefined time. When a request times out, the RMAP Target IP core automatically retracts the request and returns a command response with an appropriate status in the response packet s header. Another such feature is the ability to control the SpaceWire node or router using RMAP transactions in the extended address range. This allows the SpaceWire network host to manage the SpaceWire network elements using RMAP packets, which reduces the number of protocols that the network host needs to support.

  4. RAPID: A random access picture digitizer, display, and memory system

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.; Rayfield, M.; Eskenazi, R.

    1976-01-01

    RAPID is a system capable of providing convenient digital analysis of video data in real-time. It has two modes of operation. The first allows for continuous digitization of an EIA RS-170 video signal. Each frame in the video signal is digitized and written in 1/30 of a second into RAPID's internal memory. The second mode leaves the content of the internal memory independent of the current input video. In both modes of operation the image contained in the memory is used to generate an EIA RS-170 composite video output signal representing the digitized image in the memory so that it can be displayed on a monitor.

  5. Memory T-cell competition for bone marrow seeding.

    PubMed

    Di Rosa, Francesca; Santoni, Angela

    2003-03-01

    The presence in the bone marrow of memory CD8 T cells is well recognized. However, it is still largely unclear how T-cell migration from the lymphoid periphery to the bone marrow is regulated. In the present report, we show that antigen-specific CD4 T cells, as well as antigen-specific CD8 T cells, localize to the bone marrow of immunized mice, and are sustained there over long periods of time. To investigate the rules governing T-cell migration to the bone marrow, we generated chimeric mice in which the lymphoid periphery contained two genetically or phenotypically distinct groups of T cells, one of which was identical to the host. We then examined whether a distinct type of T cell had an advantage over the others in the colonization of bone marrow. Our results show that whereas ICAM1 and CD18 molecules are both involved in homing to lymph nodes, neither is crucial for T-cell bone marrow colonization. We also observed that memory-phenotype CD44high T cells, but not virgin-type CD44-/low T cells, preferentially home to the bone marrow upon adoptive transfer to normal young mice, but not to thymectomized old recipients where an existing memory T-cell pool precludes their free access. Thus, T-cell colonization of the bone marrow uses distinct molecules from those implicated in lymph node homing, and is regulated both by the properties of the T cell and by the competitive efficacy of other T cells inhabiting the same, saturable niche. This implies that the homing potential of an individual lymphocyte is not merely an intrinsic property of the cell, but rather a property of the lymphoid system taken as a whole. PMID:12603595

  6. Development of Curie point switching for thin film, random access, memory device

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Tchernev, D. I.

    1967-01-01

    Managanese bismuthide films are used in the development of a random access memory device of high packing density and nondestructive readout capability. Memory entry is by Curie point switching using a laser beam. Readout is accomplished by microoptical or micromagnetic scanning.

  7. Control of Access to Memory: The Use of Task Interference as a Behavioral Probe

    ERIC Educational Resources Information Center

    Loft, Shayne; Humphreys, Michael S.; Whitney, Susannah J.

    2008-01-01

    Directed forgetting and prospective memory methods were combined to examine differences in the control of memory access. Between studying two lists of target words, participants were either instructed to forget the first list, or to continue remembering the first list. After study participants performed a lexical decision task with an additional…

  8. Scaling constraints in nanoelectronic random-access memories.

    PubMed

    Amsinck, Christian J; Di Spigna, Neil H; Nackashi, David P; Franzon, Paul D

    2005-10-01

    Nanoelectronic molecular and magnetic tunnel junction (MTJ) MRAM crossbar memory systems have the potential to present significant area advantages (4 to 6F(2)) compared to CMOS-based systems. The scalability of these conductivity-switched RAM arrays is examined by establishing criteria for correct functionality based on the readout margin. Using a combined circuit theoretical modelling and simulation approach, the impact of both the device and interconnect architecture on the scalability of a conductivity-state memory system is quantified. This establishes criteria showing the conditions and on/off ratios for the large-scale integration of molecular devices, guiding molecular device design. With 10% readout margin on the resistive load, a memory device needs to have an on/off ratio of at least 7 to be integrated into a 64 x 64 array, while an on/off ratio of 43 is necessary to scale the memory to 512 x 512. PMID:20818005

  9. The structured memory access architecture: An implementation and performance-evaluation

    SciTech Connect

    Cyr, J.B.

    1986-08-01

    The Structured Memory Access (SMS) architecture implementation presented in this thesis is formulated with the intention of alleviating two well-known inefficiencies that exist in current scalar computer architectures: address generation overhead and memory bandwidth utilization. Furthermore, the SMA architecture introduces an additional level of parallelism which is not present in current pipelined supercomputers, namely, overlapped execution of the access process and execute process on two distinct special-purpose, asynchronously-coupled processors. Each processor executes a separate instruction stream to perform its specific task which, together, are functionally equivalent in a conventional program. Our simulation results show that, for typical numerical programs, the access processor (MAP) is capable of achieving slip, i.e., running sufficiently ahead of the execute processor (CP) so that operand fetch requests for data items required by the CP are issued early enough and rapidly enough for the CP rarely to experience any memory access wait time. In this manner the SMA tolerates long memory access time, albeit high bandwidth, paths to memory without sacrificing performance. Speedups relative to the Cray-1 in scalar mode often exceed two, due to dual processing and reductions in memory wait time. 17 refs., 11 figs., 3 tabs.

  10. Production of RANKL by Memory B Cells

    PubMed Central

    Meednu, Nida; Zhang, Hengwei; Owen, Teresa; Sun, Wen; Wang, Victor; Cistrone, Christopher; Rangel-Moreno, Javier; Xing, Lianping; Anolik, Jennifer H.

    2016-01-01

    Objective Rheumatoid arthritis (RA) is a systemic autoimmune disease that often leads to joint damage. The mechanisms of bone damage in RA are complex, involving activation of bone-resorbing osteoclasts (OCs) by synoviocytes and Th17 cells. This study was undertaken to investigate whether B cells play a direct role in osteoclastogenesis through the production of RANKL, the essential cytokine for OC development. Methods RANKL production by total B cells or sorted B cell subpopulations in the peripheral blood and synovial tissue from healthy donors or anti–cyclic citrullinated peptide–positive patients with RA was examined by flow cytometry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical analysis. To define direct effects on osteoclastogenesis, B cells were cocultured with CD14+ monocytes, and OCs were enumerated by tartrate-resistant acid phosphatase staining. Results Healthy donor peripheral blood B cells were capable of expressing RANKL upon stimulation, with switched memory B cells (CD27+IgD−) having the highest propensity for RANKL production. Notably, switched memory B cells in the peripheral blood from RA patients expressed significantly more RANKL compared to healthy controls. In RA synovial fluid and tissue, memory B cells were enriched and spontaneously expressed RANKL, with some of these cells visualized adjacent to RANK+ OC precursors. Critically, B cells supported OC differentiation in vitro in a RANKL-dependent manner, and the number of OCs was higher in cultures with RA B cells than in those derived from healthy controls. Conclusion These findings reveal the critical importance of B cells in bone homeostasis and their likely contribution to joint destruction in RA. PMID:26554541

  11. High speed magneto-resistive random access memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)

    1992-01-01

    A high speed read MRAM memory element is configured from a sandwich of magnetizable, ferromagnetic film surrounding a magneto-resistive film which may be ferromagnetic or not. One outer ferromagnetic film has a higher coercive force than the other and therefore remains magnetized in one sense while the other may be switched in sense by a switching magnetic field. The magneto-resistive film is therefore sensitive to the amplitude of the resultant field between the outer ferromagnetic films and may be constructed of a high resistivity, high magneto-resistive material capable of higher sensing currents. This permits higher read voltages and therefore faster read operations. Alternate embodiments with perpendicular anisotropy, and in-plane anisotropy are shown, including an embodiment which uses high permeability guides to direct the closing flux path through the magneto-resistive material. High density, high speed, radiation hard, memory matrices may be constructed from these memory elements.

  12. Dynamic Optical Gratings Accessed by Reversible Shape Memory.

    PubMed

    Tippets, Cary A; Li, Qiaoxi; Fu, Yulan; Donev, Eugenii U; Zhou, Jing; Turner, Sara A; Jackson, Anne-Martine S; Ashby, Valerie Sheares; Sheiko, Sergei S; Lopez, Rene

    2015-07-01

    Shape memory polymers (SMPs) have been shown to accurately replicate photonic structures that produce tunable optical responses, but in practice, these responses are limited by the irreversibility of conventional shape memory processes. Here, we report the intensity modulation of a diffraction grating utilizing two-way reversible shape changes. Reversible shifting of the grating height was accomplished through partial melting and recrystallization of semicrystalline poly(octylene adipate). The concurrent variations of the grating shape and diffraction intensity were monitored via atomic force microscopy and first order diffraction measurements, respectively. A maximum reversibility of the diffraction intensity of 36% was repeatable over multiple cycles. To that end, the reversible shape memory process is shown to broaden the functionality of SMP-based optical devices. PMID:26081101

  13. Voltage induced magnetostrictive switching of nanomagnets: Strain assisted strain transfer torque random access memory

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Ghani, Tahir; Young, Ian A.

    2014-06-01

    A spintronic device, called the "strain assisted spin transfer torque (STT) random access memory (RAM)," is proposed by combining the magnetostriction effect and the spin transfer torque effect which can result in a dramatic improvement in the energy dissipation relative to a conventional STT-RAM. Magnetization switching in the device which is a piezoelectric-ferromagnetic heterostructure via the combined magnetostriction and STT effect is simulated by solving the Landau-Lifshitz-Gilbert equation incorporating the influence of thermal noise. The simulations show that, in such a device, each of these two mechanisms (magnetostriction and spin transfer torque) provides in a 90° rotation of the magnetization leading a deterministic 180° switching with a critical current significantly smaller than that required for spin torque alone. Such a scheme is an attractive option for writing magnetic RAM cells.

  14. Voltage induced magnetostrictive switching of nanomagnets: Strain assisted strain transfer torque random access memory

    SciTech Connect

    Khan, Asif Nikonov, Dmitri E.; Manipatruni, Sasikanth; Ghani, Tahir; Young, Ian A.

    2014-06-30

    A spintronic device, called the “strain assisted spin transfer torque (STT) random access memory (RAM),” is proposed by combining the magnetostriction effect and the spin transfer torque effect which can result in a dramatic improvement in the energy dissipation relative to a conventional STT-RAM. Magnetization switching in the device which is a piezoelectric-ferromagnetic heterostructure via the combined magnetostriction and STT effect is simulated by solving the Landau-Lifshitz-Gilbert equation incorporating the influence of thermal noise. The simulations show that, in such a device, each of these two mechanisms (magnetostriction and spin transfer torque) provides in a 90° rotation of the magnetization leading a deterministic 180° switching with a critical current significantly smaller than that required for spin torque alone. Such a scheme is an attractive option for writing magnetic RAM cells.

  15. Hybrid Flexible Resistive Random Access Memory-Gated Transistor for Novel Nonvolatile Data Storage.

    PubMed

    Han, Su-Ting; Zhou, Ye; Chen, Bo; Wang, Chundong; Zhou, Li; Yan, Yan; Zhuang, Jiaqing; Sun, Qijun; Zhang, Hua; Roy, V A L

    2016-01-20

    Here, a single-device demonstration of novel hybrid architecture is reported to achieve programmable transistor nodes which have analogies to flash memory by incorporating a resistive switching random access memory (RRAM) device as a resistive switch gate for field effect transistor (FET) on a flexible substrate. A high performance flexible RRAM with a three-layered structure is fabricated by utilizing solution-processed MoS2 nanosheets sandwiched between poly(methyl methacrylate) polymer layers. Gate coupling with the pentacene-based transistor can be controlled by the RRAM memory state to produce a nonprogrammed state (inactive) and a programmed state (active) with a well-defined memory window. Compared to the reference flash memory device based on the MoS2 floating gate, the hybrid device presents robust access speed and retention ability. Furthermore, the hybrid RRAM-gated FET is used to build an integrated logic circuit and a wide logic window in inverter logic is achieved. The controllable, well-defined memory window, long retention time, and fast access speed of this novel hybrid device may open up new possibilities of realizing fully functional nonvolatile memory for high-performance flexible electronics. PMID:26578160

  16. Asymmetrical access to color and location in visual working memory.

    PubMed

    Rajsic, Jason; Wilson, Daryl E

    2014-10-01

    Models of visual working memory (VWM) have benefitted greatly from the use of the delayed-matching paradigm. However, in this task, the ability to recall a probed feature is confounded with the ability to maintain the proper binding between the feature that is to be reported and the feature (typically location) that is used to cue a particular item for report. Given that location is typically used as a cue-feature, we used the delayed-estimation paradigm to compare memory for location to memory for color, rotating which feature was used as a cue and which was reported. Our results revealed several novel findings: 1) the likelihood of reporting a probed object's feature was superior when reporting location with a color cue than when reporting color with a location cue; 2) location report errors were composed entirely of swap errors, with little to no random location reports; and 3) both colour and location reports greatly benefitted from the presence of nonprobed items at test. This last finding suggests that it is uncertainty over the bindings between locations and colors at memory retrieval that drive swap errors, not at encoding. We interpret our findings as consistent with a representational architecture that nests remembered object features within remembered locations. PMID:25190322

  17. Low power switching of Si-doped Ta2O5 resistive random access memory for high density memory application

    NASA Astrophysics Data System (ADS)

    Kim, Beom Yong; Jeung Lee, Kee; Ock Chung, Su; Gil Kim, Soo; Ko, Young Seok; Kim, Hyeong Soo

    2016-04-01

    We report, for the first time, the resistive switching properties of Si-doped Ta2O5 grown by atomic layer deposition (ALD). The reduced switching current, improved on/off current ratio, and excellent endurance property are demonstrated in the Si-doped Ta2O5 resistive random access memory (ReRAM) devices of 50 nm tech node. The switching mechanism for the Si-doped Ta2O5 resistor is discussed. Si dopants enable switching layer to have conformal distribution of oxygen vacancy and easily form conductive filament. This leads to higher on/off current ratio at even low operation current of 5-10 µA. Finally, one selector-one resistor (1S1R) ReRAM was developed for large cell array application. For the optimized 1S1R stack, 0.2 µA of off current and 5.0 of on/off current ratio were successfully achieved at 10 µA of low operation current.

  18. Effector and memory T cell subsets in the response to bovine tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term (i.e., 14 days) cultured IFN-gamma ELISPOT assays of peripheral blood mononuclear cells (PBMC) are used to access T cell central memory (Tcm) responses in both cattle and humans. With bovine tuberculosis, vaccine-elicited long-term IFN-gamma ELISPOT response correlates with protection; how...

  19. Radioactive hot cell access hole decontamination machine

    DOEpatents

    Simpson, William E.

    1982-01-01

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  20. Conductive-bridging random access memory: challenges and opportunity for 3D architecture.

    PubMed

    Jana, Debanjan; Roy, Sourav; Panja, Rajeswar; Dutta, Mrinmoy; Rahaman, Sheikh Ziaur; Mahapatra, Rajat; Maikap, Siddheswar

    2015-01-01

    The performances of conductive-bridging random access memory (CBRAM) have been reviewed for different switching materials such as chalcogenides, oxides, and bilayers in different structures. The structure consists of an inert electrode and one oxidized electrode of copper (Cu) or silver (Ag). The switching mechanism is the formation/dissolution of a metallic filament in the switching materials under external bias. However, the growth dynamics of the metallic filament in different switching materials are still debated. All CBRAM devices are switching under an operation current of 0.1 μA to 1 mA, and an operation voltage of ±2 V is also needed. The device can reach a low current of 5 pA; however, current compliance-dependent reliability is a challenging issue. Although a chalcogenide-based material has opportunity to have better endurance as compared to an oxide-based material, data retention and integration with the complementary metal-oxide-semiconductor (CMOS) process are also issues. Devices with bilayer switching materials show better resistive switching characteristics as compared to those with a single switching layer, especially a program/erase endurance of >10(5) cycles with a high speed of few nanoseconds. Multi-level cell operation is possible, but the stability of the high resistance state is also an important reliability concern. These devices show a good data retention of >10(5) s at >85°C. However, more study is needed to achieve a 10-year guarantee of data retention for non-volatile memory application. The crossbar memory is benefited for high density with low power operation. Some CBRAM devices as a chip have been reported for proto-typical production. This review shows that operation current should be optimized for few microamperes with a maintaining speed of few nanoseconds, which will have challenges and also opportunities for three-dimensional (3D) architecture. PMID:25977660

  1. Resident memory T cells in human health and disease

    PubMed Central

    Clark, Rachael A.

    2015-01-01

    Resident memory T cells are non-recirculating memory T cells that persist long term in epithelial barrier tissues, including the gastrointestinal tract, lung, skin and reproductive tract. Resident memory T cells persist in the absence of antigens, have impressive effector functions and provide rapid on-site immune protection against known pathogens in peripheral tissues. A fundamentally distinct gene expression program differentiates resident memory T cells from circulating T cells. Although these cells likely evolved to provide rapid immune protection against pathogens, autoreactive, aberrantly activated and malignant resident memory cells contribute to numerous human inflammatory diseases including mycosis fungoides and psoriasis. This review will discuss both the science and medicine of resident memory T cells, exploring how these cells contribute to healthy immune function and discussing what is known about how these cells contribute to human inflammatory and autoimmune diseases. PMID:25568072

  2. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    PubMed

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent. PMID:26367901

  3. Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited)

    SciTech Connect

    Ando, K. Yuasa, S.; Fujita, S.; Ito, J.; Yoda, H.; Suzuki, Y.; Nakatani, Y.; Miyazaki, T.

    2014-05-07

    Most parts of present computer systems are made of volatile devices, and the power to supply them to avoid information loss causes huge energy losses. We can eliminate this meaningless energy loss by utilizing the non-volatile function of advanced spin-transfer torque magnetoresistive random-access memory (STT-MRAM) technology and create a new type of computer, i.e., normally off computers. Critical tasks to achieve normally off computers are implementations of STT-MRAM technologies in the main memory and low-level cache memories. STT-MRAM technology for applications to the main memory has been successfully developed by using perpendicular STT-MRAMs, and faster STT-MRAM technologies for applications to the cache memory are now being developed. The present status of STT-MRAMs and challenges that remain for normally off computers are discussed.

  4. Trilayer Tunnel Selectors for Memristor Memory Cells.

    PubMed

    Choi, Byung Joon; Zhang, Jiaming; Norris, Kate; Gibson, Gary; Kim, Kyung Min; Jackson, Warren; Zhang, Min-Xian Max; Li, Zhiyong; Yang, J Joshua; Williams, R Stanley

    2016-01-13

    An integrated memory cell with a mem-ristor and a trilayer crested barrier selector, showing repeatable nonlinear current-voltage switching loops is presented. The fully atomic-layer-deposited TaN1+x /Ta2 O5 /TaN1+x crested barrier selector yields a large nonlinearity (>10(4) ), high endurance (>10(8) ), low variability, and low temperature dependence. PMID:26584142

  5. Symmetric Data Objects and Remote Memory Access Communication for Fortran 95-Applications.

    SciTech Connect

    Nieplocha, Jarek; Baxter, Douglas J.; Tipparaju, Vinod; Rasmussen, Craig; Numrich, Robert W.

    2005-08-01

    Symmetric data objects have been introduced by Cray Inc. in context of SHMEM remote memory access communication on Cray T3D/E systems and later adopted by SGI for their Origin servers. Symmetric data objects greatly simplify parallel programming by allowing to reference remote instance of a data structure by specifying address of the local counterpart. The current paper describes how symmetric data objects and remote memory access communication could be implemented in Fortran-95 without requiring specialized hardware or compiler support. NAS Multi-Grid parallel benchmark was used as an application example and demonstrated competitive performance to the standard MPI implementation

  6. Evaluation of Data Retention Characteristics for Ferroelectric Random Access Memories (FRAMs)

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Teverovsky, Alexander

    2001-01-01

    Data retention and fatigue characteristics of 64 Kb lead zirconate titanate (PZT)-based Ferroelectric Random Access Memories (FRAMs) microcircuits manufactured by Ramtron were examined over temperature range from -85 C to +310 C for ceramic packaged parts and from -85 C to +175 C for plastic parts, during retention periods up to several thousand hours. Intrinsic failures, which were caused by a thermal degradation of the ferroelectric cells, occurred in ceramic parts after tens or hundreds hours of aging at temperatures above 200 C. The activation energy of the retention test failures was 1.05 eV and the extrapolated mean-time-to-failure (MTTF) at room temperature was estimated to be more than 280 years. Multiple write-read cycling (up to 3x10(exp 7)) during the fatigue testing of plastic and ceramic parts did not result in any parametric or functional failures. However, operational currents linearly decreased with the logarithm of number of cycles thus indicating fatigue process in PZT films. Plastic parts, that had more recent date code as compared to ceramic parts, appeared to be using die with improved process technology and showed significantly smaller changes in operational currents and data access times.

  7. Knowledge Accessibility, Achievement Goals, and Memory Strategy Maintenance

    ERIC Educational Resources Information Center

    Escribe, Christian; Huet, Nathalie

    2005-01-01

    Background: An important aim of educational psychology is to account for the difficulties in cognitive strategy maintenance. Possible explanations may be found in developmental studies concerning the interdependence of knowledge accessibility and strategy use, and in current achievement goal models which assume that individuals with a learning…

  8. Program partitioning for NUMA multiprocessor computer systems. [Nonuniform memory access

    SciTech Connect

    Wolski, R.M.; Feo, J.T. )

    1993-11-01

    Program partitioning and scheduling are essential steps in programming non-shared-memory computer systems. Partitioning is the separation of program operations into sequential tasks, and scheduling is the assignment of tasks to processors. To be effective, automatic methods require an accurate representation of the model of computation and the target architecture. Current partitioning methods assume today's most prevalent models -- macro dataflow and a homogeneous/two-level multicomputer system. Based on communication channels, neither model represents well the emerging class of NUMA multiprocessor computer systems consisting of hierarchical read/write memories. Consequently, the partitions generated by extant methods do not execute well on these systems. In this paper, the authors extend the conventional graph representation of the macro-dataflow model to enable mapping heuristics to consider the complex communication options supported by NUMA architectures. They describe two such heuristics. Simulated execution times of program graphs show that the model and heuristics generate higher quality program mappings than current methods for NUMA architectures.

  9. Electrical Evaluation of RCA MWS5501D Random Access Memory, Volume 2, Appendix a

    NASA Technical Reports Server (NTRS)

    Klute, A.

    1979-01-01

    The electrical characterization and qualification test results are presented for the RCA MWS5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. The address access time, address readout time, the data hold time, and the data setup time are some of the results surveyed.

  10. Making Physical Activity Accessible to Older Adults with Memory Loss: A Feasibility Study

    ERIC Educational Resources Information Center

    Logsdon, Rebecca G.; McCurry, Susan M.; Pike, Kenneth C.; Teri, Linda

    2009-01-01

    Purpose: For individuals with mild cognitive impairment (MCI), memory loss may prevent successful engagement in exercise, a key factor in preventing additional disability. The Resources and Activities for Life Long Independence (RALLI) program uses behavioral principles to make exercise more accessible for these individuals. Exercises are broken…

  11. 77 FR 26789 - Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory Controllers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... violation of section 337 in the infringement of certain patents. 73 FR 75131. The principal respondent was... order. 75 FR 44989-90 (July 30, 2010). The Commission also issued cease and desist orders against those... COMMISSION Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory Controllers...

  12. Evaluation of Remote Memory Access Communication on the Cray XT3

    SciTech Connect

    Kot, Andriy; Tipparaju, Vinod; Nieplocha, Jarek; Bruggencate, Monika T.; Chrisochoides, Nikos

    2007-03-26

    This paper evaluates remote memory access (RMA) communication capabilities and performance on the Cray XT3. We discuss properties of the network hardware and Portals networking software layer and corresponding implementation issues for SHMEM and ARMCI portable RMA interfaces. The performance of these interfaces is studied and compared to MPI performance

  13. 76 FR 2336 - Dynamic Random Access Memory Semiconductors From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ...On September 14, 2010, the Department of Commerce published in the Federal Register its preliminary results of administrative review of the countervailing duty order on dynamic random access memory semiconductors from the Republic of Korea for the period January 1, 2008, through August 10, 2008. We provided interested parties with an opportunity to comment on the preliminary results. Our......

  14. Fencing direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Mamidala, Amith R.

    2013-09-03

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  15. Fencing direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A; Mamidala, Amith R

    2014-02-11

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  16. 75 FR 20564 - Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... Antidumping and Countervailing Duty Administrative Reviews and Requests for Revocation in Part, 74 FR 48224... International Trade Administration Dynamic Random Access Memory Semiconductors from the Republic of Korea... administrative review of the countervailing duty order on dynamic random access memory semiconductors from...

  17. 75 FR 44283 - In the Matter of Certain Dynamic Random Access Memory Semiconductors and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... America Corp. of Milpitas, California (collectively ``complainants''). 75 FR 14467-68 (March 25, 2010... COMMISSION In the Matter of Certain Dynamic Random Access Memory Semiconductors and Products Containing Same... within the United States after importation of certain dynamic random access memory semiconductors...

  18. The Effect of Shape Memory on Red Blood Cell Motions

    NASA Astrophysics Data System (ADS)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2013-11-01

    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  19. Shared direct memory access on the Explorer 2-LX

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1990-01-01

    Advances in Expert System technology and Artificial Intelligence have provided a framework for applying automated Intelligence to the solution of problems which were generally perceived as intractable using more classical approaches. As a result, hybrid architectures and parallel processing capability have become more common in computing environments. The Texas Instruments Explorer II-LX is an example of a machine which combines a symbolic processing environment, and a computationally oriented environment in a single chassis for integrated problem solutions. This user's manual is an attempt to make these capabilities more accessible to a wider range of engineers and programmers with problems well suited to solution in such an environment.

  20. Set statistics in conductive bridge random access memory device with Cu/HfO{sub 2}/Pt structure

    SciTech Connect

    Zhang, Meiyun; Long, Shibing Wang, Guoming; Xu, Xiaoxin; Li, Yang; Liu, Qi; Lv, Hangbing; Liu, Ming; Lian, Xiaojuan; Miranda, Enrique; Suñé, Jordi

    2014-11-10

    The switching parameter variation of resistive switching memory is one of the most important challenges in its application. In this letter, we have studied the set statistics of conductive bridge random access memory with a Cu/HfO{sub 2}/Pt structure. The experimental distributions of the set parameters in several off resistance ranges are shown to nicely fit a Weibull model. The Weibull slopes of the set voltage and current increase and decrease logarithmically with off resistance, respectively. This experimental behavior is perfectly captured by a Monte Carlo simulator based on the cell-based set voltage statistics model and the Quantum Point Contact electron transport model. Our work provides indications for the improvement of the switching uniformity.

  1. Analytical Model of Nano-Electromechanical (NEM) Nonvolatile Memory Cells

    NASA Astrophysics Data System (ADS)

    Han, Boram; Choi, Woo Young

    The fringe field effects of nano-electromechanical (NEM) nonvolatile memory cells have been investigated analytically for the accurate evaluation of NEM memory cells. As the beam width is scaled down, fringe field effect becomes more severe. It has been observed that pull-in, release and hysteresis voltage decrease more than our prediction. Also, the fringe field on cell characteristics has been discussed.

  2. Current Development Status and Future Challenges of Ferroelectric Random Access Memory Technologies

    NASA Astrophysics Data System (ADS)

    Lee, Sungyung; Kim, Kinam

    2006-04-01

    For ferroelectric random access memory (FRAM) to be beneficial in future mobile devices, high-density FRAM with nm scaled cell should be developed. We have succeeded in scaling further the cell size of one-pass transistor and one-storage capacitor (1T1C) FRAM down to 0.27 μm2 at 150 nm technology node. Owing to new SrRuO3 (SRO) electrode technology along with ultrathin PbZrTiO3 (PZT) using metal organic chemical vapor deposition (MOCVD) technology, two-dimensional (2-D) metal-insulator-metal (MIM) ferroelectric capacitor was successfully scaled down vertically to 200 nm. By the application of a new double hard mask capacitor etching technology, 0.11-μm2-area 200-nm-thick 2-D PZT capacitor was successfully isolated with 180 nm spacing. As a result, a high remanent polarization of 40 μC/cm2 was obtained at 1.6 V on a 0.11 μm2 ferroelectric storage capacitor of the 0.27 μm2 cell 1T1C FRAM. Great advances in three-dimensional (3-D) ferroelectric capacitor, which is essential for 6-8 F2 cell 1T1C FRAM at nm scaled technology node, have been made by introducing a new atomic layer deposition (ALD) method for 3-D electrode and a novel MOCVD PZT deposition for 3-D PZT. As a result, for the first time, robust hysteresis was obtained from a 3-D PZT capacitor.

  3. Optical Shared Memory Computing and Multiple Access Protocols for Photonic Networks

    NASA Astrophysics Data System (ADS)

    Li, Kuang-Yu.

    In this research we investigate potential applications of optics in massively parallel computer systems, especially focusing on design issues in three-dimensional optical data storage and free-space photonic networks. An optical implementation of a shared memory uses a single photorefractive crystal and can realize the set of memory modules in a digital shared memory computer. A complete instruction set consists of R sc EAD, W sc RITE, S sc ELECTIVE E sc RASE, and R sc EFRESH, which can be applied to any memory module independent of (and in parallel with) instructions to the other memory modules. In addition, a memory module can execute a sequence of R sc EAD operations simultaneously with the execution of a W sc RITE operation to accommodate differences in optical recording and readout times common to optical volume storage media. An experimental shared memory system is demonstrated and its projected performance is analyzed. A multiplexing technique is presented to significantly reduce both grating- and beam-degeneracy crosstalk in volume holographic systems, by incorporating space, angle, and wavelength as the multiplexing parameters. In this approach, each hologram, which results from the interference between a single input node and an object array, partially overlaps with the other holograms in its neighborhood. This technique can offer improved interconnection density, optical throughput, signal fidelity, and space-bandwidth product utilization. Design principles and numerical simulation results are presented. A free-space photonic cellular hypercube parallel computer, with emphasis on the design of a collisionless multiple access protocol, is presented. This design incorporates wavelength-, space-, and time-multiplexing to achieve multiple access, wavelength reuse, dense connectivity, collisionless communications, and a simple control mechanism. Analytic models based on semi-Markov processes are employed to analyze this protocol. The performance of the

  4. Effects of erbium doping of indium tin oxide electrode in resistive random access memory

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hsun; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Pan, Chih-Hung; Lin, Chih-Yang; Jin, Fu-Yuan; Chen, Min-Chen; Huang, Hui-Chun; Lo, Ikai; Zheng, Jin-Cheng; Sze, Simon M.

    2016-03-01

    Identical insulators and bottom electrodes were fabricated and capped by an indium tin oxide (ITO) film, either undoped or doped with erbium (Er), as a top electrode. This distinctive top electrode dramatically altered the resistive random access memory (RRAM) characteristics, for example, lowering the operation current and enlarging the memory window. In addition, the RESET voltage increased, whereas the SET voltage remained almost the same. A conduction model of Er-doped ITO is proposed through current-voltage (I-V) measurement and current fitting to explain the resistance switching mechanism of Er-doped ITO RRAM and is confirmed by material analysis and reliability tests.

  5. Large Capacity of Conscious Access for Incidental Memories in Natural Scenes.

    PubMed

    Kaunitz, Lisandro N; Rowe, Elise G; Tsuchiya, Naotsugu

    2016-09-01

    When searching a crowd, people can detect a target face only by direct fixation and attention. Once the target is found, it is consciously experienced and remembered, but what is the perceptual fate of the fixated nontarget faces? Whereas introspection suggests that one may remember nontargets, previous studies have proposed that almost no memory should be retained. Using a gaze-contingent paradigm, we asked subjects to visually search for a target face within a crowded natural scene and then tested their memory for nontarget faces, as well as their confidence in those memories. Subjects remembered up to seven fixated, nontarget faces with more than 70% accuracy. Memory accuracy was correlated with trial-by-trial confidence ratings, which implies that the memory was consciously maintained and accessed. When the search scene was inverted, no more than three nontarget faces were remembered. These findings imply that incidental memory for faces, such as those recalled by eyewitnesses, is more reliable than is usually assumed. PMID:27507869

  6. Primer: making sense of T-cell memory.

    PubMed

    Beverley, Peter C L

    2008-01-01

    Protective memory is a key property of the immune system. Pathogen-associated molecular patterns of invading organisms deliver signals to pattern-recognition receptors that activate the innate immune system. Ligation of the T-cell receptor by peptides bound to MHC antigens and presented by dendritic cells, together with signals produced by the activated innate immune system, initiate T-cell responses. The nature of the T-cell response, consisting of phases of clonal expansion and contraction, and differentiation to effector and memory cells, however, is determined both by the properties of the antigen and the co-stimuli produced by the innate immune system. Short-lived effector and longer-lived memory T cells are generated during primary responses; after the death of most of the effectors, memory cells remain. Memory cells are heterogeneous in phenotype and function; subsets include the relatively quiescent central and more activated effector memory cells, as well as cells able to promote inflammation, help antibody production or regulate other immune responses. Understanding the properties of memory cells will help in the rational design of vaccines for 'difficult' organisms or cancer, as well as immunotherapies for autoimmune diseases. PMID:18172448

  7. Design of Unstructured Adaptive (UA) NAS Parallel Benchmark Featuring Irregular, Dynamic Memory Accesses

    NASA Technical Reports Server (NTRS)

    Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.

  8. Memory NK Cells Take Out the (Mitochondrial) Garbage.

    PubMed

    Wagner, Julia A; Fehniger, Todd A

    2015-08-18

    The molecular mechanisms important to generate innate natural killer cell "memory" are poorly understood. In this issue of Immunity, O'Sullivan et al. (2015) demonstrate that mitophagy plays a critical role in natural killer cell memory formation following viral infection. PMID:26287678

  9. Improved Writing-Conductor Designs For Magnetic Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1994-01-01

    Writing currents reduced to practical levels. Improved conceptual designs for writing conductors in micromagnet/Hall-effect random-access integrated-circuit memory reduces electrical current needed to magnetize micromagnet in each memory cell. Basic concept of micromagnet/Hall-effect random-access memory presented in "Magnetic Analog Random-Access Memory" (NPO-17999).

  10. Dramatic reduction of read disturb through pulse width control in spin torque random access memory

    NASA Astrophysics Data System (ADS)

    Wang, Zihui; Wang, Xiaobin; Gan, Huadong; Jung, Dongha; Satoh, Kimihiro; Lin, Tsann; Zhou, Yuchen; Zhang, Jing; Huai, Yiming; Chang, Yao-Jen; Wu, Te-ho

    2013-09-01

    Magnetizations dynamic effect in low current read disturb region is studied both experimentally and theoretically. Dramatic read error rate reduction through read pulse width control is theoretically predicted and experimentally observed. The strong dependence of read error rate upon pulse width contrasts conventional energy barrier approach and can only be obtained considering detailed magnetization dynamics at long time thermal magnetization reversal region. Our study provides a design possibility for ultra-fast low current spin torque random access memory.

  11. Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 5, Appendix D

    NASA Technical Reports Server (NTRS)

    Klute, A.

    1979-01-01

    The electrical characterization and qualification test results are presented for the RCA MWS 5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. Average input high current, worst case input high current, output low current, and data setup time are some of the results presented.

  12. Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 4, Appendix C

    NASA Technical Reports Server (NTRS)

    Klute, A.

    1979-01-01

    The electrical characterization and qualification test results are presented for the RCA MWS5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. Statistical analysis data is supplied along with write pulse width, read cycle time, write cycle time, and chip enable time data.

  13. Natural killer cells: walking three paths down memory lane.

    PubMed

    Min-Oo, Gundula; Kamimura, Yosuke; Hendricks, Deborah W; Nabekura, Tsukasa; Lanier, Lewis L

    2013-06-01

    Immunological memory has traditionally been regarded as a unique feature of the adaptive immune response, mediated in an antigen-specific manner by T and B lymphocytes. All other hematopoietic cells, including natural killer (NK) cells, are classified as innate immune cells, which have been considered short-lived but can respond rapidly against pathogens in a manner not thought to be driven by antigen. Interestingly, NK cells have recently been shown to survive long term after antigen exposure and subsequently mediate antigen-specific recall responses. In this review, we address the similarities between, and the controversies surrounding, three major viewpoints of NK memory that have arisen from these recent studies: (i) mouse cytomegalovirus (MCMV)-induced memory; (ii) cytokine-induced memory; and (iii) liver-restricted memory cells. PMID:23499559

  14. Memory T cells in organ transplantation: progress and challenges.

    PubMed

    Espinosa, Jaclyn R; Samy, Kannan P; Kirk, Allan D

    2016-06-01

    Antigen-experienced T cells, also known as memory T cells, are functionally and phenotypically distinct from naive T cells. Their enhanced expression of adhesion molecules and reduced requirement for co-stimulation enables them to mount potent and rapid recall responses to subsequent antigen encounters. Memory T cells generated in response to prior antigen exposures can cross-react with other nonidentical, but similar, antigens. This heterologous cross-reactivity not only enhances protective immune responses, but also engenders de novo alloimmunity. This latter characteristic is increasingly recognized as a potential barrier to allograft acceptance that is worthy of immunotherapeutic intervention, and several approaches have been investigated. Calcineurin inhibition effectively controls memory T-cell responses to allografts, but this benefit comes at the expense of increased infectious morbidity. Lymphocyte depletion eliminates allospecific T cells but spares memory T cells to some extent, such that patients do not completely lose protective immunity. Co-stimulation blockade is associated with reduced adverse-effect profiles and improved graft function relative to calcineurin inhibition, but lacks efficacy in controlling memory T-cell responses. Targeting the adhesion molecules that are upregulated on memory T cells might offer additional means to control co-stimulation-blockade-resistant memory T-cell responses. PMID:26923209

  15. Immigration, language proficiency, and autobiographical memories: Lifespan distribution and second-language access.

    PubMed

    Esposito, Alena G; Baker-Ward, Lynne

    2016-08-01

    This investigation examined two controversies in the autobiographical literature: how cross-language immigration affects the distribution of autobiographical memories across the lifespan and under what circumstances language-dependent recall is observed. Both Spanish/English bilingual immigrants and English monolingual non-immigrants participated in a cue word study, with the bilingual sample taking part in a within-subject language manipulation. The expected bump in the number of memories from early life was observed for non-immigrants but not immigrants, who reported more memories for events surrounding immigration. Aspects of the methodology addressed possible reasons for past discrepant findings. Language-dependent recall was influenced by second-language proficiency. Results were interpreted as evidence that bilinguals with high second-language proficiency, in contrast to those with lower second-language proficiency, access a single conceptual store through either language. The final multi-level model predicting language-dependent recall, including second-language proficiency, age of immigration, internal language, and cue word language, explained ¾ of the between-person variance and (1)/5 of the within-person variance. We arrive at two conclusions. First, major life transitions influence the distribution of memories. Second, concept representation across multiple languages follows a developmental model. In addition, the results underscore the importance of considering language experience in research involving memory reports. PMID:26274061

  16. Probing cell activity in random access modality

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; Crocini, C.; Lotti, J.; Coppini, R.; Ferrantini, C.; Tesi, C.; Yan, P.; Loew, L. M.; Cerbai, E.; Poggesi, C.; Pavone, F. S.

    2013-06-01

    We combined the advantage of an ultrafast random access microscope with novel labelling technologies to study the intra- and inter-cellular action potential propagation in neurons and cardiac myocytes with sub-millisecond time resolution. The random accesses microscopy was used in combination with a new fluorinated voltage sensitive dye with improved photostability to record membrane potential from multiple Purkinje cells with near simultaneous sampling. The RAMP system rapidly scanned between lines drawn in the membranes of neurons to perform multiplex measurements of the TPF signal. This recording was achieved by rapidly positioning the laser excitation with the AOD to sample a patch of membrane from each cell in <100 μs for recording from five cells, multiplexing permits a temporal resolution of 400 μs sufficient to capture every spike. The system is capable to record spontaneous activity over 800 ms from five neighbouring cells simultaneously, showing that spiking is not temporally correlated. The system was also used to investigate the electrical properties of tubular system (TATS) in isolated rat ventricular myocytes.

  17. Ge2Sb2Te5 Confined Structures and Integration of 64 Mb Phase-Change Random Access Memory

    NASA Astrophysics Data System (ADS)

    Yeung, Fai; Ahn, Su-Jin; Hwang, Young-Nam; Jeong, Chang-Wook; Song, Yoon-Jong; Lee, Su-Youn; Lee, Se-Ho; Ryoo, Kyung-Chang; Park, Jae-Hyun; Shin, Jae-Min; Jeong, Won-Cheol; Kim, Young-Tae; Koh, Gwan-Hyeob; Jeong, Gi-Tae; Jeong, Hong-Sik; Kim, Kinam

    2005-04-01

    Phase-change random access memory is considered a potential challenger for conventional memories, such as dynamic random access memory and flash memory due to its numerous advantages. Nevertheless, high reset current is the ultimate problem in developing high-density phase-change random access memory (PRAM). We focus on the adoption of Ge2Sb2Te5 confined structures to achieve lower reset currents. By changing from a normal to a GST confined structure, the reset current drops to as low as 0.8 mA. Eventually, our integrated 64 Mb PRAM based on 0.18 μm CMOS technology offers a large sensing margin: Rreset ˜200 kΩ and Rset ˜2 kΩ, as well as reasonable reliability: an endurance of 1.0× 109 cycles and a retention time of 2 years at 85°C.

  18. Comprehension of Linguistic Dependencies: Speed-Accuracy Tradeoff Evidence for Direct-Access Retrieval From Memory

    PubMed Central

    Foraker, Stephani; McElree, Brian

    2012-01-01

    Comprehenders can rapidly and efficiently interpret expressions with various types of non-adjacent dependencies. In the sentence The boy that the teacher warned fell, boy is readily interpreted as the subject of the verb fall despite the fact that a relative clause, that the teacher warned, intervenes between the two dependent elements. We review research investigating three memory operations proposed for resolving this and other types of non-adjacent dependencies: serial search retrieval, in which the dependent constituent is recovered by a search process through representations in memory, direct-access retrieval in which the dependent constituent is recovered directly by retrieval cue operations without search, and active maintenance of the dependent constituent in focal attention. Studies using speed-accuracy tradeoff methodology to examine the full timecourse of interpreting a wide range of non-adjacent dependencies indicate that comprehenders retrieve dependent constituents with a direct-access operation, consistent with the claim that representations formed during comprehension are accessed with a cue-driven, content-addressable retrieval process. The observed timecourse profiles are inconsistent with a broad class of models based on several search operations for retrieval. The profiles are also inconsistent with active maintenance of a constituent while concurrently processing subsequent material, and suggest that, with few exceptions, direct-access retrieval is required to process non-adjacent dependencies. PMID:22448181

  19. Daily Access to Sucrose Impairs Aspects of Spatial Memory Tasks Reliant on Pattern Separation and Neural Proliferation in Rats

    ERIC Educational Resources Information Center

    Reichelt, Amy C.; Morris, Margaret J.; Westbrook, Reginald Frederick

    2016-01-01

    High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects…

  20. Encoding and Retrieval Processes Involved in the Access of Source Information in the Absence of Item Memory

    ERIC Educational Resources Information Center

    Ball, B. Hunter; DeWitt, Michael R.; Knight, Justin B.; Hicks, Jason L.

    2014-01-01

    The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were "related" to the target item but never actually studied.…

  1. Magnetoelectric assisted 180° magnetization switching for electric field addressable writing in magnetoresistive random-access memory.

    PubMed

    Wang, Zhiguang; Zhang, Yue; Wang, Yaojin; Li, Yanxi; Luo, Haosu; Li, Jiefang; Viehland, Dwight

    2014-08-26

    Magnetization-based memories, e.g., hard drive and magnetoresistive random-access memory (MRAM), use bistable magnetic domains in patterned nanomagnets for information recording. Electric field (E) tunable magnetic anisotropy can lower the energy barrier between two distinct magnetic states, promising reduced power consumption and increased recording density. However, integration of magnetoelectric heterostructure into MRAM is a highly challenging task owing to the particular architecture requirements of each component. Here, we show an epitaxial growth of self-assembled CoFe2O4 nanostripes with bistable in-plane magnetizations on Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) substrates, where the magnetic switching can be triggered by E-induced elastic strain effect. An unprecedented magnetic coercive field change of up to 600 Oe was observed with increasing E. A near 180° magnetization rotation can be activated by E in the vicinity of the magnetic coercive field. These findings might help to solve the 1/2-selection problem in traditional MRAM by providing reduced magnetic coercive field in E field selected memory cells. PMID:25093903

  2. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance

    PubMed Central

    Steinert, Elizabeth M.; Schenkel, Jason M.; Fraser, Kathryn A.; Beura, Lalit K.; Manlove, Luke S.; Igyártó, Botond Z.; Southern, Peter J.; Masopust, David

    2015-01-01

    Summary Memory CD8 T cells protect against intracellular pathogens by scanning host cell surfaces, thus infection detection rates depend on memory cell number and distribution. Population analyses rely on isolation from whole organs and interpretation is predicated on presumptions of near complete cell recovery. Paradigmatically, memory is parsed into central, effector, and resident subsets, ostensibly defined by immunosurveillance patterns, but in practice identified by phenotypic markers. Because isolation methods ultimately inform models of memory T cell differentiation, protection, and vaccine translation, we tested their validity via parabiosis and quantitative immunofluorescence microscopy of a mouse memory CD8 T cell population. We report three major findings: lymphocyte isolation fails to recover most cells and biases against certain subsets, residents greatly outnumber recirculating cells within nonlymphoid tissues, and memory subset homing to inflammation does not conform to previously hypothesized migration patterns. These results indicate that most host cells are surveyed for reinfection by segregated residents rather than by recirculating cells that migrate throughout the blood and body. PMID:25957682

  3. Regulated selection of germinal-center cells into the memory B cell compartment.

    PubMed

    Shinnakasu, Ryo; Inoue, Takeshi; Kometani, Kohei; Moriyama, Saya; Adachi, Yu; Nakayama, Manabu; Takahashi, Yoshimasa; Fukuyama, Hidehiro; Okada, Takaharu; Kurosaki, Tomohiro

    2016-07-01

    Despite the importance of memory B cells in protection from reinfection, how such memory cells are selected and generated during germinal-center (GC) reactions remains unclear. We found here that light-zone (LZ) GC B cells with B cell antigen receptors (BCRs) of lower affinity were prone to enter the memory B cell pool. Mechanistically, cells in this memory-prone fraction had higher expression of the transcriptional repressor Bach2 than that of their counterparts with BCRs of higher affinity. Haploinsufficiency of Bach2 resulted in reduced generation of memory B cells, independently of suppression of the gene encoding the transcription factor Blimp-1. Bach2 expression in GC cells was inversely correlated with the strength of help provided by T cells. Thus, we propose an instructive model in which weak help from T cells maintains relatively high expression of Bach2, which predisposes GC cells to enter the memory pool. PMID:27158841

  4. Group 2 innate lymphoid cells license dendritic cells to potentiate memory T helper 2 cell responses

    PubMed Central

    Halim, Timotheus YF; Hwang, You Yi; Scanlon, Seth T; Zaghouani, Habib; Garbi, Natalio; Fallon, Padraic G; McKenzie, Andrew NJ

    2015-01-01

    Rapid memory CD4+ T helper 2 (TH2) cell activation during allergic inflammation requires their recruitment into the affected tissue. Here we demonstrate that group 2 innate lymphoid cells (ILC2) play a critical role in memory TH2 cell responses, with targeted ILC2 depletion profoundly impairing TH2 cell localization to the lungs and skin of sensitized mice after allergen re-challenge. ILC2-derived interleukin-13 (IL-13) is critical for eliciting IRF4+CD11b+CD103− dendritic cells (DCs) to produce the TH2 cell-attracting chemokine CCL17. Consequently, the sentinel function of DCs is contingent on ILC2s for the generation of an efficient memory TH2 cell response. These results elucidate a key new innate mechanism in the regulation of the immune memory response to allergens. PMID:26523868

  5. Interleaved synchronous bus access protocol for a shared memory multi-processor system

    SciTech Connect

    Moore, W.T.

    1989-01-10

    A method is described for providing asynchronous processors with inter-processor communication and access to several memory modules over a common bus which includes a first bus and a second bus, comprising: providing clock pulses on the common bus, each pulse having a period; asserting a request signal and placing priority signal on the common bus; polling the processors during the first period to determine whether the processors request access to the common bus and to determine which one processor has priority; sending a destination address from the one processor to a destination during a second period, the destination being chosen from the processors and the several memory modules; performing one of reading input data between the destination and the processor; multiplexing priority and reading input data signals on the first bus, and multiplexing address and writing output data signals on the second bus; generating poll inhibit signals prior to each reading input data signal and prior to each memory address signal preceding a writing output data operation; and queuing the input data in a first-in-first-out manner for each of the processors when the input data indicates an interprocessor interrupt.

  6. The role of precursor frequency in the differentiation of memory T cells: memory by numbers.

    PubMed

    Marzo, Amanda L; Sowell, Ryan T; Scott, Bernadette

    2010-01-01

    Immunological memory is considered the hallmark of adaptive, or acquired, immunity. That ability of our immune system to recognize and respond to those pathogens we have encountered before not only typifies acquired immunity but has provided the basis for the most notable of medical interventions: vaccination. Yet, as much as we now know about this process, we are still on the cusp of fully understanding how memory T cells develop, how they are maintained and the importance of memory T-cell heterogeneity. In this review we will primarily focus on our understanding of CD8 T-cell memory generated during acute infections and how precursor frequency influences their development and functional attributes. PMID:20795541

  7. Low-power resistive random access memory by confining the formation of conducting filaments

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jen; Shen, Tzu-Hsien; Lee, Lan-Hsuan; Wen, Cheng-Yen; Lee, Si-Chen

    2016-06-01

    Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiOx/silver nanoparticles/TiOx/AlTiOx, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistance state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiOx layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.

  8. Memory CD4 T cells emerge from effector T-cell progenitors.

    PubMed

    Harrington, Laurie E; Janowski, Karen M; Oliver, James R; Zajac, Allan J; Weaver, Casey T

    2008-03-20

    A hallmark of adaptive immunity is the generation of memory T cells that confer long-lived, antigen-specific protection against repeat challenges by pathogens. Understanding the mechanisms by which memory T cells arise is important for rational vaccination strategies and improved therapeutic interventions for chronic infections and autoimmune disorders. The large clonal expansion of CD8 T cells in response to some infections has made the development of CD8 T-cell memory more amenable to study, giving rise to a model of memory cell differentiation in which a fraction of fully competent effector T cells transition into long-lived memory T cells. Delineation of CD4 T-cell memory development has proved more difficult as a result of limitations on tracking the smaller populations of CD4 effector T cells generated during a pathogenic challenge, complicating efforts to determine whether CD4 memory T cells are direct descendants of effector T cells or whether they develop by alternative pathways. Here, using two complementary cytokine reporter mouse models to identify interferon (IFN)-gamma-positive effector T cells and track their fate, we show that the lineage relationship between effector and memory CD4 T cells resembles that for CD8 T cells responding to the same pathogen. We find that, in parallel with effector CD8 T cells, IFN-gamma-positive effector CD4 T cells give rise to long-lived memory T cells capable of anamnestic responses to antigenic rechallenge. PMID:18322463

  9. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application

    PubMed Central

    Pradhan, Sangram K.; Xiao, Bo; Mishra, Saswat; Killam, Alex; Pradhan, Aswini K.

    2016-01-01

    Graphene Oxide (GO) based low cost flexible electronics and memory cell have recently attracted more attention for the fabrication of emerging electronic devices. As a suitable candidate for resistive random access memory technology, reduced graphene oxide (RGO) can be widely used for non-volatile switching memory applications because of its large surface area, excellent scalability, retention, and endurance properties. We demonstrated that the fabricated metal/RGO/metal memory device exhibited excellent switching characteristics, with on/off ratio of two orders of magnitude and operated threshold switching voltage of less than 1 V. The studies on different cell diameter, thickness, scan voltages and period of time corroborate the reliability of the device as resistive random access memory. The microscopic origin of switching operation is governed by the establishment of conducting filaments due to the interface amorphous layer rupturing and the movement of oxygen in the GO layer. This interesting experimental finding indicates that device made up of thermally reduced GO shows more reliability for its use in next generation electronics devices. PMID:27240537

  10. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application

    NASA Astrophysics Data System (ADS)

    Pradhan, Sangram K.; Xiao, Bo; Mishra, Saswat; Killam, Alex; Pradhan, Aswini K.

    2016-05-01

    Graphene Oxide (GO) based low cost flexible electronics and memory cell have recently attracted more attention for the fabrication of emerging electronic devices. As a suitable candidate for resistive random access memory technology, reduced graphene oxide (RGO) can be widely used for non-volatile switching memory applications because of its large surface area, excellent scalability, retention, and endurance properties. We demonstrated that the fabricated metal/RGO/metal memory device exhibited excellent switching characteristics, with on/off ratio of two orders of magnitude and operated threshold switching voltage of less than 1 V. The studies on different cell diameter, thickness, scan voltages and period of time corroborate the reliability of the device as resistive random access memory. The microscopic origin of switching operation is governed by the establishment of conducting filaments due to the interface amorphous layer rupturing and the movement of oxygen in the GO layer. This interesting experimental finding indicates that device made up of thermally reduced GO shows more reliability for its use in next generation electronics devices.

  11. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application.

    PubMed

    Pradhan, Sangram K; Xiao, Bo; Mishra, Saswat; Killam, Alex; Pradhan, Aswini K

    2016-01-01

    Graphene Oxide (GO) based low cost flexible electronics and memory cell have recently attracted more attention for the fabrication of emerging electronic devices. As a suitable candidate for resistive random access memory technology, reduced graphene oxide (RGO) can be widely used for non-volatile switching memory applications because of its large surface area, excellent scalability, retention, and endurance properties. We demonstrated that the fabricated metal/RGO/metal memory device exhibited excellent switching characteristics, with on/off ratio of two orders of magnitude and operated threshold switching voltage of less than 1 V. The studies on different cell diameter, thickness, scan voltages and period of time corroborate the reliability of the device as resistive random access memory. The microscopic origin of switching operation is governed by the establishment of conducting filaments due to the interface amorphous layer rupturing and the movement of oxygen in the GO layer. This interesting experimental finding indicates that device made up of thermally reduced GO shows more reliability for its use in next generation electronics devices. PMID:27240537

  12. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature

    PubMed Central

    Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen

    2011-01-01

    The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527

  13. Bipolar resistive switching characteristics in tantalum nitride-based resistive random access memory devices

    SciTech Connect

    Kim, Myung Ju; Jeon, Dong Su; Park, Ju Hyun; Kim, Tae Geun

    2015-05-18

    This paper reports the bipolar resistive switching characteristics of TaN{sub x}-based resistive random access memory (ReRAM). The conduction mechanism is explained by formation and rupture of conductive filaments caused by migration of nitrogen ions and vacancies; this mechanism is in good agreement with either Ohmic conduction or the Poole-Frenkel emission model. The devices exhibit that the reset voltage varies from −0.82 V to −0.62 V, whereas the set voltage ranges from 1.01 V to 1.30 V for 120 DC sweep cycles. In terms of reliability, the devices exhibit good retention (>10{sup 5 }s) and pulse-switching endurance (>10{sup 6} cycles) properties. These results indicate that TaN{sub x}-based ReRAM devices have a potential for future nonvolatile memory devices.

  14. Self-assembled tin dioxide for forming-free resistive random-access memory application

    NASA Astrophysics Data System (ADS)

    Hong, Ying-Jhan; Wang, Tsang-Hsuan; Wei, Shih-Yuan; Chang, Pin; Yew, Tri-Rung

    2016-06-01

    A novel resistive switching structure, tin-doped indium oxide (ITO)/SnO2‑ x (defined as SnO2 with oxygen vacancies)/SnS was demonstrated with a set voltage of 0.38 V, a reset voltage of ‑0.15 V, a ratio of high resistance to low resistance of 544, and forming-free and nonlinear current–voltage (I–V) characteristics. The interface of the ITO and the self-assembled SnO2‑ x contributed to the resistive switching behavior. This device showed great potential for resistive random access memory (RRAM) application and solving the sneak path problem in cross-bar memory arrays. Furthermore, a nanostructured resistive switching device was demonstrated successfully.

  15. The effect of ultraviolet irradiation on data retention characteristics of resistive random access memory

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kentaro; Kimura, Kouhei; Ohmi, Koutoku; Kishida, Satoru

    It is getting more and more serious to generate soft-errors by cosmic radiation, with increasing the density of memory devices. Therefore, the irradiation resistance of resistance random access memory (ReRAM) to cosmic radiation has to be elucidated for practical use. In this paper, we investigated the data retention characteristics against ultraviolet irradiation to ReRAM with Pt/NiO/ITO structure. Soft-errors were confirmed to be caused by ultraviolet irradiation in both low and high resistance states. The analysis of irradiation frequency dependence of data retention characteristics suggested that electronic excitation by the irradiation caused the errors. Based on a statistically estimated soft-error rate, the errors were suggested to be caused by aggregation and dispersion of oxygen vacancies due to the generation of electron-hole pairs and valence change by the ultraviolet irradiation.

  16. Gate controllable resistive random access memory devices using reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Hazra, Preetam; Resmi, A. N.; Jinesh, K. B.

    2016-04-01

    The biggest challenge in the resistive random access memory (ReRAM) technology is that the basic operational parameters, such as the set and reset voltages, the current on-off ratios (hence the power), and their operational speeds, strongly depend on the active and electrode materials and their processing methods. Therefore, for its actual technological implementations, the unification of the operational parameters of the ReRAM devices appears to be a difficult task. In this letter, we show that by fabricating a resistive memory device in a thin film transistor configuration and thus applying an external gate bias, we can control the switching voltage very accurately. Taking partially reduced graphene oxide, the gate controllable switching is demonstrated, and the possible mechanisms are discussed.

  17. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology.

    PubMed

    Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip

    2014-06-11

    Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications. PMID:24801736

  18. Disruptive effect of Dzyaloshinskii-Moriya interaction on the magnetic memory cell performance

    NASA Astrophysics Data System (ADS)

    Sampaio, J.; Khvalkovskiy, A. V.; Kuteifan, M.; Cubukcu, M.; Apalkov, D.; Lomakin, V.; Cros, V.; Reyren, N.

    2016-03-01

    In order to increase the thermal stability of a magnetic random access memory cell, materials with high spin-orbit interaction are often introduced in the storage layer. As a side effect, a strong Dzyaloshinskii-Moriya interaction (DMI) may arise in such systems. Here, we investigate the impact of DMI on the magnetic cell performance, using micromagnetic simulations. We find that DMI strongly promotes non-uniform magnetization states and non-uniform switching modes of the magnetic layer. It appears to be detrimental for both the thermal stability of the cell and its switching current, leading to considerable deterioration of the cell performance even for a moderate DMI amplitude.

  19. Integration of SrBi2Ta2O9 thin films for high density ferroelectric random access memory

    NASA Astrophysics Data System (ADS)

    Wouters, D. J.; Maes, D.; Goux, L.; Lisoni, J. G.; Paraschiv, V.; Johnson, J. A.; Schwitters, M.; Everaert, J.-L.; Boullart, W.; Schaekers, M.; Willegems, M.; Vander Meeren, H.; Haspeslagh, L.; Artoni, C.; Caputa, C.; Casella, P.; Corallo, G.; Russo, G.; Zambrano, R.; Monchoix, H.; Vecchio, G.; Van Autryve, L.

    2006-09-01

    Ferroelectric random access memory (FeRAM) is an attractive candidate technology for embedded nonvolatile memory, especially in applications where low power and high program speed are important. Market introduction of high-density FeRAM is, however, lagging behind standard complementary metal-oxide semiconductor (CMOS) because of the difficult integration technology. This paper discusses the major integration issues for high-density FeRAM, based on SrBi2Ta2O9 (strontium bismuth tantalate or SBT), in relation to the fabrication of our stacked cell structure. We have worked in the previous years on the development of SBT-FeRAM integration technology, based on a so-called pseudo-three-dimensional (3D) cell, with a capacitor that can be scaled from quasi two-dimensional towards a true three-dimensional capacitor where the sidewalls will importantly contribute to the signal. In the first phase of our integration development, we integrated our FeRAM cell in a 0.35μm CMOS technology. In a second phase, then, possibility of scaling of our cell is demonstrated in 0.18μm technology. The excellent electrical and reliability properties of the small integrated ferroelectric capacitors prove the feasibility of the technology, while the verification of the potential 3D effect confirms the basic scaling potential of our concept beyond that of the single-mask capacitor. The paper outlines the different material and technological challenges, and working solutions are demonstrated. While some issues are specific to our own cell, many are applicable to different stacked FeRAM cell concepts, or will become more general concerns when more developments are moving into 3D structures.

  20. Evolution of conductive filament and its impact on reliability issues in oxide-electrolyte based resistive random access memory

    PubMed Central

    Lv, Hangbing; Xu, Xiaoxin; Liu, Hongtao; Liu, Ruoyu; Liu, Qi; Banerjee, Writam; Sun, Haitao; Long, Shibing; Li, Ling; Liu, Ming

    2015-01-01

    The electrochemical metallization cell, also referred to as conductive bridge random access memory, is considered to be a promising candidate or complementary component to the traditional charge based memory. As such, it is receiving additional focus to accelerate the commercialization process. To create a successful mass product, reliability issues must first be rigorously solved. In-depth understanding of the failure behavior of the ECM is essential for performance optimization. Here, we reveal the degradation of high resistance state behaves as the majority cases of the endurance failure of the HfO2 electrolyte based ECM cell. High resolution transmission electron microscopy was used to characterize the change in filament nature after repetitive switching cycles. The result showed that Cu accumulation inside the filament played a dominant role in switching failure, which was further supported by measuring the retention of cycle dependent high resistance state and low resistance state. The clarified physical picture of filament evolution provides a basic understanding of the mechanisms of endurance and retention failure, and the relationship between them. Based on these results, applicable approaches for performance optimization can be implicatively developed, ranging from material tailoring to structure engineering and algorithm design. PMID:25586207

  1. Evolution of conductive filament and its impact on reliability issues in oxide-electrolyte based resistive random access memory.

    PubMed

    Lv, Hangbing; Xu, Xiaoxin; Liu, Hongtao; Liu, Ruoyu; Liu, Qi; Banerjee, Writam; Sun, Haitao; Long, Shibing; Li, Ling; Liu, Ming

    2015-01-01

    The electrochemical metallization cell, also referred to as conductive bridge random access memory, is considered to be a promising candidate or complementary component to the traditional charge based memory. As such, it is receiving additional focus to accelerate the commercialization process. To create a successful mass product, reliability issues must first be rigorously solved. In-depth understanding of the failure behavior of the ECM is essential for performance optimization. Here, we reveal the degradation of high resistance state behaves as the majority cases of the endurance failure of the HfO2 electrolyte based ECM cell. High resolution transmission electron microscopy was used to characterize the change in filament nature after repetitive switching cycles. The result showed that Cu accumulation inside the filament played a dominant role in switching failure, which was further supported by measuring the retention of cycle dependent high resistance state and low resistance state. The clarified physical picture of filament evolution provides a basic understanding of the mechanisms of endurance and retention failure, and the relationship between them. Based on these results, applicable approaches for performance optimization can be implicatively developed, ranging from material tailoring to structure engineering and algorithm design. PMID:25586207

  2. Hydrogen induced redox mechanism in amorphous carbon resistive random access memory

    PubMed Central

    2014-01-01

    We investigated the bipolar resistive switching characteristics of the resistive random access memory (RRAM) device with amorphous carbon layer. Applying a forming voltage, the amorphous carbon layer was carbonized to form a conjugation double bond conductive filament. We proposed a hydrogen redox model to clarify the resistive switch mechanism of high/low resistance states (HRS/LRS) in carbon RRAM. The electrical conduction mechanism of LRS is attributed to conductive sp2 carbon filament with conjugation double bonds by dehydrogenation, while the electrical conduction of HRS resulted from the formation of insulating sp3-type carbon filament through hydrogenation process. PMID:24475979

  3. A stochastic simulation method for the assessment of resistive random access memory retention reliability

    SciTech Connect

    Berco, Dan Tseng, Tseung-Yuen

    2015-12-21

    This study presents an evaluation method for resistive random access memory retention reliability based on the Metropolis Monte Carlo algorithm and Gibbs free energy. The method, which does not rely on a time evolution, provides an extremely efficient way to compare the relative retention properties of metal-insulator-metal structures. It requires a small number of iterations and may be used for statistical analysis. The presented approach is used to compare the relative robustness of a single layer ZrO{sub 2} device with a double layer ZnO/ZrO{sub 2} one, and obtain results which are in good agreement with experimental data.

  4. Conductive Filament Expansion in TaOx Bipolar Resistive Random Access Memory during Pulse Cycling

    NASA Astrophysics Data System (ADS)

    Ninomiya, Takeki; Katayama, Koji; Muraoka, Shunsaku; Yasuhara, Ryutaro; Mikawa, Takumi; Wei, Zhiqiang

    2013-11-01

    The post-cycling data retention of filamentary operated resistive random access memory (ReRAM) can be improved by minimizing conductive filament expansion during pulse cycling. We find that filament size gradually grows with increasing pulse cycles due to oxygen diffusion from the region surrounding each filament. To achieve long term use of ReRAM while suppressing filament expansion, the key is to control both electric power and pulse width input during switching. We minimize CF expansion based on this concept and demonstrate long data retention even after 106 pulse switchings under optimized reset conditions.

  5. Complementary resistive switching behavior induced by varying forming current compliance in resistance random access memory

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Ting; Tsai, Tsung-Ming; Chang, Ting-Chang; Shih, Chih-Cheng; Chang, Kuan-Chang; Zhang, Rui; Chen, Kai-Huang; Chen, Jung-Hui; Li, Yu-Chiuan; Lin, Chih-Yang; Hung, Ya-Chi; Syu, Yong-En; Zheng, Jin-Cheng; Sze, Simon M.

    2015-05-01

    In this study of resistance random access memory in a resistive switching film, the breakdown degree was controlled by varying forming current compliance. A SiOx layer was introduced into the ZnO layer of the structure to induce both typical bipolar resistive switching (RS) and complementary resistive switching (CRS). In addition, the SiOx layer-generated vacuum spaces in typical bipolar RS can be verified by electrical characteristics. Changing forming current compliance strikingly modifies the oxygen storage capacity of the inserted SiOx layer. CRS can be achieved, therefore, by tuning the oxygen ion storage behavior made possible by the SiOx layer.

  6. Optical and electronic error correction schemes for highly parallel access memories

    NASA Astrophysics Data System (ADS)

    Neifeld, Mark A.; Hayes, Jerry D.

    1993-11-01

    We have fabricated and tested an optically addressed, parallel electronic Reed-Solomon decoder for use with parallel access optical memories. A comparison with various serial implementations has demonstrated that for many instances of code block size and error correction capability, the parallel approach is superior from the perspectives of VLSI layout area and decoding latency. The demonstrated Reed-Solomon parallel pipeline decoder operates on 60 bit input words and has been demonstrated at a clock rate of 5 MHz yielding a demonstrated data rate of 300 Mbps.

  7. Analysis and modeling of resistive switching mechanisms oriented to resistive random-access memory

    NASA Astrophysics Data System (ADS)

    Huang, Da; Wu, Jun-Jie; Tang, Yu-Hua

    2013-03-01

    With the progress of the semiconductor industry, the resistive random-access memory (RAM) has drawn increasing attention. The discovery of the memristor has brought much attention to this study. Research has focused on the resistive switching characteristics of different materials and the analysis of resistive switching mechanisms. We discuss the resistive switching mechanisms of different materials in this paper and analyze the differences of those mechanisms from the view point of circuitry to establish their respective circuit models. Finally, simulations are presented. We give the prospect of using different materials in resistive RAM on account of their resistive switching mechanisms, which are applied to explain their resistive switchings.

  8. Hydrogen doping in HfO2 resistance change random access memory

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Magyari-Köpe, B.; Nishi, Y.

    2016-01-01

    The structures and energies of hydrogen-doped monoclinic hafnium dioxide were calculated using density-functional theory. The electronic interactions are described within the LDA + U formalism, where on-site Coulomb corrections are applied to the 5d orbital electrons of Hf atoms and 2p orbital electrons of the O atoms. The effects of charge state, defect-defect interactions, and hydrogenation are investigated and compared with experiment. It is found that hydrogenation of HfO2 resistance-change random access memory devices energetically stabilizes the formation of oxygen vacancies and conductive vacancy filaments through multiple mechanisms, leading to improved switching characteristic and device yield.

  9. A stochastic simulation method for the assessment of resistive random access memory retention reliability

    NASA Astrophysics Data System (ADS)

    Berco, Dan; Tseng, Tseung-Yuen

    2015-12-01

    This study presents an evaluation method for resistive random access memory retention reliability based on the Metropolis Monte Carlo algorithm and Gibbs free energy. The method, which does not rely on a time evolution, provides an extremely efficient way to compare the relative retention properties of metal-insulator-metal structures. It requires a small number of iterations and may be used for statistical analysis. The presented approach is used to compare the relative robustness of a single layer ZrO2 device with a double layer ZnO/ZrO2 one, and obtain results which are in good agreement with experimental data.

  10. TiO2 thin film based transparent flexible resistive switching random access memory

    NASA Astrophysics Data System (ADS)

    Pham, Kim Ngoc; Dung Hoang, Van; Tran, Cao Vinh; Thang Phan, Bach

    2016-03-01

    In our work we have fabricated TiO2 based resistive switching devices both on transparent substrates (ITO, IGZO/glass) and transparent flexible substrate (ITO/PET). All devices demonstrate the reproducibility of forming free bipolar resistive switching with high transparency in the visible light range (∼80% at the wavelength of 550 nm). Particularly, transparent and flexible device exhibits stable resistive switching performance at the initial state (flat) and even after bending state up to 500 times with curvature radius of 10% compared to flat state. The achieved characteristics of resistive switching of TiO2 thin films seem to be promising for transparent flexible random access memory.

  11. Single-cell chromatin accessibility reveals principles of regulatory variation.

    PubMed

    Buenrostro, Jason D; Wu, Beijing; Litzenburger, Ulrike M; Ruff, Dave; Gonzales, Michael L; Snyder, Michael P; Chang, Howard Y; Greenleaf, William J

    2015-07-23

    Cell-to-cell variation is a universal feature of life that affects a wide range of biological phenomena, from developmental plasticity to tumour heterogeneity. Although recent advances have improved our ability to document cellular phenotypic variation, the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of mammalian DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells by assay for transposase-accessible chromatin using sequencing (ATAC-seq) integrated into a programmable microfluidics platform. Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provide insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type-specific accessibility variance across eight cell types. Targeted perturbations of cell cycle or transcription factor signalling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome compartments de novo, linking single-cell accessibility variation to three-dimensional genome organization. Single-cell analysis of DNA accessibility provides new insight into cellular variation of the 'regulome'. PMID:26083756

  12. Memory B Cells and Pneumococcal Antibody After Splenectomy1

    PubMed Central

    Wasserstrom, Heather; Bussel, James; Lim, Lony C.-L.; Cunningham-Rundles, Charlotte

    2010-01-01

    Splenectomized patients are susceptible to bloodstream infections with encapsulated bacteria, potentially due to loss of blood filtering but also defective production of anticarbohydrate Ab. Recent studies propose that a lack of Ab is related to reduced numbers of IgM+ CD27+ memory B cells found after splenectomy. To test this, we analyzed CD27+ memory B cell subsets, IgG, and IgM pneumococcal Ab responses in 26 vaccinated splenectomized subjects in comparison to memory B cell subsets and Ab responses in healthy controls. As shown previously, the splenectomized autoimmune subjects had fewer total, isotype switched, and IgM+ CD27+ memory B cells as compared with controls, but there was no difference in memory B cells subsets between controls and splenectomized subjects with spherocytosis. There was no difference between the geometric mean IgG Ab response between normal controls and splenectomized subjects (p = 0.51; p = 0.81). Control subjects produced more IgM Ab than splenectomized autoimmune subjects (p = 0.01) but the same levels as subjects with spherocytosis (p = 0.15.) There was no correlation between memory B cell subsets and IgG or IgM Ab responses for controls or splenectomized subjects. These data suggest that splenectomy alone may not be the sole reason for loss of memory B cells and reduced IgM antipneumococcal Ab. Because subjects with autoimmunity had splenectomy at a significantly older age than participants with spherocytosis, these data suggest that an age-related loss of extra splenic sites necessary for the maintenance or function of memory B cells may lead to impaired immunity in these subjects. PMID:18714044

  13. Positive alcohol expectancies and drinking behavior: the influence of expectancy strength and memory accessibility.

    PubMed

    Palfai, T; Wood, M D

    2001-03-01

    College student drinkers (N = 314) participated in a health survey in which they (a) completed an alcohol-related memory association task (expectancy accessibility measure), (b) rated their positive expectancies about alcohol use (expectancy strength measure), and (c) reported their level of alcohol involvement. Hierarchical regression analyses showed that both expectancy accessibility and expectancy strength predicted frequency of alcohol use and alcohol-related problems. Moreover, moderational analyses showed that the association between expectancy strength and frequency of alcohol use was greater for those who generated more alcohol responses on the expectancy association task. These findings suggest that the outcome association measure and Likert scale ratings of expectancies may assess distinct properties of expectancy representations, which may have independent and interactive effects on different aspects of drinking behavior. PMID:11255940

  14. Guideline model for the bias-scheme-dependent power consumption of a resistive random access memory crossbar array

    NASA Astrophysics Data System (ADS)

    Sun, Wookyung; Choi, Sujin; Lim, Hyein; Shin, Hyungsoon

    2016-04-01

    The 1/2 and 1/3 bias schemes are commonly used to select a cell in a resistive random access memory (ReRAM) crossbar array. The 1/3 bias scheme is advantageous in terms of its write margin but typically requires a higher power consumption than the 1/2 bias scheme. The power consumption of ReRAM can vary according to the nonlinearity of the selector device. In this paper, we propose a power guideline model that suggests selector nonlinearity requirements to guarantee a lower power consumption for the 1/3 bias scheme than for the 1/2 bias scheme. Therefore, the selector nonlinearity requirements for the low power consumption of the 1/3 bias scheme can be immediately obtained using this guideline model without simulation.

  15. Molecular Programming of Immunological Memory in Natural Killer Cells.

    PubMed

    Beaulieu, Aimee M; Madera, Sharline; Sun, Joseph C

    2015-01-01

    Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells have traditionally been classified as a component of the innate immune system, they have recently been shown in mice and humans to exhibit certain features of immunological memory, including an ability to undergo a clonal-like expansion during virus infection, generate long-lived progeny (i.e. memory cells), and mediate recall responses against previously encountered pathogens--all characteristics previously ascribed only to adaptive immune responses by B and T cells in mammals. To date, the molecular events that govern the generation of NK cell memory are not completely understood. Using a mouse model of cytomegalovirus infection, we demonstrate that individual pro-inflammatory IL-12, IL-18, and type I-IFN signaling pathways are indispensible and play non-redundant roles in the generation of virus-specific NK cell memory. Furthermore, we discovered that antigen-specific proliferation and protection by NK cells is mediated by the transcription factor Zbtb32, which is induced by pro-inflammatory cytokines and promotes a cell cycle program in activated NK cells. A greater understanding of the molecular mechanisms controlling NK cell responses will provide novel strategies for tailoring vaccines to target infectious disease. PMID:26324348

  16. Analyzing the Energy and Power Consumption of Remote Memory Accesses in the OpenSHMEM Model

    SciTech Connect

    Jana, Siddhartha; Hernandez, Oscar R; Poole, Stephen W; Hsu, Chung-Hsing; Chapman, Barbara

    2014-01-01

    PGAS models like OpenSHMEM provide interfaces to explicitly initiate one-sided remote memory accesses among processes. In addition, the model also provides synchronizing barriers to ensure a consistent view of the distributed memory at different phases of an application. The incorrect use of such interfaces affects the scalability achievable while using a parallel programming model. This study aims at understanding the effects of these constructs on the energy and power consumption behavior of OpenSHMEM applications. Our experiments show that cost incurred in terms of the total energy and power consumed depends on multiple factors across the software and hardware stack. We conclude that there is a significant impact on the power consumed by the CPU and DRAM due to multiple factors including the design of the data transfer patterns within an application, the design of the communication protocols within a middleware, the architectural constraints laid by the interconnect solutions, and also the levels of memory hierarchy within a compute node. This work motivates treating energy and power consumption as important factors while designing compute solutions for current and future distributed systems.

  17. Temperature dependence of resistive switching behaviors in resistive random access memory based on graphene oxide film

    NASA Astrophysics Data System (ADS)

    Yi, Mingdong; Cao, Yong; Ling, Haifeng; Du, Zhuzhu; Wang, Laiyuan; Yang, Tao; Fan, Quli; Xie, Linghai; Huang, Wei

    2014-05-01

    We reported resistive switching behaviors in the resistive random access memory (RRAM) devices based on the different annealing temperatures of graphene oxide (GO) film as active layers. It was found that the resistive switching characteristics of an indium tin oxide (ITO)/GO/Ag structure have a strong dependence on the annealing temperature of GO film. When the annealing temperature of the GO film was 20 °C, the devices showed typical write-once-read-many-times (WORM) type memory behaviors, which have good memory performance with a higher ON/OFF current ratio (˜104), the higher the high resistance state (HRS)/low resistance state (LRS) ratio (˜105) and stable retention characteristics (>103 s) under lower programming voltage (-1 V and -0.5 V). With the increasing annealing temperature of GO film, the resistive switching behavior of RRAM devices gradually weakened and eventually disappeared. This phenomenon could be understood by the different energy level distributions of the charge traps in GO film, and the different charge injection ability from the Ag electrode to GO film, which is caused by the different annealing temperatures of the GO film.

  18. Temperature dependence of resistive switching behaviors in resistive random access memory based on graphene oxide film.

    PubMed

    Yi, Mingdong; Cao, Yong; Ling, Haifeng; Du, Zhuzhu; Wang, Laiyuan; Yang, Tao; Fan, Quli; Xie, Linghai; Huang, Wei

    2014-05-01

    We reported resistive switching behaviors in the resistive random access memory (RRAM) devices based on the different annealing temperatures of graphene oxide (GO) film as active layers. It was found that the resistive switching characteristics of an indium tin oxide (ITO)/GO/Ag structure have a strong dependence on the annealing temperature of GO film. When the annealing temperature of the GO film was 20 °C, the devices showed typical write-once-read-many-times (WORM) type memory behaviors, which have good memory performance with a higher ON/OFF current ratio (∼10(4)), the higher the high resistance state (HRS)/low resistance state (LRS) ratio (∼10(5)) and stable retention characteristics (>10(3) s) under lower programming voltage (-1 V and -0.5 V). With the increasing annealing temperature of GO film, the resistive switching behavior of RRAM devices gradually weakened and eventually disappeared. This phenomenon could be understood by the different energy level distributions of the charge traps in GO film, and the different charge injection ability from the Ag electrode to GO film, which is caused by the different annealing temperatures of the GO film. PMID:24739543

  19. Integration of Radiation-Hard Magnetic Random Access Memory with CMOS ICs

    SciTech Connect

    Cerjan, C.J.; Sigmon, T.W.

    2000-02-15

    The research undertaken in this LDRD-funded project addressed the joint development of magnetic material-based nonvolatile, radiation-hard memory cells with Sandia National Laboratory. Specifically, the goal of this project was to demonstrate the intrinsic radiation-hardness of Giant Magneto-Resistive (GMR) materials by depositing representative alloy combinations upon radiation-hardened silicon-based integrated circuits. All of the stated goals of the project were achieved successfully. The necessary films were successfully deposited upon typical integrated circuits; the materials retained their magnetic field response at the highest radiation doses; and a patterning approach was developed that did not degrade the as-fabricated properties of the underlying circuitry. These results establish the feasibility of building radiation-hard magnetic memory cells.

  20. Defective T cell Receptor-mediated Signal Transduction in Memory CD4 T Lymphocytes Exposed to Superantigen or anti-T cell Receptor Antibodies

    PubMed Central

    Watson, Andrew R.O.; Lee, William T.

    2007-01-01

    Lymphocytes must promote protective immune responses while still maintaining self-tolerance. Stimulation through the T cell receptor (TCR1) can lead to distinct responses in naive and memory CD4 T cells. Whereas peptide antigen stimulates both naive and memory T cells, soluble anti-CD3 antibodies and bacterial superantigens stimulate only naive T cells to proliferate and secrete cytokines. Further, superantigens, like staphylococcal enterotoxin B (SEB), cause memory T cells to become anergic while soluble anti-CD3 does not. In the present report we show that signal transduction through the TCR is impaired in memory cells exposed to either anti-CD3 or SEB. A block in signaling leads to impaired activation of the kinase ZAP-70 so that downstream signals and cell proliferation do not occur. We further show that the signaling defect is unique to each agent. In anti-CD3-treated memory T cells, the src kinase Lck is only transiently activated and does not phosphorylate and activate ZAP-70. In SEB-treated memory T cells, ZAP-70 does not interact with the TCR/CD3 complex to become accessible to Lck. Finally, we provide evidence that alternative signaling pathways are initiated in SEB-treated memory cells. Altered signaling, indicated by an elevation in activity of the src kinase Fyn, may be responsible for memory cell anergy caused by SEB. Thus, differentiation of naive T cells into memory cells is accompanied by alterations in TCR-mediated signaling that can promote heightened recall immunity or specific tolerance. PMID:17083922

  1. T inflammatory memory CD8 T cells participate to antiviral response and generate secondary memory cells with an advantage in XCL1 production.

    PubMed

    Jubin, Virginie; Ventre, Erwan; Leverrier, Yann; Djebali, Sophia; Mayol, Katia; Tomkowiak, Martine; Mafille, Julien; Teixeira, Marie; Teoh, Denise Y-L; Lina, Bruno; Walzer, Thierry; Arpin, Christophe; Marvel, Jacqueline

    2012-06-01

    Besides the classically described subsets of memory CD8 T cells generated under infectious conditions, are T inflammatory memory cells generated under sterile priming conditions, such as sensitization to allergens. Although not fully differentiated as pathogen-induced memory cells, they display memory properties that distinguish them from naive CD8 T cells. Given these memory cells are generated in an antigen-specific context that is devoid of pathogen-derived danger signals and CD4 T cell help, we herein questioned whether they maintained their activation and differentiation potential, could be recruited in an immune response directed against a pathogen expressing their cognate antigen and further differentiate in fully competent secondary memory cells. We show that T inflammatory memory cells can indeed take part to the immune response triggered by a viral infection, differentiate into secondary effectors and further generate typical central memory CD8 T cells and effector memory CD8 T cells. Furthermore, the secondary memory cells they generate display a functional advantage over primary memory cells in their capacity to produce TNF-α and the XCL1 chemokine. These results suggest that cross-reactive stimulations and differentiation of cells directed against allergens or self into fully competent pathogen-induced memory cells might have incidences in inflammatory immuno-pathologies. PMID:22528127

  2. Synergistic effects of total ionizing dose on single event upset sensitivity in static random access memory under proton irradiation

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Guo, Hong-Xia; Zhang, Feng-Qi; Zhao, Wen; Wang, Yan-Ping; Zhang, Ke-Ying; Ding, Li-Li; Fan, Xue; Luo, Yin-Hong; Wang, Yuan-Ming

    2014-11-01

    Synergistic effects of the total ionizing dose (TID) on the single event upset (SEU) sensitivity in static random access memories (SRAMs) were studied by using protons. The total dose was cumulated with high flux protons during the TID exposure, and the SEU cross section was tested with low flux protons at several cumulated dose steps. Because of the radiation-induced off-state leakage current increase of the CMOS transistors, the noise margin became asymmetric and the memory imprint effect was observed.

  3. A 0.5-V Six-Transistor Static Random Access Memory with Ferroelectric-Gate Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Tanakamaru, Shuhei; Hatanaka, Teruyoshi; Yajima, Ryoji; Miyaji, Kousuke; Takahashi, Mitsue; Sakai, Shigeki; Takeuchi, Ken

    2010-12-01

    A 0.5 V six-transistor static random access memory (6T-SRAM) with ferroelectric-gate field-effect-transistors (Fe-FETs) is proposed and experimentally demonstrated for the first time. During the read and the hold, the threshold voltage (VTH) of Fe-FETs automatically changes to increase the static noise margin (SNM) by 60%. During the stand-by, the VTH of the proposed SRAM cell increases to decrease the leakage current by 42%. In case of the read, the VTH of the read transistor decreases and increases the cell read current to achieve the fast read. During the write, the VTH of the SRAM cell dynamically changes and assist the cell data to flip, realizing a write assist function. The enlarged SNM realizes the VDD reduction by 0.11 V, which decreases the active power by 32%. The proposed SRAM layout is the same as the conventional 6T-SRAM and there is no area penalty.

  4. Synthetic circuits integrating logic and memory in living cells.

    PubMed

    Siuti, Piro; Yazbek, John; Lu, Timothy K

    2013-05-01

    Logic and memory are essential functions of circuits that generate complex, state-dependent responses. Here we describe a strategy for efficiently assembling synthetic genetic circuits that use recombinases to implement Boolean logic functions with stable DNA-encoded memory of events. Application of this strategy allowed us to create all 16 two-input Boolean logic functions in living Escherichia coli cells without requiring cascades comprising multiple logic gates. We demonstrate long-term maintenance of memory for at least 90 cell generations and the ability to interrogate the states of these synthetic devices with fluorescent reporters and PCR. Using this approach we created two-bit digital-to-analog converters, which should be useful in biotechnology applications for encoding multiple stable gene expression outputs using transient inputs of inducers. We envision that this integrated logic and memory system will enable the implementation of complex cellular state machines, behaviors and pathways for therapeutic, diagnostic and basic science applications. PMID:23396014

  5. Requirement for CD4 T Cell Help in Generating Functional CD8 T Cell Memory

    NASA Astrophysics Data System (ADS)

    Shedlock, Devon J.; Shen, Hao

    2003-04-01

    Although primary CD8 responses to acute infections are independent of CD4 help, it is unknown whether a similar situation applies to secondary responses. We show that depletion of CD4 cells during the recall response has minimal effect, whereas depletion during the priming phase leads to reduced responses by memory CD8 cells to reinfection. Memory CD8 cells generated in CD4+/+ mice responded normally when transferred into CD4-/- hosts, whereas memory CD8 cells generated in CD4-/- mice mounted defective recall responses in CD4+/+ adoptive hosts. These results demonstrate a previously undescribed role for CD4 help in the development of functional CD8 memory.

  6. Daily access to sucrose impairs aspects of spatial memory tasks reliant on pattern separation and neural proliferation in rats.

    PubMed

    Reichelt, Amy C; Morris, Margaret J; Westbrook, Reginald Frederick

    2016-07-01

    High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects in novel and familiar locations when there was a large spatial separation between the objects, but not when the separation was smaller. Neuroproliferation markers in the dentate gyrus of the sucrose-consuming rats were reduced relative to controls. Thus, sucrose consumption impaired aspects of spatial memory and reduced hippocampal neuroproliferation. PMID:27317199

  7. Innate and virtual memory T cells in man.

    PubMed

    Van Kaer, Luc

    2015-07-01

    A hallmark of the antigen-specific B and T lymphocytes of the adaptive immune system is their capacity to "remember" pathogens long after they are first encountered, a property that forms the basis for effective vaccine development. However, studies in mice have provided strong evidence that some naive T cells can develop characteristics of memory T cells in the absence of foreign antigen encounters. Such innate memory T cells may develop in response to lymphopenia or the presence of high levels of the cytokine IL-4, and have also been identified in unmanipulated animals, a phenomenal referred to as "virtual memory." While the presence of innate memory T cells in mice is now widely accepted, their presence in humans has not yet been fully validated. In this issue of the European Journal of Immunology, Jacomet et al. [Eur. J. Immunol. 2015. 45:1926-1933] provide the best evidence to date for innate memory T cells in humans. These findings may contribute significantly to our understanding of human immunity to microbial pathogens and tumors. PMID:26013879

  8. Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors

    SciTech Connect

    Yang, Jyun-Bao; Chen, Yu-Ting; Chu, Ann-Kuo; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Tseng, Hsueh-Chih; Sze, Simon M.

    2014-04-14

    In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.

  9. Dendritic cells drive memory CD8 T-cell homeostasis via IL-15 transpresentation

    PubMed Central

    Stonier, Spencer W.; Ma, Lisa J.; Castillo, Eliseo F.

    2008-01-01

    Interleukin-15 (IL-15) is crucial for the development of naive and memory CD8 T cells and is delivered through a mechanism called transpresentation. Previous studies showed that memory CD8 T cells require IL-15 transpresentation by an as yet unknown cell of hematopoietic origin. We hypothesized that dendritic cells (DCs) transpresent IL-15 to CD8 T cells, and we examined this by developing a transgenic model that limits IL-15 transpresentation to DCs. In this study, IL-15 transpresentation by DCs had little effect on restoring naive CD8 T cells but contributed to the development of memory-phenotype CD8 T cells. The generation of virus-specific, memory CD8 T cells was partially supported by IL-15Rα+ DCs through the preferential enhancement of a subset of KLRG-1+CD27− CD8 T cells. In contrast, these DCs were largely sufficient in driving normal homeostatic proliferation of established memory CD8 T cells, suggesting that memory CD8 T cells grow more dependent on IL-15 transpresentation by DCs. Overall, our study clearly supports a role for DCs in memory CD8 T-cell homeostasis but also provides evidence that other hematopoietic cells are involved in this function. The identification of DCs fulfilling this role will enable future studies to better focus on mechanisms regulating T-cell homeostasis. PMID:18812469

  10. Structure for common access and support of fuel cell stacks

    DOEpatents

    Walsh, Michael M.

    2000-01-01

    A structure provides common support and access to multiple fuel cells externally mounted thereto. The structure has openings leading to passages defined therein for providing the access. Various other fuel cell power system components are connected at the openings, such as reactant and coolant sources.

  11. Low-energy Resistive Random Access Memory Devices with No Need for a Compliance Current

    PubMed Central

    Xu, Zedong; Yu, Lina; Wu, Yong; Dong, Chang; Deng, Ning; Xu, Xiaoguang; Miao, J.; Jiang, Yong

    2015-01-01

    A novel resistive random access memory device is designed with SrTiO3/ La2/3Sr1/3MnO3 (LSMO)/MgAl2O4 (MAO)/Cu structure, in which metallic epitaxial LSMO is employed as the bottom electrode rather than traditional metal materials. In this device, the critical external compliance current is no longer necessary due to the high self-resistance of LSMO. The LMSO bottom electrode can act as a series resistor to offer a compliance current during the set process. Besides, the device also has excellent switching features which are originated in the formation of Cu filaments under external voltage. Therefore it provides the possibility of reducing power consumption and accelerating the commercialization of resistive switching devices. PMID:25982101

  12. Low-energy Resistive Random Access Memory Devices with No Need for a Compliance Current

    NASA Astrophysics Data System (ADS)

    Xu, Zedong; Yu, Lina; Wu, Yong; Dong, Chang; Deng, Ning; Xu, Xiaoguang; Miao, J.; Jiang, Yong

    2015-05-01

    A novel resistive random access memory device is designed with SrTiO3/ La2/3Sr1/3MnO3 (LSMO)/MgAl2O4 (MAO)/Cu structure, in which metallic epitaxial LSMO is employed as the bottom electrode rather than traditional metal materials. In this device, the critical external compliance current is no longer necessary due to the high self-resistance of LSMO. The LMSO bottom electrode can act as a series resistor to offer a compliance current during the set process. Besides, the device also has excellent switching features which are originated in the formation of Cu filaments under external voltage. Therefore it provides the possibility of reducing power consumption and accelerating the commercialization of resistive switching devices.

  13. Joule heating effect in nonpolar and bipolar resistive random access memory

    NASA Astrophysics Data System (ADS)

    Uenuma, Mutsunori; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2015-08-01

    The position of the conductive filament (CF) and the heating behaviour during a switching process in nonpolar and bipolar resistive random access memories (ReRAMs) were evaluated using thermal analysis. The position of the CF was clearly observed from Joule heating at the surface of the electrode on the CF. The position of the CF did not change during the switching cycle, except in the case of an unstable CF. In the nonpolar ReRAM, spike-shaped temperature increments were observed during both the forming and the set processes because of the overshoot current. However, the behaviour of the temperature increment in the bipolar ReRAM was virtually consistent with the profile of the electrical power.

  14. Characteristics and mechanism study of cerium oxide based random access memories

    SciTech Connect

    Hsieh, Cheng-Chih; Roy, Anupam; Rai, Amritesh; Chang, Yao-Feng; Banerjee, Sanjay K.

    2015-04-27

    In this work, low operating voltage and high resistance ratio of different resistance states of binary transition metal oxide based resistive random access memories (RRAMs) are demonstrated. Binary transition metal oxides with high dielectric constant have been explored for RRAM application for years. However, CeO{sub x} is considered as a relatively new material to other dielectrics. Since research on CeO{sub x} based RRAM is still at preliminary stage, fundamental characteristics of RRAM such as scalability and mechanism studies need to be done before moving further. Here, we show very high operation window and low switching voltage of CeO{sub x} RRAMs and also compare electrical performance of Al/CeO{sub x}/Au system between different thin film deposition methods and discuss characteristics and resistive switching mechanism.

  15. Novel Capacitor Structure Using Sidewall Spacer for Highly Reliable Ferroelectric Random Access Memory Device

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Ho; Park, Jung-Hoon; Song, Yoon-Jong; Jang, Nak-Won; Joo, Heung-Jin; Kang, Seung-Kuk; Joo, Seok-Ho; Lee, Sung-Young; Kim, Kinam

    2004-04-01

    Since ferroelectric capacitors prepared by 1-mask etching are degraded after the etching, we systematically investigated the origin of the degradation. It was found that the major degradation originates from the formation of the nonstoichiometric and amorphorized Pb(ZrxTi1-x)O3 (PZT) layer on the sidewall of the PZT film during etching of the bottom electrode (BE). Therefore, to eliminate the undesired etch-damaged layer, we developed a novel etching technology using a ferroelectric (FE) sidewall spacer, which results in the enhancement of the remnant polarization after completing the capacitor etching process. Using the novel FE sidewall spacer, the sensing margin of bit-line-developed voltage was improved to 400 mV, which can guarantee highy reliable high-density ferroelectric random access memory (FRAM) devices.

  16. Electrical Characterization of the RCA CDP1822SD Random Access Memory, Volume 1, Appendix a

    NASA Technical Reports Server (NTRS)

    Klute, A.

    1979-01-01

    Electrical characteristization tests were performed on 35 RCA CDP1822SD, 256-by-4-bit, CMOS, random access memories. The tests included three functional tests, AC and DC parametric tests, a series of schmoo plots, rise/fall time screening, and a data retention test. All tests were performed on an automated IC test system with temperatures controlled by a thermal airstream unit. All the functional tests, the data retention test, and the AC and DC parametric tests were performed at ambient temperatures of 25 C, -20 C, -55 C, 85 C, and 125 C. The schmoo plots were performed at ambient temperatures of 25 C, -55 C, and 125 C. The data retention test was performed at 25 C. Five devices failed one or more functional tests and four of these devices failed to meet the expected limits of a number of AC parametric tests. Some of the schmoo plots indicated a small degree of interaction between parameters.

  17. Microstructural transitions in resistive random access memory composed of molybdenum oxide with copper during switching cycles.

    PubMed

    Arita, Masashi; Ohno, Yuuki; Murakami, Yosuke; Takamizawa, Keisuke; Tsurumaki-Fukuchi, Atsushi; Takahashi, Yasuo

    2016-08-21

    The switching operation of a Cu/MoOx/TiN resistive random access memory (ReRAM) device was investigated using in situ transmission electron microscopy (TEM), where the TiN surface was slightly oxidized (ox-TiN). The relationship between the switching properties and the dynamics of the ReRAM microstructure was confirmed experimentally. The growth and/or shrinkage of the conductive filament (CF) can be classified into two set modes and two reset modes. These switching modes depend on the device's switching history, factors such as the amount of Cu inclusions in the MoOx layer and the CF geometry. High currents are needed to produce an observable change in the CF. However, sharp and stable switching behaviour can be achieved without requiring such a major change. The local region around the CF is thought to contribute to the ReRAM switching process. PMID:27456192

  18. New Approach on Logic Application of Ferroelectric Random Access Memory Technology

    NASA Astrophysics Data System (ADS)

    Takayama, Masao; Koyama, Shinzo; Nozawa, Hiroshi

    2002-11-01

    In this paper, a new approach is described to solve some problems that occur when ferroelectric random access memory (FeRAM) is applied to logic circuits, particularly RSA cryptography. Application of a programmable switch device to RSA-based cryptography processing circuits was explored. RSA-based cryptography processing circuits have been designed as code conversion circuits. The capacity of the code conversion programmable AND gate and FeRAM and the translation rate have been investigated as a function of bit length. As a result, a problem of huge capacity at the practical bit length can be predicted theoretically. To solve this problem, we propose a new scheme for circuits and a new algorithm of logic operation using the binomial theorem.

  19. Understanding Electrical Conduction States in WO3 Thin Films Applied for Resistive Random-Access Memory

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kieu Hanh; Pham, Kim Ngoc; Dao, Thi Bang Tam; Tran, Dai Lam; Phan, Bach Thang

    2016-05-01

    The electrical conduction and associated resistance switching mechanism of top electrode/WO3/bottom electrode devices [top electrode (TE): Ag, Ti; bottom electrode (BE): Pt, fluorine-doped tin oxide] have been investigated. The direction of switching and switching ability depended on both the top and bottom electrode material. Multiple electrical conduction mechanisms control the leakage current of such switching devices, including trap-controlled space-charge, ballistic, Ohmic, and Fowler-Nordheim tunneling effects. The transition between electrical conduction states is also linked to the switching (SET-RESET) process. This is the first report of ballistic conduction in research into resistive random-access memory. The associated resistive switching mechanisms are also discussed.

  20. Low-energy Resistive Random Access Memory Devices with No Need for a Compliance Current.

    PubMed

    Xu, Zedong; Yu, Lina; Wu, Yong; Dong, Chang; Deng, Ning; Xu, Xiaoguang; Miao, J; Jiang, Yong

    2015-01-01

    A novel resistive random access memory device is designed with SrTiO3/ La2/3Sr1/3MnO3 (LSMO)/MgAl2O4 (MAO)/Cu structure, in which metallic epitaxial LSMO is employed as the bottom electrode rather than traditional metal materials. In this device, the critical external compliance current is no longer necessary due to the high self-resistance of LSMO. The LMSO bottom electrode can act as a series resistor to offer a compliance current during the set process. Besides, the device also has excellent switching features which are originated in the formation of Cu filaments under external voltage. Therefore it provides the possibility of reducing power consumption and accelerating the commercialization of resistive switching devices. PMID:25982101

  1. Improvement of Resistive Random Access Memory Device Performance via Embedding of Low-K Dielectric Layer.

    PubMed

    Jang, Sung Hwan; Ryu, Ju Tae; Jung, Hyun Soo; Kim, Tae Whan

    2016-02-01

    The switching mechanisms of resistive random access memories (ReRAMs) were strongly related to the formation and rupture of conduction filaments (CFs) in the transition metal oxide (TMO) layer. The novel method approached to enhance the electrical characteristics of ReRAMs by introducing of the local insertion of the low-k dielectric layer inside the TMO layer. Simulation results showed that the insertion of the low-k dielectric layer in the TMO layer reduced the switching volume and the generation of CFs. The large variation of resistive switching properties was caused by the stochastic characteristics of the CFs, which was involved in switching by generation and rupture. The electrical characteristics of the novel ReRAMs exhibited a low reset current of below 20 microA, the high uniformity of the resistive switching, and the narrow variation of the resistance for the high resistance state. PMID:27433626

  2. Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory.

    PubMed

    Qin, Shengjun; Liu, Zhan; Zhang, Guo; Zhang, Jinyu; Sun, Yaping; Wu, Huaqiang; Qian, He; Yu, Zhiping

    2015-04-14

    The growth dynamics for metallic filaments in conductive-bridge resistive-switching random access memory (CBRAM) are studied using the kinetic Monte Carlo (KMC) method. The physical process at the atomistic level is revealed in explaining the experimental observation that filament growth can originate at either the cathode or the anode. The statistical nature of the filament growth is best shown by the random topography of dendrite-like conductive paths obtained. Critical material properties, such as charged-particle mobility in the switching layer of a solid electrolyte or a dielectric, are mapped to KMC model parameters through activation energy, etc. The accuracy of the simulator is established by the good agreement between the simulated forming time and the measured data. PMID:25750983

  3. Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help.

    PubMed

    Iijima, Norifumi; Iwasaki, Akiko

    2016-05-26

    Circulating antibodies can access most tissues to mediate surveillance and elimination of invading pathogens. Immunoprivileged tissues such as the brain and the peripheral nervous system are shielded from plasma proteins by the blood-brain barrier and blood-nerve barrier, respectively. Yet, circulating antibodies must somehow gain access to these tissues to mediate their antimicrobial functions. Here we examine the mechanism by which antibodies gain access to neuronal tissues to control infection. Using a mouse model of genital herpes infection, we demonstrate that both antibodies and CD4 T cells are required to protect the host after immunization at a distal site. We show that memory CD4 T cells migrate to the dorsal root ganglia and spinal cord in response to infection with herpes simplex virus type 2. Once inside these neuronal tissues, CD4 T cells secrete interferon-γ and mediate local increase in vascular permeability, enabling antibody access for viral control. A similar requirement for CD4 T cells for antibody access to the brain is observed after intranasal challenge with vesicular stomatitis virus. Our results reveal a previously unappreciated role of CD4 T cells in mobilizing antibodies to the peripheral sites of infection where they help to limit viral spread. PMID:27225131

  4. The Memory Function of the B Cell Antigen Receptor.

    PubMed

    Wienands, Jürgen; Engels, Niklas

    2016-01-01

    Activated B lymphocytes preserve their antigen experience by differentiating into long-lived pools of antibody-secreting plasma cells or various types of memory B cells (MBCs). The former population constantly produces serum immunoglobulins with sufficient specificity and affinity to thwart infections with recurrent pathogens. By contrast, memory B cell populations retain their antigen receptors on the cell surface and hence need pathogen-induced differentiation steps before they can actively contribute to host defense. The terminal differentiation of MBCs into antibody-secreting plasma cells is hallmarked by the absence of the lag phase characteristic for primary antibody responses. Moreover, secondary antibody responses are predominantly driven by MBCs that bear an antigen receptor of the IgG class on their surface although IgM-positive memory populations exist as well. These fundamental principles of B cell memory were enigmatic for decades. Only recently, we have begun to understand the underlying mechanisms. This review summarizes our current understanding of how different subpopulations of MBCs are generated during primary immune responses and how their functional heterogeneity on antigen recall is controlled by different signaling capabilities of B cell antigen receptor (BCR) isotypes and by the nature of the antigen. PMID:26362935

  5. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  6. Does the mismatch negativity operate on a consciously accessible memory trace?

    PubMed

    Dykstra, Andrew R; Gutschalk, Alexander

    2015-11-01

    The extent to which the contents of short-term memory are consciously accessible is a fundamental question of cognitive science. In audition, short-term memory is often studied via the mismatch negativity (MMN), a change-related component of the auditory evoked response that is elicited by violations of otherwise regular stimulus sequences. The prevailing functional view of the MMN is that it operates on preattentive and even preconscious stimulus representations. We directly examined the preconscious notion of the MMN using informational masking and magnetoencephalography. Spectrally isolated and otherwise suprathreshold auditory oddball sequences were occasionally random rendered inaudible by embedding them in random multitone masker "clouds." Despite identical stimulation/task contexts and a clear representation of all stimuli in auditory cortex, MMN was only observed when the preceding regularity (that is, the standard stream) was consciously perceived. The results call into question the preconscious interpretation of MMN and raise the possibility that it might index partial awareness in the absence of overt behavior. PMID:26702432

  7. Does the mismatch negativity operate on a consciously accessible memory trace?

    PubMed Central

    Dykstra, Andrew R.; Gutschalk, Alexander

    2015-01-01

    The extent to which the contents of short-term memory are consciously accessible is a fundamental question of cognitive science. In audition, short-term memory is often studied via the mismatch negativity (MMN), a change-related component of the auditory evoked response that is elicited by violations of otherwise regular stimulus sequences. The prevailing functional view of the MMN is that it operates on preattentive and even preconscious stimulus representations. We directly examined the preconscious notion of the MMN using informational masking and magnetoencephalography. Spectrally isolated and otherwise suprathreshold auditory oddball sequences were occasionally random rendered inaudible by embedding them in random multitone masker “clouds.” Despite identical stimulation/task contexts and a clear representation of all stimuli in auditory cortex, MMN was only observed when the preceding regularity (that is, the standard stream) was consciously perceived. The results call into question the preconscious interpretation of MMN and raise the possibility that it might index partial awareness in the absence of overt behavior. PMID:26702432

  8. Influence of ultraviolet irradiation on data retention characteristics in resistive random access memory

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Ohmi, K.; Kishida, S.; Kinoshita, K.

    2016-03-01

    With increasing density of memory devices, the issue of generating soft errors by cosmic rays is becoming more and more serious. Therefore, the irradiation resistance of resistance random access memory (ReRAM) to cosmic radiation has to be elucidated for practical use. In this paper, we investigated the data retention characteristics of ReRAM against ultraviolet irradiation with a Pt/NiO/ITO structure. Soft errors were confirmed to be caused by ultraviolet irradiation in both low- and high-resistance states. An analysis of the wavelength dependence of light irradiation on data retention characteristics suggested that electronic excitation from the valence to the conduction band and to the energy level generated due to the introduction of oxygen vacancies caused the errors. Based on a statistically estimated soft error rates, the errors were suggested to be caused by the cohesion and dispersion of oxygen vacancies owing to the generation of electron-hole pairs and valence changes by the ultraviolet irradiation.

  9. Microstructural transitions in resistive random access memory composed of molybdenum oxide with copper during switching cycles

    NASA Astrophysics Data System (ADS)

    Arita, Masashi; Ohno, Yuuki; Murakami, Yosuke; Takamizawa, Keisuke; Tsurumaki-Fukuchi, Atsushi; Takahashi, Yasuo

    2016-08-01

    The switching operation of a Cu/MoOx/TiN resistive random access memory (ReRAM) device was investigated using in situ transmission electron microscopy (TEM), where the TiN surface was slightly oxidized (ox-TiN). The relationship between the switching properties and the dynamics of the ReRAM microstructure was confirmed experimentally. The growth and/or shrinkage of the conductive filament (CF) can be classified into two set modes and two reset modes. These switching modes depend on the device's switching history, factors such as the amount of Cu inclusions in the MoOx layer and the CF geometry. High currents are needed to produce an observable change in the CF. However, sharp and stable switching behaviour can be achieved without requiring such a major change. The local region around the CF is thought to contribute to the ReRAM switching process.The switching operation of a Cu/MoOx/TiN resistive random access memory (ReRAM) device was investigated using in situ transmission electron microscopy (TEM), where the TiN surface was slightly oxidized (ox-TiN). The relationship between the switching properties and the dynamics of the ReRAM microstructure was confirmed experimentally. The growth and/or shrinkage of the conductive filament (CF) can be classified into two set modes and two reset modes. These switching modes depend on the device's switching history, factors such as the amount of Cu inclusions in the MoOx layer and the CF geometry. High currents are needed to produce an observable change in the CF. However, sharp and stable switching behaviour can be achieved without requiring such a major change. The local region around the CF is thought to contribute to the ReRAM switching process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02602h

  10. Context controls access to working and reference memory in the pigeon (Columba livia).

    PubMed

    Roberts, William A; Macpherson, Krista; Strang, Caroline

    2016-01-01

    The interaction between working and reference memory systems was examined under conditions in which salient contextual cues were presented during memory retrieval. Ambient colored lights (red or green) bathed the operant chamber during the presentation of comparison stimuli in delayed matching-to-sample training (working memory) and during the presentation of the comparison stimuli as S+ and S- cues in discrimination training (reference memory). Strong competition between memory systems appeared when the same contextual cue appeared during working and reference memory training. When different contextual cues were used, however, working memory was completely protected from reference memory interference. PMID:26781056

  11. Disturbance characteristics of half-selected cells in a cross-point resistive switching memory array.

    PubMed

    Chen, Zhe; Li, Haitong; Chen, Hong-Yu; Chen, Bing; Liu, Rui; Huang, Peng; Zhang, Feifei; Jiang, Zizhen; Ye, Hongfei; Bin Gao; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng; Wong, H-S Philip; Yu, Shimeng

    2016-05-27

    Disturbance characteristics of cross-point resistive random access memory (RRAM) arrays are comprehensively studied in this paper. An analytical model is developed to quantify the number of pulses (#Pulse) the cell can bear before disturbance occurs under various sub-switching voltage stresses based on physical understanding. An evaluation methodology is proposed to assess the disturb behavior of half-selected (HS) cells in cross-point RRAM arrays by combining the analytical model and SPICE simulation. The characteristics of cross-point RRAM arrays such as energy consumption, reliable operating cycles and total error bits are evaluated by the methodology. A possible solution to mitigate disturbance is proposed. PMID:27094841

  12. Disturbance characteristics of half-selected cells in a cross-point resistive switching memory array

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Li, Haitong; Chen, Hong-Yu; Chen, Bing; Liu, Rui; Huang, Peng; Zhang, Feifei; Jiang, Zizhen; Ye, Hongfei; Gao, Bin; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng; Wong, H.-S. Philip; Yu, Shimeng

    2016-05-01

    Disturbance characteristics of cross-point resistive random access memory (RRAM) arrays are comprehensively studied in this paper. An analytical model is developed to quantify the number of pulses (#Pulse) the cell can bear before disturbance occurs under various sub-switching voltage stresses based on physical understanding. An evaluation methodology is proposed to assess the disturb behavior of half-selected (HS) cells in cross-point RRAM arrays by combining the analytical model and SPICE simulation. The characteristics of cross-point RRAM arrays such as energy consumption, reliable operating cycles and total error bits are evaluated by the methodology. A possible solution to mitigate disturbance is proposed.

  13. Memory.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Discusses current research (including that involving amnesiacs and snails) into the nature of the memory process, differentiating between and providing examples of "fact" memory and "skill" memory. Suggests that three brain parts (thalamus, fornix, mammilary body) are involved in the memory process. (JN)

  14. Conditions of steady switching in phase-transition memory cells

    SciTech Connect

    Popov, A. I. Salnikov, S. M.; Anufriev, Yu. V.

    2015-04-15

    Three types of non-volatile memory cells of different designs based on phase transitions are developed and implemented. The effect of the design features of the cells and their active-region sizes on the switching characteristics and normal operation of the cells is considered as a whole. The causes of failure of the cells are analyzed from the obtained series of scanning electron images upon level-by-level etching of the samples. It is shown that the cell design is the most critical factor from the viewpoint of switching to the high-resistance state. The causes of this fact are analyzed and the criterion for providing the steady operation of cells of non-volatile memory based on phase transitions is formulated.

  15. Memory T Cell-Derived interferon-γ Instructs Potent Innate Cell Activation For Protective Immunity

    PubMed Central

    Soudja, Saidi M’Homa; Chandrabos, Ceena; Yakob, Ernest; Veenstra, Mike; Palliser, Deborah; Lauvau, Grégoire

    2014-01-01

    SUMMARY Cells of the innate immune system are essential for host defenses against primary microbial pathogen infections, yet their involvement in effective memory responses of vaccinated individuals has been poorly investigated. Here we show that memory T cells instruct innate cells to become potent effector cells in a systemic and a mucosal model of infection. Memory T cells controlled phagocyte, dendritic cell and NK or NK T cell mobilization and induction of a strong program of differentiation, which included their expression of effector cytokines and microbicidal pathways, all of which were delayed in non-vaccinated hosts. Disruption of IFN-γ-signaling in Ly6C+ monocytes, dendritic cells and macrophages impaired these processes and the control of pathogen growth. These results reveal how memory T cells, through rapid secretion of IFN-γ, orchestrate extensive modifications of host innate immune responses that are essential for effective protection of vaccinated hosts. PMID:24931122

  16. Th17 memory cells: live long and proliferate.

    PubMed

    McGeachy, Mandy J

    2013-11-01

    The development of immune memory is a double-edged sword, helping to maintain health by preventing repeated infections but also driving chronic inflammation when dysregulated. Th17 cells are now well-known as major drivers of autoimmune disease but also play roles in protective immune responses against pathogens. This mini-review will focus on the recent evidence for long-lived, robust Th17 memory cell populations in mouse models and humans, and their functional roles in mediating host protection and chronic disease states. PMID:24006508

  17. Three-Year-Old Children Can Access Their Own Memory to Guide Responses on a Visual Matching Task

    ERIC Educational Resources Information Center

    Balcomb, Frances K.; Gerken, LouAnn

    2008-01-01

    Many models of learning rely on accessing internal knowledge states. Yet, although infants and young children are recognized to be proficient learners, the ability to act on metacognitive information is not thought to develop until early school years. In the experiments reported here, 3.5-year-olds demonstrated memory-monitoring skills by…

  18. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-08-15

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  19. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-05-16

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  20. Memory T Cell-Specific Therapeutics in Organ Transplantation

    PubMed Central

    Page, Andrew J.; Ford, Mandy L.; Kirk, Allan D.

    2010-01-01

    Purpose of the Review This review details the role of memory T cells in physiologic and allospecific immunity, and summarizes the effects of immunosuppressive agents used to manipulate their function in the context of organ transplantation. Recent Findings Memory T cells are lymphocytes with characteristics that are thought to promote anamnestic immune responses. They have a unique capacity to generate rapid effector functions upon secondary exposure to a pathogen, and this is achieved through truncated requirements for antigen presentation, reduced activation thresholds, and enhanced trafficking and adhesion mechanisms. In general, these same mechanisms also appear to evoke improved efficiency in mediating allograft rejection. The phenotype of these cells has been increasingly well defined and associated with a characteristic pattern of susceptibility to immunosuppressive agents. This knowledge is now being exploited in the development of immune therapeutic regimens to selectively mollify T memory cell effects. Summary A specific targeting of memory T cells has potential to prevent allograft rejection in a more precise manner that current means of immunosuppression. However, these benefits will be balanced by the reciprocal risk of susceptibility to recurrent infection. PMID:19779342

  1. Evaluation and Control of Break-Even Time of Nonvolatile Static Random Access Memory Based on Spin-Transistor Architecture with Spin-Transfer-Torque Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Shuto, Yusuke; Yamamoto, Shuu'ichirou; Sugahara, Satoshi

    2012-04-01

    The energy performance of a nonvolatile static random access memory (NV-SRAM) cell for power gating applications was quantitatively analyzed for the first time using the performance index of break-even time (BET). The NV-SRAM cell is based on spin-transistor architecture using ordinary metal-oxide-semiconductor field-effect transistors (MOSFETs) and spin-transfer-torque magnetic tunnel junctions (STT-MTJs), whose circuit representation of spin-transistor is referred to as a pseudo-spin-MOSFET (PS-MOSFET). The cell is configured with a standard six-transistor SRAM cell and two PS-MOSFETs. The NV-SRAM cell basically has a short BET of submicroseconds. Although the write (store) operation to the STT-MTJs causes an increase in the BET, it can be successfully reduced by the proposed power-aware bias-control for the PS-MOSFETs.

  2. Hoxb4 Overexpression in CD4 Memory Phenotype T Cells Increases the Central Memory Population upon Homeostatic Proliferation

    PubMed Central

    Fournier, Marilaine; Labrecque, Nathalie; Bijl, Janet J.

    2013-01-01

    Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation. PMID:24324706

  3. Experimental evidence of the quantum point contact theory in the conduction mechanism of bipolar HfO2-based resistive random access memories

    NASA Astrophysics Data System (ADS)

    Prócel, L. M.; Trojman, L.; Moreno, J.; Crupi, F.; Maccaronio, V.; Degraeve, R.; Goux, L.; Simoen, E.

    2013-08-01

    The quantum point contact (QPC) model for dielectric breakdown is used to explain the electron transport mechanism in HfO2-based resistive random access memories (ReRAM) with TiN(30 nm)HfO2(5 nm)Hf(10 nm)TiN(30 nm) stacks. Based on experimental I-V characteristics of bipolar HfO2-based ReRAM, we extracted QPC model parameters related to the conduction mechanism in several devices in order to make a statistical study. In addition, we investigated the temperature effect on the conduction mechanism and compared it with the QPC model. Based on these experimental results, we show that the QPC model agrees well with the conduction behavior of HfO2-based ReRAM memory cells.

  4. Human Memory B Cells in Healthy Gingiva, Gingivitis, and Periodontitis.

    PubMed

    Mahanonda, Rangsini; Champaiboon, Chantrakorn; Subbalekha, Keskanya; Sa-Ard-Iam, Noppadol; Rattanathammatada, Warattaya; Thawanaphong, Saranya; Rerkyen, Pimprapa; Yoshimura, Fuminobu; Nagano, Keiji; Lang, Niklaus P; Pichyangkul, Sathit

    2016-08-01

    The presence of inflammatory infiltrates with B cells, specifically plasma cells, is the hallmark of periodontitis lesions. The composition of these infiltrates in various stages of homeostasis and disease development is not well documented. Human tissue biopsies from sites with gingival health (n = 29), gingivitis (n = 8), and periodontitis (n = 21) as well as gingival tissue after treated periodontitis (n = 6) were obtained and analyzed for their composition of B cell subsets. Ag specificity, Ig secretion, and expression of receptor activator of NF-κB ligand and granzyme B were performed. Although most of the B cell subsets in healthy gingiva and gingivitis tissues were CD19(+)CD27(+)CD38(-) memory B cells, the major B cell component in periodontitis was CD19(+)CD27(+)CD38(+)CD138(+)HLA-DR(low) plasma cells, not plasmablasts. Plasma cell aggregates were observed at the base of the periodontal pocket and scattered throughout the gingiva, especially apically toward the advancing front of the lesion. High expression of CXCL12, a proliferation-inducing ligand, B cell-activating factor, IL-10, IL-6, and IL-21 molecules involved in local B cell responses was detected in both gingivitis and periodontitis tissues. Periodontitis tissue plasma cells mainly secreted IgG specific to periodontal pathogens and also expressed receptor activator of NF-κB ligand, a bone resorption cytokine. Memory B cells resided in the connective tissue subjacent to the junctional epithelium in healthy gingiva. This suggested a role of memory B cells in maintaining periodontal homeostasis. PMID:27335500

  5. SiO2 doped Ge2Sb2Te5 thin films with high thermal efficiency for applications in phase change random access memory.

    PubMed

    Ryu, Seung Wook; Lyeo, Ho-Ki; Lee, Jong Ho; Ahn, Young Bae; Kim, Gun Hwan; Kim, Choon Hwan; Kim, Soo Gil; Lee, Se-Ho; Kim, Ka Young; Kim, Jong Hyeop; Kim, Won; Hwang, Cheol Seong; Kim, Hyeong Joon

    2011-06-24

    This study examined the various physical, structural and electrical properties of SiO(2) doped Ge(2)Sb(2)Te(5) (SGST) films for phase change random access memory applications. Interestingly, SGST had a layered structure (LS) resulting from the inhomogeneous distribution of SiO(2) after annealing. The physical parameters able to affect the reset current of phase change memory (I(res)) were predicted from the Joule heating and heat conservation equations. When SiO(2) was doped into GST, thermal conductivity largely decreased by ∼ 55%. The influence of SiO(2)-doping on I(res) was examined using the test phase change memory cell. I(res) was reduced by ∼ 45%. An electro-thermal simulation showed that the reduced thermal conductivity contributes to the improvement of cell efficiency as well as the reduction of I(res), while the increased dynamic resistance contributes only to the latter. The formation and presence of the LS thermal conductivity in the set state test cell after repeated switching was confirmed. PMID:21572208

  6. A simple device unit consisting of all NiO storage and switch elements for multilevel terabit nonvolatile random access memory.

    PubMed

    Lee, Myoung-Jae; Ahn, Seung-Eon; Lee, Chang Bum; Kim, Chang-Jung; Jeon, Sanghun; Chung, U-In; Yoo, In-Kyeong; Park, Gyeong-Su; Han, Seungwu; Hwang, In Rok; Park, Bae-Ho

    2011-11-01

    Present charge-based silicon memories are unlikely to reach terabit densities because of scaling limits. As the feature size of memory shrinks to just tens of nanometers, there is insufficient volume available to store charge. Also, process temperatures higher than 800 °C make silicon incompatible with three-dimensional (3D) stacking structures. Here we present a device unit consisting of all NiO storage and switch elements for multilevel terabit nonvolatile random access memory using resistance switching. It is demonstrated that NiO films are scalable to around 30 nm and compatible with multilevel cell technology. The device unit can be a building block for 3D stacking structure because of its simple structure and constituent, high performance, and process temperature lower than 300 °C. Memory resistance switching of NiO storage element is accompanied by an increase in density of grain boundary while threshold resistance switching of NiO switch element is controlled by current flowing through NiO film. PMID:21988144

  7. Most microbe-specific naïve CD4⁺ T cells produce memory cells during infection.

    PubMed

    Tubo, Noah J; Fife, Brian T; Pagan, Antonio J; Kotov, Dmitri I; Goldberg, Michael F; Jenkins, Marc K

    2016-01-29

    Infection elicits CD4(+) memory T lymphocytes that participate in protective immunity. Although memory cells are the progeny of naïve T cells, it is unclear that all naïve cells from a polyclonal repertoire have memory cell potential. Using a single-cell adoptive transfer and spleen biopsy method, we found that in mice, essentially all microbe-specific naïve cells produced memory cells during infection. Different clonal memory cell populations had different B cell or macrophage helper compositions that matched effector cell populations generated much earlier in the response. Thus, each microbe-specific naïve CD4(+) T cell produces a distinctive ratio of effector cell types early in the immune response that is maintained as some cells in the clonal population become memory cells. PMID:26823430

  8. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-06-01

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis

  9. Tuning resistance states by thickness control in an electroforming-free nanometallic complementary resistance random access memory

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Lu, Yang; Lee, Jongho; Chen, I.-Wei

    2016-01-01

    Tuning low resistance state is crucial for resistance random access memory (RRAM) that aims to achieve optimal read margin and design flexibility. By back-to-back stacking two nanometallic bipolar RRAMs with different thickness into a complementary structure, we have found that its low resistance can be reliably tuned over several orders of magnitude. Such high tunability originates from the exponential thickness dependence of the high resistance state of nanometallic RRAM, in which electron wave localization in a random network gives rise to the unique scaling behavior. The complementary nanometallic RRAM provides electroforming-free, multi-resistance-state, sub-100 ns switching capability with advantageous characteristics for memory arrays.

  10. Endurance characteristics of phase change memory cells

    NASA Astrophysics Data System (ADS)

    Ruru, Huo; Daolin, Cai; Chen, Bomy; Yifeng, Chen; Yuchan, Wang; Yueqing, Wang; Hongyang, Wei; Qing, Wang; Yangyang, Xia; Dan, Gao; Zhitang, Song

    2016-05-01

    The endurance characteristics of phase change memory are studied. With operational cycles, the resistances of reset and set states gradually change to the opposite direction. What is more, the operational conditions that are needed are also discussed. The failure and the changes are concerned with the compositional change of the phase change material. An abnormal phenomenon that the threshold voltage decreases slightly at first and then increases is observed, which is due to the coaction of interface contact and growing active volume size changing. Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09020402), the National Key Basic Research Program of China (Nos. 2013CBA01900, 2010CB934300, 2011CBA00607, 2011CB932804), the National Integrate Circuit Research Program of China (No. 2009ZX02023-003), the National Natural Science Foundation of China (No. 61176122, 61106001, 61261160500, 61376006), and the Science and Technology Council of Shanghai (Nos. 12nm0503701, 13DZ2295700, 12QA1403900, 13ZR1447200, 14ZR1447500).

  11. Cu impurity in insulators and in metal-insulator-metal structures: Implications for resistance-switching random access memories

    SciTech Connect

    Pandey, Sumeet C. Meade, Roy; Sandhu, Gurtej S.

    2015-02-07

    We present numerical results from atomistic simulations of Cu in SiO{sub 2} and Al{sub 2}O{sub 3}, with an emphasis on the thermodynamic, kinetic, and electronic properties. The calculated properties of Cu impurity at various concentrations (9.91 × 10{sup 20 }cm{sup −3} and 3.41 × 10{sup 22 }cm{sup −3}) in bulk oxides are presented. The metal-insulator interfaces result in up to a ∼4 eV reduction in the formation energies relative to the crystalline bulk. Additionally, the importance of Cu-Cu interaction in lowering the chemical potential is introduced. These concepts are then discussed in the context of formation and stability of localized conductive paths in resistance-switching Random Access Memories (RRAM-M). The electronic density of states and non-equilibrium transmission through these localized paths are studied, confirming conduction by showing three orders of magnitude increase in the electron transmission. The dynamic behavior of the conductive paths is investigated with atomistic drift-diffusion calculations. Finally, the paper concludes with a molecular dynamics simulation of a RRAM-M cell that attempts to combine the aforementioned phenomena in one self-consistent model.

  12. Performance improvement of gadolinium oxide resistive random access memory treated by hydrogen plasma immersion ion implantation

    SciTech Connect

    Wang, Jer-Chyi Hsu, Chih-Hsien; Ye, Yu-Ren; Ai, Chi-Fong; Tsai, Wen-Fa

    2014-03-15

    Characteristics improvement of gadolinium oxide (Gd{sub x}O{sub y}) resistive random access memories (RRAMs) treated by hydrogen plasma immersion ion implantation (PIII) was investigated. With the hydrogen PIII treatment, the Gd{sub x}O{sub y} RRAMs exhibited low set/reset voltages and a high resistance ratio, which were attributed to the enhanced movement of oxygen ions within the Gd{sub x}O{sub y} films and the increased Schottky barrier height at Pt/Gd{sub x}O{sub y} interface, respectively. The resistive switching mechanism of Gd{sub x}O{sub y} RRAMs was dominated by Schottky emission, as proved by the area dependence of the resistance in the low resistance state. After the hydrogen PIII treatment, a retention time of more than 10{sup 4} s was achieved at an elevated measurement temperature. In addition, a stable cycling endurance with the resistance ratio of more than three orders of magnitude of the Gd{sub x}O{sub y} RRAMs can be obtained.

  13. Switching methods in magnetic random access memory for low power applications

    NASA Astrophysics Data System (ADS)

    Guchang, Han; Jiancheng, Huang; Cheow Hin, Sim; Tran, Michael; Sze Ter, Lim

    2015-06-01

    Effect of saturation magnetization (Ms) of the free layer (FL) on the switching current is analyzed for spin transfer torque (STT) magnetic random access memory (MRAM). For in-plane FL, critical switching current (Ic0) decreases as Ms decreases. However, reduction in Ms also results in a low thermal stability factor (Δ), which must be compensated through increasing shape anisotropy, thus limiting scalability. For perpendicular FL, Ic0 reduction by using low-Ms materials is actually at the expense of data retention. To save energy consumed by STT current, two electric field (EF) controlled switching methods are proposed. Our simulation results show that elliptical FL can be switched by an EF pulse with a suitable width. However, it is difficult to implement this type of switching in real MRAM devices due to the distribution of the required switching pulse widths. A reliable switching method is to use an Oersted field guided switching. Our simulation and experimental results show that the bi-directional magnetization switching could be realized by an EF with an external field as low as  ±5 Oe if the offset field could be removed.

  14. Solution-processed carbon nanotube thin-film complementary static random access memory

    NASA Astrophysics Data System (ADS)

    Geier, Michael L.; McMorrow, Julian J.; Xu, Weichao; Zhu, Jian; Kim, Chris H.; Marks, Tobin J.; Hersam, Mark C.

    2015-11-01

    Over the past two decades, extensive research on single-walled carbon nanotubes (SWCNTs) has elucidated their many extraordinary properties, making them one of the most promising candidates for solution-processable, high-performance integrated circuits. In particular, advances in the enrichment of high-purity semiconducting SWCNTs have enabled recent circuit demonstrations including synchronous digital logic, flexible electronics and high-frequency applications. However, due to the stringent requirements of the transistors used in complementary metal-oxide-semiconductor (CMOS) logic as well as the absence of sufficiently stable and spatially homogeneous SWCNT thin-film transistors, the development of large-scale SWCNT CMOS integrated circuits has been limited in both complexity and functionality. Here, we demonstrate the stable and uniform electronic performance of complementary p-type and n-type SWCNT thin-film transistors by controlling adsorbed atmospheric dopants and incorporating robust encapsulation layers. Based on these complementary SWCNT thin-film transistors, we simulate, design and fabricate arrays of low-power static random access memory circuits, achieving large-scale integration for the first time based on solution-processed semiconductors.

  15. Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 1

    NASA Technical Reports Server (NTRS)

    Klute, A.

    1979-01-01

    Electrical characterization and qualification tests were performed on the RCA MWS5001D, 1024 by 1-bit, CMOS, random access memory. Characterization tests were performed on five devices. The tests included functional tests, AC parametric worst case pattern selection test, determination of worst-case transition for setup and hold times and a series of schmoo plots. The qualification tests were performed on 32 devices and included a 2000 hour burn in with electrical tests performed at 0 hours and after 168, 1000, and 2000 hours of burn in. The tests performed included functional tests and AC and DC parametric tests. All of the tests in the characterization phase, with the exception of the worst-case transition test, were performed at ambient temperatures of 25, -55 and 125 C. The worst-case transition test was performed at 25 C. The preburn in electrical tests were performed at 25, -55, and 125 C. All burn in endpoint tests were performed at 25, -40, -55, 85, and 125 C.

  16. Single-crystalline CuO nanowires for resistive random access memory applications

    SciTech Connect

    Hong, Yi-Siang; Chen, Jui-Yuan; Huang, Chun-Wei; Chiu, Chung-Hua; Huang, Yu-Ting; Huang, Ting Kai; He, Ruo Shiuan; Wu, Wen-Wei

    2015-04-27

    Recently, the mechanism of resistive random access memory (RRAM) has been partly clarified and determined to be controlled by the forming and erasing of conducting filaments (CF). However, the size of the CF may restrict the application and development as devices are scaled down. In this work, we synthesized CuO nanowires (NW) (∼150 nm in diameter) to fabricate a CuO NW RRAM nanodevice that was much smaller than the filament (∼2 μm) observed in a bulk CuO RRAM device in a previous study. HRTEM indicated that the Cu{sub 2}O phase was generated after operation, which demonstrated that the filament could be minimize to as small as 3.8 nm when the device is scaled down. In addition, energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS) show the resistive switching of the dielectric layer resulted from the aggregated oxygen vacancies, which also match with the I-V fitting results. Those results not only verify the switching mechanism of CuO RRAM but also show RRAM has the potential to shrink in size, which will be beneficial to the practical application of RRAM devices.

  17. Solution-processed carbon nanotube thin-film complementary static random access memory.

    PubMed

    Geier, Michael L; McMorrow, Julian J; Xu, Weichao; Zhu, Jian; Kim, Chris H; Marks, Tobin J; Hersam, Mark C

    2015-11-01

    Over the past two decades, extensive research on single-walled carbon nanotubes (SWCNTs) has elucidated their many extraordinary properties, making them one of the most promising candidates for solution-processable, high-performance integrated circuits. In particular, advances in the enrichment of high-purity semiconducting SWCNTs have enabled recent circuit demonstrations including synchronous digital logic, flexible electronics and high-frequency applications. However, due to the stringent requirements of the transistors used in complementary metal-oxide-semiconductor (CMOS) logic as well as the absence of sufficiently stable and spatially homogeneous SWCNT thin-film transistors, the development of large-scale SWCNT CMOS integrated circuits has been limited in both complexity and functionality. Here, we demonstrate the stable and uniform electronic performance of complementary p-type and n-type SWCNT thin-film transistors by controlling adsorbed atmospheric dopants and incorporating robust encapsulation layers. Based on these complementary SWCNT thin-film transistors, we simulate, design and fabricate arrays of low-power static random access memory circuits, achieving large-scale integration for the first time based on solution-processed semiconductors. PMID:26344184

  18. High uniformity and improved nonlinearity by embedding nanocrystals in selector-less resistive random access memory.

    PubMed

    Banerjee, Writam; Lu, Nianduan; Li, Ling; Sun, Pengxiao; Liu, Qi; Lv, Hangbing; Long, Shibing; Liu, Ming

    2014-12-10

    The sneak path problem is one of the major hindrances for the application of high density 3D crossbar resistive random access memory (RRAM). For the selector-less RRAM devices, nonlinear (NL) current-voltage (I-V) characteristics are an alternative approach to minimize the sneak paths. In this work we have demonstrated metallic IrOx nanocrystal (IrOx-NC) based selector-less crossbar RRAM devices in an IrOx/AlOx/IrOx-NC/AlOx/W structure with very reliable hysteresis resistive switching of >10 000 cycles, stable multiple levels, and high temperature (HT) data retention. Moreover, an improvement in the NL behavior has been reported as compared to a pure high-κ AlOx RRAM. The origin of the NL nature has been discussed using the hopping model and Luittenger's 1D metal theory. The nonlinearity can be further improved by structure engineering and will improve the sensing margin of the devices, which is rewarding for crossbar array integration. PMID:25491764

  19. Switched-memory B cells remodel B cell receptors within secondary germinal centers

    PubMed Central

    Okitsu, Shinji L.; McHeyzer-Williams, Michael G.

    2015-01-01

    Effective vaccines induce high-affinity memory B cells and durable antibody responses through accelerated mechanisms of natural selection. Secondary changes in antibody repertoires after vaccine boosts suggest progressive B cell receptor (BCR) re-diversification, but underlying mechanisms remain unresolved. Here integrated specificity and function of individual memory B cell progeny reveal ongoing evolution of polyclonal antibody specificities through germinal center (GC) specific transcriptional activity. At the clonal and sub-clonal levels, single cell expression of Cd83 and Pol□ segregates the secondary GC transcriptional program into 4 stages that regulate divergent mechanisms of memory BCR evolution. These studies demonstrate that vaccine boosts re-activate a cyclic program of GC function in switched-memory B cells to remodel existing antibody specificities and enhance durable immune protection. PMID:25642821

  20. Defective CD8 T Cell Memory Following Acute Infection Without CD4 T Cell Help

    NASA Astrophysics Data System (ADS)

    Sun, Joseph C.; Bevan, Michael J.

    2003-04-01

    The CD8+ cytotoxic T cell response to pathogens is thought to be CD4+ helper T cell independent because infectious agents provide their own inflammatory signals. Mice that lack CD4+ T cells mount a primary CD8 response to Listeria monocytogenes equal to that of wild-type mice and rapidly clear the infection. However, protective memory to a challenge is gradually lost in the former animals. Memory CD8+ T cells from normal mice can respond rapidly, but memory CD8+ T cells that are generated without CD4 help are defective in their ability to respond to secondary encounters with antigen. The results highlight a previously undescribed role for CD4 help in promoting protective CD8 memory development.

  1. Do CD8 effector cells need IL-7R expression to become resting memory cells?

    PubMed

    Buentke, Eva; Mathiot, Anne; Tolaini, Mauro; Di Santo, James; Zamoyska, Rose; Seddon, Benedict

    2006-09-15

    The role for IL-7R expression in the differentiation of effector T cells into resting memory remains controversial. Here, using a conditional IL-7R transgenic model, we were able to test directly whether CD8 effector T cells require IL-7R expression for their differentiation into resting memory cells. In the absence of IL-7R expression, effector cells transferred into "full" hosts underwent a protracted and unremitting contraction compared with IL-7R-expressing control cells and were unable to develop into long-term resting memory cells. Surprisingly, when the same effector cells were transferred into empty T-cell-deficient hosts, they could generate long-lived fully functional resting memory cells independently of IL-7R expression. Formation of these latter cells was found to be dependent on IL-15, because the same IL-7R-deficient effector cells were rapidly lost from IL-15-deficient hosts, having a half-life of less than 40 hours. Therefore, our data suggest that, under physiological conditions, both IL-7 and IL-15 synergize to promote the formation of memory cells directly by limiting the contraction of effectors that occurs following an immune response and that reexpression of IL-7R is a key checkpoint in the regulation of this process. PMID:16705084

  2. On a model of pattern regeneration based on cell memory.

    PubMed

    Bessonov, Nikolai; Levin, Michael; Morozova, Nadya; Reinberg, Natalia; Tosenberger, Alen; Volpert, Vitaly

    2015-01-01

    We present here a new model of the cellular dynamics that enable regeneration of complex biological morphologies. Biological cell structures are considered as an ensemble of mathematical points on the plane. Each cell produces a signal which propagates in space and is received by other cells. The total signal received by each cell forms a signal distribution defined on the cell structure. This distribution characterizes the geometry of the cell structure. If a part of this structure is removed, the remaining cells have two signals. They keep the value of the signal which they had before the amputation (memory), and they receive a new signal produced after the amputation. Regeneration of the cell structure is stimulated by the difference between the old and the new signals. It is stopped when the two signals coincide. The algorithm of regeneration contains certain rules which are essential for its functioning, being the first quantitative model of cellular memory that implements regeneration of complex patterns to a specific target morphology. Correct regeneration depends on the form and the size of the cell structure, as well as on some parameters of regeneration. PMID:25695252

  3. Radioactive hot-cell access-hole decontamination machine

    SciTech Connect

    Not Available

    1981-04-06

    A radioactive hot cell access hole decontamination machine is disclosed. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  4. The Transcription Factor Eomesodermin Enables CD8+ T Cells to Compete for the Memory Cell Niche

    PubMed Central

    Banerjee, Arnob; Gordon, Scott M.; Intlekofer, Andrew M.; Paley, Michael A.; Mooney, Erin C.; Lindsten, Tulia; Wherry, E. John; Reiner, Steven L.

    2010-01-01

    CD8+ T cells responding to intracellular infection give rise to cellular progeny that become terminally differentiated effector cells and self-renewing memory cells. T-bet and Eomesodermin are key transcription factors of cytotoxic lymphocyte lineages. We now show that CD8+ T cells lacking Eomesodermin compete poorly in contributing to the pool of antigen-specific central memory cells. Eomesodermin-deficient CD8+ T cells undergo primary clonal expansion but are defective in long-term survival, populating the bone marrow niche, and re-expanding after re-challenge. The phenotype of Eomesodermin-deficient CD8+ T cells supports the hypothesis that T-bet and Eomesodermin can act redundantly to induce effector functions, but can also act to reciprocally promote terminal differentiation versus self-renewal of antigen-specific memory cells. PMID:20935204

  5. Vaccination Expands Antigen-Specific CD4+ Memory T Cells and Mobilizes Bystander Central Memory T Cells

    PubMed Central

    Li Causi, Eleonora; Parikh, Suraj C.; Chudley, Lindsey; Layfield, David M.; Ottensmeier, Christian H.; Stevenson, Freda K.; Di Genova, Gianfranco

    2015-01-01

    CD4+ T helper memory (Thmem) cells influence both natural and vaccine-boosted immunity, but mechanisms for their maintenance remain unclear. Pro-survival signals from the common gamma-chain cytokines, in particular IL-7, appear important. Previously we showed in healthy volunteers that a booster vaccination with tetanus toxoid (TT) expanded peripheral blood TT-specific Thmem cells as expected, but was accompanied by parallel increase of Thmem cells specific for two unrelated and non cross-reactive common recall antigens. Here, in a new cohort of healthy human subjects, we compare blood vaccine-specific and bystander Thmem cells in terms of differentiation stage, function, activation and proliferative status. Both responses peaked 1 week post-vaccination. Vaccine-specific cytokine-producing Thmem cells were predominantly effector memory, whereas bystander cells were mainly of central memory phenotype. Importantly, TT-specific Thmem cells were activated (CD38High HLA-DR+), cycling or recently divided (Ki-67+), and apparently vulnerable to death (IL-7RαLow and Bcl-2 Low). In contrast, bystander Thmem cells were resting (CD38Low HLA-DR- Ki-67-) with high expression of IL-7Rα and Bcl-2. These findings allow a clear distinction between vaccine-specific and bystander Thmem cells, suggesting the latter do not derive from recent proliferation but from cells mobilized from as yet undefined reservoirs. Furthermore, they reveal the interdependent dynamics of specific and bystander T-cell responses which will inform assessments of responses to vaccines. PMID:26332995

  6. Inflammasome-Dependent Induction of Adaptive NK Cell Memory.

    PubMed

    van den Boorn, Jasper G; Jakobs, Christopher; Hagen, Christian; Renn, Marcel; Luiten, Rosalie M; Melief, Cornelis J M; Tüting, Thomas; Garbi, Natalio; Hartmann, Gunther; Hornung, Veit

    2016-06-21

    Monobenzone is a pro-hapten that is exclusively metabolized by melanocytes, thereby haptenizing melanocyte-specific antigens, which results in cytotoxic autoimmunity specifically against pigmented cells. Studying monobenzone in a setting of contact hypersensitivity (CHS), we observed that monobenzone induced a long-lasting, melanocyte-specific immune response that was dependent on NK cells, yet fully intact in the absence of T- and B cells. Consistent with the concept of "memory NK cells," monobenzone-induced NK cells resided in the liver and transfer of these cells conferred melanocyte-specific immunity to naive animals. Monobenzone-exposed skin displayed macrophage infiltration and cutaneous lymph nodes showed an inflammasome-dependent influx of macrophages with a tissue-resident phenotype, coinciding with local NK cell activation. Indeed, macrophage depletion or the absence of the NLRP3 inflammasome, the adaptor protein ASC or interleukin-18 (IL-18) abolished monobenzone CHS, thereby establishing a non-redundant role for the NLRP3 inflammasome as a critical proinflammatory checkpoint in the induction of hapten-dependent memory NK cells. PMID:27287410

  7. Temporal requirements for B cells in the establishment of CD4 T cell memory.

    PubMed

    Mollo, Sarah B; Zajac, Allan J; Harrington, Laurie E

    2013-12-15

    CD4 T cell memory generation is shaped by a number of factors, including the strength and duration of TCR signaling, as well as the priming environment, all of which can be modified by B cells. Studies using B cell-deficient mice indicate B cells play a critical role in generating effector and memory CD4 T cells; however, when and how B cells are acting to promote these responses has not yet been ascertained. In this study, we use anti-CD20 Ab depletion of B cells at different times following Listeria monocytogenes infection to show that B cells are necessary for the induction of optimal CD4 T cell memory, but not for the transition and maintenance of this population. Importantly, the prerequisite of B cells early postinfection is partially dependent on their expression of MHC class II. B cells are not only required during the priming phase, but also necessary for the initiation of robust secondary responses by memory CD4 T cells. Interestingly, the requirement during the recall response is independent of B cell Ag presentation. Overall, these studies demonstrate the temporally and functionally distinct roles for B cells in regulating CD4 T cell responses. PMID:24218454

  8. Closed-form analytical model of static noise margin for ultra-low voltage eight-transistor tunnel FET static random access memory

    NASA Astrophysics Data System (ADS)

    Fuketa, Hiroshi; O'uchi, Shin-ichi; Fukuda, Koichi; Mori, Takahiro; Morita, Yukinori; Masahara, Meishoku; Matsukawa, Takashi

    2016-04-01

    Variations of eight-transistor (8T) tunnel FET (TFET) static random access memory (SRAM) cells at ultra-low supply voltage (V DD) of 0.3 V are discussed. A closed-form analytical model for the static noise margin (SNM) of the TFET SRAM cells is proposed to clarify the dependence of SNM on device parameters and is verified by simulations. The SNM variations caused by process variations are investigated using the proposed model, and we show a requirement for the threshold voltage (V TH) variation in the TFET SRAM design, which indicates that the V TH variation must be reduced as the subthreshold swing becomes steeper. In addition, a feasibility of the TFET SRAM cells operating at V DD = 0.3 V in two different process technologies is evaluated using the proposed model.

  9. An amorphous titanium dioxide metal insulator metal selector device for resistive random access memory crossbar arrays with tunable voltage margin

    NASA Astrophysics Data System (ADS)

    Cortese, Simone; Khiat, Ali; Carta, Daniela; Light, Mark E.; Prodromakis, Themistoklis

    2016-01-01

    Resistive random access memory (ReRAM) crossbar arrays have become one of the most promising candidates for next-generation non volatile memories. To become a mature technology, the sneak path current issue must be solved without compromising all the advantages that crossbars offer in terms of electrical performances and fabrication complexity. Here, we present a highly integrable access device based on nickel and sub-stoichiometric amorphous titanium dioxide (TiO2-x), in a metal insulator metal crossbar structure. The high voltage margin of 3 V, amongst the highest reported for monolayer selector devices, and the good current density of 104 A/cm2 make it suitable to sustain ReRAM read and write operations, effectively tackling sneak currents in crossbars without compromising fabrication complexity in a 1 Selector 1 Resistor (1S1R) architecture. Furthermore, the voltage margin is found to be tunable by an annealing step without affecting the device's characteristics.

  10. Encoding and retrieval processes involved in the access of source information in the absence of item memory.

    PubMed

    Ball, B Hunter; DeWitt, Michael R; Knight, Justin B; Hicks, Jason L

    2014-09-01

    The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were related to the target item but never actually studied. In Experiments 1 and 2, participants studied 1 category member (e.g., onion) from a variety of different categories and at test were presented with an unstudied category label (e.g., vegetable) to probe memory for item and source information. In Experiments 3 and 4, 1 member of unidirectional (e.g., credit or card) or bidirectional (e.g., salt or pepper) associates was studied, whereas the other unstudied member served as a test probe. When recall failed, source information was accessible only when items were processed deeply during encoding (Experiments 1 and 2) and when there was strong forward associative strength between the retrieval cue and target (Experiments 3 and 4). These findings suggest that a retrieval probe diagnostic of semantically related item information reinstantiates information bound in memory during encoding that results in reactivation of associated contextual information, contingent upon sufficient learning of the item itself and the association between the item and its context information. PMID:24933700

  11. ViSA: a neurodynamic model for visuo-spatial working memory, attentional blink, and conscious access.

    PubMed

    Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees

    2012-10-01

    Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). ViSA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations. PMID:22823385

  12. In remembrance of things past: memory T cells and transplant rejection.

    PubMed

    Valujskikh, Anna; Lakkis, Fadi G

    2003-12-01

    A cardinal feature of the adaptive immune response is its ability to generate long-lived populations of memory T lymphocytes. Memory T cells are specific to the antigen encountered during the primary immune response and react rapidly and vigorously upon re-encounter with the same antigen. Memory T cells that recognize microbial antigens provide the organism with long-lasting protection against potentially fatal infections. On the other hand, memory T cells that recognize donor alloantigens can jeopardize the survival of life-saving organ transplants. We review here the immunobiology of memory T cells and describe their role in the rejection of solid organ allografts. PMID:14617198

  13. CD21(-/low) B cells in human blood are memory cells.

    PubMed

    Thorarinsdottir, K; Camponeschi, A; Cavallini, N; Grimsholm, O; Jacobsson, L; Gjertsson, I; Mårtensson, I-L

    2016-08-01

    The complement receptor 2 (CR2, CD21) is part of a complex (CD21/CD19/CD81) acting as a co-receptor to the B cell receptor (BCR). Simultaneous triggering of the BCR and CD21 lowers the threshold for B cell activation. Although CD21 is important, B cells that express low amounts or lack surface CD21 (CD21(-/low) ) are increased in conditions with chronic inflammation, e.g. autoimmune diseases. However, little is known about the CD21(-/low) B cell subset in peripheral blood from healthy donors. Here, we show that CD21(-/low) cells represent approximately 5% of B cells in peripheral blood from adults but are barely detectable in cord blood, after excluding transitional B cells. The CD21(-/low) subset can be divided into CD38(-) 24(+) and CD38(-) 24(low) cells, where most of the CD38(-) 24(+) are CD27(+) immunoglobulin (Ig)M(+) IgD(+) and the CD38(-) 24(low) are switched CD27(-) . Expression levels of additional markers, e.g. CD95 and CD62L, are similar to those on classical memory B cells. In contrast to naive cells, the majority of CD21(-/low) cells lack expression of the ABCB1 transporter. Stimulation with a combination of BCR, Toll-like receptor (TLR)-7/8 and interleukin (IL)-2 induces proliferation and differentiation of the CD21(-/low) B cells comparable to CD21(+) CD27(+) memory B cells. The response excluding BCR agonist is not on par with that of classical memory B cells, although clearly above that of naive B cells. This is ascribed to a weaker response by the CD38(-) 24(low) subset, implying that some memorycells require not only TLR but also BCR triggering. We conclude that the CD21(-/low) cells in healthy donors are memory B cells. PMID:27010233

  14. Physical and chemical mechanisms in oxide-based resistance random access memory

    NASA Astrophysics Data System (ADS)

    Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Zhang, Rui; Hung, Ya-Chi; Syu, Yong-En; Chang, Yao-Feng; Chen, Min-Chen; Chu, Tian-Jian; Chen, Hsin-Lu; Pan, Chih-Hung; Shih, Chih-Cheng; Zheng, Jin-Cheng; Sze, Simon M.

    2015-03-01

    In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

  15. Physical and chemical mechanisms in oxide-based resistance random access memory.

    PubMed

    Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Zhang, Rui; Hung, Ya-Chi; Syu, Yong-En; Chang, Yao-Feng; Chen, Min-Chen; Chu, Tian-Jian; Chen, Hsin-Lu; Pan, Chih-Hung; Shih, Chih-Cheng; Zheng, Jin-Cheng; Sze, Simon M

    2015-01-01

    In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications. PMID:25873842

  16. Cellular Dynamics of Memory B Cell Populations: IgM+ and IgG+ Memory B Cells Persist Indefinitely as Quiescent Cells.

    PubMed

    Jones, Derek D; Wilmore, Joel R; Allman, David

    2015-11-15

    Despite their critical role in long-term immunity, the life span of individual memory B cells remains poorly defined. Using a tetracycline-regulated pulse-chase system, we measured population turnover rates and individual t1/2 of pre-established Ag-induced Ig class-switched and IgM-positive memory B cells over 402 d. Our results indicate that, once established, both IgG-positive and less frequent IgM-positive memory populations are exceptionally stable, with little evidence of attrition or cellular turnover. Indeed, the vast majority of cells in both pools exhibited t1/2 that appear to exceed the life span of the mouse, contrasting dramatically with mature naive B cells. These results indicate that recall Ab responses are mediated by stable pools of extremely long-lived cells, and suggest that Ag-experienced B cells employ remarkably efficient survival mechanisms. PMID:26438523

  17. Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation

    PubMed Central

    Li, Jasmine; Hardy, Kristine; Phetsouphanh, Chan; Tu, Wen Juan; Sutcliffe, Elissa L.; McCuaig, Robert; Sutton, Christopher R.; Zafar, Anjum; Munier, C. Mee Ling; Zaunders, John J.; Xu, Yin; Theodoratos, Angelo; Tan, Abel; Lim, Pek Siew; Knaute, Tobias; Masch, Antonia; Zerweck, Johannes; Brezar, Vedran; Milburn, Peter J.; Dunn, Jenny; Casarotto, Marco G.; Turner, Stephen J.; Seddiki, Nabila; Kelleher, Anthony D.

    2016-01-01

    ABSTRACT Memory T cells are characterized by their rapid transcriptional programs upon re-stimulation. This transcriptional memory response is facilitated by permissive chromatin, but exactly how the permissive epigenetic landscape in memory T cells integrates incoming stimulatory signals remains poorly understood. By genome-wide ChIP-sequencing ex vivo human CD4+ T cells, here, we show that the signaling enzyme, protein kinase C theta (PKC-θ) directly relays stimulatory signals to chromatin by binding to transcriptional-memory-responsive genes to induce transcriptional activation. Flanked by permissive histone modifications, these PKC-enriched regions are significantly enriched with NF-κB motifs in ex vivo bulk and vaccinia-responsive human memory CD4+ T cells. Within the nucleus, PKC-θ catalytic activity maintains the Ser536 phosphorylation on the p65 subunit of NF-κB (also known as RelA) and can directly influence chromatin accessibility at transcriptional memory genes by regulating H2B deposition through Ser32 phosphorylation. Furthermore, using a cytoplasm-restricted PKC-θ mutant, we highlight that chromatin-anchored PKC-θ integrates activating signals at the chromatin template to elicit transcriptional memory responses in human memory T cells. PMID:27149922

  18. Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation.

    PubMed

    Li, Jasmine; Hardy, Kristine; Phetsouphanh, Chan; Tu, Wen Juan; Sutcliffe, Elissa L; McCuaig, Robert; Sutton, Christopher R; Zafar, Anjum; Munier, C Mee Ling; Zaunders, John J; Xu, Yin; Theodoratos, Angelo; Tan, Abel; Lim, Pek Siew; Knaute, Tobias; Masch, Antonia; Zerweck, Johannes; Brezar, Vedran; Milburn, Peter J; Dunn, Jenny; Casarotto, Marco G; Turner, Stephen J; Seddiki, Nabila; Kelleher, Anthony D; Rao, Sudha

    2016-06-15

    Memory T cells are characterized by their rapid transcriptional programs upon re-stimulation. This transcriptional memory response is facilitated by permissive chromatin, but exactly how the permissive epigenetic landscape in memory T cells integrates incoming stimulatory signals remains poorly understood. By genome-wide ChIP-sequencing ex vivo human CD4(+) T cells, here, we show that the signaling enzyme, protein kinase C theta (PKC-θ) directly relays stimulatory signals to chromatin by binding to transcriptional-memory-responsive genes to induce transcriptional activation. Flanked by permissive histone modifications, these PKC-enriched regions are significantly enriched with NF-κB motifs in ex vivo bulk and vaccinia-responsive human memory CD4(+) T cells. Within the nucleus, PKC-θ catalytic activity maintains the Ser536 phosphorylation on the p65 subunit of NF-κB (also known as RelA) and can directly influence chromatin accessibility at transcriptional memory genes by regulating H2B deposition through Ser32 phosphorylation. Furthermore, using a cytoplasm-restricted PKC-θ mutant, we highlight that chromatin-anchored PKC-θ integrates activating signals at the chromatin template to elicit transcriptional memory responses in human memory T cells. PMID:27149922

  19. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell.

    PubMed

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-07-01

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future. PMID:27297542

  20. Light sensitivity of a one transistor-one capacitor memory cell when used as a micromirror actuator in projector applications

    NASA Astrophysics Data System (ADS)

    Huffman, James Douglas

    2001-11-01

    The most important issue facing the future business success of the Digital Micromirror Device or DMD™ produced by Texas Instruments is the cost of the actual device. As the business and consumer markets call for higher resolution displays, the array size will have to be increased to incorporate more pixels. The manufacturing costs associated with building these higher resolution displays follow an exponential relation with the number of pixels due to yield loss and reduced number of chips per silicon wafer. Each pixel is actuated by electrostatics that are provided by a memory cell that is built in the underlying silicon substrate. One way to decrease cost of the wafer is to change the memory cell architecture from a static random access configuration or SRAM to a dynamic random access configuration or DRAM. This change has the benefits of having fewer components per area and a lower metal density. This reduction in the component count and metal density has a dramatic effect on the yield of the memory array by reducing the particle sensitivity of the underlying cell. The main drawback to using a DRAM configuration in a display application is the light sensitivity of a charge storage device built in the silicon substrate. As the photons pass through the mechanical micromirrors and illuminate the DRAM cell, the effective electrostatic potential of the memory element used for the mirror actuation is reduced. This dissertation outlines the issues associated with the light sensitivity of a DRAM memory cell as the actuation element for a micromirror. The concept of charge depletion on a silicon capacitor due to recombination of photogenerated carriers is explored and experimentally verified. The effects of the reduced potential on the capacitor on the micromirror are also explored. Optical modeling is used to determine the incoming photon flux to determine the benefits of adding a charge recombination region as part of the DRAM memory cell. Several options are explored

  1. Accessibility

    MedlinePlus

    ... www.nlm.nih.gov/medlineplus/accessibility.html MedlinePlus Accessibility To use the sharing features on this page, ... Subscribe to RSS Follow us Disclaimers Copyright Privacy Accessibility Quality Guidelines Viewers & Players MedlinePlus Connect for EHRs ...

  2. Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo.

    PubMed

    Grayson, Jason M; Harrington, Laurie E; Lanier, J Gibson; Wherry, E John; Ahmed, Rafi

    2002-10-01

    Apoptosis is a critical regulator of homeostasis in the immune system. In this study we demonstrate that memory CD8(+) T cells are more resistant to apoptosis than naive cells. After whole body irradiation of mice, both naive and memory CD8(+) T cells decreased in number, but the reduction in the number of naive cells was 8-fold greater than that in memory CD8(+) T cells. In addition to examining radiation-induced apoptosis, we analyzed the expansion and contraction of naive and memory CD8(+) T cells in vivo following exposure to Ag. We found that memory CD8(+) T cells not only responded more quickly than naive cells after viral infection, but that secondary effector cells generated from memory cells underwent much less contraction compared with primary effectors generated from naive cells (3- to 5-fold vs 10- to 20-fold decrease). Increased numbers of secondary memory cells were observed in both lymphoid and non-lymphoid tissues. When naive and memory cells were transferred into the same animal, secondary effectors underwent less contraction than primary effector cells. These experiments analyzing apoptosis of primary and secondary effectors in the same animal show unequivocally that decreased downsizing of the secondary response reflects an intrinsic property of the memory T cells and is not simply due to environmental effects. These findings have implications for designing prime/boost vaccine strategies and also for optimizing immunotherapeutic regimens for treatment of chronic infections. PMID:12244170

  3. Methyltransferases mediate cell memory of a genotoxic insult.

    PubMed

    Rugo, R E; Mutamba, J T; Mohan, K N; Yee, T; Chaillet, J R; Greenberger, J S; Engelward, B P

    2011-02-10

    Characterization of the direct effects of DNA-damaging agents shows how DNA lesions lead to specific mutations. Yet, serum from Hiroshima survivors, Chernobyl liquidators and radiotherapy patients can induce a clastogenic effect on naive cells, showing indirect induction of genomic instability that persists years after exposure. Such indirect effects are not restricted to ionizing radiation, as chemical genotoxins also induce heritable and transmissible genomic instability phenotypes. Although such indirect induction of genomic instability is well described, the underlying mechanism has remained enigmatic. Here, we show that mouse embryonic stem cells exposed to γ-radiation bear the effects of the insult for weeks. Specifically, conditioned media from the progeny of exposed cells can induce DNA damage and homologous recombination in naive cells. Notably, cells exposed to conditioned media also elicit a genome-destabilizing effect on their neighbouring cells, thus demonstrating transmission of genomic instability. Moreover, we show that the underlying basis for the memory of an insult is completely dependent on two of the major DNA cytosine methyltransferases, Dnmt1 and Dnmt3a. Targeted disruption of these genes in exposed cells completely eliminates transmission of genomic instability. Furthermore, transient inactivation of Dnmt1, using a tet-suppressible allele, clears the memory of the insult, thus protecting neighbouring cells from indirect induction of genomic instability. We have thus demonstrated that a single exposure can lead to long-term, genome-destabilizing effects that spread from cell to cell, and we provide a specific molecular mechanism for these persistent bystander effects. Collectively, our results impact the current understanding of risks from toxin exposures and suggest modes of intervention for suppressing genomic instability in people exposed to carcinogenic genotoxins. PMID:21057543

  4. Contexts and Control Operations Used in Accessing List-Specific, Generalized, and Semantic Memories

    ERIC Educational Resources Information Center

    Humphreys, Michael S.; Murray, Krista L.; Maguire, Angela M.

    2009-01-01

    The human ability to focus memory retrieval operations on a particular list, episode or memory structure has not been fully appreciated or documented. In Experiment 1-3, we make it increasingly difficult for participants to switch between a less recent list (multiple study opportunities), and a more recent list (single study opportunity). Task…

  5. Speed and Accuracy of Accessing Information in Working Memory: An Individual Differences Investigation of Focus Switching

    ERIC Educational Resources Information Center

    Unsworth, Nash; Engle, Randall W.

    2008-01-01

    Three experiments examined the nature of individual differences in switching the focus of attention in working memory. Participants performed 3 versions of a continuous counting task that required successive updating and switching between counts. Across all 3 experiments, individual differences in working memory span and fluid intelligence were…

  6. Retrieval practice enhances the accessibility but not the quality of memory.

    PubMed

    Sutterer, David W; Awh, Edward

    2016-06-01

    Numerous studies have demonstrated that retrieval from long-term memory (LTM) can enhance subsequent memory performance, a phenomenon labeled the retrieval practice effect. However, the almost exclusive reliance on categorical stimuli in this literature leaves open a basic question about the nature of this improvement in memory performance. It has not yet been determined whether retrieval practice improves the probability of successful memory retrieval or the quality of the retrieved representation. To answer this question, we conducted three experiments using a mixture modeling approach (Zhang & Luck, 2008) that provides a measure of both the probability of recall and the quality of the recalled memories. Subjects attempted to memorize the color of 400 unique shapes. After every 10 images were presented, subjects either recalled the last 10 colors (the retrieval practice condition) by clicking on a color wheel with each shape as a retrieval cue or they participated in a control condition that involved no further presentations (Experiment 1) or restudy of the 10 shape/color associations (Experiments 2 and 3). Performance in a subsequent delayed recall test revealed a robust retrieval practice effect. Subjects recalled a significantly higher proportion of items that they had previously retrieved relative to items that were untested or that they had restudied. Interestingly, retrieval practice did not elicit any improvement in the precision of the retrieved memories. The same empirical pattern also was observed following delays of greater than 24 hours. Thus, retrieval practice increases the probability of successful memory retrieval but does not improve memory quality. PMID:26404635

  7. The memory of a killer T cell: models of CD8(+) T cell differentiation.

    PubMed

    Gerritsen, Bram; Pandit, Aridaman

    2016-03-01

    CD8(+) T cells have an important role in protection against infections and reinfections of intra-cellular pathogens like viruses. Naive CD8(+) T cells circulating in blood or lymphoid tissues can get activated upon stimulation by cognate antigen. The activated T cells undergo rapid proliferation and can expand more than 10(4)-folds comprising largely of effector T cells. Upon antigen clearance, the CD8(+) T-cell population contracts due to apoptosis, leaving behind a small population of memory T cells. The timing and mechanisms underlying the differentiation of naive cells into effector cells and memory cells is not yet clear. In this article, we review the recent quantitative studies that support different hypotheses of CD8(+) T-cell differentiation. PMID:26700072

  8. Differential mechanisms of memory CD8 T cell maintenance by individual myeloid cell types

    PubMed Central

    Frasca, Loredana; Stonier, Spencer W.; Overwijk, Willem W.; Schluns, Kimberly S.

    2010-01-01

    This study tested the hypothesis that individual myeloid subsets have a differential ability to maintain memory CD8 T cells via IL-15. Although DCs support IL-15-mediated homeostasis of memory CD8 T cells in vivo, whether various DC subsets and other myeloid cells similarly mediate homeostasis is unknown. Therefore, we studied the ability of different myeloid cells to maintain memory CD8 T cells in vitro. Using an in vitro cocoulture system that recapitulated known roles of DCs and IL-15 on memory CD8 T cells, all in vitro-derived or ex vivo-isolated DCs maintained CD8 T cells better than rIL-15 alone, and FLT-3L-DCs are the most efficient compared with GM-DCs, BM-derived macrophages, or freshly isolated DCs. Although FLT-3L-DCs were the least effective at inducing CD8 T cell proliferation, FLT-3L-DCs promoted better CD8 T cell survival and increased Bcl-2 and MCL-2 expression in CD8 T cells. T cell maintenance correlated only partially with DC expression of IL-15Rα and IL-15, suggesting that DCs provided additional support signals. Indeed, in the absence of IL-15 signals, CD70/CD27 further supported CD8 T cell maintenance. IFN-α enhanced CD70 expression by DCs, resulting in increased proliferation of CD8 T cells. Overall, this study supports our hypothesis by demonstrating that specific DC subtypes had a greater capacity to support memory CD8 T cell maintenance and did so through different mechanisms. Furthermore, this study shows that IL-15 trans-presentation can work in conjunction with other signals, such as CD70/CD27 interactions, to mediate CD8 T cell homeostasis efficiently. PMID:20354106

  9. Self-compliance Pt/HfO2/Ti/Si one-diode-one-resistor resistive random access memory device and its low temperature characteristics

    NASA Astrophysics Data System (ADS)

    Lu, Chao; Yu, Jue; Chi, Xiao-Wei; Lin, Guang-Yang; Lan, Xiao-Ling; Huang, Wei; Wang, Jian-Yuan; Xu, Jian-Fang; Wang, Chen; Li, Cheng; Chen, Song-Yan; Liu, Chunli; Lai, Hong-Kai

    2016-04-01

    A bipolar one-diode-one-resistor (1D1R) device with a Pt/HfO2/Ti/n-Si(001) structure was demonstrated. The 1D1R resistive random access memory (RRAM) device consists of a Ti/n-Si(001) diode and a Pt/HfO2/Ti resistive switching cell. By using the Ti layer as the shared electrode for both the diode and the resistive switching cell, the 1D1R device exhibits the property of stable self-compliance and the characteristic of robust resistive switching with high uniformity. The high/low resistance ratio reaches 103. The electrical RESET/SET curve does not deteriorate after 68 loops. Low-temperature studies show that the 1D1R RRAM device has a critical working temperature of 250 K, and at temperatures below 250 K, the device fails to switch its resistances.

  10. Memory Stem T Cells in Autoimmune Disease: High Frequency of Circulating CD8+ Memory Stem Cells in Acquired Aplastic Anemia.

    PubMed

    Hosokawa, Kohei; Muranski, Pawel; Feng, Xingmin; Townsley, Danielle M; Liu, Baoying; Knickelbein, Jared; Keyvanfar, Keyvan; Dumitriu, Bogdan; Ito, Sawa; Kajigaya, Sachiko; Taylor, James G; Kaplan, Mariana J; Nussenblatt, Robert B; Barrett, A John; O'Shea, John; Young, Neal S

    2016-02-15

    Memory stem T cells (TSCMs) constitute a long-lived, self-renewing lymphocyte population essential for the maintenance of functional immunity. Hallmarks of autoimmune disease pathogenesis are abnormal CD4(+) and CD8(+) T cell activation. We investigated the TSCM subset in 55, 34, 43, and 5 patients with acquired aplastic anemia (AA), autoimmune uveitis, systemic lupus erythematosus, and sickle cell disease, respectively, as well as in 41 age-matched healthy controls. CD8(+) TSCM frequency was significantly increased in AA compared with healthy controls. An increased CD8(+) TSCM frequency at diagnosis was associated with responsiveness to immunosuppressive therapy, and an elevated CD8(+) TSCM population after immunosuppressive therapy correlated with treatment failure or relapse in AA patients. IFN-γ and IL-2 production was significantly increased in various CD8(+) and CD4(+) T cell subsets in AA patients, including CD8(+) and CD4(+) TSCMs. CD8(+) TSCM frequency was also increased in patients with autoimmune uveitis or sickle cell disease. A positive correlation between CD4(+) and CD8(+) TSCM frequencies was found in AA, autoimmune uveitis, and systemic lupus erythematosus. Evaluation of PD-1, CD160, and CD244 expression revealed that TSCMs were less exhausted compared with other types of memory T cells. Our results suggest that the CD8(+) TSCM subset is a novel biomarker and a potential therapeutic target for AA. PMID:26764034

  11. Methyltransferases mediate cell memory of a genotoxic insult

    PubMed Central

    Rugo, Rebecca E.; Mutamba, James T.; Mohan, K. Naga; Yee, Tiffany; Chaillet, J. Richard; Greenberger, Joel S.; Engelward, Bevin P.

    2011-01-01

    Characterization of the direct effects of DNA damaging agents shows how DNA lesions lead to specific mutations. Yet, serum from Hiroshima survivors, Chernobyl liquidators, and radiotherapy patients can induce a clastogenic effect on naive cells, showing indirect induction of genomic instability that persists years after exposure. Such indirect effects are not restricted to ionizing radiation, as chemical genotoxins also induce heritable and transmissible genomic instability phenotypes. While such indirect induction of genomic instability is well described, the underlying mechanism has remained enigmatic. Here, we show that mouse embryonic stem (ES) cells exposed to γ-radiation remember the insult for weeks. Specifically, conditioned media from progeny of exposed cells can induce DNA damage and homologous recombination in naive cells. Notably, cells exposed to conditioned media also elicit a genome destabilizing effect on their neighbours, thus demonstrating transmission of genomic instability. Moreover, we show that the underlying basis for the memory of an insult is completely dependent on two of the major DNA cytosine methyltransferases (MTases), Dnmt1 and Dnmt3a. Targeted disruption of these genes in exposed cells completely eliminates transmission of genomic instability. Furthermore, transient inactivation of Dnmt1, using a tet-suppressible allele, clears the memory of the insult, thus protecting neighbouring cells from indirect induction of genomic instability. We have thus demonstrated that a single exposure can lead to long-term, genome destabilizing effects that spread from cell to cell and we provide a specific molecular mechanism for these persistent bystander effects. Collectively, our results impact current understanding of risks from toxin exposures and suggest modes of intervention for suppressing genomic instability in people exposed to carcinogenic genotoxins. PMID:21057543

  12. Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells

    PubMed Central

    Cao, J; Zhang, X; Wang, Q; Qiu, G; Hou, C; Wang, J; Cheng, Q; Lan, Y; Han, H; Shen, H; Zhang, Y; Yang, X; Shen, B; Zhang, J

    2015-01-01

    The transcriptional regulation underlying the differentiation of CD8+ effector and memory T cells remains elusive. Here, we show that 18-month-old mice lacking the transcription factor Smad4 (homolog 4 of mothers against decapentaplegic, Drosophila), a key intracellular signaling effector for the TGF-β superfamily, in T cells exhibited lower percentages of CD44hiCD8+ T cells. To explore the role of Smad4 in the activation/memory of CD8+ T cells, 6- to 8-week-old mice with or without Smad4 in T cells were challenged with Listeria monocytogenes. Smad4 deficiency did not affect antigen-specific CD8+ T-cell expansion but led to partially impaired cytotoxic function. Less short-lived effector T cells but more memory-precursor effector T cells were generated in the absence of Smad4. Despite that, Smad4 deficiency led to reduced memory CD8+ T-cell responses. Further exploration revealed that the generation of central memory T cells was impaired in the absence of Smad4 and the cells showed survival issue. In mechanism, Smad4 deficiency led to aberrant transcriptional programs in antigen-specific CD8+ T cells. These findings demonstrated an essential role of Smad4 in the control of effector and memory CD8+ T-cell responses to infection. PMID:26583325

  13. CMOS Interface Circuits for Spin Tunneling Junction Based Magnetic Random Access Memories

    SciTech Connect

    Ganesh Saripalli

    2002-12-31

    Magneto resistive memories (MRAM) are non-volatile memories which use magnetic instead of electrical structures to store data. These memories, apart from being non-volatile, offer a possibility to achieve densities better than DRAMs and speeds faster than SRAMs. MRAMs could potentially replace all computer memory RAM technologies in use today, leading to future applications like instan-on computers and longer battery life for pervasive devices. Such rapid development was made possible due to the recent discovery of large magnetoresistance in Spin tunneling junction devices. Spin tunneling junctions (STJ) are composite structures consisting of a thin insulating layer sandwiched between two magnetic layers. This thesis research is targeted towards these spin tunneling junction based Magnetic memories. In any memory, some kind of an interface circuit is needed to read the logic states. In this thesis, four such circuits are proposed and designed for Magnetic memories (MRAM). These circuits interface to the Spin tunneling junctions and act as sense amplifiers to read their magnetic states. The physical structure and functional characteristics of these circuits are discussed in this thesis. Mismatch effects on the circuits and proper design techniques are also presented. To demonstrate the functionality of these interface structures, test circuits were designed and fabricated in TSMC 0.35{micro} CMOS process. Also circuits to characterize the process mismatches were fabricated and tested. These results were then used in Matlab programs to aid in design process and to predict interface circuit's yields.

  14. Oxide Defect Engineering Methods for Valence Change (VCM) Resistive Random Access Memories

    NASA Astrophysics Data System (ADS)

    Capulong, Jihan O.

    Electrical switching requirements for resistive random access memory (ReRAM) devices are multifaceted, based on device application. Thus, it is important to obtain an understanding of these switching properties and how they relate to the oxygen vacancy concentration and oxygen vacancy defects. Oxygen vacancy defects in the switching oxide of valence-change-based ReRAM (VCM ReRAM) play a significant role in device switching properties. Oxygen vacancies facilitate resistive switching as they form the conductive filament that changes the resistance state of the device. This dissertation will present two methods of modulating the defect concentration in VCM ReRAM composed of Pt/HfOx/Ti stack: 1) rapid thermal annealing (RTA) in Ar using different temperatures, and 2) doping using ion implantation under different dose levels. Metrology techniques such as x-ray diffractometry (XRD), x-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy were utilized to characterize the HfOx switching oxide, which provided insight on the material properties and oxygen vacancy concentration in the oxide that was used to explain the changes in the electrical properties of the ReRAM devices. The resulting impact on the resistive switching characteristics of the devices, such as the forming voltage, set and reset threshold voltages, ON and OFF resistances, resistance ratio, and switching dispersion or uniformity were explored and summarized. Annealing in Ar showed significant impact on the forming voltage, with as much as 45% (from 22V to 12 V) of improvement, as the annealing temperature was increased. However, drawbacks of a higher oxide leakage and worse switching uniformity were seen with increasing annealing temperature. Meanwhile, doping the oxide by ion implantation showed significant effects on the resistive switching characteristics. Ta doping modulated the following switching properties with increasing dose: a) the reduction of the forming voltage, and Vset

  15. Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells

    PubMed Central

    Ogoshi, Katsumi; Sasaki, Atsushi; Abe, Jun; Qu, Wei; Nakatani, Yoichiro; Ahsan, Budrul; Oshima, Kenshiro; Shand, Francis H. W.; Ametani, Akio; Suzuki, Yutaka; Kaneko, Shuichi; Wada, Takashi; Hattori, Masahira; Sugano, Sumio; Morishita, Shinichi; Matsushima, Kouji

    2013-01-01

    Memory CD4+ T cells are central regulators of both humoral and cellular immune responses. T cell differentiation results in specific changes in chromatin structure and DNA methylation of cytokine genes. Although the methylation status of a limited number of gene loci in T cells has been examined, the genome-wide DNA methylation status of memory CD4+ T cells remains unexplored. To further elucidate the molecular signature of memory T cells, we conducted methylome and transcriptome analyses of memory CD4+ T cells generated using T cells from TCR-transgenic mice. The resulting genome-wide DNA methylation profile revealed 1144 differentially methylated regions (DMRs) across the murine genome during the process of T cell differentiation, 552 of which were associated with gene loci. Interestingly, the majority of these DMRs were located in introns. These DMRs included genes such as CXCR6, Tbox21, Chsy1, and Cish, which are associated with cytokine production, homing to bone marrow, and immune responses. Methylation changes in memory T cells exposed to specific Ag appeared to regulate enhancer activity rather than promoter activity of immunologically relevant genes. In addition, methylation profiles differed between memory T cell subsets, demonstrating a link between T cell methylation status and T cell differentiation. By comparing DMRs between naive and Ag-specific memory T cells, this study provides new insights into the functional status of memory T cells. PMID:23509353

  16. An SEU tolerant memory cell derived from fundamental studies of SEU mechanisms in SRAM

    SciTech Connect

    Weaver, H.T.; Axness, C.L.; McBrayer, J.D.; Browning, J.S.; Fu, J.S.; Ochoa, A. Jr.; Koga, R.

    1987-12-01

    A new single event upset (SEU) hardening concept, an LRAM cell, is demonstrated theoretically and experimentally. Decoupling resistors in the LRAM are used only to protect against the short n-channel transient; longer persisting pulses are reduced in magnitude by a voltage divider, a basically new concept for SEU protection. In such a design, smaller resistors provide SEU tolerance, allowing higher performance, hardened memories. As basis for the LRAM idea, techniques were developed to measure time constants for ion induced voltage transients in conventional static random access memories, SRAM. Time constants of 0.8 and 6.3 nsec were measured for transients following strikes at the n- and p-channel drains, respectively - primary areas of SEU sensitivity. These data are the first transient time measurements on full memory chips and the large difference is fundamental to the LRAM concept. Test structures of the new design exhibit equivalent SEU tolerance with resistors 5-to-10 times smaller than currently used in SRAM. Our advanced transport-plus-circuit numerical simulations of the SEU process predicted this result and account for the LRAM experiments, as well as a variety of experiments on conventional SRAM.

  17. The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions.

    PubMed

    Dimeloe, Sarah; Mehling, Matthias; Frick, Corina; Loeliger, Jordan; Bantug, Glenn R; Sauder, Ursula; Fischer, Marco; Belle, Réka; Develioglu, Leyla; Tay, Savaş; Langenkamp, Anja; Hess, Christoph

    2016-01-01

    Effector memory (EM) CD4(+) T cells recirculate between normoxic blood and hypoxic tissues to screen for cognate Ag. How mitochondria of these cells, shuttling between normoxia and hypoxia, maintain bioenergetic efficiency and stably uphold antiapoptotic features is unknown. In this study, we found that human EM CD4(+) T cells had greater spare respiratory capacity (SRC) than did naive counterparts, which was immediately accessed under hypoxia. Consequently, hypoxic EM cells maintained ATP levels, survived and migrated better than did hypoxic naive cells, and hypoxia did not impair their capacity to produce IFN-γ. EM CD4(+) T cells also had more abundant cytosolic GAPDH and increased glycolytic reserve. In contrast to SRC, glycolytic reserve was not tapped under hypoxic conditions, and, under hypoxia, glucose metabolism contributed similarly to ATP production in naive and EM cells. However, both under normoxic and hypoxic conditions, glucose was critical for EM CD4(+) T cell survival. Mechanistically, in the absence of glycolysis, mitochondrial membrane potential (ΔΨm) of EM cells declined and intrinsic apoptosis was triggered. Restoring pyruvate levels, the end product of glycolysis, preserved ΔΨm and prevented apoptosis. Furthermore, reconstitution of reactive oxygen species (ROS), whose production depends on ΔΨm, also rescued viability, whereas scavenging mitochondrial ROS exacerbated apoptosis. Rapid access of SRC in hypoxia, linked with built-in, oxygen-resistant glycolytic reserve that functionally insulates ΔΨm and mitochondrial ROS production from oxygen tension changes, provides an immune-metabolic basis supporting survival, migration, and function of EM CD4(+) T cells in normoxic and hypoxic conditions. PMID:26621861

  18. T cell therapies-are T memory stem cells the answer?

    PubMed

    Flynn, Jacqueline K; Gorry, Paul R

    2015-10-01

    T memory stem cells (TSCM) are the earliest developmental stage of memory T cells, displaying stem cell-like properties and exhibiting a gene profile between naive and central memory (CM) T cells. Their long-lifespan, robust proliferative potential and self-renewal capacity has generated much research and clinical interest particularly for therapeutic use. Here, we discuss recent findings published in Science Translational Medicine by Biasco and colleagues [2015 Feb 4;7(273):273ra13], which provided evidence for the persistence of TSCM in humans for up to 12 years after infusion of genetically modified lymphocytes, and we examine the implications for the development of novel immunotherapies using TSCM. PMID:26605297

  19. The Distribution of Human Stem Cell-like Memory T Cell in Lung Cancer.

    PubMed

    Hong, Hai; Gu, Yong; Sheng, Si Yuan; Lu, Chuan Gang; Zou, Jian Yong; Wu, Chang You

    2016-01-01

    Human stem cell-like memory T (Tscm) cells are long-lived, self-renewing memory lymphocytes that can differentiate into effector cells and mediate strong antitumour response in murine model. The distribution and function of Tscm cells in human lung cancer remain unknown. In this study, we investigated the properties of human Tscm cells in the blood and lymph node of non-small cell lung cancer (NSCLC) patients. There were more CD4 Tscm cells in blood from NSCLC patients than from healthy donors, fewer CD4 and CD8 TSCM cells in blood than in lymph node from NSCLC patients. To further analyze their properties, we stimulated peripheral blood mononuclear cells from NSCLC patients by mitogens to examine cytokine production. Our data suggest that both CD4 and CD8 Tscm cells in blood produced interferon-γ significantly increased in NSCLC patients compare with healthy subjects. In addition, fewer Tscm cells produced interferon-γ in lymph node than in blood from NSCLC patients. Our results strongly suggest that the distribution and function of CD4 Tscm cells in NSCLC patients is upregulated. Understanding of the properties of stem-like memory T cells will supply a good rationale for designing the new adoptive immunotherapy in cancer. PMID:27244531

  20. Influence of time and number of antigen encounters on memory CD8 T cell development.

    PubMed

    Martin, Matthew D; Badovinac, Vladimir P

    2014-08-01

    CD8 T cells are an important part of the adaptive immune system providing protection against intracellular bacteria, viruses, and protozoa. After infection and/or vaccination, increased numbers of antigen-specific CD8 T cells remain as a memory population that is capable of responding and providing enhanced protection during reinfection. Experimental studies indicate that while memory CD8 T cells can be maintained for great lengths of time, their properties change with time after infection and/or vaccination. However, the full scope of these changes and what effects they have on memory CD8 T cell function remain unknown. In addition, memory CD8 T cells can encounter antigen multiple times through either reinfection or prime-boost vaccine strategies designed to increase numbers of protective memory CD8 T cells. Importantly, recent studies suggest that memory CD8 T cell development following infection and/or vaccination is influenced by the number of times they have encountered cognate antigen. Since protection offered by memory CD8 T cells in response to infection depends on both the numbers and quality (functional characteristics) at the time of pathogen re-encounter, a thorough understanding of how time and antigen stimulation history impacts memory CD8 T cell properties is critical for the design of vaccines aimed at establishing populations of long-lived, protective memory CD8 T cells. PMID:24825776

  1. Market access pathways for cell therapies in France

    PubMed Central

    Rémuzat, Cécile; Toumi, Mondher; Jørgensen, Jesper; Kefalas, Panos

    2015-01-01

    Introduction and objective Cell therapies can be classified into three main categories of products: advanced therapy medicinal products (ATMPs), ATMPs prepared on a non-routine basis (hospital exemptions), and minimally manipulated cells. Despite the benefits that cell therapies can bring to patients, they are subject to complex pathways to reach the market in France. The objective of this study was to identify and describe routes to market access for cell therapies in France and how these vary by regulatory status. Methodology The research was structured following five main steps: (1) identification of the French regulatory framework for cell therapies; (2) identification of the health products categorised as cell therapies in France; (3) mapping of the market access pathways per category of cell therapy; (4) validation of findings by interviewing experts; and (5) development of a roadmap summarising market access pathways for cell therapies in France. The secondary research methodology included a comprehensive literature review conducted on websites of French public health institutions, complemented by a research for peer-reviewed articles, abstracts, and grey literature. Results Different market access pathways are possible depending on the cell therapy category. For ATMPs, market access pathways depend on the licensing status of the therapy. Licensed ATMPs followed the same market access pathways as ‘conventional’ pharmaceuticals, whereas not-yet-licensed ATMPs can be funded via a specific financial allowance under the framework of a Temporary Authorisation for Use procedure or various research programmes. For new ATMPs that are associated with a separate medical device (not considered as ‘combined ATMPs’) or associated with a new medical procedure, additional pathways will apply for the medical device and/or medical procedure to be reimbursed in the ambulatory settings or at hospital. The most likely funding option for ATMPs prepared on a non

  2. Determining the state of non-volatile memory cells with floating gate using scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Hanzii, D.; Kelm, E.; Luapunov, N.; Milovanov, R.; Molodcova, G.; Yanul, M.; Zubov, D.

    2013-01-01

    During a failure analysis of integrated circuits, containing non-volatile memory, it is often necessary to determine its contents while Standard memory reading procedures are not applicable. This article considers how the state of NVM cells with floating gate can be determined using scanning probe microscopy. Samples preparation and measuring procedure are described with the example of Microchip microcontrollers with the EPROM memory (PIC12C508) and flash-EEPROM memory (PIC16F876A).

  3. Tissue-resident and memory properties of human T-cell and NK-cell subsets.

    PubMed

    Lugli, Enrico; Hudspeth, Kelly; Roberto, Alessandra; Mavilio, Domenico

    2016-08-01

    Efficient immune responses to invading pathogens are the result of the complex but coordinated synergy between a variety of cell types from both the innate and adaptive arms of the immune system. While adaptive and innate immune responses are highly complementary, some cells types within these two systems perform similar functions, underscoring the need for redundancy and increased flexibility. In this review, we will discuss the striking shared features of immunological memory and tissue residency recently discovered between T cells, a component of the adaptive immune system, and natural killer (NK) cells, members generally assigned to the innate compartment. Specifically, we will focus on the T-cell and NK-cell diversity at the single-cell level, on the discrete function of specific subsets, and on their anatomical location. Finally, we will discuss the implication of such diversity in the generation of long-term memory. PMID:27431095

  4. Evidence for Resident Memory T Cells in Rasmussen Encephalitis.

    PubMed

    Owens, Geoffrey C; Chang, Julia W; Huynh, My N; Chirwa, Thabiso; Vinters, Harry V; Mathern, Gary W

    2016-01-01

    Rasmussen encephalitis (RE) is a rare pediatric neuroinflammatory disease of unknown etiology characterized by intractable seizures, and progressive atrophy usually confined to one cerebral hemisphere. Surgical removal or disconnection of the affected cerebral hemisphere is currently the only intervention that effectively stops the seizures. Histopathological evaluation of resected brain tissue has shown that activated brain resident macrophages (microglia) and infiltrating T cells are involved in the inflammatory reaction. Here, we report that T cells isolated from seven RE brain surgery specimens express the resident memory T cell (TRM) marker CD103. CD103 was expressed by >50% of CD8(+) αβ T cells and γδ T cells irrespective of the length of time from seizure onset to surgery, which ranged from 0.3 to 8.4 years. Only ~10% of CD4(+) αβ were CD103(+), which was consistent with the observation that few CD4(+) T cells are found in RE brain parenchyma. Clusters of T cells in brain parenchyma, which are a characteristic of RE histopathology, stained for CD103. Less than 10% of T cells isolated from brain specimens from eight surgical cases of focal cortical dysplasia (FCD), a condition that is also characterized by intractable seizures, were CD103(+). In contrast to the RE cases, the percent of CD103(+) T cells increased with the length of time from seizure onset to surgery. In sections of brain tissue from the FCD cases, T cells were predominantly found around blood vessels, and did not stain for CD103. The presence of significant numbers of TRM cells in RE brain irrespective of the length of time between clinical presentation and surgical intervention supports the conclusion that a cellular immune response to an as yet unidentified antigen(s) occurs at an early stage of the disease. Reactivated TRM cells may contribute to disease progression. PMID:26941743

  5. Evidence for Resident Memory T Cells in Rasmussen Encephalitis

    PubMed Central

    Owens, Geoffrey C.; Chang, Julia W.; Huynh, My N.; Chirwa, Thabiso; Vinters, Harry V.; Mathern, Gary W.

    2016-01-01

    Rasmussen encephalitis (RE) is a rare pediatric neuroinflammatory disease of unknown etiology characterized by intractable seizures, and progressive atrophy usually confined to one cerebral hemisphere. Surgical removal or disconnection of the affected cerebral hemisphere is currently the only intervention that effectively stops the seizures. Histopathological evaluation of resected brain tissue has shown that activated brain resident macrophages (microglia) and infiltrating T cells are involved in the inflammatory reaction. Here, we report that T cells isolated from seven RE brain surgery specimens express the resident memory T cell (TRM) marker CD103. CD103 was expressed by >50% of CD8+ αβ T cells and γδ T cells irrespective of the length of time from seizure onset to surgery, which ranged from 0.3 to 8.4 years. Only ~10% of CD4+ αβ were CD103+, which was consistent with the observation that few CD4+ T cells are found in RE brain parenchyma. Clusters of T cells in brain parenchyma, which are a characteristic of RE histopathology, stained for CD103. Less than 10% of T cells isolated from brain specimens from eight surgical cases of focal cortical dysplasia (FCD), a condition that is also characterized by intractable seizures, were CD103+. In contrast to the RE cases, the percent of CD103+ T cells increased with the length of time from seizure onset to surgery. In sections of brain tissue from the FCD cases, T cells were predominantly found around blood vessels, and did not stain for CD103. The presence of significant numbers of TRM cells in RE brain irrespective of the length of time between clinical presentation and surgical intervention supports the conclusion that a cellular immune response to an as yet unidentified antigen(s) occurs at an early stage of the disease. Reactivated TRM cells may contribute to disease progression. PMID:26941743

  6. Device modeling of ferroelectric memory field-effect transistor for the application of ferroelectric random access memory.

    PubMed

    Lue, Hang-Ting; Wu, Chien-Jang; Tseng, Tseung-Yuen

    2003-01-01

    An improved theoretical analysis on the electrical characteristics of ferroelectric memory field-effect transistor (FeMFET) is given. First, we propose a new analytical expression for the polarization versus electric field (P-E) for the ferroelectric material. It is determined by one parameter and explicitly includes both the saturated and nonsaturated hysteresis loops. Using this expression, we then examine the operational properties for two practical devices such as the metal-ferroelectric-insulator-semiconductor field-effect transistor (MFIS-FET) and metal-ferroelectric-metal-insulator-semiconductor field-effect transistor (MFMIS-FET) as well. A double integral also has been used, in order to include the possible effects due to the nonuniform field and charge distribution along the channel of the device, to calculate the drain current of FeMFET. By using the relevant material parameters close to the (Bi, La)4Ti3O12 (BLT) system, accurate analyses on the capacitors and FeMFET's at various applied biases are made. We also address the issues of depolarization field and retention time about such a device. PMID:12578132

  7. Stream specificity and asymmetries in feature binding and content-addressable access in visual encoding and memory.

    PubMed

    Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk

    2015-01-01

    Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features. PMID:26382005

  8. Suppression of relaxation effect in HfO2 resistive random access memory array by improved program operations

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Wu, Huaqiang; Gao, Bin; Dai, Lingjun; Deng, Ning; Sekar, Deepak; Lu, Zhichao; Kellam, Mark; Bronner, Gary; Qian, He

    2016-05-01

    As a postprograming resistance shift, the relaxation effect could be a major issue for resistive random access memory (RRAM) applications. To understand the physical mechanisms of the relaxation effect, temperature-related ion and charge movements are analyzed using the incremental-step-pulse program (ISPP) and repeat-cycle program (RCP). Pre-electron detrapping (PED) operation is found to minimize the amount of interfacial trapped charges and thus to greatly reduce the resistance relaxation effect. Our experimental results demonstrate the improved data retention and tight distribution of RRAM arrays as a result of the above optimized program operations.

  9. High-Performance Pattern Placement Metrology on Dynamic Random Access Memory Layers of 0.25 μm Technology

    NASA Astrophysics Data System (ADS)

    Trube, Jutta; Huber, Hans-Ludwig; Bangert, Carola Bläsing-; Rinn, Klaus; Röth, Klaus-Dieter

    1993-12-01

    Pattern placement metrology is a key function in the evaluation of new manufacturing technology and processes. For future dynamic random access memory (DRAM) generations, ground rules of less than 0.25 μm must be achieved. This paper presents the results of an investigation of the Leitz LMS 2020 laser metrology system from Leica for pattern placement metrology for different layers of DRAM and X-ray mask fabrication processes. The results demonstrate clearly that the new Leitz LMS 2020 tool is well suited for pattern placement control of typical CMOS process wafers and X-ray masks with 30 nm accuracy.

  10. Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells.

    PubMed

    Madroñal, Noelia; Delgado-García, José M; Fernández-Guizán, Azahara; Chatterjee, Jayanta; Köhn, Maja; Mattucci, Camilla; Jain, Apar; Tsetsenis, Theodoros; Illarionova, Anna; Grinevich, Valery; Gross, Cornelius T; Gruart, Agnès

    2016-01-01

    The hippocampus is critical for the acquisition and retrieval of episodic and contextual memories. Lesions of the dentate gyrus, a principal input of the hippocampus, block memory acquisition, but it remains unclear whether this region also plays a role in memory retrieval. Here we combine cell-type specific neural inhibition with electrophysiological measurements of learning-associated plasticity in behaving mice to demonstrate that dentate gyrus granule cells are not required for memory retrieval, but instead have an unexpected role in memory maintenance. Furthermore, we demonstrate the translational potential of our findings by showing that pharmacological activation of an endogenous inhibitory receptor expressed selectively in dentate gyrus granule cells can induce a rapid loss of hippocampal memory. These findings open a new avenue for the targeted erasure of episodic and contextual memories. PMID:26988806

  11. Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells

    PubMed Central

    Madroñal, Noelia; Delgado-García, José M.; Fernández-Guizán, Azahara; Chatterjee, Jayanta; Köhn, Maja; Mattucci, Camilla; Jain, Apar; Tsetsenis, Theodoros; Illarionova, Anna; Grinevich, Valery; Gross, Cornelius T.; Gruart, Agnès

    2016-01-01

    The hippocampus is critical for the acquisition and retrieval of episodic and contextual memories. Lesions of the dentate gyrus, a principal input of the hippocampus, block memory acquisition, but it remains unclear whether this region also plays a role in memory retrieval. Here we combine cell-type specific neural inhibition with electrophysiological measurements of learning-associated plasticity in behaving mice to demonstrate that dentate gyrus granule cells are not required for memory retrieval, but instead have an unexpected role in memory maintenance. Furthermore, we demonstrate the translational potential of our findings by showing that pharmacological activation of an endogenous inhibitory receptor expressed selectively in dentate gyrus granule cells can induce a rapid loss of hippocampal memory. These findings open a new avenue for the targeted erasure of episodic and contextual memories. PMID:26988806

  12. Genome-wide RNA profiling of long-lasting stem cell-like memory CD8 T cells induced by Yellow Fever vaccination in humans.

    PubMed

    Fuertes Marraco, Silvia A; Soneson, Charlotte; Delorenzi, Mauro; Speiser, Daniel E

    2015-09-01

    The live-attenuated Yellow Fever (YF) vaccine YF-17D induces a broad and polyfunctional CD8 T cell response in humans. Recently, we identified a population of stem cell-like memory CD8 T cells induced by YF-17D that persists at stable frequency for at least 25 years after vaccination. The YF-17D is thus a model system of human CD8 T cell biology that furthermore allows to track and study long-lasting and antigen-specific human memory CD8 T cells. Here, we describe in detail the sample characteristics and preparation of a microarray dataset acquired for genome-wide gene expression profiling of long-lasting YF-specific stem cell-like memory CD8 T cells, compared to the reference CD8 T cell differentiation subsets from total CD8 T cells. We also describe the quality controls, annotations and exploratory analyses of the dataset. The microarray data is available from the Gene Expression Omnibus (GEO) public repository with accession number GSE65804. PMID:26484272

  13. Towards scalable parellelism in Monte Carlo particle transport codes using remote memory access

    SciTech Connect

    Romano, Paul K; Brown, Forrest B; Forget, Benoit

    2010-01-01

    One forthcoming challenge in the area of high-performance computing is having the ability to run large-scale problems while coping with less memory per compute node. In this work, they investigate a novel data decomposition method that would allow Monte Carlo transport calculations to be performed on systems with limited memory per compute node. In this method, each compute node remotely retrieves a small set of geometry and cross-section data as needed and remotely accumulates local tallies when crossing the boundary of the local spatial domain. initial results demonstrate that while the method does allow large problems to be run in a memory-limited environment, achieving scalability may be difficult due to inefficiencies in the current implementation of RMA operations.

  14. Overview of emerging nonvolatile memory technologies

    PubMed Central

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new

  15. Overview of emerging nonvolatile memory technologies.

    PubMed

    Meena, Jagan Singh; Sze, Simon Min; Chand, Umesh; Tseng, Tseung-Yuen

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new

  16. Regulation of germinal center, B-cell memory, and plasma cell formation by histone modifiers.

    PubMed

    Good-Jacobson, Kim L

    2014-01-01

    Understanding the regulation of antibody production and B-cell memory formation and function is core to finding new treatments for B-cell-derived cancers, antibody-mediated autoimmune disorders, and immunodeficiencies. Progression from a small number of antigen-specific B-cells to the production of a large number of antibody-secreting cells is tightly regulated. Although much progress has been made in revealing the transcriptional regulation of B-cell differentiation that occurs during humoral immune responses, there are still many questions that remain unanswered. Recent work on the expression and roles of histone modifiers in lymphocytes has begun to shed light on this additional level of regulation. This review will discuss the recent advancements in understanding how humoral immune responses, in particular germinal centers and memory cells, are modulated by histone modifiers. PMID:25477884

  17. Memories.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    1998-01-01

    This theme issue of the journal "Exploring" covers the topic of "memories" and describes an exhibition at San Francisco's Exploratorium that ran from May 22, 1998 through January 1999 and that contained over 40 hands-on exhibits, demonstrations, artworks, images, sounds, smells, and tastes that demonstrated and depicted the biological,…

  18. Theoretical study of SET operation in carbon nanotube memory cell

    NASA Astrophysics Data System (ADS)

    Stopa, Michael; Rueckes, Thomas

    2016-04-01

    We present results of self-consistent electronic structure calculations for an electromechanical memory cell consisting of a carbon nanotube (CNT) fabric between titanium leads to elucidate the mechanism whereby the applied bias works to close the current gaps in the CNT fabric. We demonstrate that the asymmetry in the bias conditions required to achieve the “SET” operation of the cell (changing it from a high resistivity to low resistivity) results from the nature of a voltage drop in a compensated semiconducting material and depends sensitively on the background charge as well as on the position of the layer where the conducting gaps occur. The calculations provide insight into the behavior of the material and suggest possible fabrication strategies to modify the functionality.

  19. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease.

    PubMed

    Roy, Dheeraj S; Arons, Autumn; Mitchell, Teryn I; Pignatelli, Michele; Ryan, Tomás J; Tonegawa, Susumu

    2016-03-24

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD. PMID:26982728

  20. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin.

    PubMed

    Mackay, Laura K; Rahimpour, Azad; Ma, Joel Z; Collins, Nicholas; Stock, Angus T; Hafon, Ming-Li; Vega-Ramos, Javier; Lauzurica, Pilar; Mueller, Scott N; Stefanovic, Tijana; Tscharke, David C; Heath, William R; Inouye, Michael; Carbone, Francis R; Gebhardt, Thomas

    2013-12-01

    Tissue-resident memory T cells (T(RM) cells) provide superior protection against infection in extralymphoid tissues. Here we found that CD103(+)CD8(+) T(RM) cells developed in the skin from epithelium-infiltrating precursor cells that lacked expression of the effector-cell marker KLRG1. A combination of entry into the epithelium plus local signaling by interleukin 15 (IL-15) and transforming growth factor-β (TGF-β) was required for the formation of these long-lived memory cells. Notably, differentiation into T(RM) cells resulted in the progressive acquisition of a unique transcriptional profile that differed from that of circulating memory cells and other types of T cells that permanently reside in skin epithelium. We provide a comprehensive molecular framework for the local differentiation of a distinct peripheral population of memory cells that forms a first-line immunological defense system in barrier tissues. PMID:24162776

  1. The Aviation Careers Accessibility Program (ACAP) at Florida Memorial College. Final Report.

    ERIC Educational Resources Information Center

    Florida Memorial Coll., Miami.

    This project, referred to as the Aviation Careers Accessibility Program (ACAP) established a model program for inner-city minority high school students that would allow them information and accessibility to careers and opportunities in the aviation industry. The project featured two program components: an academic year component during and a 5- or…

  2. Realization of a reversible switching in TaO{sub 2} polymorphs via Peierls distortion for resistance random access memory

    SciTech Connect

    Zhu, Linggang; Sun, Zhimei; Zhou, Jian; Guo, Zhonglu

    2015-03-02

    Transition-metal-oxide based resistance random access memory (RRAM) is a promising candidate for next-generation universal non-volatile memories. Searching and designing appropriate materials used in the memories becomes an urgent task. Here, a structure with the TaO{sub 2} formula was predicted using evolutionary algorithms in combination with first-principles calculations. This triclinic structure (T-TaO{sub 2}) is both energetically and dynamically more favorable than the commonly believed rutile structure (R-TaO{sub 2}). The metal-insulator transition (MIT) between metallic R-TaO{sub 2} and T-TaO{sub 2} (band gap: 1.0 eV) is via a Peierls distortion, which makes TaO{sub 2} a potential candidate for RRAM. The energy barrier for the reversible phase transition is 0.19 eV/atom and 0.23 eV/atom, respectively, suggesting low power consumption for the resistance switch. The present findings about the MIT as the resistance-switch mechanism in Ta-O system will stimulate experimental work to fabricate tantalum oxides based RRAM.

  3. Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited)

    NASA Astrophysics Data System (ADS)

    Thomas, Luc; Jan, Guenole; Zhu, Jian; Liu, Huanlong; Lee, Yuan-Jen; Le, Son; Tong, Ru-Ying; Pi, Keyu; Wang, Yu-Jen; Shen, Dongna; He, Renren; Haq, Jesmin; Teng, Jeffrey; Lam, Vinh; Huang, Kenlin; Zhong, Tom; Torng, Terry; Wang, Po-Kang

    2014-05-01

    Magnetic random access memories based on the spin transfer torque phenomenon (STT-MRAMs) have become one of the leading candidates for next generation memory applications. Among the many attractive features of this technology are its potential for high speed and endurance, read signal margin, low power consumption, scalability, and non-volatility. In this paper, we discuss our recent results on perpendicular STT-MRAM stack designs that show STT efficiency higher than 5 kBT/μA, energy barriers higher than 100 kBT at room temperature for sub-40 nm diameter devices, and tunnel magnetoresistance higher than 150%. We use both single device data and results from 8 Mb array to demonstrate data retention sufficient for automotive applications. Moreover, we also demonstrate for the first time thermal stability up to 400 °C exceeding the requirement of Si CMOS back-end processing, thus opening the realm of non-volatile embedded memory to STT-MRAM technology.

  4. The role of the local chemical environment of Ag on the resistive switching mechanism of conductive bridging random access memories.

    PubMed

    Souchier, E; D'Acapito, F; Noé, P; Blaise, P; Bernard, M; Jousseaume, V

    2015-10-01

    Conductive bridging random access memories (CBRAMs) are one of the most promising emerging technologies for the next generation of non-volatile memory. However, the lack of understanding of the switching mechanism at the nanoscale level prevents successful transfer to industry. In this paper, Ag/GeSx/W CBRAM devices are analyzed using depth selective X-ray Absorption Spectroscopy before and after switching. The study of the local environment around Ag atoms in such devices reveals that Ag is in two very distinct environments with short Ag-S bonds due to Ag dissolved in the GeSx matrix, and longer Ag-Ag bonds related to an Ag metallic phase. These experiments allow the conclusion that the switching process involves the formation of metallic Ag nano-filaments initiated at the Ag electrode. All these experimental features are well supported by ab initio molecular dynamics simulations showing that Ag favorably bonds to S atoms, and permit the proposal of a model at the microscopic level that can explain the instability of the conductive state in these Ag-GeSx CBRAM devices. Finally, the principle of the nondestructive method described here can be extended to other types of resistive memory concepts. PMID:26312954

  5. Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited)

    SciTech Connect

    Thomas, Luc Jan, Guenole; Zhu, Jian; Liu, Huanlong; Lee, Yuan-Jen; Le, Son; Tong, Ru-Ying; Pi, Keyu; Wang, Yu-Jen; Shen, Dongna; He, Renren; Haq, Jesmin; Teng, Jeffrey; Lam, Vinh; Huang, Kenlin; Zhong, Tom; Torng, Terry; Wang, Po-Kang

    2014-05-07

    Magnetic random access memories based on the spin transfer torque phenomenon (STT-MRAMs) have become one of the leading candidates for next generation memory applications. Among the many attractive features of this technology are its potential for high speed and endurance, read signal margin, low power consumption, scalability, and non-volatility. In this paper, we discuss our recent results on perpendicular STT-MRAM stack designs that show STT efficiency higher than 5 k{sub B}T/μA, energy barriers higher than 100 k{sub B}T at room temperature for sub-40 nm diameter devices, and tunnel magnetoresistance higher than 150%. We use both single device data and results from 8 Mb array to demonstrate data retention sufficient for automotive applications. Moreover, we also demonstrate for the first time thermal stability up to 400 °C exceeding the requirement of Si CMOS back-end processing, thus opening the realm of non-volatile embedded memory to STT-MRAM technology.

  6. Realization of a reversible switching in TaO2 polymorphs via Peierls distortion for resistance random access memory

    NASA Astrophysics Data System (ADS)

    Zhu, Linggang; Zhou, Jian; Guo, Zhonglu; Sun, Zhimei

    2015-03-01

    Transition-metal-oxide based resistance random access memory (RRAM) is a promising candidate for next-generation universal non-volatile memories. Searching and designing appropriate materials used in the memories becomes an urgent task. Here, a structure with the TaO2 formula was predicted using evolutionary algorithms in combination with first-principles calculations. This triclinic structure (T-TaO2) is both energetically and dynamically more favorable than the commonly believed rutile structure (R-TaO2). The metal-insulator transition (MIT) between metallic R-TaO2 and T-TaO2 (band gap: 1.0 eV) is via a Peierls distortion, which makes TaO2 a potential candidate for RRAM. The energy barrier for the reversible phase transition is 0.19 eV/atom and 0.23 eV/atom, respectively, suggesting low power consumption for the resistance switch. The present findings about the MIT as the resistance-switch mechanism in Ta-O system will stimulate experimental work to fabricate tantalum oxides based RRAM.

  7. In situ observation of nickel as an oxidizable electrode material for the solid-electrolyte-based resistive random access memory

    SciTech Connect

    Sun, Jun; Wu, Xing; Xu, Feng; Xu, Tao; Sun, Litao; Liu, Qi; Xie, Hongwei; Long, Shibing; Lv, Hangbing; Li, Yingtao; Liu, Ming

    2013-02-04

    In this letter, we dynamically investigate the resistive switching characteristics and physical mechanism of the Ni/ZrO{sub 2}/Pt device. The device shows stable bipolar resistive switching behaviors after forming process, which is similar to the Ag/ZrO{sub 2}/Pt and Cu/ZrO{sub 2}/Pt devices. Using in situ transmission electron microscopy, we observe in real time that several conductive filaments are formed across the ZrO{sub 2} layer between Ni and Pt electrodes after forming. Energy-dispersive X-ray spectroscopy results confirm that Ni is the main composition of the conductive filaments. The ON-state resistance increases with increasing temperature, exhibiting the feature of metallic conduction. In addition, the calculated resistance temperature coefficient is equal to that of the 10-30 nm diameter Ni nanowire, further indicating that the nanoscale Ni conductive bridge is the physical origin of the observed conductive filaments. The resistive switching characteristics and the conductive filament's component of Ni/ZrO{sub 2}/Pt device are consistent with the characteristics of the typical solid-electrolyte-based resistive random access memory. Therefore, aside from Cu and Ag, Ni can also be used as an oxidizable electrode material for resistive random access memory applications.

  8. [Co/Ni]-CoFeB hybrid free layer stack materials for high density magnetic random access memory applications

    NASA Astrophysics Data System (ADS)

    Liu, E.; Swerts, J.; Couet, S.; Mertens, S.; Tomczak, Y.; Lin, T.; Spampinato, V.; Franquet, A.; Van Elshocht, S.; Kar, G.; Furnemont, A.; De Boeck, J.

    2016-03-01

    Alternative free layer materials with high perpendicular anisotropy are researched to provide spin-transfer-torque magnetic random access memory stacks' sufficient thermal stability at critical dimensions of 20 nm and below. We demonstrate a high tunnel magetoresistance (TMR) MgO-based magnetic tunnel junction stack with a hybrid free layer design made of a [Co/Ni] multilayer and CoFeB. The seed material on which the [Co/Ni] multilayer is deposited determines its switching characteristics. When deposited on a Pt seed layer, soft magnetic switching behavior with high squareness is obtained. When deposited on a NiCr seed, the perpendicular anisotropy remains high, but the squareness is low and coercivity exceeds 1000 Oe. Interdiffusion of the seed material with the [Co/Ni] multilayers is found to be responsible for the different switching characteristics. In optimized stacks, a TMR of 165% and low resistance-area (RA) product of 7.0 Ω μm2 are attained for free layers with an effective perpendicular magnetic anisotropy energy of 1.25 erg/cm2, which suggests that the hybrid free layer materials may be a viable candidate for high density magnetic random access memory applications.

  9. Hyperlink Format, Categorization Abilities and Memory Span as Contributors to Deaf Users Hypertext Access

    ERIC Educational Resources Information Center

    Farjardo, Inmaculada; Arfe, Barbara; Benedetti, Patrizia; Altoe, Gianmarco

    2008-01-01

    Sixty deaf and hearing students were asked to search for goods in a Hypertext Supermarket with either graphical or textual links of high typicality, frequency, and familiarity. Additionally, they performed a picture and word categorization task and two working memory span tasks (spatial and verbal). Results showed that deaf students were faster in…

  10. Respecting Relations: Memory Access and Antecedent Retrieval in Incremental Sentence Processing

    ERIC Educational Resources Information Center

    Kush, Dave W.

    2013-01-01

    This dissertation uses the processing of anaphoric relations to probe how linguistic information is encoded in and retrieved from memory during real-time sentence comprehension. More specifically, the dissertation attempts to resolve a tension between the demands of a linguistic processor implemented in a general-purpose cognitive architecture and…

  11. Dopaminergic neurons write and update memories with cell-type-specific rules.

    PubMed

    Aso, Yoshinori; Rubin, Gerald M

    2016-01-01

    Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences. PMID:27441388

  12. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection.

    PubMed

    Martin, Matthew D; Kim, Marie T; Shan, Qiang; Sompallae, Ramakrishna; Xue, Hai-Hui; Harty, John T; Badovinac, Vladimir P

    2015-10-01

    Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability), and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo) and central memory (CD62Lhi) cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit protective memory

  13. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection

    PubMed Central

    Martin, Matthew D.; Kim, Marie T.; Shan, Qiang; Sompallae, Ramakrishna; Xue, Hai-Hui; Harty, John T.; Badovinac, Vladimir P.

    2015-01-01

    Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability), and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo) and central memory (CD62Lhi) cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit protective memory

  14. Circulating Memory T Follicular Helper Cells in Patients with Neuromyelitis Optica/Neuromyelitis Optica Spectrum Disorders

    PubMed Central

    Fan, Xueli; Jiang, Yanfang; Han, Jinming; Liu, Jingyao; Wei, Yafen; Jiang, Xinmei

    2016-01-01

    Objective. This study aimed to examine the potential role of memory T follicular helper (Tfh) cells in patients with neuromyelitis optica/neuromyelitis optica spectrum disorders (NMO/NMOSD). Methods. The percentages of different subsets of circulating memory Tfh cells in 25 NMO/NMOSD patients before and after treatment as well as in 17 healthy controls were examined by flow cytometry. The levels of IL-21 and AQP4 Ab in plasma and CSF were measured by ELISA. Results. The percentages and numbers of circulating memory Tfh cells, ICOS+, CCR7−, CCR7−ICOS+, CCR7+, CCR7+ICOS+ memory Tfh cells, and the levels of IL-21 in plasma and CSF were significantly increased in NMO/NMOSD patients. The percentages of CCR7− and CCR7−ICOS+ memory Tfh cells were positively correlated with ARR, plasma IL-21, and AQP4 Ab levels. The percentages of CCR7+ and CCR7+ICOS+ memory Tfh cells were positively correlated with CSF white blood cell counts, proteins, and IL-21 levels. Treatment with corticosteroids significantly reduced the numbers of CCR7−ICOS+ and CCR7+ICOS+ memory Tfh cells as well as plasma IL-21 levels in patients with partial remission. Conclusions. Our findings indicate that circulating memory Tfh cells may participate in the relapse and development of NMO/NMOSD and may serve as a new therapeutic target. PMID:27057097

  15. Fabrication of dynamic oxide semiconductor random access memory with 3.9 fF storage capacitance and greater than 1 h retention by using c-axis aligned crystalline oxide semiconductor transistor with L of 60 nm

    NASA Astrophysics Data System (ADS)

    Onuki, Tatsuya; Kato, Kiyoshi; Nomura, Masumi; Yakubo, Yuto; Nagatsuka, Shuhei; Matsuzaki, Takanori; Hondo, Suguru; Hata, Yuki; Okazaki, Yutaka; Nagai, Masaharu; Atsumi, Tomoaki; Sakakura, Masayuki; Okuda, Takashi; Yamamoto, Yoshitaka; Yamazaki, Shunpei

    2015-04-01

    A dynamic oxide semiconductor random access memory (DOSRAM) array that achieves reduction in storage capacitance (Cs) and decrease in refresh rate has been fabricated by using a c-axis aligned crystalline oxide semiconductor (CAAC-OS) transistor (L = 60 nm) with an extremely low off-state current. We have confirmed that this array, composed of cells that include a CAAC-OS transistor with W/L = 40 nm/60 nm using InGaZnO and a 3.9 fF storage capacitor, operates with write and read times of 5 ns. Therefore, DOSRAM can ensure sufficient Cs while maintaining operation speed comparable to that of dynamic random access memory (DRAM). We have found that the read signal voltage of DOSRAM is changed by approximately 30 mV after 1 h at 85 °C. Thus, DOSRAM is a promising replacement for DRAM.

  16. Polarization diversity of human CD4+ stem cell memory T cells.

    PubMed

    Takeshita, Masaru; Suzuki, Katsuya; Kassai, Yoshiaki; Takiguchi, Maiko; Nakayama, Yusuke; Otomo, Yuki; Morita, Rimpei; Miyazaki, Takahiro; Yoshimura, Akihiko; Takeuchi, Tsutomu

    2015-07-01

    T cells are considered to develop through three stages, from naïve T (Tn) into central memory T (Tcm) and finally into effector memory T (Tem). Among the subsets of Tn, stem cell memory T (Tscm) were recently found to be the least developed memory subset. While this subset was revealed to possess self-reproducibility and multipotentiality, little is known about the relationship between development and polarity. We conducted transcriptome analysis of human CD4(+) T subsets and found that Tscm was a clearly distinct subset, located between Tn and Tcm. Surface antigen analysis and differentiation assay showed that the flexibility of polarity and the cytokine production progressively changed as the differentiation of CD4(+) T cells advanced. Interestingly, we found that most cells of the CD45RO(-)CCR7(+)CCR6(+) subset, hitherto considered the naïve precursor of Th17, were in fact Tscm. These findings may advance our understanding of the highly heterogeneous human helper T cells. PMID:25931384

  17. Anti-thymocyte globulin (ATG) differentially depletes naïve and memory T cells and permits memory-type regulatory T cells in nonobese diabetic mice

    PubMed Central

    2012-01-01

    Background ATG has been employed to deplete T cells in several immune-mediated conditions. However, whether ATG administration affects naïve and memory T cell differently is largely unknown. The context and purpose of the study In this study, we assessed how murine ATG therapy affected T cell subsets in NOD mice, based on their regulatory and naïve or memory phenotype, as well as its influence on antigen-specific immune responses. Results Peripheral blood CD4+ and CD8+ T cells post-ATG therapy declined to their lowest levels at day 3, while CD4+ T cells returned to normal levels more rapidly than CD8+ T cells. ATG therapy failed to eliminate antigen-primed T cells. CD4+ T cell responses post-ATG therapy skewed to T helper type 2 (Th2) and possibly IL-10-producing T regulatory type 1 (Tr1) cells. Intriguingly, Foxp3+ regulatory T cells (Tregs) were less sensitive to ATG depletion and remained at higher levels following in vivo recovery compared to controls. Of note, the frequency of Foxp3+ Tregs with memory T cell phenotype was significantly increased in ATG-treated animals. Conclusion ATG therapy may modulate antigen-specific immune responses through inducing memory-like regulatory T cells as well as other protective T cells such as Th2 and IL-10-producing Tr1 cells. PMID:23237483

  18. Bone Marrow T Cells and the Integrated Functions of Recirculating and Tissue-Resident Memory T Cells

    PubMed Central

    Di Rosa, Francesca; Gebhardt, Thomas

    2016-01-01

    Changes in T cell trafficking accompany the naive to memory T cell antigen-driven differentiation, which remains an incompletely defined developmental step. Upon priming, each naive T cell encounters essential signals – i.e., antigen, co-stimuli and cytokines – in a secondary lymphoid organ; nevertheless, its daughter effector and memory T cells recirculate and receive further signals during their migration through various lymphoid and non-lymphoid organs. These additional signals from tissue microenvironments have an impact on immune response features, including T cell effector function, expansion and contraction, memory differentiation, long-term maintenance, and recruitment upon antigenic rechallenge into local and/or systemic responses. The critical role of T cell trafficking in providing efficient T cell memory has long been a focus of interest. It is now well recognized that naive and memory T cells have different migratory pathways, and that memory T cells are heterogeneous with respect to their trafficking. We and others have observed that, long time after priming, memory T cells are preferentially found in certain niches such as the bone marrow (BM) or at the skin/mucosal site of pathogen entry, even in the absence of residual antigen. The different underlying mechanisms and peculiarities of resulting immunity are currently under study. In this review, we summarize key findings on BM and tissue-resident memory (TRM) T cells and revisit some issues in memory T cell maintenance within such niches. Moreover, we discuss BM seeding by memory T cells in the context of migration patterns and protective functions of either recirculating or TRM T cells. PMID:26909081

  19. Bone Marrow T Cells and the Integrated Functions of Recirculating and Tissue-Resident Memory T Cells.

    PubMed

    Di Rosa, Francesca; Gebhardt, Thomas

    2016-01-01

    Changes in T cell trafficking accompany the naive to memory T cell antigen-driven differentiation, which remains an incompletely defined developmental step. Upon priming, each naive T cell encounters essential signals - i.e., antigen, co-stimuli and cytokines - in a secondary lymphoid organ; nevertheless, its daughter effector and memory T cells recirculate and receive further signals during their migration through various lymphoid and non-lymphoid organs. These additional signals from tissue microenvironments have an impact on immune response features, including T cell effector function, expansion and contraction, memory differentiation, long-term maintenance, and recruitment upon antigenic rechallenge into local and/or systemic responses. The critical role of T cell trafficking in providing efficient T cell memory has long been a focus of interest. It is now well recognized that naive and memory T cells have different migratory pathways, and that memory T cells are heterogeneous with respect to their trafficking. We and others have observed that, long time after priming, memory T cells are preferentially found in certain niches such as the bone marrow (BM) or at the skin/mucosal site of pathogen entry, even in the absence of residual antigen. The different underlying mechanisms and peculiarities of resulting immunity are currently under study. In this review, we summarize key findings on BM and tissue-resident memory (TRM) T cells and revisit some issues in memory T cell maintenance within such niches. Moreover, we discuss BM seeding by memory T cells in the context of migration patterns and protective functions of either recirculating or TRM T cells. PMID:26909081

  20. Local immunity by tissue-resident CD8+ memory T cells

    PubMed Central

    Gebhardt, Thomas; Mackay, Laura K.

    2012-01-01

    Microbial infection primes a CD8+ cytotoxic T cell response that gives rise to a long-lived population of circulating memory cells able to provide protection against systemic reinfection. Despite this, effective CD8+ T cell surveillance of barrier tissues such as skin and mucosa typically wanes with time, resulting in limited T cell-mediated protection in these peripheral tissues. However, recent evidence suggests that a specialized subset of CD103+ memory T cells can permanently lodge and persist in peripheral tissues, and that these cells can compensate for the loss of peripheral immune surveillance by circulating memory T cells. Here, we review evolving concepts regarding the generation and long-term persistence of these tissue-resident memory T cells (TRM) in epithelial and neuronal tissues. We further discuss the role of TRM cells in local infection control and their contribution to localized immune phenomena, in both mice and humans. PMID:23162555

  1. Memory strategy training in children with cerebral infarcts related to sickle cell disease.

    PubMed

    Yerys, Benjamin E; White, Desirée A; Salorio, Cynthia F; McKinstry, Robert; Moinuddin, Asif; DeBaun, Michael

    2003-06-01

    Cerebral infarcts occur in approximately 30% of children with sickle cell disease (SCD), but little information exists regarding remediation of associated cognitive deficits. The authors examined the benefits of training children with infarcts to use memory strategies. Six children with SCD-related infarcts received academic tutoring; three of these children received additional training in memory strategies (silent rehearsal to facilitate short-term memory and semantic organization to facilitate long-term memory). The performance of children receiving strategy training appeared to improve more than that of children receiving only tutoring. Memory in children with SCD-related infarcts may be enhanced through strategy training. PMID:12794531

  2. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation.

    PubMed

    Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru; Takemori, Toshitada

    2016-06-01

    Memory CD4(+) T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4(+) T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588

  3. Pathogen-induced inflammatory environment controls effector and memory CD8+ T cell differentiation.

    PubMed

    Obar, Joshua J; Jellison, Evan R; Sheridan, Brian S; Blair, David A; Pham, Quynh-Mai; Zickovich, Julianne M; Lefrançois, Leo

    2011-11-15

    In response to infection, CD8(+) T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived effector cells (SLECs; CD127(low)KLRG1(high)) and memory precursor effector cells (CD127(high)KLRG1(low)) from an early effector cell that is CD127(low)KLRG1(low) in phenotype. CD8(+) T cell differentiation during vesicular stomatitis virus infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in early effector cell differentiation into SLECs. SLEC generation was dependent on Ebi3 expression. Furthermore, SLEC differentiation during vesicular stomatitis virus infection was enhanced by administration of CpG-DNA, through an IL-12-dependent mechanism. Moreover, CpG-DNA treatment enhanced effector CD8(+) T cell functionality and memory subset distribution, but in an IL-12-independent manner. Population dynamics were dramatically different during secondary CD8(+) T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127(high)KLRG1(high) memory cells, both of which were intrinsic to the memory CD8(+) T cell. These subsets persisted for several months but were less effective in recall than memory precursor effector cells. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8(+) T cell differentiation. PMID:21987662

  4. Immunoglobulin M receptors on memory cells of immunoglobulin G antibody-forming cell clones.

    PubMed

    Abney, E R; Keeler, K D; Parkhouse, R M; Willcox, H N

    1976-06-01

    The memory cells of two antibody-forming cell clones had receptors of the IgM class, even though the clones had been producing IgG1 or IgG2a anti-2,4-dinitrophenyl antibodies for 9-15 months previously (on exposure to antigen). Thus a phenotypic switch in heavy chain constant region evidently occurred after re-exposure of these memory cells to antigen. To show that, we first removed the clonal cells' surface immunoglobins by "capping" and "stripping", with class- or subclass-specific antisera. Then, to assay their remaining receptor activity, the cells were incubated with antigen in vitro, washed and transferred (together with carrier primed cells) to irradiated recipients, and their antibody responses to this in vitro boost were assayed by iselectric focusing. Pretreatment with anti-mu serum, as well as with anti-Fab(kappa), prevented the responses of the IgG1 and IgG2a clones to an in vitro boost, while anti-gamma1 and anti-gamma2a antisera had no effect. An antiserum to the putative mouse IgD also had no effect. The anti-mu serum failed to react with the IgG1 and IgG2A clonal serum antibodies in the test tube. Some other contaminating clones were suppressed completely only by the anti-Fab serum. This result strongly suggests that switching in class commitment may occur during the differentiation of memory cells to antibody producers, and may therefore be antigen-dependent. It also implies that some apparently naive cells with surface IgM may, in reality, be B memory cells. PMID:825376

  5. A Novel Metal-Ferroelectric-Semiconductor Field-Effect Transistor Memory Cell Design

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; Bailey, Mark; Ho, Fat Duen

    2004-01-01

    The use of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor (MFSFET) in a resistive-load SRAM memory cell has been investigated A typical two-transistor resistive-load SRAM memory cell architecture is modified by replacing one of the NMOS transistors with an n-channel MFSFET. The gate of the MFSFET is connected to a polling voltage pulse instead of the other NMOS transistor drain. The polling voltage pulses are of sufficient magnitude to saturate the ferroelectric gate material and force the MFSFET into a particular logic state. The memory cell circuit is further modified by the addition of a PMOS transistor and a load resistor in order to improve the retention characteristics of the memory cell. The retention characteristics of both the "1" and "0" logic states are simulated. The simulations show that the MFSFET memory cell design can maintain both the "1" and "0" logic states for a long period of time.

  6. On EMDR: eye movements during retrieval reduce subjective vividness and objective memory accessibility during future recall.

    PubMed

    van den Hout, Marcel A; Bartelski, Nicola; Engelhard, Iris M

    2013-01-01

    In eye movement desensitization and reprocessing (EMDR), a treatment for post-traumatic stress disorder (PTSD), patients make eye movements (EM) during trauma recall. Earlier experimental studies found that EM during recall reduces memory vividness during future recalls, and this was taken as laboratory support for the underlying mechanism of EMDR. However, reduced vividness was assessed with self-reports that may be affected by demand characteristics. We tested whether recall+EM also reduces memory vividness on a behavioural reaction time (RT) task. Undergraduates (N=32) encoded two pictures, recalled them, and rated their vividness. In the EM group, one of the pictures was recalled again while making EM. In the no-EM group one of the pictures was recalled without EM. Then fragments from both the recalled and non-recalled pictures, and new fragments were presented and participants rated whether these were (or were not) seen before. Both pictures were rated again for vividness. In the EM group, self-rated vividness of the recalled+EM picture decreased, relative to the non-recalled picture. In the no-EM group there was no difference between the recalled versus non-recalled picture. The RT task showed the same pattern. Reduction of memory vividness due to recall+EM is also evident from non-self-report data. PMID:22765837

  7. Specific central memory T cells in the bone marrow of patients immunized against tyrosinase peptides.

    PubMed

    Letsch, Anne; Keilholz, Ulrich; Kern, Florian; Asemissen, Anne Marie; Thiel, Eckhard; Scheibenbogen, Carmen

    2006-01-01

    The goal of vaccination against tumors is the induction of effector T cells mediating tumor destruction and memory T cells providing long-term immunity. Several previous studies in patients vaccinated with major histocompatibility complex (MHC) class I peptides failed to show induction of central memory T cells, which are considered important to provide long-term memory. This study examined the subset composition and function of specific T cells generated by immunization with MHC class I binding tyrosinase peptides in combination with the adjuvants granulocyte-macrophage colony-stimulating factor and keyhole limpet hemocyanin in peripheral blood (PB) and bone marrow (BM) of melanoma patients. Most of the tyrosinase-specific T cells in PB had a CD45RA(+)CCR7(-) effector phenotype. In contrast to this, a large subset of tyrosinase-specific T cells in BM were memory T cells, including CD45RA(+)CCR7(-) central and CD45RA(-)CCR7(-) effector memory T cells. BM tyrosinase-specific T cells were functional, because they produced interferon-gamma and had a high proliferative potential. This study suggests that peptide vaccination can generate a fully functional memory T-cell response characterized by central and effector memory phenotypes, proliferative potential, and BM tropism. PMID:16531820

  8. COSTIMULATION SIGNALS FOR MEMORY CD8+ T CELLS DURING VIRAL INFECTIONS

    PubMed Central

    Duttagupta, Priyanka A.; Boesteanu, Alina C.; Katsikis, Peter D.

    2010-01-01

    Costimulation signals have been recognized as critical for optimal T cell responses and result from important interaction between receptors on the surface of T cells and their ligands on antigen presenting cells. Two families of receptors, the CD28 family and the TNFR family have been found to be major players in providing costimulation to CD8+ T cells. Recent studies using viral infection models have highlighted the importance of CD28 costimulation signals during memory responses against viruses. PD-1 another member of the CD28 family may contribute to functional defects of helpless memory CD8+ T cells. Members of the TNFR family such as CD27, 4-1BB, CD40, TRAIL and OX40 have also being implicated in the survival, generation, maintenance and quality of virus-specific memory CD8+ T cells. The delivery of costimulatory molecules such as CD28, 4-1BB and OX40 can help boost the generation and function of virus-specific memory CD8+ T cells. Taken together this suggests that the use of costimulatory molecules as adjuvants along with viral antigens in vaccines may facilitate the generation of effective antigen-specific memory CD8+ T cell responses. Understanding the costimulatory requirements of memory CD8+ T cells therefore may lead to improved vaccines that target anti-viral CD8+ T cell memory. PMID:20121696

  9. An energy-efficient SIMD DSP with multiple VLIW configurations and an advanced memory access unit for LTE-A modem LSIs

    NASA Astrophysics Data System (ADS)

    Tomono, Mitsuru; Ito, Makiko; Nomura, Yoshitaka; Mouri, Makoto; Hirose, Yoshio

    2015-12-01

    Energy efficiency is the most important factor in the design of wireless modem LSIs for mobile handset systems. We have developed an energy-efficient SIMD DSP for LTE-A modem LSIs. Our DSP has mainly two hardware features in order to reduce energy consumption. The first one is multiple VLIW configurations to minimize accesses to instruction memories. The second one is an advanced memory access unit to realize complex memory accesses required for wireless baseband processing. With these features, performance of our DSP is about 1.7 times faster than a base DSP on average for standard LTE-A Libraries. Our DSP achieves about 20% improvement in energy efficiency compared to a base DSP for LTE-A modem LSIs.

  10. The route of priming influences the ability of respiratory virus–specific memory CD8+ T cells to be activated by residual antigen

    PubMed Central

    Roberts, Alan D.; Jelley-Gibbs, Dawn M.; Wittmer, Susan T.; Kohlmeier, Jacob E.

    2010-01-01

    After respiratory virus infections, memory CD8+ T cells are maintained in the lung airways by a process of continual recruitment. Previous studies have suggested that this process is controlled, at least in the initial weeks after virus clearance, by residual antigen in the lung-draining mediastinal lymph nodes (MLNs). We used mouse models of influenza and parainfluenza virus infection to show that intranasally (i.n.) primed memory CD8+ T cells possess a unique ability to be reactivated by residual antigen in the MLN compared with intraperitoneally (i.p.) primed CD8+ T cells, resulting in the preferential recruitment of i.n.-primed memory CD8+ T cells to the lung airways. Furthermore, we demonstrate that the inability of i.p.-primed memory CD8+ T cells to access residual antigen can be corrected by a subsequent i.n. virus infection. Thus, two independent factors, initial CD8+ T cell priming in the MLN and prolonged presentation of residual antigen in the MLN, are required to maintain large numbers of antigen-specific memory CD8+ T cells in the lung airways. PMID:20457758

  11. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function

    PubMed Central

    Sukumar, Madhusudhanan; Liu, Jie; Ji, Yun; Subramanian, Murugan; Crompton, Joseph G.; Yu, Zhiya; Roychoudhuri, Rahul; Palmer, Douglas C.; Muranski, Pawel; Karoly, Edward D.; Mohney, Robert P.; Klebanoff, Christopher A.; Lal, Ashish; Finkel, Toren; Restifo, Nicholas P.; Gattinoni, Luca

    2013-01-01

    Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately influence the ability of activated T cells to become long-lived memory cells. We used a fluorescent glucose analog, 2-NBDG, to quantify glucose uptake in activated CD8+ T cells. We found that cells exhibiting limited glucose incorporation had a molecular profile characteristic of memory precursor cells and an increased capacity to enter the memory pool compared with cells taking up high amounts of glucose. Accordingly, enforcing glycolytic metabolism by overexpressing the glycolytic enzyme phosphoglycerate mutase-1 severely impaired the ability of CD8+ T cells to form long-term memory. Conversely, activation of CD8+ T cells in the presence of an inhibitor of glycolysis, 2-deoxyglucose, enhanced the generation of memory cells and antitumor functionality. Our data indicate that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+ T cells. These results have important implications for improving the efficacy of T cell–based therapies against chronic infectious diseases and cancer. PMID:24091329

  12. Cell Surface Access Is Modulated by Tethered Bottlebrush Proteoglycans.

    PubMed

    Chang, Patrick S; McLane, Louis T; Fogg, Ruth; Scrimgeour, Jan; Temenoff, Johnna S; Granqvist, Anna; Curtis, Jennifer E

    2016-06-21

    The hyaluronan-rich pericellular matrix (PCM) plays physical and chemical roles in biological processes ranging from brain plasticity, to adhesion-dependent phenomena such as cell migration, to the onset of cancer. This study investigates how the spatial distribution of the large negatively charged bottlebrush proteoglycan, aggrecan, impacts PCM morphology and cell surface access. The highly localized pericellular milieu limits transport of nanoparticles in a size-dependent fashion and sequesters positively charged molecules on the highly sulfated side chains of aggrecan. Both rat chondrocyte and human mesenchymal stem cell PCMs possess many unused binding sites for aggrecan, showing a 2.5x increase in PCM thickness from ∼7 to ∼18 μm when provided exogenous aggrecan. Yet, full extension of the PCM occurs well below aggrecan saturation. Hence, cells equipped with hyaluronan-rich PCM can in principle manipulate surface accessibility or sequestration of molecules by tuning the bottlebrush proteoglycan content to alter PCM porosity and the number of electrostatic binding sites. PMID:27332132

  13. Quantification of HLA class II-specific memory B cells in HLA-sensitized individuals.

    PubMed

    Karahan, Gonca E; de Vaal, Yvonne J H; Roelen, Dave L; Buchli, Rico; Claas, Frans H J; Heidt, Sebastiaan

    2015-03-01

    For the quantification of HLA-specific memory B cells from peripheral blood of sensitized individuals, a limited number of methods are available. However, none of these are capable of detecting memory B cells directed at HLA class II molecules. Since the majority of antibodies that occur after transplantation appear to be specific for HLA class II, our aim was to develop an assay to detect and quantify HLA class II-specific memory B cells from peripheral blood. By using biotinylated soluble HLA class II molecules as detection agent, we were able to develop an HLA class II-specific memory B cell ELISPOT assay. The assay was validated using B cell-derived hybridomas that produce human monoclonal antibodies directed at specific HLA class II molecules. In pregnancy-immunized females, we found memory B cell frequencies ranging from 25 to 756 spots per 10(6) B cells specific for the immunizing paternal HLA class II molecules, whereas in non-immunized males no significant spot formation was detected. Here, we present a novel ELISPOT assay for quantifying HLA class II-specific memory B cells from peripheral blood. This technique provides a unique tool for monitoring the HLA class II-specific memory B cell pool in sensitized transplant recipients. PMID:25636565

  14. An Account of Performance in Accessing Information Stored in Long-Term Memory. A Fixed-Links Model Approach

    ERIC Educational Resources Information Center

    Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael

    2013-01-01

    Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…

  15. Transcriptional profiling of antigen-dependent murine B cell differentiation and memory formation.

    PubMed

    Bhattacharya, Deepta; Cheah, Ming T; Franco, Christopher B; Hosen, Naoki; Pin, Christopher L; Sha, William C; Weissman, Irving L

    2007-11-15

    Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure. PMID:17982071

  16. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    SciTech Connect

    Jovanović, B. E-mail: lionel.torres@lirmm.fr; Brum, R. M.; Torres, L.

    2014-04-07

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  17. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    NASA Astrophysics Data System (ADS)

    Jovanović, B.; Brum, R. M.; Torres, L.

    2014-04-01

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  18. Antigen availability determines CD8+ T cell-dendritic cell interaction kinetics and memory fate decisions

    PubMed Central

    Henrickson, Sarah E.; Stutte, Susanne; Quigley, Michael; Alexe, Gabriela; Iannacone, Matteo; Flynn, Michael P.; Omid, Shaida; Jesneck, Jonathan L.; Imam, Sabrina; Mempel, Thorsten R.; Mazo, Irina B.; Haining, William N.; von Andrian, Ulrich H.

    2014-01-01

    Summary T cells are activated by antigen (Ag) bearing dendritic cells (DCs) in lymph nodes in 3 phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8+ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, while higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation, but yielded different transcriptome signatures at 12h and 24h. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics. PMID:24054328

  19. Performance and characteristics of double layer porous silicon oxide resistance random access memory

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ming; Chang, Kuan-Chang; Zhang, Rui; Chang, Ting-Chang; Lou, J. C.; Chen, Jung-Hui; Young, Tai-Fa; Tseng, Bae-Heng; Shih, Chih-Cheng; Pan, Yin-Chih; Chen, Min-Chen; Pan, Jhih-Hong; Syu, Yong-En; Sze, Simon M.

    2013-06-01

    A bilayer resistive switching memory device with an inserted porous silicon oxide layer is investigated in this letter. Compared with single Zr:SiOx layer structure, Zr:SiOx/porous SiOx structure outperforms from various aspects, including low operating voltages, tighter distributions of set voltage, higher stability of both low resistance state and high resistance state, and satisfactory endurance characteristics. Electric field simulation by comsolTM Multiphysics is applied, which corroborates that intensive electric field around the pore in porous SiOx layer guides the conduction of electrons. The constraint of conduction path leads to better stabilization and prominent performance of bilayer resistive switching devices.

  20. An analog random access memory in the AVLSI-RA process for an interpolating pad chamber

    SciTech Connect

    Britton, C.L. Jr.; Wittenberg, A.L.; Read, K.F.; Clonts, L.G.; Kennedy, E.J.; Smith, R.S.; Swann, B.K.; Musser, J.A.

    1995-12-01

    An analog memory for an interpolating pad chamber has been designed at Oak Ridge National Laboratory and fabricated by Harris Semiconductor in the AVLSI-RA CMOS process. The goal was to develop a rad-hard analog pipeline that would deliver approximately 9-b performance, a readout settling time of 500 ns following read enable, an input and output dynamic range of {+-} 2.25 V, a corrected rms pedestal of approximately 5 mV or less, and a power dissipation of less than 10 mW/channel. The pre- and post-radiation measurements to 5 MRad are presented.

  1. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation

    PubMed Central

    Weng, Nan-ping; Araki, Yasuto; Subedi, Kalpana

    2015-01-01

    How the immune system remembers a previous encounter with a pathogen and responds more efficiently to a subsequent encounter has been one of the central enigmas for immunologists for over a century. The identification of pathogen-specific memory lymphocytes that arise after an infection provided a cellular basis for immunological memory. But the molecular mechanisms of immunological memory remain only partially understood. The emerging evidence suggests that epigenetic changes have a key role in controlling the distinct transcriptional profiles of memory lymphocytes and thus in shaping their function. In this Review, we summarize the recent progress that has been made in assessing the differential gene expression and chromatin modifications in memory CD4+ and CD8+ T cells, and we present our current understanding of the molecular basis of memory T cell function. PMID:22421787

  2. 75 FR 16507 - In the Matter of Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ..., California (``Rambus''). 73 FR 75131-2. The complaint, as amended and supplemented, alleges violations of... Commission's action. See Presidential Memorandum of July 21, 2005, 70 FR 43251 (July 26, 2005). During this... COMMISSION In the Matter of Certain Semiconductor Chips Having Synchronous Dynamic Random Access...

  3. Access to Attitude-Relevant Information in Memory as a Determinant of Attitude-Behavior Consistency.

    ERIC Educational Resources Information Center

    Kallgren, Carl A.; Wood, Wendy

    Recent reserach has attempted to determine systematically how attitudes influence behavior. This research examined whether access to attitude-relevant beliefs and prior experiences would mediate the relation between attitudes and behavior. Subjects were 49 college students with a mean age of 27 who did not live with their parents or in…

  4. Improving Memory after Interruption: Exploiting Soft Constraints and Manipulating Information Access Cost

    ERIC Educational Resources Information Center

    Morgan, Phillip L.; Patrick, John; Waldron, Samuel M.; King, Sophia L.; Patrick, Tanya

    2009-01-01

    Forgetting what one was doing prior to interruption is an everyday problem. The recent soft constraints hypothesis (Gray, Sims, Fu, & Schoelles, 2006) emphasizes the strategic adaptation of information processing strategy to the task environment. It predicts that increasing information access cost (IAC: the time, and physical and mental effort…

  5. A Symptom-Focused Hypnotic Approach to Accessing and Processing Previously Repressed/Dissociated Memories.

    ERIC Educational Resources Information Center

    Ratican, Kathleen L.

    1996-01-01

    The kinesthetic track back technique accesses the origins of current symptoms and may uncover previously repressed/dissociated material, if such material exists in the client's unconscious mind, is relevant to the symptoms, and is ready to be processed consciously. Case examples are given to illustrate proper use of this technique. (LSR)

  6. Fencing network direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Mamidala, Amith R.

    2015-07-07

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to a deterministic data communications network through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and the deterministic data communications network; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  7. Fencing network direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Mamidala, Amith R.

    2015-07-14

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to a deterministic data communications network through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and the deterministic data communications network; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  8. Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment

    NASA Astrophysics Data System (ADS)

    Chang, Kuan-Chang; Tsai, Tsung-Ming; Chang, Ting-Chang; Syu, Yong-En; Wang, Chia-C.; Chuang, Siang-Lan; Li, Cheng-Hua; Gan, Der-Shin; Sze, Simon M.

    2011-12-01

    In the study, we reduced the operation current of resistance random access memory (RRAM) by supercritical CO2 (SCCO2) fluids treatment. The power consumption and joule heating degradation of RRAM device can be improved greatly by SCCO2 treatment. The defect of nickel-doped silicon oxide (Ni:SiOx) was passivated effectively by the supercritical fluid technology. The current conduction of high resistant state in post-treated Ni:SiOx film was transferred to Schottky emission from Frenkel-Pool due to the passivation effect. Additionally, we can demonstrate the passivation mechanism of SCCO2 for Ni:SiOx by material analyses of x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy.

  9. Robust Two-Dimensional Stack Capacitor Technologies for 64 Mbit One-Transistor-One-Capacitor Ferroelectric Random Access Memory

    NASA Astrophysics Data System (ADS)

    Jung, Ju-Young; Joo, Heung-Jin; Park, Jung-Hoon; Kang, Seung-Kuk; Kim, Hwi-San; Choi, Do-Yeon; Kim, Jai-Hyun; Lee, Eun-Sun; Hong, Young-Ki; Kim, Hyun-Ho; Jung, Dong-Jin; Kang, Young-Min; Lee, Sung-Yung; Jeong, Hong-Sik; Kim, Kinam

    2007-04-01

    It is very important to develop capacitor module technologies such as robust Pb(ZrxTi1-x)O3 (PZT) film technology at nm scaled PZT thickness and damage minimized ferroelectric capacitor etching technology are crucial for the success of high density one-transistor-one-capacitor (1T1C) ferroelectric random access memory (FRAM). We resolved this issue from the change of the capacitor etching system and optimization of the PZT/SrRuO3 (SRO) deposition process. As a result, we realized a highly reliable sensing window for 64 Mbit 1T1C FRAM that were realized by novel technologies such as robust MOCVD PZT deposition technologies, optimized SRO electrode and damage minimized ferroelectric capacitor etching technologies.

  10. Glprof: A Gprof inspired, Callgraph-oriented Per-Object Disseminating Memory Access Multi-Cache Profiler

    SciTech Connect

    Janjusic, Tommy; Kartsaklis, Christos

    2015-01-01

    Application analysis is facilitated through a number of program profiling tools. The tools vary in their complexity, ease of deployment, design, and profiling detail. Specifically, understand- ing, analyzing, and optimizing is of particular importance for scientific applications where minor changes in code paths and data-structure layout can have profound effects. Understanding how intricate data-structures are accessed and how a given memory system responds is a complex task. In this paper we describe a trace profiling tool, Glprof, specifically aimed to lessen the burden of the programmer to pin-point heavily involved data-structures during an application's run-time, and understand data-structure run-time usage. Moreover, we showcase the tool's modularity using additional cache simulation components. We elaborate on the tool's design, and features. Finally we demonstrate the application of our tool in the context of Spec bench- marks using the Glprof profiler and two concurrently running cache simulators, PPC440 and AMD Interlagos.

  11. Oxide thickness dependence of resistive switching characteristics for Ni/HfOx/Pt resistive random access memory device

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Hamada, Yoshihumi; Otsuka, Shintaro; Shimizu, Tomohiro; Shingubara, Shoso

    2015-06-01

    The switching process of the conductive filament formed in Ni/HfOx/Pt resistive random access memory (ReRAM) devices were studied. We evaluated the oxide thickness dependence and temperature dependence of voltage for the Forming, Set and Reset operations for HfOx layers whose thickness are between 3.3 and 6.5 nm. The resistance of conductive filaments showed typical metallic behavior, which suggests Ni filament formation in the HfOx layer. There is a clear dependence of switching voltages for the Set and Reset processes on oxide thickness, which implies that the formation and rupture of conductive filaments occur in the entire thickness range of the HfOx layer. This finding differs from that of a previous study by Yang, which suggests the existence of a constant-thickness switching region. It is suggested that the thickness of the switching region in HfOx may be larger than 6.5 nm.

  12. Temperature induced complementary switching in titanium oxide resistive random access memory

    NASA Astrophysics Data System (ADS)

    Panda, D.; Simanjuntak, F. M.; Tseng, T.-Y.

    2016-07-01

    On the way towards high memory density and computer performance, a considerable development in energy efficiency represents the foremost aspiration in future information technology. Complementary resistive switch consists of two antiserial resistive switching memory (RRAM) elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption. Here we present a titanium oxide based complementary RRAM (CRRAM) device with Pt top and TiN bottom electrode. A subsequent post metal annealing at 400°C induces CRRAM. Forming voltage of 4.3 V is required for this device to initiate switching process. The same device also exhibiting bipolar switching at lower compliance current, Ic <50 μA. The CRRAM device have high reliabilities. Formation of intermediate titanium oxi-nitride layer is confirmed from the cross-sectional HRTEM analysis. The origin of complementary switching mechanism have been discussed with AES, HRTEM analysis and schematic diagram. This paper provides valuable data along with analysis on the origin of CRRAM for the application in nanoscale devices.

  13. Impact of adolescent sucrose access on cognitive control, recognition memory, and parvalbumin immunoreactivity

    PubMed Central

    Killcross, Simon; Hambly, Luke D.; Morris, Margaret J.; Westbrook, R. Fred

    2015-01-01

    In this study we sought to determine the effect of daily sucrose consumption in young rats on their subsequent performance in tasks that involve the prefrontal cortex and hippocampus. High levels of sugar consumption have been associated with the development of obesity, however less is known about how sugar consumption influences behavioral control and high-order cognitive processes. Of particular concern is the fact that sugar intake is greatest in adolescence, an important neurodevelopmental period. We provided sucrose to rats when they were progressing through puberty and adolescence. Cognitive performance was assessed in adulthood on a task related to executive function, a rodent analog of the Stroop task. We found that sucrose-exposed rats failed to show context-appropriate responding during incongruent stimulus compounds presented at test, indicative of impairments in prefrontal cortex function. Sucrose exposed rats also showed deficits in an on object-in-place recognition memory task, indicating that both prefrontal and hippocampal function was impaired. Analysis of brains showed a reduction in expression of parvalbumin-immunoreactive GABAergic interneurons in the hippocampus and prefrontal cortex, indicating that sucrose consumption during adolescence induced long-term pathology, potentially underpinning the cognitive deficits observed. These results suggest that consumption of high levels of sugar-sweetened beverages by adolescents may also impair neurocognitive functions affecting decision-making and memory, potentially rendering them at risk for developing mental health disorders. PMID:25776039

  14. The structure-sensitivity of memory access: evidence from Mandarin Chinese

    PubMed Central

    Dillon, Brian; Chow, Wing-Yee; Wagers, Matthew; Guo, Taomei; Liu, Fengqin; Phillips, Colin

    2014-01-01

    The present study examined the processing of the Mandarin Chinese long-distance reflexive ziji to evaluate the role that syntactic structure plays in the memory retrieval operations that support sentence comprehension. Using the multiple-response speed-accuracy tradeoff (MR-SAT) paradigm, we measured the speed with which comprehenders retrieve an antecedent for ziji. Our experimental materials contrasted sentences where ziji's antecedent was in the local clause with sentences where ziji's antecedent was in a distant clause. Time course results from MR-SAT suggest that ziji dependencies with syntactically distant antecedents are slower to process than syntactically local dependencies. To aid in interpreting the SAT data, we present a formal model of the antecedent retrieval process, and derive quantitative predictions about the time course of antecedent retrieval. The modeling results support the Local Search hypothesis: during syntactic retrieval, comprehenders initially limit memory search to the local syntactic domain. We argue that Local Search hypothesis has important implications for theories of locality effects in sentence comprehension. In particular, our results suggest that not all locality effects may be reduced to the effects of temporal decay and retrieval interference. PMID:25309486

  15. Brain potentials reflect access to visual and emotional memories for faces.

    PubMed

    Bobes, Maria A; Quiñonez, Ileana; Perez, Jhoanna; Leon, Inmaculada; Valdés-Sosa, Mitchell

    2007-05-01

    Familiar faces convey different types of information, unlocking memories related to social-emotional significance. Here, the availability over time of different types of memory was evaluated using the time-course of P3 event related potentials. Two oddball paradigms were employed, both using unfamiliar faces as standards. The infrequent targets were, respectively, artificially-learned faces (devoid of social-emotional content) and faces of acquaintances. Although in both tasks targets were detected accurately, the corresponding time-course and scalp distribution of the P3 responses differed. Artificially-learned and acquaintance faces both elicited a P3b, maximal over centro-parietal sites, and a latency of 500ms. Faces of acquaintances elicited an additional component, an early P3 maximal over frontal sites: with a latency of 350ms. This suggests that visual familiarity can only trigger the overt recognition processes leading to the slower P3b, whereas emotional-social information can also elicit fast and automatic assessments (indexed by the frontal-P3) crucial for successful social interactions. PMID:17350154

  16. ERP evidence for hemispheric asymmetries in exemplar-specific explicit memory access.

    PubMed

    Küper, Kristina; Zimmer, Hubert D

    2015-11-01

    The right cerebral hemisphere (RH) appears to be more effective in representing visual objects as distinct exemplars than the left hemisphere (LH) which is presumably biased towards coding objects at the level of abstract prototypes. As of yet, relatively little is known about the role that asymmetries in exemplar-specificity play at the level of explicit memory retrieval. In the present study, we addressed this issue by examining hemispheric asymmetries in the putative event-related potential (ERP) correlates of familiarity (FN400) and recollection (LPC). In an incidental study phase, pictures of familiar objects were presented centrally. At test, participants performed a memory inclusion task on identical repetitions and different exemplars of study items as well as new items which were presented in only one visual hemifield using the divided visual field technique. With respect to familiarity, we observed exemplar-specific FN400 old/new effects that were more pronounced for identical repetitions than different exemplars, irrespective of the hemisphere governing initial stimulus processing. In contrast, LPC old/new effects were subject to some hemispheric asymmetries indicating that exemplar-specific recollection was more extensive in the RH than in the LH. This further corroborates the idea that hemispheric asymmetries should not be generalized but need to be distinguished not only in different domains but also at different levels of processing. PMID:26279112

  17. Thin Co/Ni-based bottom pinned spin-transfer torque magnetic random access memory stacks with high annealing tolerance

    NASA Astrophysics Data System (ADS)

    Tomczak, Y.; Swerts, J.; Mertens, S.; Lin, T.; Couet, S.; Liu, E.; Sankaran, K.; Pourtois, G.; Kim, W.; Souriau, L.; Van Elshocht, S.; Kar, G.; Furnemont, A.

    2016-01-01

    Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a replacement for next generation embedded and stand-alone memory applications. One of the main challenges in the STT-MRAM stack development is the compatibility of the stack with CMOS process flows in which thermal budgets up to 400 °C are applied. In this letter, we report on a perpendicularly magnetized MgO-based tunnel junction (p-MTJ) on a thin Co/Ni perpendicular synthetic antiferromagnetic layer with high annealing tolerance. Tunnel magneto resistance (TMR) loss after annealing occurs when the reference layer loses its perpendicular magnetic anisotropy due to reduction of the CoFeB/MgO interfacial anisotropy. A stable Co/Ni based p-MTJ stack with TMR values of 130% at resistance-area products of 9 Ω μm2 after 400 °C anneal is achieved via moment control of the Co/Ta/CoFeB reference layer. Thinning of the CoFeB polarizing layer down to 0.8 nm is the key enabler to achieve 400 °C compatibility with limited TMR loss. Thinning the Co below 0.6 nm leads to a loss of the antiferromagnetic interlayer exchange coupling strength through Ru. Insight into the thickness and moment engineering of the reference layer is displayed to obtain the best magnetic properties and high thermal stability for thin Co/Ni SAF-based STT-MRAM stacks.

  18. Tissue Distribution of Memory T and B Cells in Rhesus Monkeys following Influenza A Infection

    PubMed Central

    Yongvanitchit, Kosol; Limsalakpetch, Amporn; Kum-Arb, Utaiwan; Im-Erbsin, Rawiwan; Boonnak, Kobporn; Thitithayanont, Arunee; Jongkaewwattana, Anan; Wiboon-ut, Suwimon; Mongkolsirichaikul, Duangrat; Mahanonda, Rangsini; Spring, Michele; Chuang, Ilin; Mason, Carl J.; Saunders, David L.

    2015-01-01

    Studies of influenza-specific immune responses in humans have largely assessed systemic responses involving serum Ab and peripheral blood T cell responses. However, recent evidence indicates that tissue-resident memory T (TRM) cells play an important role in local murine intrapulmonary immunity. Rhesus monkeys were pulmonary exposed to 2009 pandemic H1N1 virus at days 0 and 28 and immune responses in different tissue compartments were measured. All animals were asymptomatic postinfection. Although only minimal memory immune responses were detected in peripheral blood, a high frequency of influenza nucleoprotein–specific memory T cells was detected in the lung at the “contraction phase,” 49–58 d after second virus inoculation. A substantial proportion of lung nucleoprotein-specific memory CD8+ T cells expressed CD103 and CD69, phenotypic markers of TRM cells. Lung CD103+ and CD103- memory CD8+ T cells expressed similar levels of IFN-γ and IL-2. Unlike memory T cells, spontaneous Ab secreting cells and memory B cells specific to influenza hemagglutinin were primarily observed in the mediastinal lymph nodes. Little difference in systemic and local immune responses against influenza was observed between young adult (6–8 y) and old animals (18–28 y). Using a nonhuman primate model, we revealed substantial induction of local T and B cell responses following 2009 pandemic H1N1 infection. Our study identified a subset of influenza-specific lung memory T cells characterized as TRM cells in rhesus monkeys. The rhesus monkey model may be useful to explore the role of TRM cells in local tissue protective immunity after rechallenge and vaccination. PMID:26408671

  19. Tissue Distribution of Memory T and B Cells in Rhesus Monkeys following Influenza A Infection.

    PubMed

    Pichyangkul, Sathit; Yongvanitchit, Kosol; Limsalakpetch, Amporn; Kum-Arb, Utaiwan; Im-Erbsin, Rawiwan; Boonnak, Kobporn; Thitithayanont, Arunee; Jongkaewwattana, Anan; Wiboon-ut, Suwimon; Mongkolsirichaikul, Duangrat; Mahanonda, Rangsini; Spring, Michele; Chuang, Ilin; Mason, Carl J; Saunders, David L

    2015-11-01

    Studies of influenza-specific immune responses in humans have largely assessed systemic responses involving serum Ab and peripheral blood T cell responses. However, recent evidence indicates that tissue-resident memory T (TRM) cells play an important role in local murine intrapulmonary immunity. Rhesus monkeys were pulmonary exposed to 2009 pandemic H1N1 virus at days 0 and 28 and immune responses in different tissue compartments were measured. All animals were asymptomatic postinfection. Although only minimal memory immune responses were detected in peripheral blood, a high frequency of influenza nucleoprotein-specific memory T cells was detected in the lung at the "contraction phase," 49-58 d after second virus inoculation. A substantial proportion of lung nucleoprotein-specific memory CD8(+) T cells expressed CD103 and CD69, phenotypic markers of TRM cells. Lung CD103(+) and CD103(-) memory CD8(+) T cells expressed similar levels of IFN-γ and IL-2. Unlike memory T cells, spontaneous Ab secreting cells and memory B cells specific to influenza hemagglutinin were primarily observed in the mediastinal lymph nodes. Little difference in systemic and local immune responses against influenza was observed between young adult (6-8 y) and old animals (18-28 y). Using a nonhuman primate model, we revealed substantial induction of local T and B cell responses following 2009 pandemic H1N1 infection. Our study identified a subset of influenza-specific lung memory T cells characterized as TRM cells in rhesus monkeys. The rhesus monkey model may be useful to explore the role of TRM cells in local tissue protective immunity after rechallenge and vaccination. PMID:26408671

  20. Development and Function of Protective and Pathologic Memory CD4 T Cells

    PubMed Central

    Jaigirdar, Shafqat Ahrar; MacLeod, Megan K. L.

    2015-01-01

    Immunological memory is one of the defining features of the adaptive immune system. As key orchestrators and mediators of immunity, CD4 T cells are central to the vast majority of adaptive immune responses. Generated following an immune response, memory CD4 T cells retain pertinent information about their activation environment enabling them to make rapid effector responses upon reactivation. These responses can either benefit the host by hastening the control of pathogens or cause damaging immunopathology. Here, we will discuss the diversity of the memory CD4 T cell pool, the signals that influence the transition of activated T cells into that pool, and highlight how activation requirements differ between naïve and memory CD4 T cells. A greater understanding of these factors has the potential to aid the design of more effective vaccines and to improve regulation of pathologic CD4 T cells, such as in the context of autoimmunity and allergy. PMID:26441961

  1. Tolerance induction in memory CD4 T cells requires two rounds of antigen-specific activation.

    PubMed

    David, Alexandria; Crawford, Frances; Garside, Paul; Kappler, John W; Marrack, Philippa; MacLeod, Megan

    2014-05-27

    A major goal for immunotherapy is to tolerize the immune cells that coordinate tissue damage in autoimmune and alloantigen responses. CD4 T cells play a central role in many of these conditions and improved antigen-specific regulation or removal of these cells could revolutionize current treatments. A confounding factor is that little is known about whether and how tolerance is induced in memory CD4 T cells. We used MHC class II tetramers to track and analyze a population of endogenous antigen-specific memory CD4 T cells exposed to soluble peptide in the absence of adjuvant. We found that such memory T cells proliferated and reentered the memory pool apparently unperturbed by the incomplete activation signals provided by the peptide. Upon further restimulation in vivo, CD4 memory T cells that had been previously exposed to peptide proliferated, provided help to primary responding B cells, and migrated to inflamed sites. However, these reactivated memory cells failed to survive. The reduction in T-cell number was marked by low expression of the antiapoptotic molecule B cell lymphoma 2 (Bcl2) and increased expression of activated caspase molecules. Consequently, these cells failed to sustain a delayed-type hypersensitivity response. Moreover, following two separate exposures to soluble antigen, no T-cell recall response and no helper activity for B cells could be detected. These results suggest that the induction of tolerance in memory CD4 T cells is possible but that deletion and permanent removal of the antigen-specific T cells requires reactivation following exposure to the tolerogenic antigen. PMID:24821788

  2. B cells Can Modulate the CD8 Memory T Cell after DNA Vaccination Against Experimental Tuberculosis

    PubMed Central

    2011-01-01

    Background Although B cells are important as antigen presenting cells (APC) during the immune response, their role in DNA vaccination models is unknown. Methods In this study in vitro and in vivo experiments were performed to evaluate the ability of B cells to protect mice against Mycobacterium tuberculosis challenge. Results In vitro and in vivo studies showed that B cells efficiently present antigens after naked plasmid pcDNA3 encoding M. leprae 65-kDa heat shock protein (pcDNA3-Hsp65) internalization and protect B knock-out (BKO) mice against Mycobacterium tuberculosis infection. pcDNA3-Hsp65-transfected B cells adoptively transferred into BKO mice rescued the memory phenotypes and reduced the number of CFU compared to wild-type mice. Conclusions These data not only suggest that B cells play an important role in the induction of CD8 T cells but also that they improve bacterial clearance in DNA vaccine model. PMID:21401938

  3. Explicit memory creation during sleep demonstrates a causal role of place cells in navigation.

    PubMed

    de Lavilléon, Gaetan; Lacroix, Marie Masako; Rondi-Reig, Laure; Benchenane, Karim

    2015-04-01

    Hippocampal place cells assemblies are believed to support the cognitive map, and their reactivations during sleep are thought to be involved in spatial memory consolidation. By triggering intracranial rewarding stimulations by place cell spikes during sleep, we induced an explicit memory trace, leading to a goal-directed behavior toward the place field. This demonstrates that place cells' activity during sleep still conveys relevant spatial information and that this activity is functionally significant for navigation. PMID:25751533

  4. Bystander chronic infection negatively impacts development of CD8+ T cell memory

    PubMed Central

    Stelekati, Erietta; Shin, Haina; Doering, Travis A.; Dolfi, Douglas V.; Ziegler, Carly G.; Beiting, Daniel P.; Dawson, Lucas; Liboon, Jennifer; Wolski, David; Ali, Mohammed-Alkhatim A.; Katsikis, Peter D.; Shen, Hao; Roos, David S.; Haining, W. Nicholas; Lauer, Georg M.; Wherry, E. John

    2014-01-01

    Summary Epidemiological evidence suggests that chronic infections impair immune responses to unrelated pathogens and vaccines. The underlying mechanisms, however, are unclear and distinguishing effects on priming versus development of immunological memory has been challenging. We investigated whether bystander chronic infections impact differentiation of memory CD8+ T cells, the hallmark of protective immunity against intracellular pathogens. Chronic bystander infections impaired development of memory CD8+ T cells in several mouse models and humans. These effects were independent of initial priming and were associated with chronic inflammatory signatures. Chronic inflammation negatively impacted the number of bystander CD8+ T cells and their memory development. Distinct underlying mechanisms of altered survival and differentiation were revealed with the latter regulated by the transcription factors T-bet and Blimp-1. Thus, exposure to prolonged bystander inflammation impairs the effector to memory transition. These data have relevance for immunity and vaccination during persisting infections and chronic inflammation. PMID:24837104

  5. High performance of graphene oxide-doped silicon oxide-based resistance random access memory

    PubMed Central

    2013-01-01

    In this letter, a double active layer (Zr:SiO x /C:SiO x ) resistive switching memory device with outstanding performance is presented. Through current fitting, hopping conduction mechanism is found in both high-resistance state (HRS) and low-resistance state (LRS) of double active layer RRAM devices. By analyzing Raman and FTIR spectra, we observed that graphene oxide exists in C:SiO x layer. Compared with single Zr:SiO x layer structure, Zr:SiO x /C:SiO x structure has superior performance, including low operating current, improved uniformity in both set and reset processes, and satisfactory endurance characteristics, all of which are attributed to the double-layer structure and the existence of graphene oxide flakes formed by the sputter process. PMID:24261454

  6. The role of the inserted layer in resistive random access memory device

    NASA Astrophysics Data System (ADS)

    Zhang, Dainan; Ma, Guokun; Zhang, Huaiwu; Tang, Xiaoli; Zhong, Zhiyong; Jie, Li; Su, Hua

    2016-07-01

    NiO resistive switching devices were fabricated by reactive DC magnetron sputtering at room temperature containing different inserted layers. From measurements, we demonstrated the filaments were made up by metal Co rather than the oxygen defect or other metal. A current jumping phenomenon in the SET process was observed, evidencing that the filament generating procedure was changed due to the inserted layers. In this process, we demonstrate the current jumping appeared in higher voltage region when the position of inserted layer was close to the bottom electrode. The I–V curves shifted to the positive direction as the thickness of inserted layer increasing. With the change of the number of inserted layers, SET voltages varied while the RESET voltage kept stable. According to the electrochemical metallization memory mechanism, detailed explanations on all the phenomena were addressed. This discovery is supposed of great potentials in the use of designing multi-layer RRAM devices.

  7. High performance of graphene oxide-doped silicon oxide-based resistance random access memory.

    PubMed

    Zhang, Rui; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Chen, Kai-Huang; Lou, Jen-Chung; Chen, Jung-Hui; Young, Tai-Fa; Shih, Chih-Cheng; Yang, Ya-Liang; Pan, Yin-Chih; Chu, Tian-Jian; Huang, Syuan-Yong; Pan, Chih-Hung; Su, Yu-Ting; Syu, Yong-En; Sze, Simon M

    2013-01-01

    In this letter, a double active layer (Zr:SiOx/C:SiOx) resistive switching memory device with outstanding performance is presented. Through current fitting, hopping conduction mechanism is found in both high-resistance state (HRS) and low-resistance state (LRS) of double active layer RRAM devices. By analyzing Raman and FTIR spectra, we observed that graphene oxide exists in C:SiOx layer. Compared with single Zr:SiOx layer structure, Zr:SiOx/C:SiOx structure has superior performance, including low operating current, improved uniformity in both set and reset processes, and satisfactory endurance characteristics, all of which are attributed to the double-layer structure and the existence of graphene oxide flakes formed by the sputter process. PMID:24261454

  8. Access to long-term optical memories using photon echoes retrieved from semiconductor spins

    NASA Astrophysics Data System (ADS)

    Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Salewski, M.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2014-11-01

    The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.

  9. Distribution of nanoscale nuclei in the amorphous dome of a phase change random access memory

    SciTech Connect

    Lee, Bong-Sub Darmawikarta, Kristof; Abelson, John R.; Raoux, Simone; Shih, Yen-Hao; Zhu, Yu

    2014-02-17

    The nanoscale crystal nuclei in an amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} bit in a phase change memory device were evaluated by fluctuation transmission electron microscopy. The quench time in the device (∼10 ns) afforded more and larger nuclei in the melt-quenched state than in the as-deposited state. However, nuclei were even more numerous and larger in a test structure with a longer quench time (∼100 ns), verifying the prediction of nucleation theory that slower cooling produces more nuclei. It also demonstrates that the thermal design of devices will strongly influence the population of nuclei, and thus the speed and data retention characteristics.

  10. A Role for CD40 Expression on CD8+ T Cells in the Generation of CD8+ T Cell Memory

    NASA Astrophysics Data System (ADS)

    Bourgeois, Christine; Rocha, Benedita; Tanchot, Corinne

    2002-09-01

    The delivery of CD4 help to CD8+ T cell responses requires interactions between CD40 and CD40 ligand and is thought to occur through antigen-presenting cell (APC) activation. Here we show that generation of memory CD8+ T cells displaying an enhanced capacity for cell division and cytokine secretion required CD4 help but not CD40 expression by the APCs. Activated CD4+ and CD8+ T cells expressed CD40; and in the absence of this protein, CD8+ T cells were unable to differentiate into memory cells or receive CD4 help. These results suggest that, like B cells, CD8+ T cells receive CD4 help directly through CD40 and that this interaction is fundamental for CD8+ T cell memory generation.

  11. Memory CD8+ T Cells: Orchestrators and Key Players of Innate Immunity?

    PubMed

    Lauvau, Grégoire; Goriely, Stanislas

    2016-09-01

    Over the past decades, the dichotomy between innate and adaptive immune responses has largely dominated our understanding of immunology. Upon primary encounter with microbial pathogens, differentiation of adaptive immune cells into functional effectors usually takes several days or even longer, making them contribute to host protection only late during primary infection. However, once generated, antigen-experienced T lymphocytes can persist in the organism and constitute a pool of memory cells that mediate fast and effective protection to a recall infection with the same microbial pathogen. Herein, we challenge this classical paradigm by highlighting the "innate nature" of memory CD8+ T cells. First, within the thymus or in the periphery, naïve CD8+ T cells may acquire phenotypic and functional characteristics of memory CD8+ T cells independently of challenge with foreign antigens. Second, both the "unconventional" and the "conventional" memory cells can rapidly express protective effector functions in response to sets of inflammatory cytokines and chemokines signals, independent of cognate antigen triggering. Third, memory CD8+ T cells can act by orchestrating the recruitment, activation, and licensing of innate cells, leading to broad antimicrobial states. Thus, collectively, memory CD8+ T cells may represent important actors of innate immune defenses. PMID:27584152

  12. Highly reliable switching via phase transition using hydrogen peroxide in homogeneous and multi-layered GaZnO(x)-based resistive random access memory devices.

    PubMed

    Park, Sung Pyo; Yoon, Doo Hyun; Tak, Young Jun; Lee, Heesoo; Kim, Hyun Jae

    2015-06-01

    Here, we propose an effective method for improving the resistive switching characteristics of solution-processed gallium-doped zinc oxide (GaZnO(x)) resistive random access memory (RRAM) devices using hydrogen peroxide. Our results imply that solution processed GaZnO(x) RRAM devices could be one of the candidates for the development of low cost RRAM. PMID:25947353

  13. Robust Three-Metallization Back End of Line Process for 0.18 μm Embedded Ferroelectric Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Kuk; Rhie, Hyoung-Seub; Kim, Hyun-Ho; Koo, Bon-Jae; Joo, Heung-Jin; Park, Jung-Hun; Kang, Young-Min; Choi, Do-Hyun; Lee, Sung-Young; Jeong, Hong-Sik; Kim, Kinam

    2005-04-01

    We developed ferroelectric random access memory (FRAM)-embedded smartcards in which FRAM replaces electrically erasable PROM (EEPROM) and static random access memory (SRAM) to improve the read/write cycle time and endurance of data memories during operation, in which the main time delay retardation observed in EEPROM embedded smartcards occurs because of slow data update time. EEPROM-embedded smartcards have EEPROM, ROM, and SRAM. To utilize FRAM-embedded smartcards, we should integrate submicron ferroelectric capacitors into embedded logic complementary metal oxide semiconductor (CMOS) without the degradation of the ferroelectric properties. We resolved this process issue from the viewpoint of the back end of line (BEOL) process. As a result, we realized a highly reliable sensing window for FRAM-embedded smartcards that were realized by novel integration schemes such as tungsten and barrier metal (BM) technology, multilevel encapsulating (EBL) layer scheme and optimized intermetallic dielectrics (IMD) technology.

  14. Visualizing Early Splenic Memory CD8+ T Cells Reactivation against Intracellular Bacteria in the Mouse

    PubMed Central

    Bajénoff, Marc; Narni-Mancinelli, Emilie; Brau, Frédéric; Lauvau, Grégoire

    2010-01-01

    Memory CD8+ T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m). Memory CD8+ T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8+ T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs) fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m) as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8+ T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8+ T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8+ T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8+ T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8+ T produce inflammatory cytokines such as IFN-γ and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8+ T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8+ T cells provide a local response by secreting effector molecules around infected cells. PMID:20634957

  15. Plasma-Assisted Dry Etching of Ferroelectric Capacitor Modules and Application to a 32M Ferroelectric Random Access Memory Devices with Submicron Feature Sizes

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Woo; Joo, Suk-Ho; Cho, Sung Lae; Son, Yoon-Ho; Lee, Kyu-Mann; Nam, Sang-Don; Park, Kun-Sang; Lee, Yong-Tak; Seo, Jung-Suk; Kim, Young-Dae; An, Hyeong-Geun; Kim, Hyoung-Joon; Jung, Yong-Ju; Heo, Jang-Eun; Lee, Moon-Sook; Park, Soon-Oh; Chung, U-In; Moon, Joo-Tae

    2002-11-01

    In the manufacturing of a 32M ferroelectric random access memory (FRAM) device on the basis of 0.25 design rule (D/R), one of the most difficult processes is to pattern a submicron capacitor module while retaining good ferroelectric properties. In this paper, we report the ferroelectric property of patterned submicron capacitor modules with a stack height of 380 nm, where the 100 nm-thick Pb(Zr, Ti)O3 (PZT) films were prepared by the sol-gel method. After patterning, overall sidewall slope was approximately 70° and cell-to-cell node separation was made to be 80 nm to prevent possible twin-bit failure in the device. Finally, several heat treatment conditions were investigated to retain the ferroelectric property of the patterned capacitor. It was found that rapid thermal processing (RTP) treatment yields better properties than conventional furnace annealing. This result is directly related to the near-surface chemistry of the PZT films, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The resultant switching polarization value of the submicron capacitor was approximately 30 μC/cm2 measured at 3 V.

  16. Autophagy is essential for effector CD8 T cell survival and memory formation

    PubMed Central

    Xu, Xiaojin; Araki, Koichi; Li, Shuzhao; Han, Jin-Hwan; Ye, Lilin; Tan, Wendy G.; Konieczny, Bogumila T.; Bruinsma, Monique W.; Martinez, Jennifer; Pearce, Erika L; Green, Douglas R.; Jones, Dean P.; Virgin, Herbert W.; Ahmed, Rafi

    2014-01-01

    The importance of autophagy in memory CD8 T cell differentiation in vivo is not well defined. We show here that autophagy is dynamically regulated in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection. Autophagy decreased in activated proliferating T cells, and was then upregulated at the peak of the effector T cell response. Consistent with this model, deletion of the key autophagy genes Atg7 or Atg5 in virus-specific CD8 T cells had minimal effect on generating effector cells but greatly enhanced their death during the contraction phase resulting in compromised memory formation. These findings provide insight into when autophagy is needed during effector and memory T cell differentiation in vivo and also warrant a re-examination of our current concepts about the relationship between T cell activation and autophagy. PMID:25362489

  17. Memristive behavior in a junctionless flash memory cell

    NASA Astrophysics Data System (ADS)

    Orak, Ikram; Ürel, Mustafa; Bakan, Gokhan; Dana, Aykutlu

    2015-06-01

    We report charge storage based memristive operation of a junctionless thin film flash memory cell when it is operated as a two terminal device by grounding the gate. Unlike memristors based on nanoionics, the presented device mode, which we refer to as the flashristor mode, potentially allows greater control over the memristive properties, allowing rational design. The mode is demonstrated using a depletion type n-channel ZnO transistor grown by atomic layer deposition (ALD), with HfO2 as the tunnel dielectric, Al2O3 as the control dielectric, and non-stoichiometric silicon nitride as the charge storage layer. The device exhibits the pinched hysteresis of a memristor and in the unoptimized device, Roff/Ron ratios of about 3 are presented with low operating voltages below 5 V. A simplified model predicts Roff/Ron ratios can be improved significantly by adjusting the native threshold voltage of the devices. The repeatability of the resistive switching is excellent and devices exhibit 106 s retention time, which can, in principle, be improved by engineering the gate stack and storage layer properties. The flashristor mode can find use in analog information processing applications, such as neuromorphic computing, where well-behaving and highly repeatable memristive properties are desirable.

  18. Memristive behavior in a junctionless flash memory cell

    SciTech Connect

    Orak, Ikram; Ürel, Mustafa; Dana, Aykutlu; Bakan, Gokhan

    2015-06-08

    We report charge storage based memristive operation of a junctionless thin film flash memory cell when it is operated as a two terminal device by grounding the gate. Unlike memristors based on nanoionics, the presented device mode, which we refer to as the flashristor mode, potentially allows greater control over the memristive properties, allowing rational design. The mode is demonstrated using a depletion type n-channel ZnO transistor grown by atomic layer deposition (ALD), with HfO{sub 2} as the tunnel dielectric, Al{sub 2}O{sub 3} as the control dielectric, and non-stoichiometric silicon nitride as the charge storage layer. The device exhibits the pinched hysteresis of a memristor and in the unoptimized device, R{sub off}/R{sub on} ratios of about 3 are presented with low operating voltages below 5 V. A simplified model predicts R{sub off}/R{sub on} ratios can be improved significantly by adjusting the native threshold voltage of the devices. The repeatability of the resistive switching is excellent and devices exhibit 10{sup 6 }s retention time, which can, in principle, be improved by engineering the gate stack and storage layer properties. The flashristor mode can find use in analog information processing applications, such as neuromorphic computing, where well-behaving and highly repeatable memristive properties are desirable.

  19. Distinct Effects of Memory Retrieval and Articulatory Preparation when Learning and Accessing New Word Forms

    PubMed Central

    Nora, Anni; Renvall, Hanna; Kim, Jeong-Young; Service, Elisabet; Salmelin, Riitta

    2015-01-01

    Temporal and frontal activations have been implicated in learning of novel word forms, but their specific roles remain poorly understood. The present magnetoencephalography (MEG) study examines the roles of these areas in processing newly-established word form representations. The cortical effects related to acquiring new phonological word forms during incidental learning were localized. Participants listened to and repeated back new word form stimuli that adhered to native phonology (Finnish pseudowords) or were foreign (Korean words), with a subset of the stimuli recurring four times. Subsequently, a modified 1-back task and a recognition task addressed whether the activations modulated by learning were related to planning for overt articulation, while parametrically added noise probed reliance on developing memory representations during effortful perception. Learning resulted in decreased left superior temporal and increased bilateral frontal premotor activation for familiar compared to new items. The left temporal learning effect persisted in all tasks and was strongest when stimuli were embedded in intermediate noise. In the noisy conditions, native phonotactics evoked overall enhanced left temporal activation. In contrast, the frontal learning effects were present only in conditions requiring overt repetition and were more pronounced for the foreign language. The results indicate a functional dissociation between temporal and frontal activations in learning new phonological word forms: the left superior temporal responses reflect activation of newly-established word-form representations, also during degraded sensory input, whereas the frontal premotor effects are related to planning for articulation and are not preserved in noise. PMID:25961571

  20. Effects of IL-7 on memory CD8+ T cell homeostasis are influenced by the timing of therapy in mice

    PubMed Central

    Nanjappa, Som G.; Walent, Jane H.; Morre, Michel; Suresh, M.

    2008-01-01

    IL-7 is integral to the generation and maintenance of CD8+ T cell memory, and insufficient IL-7 is believed to limit survival and the persistence of memory CD8+ T cells. Here, we show that during the mouse T cell response to lymphocytic choriomeningitis virus, IL-7 enhanced the number of memory CD8+ T cells when its administration was restricted to the contraction phase of the response. Likewise, IL-7 administration during the contraction phase of the mouse T cell response to vaccinia virus or a DNA vaccine potentiated antigen-specific CD8+ memory T cell proliferation and function. Qualitatively, CD8+ T cells from IL-7–treated mice exhibited superior recall responses and improved viral control. IL-7 treatment during the memory phase stimulated a marked increase in the number of memory CD8+ T cells, but the effects were transient. IL-7 therapy during contraction of the secondary CD8+ T cell response also expanded the pool of memory CD8+ T cells. Collectively, our studies show differential effects of IL-7 on memory CD8+ T cell homeostasis and underscore the importance of the timing of IL-7 therapy to effectively improve CD8+ T cell memory and protective immunity. These findings may have implications in the clinical use of IL-7 as an immunotherapeutic agent to bolster vaccine-induced CD8+ T cell memory. PMID:18246202

  1. Integrin antagonists prevent costimulatory blockade-resistant transplant rejection by CD8(+) memory T cells.

    PubMed

    Kitchens, W H; Haridas, D; Wagener, M E; Song, M; Kirk, A D; Larsen, C P; Ford, M L

    2012-01-01

    The success of belatacept in late-stage clinical trials inaugurates the arrival of a new class of immunosuppressants based on costimulatory blockade, an immunosuppression strategy that disrupts essential signals required for alloreactive T-cell activation. Despite having improved renal function, kidney transplant recipients treated with belatacept experienced increased rates of acute rejection. This finding has renewed focus on costimulatory blockade-resistant rejection and specifically the role of alloreactive memory T cells in mediating this resistance. To study the mechanisms of costimulatory blockade-resistant rejection and enhance the clinical efficacy of costimulatory blockade, we developed an experimental transplant system that models a donor-specific memory CD8(+) T-cell response. After confirming that graft-specific memory T cells mediate costimulatory blockade-resistant rejection, we characterized the role of integrins in this rejection. The resistance of memory T cells to costimulatory blockade was abrogated when costimulatory blockade was coupled with either anti-VLA-4 or anti-LFA-1. Mechanistic studies revealed that in the presence of costimulatory blockade, anti-VLA-4 impaired T-cell trafficking to the graft but not memory T-cell recall effector function, whereas anti-LFA-1 attenuated both trafficking and memory recall effector function. As antagonists against these integrins are clinically approved, these findings may have significant translational potential for future clinical transplant trials. PMID:21942986

  2. Integrin antagonists prevent costimulatory blockade-resistant transplant rejection by CD8+ memory T cells

    PubMed Central

    Kitchens, W. H.; Haridas, D.; Wagener, M. E.; Song, M.; Kirk, A. D.; Larsen, C. P.; Ford, M. L.

    2012-01-01

    The success of belatacept in late-stage clinical trials inaugurates the arrival of a new class of immunosuppressants based on costimulatory blockade, an immunosuppression strategy that disrupts essential signals required for alloreactive T cell activation. Despite having improved renal function, kidney transplant recipients treated with belatacept experienced increased rates of acute rejection. This finding has renewed focus on costimulatory blockade-resistant rejection and specifically the role of alloreactive memory T cells in mediating this resistance. To study mechanisms of costimulatory blockade-resistant rejection and enhance the clinical efficacy of costimulatory blockade, we developed an experimental transplant system that models a donor-specific memory CD8+ T cell response. After confirming that graft-specific memory T cells mediate costimulatory blockade-resistant rejection, we characterized the role of integrins in this rejection. The resistance of memory T cells to costimulatory blockade was abrogated when costimulatory blockade was coupled with either anti-VLA-4 or anti-LFA-1. Mechanistic studies revealed that in the presence of costimulatory blockade, anti-VLA-4 impaired T cell trafficking to the graft but not memory T cell recall effector function, whereas anti-LFA-1 attenuated both trafficking and memory recall effector function. As antagonists against these integrins are clinically approved, these findings may have significant translational potential for future clinical transplant trials. PMID:21942986

  3. Overcoming Memory T cell Responses for Induction of Delayed Tolerance in Nonhuman Primates

    PubMed Central

    Yamada, Y.; Boskovic, S.; Aoyama, A.; Murakami, T.; Putheti, P.; Smith, R. N.; Ochiai, T.; Nadazdin, O.; Koyama, I.; Boenisch, O.; Najafian, N.; Bhasin, M.K.; Colvin, R. B.; Madsen, J. C.; Strom, T. B.; Sachs, D. H.; Benichou, G.; Cosimi, A. B.; Kawai, T.

    2011-01-01

    The presence of alloreactive memory T cells is a major barrier for induction of tolerance in primates. In theory, delaying conditioning for tolerance induction until after organ transplantation could further decrease the efficacy of the regimen, since pre-existing alloreactive memory T cells might be stimulated by the transplanted organ. Here, we show that such “delayed tolerance” can be induced in nonhuman primates through the mixed chimerism approach, if specific modifications to overcome/avoid donor-specific memory T cell responses are provided. These modifications include adequate depletion of CD8+ memory T cells and timing of donor bone marrow administration to minimize levels of pro-inflammatory cytokines. Using this modified approach, mixed chimerism was induced successfully in 11 of 13 recipients of previously placed renal allografts and long-term survival without immunosuppression could be achieved in at least 6 of these 11 animals. PMID:22053723

  4. Splenectomy Associated Changes in IgM Memory B Cells in an Adult Spleen Registry Cohort

    PubMed Central

    Cameron, Paul U.; Jones, Penelope; Gorniak, Malgorzata; Dunster, Kate; Paul, Eldho; Lewin, Sharon; Woolley, Ian; Spelman, Denis

    2011-01-01

    Asplenic patients have a lifelong risk of overwhelming post-splenectomy infection and have been reported to have low numbers of peripheral blood IgM memory B cells. The clinical value of quantitation of memory B cells as an indicator of splenic abnormality or risk of infection has been unclear. To assess changes in B cell sub-populations after splenectomy we studied patients recruited to a spleen registry (n = 591). A subset of 209 adult asplenic or hyposplenic subjects, and normal controls (n = 140) were tested for IgM memory B cells. We also determined a) changes in IgM memory B cells with time after splenectomy using the cross-sectional data from patients on the registry and b) the kinetics of changes in haematological markers associated with splenectomy(n = 45). Total B cells in splenectomy patients did not differ from controls, but memory B cells, IgM memory B cells and switched B cells were significantly (p<0.001) reduced. The reduction was similar for different indications for splenectomy. Changes of asplenia in routine blood films including presence of Howell-Jolly bodies (HJB), occurred early (median 25 days) and splenectomy associated thrombocytosis and lymphocytosis peaked by 50 days. There was a more gradual decrease in IgM memory B cells reaching a stable level within 6 months after splenectomy. IgM memory B cells as proportion of B cells was the best discriminator between splenectomized patients and normal controls and at the optimal cut-off of 4.53, showed a true positive rate of 95% and false positive rate of 20%. In a survey of 152 registry patients stratified by IgM memory B cells around this cut-off there was no association with minor infections and no registry patients experienced OPSI during the study. Despite significant changes after splenectomy, conventional measures of IgM memory cells have limited clinical utility in this population. PMID:21829713

  5. Anaplastic plasmacytomas: relationships to normal memory B cells and plasma cell neoplasms of immunodeficient and autoimmune mice.

    PubMed

    Qi, Chen-Feng; Shin, Dong-Mi; Li, Zhaoyang; Wang, Hongsheng; Feng, Jianxum; Hartley, Janet W; Fredrickson, Torgny N; Kovalchuk, Alexander L; Morse, Herbert C

    2010-05-01

    Anaplastic plasmacytomas (APCTs) from NFS.V(+) congenic mice and pristane-induced plasmacytic PCTs from BALB/c mice were previously shown to be histologically and molecularly distinct subsets of plasma cell neoplasms (PCNs). Here we extended these comparisons, contrasting primary APCTs and PCTs by gene expression profiling in relation to the expression profiles of normal naïve, germinal centre, and memory B cells and plasma cells. We also sequenced immunoglobulin genes from APCT and APCT-derived cell lines and defined surface phenotypes and chromosomal features of the cell lines by flow cytometry and by spectral karyotyping and fluorescence in situ hybridization. The results indicate that APCTs share many features with normal memory cells and the plasma cell-related neoplasms (PLs) of FASL-deficient mice, suggesting that APCTs and PLs are related and that both derive from memory B cells. Published in 2010 by John Wiley & Sons, Ltd. PMID:20217872

  6. Targeting HIV latency: resting memory T cells, hematopoietic progenitor cells, and future directions

    PubMed Central

    Sebastian, Nadia T.; Collins, Kathleen L.

    2014-01-01

    Current therapy for HIV effectively suppresses viral replication and prolongs life, but the infection persists due, at least in part, to latent infection of long-lived cells. One favored strategy towards a cure targets latent virus in resting memory CD4+ T cells by stimulating viral production. However, the existence of an additional reservoir in bone marrow hematopoietic progenitor cells has been detected in some treated HIV-infected people. This review describes approaches investigators have used to reactivate latent proviral genomes in resting CD4+ T cells and hematopoietic progenitor cells. In addition, we review approaches for clearance of these reservoirs along with other important topics related to HIV eradication. PMID:25189526

  7. T-cell memory: lessons from Epstein-Barr virus infection in man.

    PubMed Central

    Rickinson, A B; Callan, M F; Annels, N E

    2000-01-01

    Epstein-Barr virus offers an ideal opportunity to follow the human T-cell response to a virus infection over time from its acute primary phase, as seen in infectious mononucleosis patients, into the memory phase that accompanies life-long virus persistence. Here we review recent evidence on the development and maturation of cytotoxic T-cell memory using this viral system. PMID:10794060

  8. PLZF+ Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells

    PubMed Central

    Kang, Byung Hyun; Park, Hyo Jin; Park, Hi Jung; Lee, Jae-II; Park, Seong Hoe; Jung, Kyeong Cheon

    2016-01-01

    PLZF-expressing invariant natural killer T cells and CD4 T cells are unique subsets of innate T cells. Both are selected via thymocyte-thymocyte interaction, and they contribute to the generation of activated/memory-like CD4 and CD8 T cells in the thymus via the production of IL-4. Here, we investigated whether PLZF+ innate T cells also affect the development and function of Foxp3+ regulatory CD4 T cells. Flow cytometry analysis of the thymus and spleen from both CIITA transgenic C57BL/6 and wild-type BALB/c mice, which have abundant PLZF+ CD4 T cells and invariant natural killer T cells, respectively, revealed that Foxp3+ T cells in these mice exhibited a CD103+ activated/memory-like phenotype. The frequency of CD103+ regulatory T cells was considerably decreased in PLZF+ cell-deficient CIITATgPlzflu/lu and BALB/c.CD1d−/− mice as well as in an IL-4-deficient background, such as in CIITATgIL-4−/− and BALB/c.lL-4−/− mice, indicating that the acquisition of an activated/memory-like phenotype was dependent on PLZF+ innate T cells and IL-4. Using fetal thymic organ culture, we further demonstrated that IL-4 in concert with TGF-β enhanced the acquisition of the activated/memory-like phenotype of regulatory T cells. In functional aspects, the activated/memory-like phenotype of Treg cells was directly related to their suppressive function; regulatory T cells of CIITATgPIV−/− mice more efficiently suppressed ovalbumin-induced allergic airway inflammation compared with their counterparts from wild-type mice. All of these findings suggest that PLZF+ innate T cells also augmented the generation of activated/memory-like regulation via IL-4 production. PMID:27101876

  9. PLZF(+) Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells.

    PubMed

    Kang, Byung Hyun; Park, Hyo Jin; Park, Hi Jung; Lee, Jae-Ii; Park, Seong Hoe; Jung, Kyeong Cheon

    2016-06-30

    PLZF-expressing invariant natural killer T cells and CD4 T cells are unique subsets of innate T cells. Both are selected via thymocyte-thymocyte interaction, and they contribute to the generation of activated/memory-like CD4 and CD8 T cells in the thymus via the production of IL-4. Here, we investigated whether PLZF(+) innate T cells also affect the development and function of Foxp3(+) regulatory CD4 T cells. Flow cytometry analysis of the thymus and spleen from both CIITA transgenic C57BL/6 and wild-type BALB/c mice, which have abundant PLZF(+) CD4 T cells and invariant natural killer T cells, respectively, revealed that Foxp3(+) T cells in these mice exhibited a CD103(+) activated/memory-like phenotype. The frequency of CD103(+) regulatory T cells was considerably decreased in PLZF(+) cell-deficient CIITA(Tg)Plzf(lu/lu) and BALB/c.CD1d(-/-) mice as well as in an IL-4-deficient background, such as in CIITA(Tg)IL-4(-/-) and BALB/c.lL-4(-/-) mice, indicating that the acquisition of an activated/memory-like phenotype was dependent on PLZF(+) innate T cells and IL-4. Using fetal thymic organ culture, we further demonstrated that IL-4 in concert with TGF-β enhanced the acquisition of the activated/memory-like phenotype of regulatory T cells. In functional aspects, the activated/memory-like phenotype of Treg cells was directly related to their suppressive function; regulatory T cells of CIITA(Tg)PIV(-/-) mice more efficiently suppressed ovalbumin-induced allergic airway inflammation compared with their counterparts from wild-type mice. All of these findings suggest that PLZF(+) innate T cells also augmented the generation of activated/memory-like regulation via IL-4 production. PMID:27101876

  10. Size-dependent resistive switching properties of the active region in nickel nitride-based crossbar array resistive random access memory.

    PubMed

    Kim, Hee-Dong; Yun, Min Ju; Hong, Seok Man; Kim, Tae Geun

    2014-12-01

    The size-dependent resistive switching (RS) properties of the active region in a 1 x 1 NiN-based crossbar array (CBA) resistive random access memory (ReRAM) are investigated in the range of 2 x 2 μm2 to 8 x 8 μm2. In the forming test, the forming voltage is reduced by decreasing the cell size of the active region. Compared to the 8 x 8 μm2 CBA ReRAM, the forming voltage of the 2 x 2 μm2 CBA ReRAM was reduced from 8 V to 6.2 V. In addition, V(SET/RESET) and the current for the reset operation are reduced in the current-voltage (I-V) results by reducing the cell size, while the current at a high-resistance state (HRS) is increased. As a result, the current ratio between the HRS and a low-resistance state (LRS) is reduced. On the other hand, the variation of V(SET) for I-V curves repetitively acquired 100 times is decreased by decreasing the cell size in the reliability test. Further, the current at the HRS for the 2 x 2 μm2 CBA ReRAM is the most stable with the smallest current variation for 1000 s in the retention test. These results show that reducing the active region in the CBA ReRAM structure is effective for improving the reliability of ReRAM cells because it reduces the operating voltage and current as well as the variation of V(SET) and the current at the HRS. PMID:25971015

  11. Functional classification of memory CD8+ T cells by CX3CR1 expression

    PubMed Central

    Böttcher, Jan P.; Beyer, Marc; Meissner, Felix; Abdullah, Zeinab; Sander, Jil; Höchst, Bastian; Eickhoff, Sarah; Rieckmann, Jan C.; Russo, Caroline; Bauer, Tanja; Flecken, Tobias; Giesen, Dominik; Engel, Daniel; Jung, Steffen; Busch, Dirk H.; Protzer, Ulrike; Thimme, Robert; Mann, Matthias; Kurts, Christian; Schultze, Joachim L.; Kastenmüller, Wolfgang; Knolle, Percy A.

    2015-01-01

    Localization of memory CD8+ T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX3CR1 distinguishes memory CD8+ T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX3CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8+ T cells with effector function. We find CD62LhiCX3CR1+ memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX3CR1+ memory CD8+ T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8+ T-cell memory. PMID:26404698

  12. Functional classification of memory CD8(+) T cells by CX3CR1 expression.

    PubMed

    Böttcher, Jan P; Beyer, Marc; Meissner, Felix; Abdullah, Zeinab; Sander, Jil; Höchst, Bastian; Eickhoff, Sarah; Rieckmann, Jan C; Russo, Caroline; Bauer, Tanja; Flecken, Tobias; Giesen, Dominik; Engel, Daniel; Jung, Steffen; Busch, Dirk H; Protzer, Ulrike; Thimme, Robert; Mann, Matthias; Kurts, Christian; Schultze, Joachim L; Kastenmüller, Wolfgang; Knolle, Percy A

    2015-01-01

    Localization of memory CD8(+) T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX3CR1 distinguishes memory CD8(+) T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX3CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8(+) T cells with effector function. We find CD62L(hi)CX3CR1(+) memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX3CR1(+) memory CD8(+) T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8(+) T-cell memory. PMID:26404698

  13. Shortened Intervals during Heterologous Boosting Preserve Memory CD8 T Cell Function but Compromise Longevity.

    PubMed

    Thompson, Emily A; Beura, Lalit K; Nelson, Christine E; Anderson, Kristin G; Vezys, Vaiva

    2016-04-01

    Developing vaccine strategies to generate high numbers of Ag-specific CD8 T cells may be necessary for protection against recalcitrant pathogens. Heterologous prime-boost-boost immunization has been shown to result in large quantities of functional memory CD8 T cells with protective capacities and long-term stability. Completing the serial immunization steps for heterologous prime-boost-boost can be lengthy, leaving the host vulnerable for an extensive period of time during the vaccination process. We show in this study that shortening the intervals between boosting events to 2 wk results in high numbers of functional and protective Ag-specific CD8 T cells. This protection is comparable to that achieved with long-term boosting intervals. Short-boosted Ag-specific CD8 T cells display a canonical memory T cell signature associated with long-lived memory and have identical proliferative potential to long-boosted T cells Both populations robustly respond to antigenic re-exposure. Despite this, short-boosted Ag-specific CD8 T cells continue to contract gradually over time, which correlates to metabolic differences between short- and long-boosted CD8 T cells at early memory time points. Our studies indicate that shortening the interval between boosts can yield abundant, functional Ag-specific CD8 T cells that are poised for immediate protection; however, this is at the expense of forming stable long-term memory. PMID:26903479

  14. Target morphology and cell memory: a model of regenerative pattern formation

    PubMed Central

    Bessonov, Nikolai; Levin, Michael; Morozova, Nadya; Reinberg, Natalia; Tosenberger, Alen; Volpert, Vitaly

    2015-01-01

    Despite the growing body of work on molecular components required for regenerative repair, we still lack a deep understanding of the ability of some animal species to regenerate their appropriate complex anatomical structure following damage. A key question is how regenerating systems know when to stop growth and remodeling – what mechanisms implement recognition of correct morphology that signals a stop condition? In this work, we review two conceptual models of pattern regeneration that implement a kind of pattern memory. In the first one, all cells communicate with each other and keep the value of the total signal received from the other cells. If a part of the pattern is amputated, the signal distribution changes. The difference fromthe original signal distribution stimulates cell proliferation and leads to pattern regeneration, in effect implementing an error minimization process that uses signaling memory to achieve pattern correction. In the second model, we consider a more complex pattern organization with different cell types. Each tissue contains a central (coordinator) cell that controls the tissue and communicates with the other central cells. Each of them keeps memory about the signals received from other central cells. The values of these signals depend on the mutual cell location, and the memory allows regeneration of the structure when it is modified. The purpose of these models is to suggest possible mechanisms of pattern regeneration operating on the basis of cell memory which are compatible with diverse molecular implementation mechanisms within specific organisms. PMID:26889161

  15. Target morphology and cell memory: a model of regenerative pattern formation.

    PubMed

    Bessonov, Nikolai; Levin, Michael; Morozova, Nadya; Reinberg, Natalia; Tosenberger, Alen; Volpert, Vitaly

    2015-12-01

    Despite the growing body of work on molecular components required for regenerative repair, we still lack a deep understanding of the ability of some animal species to regenerate their appropriate complex anatomical structure following damage. A key question is how regenerating systems know when to stop growth and remodeling - what mechanisms implement recognition of correct morphology that signals a stop condition? In this work, we review two conceptual models of pattern regeneration that implement a kind of pattern memory. In the first one, all cells communicate with each other and keep the value of the total signal received from the other cells. If a part of the pattern is amputated, the signal distribution changes. The difference fromthe original signal distribution stimulates cell proliferation and leads to pattern regeneration, in effect implementing an error minimization process that uses signaling memory to achieve pattern correction. In the second model, we consider a more complex pattern organization with different cell types. Each tissue contains a central (coordinator) cell that controls the tissue and communicates with the other central cells. Each of them keeps memory about the signals received from other central cells. The values of these signals depend on the mutual cell location, and the memory allows regeneration of the structure when it is modified. The purpose of these models is to suggest possible mechanisms of pattern regeneration operating on the basis of cell memory which are compatible with diverse molecular implementation mechanisms within specific organisms. PMID:26889161

  16. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization.

    PubMed

    Bemark, Mats; Hazanov, Helena; Strömberg, Anneli; Komban, Rathan; Holmqvist, Joel; Köster, Sofia; Mattsson, Johan; Sikora, Per; Mehr, Ramit; Lycke, Nils Y

    2016-01-01

    Understanding how memory B cells are induced and relate to long-lived plasma cells is important for vaccine development. Immunity to oral vaccines has been considered short-lived because of a poor ability to develop IgA B-cell memory. Here we demonstrate that long-lived mucosal IgA memory is readily achieved by oral but not systemic immunization in mouse models with NP hapten conjugated with cholera toxin and transfer of B1-8(high)/GFP(+) NP-specific B cells. Unexpectedly, memory B cells are poorly related to long-lived plasma cells and less affinity-matured. They are α4β7-integrin(+)CD73(+)PD-L2(+)CD80(+) and at systemic sites mostly IgM(+), while 80% are IgA(+) in Peyer's patches. On reactivation, most memory B cells in Peyer's patches are GL7(-), but expand in germinal centres and acquire higher affinity and more mutations, demonstrating strong clonal selection. CCR9 expression is found only in Peyer's patches and appears critical for gut homing. Thus, gut mucosal memory possesses unique features not seen after systemic immunization. PMID:27596266

  17. Altered representation of naive and memory CD8 T cell subsets in HIV-infected children.

    PubMed Central

    Rabin, R L; Roederer, M; Maldonado, Y; Petru, A; Herzenberg, L A; Herzenberg, L A

    1995-01-01

    CD8 T cells are divided into naive and memory subsets according to both function and phenotype. In HIV-negative children, the naive subset is present at high frequencies, whereas memory cells are virtually absent. Previous studies have shown that the overall number of CD8 T cells does not decrease in HIV-infected children. In studies here, we use multiparameter flow cytometry to distinguish naive from memory CD8 T cells based on expression of CD11a, CD45RA, and CD62L. With this methodology, we show that within the CD8 T cell population, the naive subset decreases markedly (HIV+ vs. HIV-, 190 vs. 370 cells/microliter; P < or = 0.003), and that there is a reciprocal increase in memory cells, such that the total CD8 T cell counts remained unchanged (800 vs. 860 cells/microliter; P < or = 0.76). In addition, we show that for HIV-infected children, the naive CD8 T cell and total CD4 T cell counts correlate (chi 2 P < or = 0.001). This correlated loss suggests that the loss of naive CD8 T cells in HIV infection may contribute to the defects in cell-mediated immunity which become progressively worse as the HIV disease progresses and CD4 counts decrease. Images PMID:7738172

  18. Appearance of peripheral blood plasma cells and memory B cells in a primary and secondary immune response in humans

    PubMed Central

    Pulickal, Anoop S.; Jol-van der Zijde, Cornelia M.; Snape, Matthew D.; Pollard, Andrew J.

    2009-01-01

    In humans, the kinetics of the appearance of memory B cells and plasma cells during primary immunization are not well defined. In this study, we assessed the primary B-cell response of rabies-antigen naive volunteers during a 3-dose course of rabies vaccine compared with the B-cell response to a booster dose of rabies vaccine given to previously immunized volunteers. After a single dose of vaccine, in the naive group plasma and memory B cells appeared later (peak at day 10) than in the primed group (peak at day 7) and were at lower frequency. The most rapid responses (day 4) were detected after a third immunization in the naive group. This is the first study to document the detailed kinetics of the plasma cell and memory B-cell responses to immunization in adult humans and to demonstrate differences in the responses that relate to the preexisting immune status of the persons. PMID:19843885

  19. Remembering One's ID/E-ntity : E/ID Protein Regulation of T Cell Memory

    PubMed Central

    Omilusik, Kyla D.; Shaw, Laura A.; Goldrath, Ananda W.

    2013-01-01

    Upon infection, CD8+ T cells proliferate and differentiate into armed effector cells capable of eliminating the assaulting pathogen. Although the majority of the antigen-specific T cells will die as the immune response wanes, a few will survive indefinitely to establish the memory population and provide long-lived protection against reinfection. E protein transcription factors and their inhibitors, ID proteins, operate to balance expression of genes that control CD8+ T cell differentiation through this process. Here, we discuss the role of ID2 and ID3 in promoting the generation and survival of effector and memory populations, particularly highlighting their reciprocal roles in shaping the CD8+ T cell response unique to the inflammatory milieu. We further examine this coordinated control of gene expression in the context of additional transcription factors within the transcriptional network that programs CD8+ effector and memory T cell differentiation. PMID:24094885

  20. T memory stem cells and HIV: a long-term relationship

    PubMed Central

    Chahroudi, Ann; Silvestri, Guido; Lichterfeld, Mathias

    2015-01-01

    In analogy to many tissues in which mature, terminally-differentiated cells are continuously replenished by the progeny of less differentiated, long-lasting stem cells, it has been suspected that memory T lymphocytes might contain small numbers of stem cell-like cells. However only recently have such cells been physically identified and isolated from humans, mice and nonhuman primates. These cells, termed “T memory stem cells” (TSCM) represent approximately 2-4% of all circulating T lymphocytes, seem to be extremely durable and can rapidly differentiate into more mature central-memory, effector-memory, and effector T cells, while maintaining their own pool size through homeostatic self-renewal. Although it is becoming increasingly evident that that these cells have critical roles for T cell homeostasis and maintaining life-long cellular immunity against microbial pathogens during physiological conditions, they also seem intrinsically involved in many key aspects of HIV/SIV disease pathogenesis. Current data suggest that CD4+ TSCM cells represent a core element of the HIV-1 reservoir in patients treated with suppressive antiretroviral therapy ART, and that relative resistance of CD4+ TSCM cells to SIV represents a distinguishing feature of nonpathogenic SIV infection in natural hosts. This article summarizes recent studies investigating the role of TSCM cells in HIV/SIV infection. PMID:25578055

  1. Two CMOS memory cells suitable for the design of SEU-tolerant VLSI circuits

    SciTech Connect

    Velazco, R.; Bessot, D. ); Duzellier, S. ); Ecoffet, R. ); Koga, R. )

    1994-12-01

    Two new CMOS memory cells, called HIT cells, designed to be SEU-immune are presented. Compared to previously reported design hardened solutions, the HIT cells feature better electrical performances and consume less silicon area. SEU tests performed on a prototype chip prove the efficiency of the approach.

  2. Residual Clamping Force and Dynamic Random Access Memory Data Retention Improved by Gate Tungsten Etch Dechucking Condition in a Bipolar Electrostatic Chuck

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Yuan; Lai, Chao-Sung; Yang, Chia-Ming; Wang, David HL; Lin, Betty; Lee, Siimon; Huang, Chi-Hung; Wei, Chen Chang

    2012-08-01

    It was found that the residual clamping force of bipolar electrostatic chucks created by the residual charge between a wafer and an electrode would not only cause a wafer sticking problem but also degrade dynamic random access memory (DRAM) data retention performance. The residual clamping force and data retention fail bit count (FBC) of DRAM showed strong correlations to the gate tungsten etch dechucking process condition. Wafer sticking only degraded DRAM cell retention performance, and did not influence any in-line measurement or electrical parameters. Electrical characterization analysis of the FBC proved that the retention loss was mainly due to junction leakage rather than gate-induced-drain-leakage current. A new approach was proposed to suppress this leakage by introducing N2 gas instead of O2 to supply more plasma charges for neutralizing the wafer surface residual charges. The wafer shift dynamic alignment (DA) offset and retention FBC could be reduced by 50 and 40%, respectively. Poor data retention was suspected because of the compressive stress caused by wafer sticking DA shift resulting in a high electric field at the junction and an increase in junction leakage at the storage node.

  3. Power- and Low-Resistance-State-Dependent, Bipolar Reset-Switching Transitions in SiN-Based Resistive Random-Access Memory.

    PubMed

    Kim, Sungjun; Park, Byung-Gook

    2016-12-01

    A study on the bipolar-resistive switching of an Ni/SiN/Si-based resistive random-access memory (RRAM) device shows that the influences of the reset power and the resistance value of the low-resistance state (LRS) on the reset-switching transitions are strong. For a low LRS with a large conducting path, the sharp reset switching, which requires a high reset power (>7 mW), was observed, whereas for a high LRS with small multiple-conducting paths, the step-by-step reset switching with a low reset power (<7 mW) was observed. The attainment of higher nonlinear current-voltage (I-V) characteristics in terms of the step-by-step reset switching is due to the steep current-increased region of the trap-controlled space charge-limited current (SCLC) model. A multilevel cell (MLC) operation, for which the reset stop voltage (V STOP) is used in the DC sweep mode and an incremental amplitude is used in the pulse mode for the step-by-step reset switching, is demonstrated here. The results of the present study suggest that well-controlled conducting paths in a SiN-based RRAM device, which are not too strong and not too weak, offer considerable potential for the realization of low-power and high-density crossbar-array applications. PMID:27518231

  4. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition.

    PubMed

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-01-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption. PMID:27312225

  5. Investigation of Cr0.06(Sb4Te)0.94 alloy for high-speed and high-data-retention phase change random access memory applications

    NASA Astrophysics Data System (ADS)

    Li, Le; Song, Sannian; Zhang, Zhonghua; Song, Zhitang; Cheng, Yan; Lv, Shilong; Wu, Liangcai; Liu, Bo; Feng, Songlin

    2015-08-01

    The effects of Cr doping on the structural and electrical properties of Cr x (Sb4Te)1- x materials have been investigated in order to solve the contradiction between thermal stability and fast crystallization speed of Sb4Te alloys. Cr0.06(Sb4Te)0.94 alloy is considered to be a potential candidate for phase change random access memory (PCM), as evidenced by a higher crystallization temperature (204 °C), a better data retention ability (137.6 °C for 10 years), a lower melting point (558 °C), a lower energy consumption, and a faster switching speed in comparison with those of Ge2Sb2Te5. A reversible switching between set and reset states can be realized by an electric pulse as short as 5 ns for Cr0.06(Sb4Te)0.94-based PCM cell. In addition, Cr0.06(Sb4Te)0.94 shows good endurance up to 1.1 × 104 cycles with a resistance ratio of about two orders of magnitude.

  6. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  7. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    PubMed Central

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-01-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption. PMID:27312225

  8. Resistance switching behavior of ZnO resistive random access memory with a reduced graphene oxide capping layer

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Li; Chang, Wei-Yi; Huang, Yen-Lun; Juan, Pi-Chun; Wang, Tse-Wen; Hung, Ke-Yu; Hsieh, Cheng-Yu; Kang, Tsung-Kuei; Shi, Jen-Bin

    2015-04-01

    In this work, we investigate the characteristics of ZnO resistive random access memory (RRAM) with a reduced graphene oxide (rGO) capping layer and the polarity effect of the SET/RESET bias on the RRAM. The rGO film insertion enhances the stability of the current-voltage (I-V) switching curve and the superior resistance ratio (˜105) of high-resistance state (HRS) to low-resistance state (LRS). Using the appropriate polarity of the SET/RESET bias applied to the rGO-capped ZnO RRAM enables the oxygen ions to move mainly at the interface of the rGO and ZnO films, resulting in the best performance. Presumably, the rGO film acts as an oxygen reservoir and enhances the easy in and out motion of the oxygen ions from the rGO film. The rGO film also prevents the interaction of oxygen ions and the Al electrode, resulting in excellent performance. In a pulse endurance test, the rGO-capped ZnO RRAM reveals superior endurance of up to 108 cycles over that of the ZnO RRAM without rGO insertion (106 cycles).

  9. Effects of different dopants on switching behavior of HfO2-based resistive random access memory

    NASA Astrophysics Data System (ADS)

    Deng, Ning; Pang, Hua; Wu, Wei

    2014-10-01

    In this study the effects of doping atoms (Al, Cu, and N) with different electro-negativities and ionic radii on resistive switching of HfO2-based resistive random access memory (RRAM) are systematically investigated. The results show that forming voltages and set voltages of Al/Cu-doped devices are reduced. Among all devices, Cu-doped device shows the narrowest device-to-device distributions of set voltage and low resistance. The effects of different dopants on switching behavior are explained with deferent types of CFs formed in HfO2 depending on dopants: oxygen vacancy (Vo) filaments for Al-doped HfO2 devices, hybrid filaments composed of oxygen vacancies and Cu atoms for Cu-doped HfO2 devices, and nitrogen/oxygen vacancy filaments for N-doped HfO2 devices. The results suggest that a metal dopant with a larger electro-negativity than host metal atom offers the best comprehensive performance.

  10. Low leakage ZrO2 based capacitors for sub 20 nm dynamic random access memory technology nodes

    NASA Astrophysics Data System (ADS)

    Pešić, Milan; Knebel, Steve; Geyer, Maximilian; Schmelzer, Sebastian; Böttger, Ulrich; Kolomiiets, Nadiia; Afanas'ev, Valeri V.; Cho, Kyuho; Jung, Changhwa; Chang, Jaewan; Lim, Hanjin; Mikolajick, Thomas; Schroeder, Uwe

    2016-02-01

    During dynamic random access memory (DRAM) capacitor scaling, a lot of effort was put searching for new material stacks to overcome the scaling limitations of the current material stack, such as leakage and sufficient capacitance. In this study, very promising results for a SrTiO3 based capacitor with a record low capacitance equivalent thickness value of 0.2 nm at target leakage current are presented. Due to the material properties of SrTiO3 films (high vacancy concentration and low band gap), which are leading to an increased leakage current, a physical thickness of at least 8 nm is required at target leakage specifications. However, this physical thickness would not fit into an 18 nm DRAM structure. Therefore, two different new approaches to develop a new ZrO2 based DRAM capacitor stack by changing the inter-layer material from Al2O3 to SrO and the exchange of the top electrode material from TiN to Pt are presented. A combination of these two approaches leads to a capacitance equivalent thickness value of 0.47 nm. Most importantly, the physical thickness of <5 nm for the dielectric stack is in accordance with the target specifications. Detailed evaluation of the leakage current characteristics leads to a capacitor model which allows the prediction of the electrical behavior with thickness scaling.

  11. Switching characteristics in Cu:SiO2 by chemical soak methods for resistive random access memory (ReRAM)

    NASA Astrophysics Data System (ADS)

    Chin, Fun-Tat; Lin, Yu-Hsien; Yang, Wen-Luh; Liao, Chin-Hsuan; Lin, Li-Min; Hsiao, Yu-Ping; Chao, Tien-Sheng

    2015-01-01

    A limited copper (Cu)-source Cu:SiO2 switching layer composed of various Cu concentrations was fabricated using a chemical soaking (CS) technique. The switching layer was then studied for developing applications in resistive random access memory (ReRAM) devices. Observing the resistive switching mechanism exhibited by all the samples suggested that Cu conductive filaments formed and ruptured during the set/reset process. The experimental results indicated that the endurance property failure that occurred was related to the joule heating effect. Moreover, the endurance switching cycle increased as the Cu concentration decreased. In high-temperature tests, the samples demonstrated that the operating (set/reset) voltages decreased as the temperature increased, and an Arrhenius plot was used to calculate the activation energy of the set/reset process. In addition, the samples demonstrated stable data retention properties when baked at 85 °C, but the samples with low Cu concentrations exhibited short retention times in the low-resistance state (LRS) during 125 °C tests. Therefore, Cu concentration is a crucial factor in the trade-off between the endurance and retention properties; furthermore, the Cu concentration can be easily modulated using this CS technique.

  12. A Characterization of Endurance in 64 Mbit Ferroelectric Random Access Memory by Analyzing the Space Charge Concentration

    NASA Astrophysics Data System (ADS)

    Lee, Eun Sun; Jung, Dong Jin; Kang, Young Min; Kim, Hyun Ho; Hong, Young Ki; Park, Jung Hoon; Kuk Kang, Seung; Kim, Jae Hyun; San Kim, Hee; Jung, Won Woong; Ahn, Woo Song; Jung, Ju Young; Kang, Jin Young; Choi, Do Yeon; Goh, Han Kyung; Kim, Song Yi; Lee, Sang Young; Jeong, Hong Sik

    2008-04-01

    Space charge concentration due to fatigue cycles was examined with an adequate modeling in order to expect read/write endurance of a 64 Mbit one-transistor and one-capacitor (1T1C) ferroelectric random access memory (FRAM). For monitoring the change in space charge concentration according to fatigue cycles, we assumed that our ferroelectric capacitor is governed by a partially depleted Schottky conduction model. With this, the space charge concentration at the each decade of the fatigue cycles was calculated by measuring the current-voltage characteristics. The space charge concentration at the initial stage was evaluated into 1.95 ×1020 and 2.16 ×1020/cm3 after the 1011 cycles. The concentration of 2.29 ×1020/cm3 was expected at the fatigue cycles of 1016 through a linear regression of the concentration plot against fatigue cycles. Accordingly, it could be said that our ferroelectric capacitor has few problems of endurance up to the 1016 cycles considering the concentration of ˜1020 and the film thickness of 80 nm. Other empirical data obtained in the capacitor level after full integration are supporting this expectation as well.

  13. Switching characteristics for ferroelectric random access memory based on RC model in poly(vinylidene fluoride-trifluoroethylene) ultrathin films

    NASA Astrophysics Data System (ADS)

    Liu, ChangLi; Wang, XueJun; Zhang, XiuLi; Du, XiaoLi; Xu, HaiSheng

    2016-05-01

    The switching characteristic of the poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different ranges of applied electric field. It is suggest that the increase of the switching speed upon nucleation protocol and the deceleration of switching could be related to the presence of a non-ferroelectric layer. Remarkably, a capacitor and resistor (RC) links model plays significant roles in the polarization switching dynamics of the thin films. For P(VDF-TrFE) ultrathin films with electroactive interlayer, it is found that the switching dynamic characteristics are strongly affected by the contributions of resistor and non-ferroelectric (non-FE) interface factors. A corresponding experiment is designed using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic) (PEDOT-PSSH) as interlayer with different proton concentrations, and the testing results show that the robust switching is determined by the proton concentration in interlayer and lower leakage current in circuit to reliable applications of such polymer films. These findings provide a new feasible method to enhance the polarization switching for the ferroelectric random access memory.

  14. Energetics of intrinsic defects in NiO and the consequences for its resistive random access memory performance

    NASA Astrophysics Data System (ADS)

    Dawson, J. A.; Guo, Y.; Robertson, J.

    2015-09-01

    Energetics for a variety of intrinsic defects in NiO are calculated using state-of-the-art ab initio hybrid density functional theory calculations. At the O-rich limit, Ni vacancies are the lowest cost defect for all Fermi energies within the gap, in agreement with the well-known p-type behaviour of NiO. However, the ability of the metal electrode in a resistive random access memory metal-oxide-metal setup to shift the oxygen chemical potential towards the O-poor limit results in unusual NiO behaviour and O vacancies dominating at lower Fermi energy levels. Calculated band diagrams show that O vacancies in NiO are positively charged at the operating Fermi energy giving it the advantage of not requiring a scavenger metal layer to maximise drift. Ni and O interstitials are generally found to be higher in energy than the respective vacancies suggesting that significant recombination of O vacancies and interstitials does not take place as proposed in some models of switching behaviour.

  15. Energetics of intrinsic defects in NiO and the consequences for its resistive random access memory performance

    SciTech Connect

    Dawson, J. A. Guo, Y.; Robertson, J.

    2015-09-21

    Energetics for a variety of intrinsic defects in NiO are calculated using state-of-the-art ab initio hybrid density functional theory calculations. At the O-rich limit, Ni vacancies are the lowest cost defect for all Fermi energies within the gap, in agreement with the well-known p-type behaviour of NiO. However, the ability of the metal electrode in a resistive random access memory metal-oxide-metal setup to shift the oxygen chemical potential towards the O-poor limit results in unusual NiO behaviour and O vacancies dominating at lower Fermi energy levels. Calculated band diagrams show that O vacancies in NiO are positively charged at the operating Fermi energy giving it the advantage of not requiring a scavenger metal layer to maximise drift. Ni and O interstitials are generally found to be higher in energy than the respective vacancies suggesting that significant recombination of O vacancies and interstitials does not take place as proposed in some models of switching behaviour.

  16. Vividness of Visual Imagery and Incidental Recall of Verbal Cues, When Phenomenological Availability Reflects Long-Term Memory Accessibility

    PubMed Central

    D’Angiulli, Amedeo; Runge, Matthew; Faulkner, Andrew; Zakizadeh, Jila; Chan, Aldrich; Morcos, Selvana

    2013-01-01

    The relationship between vivid visual mental images and unexpected recall (incidental recall) was replicated, refined, and extended. In Experiment 1, participants were asked to generate mental images from imagery-evoking verbal cues (controlled on several verbal properties) and then, on a trial-by-trial basis, rate the vividness of their images; 30 min later, participants were surprised with a task requiring free recall of the cues. Higher vividness ratings predicted better incidental recall of the cues than individual differences (whose effect was modest). Distributional analysis of image latencies through ex-Gaussian modeling showed an inverse relation between vividness and latency. However, recall was unrelated to image latency. The follow-up Experiment 2 showed that the processes underlying trial-by-trial vividness ratings are unrelated to the Vividness of Visual Imagery Questionnaire (VVIQ), as further supported by a meta-analysis of a randomly selected sample of relevant literature. The present findings suggest that vividness may act as an index of availability of long-term sensory traces, playing a non-epiphenomenal role in facilitating the access of those memories. PMID:23382719

  17. Calculation of energy-barrier lowering by incoherent switching in spin-transfer torque magnetoresistive random-access memory

    SciTech Connect

    Munira, Kamaram; Visscher, P. B.

    2015-05-07

    To make a useful spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device, it is necessary to be able to calculate switching rates, which determine the error rates of the device. In a single-macrospin model, one can use a Fokker-Planck equation to obtain a low-current thermally activated rate ∝exp(−E{sub eff}/k{sub B}T). Here, the effective energy barrier E{sub eff} scales with the single-macrospin energy barrier KV, where K is the effective anisotropy energy density and V the volume. A long-standing paradox in this field is that the actual energy barrier appears to be much smaller than this. It has been suggested that incoherent motions may lower the barrier, but this has proved difficult to quantify. In the present paper, we show that the coherent precession has a magnetostatic instability, which allows quantitative estimation of the energy barrier and may resolve the paradox.

  18. Pathogen induced inflammatory environment controls effector and memory CD8+ T cell differentiation1

    PubMed Central

    Obar, Joshua J.; Jellison, Evan R.; Sheridan, Brian S.; Blair, David A.; Pham, Quynh-Mai; Zickovich, Julianne M.; Lefrançois, Leo

    2011-01-01

    In response to infection CD8+ T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived (SLEC; CD127lowKLRG1high) and memory-precursor (MPEC; CD127highKLRG1low) effector cells from an early-effector cell (EEC) that is CD127lowKLRG1low in phenotype. CD8+ T cell differentiation during vesicular stomatitis virus (VSV) infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in EEC differentiation into SLECs. SLEC generationwas dependent on Ebi3 expression. Furthermore, SLEC differentiation during VSV infection wasenhanced by administration ofCpG-DNA, through an IL-12 dependent mechanism. Moreover, CpG-DNAtreatment enhanced effector CD8+ T cell functionality and memory subset distribution, but in an IL-12 independent manner. Population dynamics were dramatically different during secondary CD8+ T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127highKLRG1highmemory cells, both of which were intrinsic to the memory CD8+ T cell. These subsets persisted for several months, but were less effective in recall than MPECs. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8+ T cell differentiation. PMID:21987662

  19. Distribution of Peripheral Memory T Follicular Helper Cells in Patients with Schistosomiasis Japonica

    PubMed Central

    Chen, Xiaojun; Li, Wei; Zhang, Yang; Song, Xian; Xu, Lei; Xu, Zhipeng; Zhou, Sha; Zhu, Jifeng; Jin, Xin; Liu, Feng; Chen, Gengxin; Su, Chuan

    2015-01-01

    Background Schistosomiasis is a helminthic disease that affects more than 200 million people. An effective vaccine would be a major step towards eliminating the disease. Studies suggest that T follicular helper (Tfh) cells provide help to B cells to generate the long-term humoral immunity, which would be a crucial component of successful vaccines. Thus, understanding the biological characteristics of Tfh cells in patients with schistosomiasis, which has never been explored, is essential for vaccine design. Methodology/Principal Findings In this study, we investigated the biological characteristics of peripheral memory Tfh cells in schistosomiasis patients by flow cytometry. Our data showed that the frequencies of total and activated peripheral memory Tfh cells in patients were significantly increased during Schistosoma japonicum infection. Moreover, Tfh2 cells, which were reported to be a specific subpopulation to facilitate the generation of protective antibodies, were increased more greatly than other subpopulations of total peripheral memory Tfh cells in patients with schistosomiasis japonica. More importantly, our result showed significant correlations of the percentage of Tfh2 cells with both the frequency of plasma cells and the level of IgG antibody. In addition, our results showed that the percentage of T follicular regulatory (Tfr) cells was also increased in patients with schistosomiasis. Conclusions/Significance Our report is the first characterization of peripheral memory Tfh cells in schistosomasis patients, which not only provides potential targets to improve immune response to vaccination, but also is important for the development of vaccination strategies to control schistosomiasis. PMID:26284362

  20. Time cells in the hippocampus: a new dimension for mapping memories

    PubMed Central

    Eichenbaum, Howard

    2015-01-01

    Recent studies have revealed the existence of hippocampal neurons that fire at successive moments in temporally structured experiences. Several studies have shown that such temporal coding is not attributable to external events, specific behaviours or spatial dimensions of an experience. Instead, these cells represent the flow of time in specific memories and have therefore been dubbed ‘time cells’. The firing properties of time cells parallel those of hippocampal place cells; time cells thus provide an additional dimension that is integrated with spatial mapping. The robust representation of both time and space in the hippocampus suggests a fundamental mechanism for organizing the elements of experience into coherent memories. PMID:25269553

  1. A New Differential Logic-Compatible Multiple-Time Programmable Memory Cell

    NASA Astrophysics Data System (ADS)

    Yi-Hung Tsai,; Hsiao-Lan Yang,; Wun-Jie Lin,; Chrong Jung Lin,; Ya-Chin King,

    2010-04-01

    This work presents a novel differential n-channel logic-compatible multiple-time programmable (MTP) memory cell. This cell features double sensing window by a differential pair of floating gates, and therefore increases the retention lifetime of the nonvolatile memory effectively. Also, a self-selective programming (SSP) method is innovated in writing one pair differential data by a single cell without increasing any design or process complexity in peripheral circuit. The differential cell is a promising MTP solution to challenge thin floating gate oxide below 70 Å for 90 nm complementary metal-oxide-semiconductor (CMOS) node and beyond.

  2. Superantigen-induced CD4 Memory T Cell Anergy. I. Staphylococcal Enterotoxin B Induces Fyn-mediated Negative Signaling1

    PubMed Central

    Watson, Andrew R. O.; Janik, David K.; Lee, William T.

    2012-01-01

    Memory CD4 T cells must provide robust protection for an organism while still maintaining self-tolerance. Superantigens reveal a memory cell-specific regulatory pathway, by which signaling through the TCR can lead to clonal tolerance (anergy). Here we show that the src kinase Fyn is a critical regulator of anergy in murine memory CD4 T cells induced by the bacterial superantigen staphylococcal enterotoxin B (SEB). Exposure to SEB results in impaired TCR signaling due to failed CD3/ZAP-70 complex formation. Further, signal transduction through the TCR remains similarly blocked when anergic memory cells are subsequently exposed to agonist peptide antigen. Pharmacological inhibition or genetic elimination of Fyn kinase reverses memory cell anergy, resulting in SEB-induced cell proliferation. The mechanism underlying impaired TCR signaling and subsequent memory cell anergy must involve a Fyn signaling pathway given that the suppression of Fyn activity restores CD3/ZAP-70 complex formation and TCR proximal signaling. PMID:22386537

  3. Memory T cell–driven differentiation of naive cells impairs adoptive immunotherapy

    PubMed Central

    Klebanoff, Christopher A.; Scott, Christopher D.; Leonardi, Anthony J.; Yamamoto, Tori N.; Cruz, Anthony C.; Ouyang, Claudia; Ramaswamy, Madhu; Roychoudhuri, Rahul; Ji, Yun; Eil, Robert L.; Sukumar, Madhusudhanan; Crompton, Joseph G.; Palmer, Douglas C.; Borman, Zachary A.; Clever, David; Thomas, Stacy K.; Patel, Shashankkumar; Yu, Zhiya; Muranski, Pawel; Liu, Hui; Wang, Ena; Marincola, Francesco M.; Gros, Alena; Gattinoni, Luca; Rosenberg, Steven A.; Siegel, Richard M.; Restifo, Nicholas P.

    2015-01-01

    Adoptive cell transfer (ACT) of purified naive, stem cell memory, and central memory T cell subsets results in superior persistence and antitumor immunity compared with ACT of populations containing more-differentiated effector memory and effector T cells. Despite a clear advantage of the less-differentiated populations, the majority of ACT trials utilize unfractionated T cell subsets. Here, we have challenged the notion that the mere presence of less-differentiated T cells in starting populations used to generate therapeutic T cells is sufficient to convey their desirable attributes. Using both mouse and human cells, we identified a T cell–T cell interaction whereby antigen-experienced subsets directly promote the phenotypic, functional, and metabolic differentiation of naive T cells. This process led to the loss of less-differentiated T cell subsets and resulted in impaired cellular persistence and tumor regression in mouse models following ACT. The T memory–induced conversion of naive T cells was mediated by a nonapoptotic Fas signal, resulting in Akt-driven cellular differentiation. Thus, induction of Fas signaling enhanced T cell differentiation and impaired antitumor immunity, while Fas signaling blockade preserved the antitumor efficacy of naive cells within mixed populations. These findings reveal that T cell subsets can synchronize their differentiation state in a process similar to quorum sensing in unicellular organisms and suggest that disruption of this quorum-like behavior among T cells has potential to enhance T cell–based immunotherapies. PMID:26657860

  4. Altered Memory Circulating T Follicular Helper-B Cell Interaction in Early Acute HIV Infection

    PubMed Central

    Muir, Roshell; Metcalf, Talibah; Tardif, Virginie; Takata, Hiroshi; Phanuphak, Nittaya; Kroon, Eugene; Colby, Donn J.; Trichavaroj, Rapee; Valcour, Victor; Robb, Merlin L.; Michael, Nelson L.; Ananworanich, Jintanat; Trautmann, Lydie; Haddad, Elias K.

    2016-01-01

    The RV254 cohort of HIV-infected very early acute (4thG stage 1 and 2) (stage 1/2) and late acute (4thG stage 3) (stage 3) individuals was used to study T helper- B cell responses in acute HIV infection and the impact of early antiretroviral treatment (ART) on T and B cell function. To investigate this, the function of circulating T follicular helper cells (cTfh) from this cohort was examined, and cTfh and memory B cell populations were phenotyped. Impaired cTfh cell function was observed in individuals treated in stage 3 when compared to stage 1/2. The cTfh/B cell cocultures showed lower B cell survival and IgG secretion at stage 3 compared to stage 1/2. This coincided with lower IL-10 and increased RANTES and TNF-α suggesting a role for inflammation in altering cTfh and B cell responses. Elevated plasma viral load in stage 3 was found to correlate with decreased cTfh-mediated B cell IgG production indicating a role for increased viremia in cTfh impairment and dysfunctional humoral response. Phenotypic perturbations were also evident in the mature B cell compartment, most notably a decrease in resting memory B cells in stage 3 compared to stage 1/2, coinciding with higher viremia. Our coculture assay also suggested that intrinsic memory B cell defects could contribute to the impaired response despite at a lower level. Overall, cTfh-mediated B cell responses are significantly altered in stage 3 compared to stage 1/2, coinciding with increased inflammation and a reduction in memory B cells. These data suggest that early ART for acutely HIV infected individuals could prevent immune dysregulation while preserving cTfh function and B cell memory. PMID:27463374

  5. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection.

    PubMed

    Steinbach, Karin; Vincenti, Ilena; Kreutzfeldt, Mario; Page, Nicolas; Muschaweckh, Andreas; Wagner, Ingrid; Drexler, Ingo; Pinschewer, Daniel; Korn, Thomas; Merkler, Doron

    2016-07-25

    Tissue-resident memory T cells (TRM) persist at sites of prior infection and have been shown to enhance pathogen clearance by recruiting circulating immune cells and providing bystander activation. Here, we characterize the functioning of brain-resident memory T cells (bTRM) in an animal model of viral infection. bTRM were subject to spontaneous homeostatic proliferation and were largely refractory to systemic immune cell depletion. After viral reinfection in mice, bTRM rapidly acquired cytotoxic effector function and prevented fatal brain infection, even in the absence of circulating CD8(+) memory T cells. Presentation of cognate antigen on MHC-I was essential for bTRM-mediated protective immunity, which involved perforin- and IFN-γ-dependent effector mechanisms. These findings identify bTRM as an organ-autonomous defense system serving as a paradigm for TRM functioning as a self-sufficient first line of adaptive immunity. PMID:27377586

  6. Scale effects on stiction-induced release voltage shift of nano-electromechanical (NEM) memory cells.

    PubMed

    Han, Jae Hwan; Song, Jiyong; Choi, Woo Young

    2014-12-01

    In order to overcome the limits of conventional flash memory, nonvolatile nano-electromechanical (NEM) memory has been proposed. The release voltage shift of a NEM memory cell induced by beam stiction has been studied by using one-dimensional analytical model and three-dimensional finite element analysis (FEA) simulation. As the size of a NEM memory cell decreases, stiction effects become more severe because the spring force becomes weaker. The influence of NEM memory cell scaling on release voltage shift has been discussed. If all geometrical dimensions are scaled in proportion, which is called general scaling, release voltage shift becomes larger, and release voltage becomes smaller. Then, if release voltage shift becomes larger than release voltage as general scaling continues, NEM memory cells do not work due to the permanently pulled-in cantilever beam. In order to prevent this, it is necessary to reduce beam length aggressively compared with other dimension scaling or to introduce more elastic and less adhesive beam material than existing beam material. PMID:25971103

  7. Oct1 and OCA-B are selectively required for CD4 memory T cell function.

    PubMed

    Shakya, Arvind; Goren, Alon; Shalek, Alex; German, Cody N; Snook, Jeremy; Kuchroo, Vijay K; Yosef, Nir; Chan, Raymond C; Regev, Aviv; Williams, Matthew A; Tantin, Dean

    2015-11-16

    Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4(+) memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4(+) T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4(+) T cell memory. PMID:26481684

  8. Memory B lymphocytes determine repertoire oligoclonality early after haematopoietic stem cell transplantation

    PubMed Central

    OMAZIC, B; LUNDKVIST, I; MATTSSON, J; PERMERT, J; NÄSMAN-BJÖRK, I

    2003-01-01

    The objective of this study was to investigate if oligoclonality of the Ig repertoire post-haematopoietic stem cell transplantation (HSCT) is restricted to memory B lymphocytes or if it is a general property among B lymphocytes. As a measure of B lymphocyte repertoire diversity, we have analysed size distribution of polymerase chain reaction (PCR) amplified Ig H complementarity determining region 3 (CDR3) in naive and memory B lymphocytes isolated from patients before HSCT and at 3, 6 and 12 months after HSCT as well as from healthy controls. We demonstrate a limited variation of the IgH CDR3 repertoire in the memory B lymphocyte population compared to the naive B cell population. This difference was significant at 3 and 6 months post-HSCT. Compared to healthy controls there is a significant restriction of the memory B lymphocyte repertoire at 3 months after HSCT, but not of the naive B lymphocyte repertoire. Twelve months after HSCT, the IgH CDR3 repertoire in both memory and naive B lymphocytes are as diverse as in healthy controls. Thus, our findings suggest a role for memory B cells in the restriction of the oligoclonal B cell repertoire observed early after HSCT, which may be of importance when considering reimmunization of transplanted patients. PMID:12974769

  9. Oct1 and OCA-B are selectively required for CD4 memory T cell function

    PubMed Central

    Shakya, Arvind; Goren, Alon; Shalek, Alex; German, Cody N.; Snook, Jeremy; Kuchroo, Vijay K.; Yosef, Nir; Chan, Raymond C.; Regev, Aviv

    2015-01-01

    Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4+ memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4+ T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4+ T cell memory. PMID:26481684

  10. Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma

    PubMed Central

    Hansmann, Leo; Blum, Lisa; Ju, Chia-Hsin; Liedtke, Michaela; Robinson, William H.; Davis, Mark M.

    2015-01-01

    It would be very beneficial if the status of cancers could be determined from a blood specimen. However, peripheral blood leukocytes are very heterogeneous between individuals and thus high resolution technologies are likely required. We used cytometry by time-of-flight (CyTOF) and next generation sequencing to ask whether a plasma cell cancer (multiple myeloma) and related pre-cancerous states had any consistent effect on the peripheral blood mononuclear cell phenotypes of patients. Analysis of peripheral blood samples from 13 cancer patients, 9 pre-cancer patients, and 9 healthy individuals revealed significant differences in the frequencies of the T, B, and natural killer cell compartments. Most strikingly, we identified a novel B-cell population that normally accounts for 4.0±0.7% (mean±SD) of total B cells and is up to 13-fold expanded in multiple myeloma patients with active disease. This population expressed markers previously associated with both memory (CD27+) and naïve (CD24loCD38+) phenotypes. Single-cell immunoglobulin gene sequencing showed polyclonality, indicating that these cells are not precursors to the myeloma, and somatic mutations, a characteristic of memory cells. SYK, ERK, and p38 phosphorylation responses, and the fact that most of these cells expressed isotypes other than IgM or IgD, confirmed the memory character of this population, defining it as a novel type of memory B cells. PMID:25711758

  11. Reduced numbers of switched memory B cells with high terminal differentiation potential in Down syndrome

    PubMed Central

    Carsetti, Rita; Valentini, Diletta; Marcellini, Valentina; Scarsella, Marco; Marasco, Emiliano; Giustini, Ferruccio; Bartuli, Andrea; Villani, Alberto; Ugazio, Alberto G

    2015-01-01

    Children with Down syndrome (DS) have increased susceptibility to infections and a high frequency of leukemia and autoimmune disorders, suggesting that immunodeficiency and immune dysfunction are integral parts of the syndrome. A reduction in B-cell numbers has been reported, associated with moderate immunodeficiency and normal immunoglobulin levels. Here, we compared B-cell populations of 19 children with DS with those in healthy age-matched controls. We found that all steps of peripheral B-cell development are altered in DS, with a more severe defect during the later stages of B-cell development. Transitional and mature-naïve B-cell numbers are reduced by 50% whereas switched memory B cells represent 10–15% of the numbers in age-matched controls. Serum IgM levels were slightly reduced, but all other immunoglobulin isotypes were in the normal range. The frequency of switched memory B cells specific for vaccine antigens was significantly lower in affected children than in their equivalently vaccinated siblings. In vitro switched memory B cells of patients with DS have an increased ability to differentiate into antibody-forming cells in response to TLR9 signals. Tailored vaccination schedules increasing the number of switched memory B cells may improve protection and reduce the risk of death from infection in DS. PMID:25472482

  12. Programmed death 1 regulates memory phenotype CD4 T cell accumulation, inhibits expansion of the effector memory phenotype subset and modulates production of effector cytokines.

    PubMed

    Charlton, Joanna J; Tsoukatou, Debbie; Mamalaki, Clio; Chatzidakis, Ioannis

    2015-01-01

    Memory phenotype CD4 T cells are found in normal mice and arise through response to environmental antigens or homeostatic mechanisms. The factors that regulate the homeostasis of memory phenotype CD4 cells are not clear. In the present study we demonstrate that there is a marked accumulation of memory phenotype CD4 cells, specifically of the effector memory (T(EM)) phenotype, in lymphoid organs and tissues of mice deficient for the negative co-stimulatory receptor programmed death 1 (PD-1). This can be correlated with decreased apoptosis but not with enhanced homeostatic turnover potential of these cells. PD-1 ablation increased the frequency of memory phenotype CD4 IFN-γ producers but decreased the respective frequency of IL-17A-producing cells. In particular, IFN-γ producers were more abundant but IL-17A producing cells were more scarce among PD-1 KO T(EM)-phenotype cells relative to WT. Transfer of peripheral naïve CD4 T cells suggested that accumulated PD-1 KO T(EM)-phenotype cells are of peripheral and not of thymic origin. This accumulation effect was mediated by CD4 cell-intrinsic mechanisms as shown by mixed bone marrow chimera experiments. Naïve PD-1 KO CD4 T cells gave rise to higher numbers of TEM-phenotype lymphopenia-induced proliferation memory cells. In conclusion, we provide evidence that PD-1 has an important role in determining the composition and functional aspects of memory phenotype CD4 T cell pool. PMID:25803808

  13. FcγRIIB prevents inflammatory type I IFN production from plasmacytoid dendritic cells during a viral memory response.

    PubMed

    Flores, Marcella; Chew, Claude; Tyan, Kevin; Huang, Wu Qing; Salem, Aliasger; Clynes, Raphael

    2015-05-01

    The type I IFN (IFN-α) response is crucial for viral clearance during primary viral infections. Plasmacytoid dendritic cells (pDCs) are important early responders during systemic viral infections and, in some cases, are the sole producers of IFN-α. However, their role in IFN-α production during memory responses is unclear. We found that IFN-α production is absent during a murine viral memory response, despite colocalization of virus and pDCs to the splenic marginal zone. The absence of IFN was dependent on circulating Ab and was reversed by the transgenic expression of the activating human FcγRIIA receptor on pDCs. Furthermore, FcγRIIB was required for Sendai virus immune complex uptake by splenic pDCs in vitro, and internalization via FcγRIIb prevented cargo from accessing TLR signaling endosomes. Thus, pDCs bind viral immune complexes via FcγRIIB and prevent IFN-α production in vivo during viral memory responses. This Ab-dependent IFN-α regulation may be an important mechanism by which the potentially deleterious effects of IFN-α are prevented during a secondary infection. PMID:25821224

  14. T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections.

    PubMed

    Utzschneider, Daniel T; Charmoy, Mélanie; Chennupati, Vijaykumar; Pousse, Laurène; Ferreira, Daniela Pais; Calderon-Copete, Sandra; Danilo, Maxime; Alfei, Francesca; Hofmann, Maike; Wieland, Dominik; Pradervand, Sylvain; Thimme, Robert; Zehn, Dietmar; Held, Werner

    2016-08-16

    Chronic infections promote the terminal differentiation (or "exhaustion") of T cells and are thought to preclude the formation of memorycells. In contrast, we discovered a small subpopulation of virus-specific CD8(+) T cells that sustained the T cell response during chronic infections. These cells were defined by, and depended on, the expression of the transcription factor Tcf1. Transcriptome analysis revealed that this population shared key characteristics of central memory cells but lacked an effector signature. Unlike conventional memory cells, Tcf1-expressing T cells displayed hallmarks of an "exhausted" phenotype, including the expression of inhibitory receptors such as PD-1 and Lag-3. This population was crucial for the T cell expansion that occurred in response to inhibitory receptor blockade during chronic infection. These findings identify a memory-like T cell population that sustains T cell responses and is a prime target for therapeutic interventions to improve the immune response in chronic infections. PMID:27533016

  15. Total ionizing dose effect of γ-ray radiation on the switching characteristics and filament stability of HfOx resistive random access memory

    SciTech Connect

    Fang, Runchen; Yu, Shimeng; Gonzalez Velo, Yago; Chen, Wenhao; Holbert, Keith E.; Kozicki, Michael N.; Barnaby, Hugh

    2014-05-05

    The total ionizing dose (TID) effect of gamma-ray (γ-ray) irradiation on HfOx based resistive random access memory was investigated by electrical and material characterizations. The memory states can sustain TID level ∼5.2 Mrad (HfO{sub 2}) without significant change in the functionality or the switching characteristics under pulse cycling. However, the stability of the filament is weakened after irradiation as memory states are more vulnerable to flipping under the electrical stress. X-ray photoelectron spectroscopy was performed to ascertain the physical mechanism of the stability degradation, which is attributed to the Hf-O bond breaking by the high-energy γ-ray exposure.

  16. Dopaminergic neurons write and update memories with cell-type-specific rules

    PubMed Central

    Aso, Yoshinori; Rubin, Gerald M

    2016-01-01

    Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences. DOI: http://dx.doi.org/10.7554/eLife.16135.001 PMID:27441388

  17. Fabrication, characterization and simulation of high performance Si nanowire-based non-volatile memory cells

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoxiao; Li, Qiliang; Ioannou, Dimitris E.; Gu, Diefeng; Bonevich, John E.; Baumgart, Helmut; Suehle, John S.; Richter, Curt A.

    2011-06-01

    We report the fabrication, characterization and simulation of Si nanowire SONOS-like non-volatile memory with HfO2 charge trapping layers of varying thicknesses. The memory cells, which are fabricated by self-aligning in situ grown Si nanowires, exhibit high performance, i.e. fast program/erase operations, long retention time and good endurance. The effect of the trapping layer thickness of the nanowire memory cells has been experimentally measured and studied by simulation. As the thickness of HfO2 increases from 5 to 30 nm, the charge trap density increases as expected, while the program/erase speed and retention remain the same. These data indicate that the electric field across the tunneling oxide is not affected by HfO2 thickness, which is in good agreement with simulation results. Our work also shows that the Omega gate structure improves the program speed and retention time for memory applications.

  18. Embedded Ultra High Density Flash Memory Cell and Corresponding Array Architecture

    NASA Astrophysics Data System (ADS)

    Lee, Kung-Hong; Wu, Meng-Yi; Dai, Sen-Hue; King, Ya-Chin

    2005-04-01

    A novel flash memory cell fabricated by standard complementary metal oxide semiconductor (CMOS) logic process and its corresponding array architecture is presented. The cell which consists of two metal-oxide-semiconductor field effect transistors (MOSFET) in series is programmed by channel current induced drain avalanche hot hole and erased by channel hot electron injection. With novel operation principles and array architecture, a feature-sized n-MOSFET per non-volatile memory bit is successfully demonstrated and the CMOS-process-based flash cell size can be as small as multi-gated flash memory. The smallest bit area of a CMOS-process-based flash memory cell with good programming and erasing characteristics along with endurance up to 105 cycles, 10 years excellent read disturbance and data retention characteristics of data retention at 150°C is proposed. With its small cell size and full compatibility with standard CMOS logic process, the novel flash memory cell can be easily adapted in highly integrated very large scale integration (VLSI) systems.

  19. Highly Stable Etch Stopper Technology for 0.25 μm 1 Transistor 1 Capacitor (1T1C) 32 Mega-Bit Ferroelectric Random Access Memory (FRAM)

    NASA Astrophysics Data System (ADS)

    Jang, Nak-Won; Song, Yoon-Jong; Joo, Suk-Ho; Lee, Kyu-Mann; Kim, Hyun-Ho; Joo, Heung-Jin; Park, Jung-Hoon; Lee, Sang-Woo; Lee, Sung-Yung; Kim, Kinam

    2003-04-01

    Since current 32 Mb high-density ferroelectric random access memory (FRAM) shows very narrow sensing window, it is strongly desired to improve the sensing widow for generating a reliable high yield. In this paper, we propose a TiAlN oxygen stopping layer for enhancing the diffusion barrier layer, which makes it possible to reduce the bottom stack height from 180 nm to 90 nm, resulting in the increase of effective cell area and cell charge. In addition to the enhanced diffusion barrier, we developed a stable PE-SiN etch stopper for replacing Ir noble metal etch stopper that has strong stress variation and eventually deteriorates the cell charge distribution. By using TiAlN oxygen stopping layer and PE-SiN etch stopper, the 32 Mb FRAM device shows very wide sensing window of 100 fC, which guarantees a reliable high yield.

  20. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Simulation of Phase-Change Random Access Memory with Ring-Type Contactor for Low Reset Current by Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Gong, Yue-Feng; Ling, Yun; Song, Zhi-Tang; Feng, Song-Lin

    2008-09-01

    A three-dimensional finite element models for phase change random access memory (PCRAM) is established to simulate thermal and electrical behaviours during RESET operation. The RESET behaviours of the conventional structure (CS) and the ring-type contact in bottom electrode (RIB) are compared with each other. The simulation results indicate that the RIB cell has advantages of high heat efficiency for melting phase change material in cell, reduction of contact area and lower RESET current with maintaining good resistance contrast. The RESET current decreases from 1.26mA to 1.2mA and the heat consumption in GST material during programming increases from 12% to 37% in RIB structure. Thus the RIB structure PCRAM cell is suitable for future device with high heat efficiency and smaller RESET current.

  1. Impaired memory CD8 T cell development in the absence of methyl-CpG-binding domain protein 2.

    PubMed

    Kersh, Ellen N

    2006-09-15

    Intracellular differentiation events that determine which cells develop into memory CD8 T cells are currently incompletely understood. Methyl-CpG-binding domain protein 2 (MBD2) is a transcriptional repressor that binds to methylated DNA and mediates the biological consequences of epigenetic gene methylation. The role of MBD2 during the differentiation of naive CD8 T cells into effector and memory cells was determined following acute infection of MBD2-deficient mice with lymphocytic choriomeningitis virus. Despite rapid viral clearance and an efficient primary effector CD8 T cell response, reduced numbers of Ag-specific memory CD8 T cells were observed. Importantly, the appearance of precursor memory cells (IL-7Ralphahigh) was delayed. The remaining MBD2(-/-) memory cells were not fully protective during rechallenge, and memory cell characteristics were altered with regard to surface markers (IL-7Ralpha, KLRG-1, CD27, and others) and cytokine production. The defect was CD8 T cell intrinsic, because memory cell development was also delayed when MBD2(-/-) CD8 T cells were adoptively transferred into SCID mice. These data demonstrate that MBD2 is a previously unrecognized intracellular factor required for the efficient generation of protective memory CD8 T cells. PMID:16951344

  2. Signals required for programming effector and memory development by CD8+ T cells.

    PubMed

    Mescher, Matthew F; Curtsinger, Julie M; Agarwal, Pujya; Casey, Kerry A; Gerner, Michael; Hammerbeck, Christopher D; Popescu, Flavia; Xiao, Zhengguo

    2006-06-01

    Stimulation of naïve CD8+ T cells with antigen and costimulation results in proliferation and weak clonal expansion, but the cells fail to develop effector functions and are tolerant long term. Initiation of the program leading to the strong expansion and development of effector functions and memory requires a third signal that can be provided by interleukin-12 (IL-12) or interferon-alpha (IFN-alpha). CD4+ T cells condition dendritic cells (DCs) to effectively present antigen to CD8+ T cells, and this conditioning involves, at least in part, CD40-dependent upregulation of the production of these signal 3 cytokines by the DCs. Upon being fully activated, the cytotoxic T lymphocytes develop activation-induced non-responsiveness (AINR), a form of split anergy characterized by an inability to produce IL-2 to support continued expansion. If antigen remains present, IL-2 provided by CD4+ T cells can reverse AINR to allow further expansion of the effector population and conversion to responsive memory cells following antigen clearance. If IL-2 or potentially other proliferative signals are not available, persistent antigen holds cells in the AINR state and prevents the development of a responsive memory population. Thus, in addition to antigen and costimulation, CD8+ T cells require cytokine signals at distinct stages of the response to be programmed for optimal generation of effector and memory populations. PMID:16824119

  3. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells.

    PubMed

    Stary, Georg; Olive, Andrew; Radovic-Moreno, Aleksandar F; Gondek, David; Alvarez, David; Basto, Pamela A; Perro, Mario; Vrbanac, Vladimir D; Tager, Andrew M; Shi, Jinjun; Yethon, Jeremy A; Farokhzad, Omid C; Langer, Robert; Starnbach, Michael N; von Andrian, Ulrich H

    2015-06-19

    Genital Chlamydia trachomatis (Ct) infection induces protective immunity that depends on interferon-γ-producing CD4 T cells. By contrast, we report that mucosal exposure to ultraviolet light (UV)-inactivated Ct (UV-Ct) generated regulatory T cells that exacerbated subsequent Ct infection. We show that mucosal immunization with UV-Ct complexed with charge-switching synthetic adjuvant particles (cSAPs) elicited long-lived protection in conventional and humanized mice. UV-Ct-cSAP targeted immunogenic uterine CD11b(+)CD103(-) dendritic cells (DCs), whereas UV-Ct accumulated in tolerogenic CD11b(-)CD103(+) DCs. Regardless of vaccination route, UV-Ct-cSAP induced systemic memory T cells, but only mucosal vaccination induced effector T cells that rapidly seeded uterine mucosa with resident memory T cells (T(RM) cells). Optimal Ct clearance required both T(RM) seeding and subsequent infection-induced recruitment of circulating memory T cells. Thus, UV-Ct-cSAP vaccination generated two synergistic memory T cell subsets with distinct migratory properties. PMID:26089520

  4. Bim/Bcl-2 balance is critical for maintaining naive and memory T cell homeostasis

    PubMed Central

    Wojciechowski, Sara; Tripathi, Pulak; Bourdeau, Tristan; Acero, Luis; Grimes, H. Leighton; Katz, Jonathan D.; Finkelman, Fred D.; Hildeman, David A.

    2007-01-01

    We examined the role of the antiapoptotic molecule Bcl-2 in combating the proapoptotic molecule Bim in control of naive and memory T cell homeostasis using Bcl-2−/− mice that were additionally deficient in one or both alleles of Bim. Naive T cells were significantly decreased in Bim+/−Bcl-2−/− mice, but were largely restored in Bim−/−Bcl-2−/− mice. Similarly, a synthetic Bcl-2 inhibitor killed wild-type, but not Bim−/−, T cells. Further, T cells from Bim+/−Bcl-2−/− mice died rapidly ex vivo and were refractory to cytokine-driven survival in vitro. In vivo, naive CD8+ T cells required Bcl-2 to combat Bim to maintain peripheral survival, whereas naive CD4+ T cells did not. In contrast, Bim+/−Bcl-2−/− mice generated relatively normal numbers of memory T cells after lymphocytic choriomeningitis virus infection. Accumulation of memory T cells in Bim+/−Bcl-2−/− mice was likely caused by their increased proliferative renewal because of the lymphopenic environment of the mice. Collectively, these data demonstrate a critical role for a balance between Bim and Bcl-2 in controlling homeostasis of naive and memory T cells. PMID:17591857

  5. Low-Affinity Memory CD8+ T Cells Mediate Robust Heterologous Immunity.

    PubMed

    Krummey, Scott M; Martinez, Ryan J; Andargachew, Rakieb; Liu, Danya; Wagener, Maylene; Kohlmeier, Jacob E; Evavold, Brian D; Larsen, Christian P; Ford, Mandy L

    2016-03-15

    Heterologous immunity is recognized as a significant barrier to transplant tolerance. Whereas it has been established that pathogen-elicited memory T cells can have high or low affinity for cross-reactive allogeneic peptide-MHC, the role of TCR affinity during heterologous immunity has not been explored. We established a model with which to investigate the impact of TCR-priming affinity on memory T cell populations following a graft rechallenge. In contrast to high-affinity priming, low-affinity priming elicited fully differentiated memory T cells with a CD45RB(hi) status. High CD45RB status enabled robust secondary responses in vivo, as demonstrated by faster graft rejection kinetics and greater proliferative responses. CD45RB blockade prolonged graft survival in low affinity-primed mice, but not in high affinity-primed mice. Mechanistically, low affinity-primed memory CD8(+) T cells produced more IL-2 and significantly upregulated IL-2Rα expression during rechallenge. We found that CD45RB(hi) status was also a stable marker of priming affinity within polyclonal CD8(+) T cell populations. Following high-affinity rechallenge, low affinity-primed CD45RB(hi) cells became CD45RB(lo), demonstrating that CD45RB status acts as an affinity-based differentiation switch on CD8(+) T cells. Thus, these data establish a novel mechanism by which CD45 isoforms tune low affinity-primed memory CD8(+) T cells to become potent secondary effectors following heterologous rechallenge. These findings have direct implications for allogeneic heterologous immunity by demonstrating that despite a lower precursor frequency, low-affinity priming is sufficient to generate memory cells that mediate potent secondary responses against a cross-reactive graft challenge. PMID:26864034

  6. Resistive Switching Behavior in Organic-Inorganic Hybrid CH3 NH3 PbI3-x Clx Perovskite for Resistive Random Access Memory Devices.

    PubMed

    Yoo, Eun Ji; Lyu, Miaoqiang; Yun, Jung-Ho; Kang, Chi Jung; Choi, Young Jin; Wang, Lianzhou

    2015-10-28

    The CH3 NH3 PbI3- x Clx organic-inorganic hybrid perovskite material demonstrates remarkable resistive switching behavior, which can be applicable in resistive random access memory devices. The simply designed Au/CH3 NH3 PbI3- x Clx /FTO structure is fabricated by a low-temperature, solution-processable method, which exhibits remarkable bipolar resistive switching and nonvolatile properties. PMID:26331363

  7. B cells expressing IL-10 mRNA modulate memory T cells after DNA-Hsp65 immunization

    PubMed Central

    Fontoura, I. C.; Trombone, A.P.F.; Almeida, L. P.; Lorenzi, J. C. C.; Rossetti, R. A. M.; Malardo, T.; Padilha, E.; Schluchting, W.; Silva, R. L. L.; Gembre, A. F.; Fiuza, J. E. C.; Silva, C. L.; Panunto-Castelo, A.; Coelho-Castelo, A. A. M.

    2015-01-01

    In DNA vaccines, the gene of interest is cloned into a bacterial plasmid that is engineered to induce protein production for long periods in eukaryotic cells. Previous research has shown that the intramuscular immunization of BALB/c mice with a naked plasmid DNA fragment encoding the Mycobacterium leprae 65-kDa heat-shock protein (pcDNA3-Hsp65) induces protection against M. tuberculosis challenge. A key stage in the protective immune response after immunization is the generation of memory T cells. Previously, we have shown that B cells capture plasmid DNA-Hsp65 and thereby modulate the formation of CD8+ memory T cells after M. tuberculosis challenge in mice. Therefore, clarifying how B cells act as part of the protective immune response after DNA immunization is important for the development of more-effective vaccines. The aim of this study was to investigate the mechanisms by which B cells modulate memory T cells after DNA-Hsp65 immunization. C57BL/6 and BKO mice were injected three times, at 15-day intervals, with 100 µg naked pcDNA-Hsp65 per mouse. Thirty days after immunization, the percentages of effector memory T (TEM) cells (CD4+ and CD8+/CD44high/CD62Llow) and memory CD8+ T cells (CD8+/CD44high/CD62Llow/CD127+) were measured with flow cytometry. Interferon γ, interleukin 12 (IL-12), and IL-10 mRNAs were also quantified in whole spleen cells and purified B cells (CD43−) with real-time qPCR. Our data suggest that a B-cell subpopulation expressing IL-10 downregulated proinflammatory cytokine expression in the spleen, increasing the survival of CD4+ TEM cells and CD8+ TEM/CD127+ cells. PMID:26397973

  8. B cells expressing IL-10 mRNA modulate memory T cells after DNA-Hsp65 immunization.

    PubMed

    Fontoura, I C; Trombone, A P F; Almeida, L P; Lorenzi, J C C; Rossetti, R A M; Malardo, T; Padilha, E; Schluchting, W; Silva, R L L; Gembre, A F; Fiuza, J E C; Silva, C L; Panunto-Castelo, A; Coelho-Castelo, A A M

    2015-12-01

    In DNA vaccines, the gene of interest is cloned into a bacterial plasmid that is engineered to induce protein production for long periods in eukaryotic cells. Previous research has shown that the intramuscular immunization of BALB/c mice with a naked plasmid DNA fragment encoding the Mycobacterium leprae 65-kDa heat-shock protein (pcDNA3-Hsp65) induces protection against M. tuberculosis challenge. A key stage in the protective immune response after immunization is the generation of memory T cells. Previously, we have shown that B cells capture plasmid DNA-Hsp65 and thereby modulate the formation of CD8+ memory T cells after M. tuberculosis challenge in mice. Therefore, clarifying how B cells act as part of the protective immune response after DNA immunization is important for the development of more-effective vaccines. The aim of this study was to investigate the mechanisms by which B cells modulate memory T cells after DNA-Hsp65 immunization. C57BL/6 and BKO mice were injected three times, at 15-day intervals, with 100 µg naked pcDNA-Hsp65 per mouse. Thirty days after immunization, the percentages of effector memory T (TEM) cells (CD4+ and CD8+/CD44high/CD62Llow) and memory CD8+ T cells (CD8+/CD44high/CD62Llow/CD127+) were measured with flow cytometry. Interferon γ, interleukin 12 (IL-12), and IL-10 mRNAs were also quantified in whole spleen cells and purified B cells (CD43-) with real-time qPCR. Our data suggest that a B-cell subpopulation expressing IL-10 downregulated proinflammatory cytokine expression in the spleen, increasing the survival of CD4+ TEM cells and CD8+ TEM/CD127+ cells. PMID:26397973

  9. Circulating herpes simplex type 1 (HSV-1)-specific CD8+ T cells do not access HSV-1 latently infected trigeminal ganglia

    PubMed Central

    2011-01-01

    Background Therapeutic vaccines can be designed to enhance existing T cell memory populations for increased protection against re-infection. In the case of herpes simplex virus type 1, recurrent disease results from reactivation of latent virus in sensory ganglia, which is controlled in part by a ganglia-resident HSV-specific memory CD8+ T cell population. Thus, an important goal of a therapeutic HSV-1 vaccine would be to enhance this population. Methods HSV-1-infected mice were treated with TAK-779 to block CCR5- and CXCR3-mediated CD8+ T cell migration during both acute and latent infections. Additionally, HSV-1-specific CD8+ T cells were transferred into HSV-1 latently infected mice to mimic the effect of a therapeutic vaccine, and their migration into trigeminal ganglia (TG) was traced during steady-state latency, or during recovery of the TG-resident memory CD8+ T cell population following stress-, and corticosterone-induced depletion and HSV-1 reactivation from latency. Bromodeoxy uridine (BrdU) incorporation measured cell proliferation in vivo. Results TAK-779 treatment during acute HSV-1 infection reduced the number of infiltrating CD8+ T cells but did not alter the number of viral genome copies. TAK-779 treatment during HSV latency did not affect the size of the TG-resident memory CD8+ T cell population. Transferred HSV-specific CD8+ T cells failed to access latently infected TG during steady-state latency, or during recovery of the TG resident HSV-specific CD8+ T cell population following exposure of latently infected mice to stress and corticosterone. Recovery of the HSV-specific CD8+ T cell population after stress and corticosterone treatment occurred with homeostatic levels of cell division and did not require CD4+ T cell help. Conclusions Our findings are consistent with the notion that the CD8+ T cells in latently infected TG are a tissue-resident memory (Trm) population that is maintained without replenishment from the periphery, and that when this

  10. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses.

    PubMed

    Pulko, Vesna; Davies, John S; Martinez, Carmine; Lanteri, Marion C; Busch, Michael P; Diamond, Michael S; Knox, Kenneth; Bush, Erin C; Sims, Peter A; Sinari, Shripad; Billheimer, Dean; Haddad, Elias K; Murray, Kristy O; Wertheimer, Anne M; Nikolich-Žugich, Janko

    2016-08-01

    The number of naive T cells decreases and susceptibility to new microbial infections increases with age. Here we describe a previously unknown subset of phenotypically naive human CD8(+) T cells that rapidly secreted multiple cytokines in response to persistent viral antigens but differed transcriptionally from memory and effector T cells. The frequency of these CD8(+) T cells, called 'memory T cells with a naive phenotype' (TMNP cells), increased with age and after severe acute infection and inversely correlated with the residual capacity of the immune system to respond to new infections with age. CD8(+) TMNP cells represent a potential new target for the immunotherapy of persistent infections and should be accounted for and subtracted from the naive pool if truly naive T cells are needed to respond to antigens. PMID:27270402

  11. Rescue of CD8+ T cell vaccine memory following sublethal γ irradiation

    PubMed Central

    McFarland, Hugh I.; Berkson, Julia D.; Lee, Jay P.; Elkahloun, Abdel G.; Mason, Karen P.; Rosenberg, Amy S.

    2015-01-01

    Sublethal γ irradiation eliminates CD8+ T cell mediated memory responses. In this work, we explored how these memory responses could be rescued in the aftermath of such exposure. We utilized two models of CD8+ T cell mediated immunity: a mouse model of Listeria monocytogenes (LM) infection in which CD8+ T cells specific for LM expressed antigens (Listeriolysin O, LLO) can be tracked, and a murine skin graft model in which CD8+ T cells mediate rejection across a MHC class I (Dd) disparity. In the LM immunized mice, LL0 specific CD8+ T memory cells were lost on irradiation, preserved with rapid revaccination with an attenuated strain 1-3 days post-irradiation (PI), and these mice survived a subsequent wild type LM challenge. A genetic “signature of rescue” identified a group of immune-associated mRNA maintained or upregulated following irradiation and rescue. A number of these factors, including IL-36γ, dectin-2 (Clec4n), and mir101c are upregulated rapidly after exposure of mice to sublethal γ radiation alone and are sustained by early, but not later rescue. Such factors will be evaluated as potential therapeutics to replace individual vaccines for global rescue of CD8+ T memory cell responses following sublethal γ irradiation. The skin allograft model mirrored that of the LM model in that the accelerated Dd skin allograft rejection response was lost in mice exposed to sublethal γ radiation, but infusion of allogeneic Dd expressing bone marrow cells 1-4 days PI preserved the CD8+ T memory mediated accelerated rejection response, further suggesting that innate immune responses may not always be essential to rescue of CD8+ memory T cells following γ irradiation. PMID:26122582

  12. Location, Location, Location: Localized Memory Cells Take Residence in the Allergic Lung.

    PubMed

    Lloyd, Clare M; Harker, James A

    2016-01-19

    Understanding the localization of cells is important as local environmental cues influence both phenotype and effector function. In this issue of Immunity, Pepper and colleagues find that allergen-specific tissue-resident memorycells are maintained by IL-2 and are key drivers of allergic pathology. PMID:26789918

  13. Persistence of skin-resident memory T cells within an epidermal niche.

    PubMed

    Zaid, Ali; Mackay, Laura K; Rahimpour, Azad; Braun, Asolina; Veldhoen, Marc; Carbone, Francis R; Manton, Jonathan H; Heath, William R; Mueller, Scott N

    2014-04-01

    Barrier tissues such as the skin contain various populations of immune cells that contribute to protection from infections. These include recently identified tissue-resident memory T cells (TRM). In the skin, these memory CD8(+) T cells reside in the epidermis after being recruited to this site by infection or inflammation. In this study, we demonstrate prolonged persistence of epidermal TRM preferentially at the site of prior infection despite sustained migration. Computational simulation of TRM migration within the skin over long periods revealed that the slow rate of random migration effectively constrains these memory cells within the region of skin in which they form. Notably, formation of TRM involved a concomitant local reduction in dendritic epidermal γδ T-cell numbers in the epidermis, indicating that these populations persist in mutual exclusion and may compete for local survival signals. Accordingly, we show that expression of the aryl hydrocarbon receptor, a transcription factor important for dendritic epidermal γδ T-cell maintenance in skin, also contributes to the persistence of skin TRM. Together, these data suggest that skin tissue-resident memory T cells persist within a tightly regulated epidermal T-cell niche. PMID:24706879

  14. Persistence of skin-resident memory T cells within an epidermal niche

    PubMed Central

    Zaid, Ali; Mackay, Laura K.; Rahimpour, Azad; Braun, Asolina; Veldhoen, Marc; Carbone, Francis R.; Manton, Jonathan H.; Heath, William R.; Mueller, Scott N.

    2014-01-01

    Barrier tissues such as the skin contain various populations of immune cells that contribute to protection from infections. These include recently identified tissue-resident memory T cells (TRM). In the skin, these memory CD8+ T cells reside in the epidermis after being recruited to this site by infection or inflammation. In this study, we demonstrate prolonged persistence of epidermal TRM preferentially at the site of prior infection despite sustained migration. Computational simulation of TRM migration within the skin over long periods revealed that the slow rate of random migration effectively constrains these memory cells within the region of skin in which they form. Notably, formation of TRM involved a concomitant local reduction in dendritic epidermal γδ T-cell numbers in the epidermis, indicating that these populations persist in mutual exclusion and may compete for local survival signals. Accordingly, we show that expression of the aryl hydrocarbon receptor, a transcription factor important for dendritic epidermal γδ T-cell maintenance in skin, also contributes to the persistence of skin TRM. Together, these data suggest that skin tissue-resident memory T cells persist within a tightly regulated epidermal T-cell niche. PMID:24706879

  15. Bovine central memory T cells are highly proliferative in response to bovine tuberculosis infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term (i.e., 14 days) cultured IFN-gamma responses of peripheral blood mononuclear cells are used as a correlate of T cell central memory (Tcm) responses in both humans and cattle. With bovine tuberculosis, vaccine-elicited long-term IFN-gamma ELISPOT assays are a correlate of protection. Recent...

  16. Manipulating Memory CD8 T Cell Numbers by Timed Enhancement of IL-2 Signals.

    PubMed

    Kim, Marie T; Kurup, Samarchith P; Starbeck-Miller, Gabriel R; Harty, John T

    2016-09-01

    As a result of the growing burden of tumors and chronic infections, manipulating CD8 T cell responses for clinical use has become an important goal for immunologists. In this article, we show that dendritic cell (DC) immunization coupled with relatively early (days 1-3) or late (days 4-6) administration of enhanced IL-2 signals increase peak effector CD8 T cell numbers, but only early IL-2 signals enhance memory numbers. IL-2 signals delivered at relatively late time points drive terminal differentiation and marked Bim-mediated contraction and do not increase memory T cell numbers. In contrast, early IL-2 signals induce effector cell metabolic profiles that are more conducive to memory formation. Of note, downregulation of CD80 and CD86 was observed on DCs in vivo following early IL-2 treatment. Mechanistically, early IL-2 treatment enhanced CTLA-4 expression on regulatory T cells, and CTLA-4 blockade alongside IL-2 treatment in vivo prevented the decrease in CD80 and CD86, supporting a cell-extrinsic role for CTLA-4 in downregulating B7 ligand expression on DCs. Finally, DC immunization followed by early IL-2 treatment and anti-CTLA-4 blockade resulted in lower memory CD8 T cell numbers compared with the DC+early IL-2 treatment group. These data suggest that curtailed signaling through the B7-CD28 costimulatory axis during CD8 T cell activation limits terminal differentiation and preserves memory CD8 T cell formation; thus, it should be considered in future T cell-vaccination strategies. PMID:27439516

  17. Abacavir-Reactive Memory T Cells Are Present in Drug Naïve Individuals

    PubMed Central

    Lucas, Andrew; Lucas, Michaela; Strhyn, Anette; Keane, Niamh M.; McKinnon, Elizabeth; Pavlos, Rebecca; Moran, Ellen M.; Meyer-Pannwitt, Viola; Gaudieri, Silvana; D’Orsogna, Lloyd; Kalams, Spyros; Ostrov, David A.; Buus, Søren; Peters, Bjoern; Mallal, Simon; Phillips, Elizabeth

    2015-01-01

    Background Fifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population. Methods To determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling. Results Abacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells. Conclusions We propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection. PMID:25674793

  18. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Hildeman, David A.

    2013-01-01

    Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells

  19. The Distribution of Human Stem Cell–like Memory T Cell in Lung Cancer

    PubMed Central

    Hong, Hai; Gu, Yong; Sheng, Si Yuan; Lu, Chuan Gang; Zou, Jian Yong

    2016-01-01

    Human stem cell–like memory T (Tscm) cells are long-lived, self-renewing memory lymphocytes that can differentiate into effector cells and mediate strong antitumour response in murine model. The distribution and function of Tscm cells in human lung cancer remain unknown. In this study, we investigated the properties of human Tscm cells in the blood and lymph node of non–small cell lung cancer (NSCLC) patients. There were more CD4+ Tscm cells in blood from NSCLC patients than from healthy donors, fewer CD4+ and CD8+ TSCM cells in blood than in lymph node from NSCLC patients. To further analyze their properties, we stimulated peripheral blood mononuclear cells from NSCLC patients by mitogens to examine cytokine production. Our data suggest that both CD4 and CD8 Tscm cells in blood produced interferon-γ significantly increased in NSCLC patients compare with healthy subjects. In addition, fewer Tscm cells produced interferon-γ in lymph node than in blood from NSCLC patients. Our results strongly suggest that the distribution and function of CD4 Tscm cells in NSCLC patients is upregulated. Understanding of the properties of stem-like memory T cells will supply a good rationale for designing the new adoptive immunotherapy in cancer. PMID:27244531

  20. Cytokine Production and Antigen Recognition by Human Mucosal Homing Conjunctival Effector Memory CD8+ T Cells

    PubMed Central

    Williams, Geraint P.; Pachnio, Annette; Long, Heather M.; Rauz, Saaeha; Curnow, S. John

    2014-01-01

    Purpose. Conjunctival epithelial T cells are dominated by CD3+CD56-TCRαβ+CD8αβ+ lymphocytes. In this study we explored the antigen experience status, mucosal homing phenotype, cytokine expression, and viral antigen recognition of conjunctival epithelial CD8+ T cells from healthy individuals. Methods. Following ocular surface impression cytology, conjunctival cells were recovered by gentle agitation and analyzed by flow cytometry for cell surface markers, cytokine production (stimulated by phorbol 12-myristate 13-acetate [PMA]/ionomycin), and Epstein-Barr virus (EBV)/cytomegalovirus (CMV) immunodominant epitope recognition using major histocompatibility complex (MHC) class I peptide tetramers. Results. In contrast to peripheral blood, conjunctival epithelial CD8+ T cells were dominantly CD45RA−CCR7− effector memory cells, and the vast majority expressed the mucosal homing integrin αEβ7. Conjunctival memory CD8+ T cells maintained effector functions with the ability to secrete IFN-γ and expression of Granzyme B, although they expressed significantly reduced amounts per cell compared to peripheral blood T cells. Interestingly, herpetic virus-specific CD8+ T cells recognizing epitopes derived from EBV and CMV could be detected in the conjunctival cells of healthy virus carriers, although they were generally at lower frequencies than in the peripheral blood of the same donor. Virus-specific conjunctival CD8+ T cells were dominated by CD45RA−CCR7− effector memory cells that expressed αEβ7. Conclusions. These data demonstrate that the majority of conjunctival epithelial CD8+ T cells are mucosal homing αEβ7+ effector memory T cells, which can recognize viral epitopes and are capable of secreting Granzyme B and IFN-γ. PMID:25395484