Sample records for access memory device

  1. Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order

    NASA Technical Reports Server (NTRS)

    Schwab, Andrew J. (Inventor); Aylor, James (Inventor); Hitchcock, Charles Young (Inventor); Wulf, William A. (Inventor); McKee, Sally A. (Inventor); Moyer, Stephen A. (Inventor); Klenke, Robert (Inventor)

    2000-01-01

    A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time.

  2. 76 FR 73676 - Certain Dynamic Random Access Memory Devices, and Products Containing Same; Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... INTERNATIONAL TRADE COMMISSION [DN 2859] Certain Dynamic Random Access Memory Devices, and.... International Trade Commission has received a complaint entitled In Re Certain Dynamic Random Access Memory... certain dynamic random access memory devices, and products containing same. The complaint names Elpida...

  3. 76 FR 55417 - In the Matter of Certain Dynamic Random Access Memory and Nand Flash Memory Devices and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Access Memory and Nand Flash Memory Devices and Products Containing Same; Notice of Institution of... importation, and the sale within the United States after importation of certain dynamic random access memory and NAND flash memory devices and products containing same by reason of infringement of certain claims...

  4. Low latency and persistent data storage

    DOEpatents

    Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd E

    2014-02-18

    Persistent data storage is provided by a method that includes receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.

  5. Low latency and persistent data storage

    DOEpatents

    Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd

    2014-11-04

    Persistent data storage is provided by a computer program product that includes computer program code configured for receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.

  6. System and method for programmable bank selection for banked memory subsystems

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Hoenicke, Dirk; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan

    2010-09-07

    A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.

  7. 76 FR 80964 - Certain Dynamic Random Access Memory Devices, and Products Containing Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-821] Certain Dynamic Random Access Memory... importation, and the sale within the United States after importation of certain dynamic random access memory... certain dynamic random access memory devices, and products containing same that infringe one or more of...

  8. Programmable DMA controller

    NASA Technical Reports Server (NTRS)

    Hendry, David F. (Inventor)

    1993-01-01

    In a data system having a memory, plural input/output (I/O) devices and a bus connecting each of the I/O devices to the memory, a direct memory access (DMA) controller regulating access of each of the I/O devices to the bus, including a priority register storing priorities of bus access requests from the I/O devices, an interrupt register storing bus access requests of the I/O devices, a resolver for selecting one of the I/O devices to have access to the bus, a pointer register storing addresses of locations in the memory for communication with the one I/O device via the bus, a sequence register storing an address of a location in the memory containing a channel program instruction which is to be executed next, an ALU for incrementing and decrementing addresses stored in the pointer register, computing the next address to be stored in the sequence register, computing an initial contents of each of the register. The memory contains a sequence of channel program instructions defining a set up operation wherein the contents of each of the registers in the channel register is initialized in accordance with the initial contents computed by the ALU and an access operation wherein data is transferred on the bus between a location in the memory whose address is currently stored in the pointer register and the one I/O device enabled by the resolver.

  9. Distributed multiport memory architecture

    NASA Technical Reports Server (NTRS)

    Kohl, W. H. (Inventor)

    1983-01-01

    A multiport memory architecture is diclosed for each of a plurality of task centers connected to a command and data bus. Each task center, includes a memory and a plurality of devices which request direct memory access as needed. The memory includes an internal data bus and an internal address bus to which the devices are connected, and direct timing and control logic comprised of a 10-state ring counter for allocating memory devices by enabling AND gates connected to the request signal lines of the devices. The outputs of AND gates connected to the same device are combined by OR gates to form an acknowledgement signal that enables the devices to address the memory during the next clock period. The length of the ring counter may be effectively lengthened to any multiple of ten to allow for more direct memory access intervals in one repetitive sequence. One device is a network bus adapter which serially shifts onto the command and data bus, a data word (8 bits plus control and parity bits) during the next ten direct memory access intervals after it has been granted access. The NBA is therefore allocated only one access in every ten intervals, which is a predetermined interval for all centers. The ring counters of all centers are periodically synchronized by DMA SYNC signal to assure that all NBAs be able to function in synchronism for data transfer from one center to another.

  10. Bubble memory module for spacecraft application

    NASA Technical Reports Server (NTRS)

    Hayes, P. J.; Looney, K. T.; Nichols, C. D.

    1985-01-01

    Bubble domain technology offers an all-solid-state alternative for data storage in onboard data systems. A versatile modular bubble memory concept was developed. The key module is the bubble memory module which contains all of the storage devices and circuitry for accessing these devices. This report documents the bubble memory module design and preliminary hardware designs aimed at memory module functional demonstration with available commercial bubble devices. The system architecture provides simultaneous operation of bubble devices to attain high data rates. Banks of bubble devices are accessed by a given bubble controller to minimize controller parts. A power strobing technique is discussed which could minimize the average system power dissipation. A fast initialization method using EEPROM (electrically erasable, programmable read-only memory) devices promotes fast access. Noise and crosstalk problems and implementations to minimize these are discussed. Flight memory systems which incorporate the concepts and techniques of this work could now be developed for applications.

  11. Accessing global data from accelerator devices

    DOEpatents

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.; Sura, Zehra N.

    2016-12-06

    An aspect includes a table of contents (TOC) that was generated by a compiler being received at an accelerator device. The TOC includes an address of global data in a host memory space. The global data is copied from the address in the host memory space to an address in the device memory space. The address in the host memory space is obtained from the received TOC. The received TOC is updated to indicate that global data is stored at the address in the device memory space. A kernel that accesses the global data from the address in the device memory space is executed. The address in the device memory space is obtained based on contents of the updated TOC. When the executing is completed, the global data from the address in the device memory space is copied to the address in the host memory space.

  12. Application of phase-change materials in memory taxonomy.

    PubMed

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.

  13. Accessing global data from accelerator devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.

    2016-12-06

    An aspect includes a table of contents (TOC) that was generated by a compiler being received at an accelerator device. The TOC includes an address of global data in a host memory space. The global data is copied from the address in the host memory space to an address in the device memory space. The address in the host memory space is obtained from the received TOC. The received TOC is updated to indicate that global data is stored at the address in the device memory space. A kernel that accesses the global data from the address in the devicemore » memory space is executed. The address in the device memory space is obtained based on contents of the updated TOC. When the executing is completed, the global data from the address in the device memory space is copied to the address in the host memory space.« less

  14. Garnet Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Random-access memory (RAM) devices of proposed type exploit magneto-optical properties of magnetic garnets exhibiting perpendicular anisotropy. Magnetic writing and optical readout used. Provides nonvolatile storage and resists damage by ionizing radiation. Because of basic architecture and pinout requirements, most likely useful as small-capacity memory devices.

  15. Development of Curie point switching for thin film, random access, memory device

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Tchernev, D. I.

    1967-01-01

    Managanese bismuthide films are used in the development of a random access memory device of high packing density and nondestructive readout capability. Memory entry is by Curie point switching using a laser beam. Readout is accomplished by microoptical or micromagnetic scanning.

  16. Application of phase-change materials in memory taxonomy

    PubMed Central

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects. PMID:28740557

  17. Accessing memory

    DOEpatents

    Yoon, Doe Hyun; Muralimanohar, Naveen; Chang, Jichuan; Ranganthan, Parthasarathy

    2017-09-26

    A disclosed example method involves performing simultaneous data accesses on at least first and second independently selectable logical sub-ranks to access first data via a wide internal data bus in a memory device. The memory device includes a translation buffer chip, memory chips in independently selectable logical sub-ranks, a narrow external data bus to connect the translation buffer chip to a memory controller, and the wide internal data bus between the translation buffer chip and the memory chips. A data access is performed on only the first independently selectable logical sub-rank to access second data via the wide internal data bus. The example method also involves locating a first portion of the first data, a second portion of the first data, and the second data on the narrow external data bus during separate data transfers.

  18. Overview of emerging nonvolatile memory technologies

    PubMed Central

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices. PMID:25278820

  19. Overview of emerging nonvolatile memory technologies.

    PubMed

    Meena, Jagan Singh; Sze, Simon Min; Chand, Umesh; Tseng, Tseung-Yuen

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices.

  20. Carbon nanomaterials for non-volatile memories

    NASA Astrophysics Data System (ADS)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  1. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    DOEpatents

    Ohmacht, Martin

    2017-08-15

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  2. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    DOEpatents

    Ohmacht, Martin

    2014-09-09

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  3. Memory hierarchy using row-based compression

    DOEpatents

    Loh, Gabriel H.; O'Connor, James M.

    2016-10-25

    A system includes a first memory and a device coupleable to the first memory. The device includes a second memory to cache data from the first memory. The second memory includes a plurality of rows, each row including a corresponding set of compressed data blocks of non-uniform sizes and a corresponding set of tag blocks. Each tag block represents a corresponding compressed data block of the row. The device further includes decompression logic to decompress data blocks accessed from the second memory. The device further includes compression logic to compress data blocks to be stored in the second memory.

  4. Extended write combining using a write continuation hint flag

    DOEpatents

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin; Vranas, Pavlos

    2013-06-04

    A computing apparatus for reducing the amount of processing in a network computing system which includes a network system device of a receiving node for receiving electronic messages comprising data. The electronic messages are transmitted from a sending node. The network system device determines when more data of a specific electronic message is being transmitted. A memory device stores the electronic message data and communicating with the network system device. A memory subsystem communicates with the memory device. The memory subsystem stores a portion of the electronic message when more data of the specific message will be received, and the buffer combines the portion with later received data and moves the data to the memory device for accessible storage.

  5. Low-power resistive random access memory by confining the formation of conducting filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yi-Jen; Lee, Si-Chen, E-mail: sclee@ntu.edu.tw; Shen, Tzu-Hsien

    2016-06-15

    Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiO{sub x}/silver nanoparticles/TiO{sub x}/AlTiO{sub x}, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistancemore » state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiO{sub x} layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.« less

  6. Data storage technology comparisons

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1990-01-01

    The role of data storage and data storage technology is an integral, though conceptually often underestimated, portion of data processing technology. Data storage is important in the mass storage mode in which generated data is buffered for later use. But data storage technology is also important in the data flow mode when data are manipulated and hence required to flow between databases, datasets and processors. This latter mode is commonly associated with memory hierarchies which support computation. VLSI devices can reasonably be defined as electronic circuit devices such as channel and control electronics as well as highly integrated, solid-state devices that are fabricated using thin film deposition technology. VLSI devices in both capacities play an important role in data storage technology. In addition to random access memories (RAM), read-only memories (ROM), and other silicon-based variations such as PROM's, EPROM's, and EEPROM's, integrated devices find their way into a variety of memory technologies which offer significant performance advantages. These memory technologies include magnetic tape, magnetic disk, magneto-optic disk, and vertical Bloch line memory. In this paper, some comparison between selected technologies will be made to demonstrate why more than one memory technology exists today, based for example on access time and storage density at the active bit and system levels.

  7. Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.

    2014-04-01

    In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.

  8. Radiation Effects of Commercial Resistive Random Access Memories

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; LaBel, Kenneth A.; Berg, Melanie; Wilcox, Edward; Kim, Hak; Phan, Anthony; Figueiredo, Marco; Buchner, Stephen; Khachatrian, Ani; Roche, Nicolas

    2014-01-01

    We present results for the single-event effect response of commercial production-level resistive random access memories. We found that the resistive memory arrays are immune to heavy ion-induced upsets. However, the devices were susceptible to single-event functional interrupts, due to upsets from the control circuits. The intrinsic radiation tolerant nature of resistive memory makes the technology an attractive consideration for future space applications.

  9. Low latency memory access and synchronization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.

    A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processormore » only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.« less

  10. Low latency memory access and synchronization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.

    A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Bach processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processormore » only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.« less

  11. An amorphous titanium dioxide metal insulator metal selector device for resistive random access memory crossbar arrays with tunable voltage margin

    NASA Astrophysics Data System (ADS)

    Cortese, Simone; Khiat, Ali; Carta, Daniela; Light, Mark E.; Prodromakis, Themistoklis

    2016-01-01

    Resistive random access memory (ReRAM) crossbar arrays have become one of the most promising candidates for next-generation non volatile memories. To become a mature technology, the sneak path current issue must be solved without compromising all the advantages that crossbars offer in terms of electrical performances and fabrication complexity. Here, we present a highly integrable access device based on nickel and sub-stoichiometric amorphous titanium dioxide (TiO2-x), in a metal insulator metal crossbar structure. The high voltage margin of 3 V, amongst the highest reported for monolayer selector devices, and the good current density of 104 A/cm2 make it suitable to sustain ReRAM read and write operations, effectively tackling sneak currents in crossbars without compromising fabrication complexity in a 1 Selector 1 Resistor (1S1R) architecture. Furthermore, the voltage margin is found to be tunable by an annealing step without affecting the device's characteristics.

  12. Multi-Level Bitmap Indexes for Flash Memory Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng; Madduri, Kamesh; Canon, Shane

    2010-07-23

    Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data atmore » the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.« less

  13. Heap/stack guard pages using a wakeup unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gooding, Thomas M; Satterfield, David L; Steinmacher-Burow, Burkhard

    A method and system for providing a memory access check on a processor including the steps of detecting accesses to a memory device including level-1 cache using a wakeup unit. The method includes invalidating level-1 cache ranges corresponding to a guard page, and configuring a plurality of wakeup address compare (WAC) registers to allow access to selected WAC registers. The method selects one of the plurality of WAC registers, and sets up a WAC register related to the guard page. The method configures the wakeup unit to interrupt on access of the selected WAC register. The method detects access ofmore » the memory device using the wakeup unit when a guard page is violated. The method generates an interrupt to the core using the wakeup unit, and determines the source of the interrupt. The method detects the activated WAC registers assigned to the violated guard page, and initiates a response.« less

  14. Implementation of nitrogen-doped titanium-tungsten tunable heater in phase change random access memory and its effects on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Chun Chia; Zhao, Rong, E-mail: zhao-rong@sutd.edu.sg; Chong, Tow Chong

    2014-10-13

    Nitrogen-doped titanium-tungsten (N-TiW) was proposed as a tunable heater in Phase Change Random Access Memory (PCRAM). By tuning N-TiW's material properties through doping, the heater can be tailored to optimize the access speed and programming current of PCRAM. Experiments reveal that N-TiW's resistivity increases and thermal conductivity decreases with increasing nitrogen-doping ratio, and N-TiW devices displayed (∼33% to ∼55%) reduced programming currents. However, there is a tradeoff between the current and speed for heater-based PCRAM. Analysis of devices with different N-TiW heaters shows that N-TiW doping levels could be optimized to enable low RESET currents and fast access speeds.

  15. One bipolar transistor selector - One resistive random access memory device for cross bar memory array

    NASA Astrophysics Data System (ADS)

    Aluguri, R.; Kumar, D.; Simanjuntak, F. M.; Tseng, T.-Y.

    2017-09-01

    A bipolar transistor selector was connected in series with a resistive switching memory device to study its memory characteristics for its application in cross bar array memory. The metal oxide based p-n-p bipolar transistor selector indicated good selectivity of about 104 with high retention and long endurance showing its usefulness in cross bar RRAM devices. Zener tunneling is found to be the main conduction phenomena for obtaining high selectivity. 1BT-1R device demonstrated good memory characteristics with non-linearity of 2 orders, selectivity of about 2 orders and long retention characteristics of more than 105 sec. One bit-line pull-up scheme shows that a 650 kb cross bar array made with this 1BT1R devices works well with more than 10 % read margin proving its ability in future memory technology application.

  16. Soft errors in commercial off-the-shelf static random access memories

    NASA Astrophysics Data System (ADS)

    Dilillo, L.; Tsiligiannis, G.; Gupta, V.; Bosser, A.; Saigne, F.; Wrobel, F.

    2017-01-01

    This article reviews state-of-the-art techniques for the evaluation of the effect of radiation on static random access memory (SRAM). We detailed irradiation test techniques and results from irradiation experiments with several types of particles. Two commercial SRAMs, in 90 and 65 nm technology nodes, were considered as case studies. Besides the basic static and dynamic test modes, advanced stimuli for the irradiation tests were introduced, as well as statistical post-processing techniques allowing for deeper analysis of the correlations between bit-flip cross-sections and design/architectural characteristics of the memory device. Further insight is provided on the response of irradiated stacked layer devices and on the use of characterized SRAM devices as particle detectors.

  17. Kokkos: Enabling manycore performance portability through polymorphic memory access patterns

    DOE PAGES

    Carter Edwards, H.; Trott, Christian R.; Sunderland, Daniel

    2014-07-22

    The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread, and diversity of continually evolving manycore architectures. High performance computing (HPC) applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability on these devices. We found that a major obstacle to performance portability is the diverse and conflicting set of constraints on memory access patterns across devices. Contemporary portable programming models address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance portability on diversemore » manycore architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API), present performance results for unit-test kernels and mini-applications, and outline an incremental strategy for migrating legacy C++ codes to Kokkos. Furthermore, the Kokkos library is under active research and development to incorporate capabilities from new generations of manycore architectures, and to address a growing list of applications and domain libraries.« less

  18. Investigation of multilayer magnetic domain lattice file

    NASA Technical Reports Server (NTRS)

    Torok, E. J.; Kamin, M.; Tolman, C. H.

    1980-01-01

    The feasibility of the self structured multilayered bubble domain memory as a mass memory medium for satellite applications is examined. Theoretical considerations of multilayer bubble supporting materials are presented, in addition to the experimental evaluation of current accessed circuitry for various memory functions. The design, fabrication, and test of four device designs is described, and a recommended memory storage area configuration is presented. Memory functions which were demonstrated include the current accessed propagation of bubble domains and stripe domains, pinning of stripe domain ends, generation of single and double bubbles, generation of arrays of coexisting strip and bubble domains in a single garnet layer, and demonstration of different values of the strip out field for single and double bubbles indicating adequate margins for data detection. All functions necessary to develop a multilayer self structured bubble memory device were demonstrated in individual experiments.

  19. Providing the Public with Online Access to Large Bibliographic Data Bases.

    ERIC Educational Resources Information Center

    Firschein, Oscar; Summit, Roger K.

    DIALOG, an interactive, computer-based information retrieval language, consists of a series of computer programs designed to make use of direct access memory devices in order to provide the user with a rapid means of identifying records within a specific memory bank. Using the system, a library user can be provided access to sixteen distinct and…

  20. Solution-processed flexible NiO resistive random access memory device

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Jung; Lee, Heon; Hong, Sung-Hoon

    2018-04-01

    Non-volatile memories (NVMs) using nanocrystals (NCs) as active materials can be applied to soft electronic devices requiring a low-temperature process because NCs do not require a heat treatment process for crystallization. In addition, memory devices can be implemented simply by using a patterning technique using a solution process. In this study, a flexible NiO ReRAM device was fabricated using a simple NC patterning method that controls the capillary force and dewetting of a NiO NC solution at low temperature. The switching behavior of a NiO NC based memory was clearly observed by conductive atomic force microscopy (c-AFM).

  1. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2017-04-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  2. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  3. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2011-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more that two data states.

  4. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2012-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  5. A Memory-Based Programmable Logic Device Using Look-Up Table Cascade with Synchronous Static Random Access Memories

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazuyuki; Sasao, Tsutomu; Matsuura, Munehiro; Tanaka, Katsumasa; Yoshizumi, Kenichi; Nakahara, Hiroki; Iguchi, Yukihiro

    2006-04-01

    A large-scale memory-technology-based programmable logic device (PLD) using a look-up table (LUT) cascade is developed in the 0.35-μm standard complementary metal oxide semiconductor (CMOS) logic process. Eight 64 K-bit synchronous SRAMs are connected to form an LUT cascade with a few additional circuits. The features of the LUT cascade include: 1) a flexible cascade connection structure, 2) multi phase pseudo asynchronous operations with synchronous static random access memory (SRAM) cores, and 3) LUT-bypass redundancy. This chip operates at 33 MHz in 8-LUT cascades at 122 mW. Benchmark results show that it achieves a comparable performance to field programmable gate array (FPGAs).

  6. Impacts of Co doping on ZnO transparent switching memory device characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simanjuntak, Firman Mangasa; Wei, Kung-Hwa; Prasad, Om Kumar

    2016-05-02

    The resistive switching characteristics of indium tin oxide (ITO)/Zn{sub 1−x}Co{sub x}O/ITO transparent resistive memory devices were investigated. An appropriate amount of cobalt dopant in ZnO resistive layer demonstrated sufficient memory window and switching stability. In contrast, pure ZnO devices demonstrated a poor memory window, and using an excessive dopant concentration led to switching instability. To achieve suitable memory performance, relying only on controlling defect concentrations is insufficient; the grain growth orientation of the resistive layer must also be considered. Stable endurance with an ON/OFF ratio of more than one order of magnitude during 5000 cycles confirmed that the Co-doped ZnOmore » device is a suitable candidate for resistive random access memory application. Additionally, fully transparent devices with a high transmittance of up to 90% at wavelength of 550 nm have been fabricated.« less

  7. Feasibility of self-structured current accessed bubble devices in spacecraft recording systems

    NASA Technical Reports Server (NTRS)

    Nelson, G. L.; Krahn, D. R.; Dean, R. H.; Paul, M. C.; Lo, D. S.; Amundsen, D. L.; Stein, G. A.

    1985-01-01

    The self-structured, current aperture approach to magnetic bubble memory is described. Key results include: (1) demonstration that self-structured bubbles (a lattice of strongly interacting bubbles) will slip by one another in a storage loop at spacings of 2.5 bubble diameters, (2) the ability of self-structured bubbles to move past international fabrication defects (missing apertures) in the propagation conductors (defeat tolerance), and (3) moving bubbles at mobility limited speeds. Milled barriers in the epitaxial garnet are discussed for containment of the bubble lattice. Experimental work on input/output tracks, storage loops, gates, generators, and magneto-resistive detectors for a prototype device are discussed. Potential final device architectures are described with modeling of power consumption, data rates, and access times. Appendices compare the self-structured bubble memory from the device and system perspectives with other non-volatile memory technologies.

  8. Radiation Test Challenges for Scaled Commerical Memories

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Ladbury, Ray L.; Cohn, Lewis M.; Oldham, Timothy

    2007-01-01

    As sub-100nm CMOS technologies gather interest, the radiation effects performance of these technologies provide a significant challenge. In this talk, we shall discuss the radiation testing challenges as related to commercial memory devices. The focus will be on complex test and failure modes emerging in state-of-the-art Flash non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs), which are volatile. Due to their very high bit density, these device types are highly desirable for use in the natural space environment. In this presentation, we shall discuss these devices with emphasis on considerations for test and qualification methods required.

  9. High Density Memory Based on Quantum Device Technology

    NASA Technical Reports Server (NTRS)

    vanderWagt, Paul; Frazier, Gary; Tang, Hao

    1995-01-01

    We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.

  10. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature.

    PubMed

    Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen

    2011-11-22

    The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch(-2), ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns.

  11. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature

    PubMed Central

    Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen

    2011-01-01

    The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527

  12. A review of emerging non-volatile memory (NVM) technologies and applications

    NASA Astrophysics Data System (ADS)

    Chen, An

    2016-11-01

    This paper will review emerging non-volatile memory (NVM) technologies, with the focus on phase change memory (PCM), spin-transfer-torque random-access-memory (STTRAM), resistive random-access-memory (RRAM), and ferroelectric field-effect-transistor (FeFET) memory. These promising NVM devices are evaluated in terms of their advantages, challenges, and applications. Their performance is compared based on reported parameters of major industrial test chips. Memory selector devices and cell structures are discussed. Changing market trends toward low power (e.g., mobile, IoT) and data-centric applications create opportunities for emerging NVMs. High-performance and low-cost emerging NVMs may simplify memory hierarchy, introduce non-volatility in logic gates and circuits, reduce system power, and enable novel architectures. Storage-class memory (SCM) based on high-density NVMs could fill the performance and density gap between memory and storage. Some unique characteristics of emerging NVMs can be utilized for novel applications beyond the memory space, e.g., neuromorphic computing, hardware security, etc. In the beyond-CMOS era, emerging NVMs have the potential to fulfill more important functions and enable more efficient, intelligent, and secure computing systems.

  13. Role of Al2O3 thin layer on improving the resistive switching properties of Ta5Si3-based conductive bridge random accesses memory device

    NASA Astrophysics Data System (ADS)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2018-04-01

    Ta5Si3-based conductive bridge random access memory (CBRAM) devices have been investigated to improve their resistive switching characteristics for their application in future nonvolatile memory technology. Changes in the switching characteristics by the addition of a thin Al2O3 layer of different thicknesses at the bottom electrode interface of a Ta5Si3-based CBRAM devices have been studied. The double-layer device with a 1 nm Al2O3 layer has shown improved resistive switching characteristics over the single layer one with a high on/off resistance ratio of 102, high endurance of more than 104 cycles, and good retention for more than 105 s at the temperature of 130 °C. The higher thermal conductivity of Al2O3 over Ta5Si3 has been attributed to the enhanced switching properties of the double-layer devices.

  14. Radiation Testing, Characterization and Qualification Challenges for Modern Microelectronics and Photonics Devices and Technologies

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    At GOMAC 2007, we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art memory technologies. This included FLASH non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs). In this presentation, we extend this discussion in device packaging and complexity as well as single event upset (SEU) mechanisms using several technology areas as examples including: system-on-a-chip (SOC) devices and photonic or fiber optic systems. The underlying goal is intended to provoke thought for understanding the limitations and interpretation of radiation testing results.

  15. Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Sun, Jonathan Z.

    2016-10-01

    Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.

  16. Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope

    NASA Astrophysics Data System (ADS)

    Kundhikanjana, W.; Yang, Y.; Tanga, Q.; Zhang, K.; Lai, K.; Ma, Y.; Kelly, M. A.; Li, X. X.; Shen, Z.-X.

    2013-02-01

    Real-space mapping of doping concentration in semiconductor devices is of great importance for the microelectronics industry. In this work, a scanning microwave impedance microscope (MIM) is employed to resolve the local conductivity distribution of a static random access memory sample. The MIM electronics can also be adjusted to the scanning capacitance microscopy (SCM) mode, allowing both measurements on the same region. Interestingly, while the conventional SCM images match the nominal device structure, the MIM results display certain unexpected features, which originate from a thin layer of the dopant ions penetrating through the protective layers during the heavy implantation steps.

  17. Investigation of resistive switching behaviours in WO3-based RRAM devices

    NASA Astrophysics Data System (ADS)

    Li, Ying-Tao; Long, Shi-Bing; Lü, Hang-Bing; Liu, Qi; Wang, Qin; Wang, Yan; Zhang, Sen; Lian, Wen-Tai; Liu, Su; Liu, Ming

    2011-01-01

    In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.

  18. Multi-step resistive switching behavior of Li-doped ZnO resistance random access memory device controlled by compliance current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chun-Cheng; Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan; Tang, Jian-Fu

    2016-06-28

    The multi-step resistive switching (RS) behavior of a unipolar Pt/Li{sub 0.06}Zn{sub 0.94}O/Pt resistive random access memory (RRAM) device is investigated. It is found that the RRAM device exhibits normal, 2-, 3-, and 4-step RESET behaviors under different compliance currents. The transport mechanism within the device is investigated by means of current-voltage curves, in-situ transmission electron microscopy, and electrochemical impedance spectroscopy. It is shown that the ion transport mechanism is dominated by Ohmic behavior under low electric fields and the Poole-Frenkel emission effect (normal RS behavior) or Li{sup +} ion diffusion (2-, 3-, and 4-step RESET behaviors) under high electric fields.

  19. Using DMA for copying performance counter data to memory

    DOEpatents

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.

    2012-09-25

    A device for copying performance counter data includes hardware path that connects a direct memory access (DMA) unit to a plurality of hardware performance counters and a memory device. Software prepares an injection packet for the DMA unit to perform copying, while the software can perform other tasks. In one aspect, the software that prepares the injection packet runs on a processing core other than the core that gathers the hardware performance counter data.

  20. Using DMA for copying performance counter data to memory

    DOEpatents

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W

    2013-12-31

    A device for copying performance counter data includes hardware path that connects a direct memory access (DMA) unit to a plurality of hardware performance counters and a memory device. Software prepares an injection packet for the DMA unit to perform copying, while the software can perform other tasks. In one aspect, the software that prepares the injection packet runs on a processing core other than the core that gathers the hardware performance data.

  1. Low power consumption resistance random access memory with Pt/InOx/TiN structure

    NASA Astrophysics Data System (ADS)

    Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.; Tsai, Ming-Jinn

    2013-09-01

    In this study, the resistance switching characteristics of a resistive random access memory device with Pt/InOx/TiN structure is investigated. Unstable bipolar switching behavior is observed during the initial switching cycle, which then stabilizes after several switching cycles. Analyses indicate that the current conduction mechanism in the resistance state is dominated by Ohmic conduction. The decrease in electrical conductance can be attributed to the reduction of the cross-sectional area of the conduction path. Furthermore, the device exhibits low operation voltage and power consumption.

  2. Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Zeng, Fei; Li, Fan; Wang, Minjuan; Mao, Haijun; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-03-01

    The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications.The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06406b

  3. Physical principles and current status of emerging non-volatile solid state memories

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yang, C.-H.; Wen, J.

    2015-07-01

    Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for the next generation of data-storage devices based on a comparison of their performance. [Figure not available: see fulltext.

  4. Method for prefetching non-contiguous data structures

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Brewster, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-05-05

    A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processor only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple perfecting for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefect rather than some other predictive algorithm. This enables hardware to effectively prefect memory access patterns that are non-contiguous, but repetitive.

  5. Effect of Atomic Layer Depositions (ALD)-Deposited Titanium Oxide (TiO2) Thickness on the Performance of Zr40Cu35Al15Ni10 (ZCAN)/TiO2/Indium (In)-Based Resistive Random Access Memory (RRAM) Structures

    DTIC Science & Technology

    2015-08-01

    metal structures, memristors, resistive random access memory, RRAM, titanium dioxide, Zr40Cu35Al15Ni10, ZCAN, resistive memory, tunnel junction 16...TiO2 thickness ........................6 1 1. Introduction Resistive-switching memory elements based on metal-insulator-metal (MIM) diodes ...have attracted great interest due to their potential as components for simple, inexpensive, and high-density non-volatile storage devices. MIM diodes

  6. Design and Implementation of an MC68020-Based Educational Computer Board

    DTIC Science & Technology

    1989-12-01

    device and the other for a Macintosh personal computer. A stored program can be installed in 8K bytes Programmable Read Only Memory (PROM) to initialize...MHz. It includes four * Static Random Access Memory (SRAM) chips which provide a storage of 32K bytes. Two Programmable Array Logic (PAL) chips...device and the other for a Macintosh personal computer. A stored program can be installed in 8K bytes Programmable Read Only Memory (PROM) to

  7. Quantifying data retention of perpendicular spin-transfer-torque magnetic random access memory chips using an effective thermal stability factor method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Luc, E-mail: luc.thomas@headway.com; Jan, Guenole; Le, Son

    The thermal stability of perpendicular Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) devices is investigated at chip level. Experimental data are analyzed in the framework of the Néel-Brown model including distributions of the thermal stability factor Δ. We show that in the low error rate regime important for applications, the effect of distributions of Δ can be described by a single quantity, the effective thermal stability factor Δ{sub eff}, which encompasses both the median and the standard deviation of the distributions. Data retention of memory chips can be assessed accurately by measuring Δ{sub eff} as a function of device diameter andmore » temperature. We apply this method to show that 54 nm devices based on our perpendicular STT-MRAM design meet our 10 year data retention target up to 120 °C.« less

  8. Long-term reliable physically unclonable function based on oxide tunnel barrier breakdown on two-transistors two-magnetic-tunnel-junctions cell-based embedded spin transfer torque magnetoresistive random access memory

    NASA Astrophysics Data System (ADS)

    Takaya, Satoshi; Tanamoto, Tetsufumi; Noguchi, Hiroki; Ikegami, Kazutaka; Abe, Keiko; Fujita, Shinobu

    2017-04-01

    Among the diverse applications of spintronics, security for internet-of-things (IoT) devices is one of the most important. A physically unclonable function (PUF) with a spin device (spin transfer torque magnetoresistive random access memory, STT-MRAM) is presented. Oxide tunnel barrier breakdown is used to realize long-term stability for PUFs. A secure PUF has been confirmed by evaluating the Hamming distance of a 32-bit STT-MRAM-PUF fabricated using 65 nm CMOS technology.

  9. A study on carbon nanotube bridge as a electromechanical memory device

    NASA Astrophysics Data System (ADS)

    Kang, Jeong Won; Ha Lee, Jun; Joo Lee, Hoong; Hwang, Ho Jung

    2005-04-01

    A nanoelectromechanical (NEM) nanotube random access memory (NRAM) device based on carbon nanotube (CNT) was investigated using atomistic simulations. For the CNT-based NEM memory, the mechanical properties of the CNT-bridge and van der Waals interactions between the CNT-bridge and substrate were very important. The critical amplitude of the CNT-bridge was 16% of the length of the CNT-bridge. As molecular dynamics time increased, the CNT-bridge went to the steady state under the electrostatic force with the damping of the potential and the kinetic energies of the CNT-bridge. The interatomic interaction between the CNT-bridge and substrate, value of the CNT-bridge slack, and damping rate of the CNT-bridge were very important for the operation of the NEM memory device as a nonvolatile memory.

  10. Signal and noise extraction from analog memory elements for neuromorphic computing.

    PubMed

    Gong, N; Idé, T; Kim, S; Boybat, I; Sebastian, A; Narayanan, V; Ando, T

    2018-05-29

    Dense crossbar arrays of non-volatile memory (NVM) can potentially enable massively parallel and highly energy-efficient neuromorphic computing systems. The key requirements for the NVM elements are continuous (analog-like) conductance tuning capability and switching symmetry with acceptable noise levels. However, most NVM devices show non-linear and asymmetric switching behaviors. Such non-linear behaviors render separation of signal and noise extremely difficult with conventional characterization techniques. In this study, we establish a practical methodology based on Gaussian process regression to address this issue. The methodology is agnostic to switching mechanisms and applicable to various NVM devices. We show tradeoff between switching symmetry and signal-to-noise ratio for HfO 2 -based resistive random access memory. Then, we characterize 1000 phase-change memory devices based on Ge 2 Sb 2 Te 5 and separate total variability into device-to-device variability and inherent randomness from individual devices. These results highlight the usefulness of our methodology to realize ideal NVM devices for neuromorphic computing.

  11. Non-tables look-up search algorithm for efficient H.264/AVC context-based adaptive variable length coding decoding

    NASA Astrophysics Data System (ADS)

    Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong

    2014-09-01

    In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.

  12. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices

    NASA Astrophysics Data System (ADS)

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-01

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07377d

  13. In-memory interconnect protocol configuration registers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kevin Y.; Roberts, David A.

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mappingmore » decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.« less

  14. High-performance flexible resistive memory devices based on Al2O3:GeOx composite

    NASA Astrophysics Data System (ADS)

    Behera, Bhagaban; Maity, Sarmistha; Katiyar, Ajit K.; Das, Samaresh

    2018-05-01

    In this study a resistive switching random access memory device using Al2O3:GeOx composite thin films on flexible substrate is presented. A bipolar switching characteristic was observed for the co-sputter deposited Al2O3:GeOx composite thin films. Al/Al2O3:GeOx/ITO/PET memory device shows excellent ON/OFF ratio (∼104) and endurance (>500 cycles). GeOx nanocrystals embedded in the Al2O3 matrix have been found to play a significant role in enhancing the switching characteristics by facilitating oxygen vacancy formation. Mechanical endurance was retained even after several bending. The conduction mechanism of the device was qualitatively discussed by considering Ohmic and SCLC conduction. This flexible device is a potential candidate for next-generation electronics device.

  15. Ames Lab 101: Ultrafast Magnetic Switching

    ScienceCinema

    Wang; Jigang

    2018-01-01

    Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.

  16. Microcontroller for automation application

    NASA Technical Reports Server (NTRS)

    Cooper, H. W.

    1975-01-01

    The description of a microcontroller currently being developed for automation application was given. It is basically an 8-bit microcomputer with a 40K byte random access memory/read only memory, and can control a maximum of 12 devices through standard 15-line interface ports.

  17. Hydrogen doping in HfO{sub 2} resistance change random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, D.; Magyari-Köpe, B.; Nishi, Y.

    2016-01-25

    The structures and energies of hydrogen-doped monoclinic hafnium dioxide were calculated using density-functional theory. The electronic interactions are described within the LDA + U formalism, where on-site Coulomb corrections are applied to the 5d orbital electrons of Hf atoms and 2p orbital electrons of the O atoms. The effects of charge state, defect-defect interactions, and hydrogenation are investigated and compared with experiment. It is found that hydrogenation of HfO{sub 2} resistance-change random access memory devices energetically stabilizes the formation of oxygen vacancies and conductive vacancy filaments through multiple mechanisms, leading to improved switching characteristic and device yield.

  18. Implementing a bubble memory hierarchy system

    NASA Technical Reports Server (NTRS)

    Segura, R.; Nichols, C. D.

    1979-01-01

    This paper reports on implementation of a magnetic bubble memory in a two-level hierarchial system. The hierarchy used a major-minor loop device and RAM under microprocessor control. Dynamic memory addressing, dual bus primary memory, and hardware data modification detection are incorporated in the system to minimize access time. It is the objective of the system to incorporate the advantages of bipolar memory with that of bubble domain memory to provide a smart, optimal memory system which is easy to interface and independent of user's system.

  19. Realization of the Switching Mechanism in Resistance Random Access Memory™ Devices: Structural and Electronic Properties Affecting Electron Conductivity in a Hafnium Oxide-Electrode System Through First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Aspera, Susan Meñez; Kasai, Hideaki; Kishi, Hirofumi; Awaya, Nobuyoshi; Ohnishi, Shigeo; Tamai, Yukio

    2013-01-01

    The resistance random access memory (RRAM™) device, with its electrically induced nanoscale resistive switching capacity, has attracted considerable attention as a future nonvolatile memory device. Here, we propose a mechanism of switching based on an oxygen vacancy migration-driven change in the electronic properties of the transition-metal oxide film stimulated by set pulse voltages. We used density functional theory-based calculations to account for the effect of oxygen vacancies and their migration on the electronic properties of HfO2 and Ta/HfO2 systems, thereby providing a complete explanation of the RRAM™ switching mechanism. Furthermore, computational results on the activation energy barrier for oxygen vacancy migration were found to be consistent with the set and reset pulse voltage obtained from experiments. Understanding this mechanism will be beneficial to effectively realizing the materials design in these devices.

  20. Composition-dependent nanoelectronics of amido-phenazines: non-volatile RRAM and WORM memory devices.

    PubMed

    Maiti, Dilip K; Debnath, Sudipto; Nawaz, Sk Masum; Dey, Bapi; Dinda, Enakhi; Roy, Dipanwita; Ray, Sudipta; Mallik, Abhijit; Hussain, Syed A

    2017-10-17

    A metal-free three component cyclization reaction with amidation is devised for direct synthesis of DFT-designed amido-phenazine derivative bearing noncovalent gluing interactions to fabricate organic nanomaterials. Composition-dependent organic nanoelectronics for nonvolatile memory devices are discovered using mixed phenazine-stearic acid (SA) nanomaterials. We discovered simultaneous two different types of nonmagnetic and non-moisture sensitive switching resistance properties of fabricated devices utilizing mixed organic nanomaterials: (a) sample-1(8:SA = 1:3) is initially off, turning on at a threshold, but it does not turn off again with the application of any voltage, and (b) sample-2 (8:SA = 3:1) is initially off, turning on at a sharp threshold and off again by reversing the polarity. No negative differential resistance is observed in either type. These samples have different device implementations: sample-1 is attractive for write-once-read-many-times memory devices, such as novel non-editable database, archival memory, electronic voting, radio frequency identification, sample-2 is useful for resistive-switching random access memory application.

  1. A graphene integrated highly transparent resistive switching memory device

    NASA Astrophysics Data System (ADS)

    Dugu, Sita; Pavunny, Shojan P.; Limbu, Tej B.; Weiner, Brad R.; Morell, Gerardo; Katiyar, Ram S.

    2018-05-01

    We demonstrate the hybrid fabrication process of a graphene integrated highly transparent resistive random-access memory (TRRAM) device. The indium tin oxide (ITO)/Al2O3/graphene nonvolatile memory device possesses a high transmittance of >82% in the visible region (370-700 nm) and exhibits stable and non-symmetrical bipolar switching characteristics with considerably low set and reset voltages (<±1 V). The vertical two-terminal device shows an excellent resistive switching behavior with a high on-off ratio of ˜5 × 103. We also fabricated a ITO/Al2O3/Pt device and studied its switching characteristics for comparison and a better understanding of the ITO/Al2O3/graphene device characteristics. The conduction mechanisms in high and low resistance states were analyzed, and the observed polarity dependent resistive switching is explained based on electro-migration of oxygen ions.

  2. Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications.

    PubMed

    Linn, E; Menzel, S; Ferch, S; Waser, R

    2013-09-27

    Dynamic physics-based models of resistive switching devices are of great interest for the realization of complex circuits required for memory, logic and neuromorphic applications. Here, we apply such a model of an electrochemical metallization (ECM) cell to complementary resistive switches (CRSs), which are favorable devices to realize ultra-dense passive crossbar arrays. Since a CRS consists of two resistive switching devices, it is straightforward to apply the dynamic ECM model for CRS simulation with MATLAB and SPICE, enabling study of the device behavior in terms of sweep rate and series resistance variations. Furthermore, typical memory access operations as well as basic implication logic operations can be analyzed, revealing requirements for proper spike and level read operations. This basic understanding facilitates applications of massively parallel computing paradigms required for neuromorphic applications.

  3. Solution-processed Al-chelated gelatin for highly transparent non-volatile memory applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yu-Chi; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw

    2015-03-23

    Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550 nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>10{sup 5}), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect ofmore » Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.« less

  4. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices.

    PubMed

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-21

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.

  5. Rapid recovery from transient faults in the fault-tolerant processor with fault-tolerant shared memory

    NASA Technical Reports Server (NTRS)

    Harper, Richard E.; Butler, Bryan P.

    1990-01-01

    The Draper fault-tolerant processor with fault-tolerant shared memory (FTP/FTSM), which is designed to allow application tasks to continue execution during the memory alignment process, is described. Processor performance is not affected by memory alignment. In addition, the FTP/FTSM incorporates a hardware scrubber device to perform the memory alignment quickly during unused memory access cycles. The FTP/FTSM architecture is described, followed by an estimate of the time required for channel reintegration.

  6. Resistive switching mechanism of ZnO/ZrO2-stacked resistive random access memory device annealed at 300 °C by sol-gel method with forming-free operation

    NASA Astrophysics Data System (ADS)

    Jian, Wen-Yi; You, Hsin-Chiang; Wu, Cheng-Yen

    2018-01-01

    In this work, we used a sol-gel process to fabricate a ZnO-ZrO2-stacked resistive switching random access memory (ReRAM) device and investigated its switching mechanism. The Gibbs free energy in ZnO, which is higher than that in ZrO2, facilitates the oxidation and reduction reactions of filaments in the ZnO layer. The current-voltage (I-V) characteristics of the device revealed a forming-free operation because of nonlattice oxygen in the oxide layer. In addition, the device can operate under bipolar or unipolar conditions with a reset voltage of 0 to ±2 V, indicating that in this device, Joule heating dominates at reset and the electric field dominates in the set process. Furthermore, the characteristics reveal why the fabricated device exhibits a greater discrete distribution phenomenon for the set voltage than for the reset voltage. These results will enable the fabrication of future ReRAM devices with double-layer oxide structures with improved characteristics.

  7. Dynamic-load-enabled ultra-low power multiple-state RRAM devices.

    PubMed

    Yang, Xiang; Chen, I-Wei

    2012-01-01

    Bipolar resistance-switching materials allowing intermediate states of wide-varying resistance values hold the potential of drastically reduced power for non-volatile memory. To exploit this potential, we have introduced into a nanometallic resistance-random-access-memory (RRAM) device an asymmetric dynamic load, which can reliably lower switching power by orders of magnitude. The dynamic load is highly resistive during on-switching allowing access to the highly resistive intermediate states; during off-switching the load vanishes to enable switching at low voltage. This approach is entirely scalable and applicable to other bipolar RRAM with intermediate states. The projected power is 12 nW for a 100 × 100 nm(2) device and 500 pW for a 10 × 10 nm(2) device. The dynamic range of the load can be increased to allow power to be further decreased by taking advantage of the exponential decay of wave-function in a newly discovered nanometallic random material, reaching possibly 1 pW for a 10×10 nm(2) nanometallic RRAM device.

  8. Optically Addressable, Ferroelectric Memory With NDRO

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1994-01-01

    For readout, memory cells addressed via on-chip semiconductor lasers. Proposed thin-film ferroelectric memory device features nonvolatile storage, optically addressable, nondestructive readout (NDRO) with fast access, and low vulnerability to damage by ionizing radiation. Polarization switched during recording and erasure, but not during readout. As result, readout would not destroy contents of memory, and operating life in specific "read-intensive" applications increased up to estimated 10 to the 16th power cycles.

  9. Ga-doped indium oxide nanowire phase change random access memory cells

    NASA Astrophysics Data System (ADS)

    Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo

    2014-02-01

    Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.

  10. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations

    NASA Astrophysics Data System (ADS)

    Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan

    2018-01-01

    Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.

  11. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  12. Better Organic Ternary Memory Performance through Self-Assembled Alkyltrichlorosilane Monolayers on Indium Tin Oxide (ITO) Surfaces.

    PubMed

    Hou, Xiang; Cheng, Xue-Feng; Zhou, Jin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-11-16

    Recently, surface engineering of the indium tin oxide (ITO) electrode of sandwich-like organic electric memory devices was found to effectively improve their memory performances. However, there are few methods to modify the ITO substrates. In this paper, we have successfully prepared alkyltrichlorosilane self-assembled monolayers (SAMs) on ITO substrates, and resistive random access memory devices are fabricated on these surfaces. Compared to the unmodified ITO substrates, organic molecules (i.e., 2-((4-butylphenyl)amino)-4-((4-butylphenyl)iminio)-3-oxocyclobut-1-en-1-olate, SA-Bu) grown on these SAM-modified ITO substrates have rougher surface morphologies but a smaller mosaicity. The organic layer on the SAM-modified ITO further aged to eliminate the crystalline phase diversity. In consequence, the ternary memory yields are effectively improved to approximately 40-47 %. Our results suggest that the insertion of alkyltrichlorosilane self-assembled monolayers could be an efficient method to improve the performance of organic memory devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bistable resistive memory behavior in gelatin-CdTe quantum dot composite film

    NASA Astrophysics Data System (ADS)

    Vallabhapurapu, Sreedevi; Rohom, Ashwini; Chaure, N. B.; Du, Shengzhi; Srinivasan, Ananthakrishnan

    2018-05-01

    Bistable memory behavior has been observed for the first time in gelatin type A thin film dispersed with functionalized CdTe quantum dots. The two terminal device with the polymer nanocomposite layer sandwiched between an indium tin oxide coated glass plate and an aluminium top electrode performs as a bistable resistive random access memory module. Butterfly shaped (O-shaped with a hysteresis in forward and reverse sweeps) current-voltage response is observed in this device. The conduction mechanism leading to the bistable electrical switching has been deduced to be a combination of ohmic and electron hopping.

  14. Operating systems. [of computers

    NASA Technical Reports Server (NTRS)

    Denning, P. J.; Brown, R. L.

    1984-01-01

    A counter operating system creates a hierarchy of levels of abstraction, so that at a given level all details concerning lower levels can be ignored. This hierarchical structure separates functions according to their complexity, characteristic time scale, and level of abstraction. The lowest levels include the system's hardware; concepts associated explicitly with the coordination of multiple tasks appear at intermediate levels, which conduct 'primitive processes'. Software semaphore is the mechanism controlling primitive processes that must be synchronized. At higher levels lie, in rising order, the access to the secondary storage devices of a particular machine, a 'virtual memory' scheme for managing the main and secondary memories, communication between processes by way of a mechanism called a 'pipe', access to external input and output devices, and a hierarchy of directories cataloguing the hardware and software objects to which access must be controlled.

  15. Eight microprocessor-based instrument data systems in the Galileo Orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Barry, R. C.

    1980-01-01

    Instrument data systems consist of a microprocessor, 3K bytes of Read Only Memory and 3K bytes of Random Access Memory. It interfaces with the spacecraft data bus through an isolated user interface with a direct memory access bus adaptor, and/or parallel data from instrument devices such as registers, buffers, analog to digital converters, multiplexers, and solid state sensors. These data systems support the spacecraft hardware and software communication protocol, decode and process instrument commands, generate continuous instrument operating modes, control the instrument mechanisms, acquire, process, format, and output instrument science data.

  16. Indium-oxide nanoparticles for RRAM devices compatible with CMOS back-end-off-line

    NASA Astrophysics Data System (ADS)

    León Pérez, Edgar A. A.; Guenery, Pierre-Vincent; Abouzaid, Oumaïma; Ayadi, Khaled; Brottet, Solène; Moeyaert, Jérémy; Labau, Sébastien; Baron, Thierry; Blanchard, Nicholas; Baboux, Nicolas; Militaru, Liviu; Souifi, Abdelkader

    2018-05-01

    We report on the fabrication and characterization of Resistive Random Access Memory (RRAM) devices based on nanoparticles in MIM structures. Our approach is based on the use of indium oxide (In2O3) nanoparticles embedded in a dielectric matrix using CMOS-full-compatible fabrication processes in view of back-end-off-line integration for non-volatile memory (NVM) applications. A bipolar switching behavior has been observed using current-voltage measurements (I-V) for all devices. Very high ION/IOFF ratios have been obtained up to 108. Our results provide insights for further integration of In2O3 nanoparticles-based devices for NVM applications. He is currently a Postdoctoral Researcher in the Institute of Nanotechnologies of Lyon (INL), INSA de Lyon, France, in the Electronics Department. His current research include indium oxide nanoparticles for non-volatile memory applications, and the integrations of these devices in CMOS BEOL.

  17. Filamentary model in resistive switching materials

    NASA Astrophysics Data System (ADS)

    Jasmin, Alladin C.

    2017-12-01

    The need for next generation computer devices is increasing as the demand for efficient data processing increases. The amount of data generated every second also increases which requires large data storage devices. Oxide-based memory devices are being studied to explore new research frontiers thanks to modern advances in nanofabrication. Various oxide materials are studied as active layers for non-volatile memory. This technology has potential application in resistive random-access-memory (ReRAM) and can be easily integrated in CMOS technologies. The long term perspective of this research field is to develop devices which mimic how the brain processes information. To realize such application, a thorough understanding of the charge transport and switching mechanism is important. A new perspective in the multistate resistive switching based on current-induced filament dynamics will be discussed. A simple equivalent circuit of the device gives quantitative information about the nature of the conducting filament at different resistance states.

  18. Short-term memory to long-term memory transition in a nanoscale memristor.

    PubMed

    Chang, Ting; Jo, Sung-Hyun; Lu, Wei

    2011-09-27

    "Memory" is an essential building block in learning and decision-making in biological systems. Unlike modern semiconductor memory devices, needless to say, human memory is by no means eternal. Yet, forgetfulness is not always a disadvantage since it releases memory storage for more important or more frequently accessed pieces of information and is thought to be necessary for individuals to adapt to new environments. Eventually, only memories that are of significance are transformed from short-term memory into long-term memory through repeated stimulation. In this study, we show experimentally that the retention loss in a nanoscale memristor device bears striking resemblance to memory loss in biological systems. By stimulating the memristor with repeated voltage pulses, we observe an effect analogous to memory transition in biological systems with much improved retention time accompanied by additional structural changes in the memristor. We verify that not only the shape or the total number of stimuli is influential, but also the time interval between stimulation pulses (i.e., the stimulation rate) plays a crucial role in determining the effectiveness of the transition. The memory enhancement and transition of the memristor device was explained from the microscopic picture of impurity redistribution and can be qualitatively described by the same equations governing biological memories. © 2011 American Chemical Society

  19. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  20. Conductance Quantization in Resistive Random Access Memory

    NASA Astrophysics Data System (ADS)

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-10-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  1. Conductance Quantization in Resistive Random Access Memory.

    PubMed

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-12-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  2. A polymer/semiconductor write-once read-many-times memory

    NASA Astrophysics Data System (ADS)

    Möller, Sven; Perlov, Craig; Jackson, Warren; Taussig, Carl; Forrest, Stephen R.

    2003-11-01

    Organic devices promise to revolutionize the extent of, and access to, electronics by providing extremely inexpensive, lightweight and capable ubiquitous components that are printed onto plastic, glass or metal foils. One key component of an electronic circuit that has thus far received surprisingly little attention is an organic electronic memory. Here we report an architecture for a write-once read-many-times (WORM) memory, based on the hybrid integration of an electrochromic polymer with a thin-film silicon diode deposited onto a flexible metal foil substrate. WORM memories are desirable for ultralow-cost permanent storage of digital images, eliminating the need for slow, bulky and expensive mechanical drives used in conventional magnetic and optical memories. Our results indicate that the hybrid organic/inorganic memory device is a reliable means for achieving rapid, large-scale archival data storage. The WORM memory pixel exploits a mechanism of current-controlled, thermally activated un-doping of a two-component electrochromic conducting polymer.

  3. Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited)

    NASA Astrophysics Data System (ADS)

    Ando, K.; Fujita, S.; Ito, J.; Yuasa, S.; Suzuki, Y.; Nakatani, Y.; Miyazaki, T.; Yoda, H.

    2014-05-01

    Most parts of present computer systems are made of volatile devices, and the power to supply them to avoid information loss causes huge energy losses. We can eliminate this meaningless energy loss by utilizing the non-volatile function of advanced spin-transfer torque magnetoresistive random-access memory (STT-MRAM) technology and create a new type of computer, i.e., normally off computers. Critical tasks to achieve normally off computers are implementations of STT-MRAM technologies in the main memory and low-level cache memories. STT-MRAM technology for applications to the main memory has been successfully developed by using perpendicular STT-MRAMs, and faster STT-MRAM technologies for applications to the cache memory are now being developed. The present status of STT-MRAMs and challenges that remain for normally off computers are discussed.

  4. Automatic disease diagnosis using optimised weightless neural networks for low-power wearable devices

    PubMed Central

    Edla, Damodar Reddy; Kuppili, Venkatanareshbabu; Dharavath, Ramesh; Beechu, Nareshkumar Reddy

    2017-01-01

    Low-power wearable devices for disease diagnosis are used at anytime and anywhere. These are non-invasive and pain-free for the better quality of life. However, these devices are resource constrained in terms of memory and processing capability. Memory constraint allows these devices to store a limited number of patterns and processing constraint provides delayed response. It is a challenging task to design a robust classification system under above constraints with high accuracy. In this Letter, to resolve this problem, a novel architecture for weightless neural networks (WNNs) has been proposed. It uses variable sized random access memories to optimise the memory usage and a modified binary TRIE data structure for reducing the test time. In addition, a bio-inspired-based genetic algorithm has been employed to improve the accuracy. The proposed architecture is experimented on various disease datasets using its software and hardware realisations. The experimental results prove that the proposed architecture achieves better performance in terms of accuracy, memory saving and test time as compared to standard WNNs. It also outperforms in terms of accuracy as compared to conventional neural network-based classifiers. The proposed architecture is a powerful part of most of the low-power wearable devices for the solution of memory, accuracy and time issues. PMID:28868148

  5. Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode

    NASA Astrophysics Data System (ADS)

    Jang, Byung Chul; Seong, Hyejeong; Kim, Jong Yun; Koo, Beom Jun; Kim, Sung Kyu; Yang, Sang Yoon; Gap Im, Sung; Choi, Sung-Yool

    2015-12-01

    Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices.

  6. Nanoscale chemical state analysis of resistance random access memory device reacting with Ti

    NASA Astrophysics Data System (ADS)

    Shima, Hisashi; Nakano, Takashi; Akinaga, Hiro

    2010-05-01

    The thermal stability of the resistance random access memory material in the reducing atmosphere at the elevated temperature was improved by the addition of Ti. The unipolar resistance switching before and after the postdeposition annealing (PDA) process at 400 °C was confirmed in Pt/CoO/Ti(5 nm)/Pt device, while the severe degradation of the initial resistance occurs in the Pt/CoO/Pt and Pt/CoO/Ti(50 nm)/Pt devices. By investigating the chemical bonding states of Co, O, and Ti using electron energy loss spectroscopy combined with transmission electron microscopy, it was revealed that excess Ti induces the formation of metallic Co, while the thermal stability was improved by trace Ti. Moreover, it was indicated that the filamentary conduction path can be thermally induced after PDA in the oxide layer by analyzing electrical properties of the degraded devices. The adjustment of the reducing elements is quite essential in order to participate in their profits.

  7. A Novel Ni/WOX/W Resistive Random Access Memory with Excellent Retention and Low Switching Current

    NASA Astrophysics Data System (ADS)

    Chien, Wei-Chih; Chen, Yi-Chou; Lee, Feng-Ming; Lin, Yu-Yu; Lai, Erh-Kun; Yao, Yeong-Der; Gong, Jeng; Horng, Sheng-Fu; Yeh, Chiao-Wen; Tsai, Shih-Chang; Lee, Ching-Hsiung; Huang, Yu-Kai; Chen, Chun-Fu; Kao, Hsiao-Feng; Shih, Yen-Hao; Hsieh, Kuang-Yeu; Lu, Chih-Yuan

    2011-04-01

    The behavior of WOX resistive random access memory (ReRAM) is a strong function of the top electrode material, which controls the conduction mechanism and the forming process. When using a top electrode with low work function, the current conduction is limited by space charges. On the other hand, the mechanism becomes thermionic emission for devices with a high work function top electrode. These (thermionic) devices are also found to have higher initial resistance, reduced forming current, and larger resistance window. Based on these insights and considering the compatibility to complementary metal-oxide-semiconductor (CMOS) process, we proposed to use Ni as the top electrode for high performance WOX ReRAM devices. The new Ni/WOX/W device can be switched at a low current density less than 8×105 A/cm2, with RESET/SET resistance ratio greater than 100, and extremely good data retention of more than 300 years at 85 °C.

  8. A multilevel nonvolatile magnetoelectric memory

    NASA Astrophysics Data System (ADS)

    Shen, Jianxin; Cong, Junzhuang; Shang, Dashan; Chai, Yisheng; Shen, Shipeng; Zhai, Kun; Sun, Young

    2016-09-01

    The coexistence and coupling between magnetization and electric polarization in multiferroic materials provide extra degrees of freedom for creating next-generation memory devices. A variety of concepts of multiferroic or magnetoelectric memories have been proposed and explored in the past decade. Here we propose a new principle to realize a multilevel nonvolatile memory based on the multiple states of the magnetoelectric coefficient (α) of multiferroics. Because the states of α depends on the relative orientation between magnetization and polarization, one can reach different levels of α by controlling the ratio of up and down ferroelectric domains with external electric fields. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure confirm that the states of α can be well controlled between positive and negative by applying selective electric fields. Consequently, two-level, four-level, and eight-level nonvolatile memory devices are demonstrated at room temperature. This kind of multilevel magnetoelectric memory retains all the advantages of ferroelectric random access memory but overcomes the drawback of destructive reading of polarization. In contrast, the reading of α is nondestructive and highly efficient in a parallel way, with an independent reading coil shared by all the memory cells.

  9. Self-Compliant Bipolar Resistive Switching in SiN-Based Resistive Switching Memory

    PubMed Central

    Kim, Sungjun; Chang, Yao-Feng; Kim, Min-Hwi; Kim, Tae-Hyeon; Kim, Yoon; Park, Byung-Gook

    2017-01-01

    Here, we present evidence of self-compliant and self-rectifying bipolar resistive switching behavior in Ni/SiNx/n+ Si and Ni/SiNx/n++ Si resistive-switching random access memory devices. The Ni/SiNx/n++ Si device’s Si bottom electrode had a higher dopant concentration (As ion > 1019 cm−3) than the Ni/SiNx/n+ Si device; both unipolar and bipolar resistive switching behaviors were observed for the higher dopant concentration device owing to a large current overshoot. Conversely, for the device with the lower dopant concentration (As ion < 1018 cm−3), self-rectification and self-compliance were achieved owing to the series resistance of the Si bottom electrode. PMID:28772819

  10. Impact of AlO x layer on resistive switching characteristics and device-to-device uniformity of bilayered HfO x -based resistive random access memory devices

    NASA Astrophysics Data System (ADS)

    Chuang, Kai-Chi; Chung, Hao-Tung; Chu, Chi-Yan; Luo, Jun-Dao; Li, Wei-Shuo; Li, Yi-Shao; Cheng, Huang-Chung

    2018-06-01

    An AlO x layer was deposited on HfO x , and bilayered dielectric films were found to confine the formation locations of conductive filaments (CFs) during the forming process and then improve device-to-device uniformity. In addition, the Ti interposing layer was also adopted to facilitate the formation of oxygen vacancies. As a result, the resistive random access memory (RRAM) device with TiN/Ti/AlO x (1 nm)/HfO x (6 nm)/TiN stack layers demonstrated excellent device-to-device uniformity although it achieved slightly larger resistive switching characteristics, which were forming voltage (V Forming) of 2.08 V, set voltage (V Set) of 1.96 V, and reset voltage (V Reset) of ‑1.02 V, than the device with TiN/Ti/HfO x (6 nm)/TiN stack layers. However, the device with a thicker 2-nm-thick AlO x layer showed worse uniformity than the 1-nm-thick one. It was attributed to the increased oxygen atomic percentage in the bilayered dielectric films of the 2-nm-thick one. The difference in oxygen content showed that there would be less oxygen vacancies to form CFs. Therefore, the random growth of CFs would become severe and the device-to-device uniformity would degrade.

  11. Resistive switching characteristics of HfO2-based memory devices on flexible plastics.

    PubMed

    Han, Yong; Cho, Kyoungah; Park, Sukhyung; Kim, Sangsig

    2014-11-01

    In this study, we examine the characteristics of HfO2-based resistive switching random access memory (ReRAM) devices on flexible plastics. The Pt/HfO2/Au ReRAM devices exhibit the unipolar resistive switching behaviors caused by the conducting filaments. From the Auger depth profiles of the HfO2 thin film, it is confirmed that the relatively lower oxygen content in the interface of the bottom electrode is responsible for the resistive switching by oxygen vacancies. And the unipolar resistive switching behaviors are analyzed from the C-V characteristics in which negative and positive capacitances are measured in the low-resistance state and the high-resistance state, respectively. The devices have a high on/off ratio of 10(4) and the excellent retention properties even after a continuous bending test of two thousand cycles. The correlation between the device size and the memory characteristics is investigated as well. A relatively smaller-sized device having a higher on/off ratio operates at a higher voltage than a relatively larger-sized device.

  12. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    PubMed Central

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-01-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced. PMID:27834352

  13. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic.

    PubMed

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-11

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  14. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    NASA Astrophysics Data System (ADS)

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  15. Mobile computing in critical care.

    PubMed

    Lapinsky, Stephen E

    2007-03-01

    Handheld computing devices are increasingly used by health care workers, and offer a mobile platform for point-of-care information access. Improved technology, with larger memory capacity, higher screen resolution, faster processors, and wireless connectivity has broadened the potential roles for these devices in critical care. In addition to the personal information management functions, handheld computers have been used to access reference information, management guidelines and pharmacopoeias as well as to track the educational experience of trainees. They can act as an interface with a clinical information system, providing rapid access to patient information. Despite their popularity, these devices have limitations related to their small size, and acceptance by physicians has not been uniform. In the critical care environment, the risk of transmitting microorganisms by such a portable device should always be considered.

  16. Review of radiation effects on ReRAM devices and technology

    NASA Astrophysics Data System (ADS)

    Gonzalez-Velo, Yago; Barnaby, Hugh J.; Kozicki, Michael N.

    2017-08-01

    A review of the ionizing radiation effects on resistive random access memory (ReRAM) technology and devices is presented in this article. The review focuses on vertical devices exhibiting bipolar resistance switching, devices that have already exhibited interesting properties and characteristics for memory applications and, in particular, for non-volatile memory applications. Non-volatile memories are important devices for any type of electronic and embedded system, as they are for space applications. In such applications, specific environmental issues related to the existence of cosmic rays and Van Allen radiation belts around the Earth contribute to specific failure mechanisms related to the energy deposition induced by such ionizing radiation. Such effects are important in non-volatile memory as the current leading technology, i.e. flash-based technology, is sensitive to the total ionizing dose (TID) and single-event effects. New technologies such as ReRAM, if competing with or complementing the existing non-volatile area of memories from the point of view of performance, also have to exhibit great reliability for use in radiation environments such as space. This has driven research on the radiation effects of such ReRAM technology, on both the conductive-bridge RAM as well as the valence-change memories, or OxRAM variants of the technology. Initial characterizations of ReRAM technology showed a high degree of resilience to TID, developing researchers’ interest in characterizing such resilience as well as investigating the cause of such behavior. The state of the art of such research is reviewed in this article.

  17. Design, processing, and testing of lsi arrays for space station

    NASA Technical Reports Server (NTRS)

    Lile, W. R.; Hollingsworth, R. J.

    1972-01-01

    The design of a MOS 256-bit Random Access Memory (RAM) is discussed. Technological achievements comprise computer simulations that accurately predict performance; aluminum-gate COS/MOS devices including a 256-bit RAM with current sensing; and a silicon-gate process that is being used in the construction of a 256-bit RAM with voltage sensing. The Si-gate process increases speed by reducing the overlap capacitance between gate and source-drain, thus reducing the crossover capacitance and allowing shorter interconnections. The design of a Si-gate RAM, which is pin-for-pin compatible with an RCA bulk silicon COS/MOS memory (type TA 5974), is discussed in full. The Integrated Circuit Tester (ICT) is limited to dc evaluation, but the diagnostics and data collecting are under computer control. The Silicon-on-Sapphire Memory Evaluator (SOS-ME, previously called SOS Memory Exerciser) measures power supply drain and performs a minimum number of tests to establish operation of the memory devices. The Macrodata MD-100 is a microprogrammable tester which has capabilities of extensive testing at speeds up to 5 MHz. Beam-lead technology was successfully integrated with SOS technology to make a simple device with beam leads. This device and the scribing are discussed.

  18. Improvement of Bipolar Switching Properties of Gd:SiOx RRAM Devices on Indium Tin Oxide Electrode by Low-Temperature Supercritical CO2 Treatment.

    PubMed

    Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M

    2016-12-01

    Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices were also observed. In addition, the initial metallic filament-forming model analyses and conduction transferred mechanism in switching resistance properties of the RRAM devices were verified and explained. Finally, the electrical reliability and retention properties of the Gd:SiO2 RRAM devices for low-resistance state (LRS)/high-resistance state (HRS) in different switching cycles were also measured for applications in nonvolatile random memory devices.

  19. A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Bard, Christopher M.; Dorelli, John C.

    2014-02-01

    We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of ≈126 for a 10242 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.

  20. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide

    NASA Astrophysics Data System (ADS)

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 × 10-13-1.0 × 10-14 S cm-1. The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 1010. Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 1011. The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  1. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide.

    PubMed

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 x 10(-13)-1.0 x 10(-14) S cm(-1). The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 10(10). Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 10(11). The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  2. Lowering data retention voltage in static random access memory array by post fabrication self-improvement of cell stability by multiple stress application

    NASA Astrophysics Data System (ADS)

    Mizutani, Tomoko; Takeuchi, Kiyoshi; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro

    2018-04-01

    We propose a new version of the post fabrication static random access memory (SRAM) self-improvement technique, which utilizes multiple stress application. It is demonstrated that, using a device matrix array (DMA) test element group (TEG) with intrinsic channel fully depleted (FD) silicon-on-thin-buried-oxide (SOTB) six-transistor (6T) SRAM cells fabricated by the 65 nm technology, the lowering of data retention voltage (DRV) is more effectively achieved than using the previously proposed single stress technique.

  3. An Authentication and Key Management Mechanism for Resource Constrained Devices in IEEE 802.11-based IoT Access Networks.

    PubMed

    Kim, Ki-Wook; Han, Youn-Hee; Min, Sung-Gi

    2017-09-21

    Many Internet of Things (IoT) services utilize an IoT access network to connect small devices with remote servers. They can share an access network with standard communication technology, such as IEEE 802.11ah. However, an authentication and key management (AKM) mechanism for resource constrained IoT devices using IEEE 802.11ah has not been proposed as yet. We therefore propose a new AKM mechanism for an IoT access network, which is based on IEEE 802.11 key management with the IEEE 802.1X authentication mechanism. The proposed AKM mechanism does not require any pre-configured security information between the access network domain and the IoT service domain. It considers the resource constraints of IoT devices, allowing IoT devices to delegate the burden of AKM processes to a powerful agent. The agent has sufficient power to support various authentication methods for the access point, and it performs cryptographic functions for the IoT devices. Performance analysis shows that the proposed mechanism greatly reduces computation costs, network costs, and memory usage of the resource-constrained IoT device as compared to the existing IEEE 802.11 Key Management with the IEEE 802.1X authentication mechanism.

  4. An Authentication and Key Management Mechanism for Resource Constrained Devices in IEEE 802.11-based IoT Access Networks

    PubMed Central

    Han, Youn-Hee; Min, Sung-Gi

    2017-01-01

    Many Internet of Things (IoT) services utilize an IoT access network to connect small devices with remote servers. They can share an access network with standard communication technology, such as IEEE 802.11ah. However, an authentication and key management (AKM) mechanism for resource constrained IoT devices using IEEE 802.11ah has not been proposed as yet. We therefore propose a new AKM mechanism for an IoT access network, which is based on IEEE 802.11 key management with the IEEE 802.1X authentication mechanism. The proposed AKM mechanism does not require any pre-configured security information between the access network domain and the IoT service domain. It considers the resource constraints of IoT devices, allowing IoT devices to delegate the burden of AKM processes to a powerful agent. The agent has sufficient power to support various authentication methods for the access point, and it performs cryptographic functions for the IoT devices. Performance analysis shows that the proposed mechanism greatly reduces computation costs, network costs, and memory usage of the resource-constrained IoT device as compared to the existing IEEE 802.11 Key Management with the IEEE 802.1X authentication mechanism. PMID:28934152

  5. Eternal Sunshine of the Spotless Machine: Protecting Privacy with Ephemeral Channels

    PubMed Central

    Dunn, Alan M.; Lee, Michael Z.; Jana, Suman; Kim, Sangman; Silberstein, Mark; Xu, Yuanzhong; Shmatikov, Vitaly; Witchel, Emmett

    2014-01-01

    Modern systems keep long memories. As we show in this paper, an adversary who gains access to a Linux system, even one that implements secure deallocation, can recover the contents of applications’ windows, audio buffers, and data remaining in device drivers—long after the applications have terminated. We design and implement Lacuna, a system that allows users to run programs in “private sessions.” After the session is over, all memories of its execution are erased. The key abstraction in Lacuna is an ephemeral channel, which allows the protected program to talk to peripheral devices while making it possible to delete the memories of this communication from the host. Lacuna can run unmodified applications that use graphics, sound, USB input devices, and the network, with only 20 percentage points of additional CPU utilization. PMID:24755709

  6. Internal filament modulation in low-dielectric gap design for built-in selector-less resistive switching memory application

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chen; Lin, Chih-Yang; Huang, Hui-Chun; Kim, Sungjun; Fowler, Burt; Chang, Yao-Feng; Wu, Xiaohan; Xu, Gaobo; Chang, Ting-Chang; Lee, Jack C.

    2018-02-01

    Sneak path current is a severe hindrance for the application of high-density resistive random-access memory (RRAM) array designs. In this work, we demonstrate nonlinear (NL) resistive switching characteristics of a HfO x /SiO x -based stacking structure as a realization for selector-less RRAM devices. The NL characteristic was obtained and designed by optimizing the internal filament location with a low effective dielectric constant in the HfO x /SiO x structure. The stacking HfO x /SiO x -based RRAM device as the one-resistor-only memory cell is applicable without needing an additional selector device to solve the sneak path issue with a switching voltage of ~1 V, which is desirable for low-power operating in built-in nonlinearity crossbar array configurations.

  7. Surface Engineering of ITO Substrates to Improve the Memory Performance of an Asymmetric Conjugated Molecule with a Side Chain.

    PubMed

    Hou, Xiang; Cheng, Xue-Feng; Xiao, Xin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-09-05

    Organic multilevel random resistive access memory (RRAM) devices with an electrode/organic layer/electrode sandwich-like structure suffer from poor reproducibility, such as low effective ternary device yields and a wide threshold voltage distribution, and improvements through organic material renovation are rather limited. In contrast, engineering of the electrode surfaces rather than molecule design has been demonstrated to boost the performance of organic electronics effectively. Herein, we introduce surface engineering into organic multilevel RRAMs to enhance their ternary memory performance. A new asymmetric conjugated molecule composed of phenothiazine and malononitrile with a side chain (PTZ-PTZO-CN) was fabricated in an indium tin oxide (ITO)/PTZ-PTZO-CN/Al sandwich-like memory device. Modification of the ITO substrate with a phosphonic acid (PA) prior to device fabrication increased the ternary device yield (the ratio of effective ternary device) and narrowed the threshold voltage distribution. The crystallinity analysis revealed that PTZ-PTZO-CN grown on untreated ITO crystallized into two phases. After the surface engineering of ITO, this crystalline ambiguity was eliminated and a sole crystal phase was obtained that was the same as in the powder state. The unified crystal structure and improved grain mosaicity resulted in a lower threshold voltage and, therefore, a higher ternary device yield. Our result demonstrated that PA modification also improved the memory performance of an asymmetric conjugated molecule with a side chain. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Methods for resistive switching of memristors

    DOEpatents

    Mickel, Patrick R.; James, Conrad D.; Lohn, Andrew; Marinella, Matthew; Hsia, Alexander H.

    2016-05-10

    The present invention is directed generally to resistive random-access memory (RRAM or ReRAM) devices and systems, as well as methods of employing a thermal resistive model to understand and determine switching of such devices. In particular example, the method includes generating a power-resistance measurement for the memristor device and applying an isothermal model to the power-resistance measurement in order to determine one or more parameters of the device (e.g., filament state).

  9. S-Band POSIX Device Drivers for RTEMS

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.

    2011-01-01

    This is a set of POSIX device driver level abstractions in the RTEMS RTOS (Real-Time Executive for Multiprocessor Systems real-time operating system) to SBand radio hardware devices that have been instantiated in an FPGA (field-programmable gate array). These include A/D (analog-to-digital) sample capture, D/A (digital-to-analog) sample playback, PLL (phase-locked-loop) tuning, and PWM (pulse-width-modulation)-controlled gain. This software interfaces to Sband radio hardware in an attached Xilinx Virtex-2 FPGA. It uses plug-and-play device discovery to map memory to device IDs. Instead of interacting with hardware devices directly, using direct-memory mapped access at the application level, this driver provides an application programming interface (API) offering that easily uses standard POSIX function calls. This simplifies application programming, enables portability, and offers an additional level of protection to the hardware. There are three separate device drivers included in this package: sband_device (ADC capture and DAC playback), pll_device (RF front end PLL tuning), and pwm_device (RF front end AGC control).

  10. Analysis of the Bipolar Resistive Switching Behavior of a Biocompatible Glucose Film for Resistive Random Access Memory.

    PubMed

    Park, Sung Pyo; Tak, Young Jun; Kim, Hee Jun; Lee, Jin Hyeok; Yoo, Hyukjoon; Kim, Hyun Jae

    2018-06-01

    Resistive random access memory (RRAM) devices are fabricated through a simple solution process using glucose, which is a natural biomaterial for the switching layer of RRAM. The fabricated glucose-based RRAM device shows nonvolatile bipolar resistive switching behavior, with a switching window of 10 3 . In addition, the endurance and data retention capability of glucose-based RRAM exhibit stable characteristics up to 100 consecutive cycles and 10 4 s under constant voltage stress at 0.3 V. The interface between the top electrode and the glucose film is carefully investigated to demonstrate the bipolar switching mechanism of the glucose-based RRAM device. The glucose based-RRAM is also evaluated on a polyimide film to verify the possibility of a flexible platform. Additionally, a cross-bar array structure with a magnesium electrode is prepared on various substrates to assess the degradability and biocompatibility for the implantable bioelectronic devices, which are harmless and nontoxic to the human body. It is expected that this research can provide meaningful insights for developing the future bioelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hf layer thickness dependence of resistive switching characteristics of Ti/Hf/HfO2/Au resistive random access memory device

    NASA Astrophysics Data System (ADS)

    Nakajima, Ryo; Azuma, Atsushi; Yoshida, Hayato; Shimizu, Tomohiro; Ito, Takeshi; Shingubara, Shoso

    2018-06-01

    Resistive random access memory (ReRAM) devices with a HfO2 dielectric layer have been studied extensively owing to the good reproducibility of their SET/RESET switching properties. Furthermore, it was reported that a thin Hf layer next to a HfO2 layer stabilized switching properties because of the oxygen scavenging effect. In this work, we studied the Hf thickness dependence of the resistance switching characteristics of a Ti/Hf/HfO2/Au ReRAM device. It is found that the optimum Hf thickness is approximately 10 nm to obtain good reproducibility of SET/RESET voltages with a small RESET current. However, when the Hf thickness was very small (∼2 nm), the device failed after the first RESET process owing to the very large RESET current. In the case of a very thick Hf layer (∼20 nm), RESET did not occur owing to the formation of a leaky dielectric layer. We observed the occurrence of multiple resistance states in the RESET process of the device with a Hf thickness of 10 nm by increasing the RESET voltage stepwise.

  12. Manycore Performance-Portability: Kokkos Multidimensional Array Library

    DOE PAGES

    Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...

    2012-01-01

    Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less

  13. 77 FR 74222 - Certain Dynamic Random Access Memory and NAND Flash Memory Devices and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ..., California; Kingston Technology Co., Inc. of Fountain Valley, California; Logitek International S.A. (``LISA...: Clint Gerdine, Esq., Office of the General Counsel, U.S. International Trade Commission, 500 E Street SW....m. to 5:15 p.m.) in the Office of the Secretary, U.S. International Trade Commission, 500 E Street...

  14. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Dae Yun; Lee, Tae-Ho; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr

    The authors report an improvement in resistive switching (RS) characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO)-based resistive random access memory devices using hydrogen post-annealing. Because this a-IGZO thin film has oxygen off-stoichiometry in the form of deficient and excessive oxygen sites, the film properties can be improved by introducing hydrogen atoms through the annealing process. After hydrogen post-annealing, the device exhibited a stable bipolar RS, low-voltage set and reset operation, long retention (>10{sup 5 }s), good endurance (>10{sup 6} cycles), and a narrow distribution in each current state. The effect of hydrogen post-annealing is also investigated by analyzing the sample surface using X-raymore » photon spectroscopy and atomic force microscopy.« less

  15. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.

    PubMed

    Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming

    2016-08-25

    Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.

  16. Hafnia-based resistive switching devices for non-volatile memory applications and effects of gamma irradiation on device performance

    NASA Astrophysics Data System (ADS)

    Arun, N.; Kumar, K. Vinod; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.

    2018-04-01

    Non-volatile memory (NVM) devices were fabricated as a Metal- Insulator-Metal (MIM) structures by sandwiching Hafnium dioxide (HfO2) thin film in between two metal electrodes. The top and bottom metal electrodes were deposited by using the thermal evaporation, and the oxide layer was deposited by using the RF magnetron sputtering technique. The Resistive Random Access Memory (RRAM) device structures such as Ag/HfO2/Au/Si were fabricated and I-V characteristics for the pristine and gamma-irradiated devices with a dose 24 kGy were measured. Further we have studied the thermal annealing effects, in the range of 100°-400°C in a tubular furnace for the HfO2/Au/Si samples. The X-ray diffraction (XRD), Rutherford Backscattering Spectrometry (RBS), field emission-scanning electron microscopy (FESEM) analysis measurements were performed to determine the thickness, crystallinity and stoichiometry of these films. The electrical characteristics such as resistive switching, endurance, retention time and switching speed were measured by a semiconductor device analyser. The effects of gamma irradiation on the switching properties of these RRAM devices have been studied.

  17. Correlation of anomalous write error rates and ferromagnetic resonance spectrum in spin-transfer-torque-magnetic-random-access-memory devices containing in-plane free layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evarts, Eric R.; Rippard, William H.; Pufall, Matthew R.

    In a small fraction of magnetic-tunnel-junction-based magnetic random-access memory devices with in-plane free layers, the write-error rates (WERs) are higher than expected on the basis of the macrospin or quasi-uniform magnetization reversal models. In devices with increased WERs, the product of effective resistance and area, tunneling magnetoresistance, and coercivity do not deviate from typical device properties. However, the field-swept, spin-torque, ferromagnetic resonance (FS-ST-FMR) spectra with an applied DC bias current deviate significantly for such devices. With a DC bias of 300 mV (producing 9.9 × 10{sup 6} A/cm{sup 2}) or greater, these anomalous devices show an increase in the fraction of the power presentmore » in FS-ST-FMR modes corresponding to higher-order excitations of the free-layer magnetization. As much as 70% of the power is contained in higher-order modes compared to ≈20% in typical devices. Additionally, a shift in the uniform-mode resonant field that is correlated with the magnitude of the WER anomaly is detected at DC biases greater than 300 mV. These differences in the anomalous devices indicate a change in the micromagnetic resonant mode structure at high applied bias.« less

  18. A Simple GPU-Accelerated Two-Dimensional MUSCL-Hancock Solver for Ideal Magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Bard, Christopher; Dorelli, John C.

    2013-01-01

    We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of approx. = 126 for a sq 1024 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.

  19. Tri-state resistive switching characteristics of MnO/Ta2O5 resistive random access memory device by a controllable reset process

    NASA Astrophysics Data System (ADS)

    Lee, N. J.; Kang, T. S.; Hu, Q.; Lee, T. S.; Yoon, T.-S.; Lee, H. H.; Yoo, E. J.; Choi, Y. J.; Kang, C. J.

    2018-06-01

    Tri-state resistive switching characteristics of bilayer resistive random access memory devices based on manganese oxide (MnO)/tantalum oxide (Ta2O5) have been studied. The current–voltage (I–V) characteristics of the Ag/MnO/Ta2O5/Pt device show tri-state resistive switching (RS) behavior with a high resistance state (HRS), intermediate resistance state (IRS), and low resistance state (LRS), which are controlled by the reset process. The MnO/Ta2O5 film shows bipolar RS behavior through the formation and rupture of conducting filaments without the forming process. The device shows reproducible and stable RS both from the HRS to the LRS and from the IRS to the LRS. In order to elucidate the tri-state RS mechanism in the Ag/MnO/Ta2O5/Pt device, transmission electron microscope (TEM) images are measured in the LRS, IRS and HRS. White lines like dendrites are observed in the Ta2O5 film in both the LRS and the IRS. Poole–Frenkel conduction, space charge limited conduction, and Ohmic conduction are proposed as the dominant conduction mechanisms for the Ag/MnO/Ta2O5/Pt device based on the obtained I–V characteristics and TEM images.

  20. Sustained Resistive Switching in a Single Cu:7,7,8,8-tetracyanoquinodimethane Nanowire: A Promising Material for Resistive Random Access Memory

    PubMed Central

    Basori, Rabaya; Kumar, Manoranjan; Raychaudhuri, Arup K.

    2016-01-01

    We report a new type of sustained and reversible unipolar resistive switching in a nanowire device made from a single strand of Cu:7,7,8,8-tetracyanoquinodimethane (Cu:TCNQ) nanowire (diameter <100 nm) that shows high ON/OFF ratio (~103), low threshold voltage of switching (~3.5 V) and large cycling endurance (>103). This indicates a promising material for high density resistive random access memory (ReRAM) device integration. Switching is observed in Cu:TCNQ single nanowire devices with two different electrode configuration: symmetric (C-Pt/Cu:TCNQ/C-Pt) and asymmetric (Cu/Cu:TCNQ/C-Pt), where contacts connecting the nanowire play an important role. This report also developed a method of separating out the electrode and material contributions in switching using metal-semiconductor-metal (MSM) device model along with a direct 4-probe resistivity measurement of the nanowire in the OFF as well as ON state. The device model was followed by a phenomenological model of current transport through the nanowire device which shows that lowering of potential barrier at the contacts likely occur due to formation of Cu filaments in the interface between nanowire and contact electrodes. We obtain quantitative agreement of numerically analyzed results with the experimental switching data. PMID:27245099

  1. Switching behavior of resistive change memory using oxide nanowires

    NASA Astrophysics Data System (ADS)

    Aono, Takashige; Sugawa, Kosuke; Shimizu, Tomohiro; Shingubara, Shoso; Takase, Kouichi

    2018-06-01

    Resistive change random access memory (ReRAM), which is expected to be the next-generation nonvolatile memory, often has wide switching voltage distributions due to many kinds of conductive filaments. In this study, we have tried to suppress the distribution through the structural restriction of the filament-forming area using NiO nanowires. The capacitor with Ni metal nanowires whose surface is oxidized showed good switching behaviors with narrow distributions. The knowledge gained from our study will be very helpful in producing practical ReRAM devices.

  2. Temperature induced complementary switching in titanium oxide resistive random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, D., E-mail: dpanda@nist.edu; Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan; Simanjuntak, F. M.

    2016-07-15

    On the way towards high memory density and computer performance, a considerable development in energy efficiency represents the foremost aspiration in future information technology. Complementary resistive switch consists of two antiserial resistive switching memory (RRAM) elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption. Here we present a titanium oxide based complementary RRAM (CRRAM) device with Pt top and TiN bottom electrode. A subsequent post metal annealing at 400°C induces CRRAM. Forming voltage of 4.3 V is required for this device tomore » initiate switching process. The same device also exhibiting bipolar switching at lower compliance current, Ic <50 μA. The CRRAM device have high reliabilities. Formation of intermediate titanium oxi-nitride layer is confirmed from the cross-sectional HRTEM analysis. The origin of complementary switching mechanism have been discussed with AES, HRTEM analysis and schematic diagram. This paper provides valuable data along with analysis on the origin of CRRAM for the application in nanoscale devices.« less

  3. Resistive switching characteristics of solution-processed Al-Zn-Sn-O films annealed by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Wan; Baek, Il-Jin; Cho, Won-Ju

    2018-02-01

    In this study, we employed microwave irradiation (MWI) at low temperature in the fabrication of solution-processed AlZnSnO (AZTO) resistive random access memory (ReRAM) devices with a structure of Ti/AZTO/Pt and compared the memory characteristics with the conventional thermal annealing (CTA) process. Typical bipolar resistance switching (BRS) behavior was observed in AZTO ReRAM devices treated with as-deposited (as-dep), CTA and MWI. In the low resistance state, the Ohmic conduction mechanism describes the dominant conduction of these devices. On the other hand, the trap-controlled space charge limited conduction (SCLC) mechanism predominates in the high resistance state. The AZTO ReRAM devices processed with MWI showed larger memory windows, uniform distribution of resistance state and operating voltage, stable DC durability (>103 cycles) and stable retention characteristics (>104 s). In addition, the AZTO ReRAM devices treated with MWI exhibited multistage storage characteristics by modulating the amplitude of the reset bias, and eight distinct resistance levels were obtained with stable retention capability.

  4. Ion beam synthesis of indium-oxide nanocrystals for improvement of oxide resistive random-access memories

    NASA Astrophysics Data System (ADS)

    Bonafos, C.; Benassayag, G.; Cours, R.; Pécassou, B.; Guenery, P. V.; Baboux, N.; Militaru, L.; Souifi, A.; Cossec, E.; Hamga, K.; Ecoffey, S.; Drouin, D.

    2018-01-01

    We report on the direct ion beam synthesis of a delta-layer of indium oxide nanocrystals (In2O3-NCs) in silica matrices by using ultra-low energy ion implantation. The formation of the indium oxide phase can be explained by (i) the affinity of indium with oxygen, (ii) the generation of a high excess of oxygen recoils generated by the implantation process in the region where the nanocrystals are formed and (iii) the proximity of the indium-based nanoparticles with the free surface and oxidation from the air. Taking advantage of the selective diffusivity of implanted indium in SiO2 with respect to Si3N4, In2O3-NCs have been inserted in the SiO2 switching oxide of micrometric planar oxide-based resistive random access memory (OxRAM) devices fabricated using the nanodamascene process. Preliminary electrical measurements show switch voltage from high to low resistance state. The devices with In2O3-NCs have been cycled 5 times with identical operating voltages and RESET current meanwhile no switch has been observed for non implanted devices. This first measurement of switching is very promising for the concept of In2O3-NCs based OxRAM memories.

  5. A CMOS Compatible, Forming Free TaO x ReRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohn, A. J.; Stevens, J. E.; Mickel, P. R.

    2013-08-31

    Resistive random access memory (ReRAM) has become a promising candidate for next-generation high-performance non-volatile memory that operates by electrically tuning resistance states via modulating vacancy concentrations. Here, we demonstrate a wafer-scale process for resistive switching in tantalum oxide that is completely CMOS compatible. The resulting devices are forming-free and with greater than 1x10 5 cycle endurance.

  6. I/O performance evaluation of a Linux-based network-attached storage device

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoyan; Dong, Yonggui; Wu, Jinglian; Jia, Huibo; Feng, Guanping

    2002-09-01

    In a Local Area Network (LAN), clients are permitted to access the files on high-density optical disks via a network server. But the quality of read service offered by the conventional server is not satisfied because of the multiple functions on the server and the overmuch caller. This paper develops a Linux-based Network-Attached Storage (NAS) server. The Operation System (OS), composed of an optimized kernel and a miniaturized file system, is stored in a flash memory. After initialization, the NAS device is connected into the LAN. The administrator and users could configure the access the server through the web page respectively. In order to enhance the quality of access, the management of buffer cache in file system is optimized. Some benchmark programs are peformed to evaluate the I/O performance of the NAS device. Since data recorded in optical disks are usually for reading accesses, our attention is focused on the reading throughput of the device. The experimental results indicate that the I/O performance of our NAS device is excellent.

  7. Organic-Inorganic Hybrid Halide Perovskites for Memories, Transistors, and Artificial Synapses.

    PubMed

    Choi, Jaeho; Han, Ji Su; Hong, Kootak; Kim, Soo Young; Jang, Ho Won

    2018-05-30

    Fascinating characteristics of halide perovskites (HPs), which cannot be seen in conventional semiconductors and metal oxides, have boosted the application of HPs in electronic devices beyond optoelectronics such as solar cells, photodetectors, and light-emitting diodes. Here, recent advances in HP-based memory and logic devices such as resistive-switching memories (i.e., resistive random access memory (RRAM) or memristors), transistors, and artificial synapses are reviewed, focusing on inherently exotic properties of HPs: i) tunable bandgap, ii) facile majority carrier control, iii) fast ion migration, and iv) superflexibility. Various fabrication techniques of HP thin films from solution-based methods to vacuum processes are introduced. Up-to-date work in the field, emphasizing the compositional flexibility of HPs, suggest that HPs are promising candidates for next-generation electronic devices. Taking advantages of their unique electrical properties, low-cost and low-temperature synthesis, and compositional and mechanical flexibility, HPs have enormous potential to provide a new platform for future electronic devices and explosively intensive studies will pave the way in finding new HP materials beyond conventional silicon-based semiconductors to keep up with "More-than-Moore" times. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Crystal that remembers: several ways to utilize nanocrystals in resistive switching memory

    NASA Astrophysics Data System (ADS)

    Banerjee, Writam; Liu, Qi; Long, Shibing; Lv, Hangbing; Liu, Ming

    2017-08-01

    The attractive usability of quantum phenomena in futuristic devices is possible by using zero-dimensional systems like nanocrystals (NCs). The performance of nonvolatile flash memory devices has greatly benefited from the use of NCs over recent decades. The quantum abilities of NCs have been used to improve the reliability of flash devices. Its appeal is extended to the design of emerging devices such as resistive random-access memory (RRAM), a technology where the use of silicon is optional. Here, we are going to review the recent progress in the design, characterization, and utilization of NCs in RRAM devices. We will first introduce the physical design of the RRAM devices using NCs and the improvement of electrical performance in NC-RRAM over conventional ones. In particular, special care has been taken to review the ways of development provided by the NCs in the RRAM devices. In a broad sense, the NCs can play a charge trapping role in the NC-RRAM structure or it can be responsible for the localization and improvement of the stability of the conductive filament or it can play a part in the formation of the conductive filament chain by the NC migration under applied bias. Finally, the scope of NCs in the RRAM devices has also been discussed.

  9. Resistive switching characteristics of manganese oxide thin film and nanoparticle assembly hybrid devices

    NASA Astrophysics Data System (ADS)

    Abbas, Haider; Park, Mi Ra; Abbas, Yawar; Hu, Quanli; Kang, Tae Su; Yoon, Tae-Sik; Kang, Chi Jung

    2018-06-01

    Improved resistive switching characteristics are demonstrated in a hybrid device with Pt/Ti/MnO (thin film)/MnO (nanoparticle)/Pt structure. The hybrid devices of MnO thin film and nanoparticle assembly were fabricated. MnO nanoparticles with an average diameter of ∼30 nm were chemically synthesized and assembled as a monolayer on a Pt bottom electrode. A MnO thin film of ∼40 nm thickness was deposited on the nanoparticle assembly to form the hybrid structure. Resistive switching could be induced by the formation and rupture of conducting filaments in the hybrid oxide layers. The hybrid device exhibited very stable unipolar switching with good endurance and retention characteristics. It showed a larger and stable memory window with a uniform distribution of SET and RESET voltages. Moreover, the conduction mechanisms of ohmic conduction, space-charge-limited conduction, Schottky emission, and Poole–Frenkel emission have been investigated as possible conduction mechanisms for the switching of the devices. Using MnO nanoparticles in the thin film and nanoparticle heterostructures enabled the appropriate control of resistive random access memory (RRAM) devices and markedly improved their memory characteristics.

  10. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    PubMed Central

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-01-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption. PMID:27312225

  11. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  12. Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle

    NASA Astrophysics Data System (ADS)

    Jin, Zhiwen; Liu, Guo; Wang, Jizheng

    2013-05-01

    Uniform Au nanoparticles (NPs) are formed by thermally depositing nominal 2-nm thick Au film on a 10-nm thick polyimide film formed on a Al electrode, and then covered by a thin polymer semiconductor film, which acts as an energy barrier for electrons to be injected from the other Al electrode (on top of polymer film) into the Au NPs, which are energetically electron traps in such a resistive random access memory (RRAM) device. The Au NPs based RRAM device exhibits estimated retention time of 104 s, cycle times of more than 100, and ON-OFF ratio of 102 to 103. The carrier transport properties are also analyzed by fitting the measured I-V curves with several conduction models.

  13. Face classification using electronic synapses

    NASA Astrophysics Data System (ADS)

    Yao, Peng; Wu, Huaqiang; Gao, Bin; Eryilmaz, Sukru Burc; Huang, Xueyao; Zhang, Wenqiang; Zhang, Qingtian; Deng, Ning; Shi, Luping; Wong, H.-S. Philip; Qian, He

    2017-05-01

    Conventional hardware platforms consume huge amount of energy for cognitive learning due to the data movement between the processor and the off-chip memory. Brain-inspired device technologies using analogue weight storage allow to complete cognitive tasks more efficiently. Here we present an analogue non-volatile resistive memory (an electronic synapse) with foundry friendly materials. The device shows bidirectional continuous weight modulation behaviour. Grey-scale face classification is experimentally demonstrated using an integrated 1024-cell array with parallel online training. The energy consumption within the analogue synapses for each iteration is 1,000 × (20 ×) lower compared to an implementation using Intel Xeon Phi processor with off-chip memory (with hypothetical on-chip digital resistive random access memory). The accuracy on test sets is close to the result using a central processing unit. These experimental results consolidate the feasibility of analogue synaptic array and pave the way toward building an energy efficient and large-scale neuromorphic system.

  14. Face classification using electronic synapses.

    PubMed

    Yao, Peng; Wu, Huaqiang; Gao, Bin; Eryilmaz, Sukru Burc; Huang, Xueyao; Zhang, Wenqiang; Zhang, Qingtian; Deng, Ning; Shi, Luping; Wong, H-S Philip; Qian, He

    2017-05-12

    Conventional hardware platforms consume huge amount of energy for cognitive learning due to the data movement between the processor and the off-chip memory. Brain-inspired device technologies using analogue weight storage allow to complete cognitive tasks more efficiently. Here we present an analogue non-volatile resistive memory (an electronic synapse) with foundry friendly materials. The device shows bidirectional continuous weight modulation behaviour. Grey-scale face classification is experimentally demonstrated using an integrated 1024-cell array with parallel online training. The energy consumption within the analogue synapses for each iteration is 1,000 × (20 ×) lower compared to an implementation using Intel Xeon Phi processor with off-chip memory (with hypothetical on-chip digital resistive random access memory). The accuracy on test sets is close to the result using a central processing unit. These experimental results consolidate the feasibility of analogue synaptic array and pave the way toward building an energy efficient and large-scale neuromorphic system.

  15. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Feng, Song-Lin

    2009-11-01

    A three-dimensional finite element model for phase change random access memory (PCRAM) is established for comprehensive electrical and thermal analysis during SET operation. The SET behaviours of the heater addition structure (HS) and the ring-type contact in bottom electrode (RIB) structure are compared with each other. There are two ways to reduce the RESET current, applying a high resistivity interfacial layer and building a new device structure. The simulation results indicate that the variation of SET current with different power reduction ways is little. This study takes the RESET and SET operation current into consideration, showing that the RIB structure PCRAM cell is suitable for future devices with high heat efficiency and high-density, due to its high heat efficiency in RESET operation.

  16. Design and measurement of fully digital ternary content addressable memory using ratioless static random access memory cells and hierarchical-AND matching comparator

    NASA Astrophysics Data System (ADS)

    Nishikata, Daisuke; Ali, Mohammad Alimudin Bin Mohd; Hosoda, Kento; Matsumoto, Hiroshi; Nakamura, Kazuyuki

    2018-04-01

    A 36-bit × 32-entry fully digital ternary content addressable memory (TCAM) using the ratioless static random access memory (RL-SRAM) technology and fully complementary hierarchical-AND matching comparators (HAMCs) was developed. Since its fully complementary and digital operation enables the effect of device variabilities to be avoided, it can operate with a quite low supply voltage. A test chip incorporating a conventional TCAM and a proposed 24-transistor ratioless TCAM (RL-TCAM) cells and HAMCs was developed using a 0.18 µm CMOS process. The minimum operating voltage of 0.25 V of the developed RL-TCAM, which is less than half of that of the conventional TCAM, was measured via the conventional CMOS push–pull output buffers with the level-shifting and flipping technique using optimized pull-up voltage and resistors.

  17. Professionals' views on the use of smartphone technology to support children and adolescents with memory impairment due to acquired brain injury.

    PubMed

    Plackett, Ruth; Thomas, Sophie; Thomas, Shirley

    2017-04-01

    Purpose To identify from a health-care professionals' perspective whether smartphones are used by children and adolescents with acquired brain injury as memory aids; what factors predict smartphone use and what barriers prevent the use of smartphones as memory aids by children and adolescents. Method A cross-sectional online survey was undertaken with 88 health-care professionals working with children and adolescents with brain injury. Results Children and adolescents with brain injury were reported to use smartphones as memory aids by 75% of professionals. However, only 42% of professionals helped their clients to use smartphones. The only factor that significantly predicted reported smartphone use was the professionals' positive attitudes toward assistive technology. Several barriers to using smartphones as memory aids were identified, including the poor accessibility of devices and cost of devices. Conclusion Many children and adolescents with brain injury are already using smartphones as memory aids but this is often not facilitated by professionals. Improving the attitudes of professionals toward using smartphones as assistive technology could help to increase smartphone use in rehabilitation. Implications for Rehabilitation Smartphones could be incorporated into rehabilitation programs for young people with brain injury as socially acceptable compensatory aids. Further training and support for professionals on smartphones as compensatory aids could increase professionals' confidence and attitudes in facilitating the use of smartphones as memory aids. Accessibility could be enhanced by the development of a smartphone application specifically designed to be used by young people with brain injury.

  18. Design of a magnetic-tunnel-junction-oriented nonvolatile lookup table circuit with write-operation-minimized data shifting

    NASA Astrophysics Data System (ADS)

    Suzuki, Daisuke; Hanyu, Takahiro

    2018-04-01

    A magnetic-tunnel-junction (MTJ)-oriented nonvolatile lookup table (LUT) circuit, in which a low-power data-shift function is performed by minimizing the number of write operations in MTJ devices is proposed. The permutation of the configuration memory cell for read/write access is performed as opposed to conventional direct data shifting to minimize the number of write operations, which results in significant write energy savings in the data-shift function. Moreover, the hardware cost of the proposed LUT circuit is small since the selector is shared between read access and write access. In fact, the power consumption in the data-shift function and the transistor count are reduced by 82 and 52%, respectively, compared with those in a conventional static random-access memory-based implementation using a 90 nm CMOS technology.

  19. Focused Logistics, Joint Vision 2010: A Joint Logistics Roadmap

    DTIC Science & Technology

    2010-01-01

    AIS). AIT devices include bar codes for individual items, optical memory cards for multipacks and containers, radio frequency tags for containers and...Fortezza Card and Firewall technologies are being developed to prevent unau- thorized access. As for infrastructure, DISA has already made significant in...radio frequency tags and optical memory cards , to continuously update the JTAV database. By September 1998, DSS will be deployed in all wholesale

  20. Conductive bridging random access memory—materials, devices and applications

    NASA Astrophysics Data System (ADS)

    Kozicki, Michael N.; Barnaby, Hugh J.

    2016-11-01

    We present a review and primer on the subject of conductive bridging random access memory (CBRAM), a metal ion-based resistive switching technology, in the context of current research and the near-term requirements of the electronics industry in ultra-low energy devices and new computing paradigms. We include extensive discussions of the materials involved, the underlying physics and electrochemistry, the critical roles of ion transport and electrode reactions in conducting filament formation and device switching, and the electrical characteristics of the devices. Two general cation material systems are given—a fast ion chacogenide electrolyte and a lower ion mobility oxide ion conductor, and numerical examples are offered to enhance understanding of the operation of devices based on these. The effect of device conditioning on the activation energy for ion transport and consequent switching speed is discussed, as well as the mechanisms involved in the removal of the conducting bridge. The morphology of the filament and how this could be influenced by the solid electrolyte structure is described, and the electrical characteristics of filaments with atomic-scale constrictions are discussed. Consideration is also given to the thermal and mechanical environments within the devices. Finite element and compact modelling illustrations are given and aspects of CBRAM storage elements in memory circuits and arrays are included. Considerable emphasis is placed on the effects of ionizing radiation on CBRAM since this is important in various high reliability applications, and the potential uses of the devices in reconfigurable logic and neuromorphic systems is also discussed.

  1. Set statistics in conductive bridge random access memory device with Cu/HfO{sub 2}/Pt structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Meiyun; Long, Shibing, E-mail: longshibing@ime.ac.cn; Wang, Guoming

    2014-11-10

    The switching parameter variation of resistive switching memory is one of the most important challenges in its application. In this letter, we have studied the set statistics of conductive bridge random access memory with a Cu/HfO{sub 2}/Pt structure. The experimental distributions of the set parameters in several off resistance ranges are shown to nicely fit a Weibull model. The Weibull slopes of the set voltage and current increase and decrease logarithmically with off resistance, respectively. This experimental behavior is perfectly captured by a Monte Carlo simulator based on the cell-based set voltage statistics model and the Quantum Point Contact electronmore » transport model. Our work provides indications for the improvement of the switching uniformity.« less

  2. CMOS-compatible spintronic devices: a review

    NASA Astrophysics Data System (ADS)

    Makarov, Alexander; Windbacher, Thomas; Sverdlov, Viktor; Selberherr, Siegfried

    2016-11-01

    For many decades CMOS devices have been successfully scaled down to achieve higher speed and increased performance of integrated circuits at lower cost. Today’s charge-based CMOS electronics encounters two major challenges: power dissipation and variability. Spintronics is a rapidly evolving research and development field, which offers a potential solution to these issues by introducing novel ‘more than Moore’ devices. Spin-based magnetoresistive random-access memory (MRAM) is already recognized as one of the most promising candidates for future universal memory. Magnetic tunnel junctions, the main elements of MRAM cells, can also be used to build logic-in-memory circuits with non-volatile storage elements on top of CMOS logic circuits, as well as versatile compact on-chip oscillators with low power consumption. We give an overview of CMOS-compatible spintronics applications. First, we present a brief introduction to the physical background considering such effects as magnetoresistance, spin-transfer torque (STT), spin Hall effect, and magnetoelectric effects. We continue with a comprehensive review of the state-of-the-art spintronic devices for memory applications (STT-MRAM, domain wall-motion MRAM, and spin-orbit torque MRAM), oscillators (spin torque oscillators and spin Hall nano-oscillators), logic (logic-in-memory, all-spin logic, and buffered magnetic logic gate grid), sensors, and random number generators. Devices with different types of resistivity switching are analyzed and compared, with their advantages highlighted and challenges revealed. CMOS-compatible spintronic devices are demonstrated beginning with predictive simulations, proceeding to their experimental confirmation and realization, and finalized by the current status of application in modern integrated systems and circuits. We conclude the review with an outlook, where we share our vision on the future applications of the prospective devices in the area.

  3. Resistive RAMs as analog trimming elements

    NASA Astrophysics Data System (ADS)

    Aziza, H.; Perez, A.; Portal, J. M.

    2018-04-01

    This work investigates the use of Resistive Random Access Memory (RRAM) as an analog trimming device. The analog storage feature of the RRAM cell is evaluated and the ability of the RRAM to hold several resistance states is exploited to propose analog trim elements. To modulate the memory cell resistance, a series of short programming pulses are applied across the RRAM cell allowing a fine calibration of the RRAM resistance. The RRAM non volatility feature makes the analog device powers up already calibrated for the system in which the analog trimmed structure is embedded. To validate the concept, a test structure consisting of a voltage reference is evaluated.

  4. Protection of data carriers using secure optical codes

    NASA Astrophysics Data System (ADS)

    Peters, John A.; Schilling, Andreas; Staub, René; Tompkin, Wayne R.

    2006-02-01

    Smartcard technologies, combined with biometric-enabled access control systems, are required for many high-security government ID card programs. However, recent field trials with some of the most secure biometric systems have indicated that smartcards are still vulnerable to well equipped and highly motivated counterfeiters. In this paper, we present the Kinegram Secure Memory Technology which not only provides a first-level visual verification procedure, but also reinforces the existing chip-based security measures. This security concept involves the use of securely-coded data (stored in an optically variable device) which communicates with the encoded hashed information stored in the chip memory via a smartcard reader device.

  5. A stochastic simulation method for the assessment of resistive random access memory retention reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berco, Dan, E-mail: danny.barkan@gmail.com; Tseng, Tseung-Yuen, E-mail: tseng@cc.nctu.edu.tw

    This study presents an evaluation method for resistive random access memory retention reliability based on the Metropolis Monte Carlo algorithm and Gibbs free energy. The method, which does not rely on a time evolution, provides an extremely efficient way to compare the relative retention properties of metal-insulator-metal structures. It requires a small number of iterations and may be used for statistical analysis. The presented approach is used to compare the relative robustness of a single layer ZrO{sub 2} device with a double layer ZnO/ZrO{sub 2} one, and obtain results which are in good agreement with experimental data.

  6. Resistive Switching of Ta2O5-Based Self-Rectifying Vertical-Type Resistive Switching Memory

    NASA Astrophysics Data System (ADS)

    Ryu, Sungyeon; Kim, Seong Keun; Choi, Byung Joon

    2018-01-01

    To efficiently increase the capacity of resistive switching random-access memory (RRAM) while maintaining the same area, a vertical structure similar to a vertical NAND flash structure is needed. In addition, the sneak-path current through the half-selected neighboring memory cell should be mitigated by integrating a selector device with each RRAM cell. In this study, an integrated vertical-type RRAM cell and selector device was fabricated and characterized. Ta2O5 as the switching layer and TaOxNy as the selector layer were used to preliminarily study the feasibility of such an integrated device. To make the side contact of the bottom electrode with active layers, a thick Al2O3 insulating layer was placed between the Pt bottom electrode and the Ta2O5/TaOxNy stacks. Resistive switching phenomena were observed under relatively low currents (below 10 μA) in this vertical-type RRAM device. The TaOxNy layer acted as a nonlinear resistor with moderate nonlinearity. Its low-resistance-state and high-resistance-state were well retained up to 1000 s.

  7. Development of bubble memory recorder onboard Japan Earth Resources Satellite-1

    NASA Astrophysics Data System (ADS)

    Araki, Tsunehiko; Ishida, Chu; Ochiai, Kiyoshi; Nozue, Tatsuhiro; Tachibana, Kyozo; Yoshida, Kazutoshi

    The Bubble Memory Recorder (BMR) developed for use on the Earth Resources Satellite is described in terms of its design, capabilities, and functions. The specifications of the BMR are given listing memory capacity, functions, and interface types for data, command, and telemetry functions. The BMR has an emergency signal interface to provide contingency recording, and a satellite-separation signal interface can be turned on automatically by signal input. Data are stored in a novolatile memory device so that the memory is retained during power outages. The BMR is characterized by a capability for random access, nonvolatility, and a solid-state design that is useful for space operations since it does not disturb spacecraft attitude.

  8. An FPGA-Based Test-Bed for Reliability and Endurance Characterization of Non-Volatile Memory

    NASA Technical Reports Server (NTRS)

    Rao, Vikram; Patel, Jagdish; Patel, Janak; Namkung, Jeffrey

    2001-01-01

    Memory technologies are divided into two categories. The first category, nonvolatile memories, are traditionally used in read-only or read-mostly applications because of limited write endurance and slow write speed. These memories are derivatives of read only memory (ROM) technology, which includes erasable programmable ROM (EPROM), electrically-erasable programmable ROM (EEPROM), Flash, and more recent ferroelectric non-volatile memory technology. Nonvolatile memories are able to retain data in the absence of power. The second category, volatile memories, are random access memory (RAM) devices including SRAM and DRAM. Writing to these memories is fast and write endurance is unlimited, so they are most often used to store data that change frequently, but they cannot store data in the absence of power. Nonvolatile memory technologies with better future potential are FRAM, Chalcogenide, GMRAM, Tunneling MRAM, and Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) EEPROM.

  9. PIYAS-proceeding to intelligent service oriented memory allocation for flash based data centric sensor devices in wireless sensor networks.

    PubMed

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  10. Evaluation of Recent Technologies of Nonvolatile RAM

    NASA Astrophysics Data System (ADS)

    Nuns, Thierry; Duzellier, Sophie; Bertrand, Jean; Hubert, Guillaume; Pouget, Vincent; Darracq, FrÉdÉric; David, Jean-Pierre; Soonckindt, Sabine

    2008-08-01

    Two types of recent nonvolatile random access memories (NVRAM) were evaluated for radiation effects: total dose and single event upset and latch-up under heavy ions and protons. Complementary irradiation with a laser beam provides information on sensitive areas of the devices.

  11. Forming free and ultralow-power erase operation in atomically crystal TiO2 resistive switching

    NASA Astrophysics Data System (ADS)

    Dai, Yawei; Bao, Wenzhong; Hu, Linfeng; Liu, Chunsen; Yan, Xiao; Chen, Lin; Sun, Qingqing; Ding, Shijin; Zhou, Peng; Zhang, David Wei

    2017-06-01

    Two-dimensional layered materials (2DLMs) have attracted broad interest from fundamental sciences to industrial applications. Their applications in memory devices have been demonstrated, yet much still remains to explore optimal materials and device structure for practical application. In this work, a forming-free, bipolar resistive switching behavior are demonstrated in 2D TiO2-based resistive random access memory (RRAM). Physical adsorption method is adopted to achieve high quality, continuous 2D TiO2 network efficiently. The 2D TiO2 RRAM devices exhibit superior properties such as fast switching capability (20 ns of erase operation) and extremely low erase energy consumption (0.16 fJ). Furthermore, the resistive switching mechanism is attributed to the formation and rupture of oxygen vacancies-based percolation path in 2D TiO2 crystals. Our results pave the way for the implementation of high performance 2DLMs-based RRAM in the next generation non-volatile memory (NVM) application.

  12. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices.

    PubMed

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-25

    Crystal-amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier-lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13-0.6 MA cm(-2)) compared with the melt-quench strategy (∼50 MA cm(-2)). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation.

  13. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices

    PubMed Central

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-01

    Crystal–amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier–lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13–0.6 MA cm−2) compared with the melt-quench strategy (∼50 MA cm−2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation. PMID:26805748

  14. SRAM Based Re-programmable FPGA for Space Applications

    NASA Technical Reports Server (NTRS)

    Wang, J. J.; Sun, J. S.; Cronquist, B. E.; McCollum, J. L.; Speers, T. M.; Plants, W. C.; Katz, R. B.

    1999-01-01

    An SRAM (static random access memory)-based reprogrammable FPGA (field programmable gate array) is investigated for space applications. A new commercial prototype, named the RS family, was used as an example for the investigation. The device is fabricated in a 0.25 micrometers CMOS technology. Its architecture is reviewed to provide a better understanding of the impact of single event upset (SEU) on the device during operation. The SEU effect of different memories available on the device is evaluated. Heavy ion test data and SPICE simulations are used integrally to extract the threshold LET (linear energy transfer). Together with the saturation cross-section measurement from the layout, a rate prediction is done on each memory type. The SEU in the configuration SRAM is identified as the dominant failure mode and is discussed in detail. The single event transient error in combinational logic is also investigated and simulated by SPICE. SEU mitigation by hardening the memories and employing EDAC (error detection and correction) at the device level are presented. For the configuration SRAM (CSRAM) cell, the trade-off between resistor de-coupling and redundancy hardening techniques are investigated with interesting results. Preliminary heavy ion test data show no sign of SEL (single event latch-up). With regard to ionizing radiation effects, the increase in static leakage current (static I(sub CC)) measured indicates a device tolerance of approximately 50krad(Si).

  15. SIERRA - A 3-D device simulator for reliability modeling

    NASA Astrophysics Data System (ADS)

    Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.

    1989-05-01

    SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.

  16. Conductance switching in Ag(2)S devices fabricated by in situ sulfurization.

    PubMed

    Morales-Masis, M; van der Molen, S J; Fu, W T; Hesselberth, M B; van Ruitenbeek, J M

    2009-03-04

    We report a simple and reproducible method to fabricate switchable Ag(2)S devices. The alpha-Ag(2)S thin films are produced by a sulfurization process after silver deposition on an Si substrate. Structure and composition of the Ag(2)S are characterized using XRD and RBS. Our samples show semiconductor behaviour at low bias voltages, whereas they exhibit reproducible bipolar resistance switching at higher bias voltages. The transition between both types of behaviour is observed by hysteresis in the I-V curves, indicating decomposition of the Ag(2)S, increasing the Ag(+) ion mobility. The as-fabricated Ag(2)S samples are a good candidate for future solid state memory devices, as they show reproducible memory resistive properties and they are fabricated by an accessible and reliable method.

  17. Oxygen-ion-migration-modulated bipolar resistive switching and complementary resistive switching in tungsten/indium tin oxide/gold memory device

    NASA Astrophysics Data System (ADS)

    Wu, Xinghui; Zhang, Qiuhui; Cui, Nana; Xu, Weiwei; Wang, Kefu; Jiang, Wei; Xu, Qixing

    2018-06-01

    In this paper, we report our investigation of room-temperature-fabricated tungsten/indium tin oxide/gold (W/ITO/Au) resistive random access memory (RRAM), which exhibits asymmetric bipolar resistive switching (BRS) behavior. The device displays good write/erase endurance and data retention properties. The device shows complementary resistive switching (CRS) characteristics after controlling the compliance current. A WO x layer electrically formed at the W/ITO in the forming process. Mobile oxygen ions within ITO migrate toward the electrode/ITO interface and produce a semiconductor-like layer that acts as a free-carrier barrier. The CRS characteristic here can be elucidated in light of the evolution of an asymmetric free-carrier blocking layer at the electrode/ITO interface.

  18. SRAM As An Array Of Energetic-Ion Detectors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Lieneweg, Udo; Nixon, Robert H.

    1993-01-01

    Static random-access memory (SRAM) designed for use as array of energetic-ion detectors. Exploits well-known tendency of incident energetic ions to cause bit flips in cells of electronic memories. Design of ion-detector SRAM involves modifications of standard SRAM design to increase sensitivity to ions. Device fabricated by use of conventional complementary metal oxide/semiconductor (CMOS) processes. Potential uses include gas densimetry, position sensing, and measurement of cosmic-ray spectrum.

  19. Enhanced oxygen vacancy diffusion in Ta2O5 resistive memory devices due to infinitely adaptive crystal structure

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Stewart, Derek A.

    2016-04-01

    Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.

  20. Systems and methods for performing wireless financial transactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCown, Steven Harvey

    2012-07-03

    A secure computing module (SCM) is configured for connection with a host device. The SCM includes a processor for performing secure processing operations, a host interface for coupling the processor to the host device, and a memory connected to the processor wherein the processor logically isolates at least some of the memory from access by the host device. The SCM also includes a proximate-field wireless communicator connected to the processor to communicate with another SCM associated with another host device. The SCM generates a secure digital signature for a financial transaction package and communicates the package and the signature tomore » the other SCM using the proximate-field wireless communicator. Financial transactions are performed from person to person using the secure digital signature of each person's SCM and possibly message encryption. The digital signatures and transaction details are communicated to appropriate financial organizations to authenticate the transaction parties and complete the transaction.« less

  1. Resistive switching characteristics and mechanisms in silicon oxide memory devices

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.

    2016-05-01

    Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.

  2. Reconfigurable Fault Tolerance for FPGAs

    NASA Technical Reports Server (NTRS)

    Shuler, Robert, Jr.

    2010-01-01

    The invention allows a field-programmable gate array (FPGA) or similar device to be efficiently reconfigured in whole or in part to provide higher capacity, non-redundant operation. The redundant device consists of functional units such as adders or multipliers, configuration memory for the functional units, a programmable routing method, configuration memory for the routing method, and various other features such as block RAM, I/O (random access memory, input/output) capability, dedicated carry logic, etc. The redundant device has three identical sets of functional units and routing resources and majority voters that correct errors. The configuration memory may or may not be redundant, depending on need. For example, SRAM-based FPGAs will need some type of radiation-tolerant configuration memory, or they will need triple-redundant configuration memory. Flash or anti-fuse devices will generally not need redundant configuration memory. Some means of loading and verifying the configuration memory is also required. These are all components of the pre-existing redundant FPGA. This innovation modifies the voter to accept a MODE input, which specifies whether ordinary voting is to occur, or if redundancy is to be split. Generally, additional routing resources will also be required to pass data between sections of the device created by splitting the redundancy. In redundancy mode, the voters produce an output corresponding to the two inputs that agree, in the usual fashion. In the split mode, the voters select just one input and convey this to the output, ignoring the other inputs. In a dual-redundant system (as opposed to triple-redundant), instead of a voter, there is some means to latch or gate a state update only when both inputs agree. In this case, the invention would require modification of the latch or gate so that it would operate normally in redundant mode, and would separately latch or gate the inputs in non-redundant mode.

  3. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.

    PubMed

    Magyari-Köpe, Blanka; Tendulkar, Mihir; Park, Seong-Geon; Lee, Hyung Dong; Nishi, Yoshio

    2011-06-24

    Resistance change random access memory (RRAM) cells, typically built as MIM capacitor structures, consist of insulating layers I sandwiched between metal layers M, where the insulator performs the resistance switching operation. These devices can be electrically switched between two or more stable resistance states at a speed of nanoseconds, with long retention times, high switching endurance, low read voltage, and large switching windows. They are attractive candidates for next-generation non-volatile memory, particularly as a flash successor, as the material properties can be scaled to the nanometer regime. Several resistance switching models have been suggested so far for transition metal oxide based devices, such as charge trapping, conductive filament formation, Schottky barrier modulation, and electrochemical migration of point defects. The underlying fundamental principles of the switching mechanism still lack a detailed understanding, i.e. how to control and modulate the electrical characteristics of devices incorporating defects and impurities, such as oxygen vacancies, metal interstitials, hydrogen, and other metallic atoms acting as dopants. In this paper, state of the art ab initio theoretical methods are employed to understand the effects that filamentary types of stable oxygen vacancy configurations in TiO(2) and NiO have on the electronic conduction. It is shown that strong electronic interactions between metal ions adjacent to oxygen vacancy sites results in the formation of a conductive path and thus can explain the 'ON' site conduction in these materials. Implication of hydrogen doping on electroforming is discussed for Pr(0.7)Ca(0.3)MnO(3) devices based on electrical characterization and FTIR measurements.

  4. Electric-Field-Driven Dual Vacancies Evolution in Ultrathin Nanosheets Realizing Reversible Semiconductor to Half-Metal Transition.

    PubMed

    Lyu, Mengjie; Liu, Youwen; Zhi, Yuduo; Xiao, Chong; Gu, Bingchuan; Hua, Xuemin; Fan, Shaojuan; Lin, Yue; Bai, Wei; Tong, Wei; Zou, Youming; Pan, Bicai; Ye, Bangjiao; Xie, Yi

    2015-12-02

    Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics.

  5. High density submicron magnetoresistive random access memory (invited)

    NASA Astrophysics Data System (ADS)

    Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G.

    1999-04-01

    Various giant magnetoresistance material structures were patterned and studied for their potential as memory elements. The preferred memory element, based on pseudo-spin valve structures, was designed with two magnetic stacks (NiFeCo/CoFe) of different thickness with Cu as an interlayer. The difference in thickness results in dissimilar switching fields due to the shape anisotropy at deep submicron dimensions. It was found that a lower switching current can be achieved when the bits have a word line that wraps around the bit 1.5 times. Submicron memory elements integrated with complementary metal-oxide-semiconductor (CMOS) transistors maintained their characteristics and no degradation to the CMOS devices was observed. Selectivity between memory elements in high-density arrays was demonstrated.

  6. Investigating the origins of high multilevel resistive switching in forming free Ti/TiO2-x-based memory devices through experiments and simulations

    NASA Astrophysics Data System (ADS)

    Bousoulas, P.; Giannopoulos, I.; Asenov, P.; Karageorgiou, I.; Tsoukalas, D.

    2017-03-01

    Although multilevel capability is probably the most important property of resistive random access memory (RRAM) technology, it is vulnerable to reliability issues due to the stochastic nature of conducting filament (CF) creation. As a result, the various resistance states cannot be clearly distinguished, which leads to memory capacity failure. In this work, due to the gradual resistance switching pattern of TiO2-x-based RRAM devices, we demonstrate at least six resistance states with distinct memory margin and promising temporal variability. It is shown that the formation of small CFs with high density of oxygen vacancies enhances the uniformity of the switching characteristics in spite of the random nature of the switching effect. Insight into the origin of the gradual resistance modulation mechanisms is gained by the application of a trap-assisted-tunneling model together with numerical simulations of the filament formation physical processes.

  7. A compact superconducting nanowire memory element operated by nanowire cryotrons

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; Toomey, Emily A.; Butters, Brenden A.; McCaughan, Adam N.; Dane, Andrew E.; Nam, Sae-Woo; Berggren, Karl K.

    2018-07-01

    A superconducting loop stores persistent current without any ohmic loss, making it an ideal platform for energy efficient memories. Conventional superconducting memories use an architecture based on Josephson junctions (JJs) and have demonstrated access times less than 10 ps and power dissipation as low as 10-19 J. However, their scalability has been slow to develop due to the challenges in reducing the dimensions of JJs and minimizing the area of the superconducting loops. In addition to the memory itself, complex readout circuits require additional JJs and inductors for coupling signals, increasing the overall area. Here, we have demonstrated a superconducting memory based solely on lithographic nanowires. The small dimensions of the nanowire ensure that the device can be fabricated in a dense area in multiple layers, while the high kinetic inductance makes the loop essentially independent of geometric inductance, allowing it to be scaled down without sacrificing performance. The memory is operated by a group of nanowire cryotrons patterned alongside the storage loop, enabling us to reduce the entire memory cell to 3 μm × 7 μm in our proof-of-concept device. In this work we present the operation principles of a superconducting nanowire memory (nMem) and characterize its bit error rate, speed, and power dissipation.

  8. Magnetic Bubble Memories for Data Collection in Sounding Rockets,

    DTIC Science & Technology

    1982-01-29

    generate interest in bubbles as a mass storage device for micro - processor based equipment, manufacturers have come up with a variety of diversified...absence of a bubble represents a Ŕ". With diameters on the order of I to 5 micro -meters, these bubbles are so small that extremely tiny chips can hold...methods of transfer: polled I/O, interrupt driven I/O, and direct memory access (DMA). The first two methods require tho host processor be involved

  9. Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Gajek, M.; Nowak, J. J.; Sun, J. Z.; Trouilloud, P. L.; O'Sullivan, E. J.; Abraham, D. W.; Gaidis, M. C.; Hu, G.; Brown, S.; Zhu, Y.; Robertazzi, R. P.; Gallagher, W. J.; Worledge, D. C.

    2012-03-01

    Spin-transfer torque magnetic random access memory (STT-MRAM) is one of the most promising emerging non-volatile memory technologies. MRAM has so far been demonstrated with a unique combination of density, speed, and non-volatility in a single chip, however, without the capability to replace any single mainstream memory. In this paper, we demonstrate the basic physics of spin torque switching in 20 nm diameter magnetic tunnel junctions with perpendicular magnetic anisotropy materials. This deep scaling capability clearly indicates the STT MRAM device itself may be suitable for integration at much higher densities than previously proven.

  10. Non-volatile memory based on the ferroelectric photovoltaic effect

    PubMed Central

    Guo, Rui; You, Lu; Zhou, Yang; Shiuh Lim, Zhi; Zou, Xi; Chen, Lang; Ramesh, R.; Wang, Junling

    2013-01-01

    The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~105 rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique. PMID:23756366

  11. 47 CFR 15.611 - General technical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false General technical requirements. 15.611 Section 15.611 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Access... shut-off procedure, by the use of a non-volatile memory, or some other method, to immediately restore...

  12. Forming-free, bipolar resistivity switching characteristics of fully transparent resistive random access memory with IZO/α-IGZO/ITO structure

    NASA Astrophysics Data System (ADS)

    Lo, Chun-Chieh; Hsieh, Tsung-Eong

    2016-09-01

    Fully transparent resistive random access memory (TRRAM) containing amorphous indium gallium zinc oxide as the resistance switching (RS) layer and transparent conducting oxides (indium zinc oxide and indium tin oxide) as the electrodes was prepared. Optical measurement indicated the transmittance of device exceeds 80% in visible-light wavelength range. TRRAM samples exhibited the forming-free feature and the best electrical performance (V SET  =  0.61 V V RESET  =  -0.76 V R HRS/R LRS (i.e. the R-ratio)  >103) was observed in the device subject to a post-annealing at 300 °C for 1 hr in atmospheric ambient. Such a sample also exhibited satisfactory endurance and retention properties at 85 °C as revealed by the reliability tests. Electrical measurement performed in vacuum ambient indicated that the RS mechanism correlates with the charge trapping/de-trapping process associated with oxygen defects in the RS layer.

  13. Deviation from the law of energy equipartition in a small dynamic-random-access memory

    NASA Astrophysics Data System (ADS)

    Carles, Pierre-Alix; Nishiguchi, Katsuhiko; Fujiwara, Akira

    2015-06-01

    A small dynamic-random-access memory (DRAM) coupled with a high charge sensitivity electrometer based on a silicon field-effect transistor is used to study the law of equipartition of energy. By statistically analyzing the movement of single electrons in the DRAM at various temperature and voltage conditions in thermal equilibrium, we are able to observe a behavior that differs from what is predicted by the law of equipartition energy: when the charging energy of the capacitor of the DRAM is comparable to or smaller than the thermal energy kBT/2, random electron motion is ruled perfectly by thermal energy; on the other hand, when the charging energy becomes higher in relation to the thermal energy kBT/2, random electron motion is suppressed which indicates a deviation from the law of equipartition of energy. Since the law of equipartition is analyzed using the DRAM, one of the most familiar devices, we believe that our results are perfectly universal among all electronic devices.

  14. Electrical Characterization of the RCA CDP1822SD Random Access Memory, Volume 1, Appendix a

    NASA Technical Reports Server (NTRS)

    Klute, A.

    1979-01-01

    Electrical characteristization tests were performed on 35 RCA CDP1822SD, 256-by-4-bit, CMOS, random access memories. The tests included three functional tests, AC and DC parametric tests, a series of schmoo plots, rise/fall time screening, and a data retention test. All tests were performed on an automated IC test system with temperatures controlled by a thermal airstream unit. All the functional tests, the data retention test, and the AC and DC parametric tests were performed at ambient temperatures of 25 C, -20 C, -55 C, 85 C, and 125 C. The schmoo plots were performed at ambient temperatures of 25 C, -55 C, and 125 C. The data retention test was performed at 25 C. Five devices failed one or more functional tests and four of these devices failed to meet the expected limits of a number of AC parametric tests. Some of the schmoo plots indicated a small degree of interaction between parameters.

  15. Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 1

    NASA Technical Reports Server (NTRS)

    Klute, A.

    1979-01-01

    Electrical characterization and qualification tests were performed on the RCA MWS5001D, 1024 by 1-bit, CMOS, random access memory. Characterization tests were performed on five devices. The tests included functional tests, AC parametric worst case pattern selection test, determination of worst-case transition for setup and hold times and a series of schmoo plots. The qualification tests were performed on 32 devices and included a 2000 hour burn in with electrical tests performed at 0 hours and after 168, 1000, and 2000 hours of burn in. The tests performed included functional tests and AC and DC parametric tests. All of the tests in the characterization phase, with the exception of the worst-case transition test, were performed at ambient temperatures of 25, -55 and 125 C. The worst-case transition test was performed at 25 C. The preburn in electrical tests were performed at 25, -55, and 125 C. All burn in endpoint tests were performed at 25, -40, -55, 85, and 125 C.

  16. Light sensitivity of a one transistor-one capacitor memory cell when used as a micromirror actuator in projector applications

    NASA Astrophysics Data System (ADS)

    Huffman, James Douglas

    2001-11-01

    The most important issue facing the future business success of the Digital Micromirror Device or DMD™ produced by Texas Instruments is the cost of the actual device. As the business and consumer markets call for higher resolution displays, the array size will have to be increased to incorporate more pixels. The manufacturing costs associated with building these higher resolution displays follow an exponential relation with the number of pixels due to yield loss and reduced number of chips per silicon wafer. Each pixel is actuated by electrostatics that are provided by a memory cell that is built in the underlying silicon substrate. One way to decrease cost of the wafer is to change the memory cell architecture from a static random access configuration or SRAM to a dynamic random access configuration or DRAM. This change has the benefits of having fewer components per area and a lower metal density. This reduction in the component count and metal density has a dramatic effect on the yield of the memory array by reducing the particle sensitivity of the underlying cell. The main drawback to using a DRAM configuration in a display application is the light sensitivity of a charge storage device built in the silicon substrate. As the photons pass through the mechanical micromirrors and illuminate the DRAM cell, the effective electrostatic potential of the memory element used for the mirror actuation is reduced. This dissertation outlines the issues associated with the light sensitivity of a DRAM memory cell as the actuation element for a micromirror. The concept of charge depletion on a silicon capacitor due to recombination of photogenerated carriers is explored and experimentally verified. The effects of the reduced potential on the capacitor on the micromirror are also explored. Optical modeling is used to determine the incoming photon flux to determine the benefits of adding a charge recombination region as part of the DRAM memory cell. Several options are explored to reduce the effect of the incoming photons on the potential of the memory cell. The results will show that a 1T1C memory cell with N-type recombination regions and maximum light shielding is sufficient for a projector application.

  17. C-MOS array design techniques: SUMC multiprocessor system study

    NASA Technical Reports Server (NTRS)

    Clapp, W. A.; Helbig, W. A.; Merriam, A. S.

    1972-01-01

    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units.

  18. Capacitorless one-transistor dynamic random-access memory based on asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor with n-doped boosting layer and drain-underlap structure

    NASA Astrophysics Data System (ADS)

    Yoon, Young Jun; Seo, Jae Hwa; Kang, In Man

    2018-04-01

    In this work, we present a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on an asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor (TFET) for DRAM applications. The n-doped boosting layer and gate2 drain-underlap structure is employed in the device to obtain an excellent 1T-DRAM performance. The n-doped layer inserted between the source and channel regions improves the sensing margin because of a high rate of increase in the band-to-band tunneling (BTBT) probability. Furthermore, because the gate2 drain-underlap structure reduces the recombination rate that occurs between the gate2 and drain regions, a device with a gate2 drain-underlap length (L G2_D-underlap) of 10 nm exhibited a longer retention performance. As a result, by applying the n-doped layer and gate2 drain-underlap structure, the proposed device exhibited not only a high sensing margin of 1.11 µA/µm but also a long retention time of greater than 100 ms at a temperature of 358 K (85 °C).

  19. Plasma-Assisted Dry Etching of Ferroelectric Capacitor Modules and Application to a 32M Ferroelectric Random Access Memory Devices with Submicron Feature Sizes

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Woo; Joo, Suk-Ho; Cho, Sung Lae; Son, Yoon-Ho; Lee, Kyu-Mann; Nam, Sang-Don; Park, Kun-Sang; Lee, Yong-Tak; Seo, Jung-Suk; Kim, Young-Dae; An, Hyeong-Geun; Kim, Hyoung-Joon; Jung, Yong-Ju; Heo, Jang-Eun; Lee, Moon-Sook; Park, Soon-Oh; Chung, U-In; Moon, Joo-Tae

    2002-11-01

    In the manufacturing of a 32M ferroelectric random access memory (FRAM) device on the basis of 0.25 design rule (D/R), one of the most difficult processes is to pattern a submicron capacitor module while retaining good ferroelectric properties. In this paper, we report the ferroelectric property of patterned submicron capacitor modules with a stack height of 380 nm, where the 100 nm-thick Pb(Zr, Ti)O3 (PZT) films were prepared by the sol-gel method. After patterning, overall sidewall slope was approximately 70° and cell-to-cell node separation was made to be 80 nm to prevent possible twin-bit failure in the device. Finally, several heat treatment conditions were investigated to retain the ferroelectric property of the patterned capacitor. It was found that rapid thermal processing (RTP) treatment yields better properties than conventional furnace annealing. This result is directly related to the near-surface chemistry of the PZT films, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The resultant switching polarization value of the submicron capacitor was approximately 30 μC/cm2 measured at 3 V.

  20. Particle sensor array

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)

    1994-01-01

    A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.

  1. Enhanced switching stability in Ta2O5 resistive RAM by fluorine doping

    NASA Astrophysics Data System (ADS)

    Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Guo, Y.; Potter, R. J.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Hall, S.; Robertson, J.; Chalker, P. R.

    2017-08-01

    The effect of fluorine doping on the switching stability of Ta2O5 resistive random access memory devices is investigated. It shows that the dopant serves to increase the memory window and improve the stability of the resistive states due to the neutralization of oxygen vacancies. The ability to alter the current in the low resistance state with set current compliance coupled with large memory window makes multilevel cell switching more favorable. The devices have set and reset voltages of <1 V with improved stability due to the fluorine doping. Density functional modeling shows that the incorporation of fluorine dopant atoms at the two-fold O vacancy site in the oxide network removes the defect state in the mid bandgap, lowering the overall density of defects capable of forming conductive filaments. This reduces the probability of forming alternative conducting paths and hence improves the current stability in the low resistance states. The doped devices exhibit more stable resistive states in both dc and pulsed set and reset cycles. The retention failure time is estimated to be a minimum of 2 years for F-doped devices measured by temperature accelerated and stress voltage accelerated retention failure methods.

  2. Fabrication of cross-shaped Cu-nanowire resistive memory devices using a rapid, scalable, and designable inorganic-nanowire-digital-alignment technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Wentao; Lee, Yeongjun; Min, Sung-Yong; Park, Cheolmin; Lee, Tae-Woo

    2016-09-01

    Resistive random-access memory (RRAM) is a candidate next generation nonvolatile memory due to its high access speed, high density and ease of fabrication. Especially, cross-point-access allows cross-bar arrays that lead to high-density cells in a two-dimensional planar structure. Use of such designs could be compatible with the aggressive scaling down of memory devices, but existing methods such as optical or e-beam lithographic approaches are too complicated. One-dimensional inorganic nanowires (i-NWs) are regarded as ideal components of nanoelectronics to circumvent the limitations of conventional lithographic approaches. However, post-growth alignment of these i-NWs precisely on a large area with individual control is still a difficult challenge. Here, we report a simple, inexpensive, and rapid method to fabricate two-dimensional arrays of perpendicularly-aligned, individually-conductive Cu-NWs with a nanometer-scale CuxO layer sandwiched at each cross point, by using an inorganic-nanowire-digital-alignment technique (INDAT) and a one-step reduction process. In this approach, the oxide layer is self-formed and patterned, so conventional deposition and lithography are not necessary. INDAT eliminates the difficulties of alignment and scalable fabrication that are encountered when using currently-available techniques that use inorganic nanowires. This simple process facilitates fabrication of cross-point nonvolatile memristor arrays. Fabricated arrays had reproducible resistive switching behavior, high on/off current ratio (Ion/Ioff) 10 6 and extensive cycling endurance. This is the first report of memristors with the resistive switching oxide layer self-formed, self-patterned and self-positioned; we envision that the new features of the technique will provide great opportunities for future nano-electronic circuits.

  3. Nonvolatile reconfigurable sequential logic in a HfO2 resistive random access memory array.

    PubMed

    Zhou, Ya-Xiong; Li, Yi; Su, Yu-Ting; Wang, Zhuo-Rui; Shih, Ling-Yi; Chang, Ting-Chang; Chang, Kuan-Chang; Long, Shi-Bing; Sze, Simon M; Miao, Xiang-Shui

    2017-05-25

    Resistive random access memory (RRAM) based reconfigurable logic provides a temporal programmable dimension to realize Boolean logic functions and is regarded as a promising route to build non-von Neumann computing architecture. In this work, a reconfigurable operation method is proposed to perform nonvolatile sequential logic in a HfO 2 -based RRAM array. Eight kinds of Boolean logic functions can be implemented within the same hardware fabrics. During the logic computing processes, the RRAM devices in an array are flexibly configured in a bipolar or complementary structure. The validity was demonstrated by experimentally implemented NAND and XOR logic functions and a theoretically designed 1-bit full adder. With the trade-off between temporal and spatial computing complexity, our method makes better use of limited computing resources, thus provides an attractive scheme for the construction of logic-in-memory systems.

  4. Single Event Upset in Static Random Access Memories in Atmospheric Neutron Environments

    NASA Astrophysics Data System (ADS)

    Arita, Yutaka; Takai, Mikio; Ogawa, Izumi; Kishimoto, Tadafumi

    2003-07-01

    Single-event upsets (SEUs) in a 0.4 μm 4 Mbit complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) were investigated in various atmospheric neutron environments at sea level, at an altitude of 2612 m mountain, at an altitude of commercial airplane, and at an underground depth of 476 m. Neutron-induced SEUs increase with the increase in altitude. For a device with a borophosphosilicate glass (BPSG) film, SEU rates induced by thermal neutrons increase with the decrease in the cell charge of a memory cell. A thermal neutron-induced SEU is significant in SRAMs with a small cell charge. With the conditions of small cell charge, thermal neutron-induced SEUs account for 60% or more of the total neutron-induced SEUs. The SEU rate induced by atmospheric thermal neutrons can be estimated by an acceleration test using 252Cf.

  5. Proton upsets in LSI memories in space

    NASA Technical Reports Server (NTRS)

    Mcnulty, P. J.; Wyatt, R. C.; Filz, R. C.; Rothwell, P. L.; Farrell, G. E.

    1980-01-01

    Two types of large scale integrated dynamic random access memory devices were tested and found to be subject to soft errors when exposed to protons incident at energies between 18 and 130 MeV. These errors are shown to differ significantly from those induced in the same devices by alphas from an Am-241 source. There is considerable variation among devices in their sensitivity to proton-induced soft errors, even among devices of the same type. For protons incident at 130 MeV, the soft error cross sections measured in these experiments varied from 10 to the -8th to 10 to the -6th sq cm/proton. For individual devices, however, the soft error cross section consistently increased with beam energy from 18-130 MeV. Analysis indicates that the soft errors induced by energetic protons result from spallation interactions between the incident protons and the nuclei of the atoms comprising the device. Because energetic protons are the most numerous of both the galactic and solar cosmic rays and form the inner radiation belt, proton-induced soft errors have potentially serious implications for many electronic systems flown in space.

  6. Cross-Modal Correspondences Enhance Performance on a Colour-to-Sound Sensory Substitution Device.

    PubMed

    Hamilton-Fletcher, Giles; Wright, Thomas D; Ward, Jamie

    Visual sensory substitution devices (SSDs) can represent visual characteristics through distinct patterns of sound, allowing a visually impaired user access to visual information. Previous SSDs have avoided colour and when they do encode colour, have assigned sounds to colour in a largely unprincipled way. This study introduces a new tablet-based SSD termed the ‘Creole’ (so called because it combines tactile scanning with image sonification) and a new algorithm for converting colour to sound that is based on established cross-modal correspondences (intuitive mappings between different sensory dimensions). To test the utility of correspondences, we examined the colour–sound associative memory and object recognition abilities of sighted users who had their device either coded in line with or opposite to sound–colour correspondences. Improved colour memory and reduced colour-errors were made by users who had the correspondence-based mappings. Interestingly, the colour–sound mappings that provided the highest improvements during the associative memory task also saw the greatest gains for recognising realistic objects that also featured these colours, indicating a transfer of abilities from memory to recognition. These users were also marginally better at matching sounds to images varying in luminance, even though luminance was coded identically across the different versions of the device. These findings are discussed with relevance for both colour and correspondences for sensory substitution use.

  7. Multilevel Resistance Programming in Conductive Bridge Resistive Memory

    NASA Astrophysics Data System (ADS)

    Mahalanabis, Debayan

    This work focuses on the existence of multiple resistance states in a type of emerging non-volatile resistive memory device known commonly as Programmable Metallization Cell (PMC) or Conductive Bridge Random Access Memory (CBRAM), which can be important for applications such as multi-bit memory as well as non-volatile logic and neuromorphic computing. First, experimental data from small signal, quasi-static and pulsed mode electrical characterization of such devices are presented which clearly demonstrate the inherent multi-level resistance programmability property in CBRAM devices. A physics based analytical CBRAM compact model is then presented which simulates the ion-transport dynamics and filamentary growth mechanism that causes resistance change in such devices. Simulation results from the model are fitted to experimental dynamic resistance switching characteristics. The model designed using Verilog-a language is computation-efficient and can be integrated with industry standard circuit simulation tools for design and analysis of hybrid circuits involving both CMOS and CBRAM devices. Three main circuit applications for CBRAM devices are explored in this work. Firstly, the susceptibility of CBRAM memory arrays to single event induced upsets is analyzed via compact model simulation and experimental heavy ion testing data that show possibility of both high resistance to low resistance and low resistance to high resistance transitions due to ion strikes. Next, a non-volatile sense amplifier based flip-flop architecture is proposed which can help make leakage power consumption negligible by allowing complete shutdown of power supply while retaining its output data in CBRAM devices. Reliability and energy consumption of the flip-flop circuit for different CBRAM low resistance levels and supply voltage values are analyzed and compared to CMOS designs. Possible extension of this architecture for threshold logic function computation using the CBRAM devices as re-configurable resistive weights is also discussed. Lastly, Spike timing dependent plasticity (STDP) based gradual resistance change behavior in CBRAM device fabricated in back-end-of-line on a CMOS die containing integrate and fire CMOS neuron circuits is demonstrated for the first time which indicates the feasibility of using CBRAM devices as electronic synapses in spiking neural network hardware implementations for non-Boolean neuromorphic computing.

  8. Electrical Switching of Perovskite Thin-Film Resistors

    NASA Technical Reports Server (NTRS)

    Liu, Shangqing; Wu, Juan; Ignatiev, Alex

    2010-01-01

    Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article, Electrically Variable Resistive Memory Devices (MFS-32511-1).

  9. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues

    NASA Astrophysics Data System (ADS)

    Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves

    2018-01-01

    Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these issues is provided from a materials science point of view.

  10. An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor

    NASA Astrophysics Data System (ADS)

    Staderini, Enrico Maria; Castellano, Alfredo

    1986-02-01

    An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2. On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation.

  11. Development and Evaluation of a Novel Curved Biopsy Device for CT-Guided Biopsy of Lesions Unreachable Using Standard Straight Needle Trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Hagen, Maximilian Franz, E-mail: mschulze@ukaachen.de; Pfeffer, Jochen; Zimmermann, Markus

    PurposeTo evaluate the feasibility of a novel curved CT-guided biopsy needle prototype with shape memory to access otherwise not accessible biopsy targets.Methods and MaterialsA biopsy needle curved by 90° with specific radius was designed. It was manufactured using nitinol to acquire shape memory, encased in a straight guiding trocar to be driven out for access of otherwise inaccessible targets. Fifty CT-guided punctures were conducted in a biopsy phantom and 10 CT-guided punctures in a swine corpse. Biposies from porcine liver and muscle tissue were separately gained using the biopsy device, and histological examination was performed subsequently.ResultsMean time for placement ofmore » the trocar and deployment of the inner biopsy needle was ~205 ± 69 and ~93 ± 58 s, respectively, with a mean of ~4.5 ± 1.3 steps to reach adequate biopsy position. Mean distance from the tip of the needle to the target was ~0.7 ± 0.8 mm. CT-guided punctures in the swine corpse took relatively longer and required more biopsy steps (~574 ± 107 and ~380 ± 148 s, 8 ± 2.6 steps). Histology demonstrated appropriate tissue samples in nine out of ten cases (90%).ConclusionsTargets that were otherwise inaccessible via standard straight needle trajectories could be successfully reached with the curved biopsy needle prototype. Shape memory and preformed size with specific radius of the curved needle simplify the target accessibility with a low risk of injuring adjacent structures.« less

  12. Pulse width and height modulation for multi-level resistance in bi-layer TaOx based RRAM

    NASA Astrophysics Data System (ADS)

    Alamgir, Zahiruddin; Beckmann, Karsten; Holt, Joshua; Cady, Nathaniel C.

    2017-08-01

    Mutli-level switching in resistive memory devices enables a wide range of computational paradigms, including neuromorphic and cognitive computing. To this end, we have developed a bi-layer tantalum oxide based resistive random access memory device using Hf as the oxygen exchange layer. Multiple, discrete resistance levels were achieved by modulating the RESET pulse width and height, ranging from 2 kΩ to several MΩ. For a fixed pulse height, OFF state resistance was found to increase gradually with the increase in the pulse width, whereas for a fixed pulse width, the increase in the pulse height resulted in drastic changes in resistance. Resistive switching in these devices transitioned from Schottky emission in the OFF state to tunneling based conduction in the ON state, based on I-V curve fitting and temperature dependent current measurements. These devices also demonstrated endurance of more than 108 cycles with a satisfactory Roff/Ron ratio and retention greater than 104 s.

  13. Automatic Control and Data Acquisition System for Combustion Laboratory Applications.

    DTIC Science & Technology

    1982-10-01

    O VPI Access~.ion FCr- 1473 2 UNCLASSIFIED Approved for public release; distribution unlimited JAutomatic Control and Data Acquisition System for...unit. The CPU/ROK board includes a 16 bit microprocessor chip which decodes and executes all in- structions, and controls all data transfers. The 12K...in the limited memory space of 32K of the HP-85 33 ACQDTA’ 1) Controls DevicesCRAIN ,2) Acquires Photodiods Output$ 3) Stores Data o Disc 1

  14. Active holographic interconnects for interfacing volume storage

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Schwartz, Jay R.; Nelson, Arthur R.; Levin, Philip S.

    1992-04-01

    In order to achieve the promise of terabit/cm3 data storage capacity for volume holographic optical memory, two technological challenges must be met. Satisfactory storage materials must be developed and the input/output architectures able to match their capacity with corresponding data access rates must also be designed. To date the materials problem has received more attention than devices and architectures for access and addressing. Two philosophies of parallel data access to 3-D storage have been discussed. The bit-oriented approach, represented by recent work on two-photon memories, attempts to store bits at local sites within a volume without affecting neighboring bits. High speed acousto-optic or electro- optic scanners together with dynamically focused lenses not presently available would be required. The second philosophy is that volume optical storage is essentially holographic in nature, and that each data write or read is to be distributed throughout the material volume on the basis of angle multiplexing or other schemes consistent with the principles of holography. The requirements for free space optical interconnects for digital computers and fiber optic network switching interfaces are also closely related to this class of devices. Interconnects, beamlet generators, angle multiplexers, scanners, fiber optic switches, and dynamic lenses are all devices which may be implemented by holographic or microdiffractive devices of various kinds, which we shall refer to collectively as holographic interconnect devices. At present, holographic interconnect devices are either fixed holograms or spatial light modulators. Optically or computer generated holograms (submicron resolution, 2-D or 3-D, encoding 1013 bits, nearly 100 diffraction efficiency) can implement sophisticated mathematical design principles, but of course once fabricated they cannot be changed. Spatial light modulators offer high speed programmability but have limited resolution (512 X 512 pixels, encoding about 106 bits of data) and limited diffraction efficiency. For any application, one must choose between high diffractive performance and programmability.

  15. Two-bit multi-level phase change random access memory with a triple phase change material stack structure

    NASA Astrophysics Data System (ADS)

    Gyanathan, Ashvini; Yeo, Yee-Chia

    2012-11-01

    This work demonstrates a novel two-bit multi-level device structure comprising three phase change material (PCM) layers, separated by SiN thermal barrier layers. This triple PCM stack consisted of (from bottom to top), Ge2Sb2Te5 (GST), an ultrathin SiN barrier, nitrogen-doped GST, another ultrathin SiN barrier, and Ag0.5In0.5Sb3Te6. The PCM layers can selectively amorphize to form 4 different resistance levels ("00," "01," "10," and "11") using respective voltage pulses. Electrical characterization was extensively performed on these devices. Thermal analysis was also done to understand the physics behind the phase changing characteristics of the two-bit memory devices. The melting and crystallization temperatures of the PCMs play important roles in the power consumption of the multi-level devices. The electrical resistivities and thermal conductivities of the PCMs and the SiN thermal barrier are also crucial factors contributing to the phase changing behaviour of the PCMs in the two-bit multi-level PCRAM device.

  16. Scalability of voltage-controlled filamentary and nanometallic resistance memory devices.

    PubMed

    Lu, Yang; Lee, Jong Ho; Chen, I-Wei

    2017-08-31

    Much effort has been devoted to device and materials engineering to realize nanoscale resistance random access memory (RRAM) for practical applications, but a rational physical basis to be relied on to design scalable devices spanning many length scales is still lacking. In particular, there is no clear criterion for switching control in those RRAM devices in which resistance changes are limited to localized nanoscale filaments that experience concentrated heat, electric current and field. Here, we demonstrate voltage-controlled resistance switching, always at a constant characteristic critical voltage, for macro and nanodevices in both filamentary RRAM and nanometallic RRAM, and the latter switches uniformly and does not require a forming process. As a result, area-scalability can be achieved under a device-area-proportional current compliance for the low resistance state of the filamentary RRAM, and for both the low and high resistance states of the nanometallic RRAM. This finding will help design area-scalable RRAM at the nanoscale. It also establishes an analogy between RRAM and synapses, in which signal transmission is also voltage-controlled.

  17. The storage system of PCM based on random access file system

    NASA Astrophysics Data System (ADS)

    Han, Wenbing; Chen, Xiaogang; Zhou, Mi; Li, Shunfen; Li, Gezi; Song, Zhitang

    2016-10-01

    Emerging memory technologies such as Phase change memory (PCM) tend to offer fast, random access to persistent storage with better scalability. It's a hot topic of academic and industrial research to establish PCM in storage hierarchy to narrow the performance gap. However, the existing file systems do not perform well with the emerging PCM storage, which access storage medium via a slow, block-based interface. In this paper, we propose a novel file system, RAFS, to bring about good performance of PCM, which is built in the embedded platform. We attach PCM chips to the memory bus and build RAFS on the physical address space. In the proposed file system, we simplify traditional system architecture to eliminate block-related operations and layers. Furthermore, we adopt memory mapping and bypassed page cache to reduce copy overhead between the process address space and storage device. XIP mechanisms are also supported in RAFS. To the best of our knowledge, we are among the first to implement file system on real PCM chips. We have analyzed and evaluated its performance with IOZONE benchmark tools. Our experimental results show that the RAFS on PCM outperforms Ext4fs on SDRAM with small record lengths. Based on DRAM, RAFS is significantly faster than Ext4fs by 18% to 250%.

  18. Evaluating Non-In-Place Update Techniques for Flash-Based Transaction Processing Systems

    NASA Astrophysics Data System (ADS)

    Wang, Yongkun; Goda, Kazuo; Kitsuregawa, Masaru

    Recently, flash memory is emerging as the storage device. With price sliding fast, the cost per capacity is approaching to that of SATA disk drives. So far flash memory has been widely deployed in consumer electronics even partly in mobile computing environments. For enterprise systems, the deployment has been studied by many researchers and developers. In terms of the access performance characteristics, flash memory is quite different from disk drives. Without the mechanical components, flash memory has very high random read performance, whereas it has a limited random write performance because of the erase-before-write design. The random write performance of flash memory is comparable with or even worse than that of disk drives. Due to such a performance asymmetry, naive deployment to enterprise systems may not exploit the potential performance of flash memory at full blast. This paper studies the effectiveness of using non-in-place-update (NIPU) techniques through the IO path of flash-based transaction processing systems. Our deliberate experiments using both open-source DBMS and commercial DBMS validated the potential benefits; x3.0 to x6.6 performance improvement was confirmed by incorporating non-in-place-update techniques into file system without any modification of applications or storage devices.

  19. Influence of metal electrode on the performance of ZnO based resistance switching memories

    NASA Astrophysics Data System (ADS)

    Wang, Xueting; Qian, Haolei; Guan, Liao; Wang, Wei; Xing, Boran; Yan, Xiaoyuan; Zhang, Shucheng; Sha, Jian; Wang, Yewu

    2017-10-01

    Resistance random access memory (RRAM) is considered a promising candidate for the next generation of non-volatile memory. In this work, we fabricate metal (Ag, Ti, or Pt)/ZnO/Pt RRAM cells and then systematically investigate the effects of different top electrodes and their performance. With the formation and rupture of Ag-bridge and the shapeless oxygen vacancy filaments under a series of positive and negative bias, the set and reset processes have been successfully conducted in the Ag/ZnO/Pt device with very low work voltage, high on-off ratio, and good endurance. When applying the voltage bias to the Ti/ZnO/Pt device, the interfacial oxygen ions' migration causes the redox reaction of the conducting filament's oxygen vacancies, leading to the formation and rupture of the conducting filaments but in a relatively poor endurance. At the same time, for the Pt/ZnO/Pt device, once the filaments in the functional layer consisting of oxygen vacancies are formed, it is difficult to disrupt, resulting in the permanent low resistance state after a forming-like process. The results demonstrated that the devices with a metallic conductive bridge mechanism show much better switching behaviors than those with an oxygen ion/vacancy filament mechanism.

  20. Kinetic Inductance Memory Cell and Architecture for Superconducting Computers

    NASA Astrophysics Data System (ADS)

    Chen, George J.

    Josephson memory devices typically use a superconducting loop containing one or more Josephson junctions to store information. The magnetic inductance of the loop in conjunction with the Josephson junctions provides multiple states to store data. This thesis shows that replacing the magnetic inductor in a memory cell with a kinetic inductor can lead to a smaller cell size. However, magnetic control of the cells is lost. Thus, a current-injection based architecture for a memory array has been designed to work around this problem. The isolation between memory cells that magnetic control provides is provided through resistors in this new architecture. However, these resistors allow leakage current to flow which ultimately limits the size of the array due to power considerations. A kinetic inductance memory array will be limited to 4K bits with a read access time of 320 ps for a 1 um linewidth technology. If a power decoder could be developed, the memory architecture could serve as the blueprint for a fast (<1 ns), large scale (>1 Mbit) superconducting memory array.

  1. Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory.

    PubMed

    Nho, Hyun Woo; Kim, Jong Yun; Wang, Jian; Shin, Hyun-Joon; Choi, Sung-Yool; Yoon, Tae Hyun

    2014-01-01

    Here, an in situ probe for scanning transmission X-ray microscopy (STXM) has been developed and applied to the study of the bipolar resistive switching (BRS) mechanism in an Al/graphene oxide (GO)/Al resistive random access memory (RRAM) device. To perform in situ STXM studies at the C K- and O K-edges, both the RRAM junctions and the I0 junction were fabricated on a single Si3N4 membrane to obtain local XANES spectra at these absorption edges with more delicate I0 normalization. Using this probe combined with the synchrotron-based STXM technique, it was possible to observe unique chemical changes involved in the BRS process of the Al/GO/Al RRAM device. Reversible oxidation and reduction of GO induced by the externally applied bias voltages were observed at the O K-edge XANES feature located at 538.2 eV, which strongly supported the oxygen ion drift model that was recently proposed from ex situ transmission electron microscope studies.

  2. Effect of Pulse and dc Formation on the Performance of One-Transistor and One-Resistor Resistance Random Access Memory Devices

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Tao; Yang, Bao-He; Lv, Hang-Bing; Xu, Xiao-Xin; Luo, Qing; Wang, Guo-Ming; Zhang, Mei-Yun; Long, Shi-Bing; Liu, Qi; Liu, Ming

    2015-02-01

    We investigate the effect of the formation process under pulse and dc modes on the performance of one transistor and one resistor (1T1R) resistance random access memory (RRAM) device. All the devices are operated under the same test conditions, except for the initial formation process with different modes. Based on the statistical results, the high resistance state (HRS) under the dc forming mode shows a lower value with better distribution compared with that under the pulse mode. One of the possible reasons for such a phenomenon originates from different properties of conductive filament (CF) formed in the resistive switching layer under two different modes. For the dc forming mode, the formed filament is thought to be continuous, which is hard to be ruptured, resulting in a lower HRS. However, in the case of pulse forming, the filament is discontinuous where the transport mechanism is governed by hopping. The low resistance state (LRS) can be easily changed by removing a few trapping states from the conducting path. Hence, a higher HRS is thus observed. However, the HRS resistance is highly dependent on the length of the gap opened. A slight variation of the gap length will cause wide dispersion of resistance.

  3. PANDA: A distributed multiprocessor operating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubb, P.

    1989-01-01

    PANDA is a design for a distributed multiprocessor and an operating system. PANDA is designed to allow easy expansion of both hardware and software. As such, the PANDA kernel provides only message passing and memory and process management. The other features needed for the system (device drivers, secondary storage management, etc.) are provided as replaceable user tasks. The thesis presents PANDA's design and implementation, both hardware and software. PANDA uses multiple 68010 processors sharing memory on a VME bus, each such node potentially connected to others via a high speed network. The machine is completely homogeneous: there are no differencesmore » between processors that are detectable by programs running on the machine. A single two-processor node has been constructed. Each processor contains memory management circuits designed to allow processors to share page tables safely. PANDA presents a programmers' model similar to the hardware model: a job is divided into multiple tasks, each having its own address space. Within each task, multiple processes share code and data. Tasks can send messages to each other, and set up virtual circuits between themselves. Peripheral devices such as disc drives are represented within PANDA by tasks. PANDA divides secondary storage into volumes, each volume being accessed by a volume access task, or VAT. All knowledge about the way that data is stored on a disc is kept in its volume's VAT. The design is such that PANDA should provide a useful testbed for file systems and device drivers, as these can be installed without recompiling PANDA itself, and without rebooting the machine.« less

  4. Atomic memory access hardware implementations

    DOEpatents

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  5. Improvement of multi-level resistive switching characteristics in solution-processed AlO x -based non-volatile resistive memory using microwave irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Tae; Cho, Won-Ju

    2018-01-01

    We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.

  6. Modeling and Implementation of HfO2-based Ferroelectric Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Pringle, Spencer Allen

    HfO2-based ferroelectric tunnel junctions (FTJs) represent a unique opportunity as both a next-generation digital non-volatile memory and as synapse devices in braininspired logic systems, owing to their higher reliability compared to filamentary resistive random-access memory (ReRAM) and higher speed and lower power consumption compared to competing devices, including phase-change memory (PCM) and state-of-the-art FTJ. Ferroelectrics are often easier to deposit and have simpler material structure than films for magnetic tunnel junctions (MTJs). Ferroelectric HfO2 also enables complementary metal-oxide-semiconductor (CMOS) compatibility, since lead zirconate titanate (PZT) and BaTiO3-based FTJs often are not. No other groups have yet demonstrated a HfO2-based FTJ (to best of the author's knowledge) or applied it to a suitable system. For such devices to be useful, system designers require models based on both theoretical physical analysis and experimental results of fabricated devices in order to confidently design control systems. Both the CMOS circuitry and FTJs must then be designed in layout and fabricated on the same die. This work includes modeling of proposed device structures using a custom python script, which calculates theoretical potential barrier heights as a function of material properties and corresponding current densities (ranging from 8x103 to 3x10-2 A/cm 2 with RHRS/RLRS ranging from 5x105 to 6, depending on ferroelectric thickness). These equations were then combined with polynomial fits of experimental timing data and implemented in a Verilog-A behavioral analog model in Cadence Virtuoso. The author proposes tristate CMOS control systems, and circuits, for implementation of FTJ devices as digital memory and presents simulated performance. Finally, a process flow for fabrication of FTJ devices with CMOS is presented. This work has therefore enabled the fabrication of FTJ devices at RIT and the continued investigation of them as applied to any appropriate systems.

  7. SSD Market Overview

    NASA Astrophysics Data System (ADS)

    Wong, G.

    The unparalleled cost and form factor advantages of NAND flash memory has driven 35 mm photographic film, floppy disks and one-inch hard drives to extinction. Due to its compelling price/performance characteristics, NAND Flash memory is now expanding its reach into the once-exclusive domain of hard disk drives and DRAM in the form of Solid State Drives (SSDs). Driven by the proliferation of thin and light mobile devices and the need for near-instantaneous accessing and sharing of content through the cloud, SSDs are expected to become a permanent fixture in the computing infrastructure.

  8. Highly uniform and reliable resistive switching characteristics of a Ni/WOx/p+-Si memory device

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hyeon; Kim, Sungjun; Kim, Hyungjin; Kim, Min-Hwi; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook

    2018-02-01

    In this paper, we investigate the resistive switching behavior of a bipolar resistive random-access memory (RRAM) in a Ni/WOx/p+-Si RRAM with CMOS compatibility. Highly unifrom and reliable bipolar resistive switching characteristics are observed by a DC voltage sweeping and its switching mechanism can be explained by SCLC model. As a result, the possibility of metal-insulator-silicon (MIS) structural WOx-based RRAM's application to Si-based 1D (diode)-1R (RRAM) or 1T (transistor)-1R (RRAM) structure is demonstrated.

  9. A Middleware Based Approach to Dynamically Deploy Location Based Services onto Heterogeneous Mobile Devices Using Bluetooth in Indoor Environment

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Pampa; Sen, Rijurekha; Das, Pradip K.

    Several methods for providing location based service (LBS) to mobile devices in indoor environment using wireless technologies like WLAN, RFID and Bluetooth have been proposed, implemented and evaluated. However, most of them do not focus on heterogeneity of mobile platforms, memory constraint of mobile devices, the adaptability of client or device to the new services it discovers whenever it reaches a new location. In this paper, we have proposed a Middleware based approach of LBS provision in the indoor environment, where a Bluetooth enabled Base Station (BS) detects Bluetooth enabled mobile devices and pushes a proper client application only to those devices that belong to some registered subscriber of LBS. This dynamic deployment enables the mobile clients to access any new service without having preinstalled interface to that service beforehand and thus the client's memory consumption is reduced. Our proposed work also addresses the other issues like authenticating the clients before providing them LBSs and introducing paid services. We have evaluated its performance in term of file transfer time with respect to file size and throughput with respect to distance. Experimental results on service consumption time by the mobile client for different services are also presented.

  10. Comparisons of switching characteristics between Ti/Al2O3/Pt and TiN/Al2O3/Pt RRAM devices with various compliance currents

    NASA Astrophysics Data System (ADS)

    Qi, Yanfei; Zhao, Ce Zhou; Liu, Chenguang; Fang, Yuxiao; He, Jiahuan; Luo, Tian; Yang, Li; Zhao, Chun

    2018-04-01

    In this study, the influence of the Ti and TiN top electrodes on the switching behaviors of the Al2O3/Pt resistive random access memory devices with various compliance currents (CCs, 1-15 mA) has been compared. Based on the similar statistical results of the resistive switching (RS) parameters such as V set/V reset, R HRS/R LRS (measured at 0.10 V) and resistance ratio with various CCs for both devices, the Ti/Al2O3/Pt device differs from the TiN/Al2O3/Pt device mainly in the forming process rather than in the following switching cycles. Apart from the initial isolated state, the Ti/Al2O3/Pt device has the initial intermediate state as well. In addition, its forming voltage is relatively lower. The conduction mechanisms of the ON and OFF state for both devices are demonstrated as ohmic conduction and Frenkel-Poole emission, respectively. Therefore, with the combined modulations of the CCs and the stop voltages, the TiN/Al2O3/Pt device is more stable for nonvolatile memory applications to further improve the RS performance.

  11. Development of non-volatile semiconductor memory

    NASA Technical Reports Server (NTRS)

    Heikkila, W. W.

    1979-01-01

    A 256 word by 8-bit random access memory chip was developed utilizing p channel, metal gate metal-nitride-oxide-silicon (MNOS) technology; with operational characteristics of a 2.5 microsecond read cycle, a 6.0 microsecond write cycle, 800 milliwatts of power dissipation; and retention characteristics of 10 to the 8th power read cycles before data refresh and 5000 hours of no power retention. Design changes were implemented to reduce switching currents that caused parasitic bipolar transistors inherent in the MNOS structure to turn on. Final wafer runs exhibited acceptable yields for a die 250 mils on a side. Evaluation testing was performed on the device in order to determine the maturity of the device. A fixed gate breakdown mechanism was found when operated continuously at high temperature.

  12. Design of Belief Propagation Based on FPGA for the Multistereo CAFADIS Camera

    PubMed Central

    Magdaleno, Eduardo; Lüke, Jonás Philipp; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we describe a fast, specialized hardware implementation of the belief propagation algorithm for the CAFADIS camera, a new plenoptic sensor patented by the University of La Laguna. This camera captures the lightfield of the scene and can be used to find out at which depth each pixel is in focus. The algorithm has been designed for FPGA devices using VHDL. We propose a parallel and pipeline architecture to implement the algorithm without external memory. Although the BRAM resources of the device increase considerably, we can maintain real-time restrictions by using extremely high-performance signal processing capability through parallelism and by accessing several memories simultaneously. The quantifying results with 16 bit precision have shown that performances are really close to the original Matlab programmed algorithm. PMID:22163404

  13. Design of belief propagation based on FPGA for the multistereo CAFADIS camera.

    PubMed

    Magdaleno, Eduardo; Lüke, Jonás Philipp; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we describe a fast, specialized hardware implementation of the belief propagation algorithm for the CAFADIS camera, a new plenoptic sensor patented by the University of La Laguna. This camera captures the lightfield of the scene and can be used to find out at which depth each pixel is in focus. The algorithm has been designed for FPGA devices using VHDL. We propose a parallel and pipeline architecture to implement the algorithm without external memory. Although the BRAM resources of the device increase considerably, we can maintain real-time restrictions by using extremely high-performance signal processing capability through parallelism and by accessing several memories simultaneously. The quantifying results with 16 bit precision have shown that performances are really close to the original Matlab programmed algorithm.

  14. An energy efficient and high speed architecture for convolution computing based on binary resistive random access memory

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Han, Runze; Zhou, Zheng; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2018-04-01

    In this work we present a novel convolution computing architecture based on metal oxide resistive random access memory (RRAM) to process the image data stored in the RRAM arrays. The proposed image storage architecture shows performances of better speed-device consumption efficiency compared with the previous kernel storage architecture. Further we improve the architecture for a high accuracy and low power computing by utilizing the binary storage and the series resistor. For a 28 × 28 image and 10 kernels with a size of 3 × 3, compared with the previous kernel storage approach, the newly proposed architecture shows excellent performances including: 1) almost 100% accuracy within 20% LRS variation and 90% HRS variation; 2) more than 67 times speed boost; 3) 71.4% energy saving.

  15. FPGA cluster for high-performance AO real-time control system

    NASA Astrophysics Data System (ADS)

    Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.

    2006-06-01

    Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.

  16. Emerging Applications for High K Materials in VLSI Technology

    PubMed Central

    Clark, Robert D.

    2014-01-01

    The current status of High K dielectrics in Very Large Scale Integrated circuit (VLSI) manufacturing for leading edge Dynamic Random Access Memory (DRAM) and Complementary Metal Oxide Semiconductor (CMOS) applications is summarized along with the deposition methods and general equipment types employed. Emerging applications for High K dielectrics in future CMOS are described as well for implementations in 10 nm and beyond nodes. Additional emerging applications for High K dielectrics include Resistive RAM memories, Metal-Insulator-Metal (MIM) diodes, Ferroelectric logic and memory devices, and as mask layers for patterning. Atomic Layer Deposition (ALD) is a common and proven deposition method for all of the applications discussed for use in future VLSI manufacturing. PMID:28788599

  17. Ferroelectric symmetry-protected multibit memory cell

    NASA Astrophysics Data System (ADS)

    Baudry, Laurent; Lukyanchuk, Igor; Vinokur, Valerii M.

    2017-02-01

    The tunability of electrical polarization in ferroelectrics is instrumental to their applications in information-storage devices. The existing ferroelectric memory cells are based on the two-level storage capacity with the standard binary logics. However, the latter have reached its fundamental limitations. Here we propose ferroelectric multibit cells (FMBC) utilizing the ability of multiaxial ferroelectric materials to pin the polarization at a sequence of the multistable states. Employing the catastrophe theory principles we show that these states are symmetry-protected against the information loss and thus realize novel topologically-controlled access memory (TAM). Our findings enable developing a platform for the emergent many-valued non-Boolean information technology and target challenges posed by needs of quantum and neuromorphic computing.

  18. Scalable quantum memory in the ultrastrong coupling regime.

    PubMed

    Kyaw, T H; Felicetti, S; Romero, G; Solano, E; Kwek, L-C

    2015-03-02

    Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z2 parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.

  19. Scalable quantum memory in the ultrastrong coupling regime

    PubMed Central

    Kyaw, T. H.; Felicetti, S.; Romero, G.; Solano, E.; Kwek, L.-C.

    2015-01-01

    Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z2 parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances. PMID:25727251

  20. Influence of ultraviolet irradiation on data retention characteristics in resistive random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, K.; Ohmi, K.; Tottori University Electronic Display Research Center, 101 Minami4-chome, Koyama-cho, Tottori-shi, Tottori 680-8551

    With increasing density of memory devices, the issue of generating soft errors by cosmic rays is becoming more and more serious. Therefore, the irradiation resistance of resistance random access memory (ReRAM) to cosmic radiation has to be elucidated for practical use. In this paper, we investigated the data retention characteristics of ReRAM against ultraviolet irradiation with a Pt/NiO/ITO structure. Soft errors were confirmed to be caused by ultraviolet irradiation in both low- and high-resistance states. An analysis of the wavelength dependence of light irradiation on data retention characteristics suggested that electronic excitation from the valence to the conduction band andmore » to the energy level generated due to the introduction of oxygen vacancies caused the errors. Based on a statistically estimated soft error rates, the errors were suggested to be caused by the cohesion and dispersion of oxygen vacancies owing to the generation of electron-hole pairs and valence changes by the ultraviolet irradiation.« less

  1. Magnetoresistance and noise properties of chevron stretcher detectors for field access bubble domain devices

    NASA Technical Reports Server (NTRS)

    George, P. K.; Oeffinger, T. R.; Chen, T. T.

    1976-01-01

    Experiments were devised to study the angular variation of the resistance and noise properties of one- and two-level chevron stretcher magnetoresistive detectors for use in field access bubble memory devices. All measurements, made with an electronic system, were performed on glass or garnet samples upon which 1 micron of SiO2 was sputter-deposited, followed by 4000 A of Permalloy for the 28-micron-period devices and 0.8 microns of SiO2, followed by 3000 A of Permalloy for the 20-micron-period devices. The geometrical and drive-state dependence of the zero-state noise were studied, as was its frequency dependence. It is found that both types of detectors operate primarily in the amplitude-shift mode for drive fields of interest and that the presence of a bubble in a detector causes a magnetoresistance change equal to that produced by increasing the in-plane drive field about 8 Oe in the absence of a bubble.

  2. Investigation of multilayer magnetic domain lattice file

    NASA Technical Reports Server (NTRS)

    Torok, E. J.; Kamin, M.; Tolman, C. H.

    1982-01-01

    A theoretical and experimental investigation determined that current accessed self structured bubble memory devices have the potential of meeting projected data density and speed requirements. Device concepts analyzed include multilayer ferrimagnetic devices where the top layer contains a domain structure which defines the data location and the second contains the data. Current aperture and permalloy assisted current propagation devices were evaluated. Based on the result of this work more detailed device research was initiated. Detailed theoretical and experimental studies indicate that the difference in strip and threshold between a single bubble in the control layer and a double bubble which would exist in both the control layer and data layer is adequate to allow for detection of data. Detailed detector designs were investigated.

  3. PCM-Based Durable Write Cache for Fast Disk I/O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhuo; Wang, Bin; Carpenter, Patrick

    2012-01-01

    Flash based solid-state devices (FSSDs) have been adopted within the memory hierarchy to improve the performance of hard disk drive (HDD) based storage system. However, with the fast development of storage-class memories, new storage technologies with better performance and higher write endurance than FSSDs are emerging, e.g., phase-change memory (PCM). Understanding how to leverage these state-of-the-art storage technologies for modern computing systems is important to solve challenging data intensive computing problems. In this paper, we propose to leverage PCM for a hybrid PCM-HDD storage architecture. We identify the limitations of traditional LRU caching algorithms for PCM-based caches, and develop amore » novel hash-based write caching scheme called HALO to improve random write performance of hard disks. To address the limited durability of PCM devices and solve the degraded spatial locality in traditional wear-leveling techniques, we further propose novel PCM management algorithms that provide effective wear-leveling while maximizing access parallelism. We have evaluated this PCM-based hybrid storage architecture using applications with a diverse set of I/O access patterns. Our experimental results demonstrate that the HALO caching scheme leads to an average reduction of 36.8% in execution time compared to the LRU caching scheme, and that the SFC wear leveling extends the lifetime of PCM by a factor of 21.6.« less

  4. Low-power, high-uniform, and forming-free resistive memory based on Mg-deficient amorphous MgO film with rough surface

    NASA Astrophysics Data System (ADS)

    Guo, Jiajun; Ren, Shuxia; Wu, Liqian; Kang, Xin; Chen, Wei; Zhao, Xu

    2018-03-01

    Saving energy and reducing operation parameter fluctuations remain crucial for enabling resistive random access memory (RRAM) to emerge as a universal memory. In this work, we report a resistive memory device based on an amorphous MgO (a-MgO) film that not only exhibits ultralow programming voltage (just 0.22 V) and low power consumption (less than 176.7 μW) but also shows excellent operative uniformity (the coefficient of variation is only 1.7% and 2.2% for SET and RESET voltage, respectively). Moreover, it also shows a forming-free characteristic. Further analysis indicates that these distinctive properties can be attributed to the unstable local structures and the rough surface of the Mg-deficient a-MgO film. These findings show the potential of using a-MgO in high-performance nonvolatile memory applications.

  5. Materials and other needs for advanced phase change memory (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Sosa, Norma E.

    2015-09-01

    Phase change memory (PCM), with its long history, may now hold its brightest promise to date. This bright future is being fueled by the "push" from big data. PCM is a non-volatile memory technology used to create solid-state random access memory devices that operate based the resistance properties of materials. Employing the electrical resistance differences-as opposed to differences in charge stored-between the amorphous and crystalline phases of the material, PCM can store bits, namely one's and zero's. Indeed, owing to the method of storage, PCM can in fact be designed to hold multiple bits thus leading to a high-density technology twice the storage density and less than half the cost of DRAM, the main kind found in typical personal computers. It has been long known that PCM can fill a need gap that spans 3 decades in performance from DRAM to solid state drive (NAND Flash). Furthermore, PCM devices can lead to performance and reliability improvements essential to enabling significant steps forward to supporting big data centric computing. This talk will focus on the science and challenges of aggressive scaling to realize the density needed, how this scaling challenge is intertwined with materials needs for endurance into the giga-cycles, and the associated forefront research aiming to realizing multi-level functionality into these nanoscale programmable resistor devices.

  6. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    NASA Astrophysics Data System (ADS)

    Jovanović, B.; Brum, R. M.; Torres, L.

    2014-04-01

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  7. Multiple-choice tests stabilize access to marginal knowledge.

    PubMed

    Cantor, Allison D; Eslick, Andrea N; Marsh, Elizabeth J; Bjork, Robert A; Bjork, Elizabeth Ligon

    2015-02-01

    Marginal knowledge refers to knowledge that is stored in memory, but is not accessible at a given moment. For example, one might struggle to remember who wrote The Call of the Wild, even if that knowledge is stored in memory. Knowing how best to stabilize access to marginal knowledge is important, given that new learning often requires accessing and building on prior knowledge. While even a single opportunity to restudy marginal knowledge boosts its later accessibility (Berger, Hall, & Bahrick, 1999), in many situations explicit relearning opportunities are not available. Our question is whether multiple-choice tests (which by definition expose the learner to the correct answers) can also serve this function and, if so, how testing compares to restudying given that tests can be particularly powerful learning devices (Roediger & Karpicke, 2006). In four experiments, we found that multiple-choice testing had the power to stabilize access to marginal knowledge, and to do so for at least up to a week. Importantly, such tests did not need to be paired with feedback, although testing was no more powerful than studying. Overall, the results support the idea that one's knowledge base is unstable, with individual pieces of information coming in and out of reach. The present findings have implications for a key educational challenge: ensuring that students have continuing access to information they have learned.

  8. Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Kamesh

    Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore,more » these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-ow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization.« less

  9. Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Pu; Bennett, Christopher H.; Cabaret, Théo; Vodenicarevic, Damir; Chabi, Djaafar; Querlioz, Damien; Jousselme, Bruno; Derycke, Vincent; Klein, Jacques-Olivier

    2016-09-01

    Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.

  10. Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses.

    PubMed

    Lin, Yu-Pu; Bennett, Christopher H; Cabaret, Théo; Vodenicarevic, Damir; Chabi, Djaafar; Querlioz, Damien; Jousselme, Bruno; Derycke, Vincent; Klein, Jacques-Olivier

    2016-09-07

    Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.

  11. Highly-Ordered 3D Vertical Resistive Switching Memory Arrays with Ultralow Power Consumption and Ultrahigh Density.

    PubMed

    Al-Haddad, Ahmed; Wang, Chengliang; Qi, Haoyuan; Grote, Fabian; Wen, Liaoyong; Bernhard, Jörg; Vellacheri, Ranjith; Tarish, Samar; Nabi, Ghulam; Kaiser, Ute; Lei, Yong

    2016-09-07

    Resistive switching random access memories (RRAM) have attracted great scientific and industrial attention for next generation data storage because of their advantages of nonvolatile properties, high density, low power consumption, fast writing/erasing speed, good endurance, and simple and small operation system. Here, by using a template-assisted technique, we demonstrate a three-dimensional highly ordered vertical RRAM device array with density as high as that of the nanopores of the template (10(8)-10(9) cm(-2)), which can also be fabricated in large area. The high crystallinity of the materials, the large contact area and the intimate semiconductor/electrode interface (3 nm interfacial layer) make the ultralow voltage operation (millivolt magnitude) and ultralow power consumption (picowatt) possible. Our procedure for fabrication of the nanodevice arrays in large area can be used for producing many other different materials and such three-dimensional electronic device arrays with the capability to adjust the device densities can be extended to other applications of the next generation nanodevice technology.

  12. Organic Ferroelectric-Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Half-Selection Problem.

    PubMed

    Zhao, Qiang; Wang, Hanlin; Ni, Zhenjie; Liu, Jie; Zhen, Yonggang; Zhang, Xiaotao; Jiang, Lang; Li, Rongjin; Dong, Huanli; Hu, Wenping

    2017-09-01

    Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low-cost and easy-fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half-selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm 2 V -1 s -1 (average) for 2,6-diphenylanthracene (DPA) and electron mobility of 0.124 cm 2 V -1 s -1 (average) for N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN 2 ) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric-based pixelated memory module fabrication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A portable ECG monitoring device with Bluetooth and Holter capabilities for telemedicine applications.

    PubMed

    Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara

    2006-01-01

    A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission.

  14. Random Telegraph Signal-Like Fluctuation Created by Fowler-Nordheim Stress in Gate Induced Drain Leakage Current of the Saddle Type Dynamic Random Access Memory Cell Transistor

    NASA Astrophysics Data System (ADS)

    Kim, Heesang; Oh, Byoungchan; Kim, Kyungdo; Cha, Seon-Yong; Jeong, Jae-Goan; Hong, Sung-Joo; Lee, Jong-Ho; Park, Byung-Gook; Shin, Hyungcheol

    2010-09-01

    We generated traps inside gate oxide in gate-drain overlap region of recess channel type dynamic random access memory (DRAM) cell transistor through Fowler-Nordheim (FN) stress, and observed gate induced drain leakage (GIDL) current both in time domain and in frequency domain. It was found that the trap inside gate oxide could generate random telegraph signal (RTS)-like fluctuation in GIDL current. The characteristics of that fluctuation were similar to those of RTS-like fluctuation in GIDL current observed in the non-stressed device. This result shows the possibility that the trap causing variable retention time (VRT) in DRAM data retention time can be located inside gate oxide like channel RTS of metal-oxide-semiconductor field-effect transistors (MOSFETs).

  15. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    NASA Astrophysics Data System (ADS)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  16. A Collective Study on Modeling and Simulation of Resistive Random Access Memory

    NASA Astrophysics Data System (ADS)

    Panda, Debashis; Sahu, Paritosh Piyush; Tseng, Tseung Yuen

    2018-01-01

    In this work, we provide a comprehensive discussion on the various models proposed for the design and description of resistive random access memory (RRAM), being a nascent technology is heavily reliant on accurate models to develop efficient working designs and standardize its implementation across devices. This review provides detailed information regarding the various physical methodologies considered for developing models for RRAM devices. It covers all the important models reported till now and elucidates their features and limitations. Various additional effects and anomalies arising from memristive system have been addressed, and the solutions provided by the models to these problems have been shown as well. All the fundamental concepts of RRAM model development such as device operation, switching dynamics, and current-voltage relationships are covered in detail in this work. Popular models proposed by Chua, HP Labs, Yakopcic, TEAM, Stanford/ASU, Ielmini, Berco-Tseng, and many others have been compared and analyzed extensively on various parameters. The working and implementations of the window functions like Joglekar, Biolek, Prodromakis, etc. has been presented and compared as well. New well-defined modeling concepts have been discussed which increase the applicability and accuracy of the models. The use of these concepts brings forth several improvements in the existing models, which have been enumerated in this work. Following the template presented, highly accurate models would be developed which will vastly help future model developers and the modeling community.

  17. Ferroelectric symmetry-protected multibit memory cell

    DOE PAGES

    Baudry, Laurent; Lukyanchuk, Igor; Vinokur, Valerii M.

    2017-02-08

    Here, the tunability of electrical polarization in ferroelectrics is instrumental to their applications in information-storage devices. The existing ferroelectric memory cells are based on the two-level storage capacity with the standard binary logics. However, the latter have reached its fundamental limitations. Here we propose ferroelectric multibit cells (FMBC) utilizing the ability of multiaxial ferroelectric materials to pin the polarization at a sequence of the multistable states. Employing the catastrophe theory principles we show that these states are symmetry-protected against the information loss and thus realize novel topologically-controlled access memory (TAM). Our findings enable developing a platform for the emergent many-valuedmore » non-Boolean information technology and target challenges posed by needs of quantum and neuromorphic computing.« less

  18. Conductive bridge random access memory characteristics of SiCN based transparent device due to indium diffusion

    NASA Astrophysics Data System (ADS)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2018-03-01

    In this work, the transparent bipolar resistive switching characteristics of a SiCN-based ITO/SiCN/AZO structure due to In diffusion from ITO is studied. The SiCN based device is found to be 80% transparent in the visible wavelength region. This device, with AZO as both top and bottom electrodes, does not show any RRAM property due to deposition of the high quality O2-free SiCN film. Replacing the AZO top electrode with ITO in this device results in good resistive switching (RS) characteristics with a high on/off ratio and long retention. Replacing the SiCN film with ZrO2 also results in excellent RS characteristics due to the formation of an oxygen vacancies filament inside the ZrO2 film. A resistance ratio of on/off is found to be higher in the SiCN based device compared to that of the ZrO2 device. Diffusion of In from ITO into the SiCN film on application of high positive voltage during forming can be attributed to the occurrence of RS in the device, which is confirmed by the analyses of energy dispersive spectroscopy and secondary-ion mass spectrometry. This study shows a pathway for the fabrication of CBRAM based transparent devices for non-volatile memory application.

  19. PACE: Power-Aware Computing Engines

    DTIC Science & Technology

    2005-02-01

    more costly than compu- tation on our test platform, and it is memory access that dominates most lossless data compression algorithms . In fact, even...Performance and implementation concerns A compression algorithm may be implemented with many different, yet reasonable, data structures (including...Related work This section discusses data compression for low- bandwidth devices and optimizing algorithms for low energy. Though much work has gone

  20. Review of multi-layered magnetoelectric composite materials and devices applications

    NASA Astrophysics Data System (ADS)

    Chu, Zhaoqiang; PourhosseiniAsl, MohammadJavad; Dong, Shuxiang

    2018-06-01

    Multiferroic materials with the coexistence of at least two ferroic orders, such as ferroelectricity, ferromagnetism, or ferroelasticity, have recently attracted ever-increasing attention due to their potential for multifunctional device applications, including magnetic and current sensors, energy harvesters, magnetoelectric (ME) random access memory and logic devices, tunable microwave devices, and ME antenna. In this article, we provide a review of the recent and ongoing research efforts in the field of multi-layered ME composites. After a brief introduction to ME composites and ME coupling mechanisms, we review recent advances in multi-layered ME composites as well as their device applications based on the direct ME effect, magnetic sensors in particular. Finally, some remaining challenges and future perspective of ME composites and their engineering applications will be discussed.

  1. Non-volatile, high density, high speed, Micromagnet-Hall effect Random Access Memory (MHRAM)

    NASA Technical Reports Server (NTRS)

    Wu, Jiin C.; Katti, Romney R.; Stadler, Henry L.

    1991-01-01

    The micromagnetic Hall effect random access memory (MHRAM) has the potential of replacing ROMs, EPROMs, EEPROMs, and SRAMs because of its ability to achieve non-volatility, radiation hardness, high density, and fast access times, simultaneously. Information is stored magnetically in small magnetic elements (micromagnets), allowing unlimited data retention time, unlimited numbers of rewrite cycles, and inherent radiation hardness and SEU immunity, making the MHRAM suitable for ground based as well as spaceflight applications. The MHRAM device design is not affected by areal property fluctuations in the micromagnet, so high operating margins and high yield can be achieved in large scale integrated circuit (IC) fabrication. The MHRAM has short access times (less than 100 nsec). Write access time is short because on-chip transistors are used to gate current quickly, and magnetization reversal in the micromagnet can occur in a matter of a few nanoseconds. Read access time is short because the high electron mobility sensor (InAs or InSb) produces a large signal voltage in response to the fringing magnetic field from the micromagnet. High storage density is achieved since a unit cell consists only of two transistors and one micromagnet Hall effect element. By comparison, a DRAM unit cell has one transistor and one capacitor, and a SRAM unit cell has six transistors.

  2. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-06-01

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03169b

  3. An UV photochromic memory effect in proton-based WO3 electrochromic devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Lee, S.-H.; Mascarenhas, A.; Deb, S. K.

    2008-11-01

    We report an UV photochromic memory effect on a standard proton-based WO3 electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices.

  4. First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clima, Sergiu, E-mail: clima@imec.be; Chen, Yang Yin; Goux, Ludovic

    Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottommore » Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices.« less

  5. Microscopic origin of read current noise in TaOx-based resistive switching memory by ultra-low temperature measurement

    NASA Astrophysics Data System (ADS)

    Pan, Yue; Cai, Yimao; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru

    2016-04-01

    TaOx-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaOx-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaOx RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaOx RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706; Stewart, Derek A., E-mail: derek.stewart@hgst.com

    Metal oxide resistive memory devices based on Ta{sub 2}O{sub 5} have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta{sub 2}O{sub 5} is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta{sub 2}O{sub 5}. Identified diffusion paths are associated with collective motion of neighboringmore » atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta{sub 2}O{sub 5} is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta{sub 2}O{sub 5} based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.« less

  7. The Global File System

    NASA Technical Reports Server (NTRS)

    Soltis, Steven R.; Ruwart, Thomas M.; OKeefe, Matthew T.

    1996-01-01

    The global file system (GFS) is a prototype design for a distributed file system in which cluster nodes physically share storage devices connected via a network-like fiber channel. Networks and network-attached storage devices have advanced to a level of performance and extensibility so that the previous disadvantages of shared disk architectures are no longer valid. This shared storage architecture attempts to exploit the sophistication of storage device technologies whereas a server architecture diminishes a device's role to that of a simple component. GFS distributes the file system responsibilities across processing nodes, storage across the devices, and file system resources across the entire storage pool. GFS caches data on the storage devices instead of the main memories of the machines. Consistency is established by using a locking mechanism maintained by the storage devices to facilitate atomic read-modify-write operations. The locking mechanism is being prototyped in the Silicon Graphics IRIX operating system and is accessed using standard Unix commands and modules.

  8. Synchronous clock stopper for microprocessor

    NASA Technical Reports Server (NTRS)

    Kitchin, David A. (Inventor)

    1985-01-01

    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.

  9. Tunnel junctions with multiferroic barriers

    NASA Astrophysics Data System (ADS)

    Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert

    2007-04-01

    Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La0.1Bi0.9MnO3 (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.

  10. Tunnel junctions with multiferroic barriers.

    PubMed

    Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert

    2007-04-01

    Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La(0.1)Bi(0.9)MnO(3) (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2 nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.

  11. Spin-transfer torque in multiferroic tunnel junctions with composite dielectric/ferroelectric barriers

    NASA Astrophysics Data System (ADS)

    Velev, Julian P.; Merodio, Pablo; Pollack, Cesar; Kalitsov, Alan; Chshiev, Mairbek; Kioussis, Nicholas

    2017-12-01

    Using model calculations, we demonstrate a very high level of control of the spin-transfer torque (STT) by electric field in multiferroic tunnel junctions with composite dielectric/ferroelectric barriers. We find that, for particular device parameters, toggling the polarization direction can switch the voltage-induced part of STT between a finite value and a value close to zero, i.e. quench and release the torque. Additionally, we demonstrate that under certain conditions the zero-voltage STT, i.e. the interlayer exchange coupling, can switch sign with polarization reversal, which is equivalent to reversing the magnetic ground state of the tunnel junction. This bias- and polarization-tunability of the STT could be exploited to engineer novel functionalities such as softening/hardening of the bit or increasing the signal-to-noise ratio in magnetic sensors, which can have important implications for magnetic random access memories or for combined memory and logic devices.

  12. Smart substrates: Making multi-chip modules smarter

    NASA Astrophysics Data System (ADS)

    Wunsch, T. F.; Treece, R. K.

    1995-05-01

    A novel multi-chip module (MCM) design and manufacturing methodology which utilizes active CMOS circuits in what is normally a passive substrate realizes the 'smart substrate' for use in highly testable, high reliability MCMS. The active devices are used to test the bare substrate, diagnose assembly errors or integrated circuit (IC) failures that require rework, and improve the testability of the final MCM assembly. A static random access memory (SRAM) MCM has been designed and fabricated in Sandia Microelectronics Development Laboratory in order to demonstrate the technical feasibility of this concept and to examine design and manufacturing issues which will ultimately determine the economic viability of this approach. The smart substrate memory MCM represents a first in MCM packaging. At the time the first modules were fabricated, no other company or MCM vendor had incorporated active devices in the substrate to improve manufacturability and testability, and thereby improve MCM reliability and reduce cost.

  13. Remote Memory Access Protocol Target Node Intellectual Property

    NASA Technical Reports Server (NTRS)

    Haddad, Omar

    2013-01-01

    The MagnetoSpheric Multiscale (MMS) mission had a requirement to use the Remote Memory Access Protocol (RMAP) over its SpaceWire network. At the time, no known intellectual property (IP) cores were available for purchase. Additionally, MMS preferred to implement the RMAP functionality with control over the low-level details of the design. For example, not all the RMAP standard functionality was needed, and it was desired to implement only the portions of the RMAP protocol that were needed. RMAP functionality had been previously implemented in commercial off-the-shelf (COTS) products, but the IP core was not available for purchase. The RMAP Target IP core is a VHDL (VHSIC Hardware Description Language description of a digital logic design suitable for implementation in an FPGA (field-programmable gate array) or ASIC (application-specific integrated circuit) that parses SpaceWire packets that conform to the RMAP standard. The RMAP packet protocol allows a network host to access and control a target device using address mapping. This capability allows SpaceWire devices to be managed in a standardized way that simplifies the hardware design of the device, as well as the development of the software that controls the device. The RMAP Target IP core has some features that are unique and not specified in the RMAP standard. One such feature is the ability to automatically abort transactions if the back-end logic does not respond to read/write requests within a predefined time. When a request times out, the RMAP Target IP core automatically retracts the request and returns a command response with an appropriate status in the response packet s header. Another such feature is the ability to control the SpaceWire node or router using RMAP transactions in the extended address range. This allows the SpaceWire network host to manage the SpaceWire network elements using RMAP packets, which reduces the number of protocols that the network host needs to support.

  14. CMOS integration of high-k/metal gate transistors in diffusion and gate replacement (D&GR) scheme for dynamic random access memory peripheral circuits

    NASA Astrophysics Data System (ADS)

    Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto

    2018-04-01

    Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.

  15. System for simultaneously loading program to master computer memory devices and corresponding slave computer memory devices

    NASA Technical Reports Server (NTRS)

    Hall, William A. (Inventor)

    1993-01-01

    A bus programmable slave module card for use in a computer control system is disclosed which comprises a master computer and one or more slave computer modules interfacing by means of a bus. Each slave module includes its own microprocessor, memory, and control program for acting as a single loop controller. The slave card includes a plurality of memory means (S1, S2...) corresponding to a like plurality of memory devices (C1, C2...) in the master computer, for each slave memory means its own communication lines connectable through the bus with memory communication lines of an associated memory device in the master computer, and a one-way electronic door which is switchable to either a closed condition or a one-way open condition. With the door closed, communication lines between master computer memory (C1, C2...) and slave memory (S1, S2...) are blocked. In the one-way open condition invention, the memory communication lines or each slave memory means (S1, S2...) connect with the memory communication lines of its associated memory device (C1, C2...) in the master computer, and the memory devices (C1, C2...) of the master computer and slave card are electrically parallel such that information seen by the master's memory is also seen by the slave's memory. The slave card is also connectable to a switch for electronically removing the slave microprocessor from the system. With the master computer and the slave card in programming mode relationship, and the slave microprocessor electronically removed from the system, loading a program in the memory devices (C1, C2...) of the master accomplishes a parallel loading into the memory devices (S1, S2...) of the slave.

  16. Resistive switching mechanism of Ag/ZrO2:Cu/Pt memory cell

    NASA Astrophysics Data System (ADS)

    Long, Shibing; Liu, Qi; Lv, Hangbing; Li, Yingtao; Wang, Yan; Zhang, Sen; Lian, Wentai; Zhang, Kangwei; Wang, Ming; Xie, Hongwei; Liu, Ming

    2011-03-01

    Resistive switching mechanism of zirconium oxide-based resistive random access memory (RRAM) devices composed of Cu-doped ZrO2 film sandwiched between an oxidizable electrode and an inert electrode was investigated. The Ag/ZrO2:Cu/Pt RRAM devices with crosspoint structure fabricated by e-beam evaporation and e-beam lithography show reproducible bipolar resistive switching. The linear I- V relationship of low resistance state (LRS) and the dependence of LRS resistance ( R ON) and reset current ( I reset) on the set current compliance ( I comp) indicate that the observed resistive switching characteristics of the Ag/ZrO2:Cu/Pt device should be ascribed to the formation and annihilation of localized conductive filaments (CFs). The physical origin of CF was further analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). CFs were directly observed by cross-sectional TEM. According to EDS and elemental mapping analysis, the main chemical composition of CF is determined by Ag atoms, coming from the Ag top electrode. On the basis of these experiments, we propose that the set and reset process of the device stem from the electrochemical reactions in the zirconium oxide under different external electrical stimuli.

  17. Electrically-controlled nonlinear switching and multi-level storage characteristics in WOx film-based memory cells

    NASA Astrophysics Data System (ADS)

    Duan, W. J.; Wang, J. B.; Zhong, X. L.

    2018-05-01

    Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.

  18. Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Interlayer Insertion Enables Organic Quaternary Memory.

    PubMed

    Cheng, Xue-Feng; Hou, Xiang; Qian, Wen-Hu; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-08-23

    Herein, for the first time, quaternary resistive memory based on an organic molecule is achieved via surface engineering. A layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was inserted between the indium tin oxide (ITO) electrode and the organic layer (squaraine, SA-Bu) to form an ITO/PEDOT-PSS/SA-Bu/Al architecture. The modified resistive random-access memory (RRAM) devices achieve quaternary memory switching with the highest yield (∼41%) to date. Surface morphology, crystallinity, and mosaicity of the deposited organic grains are greatly improved after insertion of a PEDOT-PSS interlayer, which provides better contacts at the grain boundaries as well as the electrode/active layer interface. The PEDOT-PSS interlayer also reduces the hole injection barrier from the electrode to the active layer. Thus, the threshold voltage of each switching is greatly reduced, allowing for more quaternary switching in a certain voltage window. Our results provide a simple yet powerful strategy as an alternative to molecular design to achieve organic quaternary resistive memory.

  19. 1T1R Nonvolatile Memory with Al/TiO₂/Au and Sol-Gel-Processed Insulator for Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor.

    PubMed

    Lee, Ke-Jing; Chang, Yu-Chi; Lee, Cheng-Jung; Wang, Li-Wen; Wang, Yeong-Her

    2017-12-09

    A one-transistor and one-resistor (1T1R) architecture with a resistive random access memory (RRAM) cell connected to an organic thin-film transistor (OTFT) device is successfully demonstrated to avoid the cross-talk issues of only one RRAM cell. The OTFT device, which uses barium zirconate nickelate (BZN) as a dielectric layer, exhibits favorable electrical properties, such as a high field-effect mobility of 5 cm²/Vs, low threshold voltage of -1.1 V, and low leakage current of 10 -12 A, for a driver in the 1T1R operation scheme. The 1T1R architecture with a TiO₂-based RRAM cell connected with a BZN OTFT device indicates a low operation current (10 μA) and reliable data retention (over ten years). This favorable performance of the 1T1R device can be attributed to the additional barrier heights introduced by using Ni (II) acetylacetone as a substitute for acetylacetone, and the relatively low leakage current of a BZN dielectric layer. The proposed 1T1R device with low leakage current OTFT and excellent uniform resistance distribution of RRAM exhibits a good potential for use in practical low-power electronic applications.

  20. Coexistence of unipolar and bipolar resistive switching behaviors in NiFe2O4 thin film devices by doping Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Hao, Aize; Ismail, Muhammad; He, Shuai; Huang, Wenhua; Qin, Ni; Bao, Dinghua

    2018-02-01

    The coexistence of unipolar and bipolar resistive switching (RS) behaviors of Ag-nanoparticles (Ag-NPs) doped NiFe2O4 (NFO) based memory devices was investigated. The switching voltages of required operations in the unipolar mode were smaller than those in the bipolar mode, while ON/OFF resistance levels of both modes were identical. Ag-NPs doped NFO based devices could switch between the unipolar and bipolar modes just by preferring the polarity of RESET voltage. Besides, the necessity of identical compliance current during the SET process of unipolar and bipolar modes provided an additional advantage of simplicity in device operation. Performance characteristics and cycle-to-cycle uniformity (>103 cycles) in unipolar operation were considerably better than those in bipolar mode (>102 cycles) at 25 °C. Moreover, good endurance (>600 cycles) at 200 °C was observed in unipolar mode and excellent nondestructive retention characteristics were obtained on memory cells at 125 °C and 200 °C. On the basis of temperature dependence of resistance at low resistance state, it was believed that physical origin of the RS mechanism involved the formation/rupture of the conducting paths consisting of oxygen vacancies and Ag atoms, considering Joule heating and electrochemical redox reaction effects for the unipolar and bipolar resistive switching behaviors. Our results demonstrate that 0.5% Ag-NPs doped nickel ferrites are promising resistive switching materials for resistive access memory applications.

  1. Piezotronic nanowire-based resistive switches as programmable electromechanical memories.

    PubMed

    Wu, Wenzhuo; Wang, Zhong Lin

    2011-07-13

    We present the first piezoelectrically modulated resistive switching device based on piezotronic ZnO nanowire (NW), through which the write/read access of the memory cell is programmed via electromechanical modulation. Adjusted by the strain-induced polarization charges created at the semiconductor/metal interface under externally applied deformation by the piezoelectric effect, the resistive switching characteristics of the cell can be modulated in a controlled manner, and the logic levels of the strain stored in the cell can be recorded and read out, which has the potential for integrating with NEMS technology to achieve micro/nanosystems capable for intelligent and self-sufficient multidimensional operations.

  2. A floating-point/multiple-precision processor for airborne applications

    NASA Technical Reports Server (NTRS)

    Yee, R.

    1982-01-01

    A compact input output (I/O) numerical processor capable of performing floating-point, multiple precision and other arithmetic functions at execution times which are at least 100 times faster than comparable software emulation is described. The I/O device is a microcomputer system containing a 16 bit microprocessor, a numerical coprocessor with eight 80 bit registers running at a 5 MHz clock rate, 18K random access memory (RAM) and 16K electrically programmable read only memory (EPROM). The processor acts as an intelligent slave to the host computer and can be programmed in high order languages such as FORTRAN and PL/M-86.

  3. An Adaptive Memory Interface Controller for Improving Bandwidth Utilization of Hybrid and Reconfigurable Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellana, Vito G.; Tumeo, Antonino; Ferrandi, Fabrizio

    Emerging applications such as data mining, bioinformatics, knowledge discovery, social network analysis are irregular. They use data structures based on pointers or linked lists, such as graphs, unbalanced trees or unstructures grids, which generates unpredictable memory accesses. These data structures usually are large, but difficult to partition. These applications mostly are memory bandwidth bounded and have high synchronization intensity. However, they also have large amounts of inherent dynamic parallelism, because they potentially perform a task for each one of the element they are exploring. Several efforts are looking at accelerating these applications on hybrid architectures, which integrate general purpose processorsmore » with reconfigurable devices. Some solutions, which demonstrated significant speedups, include custom-hand tuned accelerators or even full processor architectures on the reconfigurable logic. In this paper we present an approach for the automatic synthesis of accelerators from C, targeted at irregular applications. In contrast to typical High Level Synthesis paradigms, which construct a centralized Finite State Machine, our approach generates dynamically scheduled hardware components. While parallelism exploitation in typical HLS-generated accelerators is usually bound within a single execution flow, our solution allows concurrently running multiple execution flow, thus also exploiting the coarser grain task parallelism of irregular applications. Our approach supports multiple, multi-ported and distributed memories, and atomic memory operations. Its main objective is parallelizing as many memory operations as possible, independently from their execution time, to maximize the memory bandwidth utilization. This significantly differs from current HLS flows, which usually consider a single memory port and require precise scheduling of memory operations. A key innovation of our approach is the generation of a memory interface controller, which dynamically maps concurrent memory accesses to multiple ports. We present a case study on a typical irregular kernel, Graph Breadth First search (BFS), exploring different tradeoffs in terms of parallelism and number of memories.« less

  4. Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth

    PubMed Central

    Song, Ji-Min; Lee, Jang-Sik

    2016-01-01

    Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switching memory devices were fabricated with nano-template-assisted bottom up growth. The electrochemical deposition was adopted to achieve the bottom-up growth of nickel nanodot electrodes. Nickel oxide layer was formed by oxygen plasma treatment of nickel nanodots at low temperature. The structures of fabricated nanoscale memory devices were analyzed with scanning electron microscope and atomic force microscope (AFM). The electrical characteristics of the devices were directly measured using conductive AFM. This work demonstrates the fabrication of resistive switching memory devices using self-assembled nanoscale masks and nanomateirals growth from bottom-up electrochemical deposition. PMID:26739122

  5. Coherent optical pulse sequencer for quantum applications.

    PubMed

    Hosseini, Mahdi; Sparkes, Ben M; Hétet, Gabriel; Longdell, Jevon J; Lam, Ping Koy; Buchler, Ben C

    2009-09-10

    The bandwidth and versatility of optical devices have revolutionized information technology systems and communication networks. Precise and arbitrary control of an optical field that preserves optical coherence is an important requisite for many proposed photonic technologies. For quantum information applications, a device that allows storage and on-demand retrieval of arbitrary quantum states of light would form an ideal quantum optical memory. Recently, significant progress has been made in implementing atomic quantum memories using electromagnetically induced transparency, photon echo spectroscopy, off-resonance Raman spectroscopy and other atom-light interaction processes. Single-photon and bright-optical-field storage with quantum states have both been successfully demonstrated. Here we present a coherent optical memory based on photon echoes induced through controlled reversible inhomogeneous broadening. Our scheme allows storage of multiple pulses of light within a chosen frequency bandwidth, and stored pulses can be recalled in arbitrary order with any chosen delay between each recalled pulse. Furthermore, pulses can be time-compressed, time-stretched or split into multiple smaller pulses and recalled in several pieces at chosen times. Although our experimental results are so far limited to classical light pulses, our technique should enable the construction of an optical random-access memory for time-bin quantum information, and have potential applications in quantum information processing.

  6. Invited Paper Optical Resonators For Associative Memory

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.

    1986-06-01

    One can construct a memory having associative characteristics using optical resonators with an internal gain medium. The device operates on the principle that an optical resonator employing a holographic grating can have user prescribed eigenmodes. Information that is to be recalled is contained in the hologram. Each information entity (e.g. an image of a cat) defines an eigenmode of the resonator. The stored information is accessed by injecting partial information (e.g. an image of the cat's ear) into the resonator. The appropriate eigenmode is selected through a competitive process in a gain medium placed inside the resonator. With a net gain greater than one, the gain amplifies the field belonging to the eigenmode that most resembles the injected field; the other eigenmodes are suppressed via the competition for the gain. One can expect this device to display several intriguing features such as recall transitions and creativity. I will discuss some of the general properties of this class of devices and present the results from a series of experiments with a simple holographic resonator employing photorefractive gain.

  7. Retention modeling for ultra-thin density of Cu-based conductive bridge random access memory (CBRAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aga, Fekadu Gochole; Woo, Jiyong; Lee, Sangheon

    We investigate the effect of Cu concentration On-state resistance retention characteristics of W/Cu/Ti/HfO{sub 2}/Pt memory cell. The development of RRAM device for application depends on the understanding of the failure mechanism and the key parameters for device optimization. In this study, we develop analytical expression for cations (Cu{sup +}) diffusion model using Gaussian distribution for detailed analysis of data retention time at high temperature. It is found that the improvement of data retention time depends not only on the conductive filament (CF) size but also on Cu atoms concentration density in the CF. Based on the simulation result, better datamore » retention time is observed for electron wave function associated with Cu{sup +} overlap and an extended state formation. This can be verified by analytical calculation of Cu atom defects inside the filament, based on Cu{sup +} diffusion model. The importance of Cu diffusion for the device reliability and the corresponding local temperature of the filament were analyzed by COMSOL Multiphysics simulation.« less

  8. On the origin of resistive switching volatility in Ni/TiO{sub 2}/Ni stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortese, Simone, E-mail: simone.cortese@soton.ac.uk; Trapatseli, Maria; Khiat, Ali

    2016-08-14

    Resistive switching and resistive random access memories have attracted huge interest for next generation nonvolatile memory applications, also thought to be able to overcome flash memories limitations when arranged in crossbar arrays. A cornerstone of their potential success is that the toggling between two distinct resistance states, usually a High Resistive State (HRS) and a Low Resistive State (LRS), is an intrinsic non-volatile phenomenon with the two states being thermodynamically stable. TiO{sub 2} is one of the most common materials known to support non-volatile RS. In this paper, we report a volatile resistive switching in a titanium dioxide thin filmmore » sandwiched by two nickel electrodes. The aim of this work is to understand the underlying physical mechanism that triggers the volatile effect, which is ascribed to the presence of a NiO layer at the bottom interface. The NiO layer alters the equilibrium between electric field driven filament formation and thermal enhanced ion diffusion, resulting in the volatile behaviour. Although the volatility is not ideal for non-volatile memory applications, it shows merit for access devices in crossbar arrays due to its high LRS/HRS ratio, which are also briefly discussed.« less

  9. Resonator memories and optical novelty filters

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.; Erle, Marie C.

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive materials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydreaming" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  10. Resonator Memories And Optical Novelty Filters

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.; Erie, Marie C.

    1987-05-01

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content-addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive ma-terials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydream-ing" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  11. Interactive water monitoring system accessible by cordless telephone

    NASA Astrophysics Data System (ADS)

    Volpicelli, Richard; Andeweg, Pierre; Hagar, William G.

    1985-12-01

    A battery-operated, microcomputer-controlled monitoring device linked with a cordless telephone has been developed for remote measurements. This environmental sensor is self-contained and collects and processes data according to the information sent to its on-board computer system. An RCA model 1805 microprocessor forms the basic controller with a program encoded in memory for data acquisition and analysis. Signals from analog sensing devices used to monitor the environment are converted into digital signals and stored in random access memory of the microcomputer. This remote sensing system is linked to the laboratory by means of a cordless telephone whose base unit is connected to regular telephone lines. This offshore sensing system is simply accessed by a phone call originating from a computer terminal in the laboratory. Data acquisition is initiated upon request: Information continues to be processed and stored until the computer is reprogrammed by another phone call request. Information obtained may be recalled by a phone call after the desired environmental measurements are finished or while they are in progress. Data sampling parameters may be reset at any time, including in the middle of a measurement cycle. The range of the system is limited only by existing telephone grid systems and by the transmission characteristics of the cordless phone used as a communications link. This use of a cordless telephone, coupled with the on-board computer system, may be applied to other field studies requiring data transfer between an on-site analytical system and the laboratory.

  12. 75 FR 16507 - In the Matter of Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... Semiconductor Chips Having Synchronous Dynamic Random Access Memory Controllers and Products Containing Same... synchronous dynamic random access memory controllers and products containing same by reason of infringement of... semiconductor chips having synchronous dynamic random access memory controllers and products containing same...

  13. Fault-Tolerant Sequencer Using FPGA-Based Logic Designs for Space Applications

    DTIC Science & Technology

    2013-12-01

    Prototype Board SBU single bit upset SDK software development kit SDRAM synchronous dynamic random-access memory SEB single-event burnout ...current VHDL VHSIC hardware description language VHSIC very-high-speed integrated circuits VLSI very-large- scale integration VQFP very...transient pulse, called a single-event transient (SET), or even cause permanent damage to the device in the form of a burnout or gate rupture. The SEE

  14. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.

    PubMed

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-14

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  15. Nanopatterned ferroelectrics for ultrahigh density rad-hard nonvolatile memories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennecka, Geoffrey L.; Stevens, Jeffrey; Scrymgeour, David

    2010-09-01

    Radiation hard nonvolatile random access memory (NVRAM) is a crucial component for DOE and DOD surveillance and defense applications. NVRAMs based upon ferroelectric materials (also known as FERAMs) are proven to work in radiation-rich environments and inherently require less power than many other NVRAM technologies. However, fabrication and integration challenges have led to state-of-the-art FERAMs still being fabricated using a 130nm process while competing phase-change memory (PRAM) has been demonstrated with a 20nm process. Use of block copolymer lithography is a promising approach to patterning at the sub-32nm scale, but is currently limited to self-assembly directly on Si or SiO{submore » 2} layers. Successful integration of ferroelectrics with discrete and addressable features of {approx}15-20nm would represent a 100-fold improvement in areal memory density and would enable more highly integrated electronic devices required for systems advances. Towards this end, we have developed a technique that allows us to carry out block copolymer self-assembly directly on a huge variety of different materials and have investigated the fabrication, integration, and characterization of electroceramic materials - primarily focused on solution-derived ferroelectrics - with discrete features of {approx}20nm and below. Significant challenges remain before such techniques will be capable of fabricating fully integrated NVRAM devices, but the tools developed for this effort are already finding broader use. This report introduces the nanopatterned NVRAM device concept as a mechanism for motivating the subsequent studies, but the bulk of the document will focus on the platform and technology development.« less

  16. Improved Writing-Conductor Designs For Magnetic Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1994-01-01

    Writing currents reduced to practical levels. Improved conceptual designs for writing conductors in micromagnet/Hall-effect random-access integrated-circuit memory reduces electrical current needed to magnetize micromagnet in each memory cell. Basic concept of micromagnet/Hall-effect random-access memory presented in "Magnetic Analog Random-Access Memory" (NPO-17999).

  17. 75 FR 14467 - In the Matter of: Certain Dynamic Random Access Memory Semiconductors and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... Access Memory Semiconductors and Products Containing Same, Including Memory Modules; Notice of... the sale within the United States after importation of certain dynamic random access memory semiconductors and products containing same, including memory modules, by reason of infringement of certain...

  18. Forming-free performance of a-SiN x :H-based resistive switching memory obtained by oxygen plasma treatment.

    PubMed

    Zhang, Xinxin; Ma, Zhongyuan; Zhang, Hui; Liu, Jian; Yang, Huafeng; Sun, Yang; Tan, Dinwen; Li, Wei; Xu, Ling; Chen, Kuiji; Feng, Duan

    2018-06-15

    An a-SiN x -based resistive random access memory (RRAM) device with a forming-free characteristic has significant potentials for the industrialization of the next-generation memories. We demonstrate that a forming-free a-SiN x O y RRAM device can be achieved by an oxygen plasma treatment of ultra-thin a-SiN x :H films. Electron spin resonance spectroscopy reveals that Si dangling bonds with a high density (10 19 cm -3 ) are distributed in the initial state, which exist in the forms of Si 2 N≡Si·, SiO 2 ≡Si·, O 3 ≡Si·, and N 3 ≡Si·. X-ray photoelectron spectroscopy and temperature-dependent current analyses reveal that the silicon dangling bonds induced by the oxygen plasma treatment and external electric field contribute to the low resistance state (LRS). For the high resistance state (HRS), the rupture of the silicon dangling bond pathway is attributed to the partial passivation of Si dangling bonds by H + and O 2- . Both LRS and HRS transmissions obey the hopping conduction model. The proposed oxygen plasma treatment, introduced to generate a high density of Si dangling bonds in the SiN x O y :H films, provides a new approach to forming-free RRAM devices.

  19. Nanoscale Reactive Ion Etching of Silicon Nitride Thin Films for Embedded Nanomagnetic Device Fabrication

    NASA Astrophysics Data System (ADS)

    Hibbard-Lubow, David Luke

    The demands of digital memory have increased exponentially in recent history, requiring faster, smaller and more accurate storage methods. Two promising solutions to this ever-present problem are Bit Patterned Media (BPM) and Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM). Producing these technologies requires difficult and expensive fabrication techniques. Thus, the production processes must be optimized to allow these storage methods to compete commercially while continuing to increase their information storage density and reliability. I developed a process for the production of nanomagnetic devices (which can take the form of several types of digital memory) embedded in thin silicon nitride films. My focus was on optimizing the reactive ion etching recipe required to embed the device in the film. Ultimately, I found that recipe 37 (Power: 250W, CF4 nominal/actual flow rate: 25/25.4 sccm, O2 nominal/actual flow rate: 3.1/5.2 sccm, which gave a maximum pressure around 400 mTorr) gave the most repeatable and anisotropic results. I successfully used processes described in this thesis to make embedded nanomagnets, which could be used as bit patterned media. Another promising application of this work is to make embedded magnetic tunneling junctions, which are the storage medium used in MRAM. Doing so will require still some tweaks to the fabrication methods. Techniques for making these changes and their potential effects are discussed.

  20. Forming-free performance of a-SiN x :H-based resistive switching memory obtained by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxin; Ma, Zhongyuan; Zhang, Hui; Liu, Jian; Yang, Huafeng; Sun, Yang; Tan, Dinwen; Li, Wei; Xu, Ling; Chen, Kuiji; Feng, Duan

    2018-06-01

    An a-SiN x -based resistive random access memory (RRAM) device with a forming-free characteristic has significant potentials for the industrialization of the next-generation memories. We demonstrate that a forming-free a-SiN x O y RRAM device can be achieved by an oxygen plasma treatment of ultra-thin a-SiN x :H films. Electron spin resonance spectroscopy reveals that Si dangling bonds with a high density (1019 cm‑3) are distributed in the initial state, which exist in the forms of Si2N≡Si·, SiO2≡Si·, O3≡Si·, and N3≡Si·. X-ray photoelectron spectroscopy and temperature-dependent current analyses reveal that the silicon dangling bonds induced by the oxygen plasma treatment and external electric field contribute to the low resistance state (LRS). For the high resistance state (HRS), the rupture of the silicon dangling bond pathway is attributed to the partial passivation of Si dangling bonds by H+ and O2‑. Both LRS and HRS transmissions obey the hopping conduction model. The proposed oxygen plasma treatment, introduced to generate a high density of Si dangling bonds in the SiN x O y :H films, provides a new approach to forming-free RRAM devices.

  1. Microscopic origin of read current noise in TaO{sub x}-based resistive switching memory by ultra-low temperature measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yue; Cai, Yimao, E-mail: caiyimao@pku.edu.cn; Liu, Yefan

    TaO{sub x}-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO{sub x}-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO{sub x} RRAM devices. A statisticalmore » comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO{sub x} RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.« less

  2. Energy-band engineering for tunable memory characteristics through controlled doping of reduced graphene oxide.

    PubMed

    Han, Su-Ting; Zhou, Ye; Yang, Qing Dan; Zhou, Li; Huang, Long-Biao; Yan, Yan; Lee, Chun-Sing; Roy, Vellaisamy A L

    2014-02-25

    Tunable memory characteristics are used in multioperational mode circuits where memory cells with various functionalities are needed in one combined device. It is always a challenge to obtain control over threshold voltage for multimode operation. On this regard, we use a strategy of shifting the work function of reduced graphene oxide (rGO) in a controlled manner through doping gold chloride (AuCl3) and obtained a gradient increase of rGO work function. By inserting doped rGO as floating gate, a controlled threshold voltage (Vth) shift has been achieved in both p- and n-type low voltage flexible memory devices with large memory window (up to 4 times for p-type and 8 times for n-type memory devices) in comparison with pristine rGO floating gate memory devices. By proper energy band engineering, we demonstrated a flexible floating gate memory device with larger memory window and controlled threshold voltage shifts.

  3. Method and apparatus for managing access to a memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, Erik

    A method and apparatus for managing access to a memory of a computing system. A controller transforms a plurality of operations that represent a computing job into an operational memory layout that reduces a size of a selected portion of the memory that needs to be accessed to perform the computing job. The controller stores the operational memory layout in a plurality of memory cells within the selected portion of the memory. The controller controls a sequence by which a processor in the computing system accesses the memory to perform the computing job using the operational memory layout. The operationalmore » memory layout reduces an amount of energy consumed by the processor to perform the computing job.« less

  4. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells.

    PubMed

    Pu, Y-F; Jiang, N; Chang, W; Yang, H-X; Li, C; Duan, L-M

    2017-05-08

    To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology.

  5. Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer

    PubMed Central

    2013-01-01

    To improve the operation current lowing of the Zr:SiO2 RRAM devices, a space electric field concentrated effect established by the porous SiO2 buffer layer was investigated and found in this study. The resistive switching properties of the low-resistance state (LRS) and high-resistance state (HRS) in resistive random access memory (RRAM) devices for the single-layer Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 thin films were analyzed and discussed. In addition, the original space charge limited current (SCLC) conduction mechanism in LRS and HRS of the RRAM devices using bilayer Zr:SiO2/porous SiO2 thin films was found. Finally, a space electric field concentrated effect in the bilayer Zr:SiO2/porous SiO2 RRAM devices was also explained and verified by the COMSOL Multiphysics simulation model. PMID:24330524

  6. Metal-organic molecular device for non-volatile memory storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radha, B., E-mail: radha.boya@manchester.ac.uk, E-mail: kulkarni@jncasr.ac.in; Sagade, Abhay A.; Kulkarni, G. U., E-mail: radha.boya@manchester.ac.uk, E-mail: kulkarni@jncasr.ac.in

    Non-volatile memory devices have been of immense research interest for their use in active memory storage in powered off-state of electronic chips. In literature, various molecules and metal compounds have been investigated in this regard. Molecular memory devices are particularly attractive as they offer the ease of storing multiple memory states in a unique way and also represent ubiquitous choice for miniaturized devices. However, molecules are fragile and thus the device breakdown at nominal voltages during repeated cycles hinders their practical applicability. Here, in this report, a synergetic combination of an organic molecule and an inorganic metal, i.e., a metal-organicmore » complex, namely, palladium hexadecylthiolate is investigated for memory device characteristics. Palladium hexadecylthiolate following partial thermolysis is converted to a molecular nanocomposite of Pd(II), Pd(0), and long chain hydrocarbons, which is shown to exhibit non-volatile memory characteristics with exceptional stability and retention. The devices are all solution-processed and the memory action stems from filament formation across the pre-formed cracks in the nanocomposite film.« less

  7. Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    NASA Astrophysics Data System (ADS)

    Simanjuntak, Firman Mangasa; Panda, Debashis; Wei, Kung-Hwa; Tseng, Tseung-Yuen

    2016-08-01

    In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges.

  8. Analyzing Data Remnant Remains on User Devices to Determine Probative Artifacts in Cloud Environment.

    PubMed

    Ahmed, Abdulghani Ali; Xue Li, Chua

    2018-01-01

    Cloud storage service allows users to store their data online, so that they can remotely access, maintain, manage, and back up data from anywhere via the Internet. Although helpful, this storage creates a challenge to digital forensic investigators and practitioners in collecting, identifying, acquiring, and preserving evidential data. This study proposes an investigation scheme for analyzing data remnants and determining probative artifacts in a cloud environment. Using pCloud as a case study, this research collected the data remnants available on end-user device storage following the storing, uploading, and accessing of data in the cloud storage. Data remnants are collected from several sources, including client software files, directory listing, prefetch, registry, network PCAP, browser, and memory and link files. Results demonstrate that the collected remnants data are beneficial in determining a sufficient number of artifacts about the investigated cybercrime. © 2017 American Academy of Forensic Sciences.

  9. Origin of negative resistance in anion migration controlled resistive memory

    NASA Astrophysics Data System (ADS)

    Banerjee, Writam; Wu, Facai; Hu, Yuan; Wu, Quantan; Wu, Zuheng; Liu, Qi; Liu, Ming

    2018-03-01

    Resistive random access memory (RRAM) is one of the most promising emerging nonvolatile technologies for the futuristic memory devices. Resistive switching behavior often shows negative resistance (NR), either voltage controlled or current controlled. In this work, the origin of a current compliance dependent voltage controlled NR effect during the resetting of anion migration based RRAM devices is discussed. The N-type voltage controlled NR is a high field driven phenomena. The current conduction within the range of a certain negative voltage is mostly dominated by space charge limited current. But with the higher negative voltage, a field induced tunneling effect is generated in the NR region. The voltage controlled NR is strongly dependent on the compliance current. The area independent behavior indicates the filamentary switching. The peak to valley ratio (PVR) is > 5. The variation of PVR as a function of the conduction band offset is achieved. Compared to other reported works, based on the PVR, it is possible to distinguish the RRAM types. Generally, due to the higher electric field effect on the metallic bridge during RESET, the electrochemical metallization type RRAM shows much higher PVR than the valance change type RRAM.

  10. Reconfigurable pipelined processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saccardi, R.J.

    1989-09-19

    This patent describes a reconfigurable pipelined processor for processing data. It comprises: a plurality of memory devices for storing bits of data; a plurality of arithmetic units for performing arithmetic functions with the data; cross bar means for connecting the memory devices with the arithmetic units for transferring data therebetween; at least one counter connected with the cross bar means for providing a source of addresses to the memory devices; at least one variable tick delay device connected with each of the memory devices and arithmetic units; and means for providing control bits to the variable tick delay device formore » variably controlling the input and output operations thereof to selectively delay the memory devices and arithmetic units to align the data for processing in a selected sequence.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudry, Laurent; Lukyanchuk, Igor; Vinokur, Valerii M.

    Here, the tunability of electrical polarization in ferroelectrics is instrumental to their applications in information-storage devices. The existing ferroelectric memory cells are based on the two-level storage capacity with the standard binary logics. However, the latter have reached its fundamental limitations. Here we propose ferroelectric multibit cells (FMBC) utilizing the ability of multiaxial ferroelectric materials to pin the polarization at a sequence of the multistable states. Employing the catastrophe theory principles we show that these states are symmetry-protected against the information loss and thus realize novel topologically-controlled access memory (TAM). Our findings enable developing a platform for the emergent many-valuedmore » non-Boolean information technology and target challenges posed by needs of quantum and neuromorphic computing.« less

  12. Digital MOS integrated circuits

    NASA Astrophysics Data System (ADS)

    Elmasry, M. I.

    MOS in digital circuit design is considered along with aspects of digital VLSI, taking into account a comparison of MOSFET logic circuits, 1-micrometer MOSFET VLSI technology, a generalized guide for MOSFET miniaturization, processing technologies, novel circuit structures for VLSI, and questions of circuit and system design for VLSI. MOS memory cells and circuits are discussed, giving attention to a survey of high-density dynamic RAM cell concepts, one-device cells for dynamic random-access memories, variable resistance polysilicon for high density CMOS Ram, high performance MOS EPROMs using a stacked-gate cell, and the optimization of the latching pulse for dynamic flip-flop sensors. Programmable logic arrays are considered along with digital signal processors, microprocessors, static RAMs, and dynamic RAMs.

  13. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells

    PubMed Central

    Pu, Y-F; Jiang, N.; Chang, W.; Yang, H-X; Li, C.; Duan, L-M

    2017-01-01

    To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology. PMID:28480891

  14. Low-temperature atomic layer deposition of TiO{sub 2} thin layers for the processing of memristive devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porro, Samuele, E-mail: samuele.porro@polito.it; Conti, Daniele; Guastella, Salvatore

    2016-01-15

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO{sub 2} thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such asmore » self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO{sub 2} thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO{sub 2} thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications.« less

  15. Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2015-07-21

    Nanowire-based ferroelectric-complementary metal-oxide-semiconductor (NW FeCMOS) nonvolatile memory devices were successfully fabricated by utilizing single n- and p-type Si nanowire ferroelectric-gate field effect transistors (NW FeFETs) as individual memory cells. In addition to having the advantages of single channel n- and p-type Si NW FeFET memory, Si NW FeCMOS memory devices exhibit a direct readout voltage and ultralow power consumption. The reading state power consumption of this device is less than 0.1 pW, which is more than 10(5) times lower than the ON-state power consumption of single-channel ferroelectric memory. This result implies that Si NW FeCMOS memory devices are well suited for use in non-volatile memory chips in modern portable electronic devices, especially where low power consumption is critical for energy conservation and long-term use.

  16. Deflate decompressor

    DOEpatents

    Hamlet, Jason R [Albuquerque, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM; Olsberg, Ronald R [Albuquerque, NM

    2012-02-28

    A deflate decompressor includes at least one decompressor unit, a memory access controller, a feedback path, and an output buffer unit. The memory access controller is coupled to the decompressor unit via a data path and includes a data buffer to receive the data stream and temporarily buffer a first portion the data stream. The memory access controller transfers fixed length data units of the data stream from the data buffer to the decompressor unit with reference to a memory pointer pointing into the memory buffer. The feedback path couples the decompressor unit to the memory access controller to feed back decrement values to the memory access controller for updating the memory pointer. The decrement values each indicate a number of bits unused by the decompressor unit when decoding the fixed length data units. The output buffer unit buffers a second portion of the data stream after decompression.

  17. An upconverted photonic nonvolatile memory.

    PubMed

    Zhou, Ye; Han, Su-Ting; Chen, Xian; Wang, Feng; Tang, Yong-Bing; Roy, V A L

    2014-08-21

    Conventional flash memory devices are voltage driven and found to be unsafe for confidential data storage. To ensure the security of the stored data, there is a strong demand for developing novel nonvolatile memory technology for data encryption. Here we show a photonic flash memory device, based on upconversion nanocrystals, which is light driven with a particular narrow width of wavelength in addition to voltage bias. With the help of near-infrared light, we successfully manipulate the multilevel data storage of the flash memory device. These upconverted photonic flash memory devices exhibit high ON/OFF ratio, long retention time and excellent rewritable characteristics.

  18. One‐Dimensional Ferroelectric Nanostructures: Synthesis, Properties, and Applications

    PubMed Central

    Liang, Longyue; Kang, Xueliang

    2016-01-01

    One‐dimensional (1D) ferroelectric nanostructures, such as nanowires, nanorods, nanotubes, nanobelts, and nanofibers, have been studied with increasing intensity in recent years. Because of their excellent ferroelectric, ferroelastic, pyroelectric, piezoelectric, inverse piezoelectric, ferroelectric‐photovoltaic (FE‐PV), and other unique physical properties, 1D ferroelectric nanostructures have been widely used in energy‐harvesting devices, nonvolatile random access memory applications, nanoelectromechanical systems, advanced sensors, FE‐PV devices, and photocatalysis mechanisms. This review summarizes the current state of 1D ferroelectric nanostructures and provides an overview of the synthesis methods, properties, and practical applications of 1D nanostructures. Finally, the prospects for future investigations are outlined. PMID:27812477

  19. A new JPEG-based steganographic algorithm for mobile devices

    NASA Astrophysics Data System (ADS)

    Agaian, Sos S.; Cherukuri, Ravindranath C.; Schneider, Erik C.; White, Gregory B.

    2006-05-01

    Currently, cellular phones constitute a significant portion of the global telecommunications market. Modern cellular phones offer sophisticated features such as Internet access, on-board cameras, and expandable memory which provide these devices with excellent multimedia capabilities. Because of the high volume of cellular traffic, as well as the ability of these devices to transmit nearly all forms of data. The need for an increased level of security in wireless communications is becoming a growing concern. Steganography could provide a solution to this important problem. In this article, we present a new algorithm for JPEG-compressed images which is applicable to mobile platforms. This algorithm embeds sensitive information into quantized discrete cosine transform coefficients obtained from the cover JPEG. These coefficients are rearranged based on certain statistical properties and the inherent processing and memory constraints of mobile devices. Based on the energy variation and block characteristics of the cover image, the sensitive data is hidden by using a switching embedding technique proposed in this article. The proposed system offers high capacity while simultaneously withstanding visual and statistical attacks. Based on simulation results, the proposed method demonstrates an improved retention of first-order statistics when compared to existing JPEG-based steganographic algorithms, while maintaining a capacity which is comparable to F5 for certain cover images.

  20. Computer vision camera with embedded FPGA processing

    NASA Astrophysics Data System (ADS)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  1. 75 FR 44283 - In the Matter of Certain Dynamic Random Access Memory Semiconductors and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Random Access Memory Semiconductors and Products Containing Same, Including Memory Modules; Notice of a... importation of certain dynamic random access memory semiconductors and products containing same, including memory modules, by reason of infringement of certain claims of U.S. Patent Nos. 5,480,051; 5,422,309; 5...

  2. 1T1R Nonvolatile Memory with Al/TiO2/Au and Sol-Gel-Processed Insulator for Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor

    PubMed Central

    Lee, Ke-Jing; Chang, Yu-Chi; Lee, Cheng-Jung; Wang, Li-Wen; Wang, Yeong-Her

    2017-01-01

    A one-transistor and one-resistor (1T1R) architecture with a resistive random access memory (RRAM) cell connected to an organic thin-film transistor (OTFT) device is successfully demonstrated to avoid the cross-talk issues of only one RRAM cell. The OTFT device, which uses barium zirconate nickelate (BZN) as a dielectric layer, exhibits favorable electrical properties, such as a high field-effect mobility of 2.5 cm2/Vs, low threshold voltage of −2.8 V, and low leakage current of 10−12 A, for a driver in the 1T1R operation scheme. The 1T1R architecture with a TiO2-based RRAM cell connected with a BZN OTFT device indicates a low operation current (10 μA) and reliable data retention (over ten years). This favorable performance of the 1T1R device can be attributed to the additional barrier heights introduced by using Ni (II) acetylacetone as a substitute for acetylacetone, and the relatively low leakage current of a BZN dielectric layer. The proposed 1T1R device with low leakage current OTFT and excellent uniform resistance distribution of RRAM exhibits a good potential for use in practical low-power electronic applications. PMID:29232828

  3. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell.

    PubMed

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-07-07

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.

  4. Similarity between the response of memristive and memcapacitive circuits subjected to ramped voltage

    NASA Astrophysics Data System (ADS)

    Kanygin, Mikhail A.; Katkov, Mikhail V.; Pershin, Yuriy V.

    2017-07-01

    We report a similar feature in the response of resistor-memristor and capacitor-memcapacitor circuits with threshold-type memory devices driven by triangular waveform voltage. In both cases, the voltage across the memory device is stabilized during the switching of the memory device state. While in the memristive circuit this feature is observed when the applied voltage changes in one direction, the memcapacitive circuit with a ferroelectric memcapacitor demonstrates the voltage stabilization effect at both sweep directions. The discovered behavior of capacitor-memcapacitor circuit is also demonstrated experimentally. We anticipate that our observation can be used in the design of electronic circuits with emergent memory devices as well as in the identification and characterization of memory effects in threshold-type memory devices.

  5. Nanoscale cross-point diode array accessing embedded high density PCM

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Liu, Yan; Liu, Bo; Gao, Dan; Xu, Zhen; Zhan, Yipeng; Song, Zhitang; Feng, Songlin

    2017-08-01

    The main bottlenecks in the development of current embedded phase change memory (PCM) technology are the current density and data storage density. In this paper, we present a PCM with 4F2 cross-point diode selector and blade-type bottom electrode contact (BEC). A blade TiN BEC with a cross-sectional area of 630 nm2 (10 nm × 63 nm) reduces the reset current down to about 750 μA. The optimized diode array could supply this 750 μA reset current at about 1.7 V and low off-current 1 × 10-4 μA at about -5.05 V. The on-off ratio of this device is 7.5 × 106. The proposed nanoscale PCM device simultaneously exhibits an operation voltage as low as 3 V and a high density drive current with an ultra small cell size of 4F2 (108 nm × 108 nm). Over 106 cycling endurance properties guarantee that it can work effectively on the embedded memory.

  6. Parallel Implementation of MAFFT on CUDA-Enabled Graphics Hardware.

    PubMed

    Zhu, Xiangyuan; Li, Kenli; Salah, Ahmad; Shi, Lin; Li, Keqin

    2015-01-01

    Multiple sequence alignment (MSA) constitutes an extremely powerful tool for many biological applications including phylogenetic tree estimation, secondary structure prediction, and critical residue identification. However, aligning large biological sequences with popular tools such as MAFFT requires long runtimes on sequential architectures. Due to the ever increasing sizes of sequence databases, there is increasing demand to accelerate this task. In this paper, we demonstrate how graphic processing units (GPUs), powered by the compute unified device architecture (CUDA), can be used as an efficient computational platform to accelerate the MAFFT algorithm. To fully exploit the GPU's capabilities for accelerating MAFFT, we have optimized the sequence data organization to eliminate the bandwidth bottleneck of memory access, designed a memory allocation and reuse strategy to make full use of limited memory of GPUs, proposed a new modified-run-length encoding (MRLE) scheme to reduce memory consumption, and used high-performance shared memory to speed up I/O operations. Our implementation tested in three NVIDIA GPUs achieves speedup up to 11.28 on a Tesla K20m GPU compared to the sequential MAFFT 7.015.

  7. Cycle accurate and cycle reproducible memory for an FPGA based hardware accelerator

    DOEpatents

    Asaad, Sameh W.; Kapur, Mohit

    2016-03-15

    A method, system and computer program product are disclosed for using a Field Programmable Gate Array (FPGA) to simulate operations of a device under test (DUT). The DUT includes a device memory having a number of input ports, and the FPGA is associated with a target memory having a second number of input ports, the second number being less than the first number. In one embodiment, a given set of inputs is applied to the device memory at a frequency Fd and in a defined cycle of time, and the given set of inputs is applied to the target memory at a frequency Ft. Ft is greater than Fd and cycle accuracy is maintained between the device memory and the target memory. In an embodiment, a cycle accurate model of the DUT memory is created by separating the DUT memory interface protocol from the target memory storage array.

  8. A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device.

    PubMed

    Lambropoulos, Nicholas A; Reimers, Jeffrey R; Crossley, Maxwell J; Hush, Noel S; Silverbrook, Kia

    2013-12-20

    A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.

  9. A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device

    NASA Astrophysics Data System (ADS)

    Lambropoulos, Nicholas A.; Reimers, Jeffrey R.; Crossley, Maxwell J.; Hush, Noel S.; Silverbrook, Kia

    2013-12-01

    A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.

  10. Memory and Spin Injection Devices Involving Half Metals

    DOE PAGES

    Shaughnessy, M.; Snow, Ryan; Damewood, L.; ...

    2011-01-01

    We suggest memory and spin injection devices fabricated with half-metallic materials and based on the anomalous Hall effect. Schematic diagrams of the memory chips, in thin film and bulk crystal form, are presented. Spin injection devices made in thin film form are also suggested. These devices do not need any external magnetic field but make use of their own magnetization. Only a gate voltage is needed. The carriers are 100% spin polarized. Memory devices may potentially be smaller, faster, and less volatile than existing ones, and the injection devices may be much smaller and more efficient than existing spin injectionmore » devices.« less

  11. Photon-counting intensified random-access charge injection device

    NASA Astrophysics Data System (ADS)

    Norton, Timothy J.; Morrissey, Patrick F.; Haas, Patrick; Payne, Leslie J.; Carbone, Joseph; Kimble, Randy A.

    1999-11-01

    At NASA GSFC we are developing a high resolution solar-blind photon counting detector system for UV space based astronomy. The detector comprises a high gain MCP intensifier fiber- optically coupled to a charge injection device (CID). The detector system utilizes an FPGA based centroiding system to locate the center of photon events from the intensifier to high accuracy. The photon event addresses are passed via a PCI interface with a GPS derived time stamp inserted per frame to an integrating memory. Here we present imaging performance data which show resolution of MCP tube pore structure at an MCP pore diameter of 8 micrometer. This data validates the ICID concept for intensified photon counting readout. We also discuss correction techniques used in the removal of fixed pattern noise effects inherent in the centroiding algorithms used and present data which shows the local dynamic range of the device. Progress towards development of a true random access CID (RACID 810) is also discussed and astronomical data taken with the ICID detector system demonstrating the photon event time-tagging mode of the system is also presented.

  12. Benchmarking and Evaluating Unified Memory for OpenMP GPU Offloading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Alok; Li, Lingda; Kong, Martin

    Here, the latest OpenMP standard offers automatic device offloading capabilities which facilitate GPU programming. Despite this, there remain many challenges. One of these is the unified memory feature introduced in recent GPUs. GPUs in current and future HPC systems have enhanced support for unified memory space. In such systems, CPU and GPU can access each other's memory transparently, that is, the data movement is managed automatically by the underlying system software and hardware. Memory over subscription is also possible in these systems. However, there is a significant lack of knowledge about how this mechanism will perform, and how programmers shouldmore » use it. We have modified several benchmarks codes, in the Rodinia benchmark suite, to study the behavior of OpenMP accelerator extensions and have used them to explore the impact of unified memory in an OpenMP context. We moreover modified the open source LLVM compiler to allow OpenMP programs to exploit unified memory. The results of our evaluation reveal that, while the performance of unified memory is comparable with that of normal GPU offloading for benchmarks with little data reuse, it suffers from significant overhead when GPU memory is over subcribed for benchmarks with large amount of data reuse. Based on these results, we provide several guidelines for programmers to achieve better performance with unified memory.« less

  13. High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles.

    PubMed

    Jung, Ji Hyung; Kim, Sunghwan; Kim, Hyeonjung; Park, Jongnam; Oh, Joon Hak

    2015-10-07

    Nano-floating gate memory (NFGM) devices are transistor-type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p-type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle-particle interactions. CoFe2O4 NP-based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read I(on)/I(off)) of ≈2.98 × 10(3), and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high-performance organic memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites

    NASA Astrophysics Data System (ADS)

    Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang

    2016-02-01

    Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices.

  15. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing

    NASA Astrophysics Data System (ADS)

    Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan

    2017-12-01

    Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge2Sb2Te5). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc0.2Sb2Te3) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.

  16. [Method of file sorting for mini- and microcomputers].

    PubMed

    Chau, N; Legras, B; Benamghar, L; Martin, J

    1983-05-01

    The authors describe a new sorting method of files which belongs to the class of direct-addressing sorting methods. It makes use of a variant of the classical technique of 'virtual memory'. It is particularly well suited to mini- and micro-computers which have a small core memory (32 K words, for example) and are fitted with a direct-access peripheral device, such as a disc unit. When the file to be sorted is medium-sized (some thousand records), the running of the program essentially occurs inside the core memory and consequently, the method becomes very fast. This is very important because most medical files handled in our laboratory are in this category. However, the method is also suitable for big computers and large files; its implementation is easy. It does not require any magnetic tape unit, and it seems to us to be one of the fastest methods available.

  17. Oxygen-modulated quantum conductance for ultrathin HfO 2 -based memristive switching devices

    DOE PAGES

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter; ...

    2016-10-24

    Memristive switching devices, candidates for resistive random access memory technology, have been shown to switch off through a progression of states with quantized conductance and subsequent noninteger conductance (in terms of conductance quantum G 0). We have performed calculations based on density functional theory to model the switching process for a Pt-HfO 2-Pt structure, involving the movement of one or two oxygen atoms. Oxygen atoms moving within a conductive oxygen vacancy filament act as tunneling barriers, and partition the filament into weakly coupled quantum wells. We show that the low-bias conductance decreases exponentially when one oxygen atom moves away frommore » interface. In conclusion, our results demonstrate the high sensitivity of the device conductance to the position of oxygen atoms.« less

  18. Oxygen-modulated quantum conductance for ultrathin HfO 2 -based memristive switching devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter

    Memristive switching devices, candidates for resistive random access memory technology, have been shown to switch off through a progression of states with quantized conductance and subsequent noninteger conductance (in terms of conductance quantum G 0). We have performed calculations based on density functional theory to model the switching process for a Pt-HfO 2-Pt structure, involving the movement of one or two oxygen atoms. Oxygen atoms moving within a conductive oxygen vacancy filament act as tunneling barriers, and partition the filament into weakly coupled quantum wells. We show that the low-bias conductance decreases exponentially when one oxygen atom moves away frommore » interface. In conclusion, our results demonstrate the high sensitivity of the device conductance to the position of oxygen atoms.« less

  19. Satellite Test of Radiation Impact on Ramtron 512K FRAM

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Sayyah, Rana; Sims, W. Herb; Varnavas, Kosta A.; Ho, Fat D.

    2009-01-01

    The Memory Test Experiment is a space test of a ferroelectric memory device on a low Earth orbit satellite. The test consists of writing and reading data with a ferroelectric based memory device. Any errors are detected and are stored on board the satellite. The data is send to the ground through telemetry once a day. Analysis of the data can determine the kind of error that was found and will lead to a better understanding of the effects of space radiation on memory systems. The test will be one of the first flight demonstrations of ferroelectric memory in a near polar orbit which allows testing in a varied radiation environment. The memory devices being tested is a Ramtron Inc. 512K memory device. This paper details the goals and purpose of this experiment as well as the development process. The process for analyzing the data to gain the maximum understanding of the performance of the ferroelectric memory device is detailed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidlauskas, D.P.

    A new type of biometric identifier which utilizes hand outline measurements made in three dimensions is described. This device uses solid state imaging with no moving parts. The important characteristics of accuracy, speed, user tolerability, small template size, low power, portability and reliability are discussed. A complete stand-alone biometric access control station with sufficient memory for 10,000 users and weighing less than 10 pounds has been built and tested. A test was conducted involving daily use by 112 users over a seven week period during which over 6300 access attempts were made. The single try equal error rate was foundmore » to be 0.4%. There were no false rejects when three tries were allowed before access was denied. Defeat with an artifact is difficult because the hand must be copied in all three dimensions.« less

  1. Electric-field-controlled interface dipole modulation for Si-based memory devices.

    PubMed

    Miyata, Noriyuki

    2018-05-31

    Various nonvolatile memory devices have been investigated to replace Si-based flash memories or emulate synaptic plasticity for next-generation neuromorphic computing. A crucial criterion to achieve low-cost high-density memory chips is material compatibility with conventional Si technologies. In this paper, we propose and demonstrate a new memory concept, interface dipole modulation (IDM) memory. IDM can be integrated as a Si field-effect transistor (FET) based memory device. The first demonstration of this concept employed a HfO 2 /Si MOS capacitor where the interface monolayer (ML) TiO 2 functions as a dipole modulator. However, this configuration is unsuitable for Si-FET-based devices due to its large interface state density (D it ). Consequently, we propose, a multi-stacked amorphous HfO 2 /1-ML TiO 2 /SiO 2 IDM structure to realize a low D it and a wide memory window. Herein we describe the quasi-static and pulse response characteristics of multi-stacked IDM MOS capacitors and demonstrate flash-type and analog memory operations of an IDM FET device.

  2. Resistive switching effect in the planar structure of all-printed, flexible and rewritable memory device based on advanced 2D nanocomposite of graphene quantum dots and white graphene flakes

    NASA Astrophysics Data System (ADS)

    Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Kim, Sowon; Choi, Kyung Hyun

    2017-08-01

    Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al2O3) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications.

  3. Novel conformal organic antireflective coatings for advanced I-line lithography

    NASA Astrophysics Data System (ADS)

    Deshpande, Shreeram V.; Nowak, Kelly A.; Fowler, Shelly; Williams, Paul; Arjona, Mikko

    2001-08-01

    Flash memory chips are playing a critical role in semiconductor devices due to increased popularity of hand held electronic communication devices such as cell phones and PDAs (personal Digital Assistants). Flash memory offers two primary advantages in semiconductor devices. First, it offers flexibility of in-circuit programming capability to reduce the loss from programming errors and to significantly reduce commercialization time to market for new devices. Second, flash memory has a double density memory capability through stacked gate structures which increases the memory capability and thus saves significantly on chip real estate. However, due to stacked gate structures the requirements for manufacturing of flash memory devices are significantly different from traditional memory devices. Stacked gate structures also offer unique challenges to lithographic patterning materials such as Bottom Anti-Reflective Coating (BARC) compositions used to achieve CD control and to minimize standing wave effect in photolithography. To be applicable in flash memory manufacturing a BARC should form a conformal coating on high topography of stacked gate features as well as provide the normal anti-reflection properties for CD control. In this paper we report on a new highly conformal advanced i-line BARC for use in design and manufacture of flash memory devices. Conformal BARCs being significantly thinner in trenches than the planarizing BARCs offer the advantage of reducing BARC overetch and thus minimizing resist thickness loss.

  4. Ti-Doped GaOx Resistive Switching Memory with Self-Rectifying Behavior by Using NbOx/Pt Bilayers.

    PubMed

    Park, Ju Hyun; Jeon, Dong Su; Kim, Tae Geun

    2017-12-13

    Crossbar arrays (CBAs) with resistive random access memory (ReRAM) constitute an established architecture for high-density memory. However, sneak paths via unselected cells increase the total power consumption of these devices and limit the array size. To eliminate such sneak-path problems, we propose a Ti/GaO x /NbO x /Pt structure with a self-rectifying resistive-switching (RS) behavior. In this structure, to reduce the operating voltage, we used a Ti/GaO x stack to increase the number of trap sites in the RS GaO x layer through interfacial reactions between the Ti and GaO x layers. This increase enables easier carrier transport with reduced electric fields. We then adopted a NbO x /Pt stack to add rectifying behavior to the RS GaO x layer. This behavior is a result of the large Schottky barrier height between the NbO x and Pt layers. Finally, both the Ti/GaO x and NbO x /Pt stacks were combined to realize a self-rectifying ReRAM device, which exhibited excellent performance. Characteristics of the device include a low operating voltage range (-2.8 to 2.5 V), high on/off ratios (∼20), high selectivity (∼10 4 ), high operating speeds (200-500 ns), a very low forming voltage (∼3 V), stable operation, and excellent uniformity for high-density CBA-based ReRAM applications.

  5. Switching dynamics of TaOx-based threshold switching devices

    NASA Astrophysics Data System (ADS)

    Goodwill, Jonathan M.; Gala, Darshil K.; Bain, James A.; Skowronski, Marek

    2018-03-01

    Bi-stable volatile switching devices are being used as access devices in solid-state memory arrays and as the active part of compact oscillators. Such structures exhibit two stable states of resistance and switch between them at a critical value of voltage or current. A typical resistance transient under a constant amplitude voltage pulse starts with a slow decrease followed by a rapid drop and leveling off at a low steady state value. This behavior prompted the interpretation of initial delay and fast transition as due to two different processes. Here, we show that the entire transient including incubation time, transition time, and the final resistance values in TaOx-based switching can be explained by one process, namely, Joule heating with the rapid transition due to the thermal runaway. The time, which is required for the device in the conducting state to relax back to the stable high resistance one, is also consistent with the proposed mechanism.

  6. Memory device for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included

  7. Power- and Low-Resistance-State-Dependent, Bipolar Reset-Switching Transitions in SiN-Based Resistive Random-Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sungjun; Park, Byung-Gook

    2016-08-01

    A study on the bipolar-resistive switching of an Ni/SiN/Si-based resistive random-access memory (RRAM) device shows that the influences of the reset power and the resistance value of the low-resistance state (LRS) on the reset-switching transitions are strong. For a low LRS with a large conducting path, the sharp reset switching, which requires a high reset power (>7 mW), was observed, whereas for a high LRS with small multiple-conducting paths, the step-by-step reset switching with a low reset power (<7 mW) was observed. The attainment of higher nonlinear current-voltage ( I-V) characteristics in terms of the step-by-step reset switching is due to the steep current-increased region of the trap-controlled space charge-limited current (SCLC) model. A multilevel cell (MLC) operation, for which the reset stop voltage ( V STOP) is used in the DC sweep mode and an incremental amplitude is used in the pulse mode for the step-by-step reset switching, is demonstrated here. The results of the present study suggest that well-controlled conducting paths in a SiN-based RRAM device, which are not too strong and not too weak, offer considerable potential for the realization of low-power and high-density crossbar-array applications.

  8. Elucidation and Optimization of Resistive Random Access Memory Switching Behavior for Advanced Computing Applications

    NASA Astrophysics Data System (ADS)

    Alamgir, Zahiruddin

    RRAM has recently emerged as a strong candidate for non-volatile memory (NVM). Beyond memory applications, RRAM holds promise for use in performing logic functions, mimicking neuromorphic activities, enabling multi-level switching, and as one of the key elements of hardware based encryption or signal processing systems. It has been shown previously that RRAM resistance levels can be changed by adjusting compliance current or voltage level. This characteristic makes RRAM suitable for use in setting the synaptic weight in neuromorphic computing circuits. RRAM is also considered as a key element in hardware encryption systems, to produce unique and reproducible signals. However, a key challenge to implement RRAM in these applications is significant cycle to cycle performance variability. We sought to develop RRAM that can be tuned to different resistance levels gradually, with high reliability, and low variability. To achieve this goal, we focused on elucidating the conduction mechanisms underlying the resistive switching behavior for these devices. Electrical conduction mechanisms were determined by curve fitting I-V data using different current conduction equations. Temperature studies were also performed to corroborate these data. It was found that Schottky barrier height and width modulation was one of the key parameters that could be tuned to achieve different resistance levels, and for switching resistance states, primarily via oxygen vacancy movement. Oxygen exchange layers with different electronegativity were placed between top electrode and the oxide layer of TaOx devices to determine the effect of oxygen vacancy concentrations and gradients in these devices. It was found that devices with OELs with lower electronegativity tend to yield greater separation in the OFF vs. ON state resistance levels. As an extension of this work, TaOx based RRAM with Hf as the OEL was fabricated and could be tuned to different resistance level using pulse width and height modulation, yielding excellent uniformity and reliability. These findings improve our understanding of conduction within TaO x-based RRAM devices, providing a physical basis for switching in these devices. The value of this work lies in the demonstration of devices with excellent performance and demonstrated devices constitute a significant step toward real-world applications.

  9. Transistor and memory devices based on novel organic and biomaterials

    NASA Astrophysics Data System (ADS)

    Tseng, Jia-Hung

    Organic semiconductor devices have aroused considerable interest because of the enormous potential in many technological applications. Organic electroluminescent devices have been extensively applied in display technology. Rapid progress has also been made in transistor and memory devices. This thesis considers aspects of the transistor based on novel organic single crystals and memory devices using hybrid nanocomposites comprising polymeric/inorganic nanoparticles, and biomolecule/quantum dots. Organic single crystals represent highly ordered structures with much less imperfections compared to amorphous thin films for probing the intrinsic charge transport in transistor devices. We demonstrate that free-standing, thin organic single crystals with natural flexing ability can be fabricated as flexible transistors. We study the surface properties of the organic crystals to determine a nearly perfect surface leading to high performance transistors. The flexible transistors can maintain high performance under reversible bending conditions. Because of the high quality crystal technique, we further develop applications on organic complementary circuits and organic single crystal photovoltaics. In the second part, two aspects of memory devices are studied. We examine the charge transfer process between conjugated polymers and metal nanoparticles. This charge transfer process is essential for the conductance switching in nanoseconds to induce the memory effect. Under the reduction condition, the charge transfer process is eliminated as well as the memory effect, raising the importance of coupling between conjugated systems and nanoparticle accepters. The other aspect of memory devices focuses on the interaction of virus biomolecules with quantum dots or metal nanoparticles in the devices. We investigate the impact of memory function on the hybrid bio-inorganic system. We perform an experimental analysis of the charge storage activation energy in tobacco mosaic virus with platinum nanoparticles. It is established that the effective barrier height in the materials systems needs to be further engineered in order to have sufficiently long retention times. Finally other novel architectures such as negative differential resistance devices and high density memory arrays are investigated for their influence on memory technology.

  10. Use of mobile learning technology among final year medical students in Kenya

    PubMed Central

    Masika, Moses Muia; Omondi, Gregory Barnabas; Natembeya, Dennis Simiyu; Mugane, Ephraim Mwatha; Bosire, Kefa Ogonyo; Kibwage, Isaac Ongubo

    2015-01-01

    Introduction Mobile phone penetration has increased exponentially over the last decade as has its application in nearly all spheres of life including health and medical education. This study aimed at assessing the use of mobile learning technology and its challenges among final year undergraduate students in the College of Health sciences, University of Nairobi. Methods This was a cross-sectional descriptive study conducted among final year undergraduate students at the University of Nairobi, College of Health Sciences. Self-administered, anonymous questionnaires were issued to all final year students in their lecture rooms after obtaining informed consent. Data on demographics, mobile device ownership and mobile learning technology use and its challenges was collected. Data entry and analysis was done using SPSS®. Chi-square and t-test were used for bivariate analysis. Results We had 292 respondents; 62% were medical students, 16% were nursing students, 13% were pharmacy students and 9% were dental surgery students. The majority were female (59%) and the average age was 24 years. Eighty eight percent (88%) of the respondents owned a smart device and nearly all of them used it for learning. 64% of the respondents used medical mobile applications. The main challenges were lack of a smart device, lack of technical know-how in accessing or using apps, sub-optimal internet access, cost of acquiring apps and limited device memory. Conclusion Mobile learning is increasingly popular among medical students and should be leveraged in promoting access and quality of medical education. PMID:26327964

  11. Use of mobile learning technology among final year medical students in Kenya.

    PubMed

    Masika, Moses Muia; Omondi, Gregory Barnabas; Natembeya, Dennis Simiyu; Mugane, Ephraim Mwatha; Bosire, Kefa Ogonyo; Kibwage, Isaac Ongubo

    2015-01-01

    Mobile phone penetration has increased exponentially over the last decade as has its application in nearly all spheres of life including health and medical education. This study aimed at assessing the use of mobile learning technology and its challenges among final year undergraduate students in the College of Health sciences, University of Nairobi. This was a cross-sectional descriptive study conducted among final year undergraduate students at the University of Nairobi, College of Health Sciences. Self-administered, anonymous questionnaires were issued to all final year students in their lecture rooms after obtaining informed consent. Data on demographics, mobile device ownership and mobile learning technology use and its challenges was collected. Data entry and analysis was done using SPSS(®). Chi-square and t-test were used for bivariate analysis. We had 292 respondents; 62% were medical students, 16% were nursing students, 13% were pharmacy students and 9% were dental surgery students. The majority were female (59%) and the average age was 24 years. Eighty eight percent (88%) of the respondents owned a smart device and nearly all of them used it for learning. 64% of the respondents used medical mobile applications. The main challenges were lack of a smart device, lack of technical know-how in accessing or using apps, sub-optimal internet access, cost of acquiring apps and limited device memory. Mobile learning is increasingly popular among medical students and should be leveraged in promoting access and quality of medical education.

  12. Titanium oxide nonvolatile memory device and its application

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    In recent years, the semiconductor memory industry has seen an ever-increasing demand for nonvolatile memory (NVM), which is fueled by portable consumer electronic applications like the mobile phone and MP3 player. FLASH memory has been the most widely used nonvolatile memories in these systems, and has successfully kept up with CMOS scaling for many generations. However, as FLASH memory faces major scaling challenges beyond 22nm, non-charge-based nonvolatile memories are widely researched as candidates to replace FLASH. Titanium oxide (TiOx) nonvolatile memory device is considered to be a promising choice due to its controllable nonvolatile memory switching, good scalability, compatibility with CMOS processing and potential for 3D stacking. However, several major issues need to be overcome before TiOx NVM device can be adopted in manufacturing. First, there exists a highly undesirable high-voltage stress initiation process (FORMING) before the device can switch between high and low resistance states repeatedly. By analyzing the conductive behaviors of the memory device before and after FORMING, we propose that FORMING involves breaking down an interfacial layer between its Pt electrode and the TiOx thin film, and that FORMING is not needed if the Pt-TiOx interface can be kept clean during fabrication. An in-situ fabrication process is developed for cross-point TiOx NVM device, which enables in-situ deposition of the critical layers of the memory device and thus achieves clean interfaces between Pt electrodes and TiOx film. Testing results show that FORMING is indeed eliminated for memory devices made with the in-situ fabrication process. It verifies the significance of in-situ deposition without vacuum break in the fabrication of TiOx NVM devices. Switching parameters statistics of TiOx NVM devices are studied and compared for unipolar and bipolar switching modes. RESET mechanisms are found to be different for the two switching modes: unipolar switching can be explained by thermal dissolution model, and bipolar switching by local redox reaction model. Since it is generally agreed that the memory switching of TiOx NVM devices is based on conductive filaments, reusability of these conductive filaments becomes an intriguing issue to determine the memory device's endurance. A 1X3 cross-point test structure is built to investigate whether conductive filaments can be reused after RESET. It is found that the conductive filament is destroyed during unipolar switching, while can be reused during bipolar switching. The result is a good indication that bipolar switching should have better endurance than unipolar switching. Finally a novel application of the two-terminal resistive switching NVM devices is demonstrated. To reduce SRAM leakage power, we propose a nonvolatile SRAM cell with two back-up NVM devices. This novel cell offers nonvolatile storage, thus allowing selected blocks of SRAM to be powered down during operation. There is no area penalty in this approach. Only a slight performance penalty is expected.

  13. Projected phase-change memory devices.

    PubMed

    Koelmans, Wabe W; Sebastian, Abu; Jonnalagadda, Vara Prasad; Krebs, Daniel; Dellmann, Laurent; Eleftheriou, Evangelos

    2015-09-03

    Nanoscale memory devices, whose resistance depends on the history of the electric signals applied, could become critical building blocks in new computing paradigms, such as brain-inspired computing and memcomputing. However, there are key challenges to overcome, such as the high programming power required, noise and resistance drift. Here, to address these, we present the concept of a projected memory device, whose distinguishing feature is that the physical mechanism of resistance storage is decoupled from the information-retrieval process. We designed and fabricated projected memory devices based on the phase-change storage mechanism and convincingly demonstrate the concept through detailed experimentation, supported by extensive modelling and finite-element simulations. The projected memory devices exhibit remarkably low drift and excellent noise performance. We also demonstrate active control and customization of the programming characteristics of the device that reliably realize a multitude of resistance states.

  14. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes.

    PubMed

    Liu, Juqing; Yin, Zongyou; Cao, Xiehong; Zhao, Fei; Lin, Anping; Xie, Linghai; Fan, Quli; Boey, Freddy; Zhang, Hua; Huang, Wei

    2010-07-27

    A unique device structure with a configuration of reduced graphene oxide (rGO) /P3HT:PCBM/Al has been designed for the polymer nonvolatile memory device. The current-voltage (I-V) characteristics of the fabricated device showed the electrical bistability with a write-once-read-many-times (WORM) memory effect. The memory device exhibits a high ON/OFF ratio (10(4)-10(5)) and low switching threshold voltage (0.5-1.2 V), which are dependent on the sheet resistance of rGO electrode. Our experimental results confirm that the carrier transport mechanisms in the OFF and ON states are dominated by the thermionic emission current and ohmic current, respectively. The polarization of PCBM domains and the localized internal electrical field formed among the adjacent domains are proposed to explain the electrical transition of the memory device.

  15. Systems and methods to control multiple peripherals with a single-peripheral application code

    DOEpatents

    Ransom, Ray M.

    2013-06-11

    Methods and apparatus are provided for enhancing the BIOS of a hardware peripheral device to manage multiple peripheral devices simultaneously without modifying the application software of the peripheral device. The apparatus comprises a logic control unit and a memory in communication with the logic control unit. The memory is partitioned into a plurality of ranges, each range comprising one or more blocks of memory, one range being associated with each instance of the peripheral application and one range being reserved for storage of a data pointer related to each peripheral application of the plurality. The logic control unit is configured to operate multiple instances of the control application by duplicating one instance of the peripheral application for each peripheral device of the plurality and partitioning a memory device into partitions comprising one or more blocks of memory, one partition being associated with each instance of the peripheral application. The method then reserves a range of memory addresses for storage of a data pointer related to each peripheral device of the plurality, and initializes each of the plurality of peripheral devices.

  16. Novel nano materials for high performance logic and memory devices

    NASA Astrophysics Data System (ADS)

    Das, Saptarshi

    After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect mobility with the layer thickness. The non-monotonic trend suggests that in order to harvest the maximum potential of MoS2 for high performance device applications, a layer thickness in the range of 6-12 nm would be ideal. Finally using scandium contacts on 10nm thick exfoliated MoS2 flakes that are covered by a 15nm ALD grown Al2O3 film, record high mobility of 700cm2/Vs is achieved at room-temperature which is extremely encouraging for the design of high performance logic devices. The destructive nature of the readout process in Ferroelectric Random Access Memories (FeRAMs) is one of the major limiting factors for their wide scale commercialization. Utilizing Ferroelectric Field-Effect Transistor RAM (FeTRAM) instead solves the destructive read out problem, but at the expense of introducing crystalline ferroelectrics that are hard to integrate into CMOS. In order to address these challenges a novel, fully functional, CMOS compatible, One-Transistor-One-Transistor (1T1T) memory cell architecture using an organic ferroelectric -- PVDF-TrFE -- as the memory storage unit (gate oxide) and a silicon nanowire as the memory read out unit (channel material) is proposed and experimentally demonstrated. While evaluating the scaling potential of the above mentioned organic FeTRAM, it is found that the switching time and switching voltage of this organic copolymer PVDF-TrFE exhibits an unexpected scaling behavior as a function of the lateral device dimensions. The phenomenological theory, that explains this abnormal scaling trend, involves in-plane interchain and intrachain interaction of the copolymer - resulting in a power-law dependence of the switching field on the device area (ESW alpha ACH0.1) that is ultimately responsible for the decrease in the switching time and switching voltage. These findings are encouraging since they indicate that scaling the switching voltage and switching time without aggressively scaling the copolymer thickness occurs naturally while scaling the device area -- in this way ultimately improving the packing density and leading towards high performance memory devices.

  17. Working memory capacity and retrieval limitations from long-term memory: an examination of differences in accessibility.

    PubMed

    Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A

    2012-01-01

    In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants.

  18. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics

    NASA Astrophysics Data System (ADS)

    Goswami, Sreetosh; Matula, Adam J.; Rath, Santi P.; Hedström, Svante; Saha, Surajit; Annamalai, Meenakshi; Sengupta, Debabrata; Patra, Abhijeet; Ghosh, Siddhartha; Jani, Hariom; Sarkar, Soumya; Motapothula, Mallikarjuna Rao; Nijhuis, Christian A.; Martin, Jens; Goswami, Sreebrata; Batista, Victor S.; Venkatesan, T.

    2017-12-01

    Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (~350 devices), fast switching (<=30 ns), excellent endurance (~1012 cycles), stability (>106 s) and scalability (down to ~60 nm2). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.

  19. A flexible nonvolatile resistive switching memory device based on ZnO film fabricated on a foldable PET substrate.

    PubMed

    Sun, Bai; Zhang, Xuejiao; Zhou, Guangdong; Yu, Tian; Mao, Shuangsuo; Zhu, Shouhui; Zhao, Yong; Xia, Yudong

    2018-06-15

    In this work, a flexible resistive switching memory device based on ZnO film was fabricated using a foldable Polyethylene terephthalate (PET) film as substrate while Ag and Ti acts top and bottom electrode. Our as-prepared device represents an outstanding nonvolatile memory behavior with good "write-read-erase-read" stability at room temperature. Finally, a physical model of Ag conductive filament is constructed to understanding the observed memory characteristics. The work provides a new way for the preparation of flexible memory devices based on ZnO films, and especially provides an experimental basis for the exploration of high-performance and portable nonvolatile resistance random memory (RRAM). Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Memory availability and referential access

    PubMed Central

    Johns, Clinton L.; Gordon, Peter C.; Long, Debra L.; Swaab, Tamara Y.

    2013-01-01

    Most theories of coreference specify linguistic factors that modulate antecedent accessibility in memory; however, whether non-linguistic factors also affect coreferential access is unknown. Here we examined the impact of a non-linguistic generation task (letter transposition) on the repeated-name penalty, a processing difficulty observed when coreferential repeated names refer to syntactically prominent (and thus more accessible) antecedents. In Experiment 1, generation improved online (event-related potentials) and offline (recognition memory) accessibility of names in word lists. In Experiment 2, we manipulated generation and syntactic prominence of antecedent names in sentences; both improved online and offline accessibility, but only syntactic prominence elicited a repeated-name penalty. Our results have three important implications: first, the form of a referential expression interacts with an antecedent’s status in the discourse model during coreference; second, availability in memory and referential accessibility are separable; and finally, theories of coreference must better integrate known properties of the human memory system. PMID:24443621

  1. Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor

    PubMed Central

    Jeon, Ji Hoon; Joo, Ho-Young; Kim, Young-Min; Lee, Duk Hyun; Kim, Jin-Soo; Kim, Yeon Soo; Choi, Taekjib; Park, Bae Ho

    2016-01-01

    Highly nonlinear bistable current-voltage (I–V) characteristics are necessary in order to realize high density resistive random access memory (ReRAM) devices that are compatible with cross-point stack structures. Up to now, such I–V characteristics have been achieved by introducing complex device structures consisting of selection elements (selectors) and memory elements which are connected in series. In this study, we report bipolar resistive switching (RS) behaviours of nano-crystalline BiFeO3 (BFO) nano-islands grown on Nb-doped SrTiO3 substrates, with large ON/OFF ratio of 4,420. In addition, the BFO nano-islands exhibit asymmetric I–V characteristics with high nonlinearity factor of 1,100 in a low resistance state. Such selector-free RS behaviours are enabled by the mosaic structures and pinned downward ferroelectric polarization in the BFO nano-islands. The high resistance ratio and nonlinearity factor suggest that our BFO nano-islands can be extended to an N × N array of N = 3,740 corresponding to ~107 bits. Therefore, our BFO nano-island showing both high resistance ratio and nonlinearity factor offers a simple and promising building block of high density ReRAM. PMID:27001415

  2. Network Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    1996-05-01

    The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors andmore » visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an adjustment history of changes on selected fields« less

  3. Error Characterization and Mitigation for 16Nm MLC NAND Flash Memory Under Total Ionizing Dose Effect

    NASA Technical Reports Server (NTRS)

    Li, Yue (Inventor); Bruck, Jehoshua (Inventor)

    2018-01-01

    A data device includes a memory having a plurality of memory cells configured to store data values in accordance with a predetermined rank modulation scheme that is optional and a memory controller that receives a current error count from an error decoder of the data device for one or more data operations of the flash memory device and selects an operating mode for data scrubbing in accordance with the received error count and a program cycles count.

  4. Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material

    PubMed Central

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-01-01

    Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255

  5. Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge₂Sb₂Te₅ phase-change memory material.

    PubMed

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-06-28

    Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.

  6. Flexible non-volatile memory devices based on organic semiconductors

    NASA Astrophysics Data System (ADS)

    Cosseddu, Piero; Casula, Giulia; Lai, Stefano; Bonfiglio, Annalisa

    2015-09-01

    The possibility of developing fully organic electronic circuits is critically dependent on the ability to realize a full set of electronic functionalities based on organic devices. In order to complete the scene, a fundamental element is still missing, i.e. reliable data storage. Over the past few years, a considerable effort has been spent on the development and optimization of organic polymer based memory elements. Among several possible solutions, transistor-based memories and resistive switching-based memories are attracting a great interest in the scientific community. In this paper, a route for the fabrication of organic semiconductor-based memory devices with performances beyond the state of the art is reported. Both the families of organic memories will be considered. A flexible resistive memory based on a novel combination of materials is presented. In particular, high retention time in ambient conditions are reported. Complementary, a low voltage transistor-based memory is presented. Low voltage operation is allowed by an hybrid, nano-sized dielectric, which is also responsible for the memory effect in the device. Thanks to the possibility of reproducibly fabricating such device on ultra-thin substrates, high mechanical stability is reported.

  7. Initial Results from On-Orbit Testing of the Fram Memory Test Experiment on the Fastsat Micro-Satellite

    NASA Technical Reports Server (NTRS)

    MacLeond, Todd C.; Sims, W. Herb; Varnavas,Kosta A.; Ho, Fat D.

    2011-01-01

    The Memory Test Experiment is a space test of a ferroelectric memory device on a low Earth orbit satellite that launched in November 2010. The memory device being tested is a commercial Ramtron Inc. 512K memory device. The circuit was designed into the satellite avionics and is not used to control the satellite. The test consists of writing and reading data with the ferroelectric based memory device. Any errors are detected and are stored on board the satellite. The data is sent to the ground through telemetry once a day. Analysis of the data can determine the kind of error that was found and will lead to a better understanding of the effects of space radiation on memory systems. The test is one of the first flight demonstrations of ferroelectric memory in a near polar orbit which allows testing in a varied radiation environment. The initial data from the test is presented. This paper details the goals and purpose of this experiment as well as the development process. The process for analyzing the data to gain the maximum understanding of the performance of the ferroelectric memory device is detailed.

  8. Circuit-Switched Memory Access in Photonic Interconnection Networks for High-Performance Embedded Computing

    DTIC Science & Technology

    2010-07-22

    dependent , providing a natural bandwidth match between compute cores and the memory subsystem. • High Bandwidth Dcnsity. Waveguides crossing the chip...simulate this memory access architecture on a 2S6-core chip with a concentrated 64-node network lIsing detailed traces of high-performance embedded...memory modulcs, wc placc memory access poi nts (MAPs) around the pcriphery of the chip connected to thc nctwork. These MAPs, shown in Figure 4, contain

  9. The effect of reactive ion etch (RIE) process conditions on ReRAM device performance

    NASA Astrophysics Data System (ADS)

    Beckmann, K.; Holt, J.; Olin-Ammentorp, W.; Alamgir, Z.; Van Nostrand, J.; Cady, N. C.

    2017-09-01

    The recent surge of research on resistive random access memory (ReRAM) devices has resulted in a wealth of different materials and fabrication approaches. In this work, we describe the performance implications of utilizing a reactive ion etch (RIE) based process to fabricate HfO2 based ReRAM devices, versus a more unconventional shadow mask fabrication approach. The work is the result of an effort to increase device yield and reduce individual device size. Our results show that choice of RIE etch gas (SF6 versus CF4) is critical for defining the post-etch device profile (cross-section), and for tuning the removal of metal layers used as bottom electrodes in the ReRAM device stack. We have shown that etch conditions leading to a tapered profile for the device stack cause poor electrical performance, likely due to metal re-deposition during etching, and damage to the switching layer. These devices exhibit nonlinear I-V during the low resistive state, but this could be improved to linear behavior once a near-vertical etch profile was achieved. Device stacks with vertical etch profiles also showed an increase in forming voltage, reduced switching variability and increased endurance.

  10. The future of memory

    NASA Astrophysics Data System (ADS)

    Marinella, M.

    In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.

  11. Flexible Peripheral Component Interconnect Input/Output Card

    NASA Technical Reports Server (NTRS)

    Bigelow, Kirk K.; Jerry, Albert L.; Baricio, Alisha G.; Cummings, Jon K.

    2010-01-01

    The Flexible Peripheral Component Interconnect (PCI) Input/Output (I/O) Card is an innovative circuit board that provides functionality to interface between a variety of devices. It supports user-defined interrupts for interface synchronization, tracks system faults and failures, and includes checksum and parity evaluation of interface data. The card supports up to 16 channels of high-speed, half-duplex, low-voltage digital signaling (LVDS) serial data, and can interface combinations of serial and parallel devices. Placement of a processor within the field programmable gate array (FPGA) controls an embedded application with links to host memory over its PCI bus. The FPGA also provides protocol stacking and quick digital signal processor (DSP) functions to improve host performance. Hardware timers, counters, state machines, and other glue logic support interface communications. The Flexible PCI I/O Card provides an interface for a variety of dissimilar computer systems, featuring direct memory access functionality. The card has the following attributes: 8/16/32-bit, 33-MHz PCI r2.2 compliance, Configurable for universal 3.3V/5V interface slots, PCI interface based on PLX Technology's PCI9056 ASIC, General-use 512K 16 SDRAM memory, General-use 1M 16 Flash memory, FPGA with 3K to 56K logical cells with embedded 27K to 198K bits RAM, I/O interface: 32-channel LVDS differential transceivers configured in eight, 4-bit banks; signaling rates to 200 MHz per channel, Common SCSI-3, 68-pin interface connector.

  12. Overview of Probe-based Storage Technologies

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-07-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.

  13. Overview of Probe-based Storage Technologies.

    PubMed

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-12-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.

  14. The dynamic interplay between acute psychosocial stress, emotion and autobiographical memory.

    PubMed

    Sheldon, Signy; Chu, Sonja; Nitschke, Jonas P; Pruessner, Jens C; Bartz, Jennifer A

    2018-06-06

    Although acute psychosocial stress can impact autobiographical memory retrieval, the nature of this effect is not entirely clear. One reason for this ambiguity is because stress can have opposing effects on the different stages of autobiographical memory retrieval. We addressed this issue by testing how acute stress affects three stages of the autobiographical memory retrieval - accessing, recollecting and reconsolidating a memory. We also investigate the influence of emotion valence on this effect. In a between-subjects design, participants were first exposed to an acute psychosocial stressor or a control task. Next, the participants were shown positive, negative or neutral retrieval cues and asked to access and describe autobiographical memories. After a three to four day delay, participants returned for a second session in which they described these autobiographical memories. During initial retrieval, stressed participants were slower to access memories than were control participants; moreover, cortisol levels were positively associated with response times to access positively-cued memories. There were no effects of stress on the amount of details used to describe memories during initial retrieval, but stress did influence memory detail during session two. During session two, stressed participants recovered significantly more details, particularly emotional ones, from the remembered events than control participants. Our results indicate that the presence of stress impairs the ability to access consolidated autobiographical memories; moreover, although stress has no effect on memory recollection, stress alters how recollected experiences are reconsolidated back into memory traces.

  15. Memory effects in a Al/Ti:HfO2/CuPc metal-oxide-semiconductor device

    NASA Astrophysics Data System (ADS)

    Tripathi, Udbhav; Kaur, Ramneek

    2016-05-01

    Metal oxide semiconductor structured organic memory device has been successfully fabricated. Ti doped hafnium oxide (Ti:HfO2) nanoparticles has been fabricated by precipitation method and further calcinated at 800 °C. Copper phthalocyanine, a hole transporting material has been utilized as an organic semiconductor. The electrical properties of the fabricated device have been studied by measuring the current-voltage and capacitance-voltage characteristics. The amount of charge stored in the nanoparticles has been calculated by using flat band condition. This simple approach for fabricating MOS memory device has opens up opportunities for the development of next generation memory devices.

  16. A Strategy to Design High-Density Nanoscale Devices utilizing Vapor Deposition of Metal Halide Perovskite Materials.

    PubMed

    Hwang, Bohee; Lee, Jang-Sik

    2017-08-01

    The demand for high memory density has increased due to increasing needs of information storage, such as big data processing and the Internet of Things. Organic-inorganic perovskite materials that show nonvolatile resistive switching memory properties have potential applications as the resistive switching layer for next-generation memory devices, but, for practical applications, these materials should be utilized in high-density data-storage devices. Here, nanoscale memory devices are fabricated by sequential vapor deposition of organolead halide perovskite (OHP) CH 3 NH 3 PbI 3 layers on wafers perforated with 250 nm via-holes. These devices have bipolar resistive switching properties, and show low-voltage operation, fast switching speed (200 ns), good endurance, and data-retention time >10 5 s. Moreover, the use of sequential vapor deposition is extended to deposit CH 3 NH 3 PbI 3 as the memory element in a cross-point array structure. This method to fabricate high-density memory devices could be used for memory cells that occupy large areas, and to overcome the scaling limit of existing methods; it also presents a way to use OHPs to increase memory storage capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory

    DOE PAGES

    Deschenes, Austin; Muneer, Sadid; Akbulut, Mustafa; ...

    2016-11-11

    Thermal assistance has been shown to significantly reduce the required operation power for spin torque transfer magnetic random access memory (STT-MRAM). Proposed heating methods include modified material stack compositions that result in increased self-heating or external heat sources. Here, we analyze the self-heating process of a standard perpendicular magnetic anisotropy STT-MRAM device through numerical simulations in order to understand the relative contributions of Joule, thermoelectric Peltier and Thomson, and tunneling junction heating. A 2D rotationally symmetric numerical model is used to solve the coupled electro-thermal equations including thermoelectric effects and heat absorbed or released at the tunneling junction. We comparemore » self-heating for different common passivation materials, positive and negative electrical current polarity, and different device thermal anchoring and boundaries resistance configurations. The variations considered are found to result in significant differences in maximum temperatures reached. Average increases of 3 K, 10 K, and 100 K for different passivation materials, positive and negative polarity, and different thermal anchoring configurations, respectively, are observed. Furthermore, the highest temperatures, up to 424 K, are obtained for silicon dioxide as the passivation material, positive polarity, and low thermal anchoring with thermal boundary resistance configurations. Interestingly it is also found that due to the tunneling heat, Peltier effect, device geometry, and numerous interfacial layers around the magnetic tunnel junction (MTJ), most of the heat is dissipated on the lower potential side of the magnetic junction. We have observed this asymmetry in heating and is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset.« less

  18. Effect of conductance linearity and multi-level cell characteristics of TaOx-based synapse device on pattern recognition accuracy of neuromorphic system

    NASA Astrophysics Data System (ADS)

    Sung, Changhyuck; Lim, Seokjae; Kim, Hyungjun; Kim, Taesu; Moon, Kibong; Song, Jeonghwan; Kim, Jae-Joon; Hwang, Hyunsang

    2018-03-01

    To improve the classification accuracy of an image data set (CIFAR-10) by using analog input voltage, synapse devices with excellent conductance linearity (CL) and multi-level cell (MLC) characteristics are required. We analyze the CL and MLC characteristics of TaOx-based filamentary resistive random access memory (RRAM) to implement the synapse device in neural network hardware. Our findings show that the number of oxygen vacancies in the filament constriction region of the RRAM directly controls the CL and MLC characteristics. By adopting a Ta electrode (instead of Ti) and the hot-forming step, we could form a dense conductive filament. As a result, a wide range of conductance levels with CL is achieved and significantly improved image classification accuracy is confirmed.

  19. Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Xiaojuan, E-mail: xjlian2005@gmail.com; Cartoixà, Xavier; Miranda, Enrique

    2014-06-28

    We depart from first-principle simulations of electron transport along paths of oxygen vacancies in HfO{sub 2} to reformulate the Quantum Point Contact (QPC) model in terms of a bundle of such vacancy paths. By doing this, the number of model parameters is reduced and a much clearer link between the microscopic structure of the conductive filament (CF) and its electrical properties can be provided. The new multi-scale QPC model is applied to two different HfO{sub 2}-based devices operated in the unipolar and bipolar resistive switching (RS) modes. Extraction of the QPC model parameters from a statistically significant number of CFsmore » allows revealing significant structural differences in the CF of these two types of devices and RS modes.« less

  20. Accessing Information in Working Memory: Can the Focus of Attention Grasp Two Elements at the Same Time?

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Bialkova, Svetlana

    2009-01-01

    Processing information in working memory requires selective access to a subset of working-memory contents by a focus of attention. Complex cognition often requires joint access to 2 items in working memory. How does the focus select 2 items? Two experiments with an arithmetic task and 1 with a spatial task investigate time demands for successive…

  1. Total Ionizing Dose Influence on the Single-Event Upset Sensitivity of 130-nm PD SOI SRAMs

    NASA Astrophysics Data System (ADS)

    Zheng, Qiwen; Cui, Jiangwei; Liu, Mengxin; Zhou, Hang; Liu, Mohan; Wei, Ying; Su, Dandan; Ma, Teng; Lu, Wu; Yu, Xuefeng; Guo, Qi; He, Chengfa

    2017-07-01

    Effect of total ionizing dose (TID) on single-event upset (SEU) hardness of 130 nm partially depleted (PD) silicon-on-insulator (SOI) static random access memories (SRAMs) is investigated in this paper. The measurable synergistic effect of TID on SEU sensitivity of 130-nm PD SOI SRAM was observed in our experiment, even though that is far less than micrometer and submicrometer devices. Moreover, SEU cross section after TID irradiation has no dependence on the data pattern that was applied during TID exposure: SEU cross sections are characterized by TID data pattern and its complement data pattern are decreased consistently rather than a preferred state and a nonpreferred state as micrometer and sub-micrometer SRAMs. The memory cell test structure allowing direct measurement of static noise margin (SNM) under standby operation was designed using identical memory cell layout of SRAM. Direct measurement of the memory cell SNM shows that both data sides' SNM is decreased by TID, indicating that SEU cross section of 130-nm PD SOI SRAM will be increased by TID. And, the decreased SNM is caused by threshold shift in memory cell transistors induced by “radiation-induced narrow channel effect”.

  2. High performance nonvolatile memory devices based on Cu2-xSe nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Yan; Wu, Yi-Liang; Wang, Wen-Jian; Mao, Dun; Yu, Yong-Qiang; Wang, Li; Xu, Jun; Hu, Ji-Gang; Luo, Lin-Bao

    2013-11-01

    We report on the rational synthesis of one-dimensional Cu2-xSe nanowires (NWs) via a solution method. Electrical analysis of Cu2-xSe NWs based memory device exhibits a stable and reproducible bipolar resistive switching behavior with a low set voltage (0.3-0.6 V), which can enable the device to write and erase data efficiently. Remarkably, the memory device has a record conductance switching ratio of 108, much higher than other devices ever reported. At last, a conducting filaments model is introduced to account for the resistive switching behavior. The totality of this study suggests that the Cu2-xSe NWs are promising building blocks for fabricating high-performance and low-consumption nonvolatile memory devices.

  3. 78 FR 35645 - Certain Static Random Access Memories and Products Containing Same; Commission Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-792] Certain Static Random Access Memories and Products Containing Same; Commission Determination Affirming a Final Initial Determination..., and the sale within the United States after importation of certain static random access memories and...

  4. NAFFS: network attached flash file system for cloud storage on portable consumer electronics

    NASA Astrophysics Data System (ADS)

    Han, Lin; Huang, Hao; Xie, Changsheng

    Cloud storage technology has become a research hotspot in recent years, while the existing cloud storage services are mainly designed for data storage needs with stable high speed Internet connection. Mobile Internet connections are often unstable and the speed is relatively low. These native features of mobile Internet limit the use of cloud storage in portable consumer electronics. The Network Attached Flash File System (NAFFS) presented the idea of taking the portable device built-in NAND flash memory as the front-end cache of virtualized cloud storage device. Modern portable devices with Internet connection have built-in more than 1GB NAND Flash, which is quite enough for daily data storage. The data transfer rate of NAND flash device is much higher than mobile Internet connections[1], and its non-volatile feature makes it very suitable as the cache device of Internet cloud storage on portable device, which often have unstable power supply and intermittent Internet connection. In the present work, NAFFS is evaluated with several benchmarks, and its performance is compared with traditional network attached file systems, such as NFS. Our evaluation results indicate that the NAFFS achieves an average accessing speed of 3.38MB/s, which is about 3 times faster than directly accessing cloud storage by mobile Internet connection, and offers a more stable interface than that of directly using cloud storage API. Unstable Internet connection and sudden power off condition are tolerable, and no data in cache will be lost in such situation.

  5. Resistive Random Access Memory from Materials Development fnd Engineering to Novel Encryption and Neuromorphic Applications

    NASA Astrophysics Data System (ADS)

    Beckmann, Karsten

    Resistive random access memory (ReRAM or RRAM) is a novel form of non-volatile memory that is expected to play a major role in future computing and memory solutions. It has been shown that the resistance state of ReRAM devices can be precisely tuned by modulating switching voltages, by limiting peak current, and by adjusting the switching pulse properties. This enables the realization of novel applications such as memristive neuromorphic computing and neural network computing. I have developed two processes based on 100 and 300mm wafer platforms to demonstrate functional HfO2 based ReRAM devices. The first process is designed for a rapid materials engineering and device characterization, while the second is an advanced hybrid ReRAM/CMOS combination based on the IBM 65nm 10LPe process technology. The 100mm wafer efforts were used to show impacts of etch processes on ReRAM switching performance and the need for a rigorous structural evaluation of ReRAM devices before starting materials development. After an etch development, a bottom electrode comparison between the inert materials Pt, Ru and W was performed where Ru showed superior results with respect to yield and resilience against environmental impacts such as humidity over a 2-month period. A comparison of amorphous and crystalline devices showed no statistical difference in the performance with respect to random telegraph noise. This demonstrates, that the forming process fundamentally alters the crystallographic structure within and around the filament. The 300mm wafer development efforts were aimed towards implementing ReRAM in the FEOL, combined with CMOS, to yield a seamless process flow of 1 transistor 1 ReRAM structures (1T1R). This technology was customized with custom-developed tungsten metal 1 (M1) and dual tungsten/copper via 1 (V1) structures, within which the ReRAM stack is embedded. The ReRAM itself consists of an inert W bottom electrode, HfO2 based active switching layer, a Ti oxygen scavenger layer, and an inert TiN top electrode. Linear sweep and controlled pulse (down to 5 ns) based electrical characterization of 1 transistor 1 ReRAM (1T1R) elements was performed to determine key properties including endurance, reliability, and threshold voltages. We demonstrated endurance values above 1010 cycles with an average on/off ratio of 10, and pulse voltages for set/reset operation of +/-1.5V. The on-chip 1T1R structures show an excellent controllability with respect to the low and high resistive states by manipulating the peak current from 75 up to 350 mu?A resulting in 10 distinct low resistance states (LRS). Our results demonstrate that the set operation (which shifts the ReRAM device from the high to the low resistance state) is only dependent on the voltage of the switching pulse and the peak current limit. The reset operation, however, occurs in an analog fashion and appears to be dependent on the total energy of the applied switching pulse. Pulse energy was modulated by varying the peak voltage resulting in a larger relative change of the ReRAM device resistance. The incremental resistance changes are ideally suited to emulate synaptic weights for future implementation into neuromorphic architectures. Switching results from these devices were also used to develop a model time-delay physical unclonable function (PUF) circuit, which showed excellent performance when compared to a pure CMOS implementation with significant improvements in uniqueness, size and accuracy.

  6. Brownmillerite thin films as fast ion conductors for ultimate-performance resistance switching memory.

    PubMed

    Acharya, Susant Kumar; Jo, Janghyun; Raveendra, Nallagatlla Venkata; Dash, Umasankar; Kim, Miyoung; Baik, Hionsuck; Lee, Sangik; Park, Bae Ho; Lee, Jae Sung; Chae, Seung Chul; Hwang, Cheol Seong; Jung, Chang Uk

    2017-07-27

    An oxide-based resistance memory is a leading candidate to replace Si-based flash memory as it meets the emerging specifications for future memory devices. The non-uniformity in the key switching parameters and low endurance in conventional resistance memory devices are preventing its practical application. Here, a novel strategy to overcome the aforementioned challenges has been unveiled by tuning the growth direction of epitaxial brownmillerite SrFeO 2.5 thin films along the SrTiO 3 [111] direction so that the oxygen vacancy channels can connect both the top and bottom electrodes rather directly. The controlled oxygen vacancy channels help reduce the randomness of the conducting filament (CF). The resulting device displayed high endurance over 10 6 cycles, and a short switching time of ∼10 ns. In addition, the device showed very high uniformity in the key switching parameters for device-to-device and within a device. This work demonstrates a feasible example for improving the nanoscale device performance by controlling the atomic structure of a functional oxide layer.

  7. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  8. Quantum random access memory.

    PubMed

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2008-04-25

    A random access memory (RAM) uses n bits to randomly address N=2(n) distinct memory cells. A quantum random access memory (QRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(logN) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust QRAM algorithm, as it in general requires entanglement among exponentially less gates, and leads to an exponential decrease in the power needed for addressing. A quantum optical implementation is presented.

  9. Scandium doped Ge2Sb2Te5 for high-speed and low-power-consumption phase change memory

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zheng, Yonghui; Liu, Guangyu; Li, Tao; Guo, Tianqi; Cheng, Yan; Lv, Shilong; Song, Sannian; Ren, Kun; Song, Zhitang

    2018-03-01

    To bridge the gap of access time between memories and storage systems, the concept of storage class memory has been put forward based on emerging nonvolatile memory technologies. For all the nonvolatile memory candidates, the unpleasant tradeoff between operation speed and retention seems to be inevitable. To promote both the write speed and the retention of phase change memory (PCM), Sc doped Ge2Sb2Te5 (SGST) has been proposed as the storage medium. Octahedral Sc-Te motifs, acting as crystallization precursors to shorten the nucleation incubation period, are the possible reason for the high write speed of 6 ns in PCM cells, five-times faster than that of Ge2Sb2Te5 (GST) cells. Meanwhile, an enhanced 10-year data retention of 119 °C has been achieved. Benefiting from both the increased crystalline resistance and the inhibited formation of the hexagonal phase, the SGST cell has a 77% reduction in power consumption compared to the GST cell. Adhesion of the SGST/SiO2 interface has been strengthened, attributed to the reduced stress by forming smaller grains during crystallization, guaranteeing the reliability of the device. These improvements have made the SGST material a promising candidate for PCM application.

  10. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures

    PubMed Central

    Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo

    2018-01-01

    Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS2/PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 104 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS2 to PbS. The demonstrated MoS2 heterostructure–based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices. PMID:29770356

  11. Resistive switching effect of N-doped MoS2-PVP nanocomposites films for nonvolatile memory devices

    NASA Astrophysics Data System (ADS)

    Wu, Zijin; Wang, Tongtong; Sun, Changqi; Liu, Peitao; Xia, Baorui; Zhang, Jingyan; Liu, Yonggang; Gao, Daqiang

    2017-12-01

    Resistive memory technology is very promising in the field of semiconductor memory devices. According to Liu et al, MoS2-PVP nanocomposite can be used as an active layer material for resistive memory devices due to its bipolar resistive switching behavior. Recent studies have also indicated that the doping of N element can reduce the band gap of MoS2 nanosheets, which is conducive to improving the conductivity of the material. Therefore, in this paper, we prepared N-doped MoS2 nanosheets and then fabricated N-doped MoS2-PVP nanocomposite films by spin coating. Finally, the resistive memory [C. Tan et al., Chem. Soc. Rev. 44, 2615 (2015)], device with ITO/N-doped MoS2-PVP/Pt structure was fabricated. Study on the I-V characteristics shows that the device has excellent resistance switching effect. It is worth mentioning that our device possesses a threshold voltage of 0.75 V, which is much better than 3.5 V reported previously for the undoped counterparts. The above research shows that N-doped MoS2-PVP nanocomposite films can be used as the active layer of resistive switching memory devices, and will make the devices have better performance.

  12. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures.

    PubMed

    Wang, Qisheng; Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo; He, Jun

    2018-04-01

    Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS 2 /PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 10 4 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS 2 to PbS. The demonstrated MoS 2 heterostructure-based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices.

  13. General purpose programmable accelerator board

    DOEpatents

    Robertson, Perry J.; Witzke, Edward L.

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  14. 76 FR 4375 - In the Matter of Certain MLC Flash Memory Devices and Products Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-683] In the Matter of Certain MLC Flash Memory Devices and Products Containing Same; Notice of Commission Determination Not To Review an Initial... the United States after importation of certain MLC flash memory devices and products containing same...

  15. 78 FR 25767 - Certain Static Random Access Memories and Products Containing Same; Commission Determination To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-792] Certain Static Random Access Memories and Products Containing Same; Commission Determination To Review in Part a Final Initial... States after importation of certain static random access memories and products containing the same by...

  16. Development of a mobile HIS/PACS workstation to assist critical cardiac patients in an intensive care unit

    NASA Astrophysics Data System (ADS)

    Gutierrez, Marco A.; Cestari, Idagene A.; Hamamoto, Gina; Bacht, Simão; Rebelo, Marina S.; Silva, João E. M. M.; Lage, Silvia G.

    2008-03-01

    The current study describes the experience in the implementation of a mobile HIS/PACS workstation to assist critical cardiac patients in an Intensive Care Unit (ICU). Recently, mobile devices connected to a WiFi network were incorporated to the Hospital information System, providing the same functionalities of common desktop counterpart. However, the use of commercially devices like PDAs and Pocket PCs presented a series of problems that are more emphasized in the ICUs 1) low autonomy of the batteries, which need constant recharges; 2) low robustness of the devices; 3) insufficient display area to show medical images and vital signals; 4) data entry remains a major problem and imposes an extra time consumption to the staff; 5) high cost when fully equipped with WiFi connection, optical reader to access bar codes and memory. To address theses problems we developed a mobile workstation (MedKart) that provides access the HIS and PACS systems, with all resources and an ergonomic and practical design to be used by physicians and nurses inside the ICU. The system fulfills the requirements to assist, in the point-of-care, critical cardiac patients in Intensive Care Units.

  17. Fabrication and electrical characterization of a MOS memory device containing self-assembled metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sargentis, Ch.; Giannakopoulos, K.; Travlos, A.; Tsamakis, D.

    2007-04-01

    Floating gate devices with nanoparticles embedded in dielectrics have recently attracted much attention due to the fact that these devices operate as non-volatile memories with high speed, high density and low power consumption. In this paper, memory devices containing gold (Au) nanoparticles have been fabricated using e-gun evaporation. The Au nanoparticles are deposited on a very thin SiO 2 layer and are then fully covered by a HfO 2 layer. The HfO 2 is a high- k dielectric and gives good scalability to the fabricated devices. We studied the effect of the deposition parameters to the size and the shape of the Au nanoparticles using capacitance-voltage and conductance-voltage measurements, we demonstrated that the fabricated device can indeed operate as a low-voltage memory device.

  18. Carrier transport mechanisms of nonvolatile write-once-read-many-times memory devices with InP-ZnS core-shell nanoparticles embedded in a polymethyl methacrylate layer

    NASA Astrophysics Data System (ADS)

    Ham, Jung Hoon; Oh, Do Hyun; Cho, Sung Hwan; Jung, Jae Hun; Kim, Tae Whan; Ryu, Eui Dock; Kim, Sang Wook

    2009-03-01

    Current-voltage (I-V) curves at 300 K for Al/InP-ZnS nanoparticles embedded in a polymethyl methacrylate layer/Al devices showed electrical bistability for write-once-read-many-times (WORM) memory devices. From the I-V curves, the ON/OFF ratio for the device with InP-ZnS nanoparticles was significantly larger than that for the device without InP-ZnS nanoparticles, indicative of the existence of charge capture in the InP nanoparticles. The estimated retention time of the ON state for the WORM memory device was more than 10 years. The carrier transport mechanisms for the WORM memory devices are described by using several models to fit the experimental I-V data.

  19. Giant Electroresistance in Edge Metal-Insulator-Metal Tunnel Junctions Induced by Ferroelectric Fringe Fields

    PubMed Central

    Jung, Sungchul; Jeon, Youngeun; Jin, Hanbyul; Lee, Jung-Yong; Ko, Jae-Hyeon; Kim, Nam; Eom, Daejin; Park, Kibog

    2016-01-01

    An enormous amount of research activities has been devoted to developing new types of non-volatile memory devices as the potential replacements of current flash memory devices. Theoretical device modeling was performed to demonstrate that a huge change of tunnel resistance in an Edge Metal-Insulator-Metal (EMIM) junction of metal crossbar structure can be induced by the modulation of electric fringe field, associated with the polarization reversal of an underlying ferroelectric layer. It is demonstrated that single three-terminal EMIM/Ferroelectric structure could form an active memory cell without any additional selection devices. This new structure can open up a way of fabricating all-thin-film-based, high-density, high-speed, and low-power non-volatile memory devices that are stackable to realize 3D memory architecture. PMID:27476475

  20. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOEpatents

    Toet, Daniel; Sigmon, Thomas W.

    2004-12-07

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  1. Process For Direct Integration Of A Thin-Film Silicon P-N Junction Diode With A Magnetic Tunnel Junction

    DOEpatents

    Toet, Daniel; Sigmon, Thomas W.

    2005-08-23

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  2. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOEpatents

    Toet, Daniel; Sigmon, Thomas W.

    2003-01-01

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  3. Implementing ISO/IEEE 11073: proposal of two different strategic approaches.

    PubMed

    Martínez-Espronceda, M; Serrano, L; Martínez, I; Escayola, J; Led, S; Trigo, J; García, J

    2008-01-01

    This paper explains the challenges encountered during the ISO/IEEE 11073 standard implementation process. The complexity of the standard and the consequent heavy requirements, which have not encouraged software engineers to adopt the standard. The developing complexity evaluation drives us to propose two possible implementation strategies that cover almost all possible use cases and eases handling the standard by non-expert users. The first one is focused on medical devices (MD) and proposes a low-memory and low-processor usage technique. It is based on message patterns that allow simple functions to generate ISO/IEEE 11073 messages and to process them easily. In this way a framework for MDs can be obtained. Second one is focused on more powerful machines such as data loggers or gateways (aka. computer engines (CE)), which do not have the MDs' memory and processor usage constraints. For CEs a more intelligent and adaptative Plug&Play (P&P) solution is provided. It consists on a general platform that can access to any device supported by the standard. Combining both strategies will cut developing time for applications based on ISO/EEE 11073.

  4. Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5.

    PubMed

    Eremeev, S V; Rusinov, I P; Echenique, P M; Chulkov, E V

    2016-12-13

    The Ge 2 Sb 2 Te 5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge 2 Sb 2 Te 5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge 2 Sb 2 Te 5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge 2 Sb 2 Te 5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.

  5. Wide memory window in graphene oxide charge storage nodes

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Pu, Jing; Chan, Daniel S. H.; Cho, Byung Jin; Loh, Kian Ping

    2010-04-01

    Solution-processable, isolated graphene oxide (GO) monolayers have been used as a charge trapping dielectric in TaN gate/Al2O3/isolated GO sheets/SiO2/p-Si memory device (TANOS). The TANOS type structure serves as memory device with the threshold voltage controlled by the amount of charge trapped in the GO sheet. Capacitance-Voltage hysteresis curves reveal a 7.5 V memory window using the sweep voltage of -5-14 V. Thermal reduction in the GO to graphene reduces the memory window to 1.4 V. The unique charge trapping properties of GO points to the potential applications in flexible organic memory devices.

  6. Solution processed molecular floating gate for flexible flash memories

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.

    2013-10-01

    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices.

  7. Solution processed molecular floating gate for flexible flash memories

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.

    2013-01-01

    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758

  8. Resonant tunneling based graphene quantum dot memristors.

    PubMed

    Pan, Xuan; Skafidas, Efstratios

    2016-12-08

    In this paper, we model two-terminal all graphene quantum dot (GQD) based resistor-type memory devices (memristors). The resistive switching is achieved by resonant electron tunneling. We show that parallel GQDs can be used to create multi-state memory circuits. The number of states can be optimised with additional voltage sources, whilst the noise margin for each state can be controlled by appropriately choosing the branch resistance. A three-terminal GQD device configuration is also studied. The addition of an isolated gate terminal can be used to add further or modify the states of the memory device. The proposed devices provide a promising route towards volatile memory devices utilizing only atomically thin two-dimensional graphene.

  9. Fabrication of one-transistor-capacitor structure of nonvolatile TFT ferroelectric RAM devices using Ba(Zr0.1Ti0.9)O3 gated oxide film.

    PubMed

    Yang, Cheng-Fu; Chen, Kai-Huang; Chen, Ying-Chung; Chang, Ting-Chang

    2007-09-01

    In this study, the Ba(Zr0.1Ti0.9)O3 (BZ1T9) thin films have been well deposited on the Pt/Ti/SiO2/Si substrate. The optimum radio frequency (RF) deposition parameters are developed, and the BZ1T9 thin films deposition at the optimum parameters have the maximum capacitance and dielectric constant of 4.4 nF and 190. As the applied voltage is increased to 8 V, the remnant polarization and coercive field of BZ1T9 thin films are about 4.5 microC/cm2 and 80 kV/cm. The counterclockwise current hysteresis and memory window of n-channel thin-film transistor property are observed, and that can be used to indicate the switching of ferroelectric polarization of BZ1T9 thin films. One-transistor-capacitor (1TC) structure of BZ1T9 ferroelectric random access memory device using bottom-gate amorphous silicon thin-film transistor was desirable because of the smaller size and better sensitivity. The BZ1T9 ferroelectric RAM devices with channel width = 40 microm and channel length = 8 microm has been successfully fabricated and the ID-VG transfer characteristics also are investigated in this study.

  10. Design of a memory-access controller with 3.71-times-enhanced energy efficiency for Internet-of-Things-oriented nonvolatile microcontroller unit

    NASA Astrophysics Data System (ADS)

    Natsui, Masanori; Hanyu, Takahiro

    2018-04-01

    In realizing a nonvolatile microcontroller unit (MCU) for sensor nodes in Internet-of-Things (IoT) applications, it is important to solve the data-transfer bottleneck between the central processing unit (CPU) and the nonvolatile memory constituting the MCU. As one circuit-oriented approach to solving this problem, we propose a memory access minimization technique for magnetoresistive-random-access-memory (MRAM)-embedded nonvolatile MCUs. In addition to multiplexing and prefetching of memory access, the proposed technique realizes efficient instruction fetch by eliminating redundant memory access while considering the code length of the instruction to be fetched and the transition of the memory address to be accessed. As a result, the performance of the MCU can be improved while relaxing the performance requirement for the embedded MRAM, and compact and low-power implementation can be performed as compared with the conventional cache-based one. Through the evaluation using a system consisting of a general purpose 32-bit CPU and embedded MRAM, it is demonstrated that the proposed technique increases the peak efficiency of the system up to 3.71 times, while a 2.29-fold area reduction is achieved compared with the cache-based one.

  11. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    NASA Astrophysics Data System (ADS)

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  12. A chiral-based magnetic memory device without a permanent magnet

    PubMed Central

    Dor, Oren Ben; Yochelis, Shira; Mathew, Shinto P.; Naaman, Ron; Paltiel, Yossi

    2013-01-01

    Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices. PMID:23922081

  13. A chiral-based magnetic memory device without a permanent magnet.

    PubMed

    Ben Dor, Oren; Yochelis, Shira; Mathew, Shinto P; Naaman, Ron; Paltiel, Yossi

    2013-01-01

    Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices.

  14. A DNA-based pattern classifier with in vitro learning and associative recall for genomic characterization and biosensing without explicit sequence knowledge.

    PubMed

    Lee, Ju Seok; Chen, Junghuei; Deaton, Russell; Kim, Jin-Woo

    2014-01-01

    Genetic material extracted from in situ microbial communities has high promise as an indicator of biological system status. However, the challenge is to access genomic information from all organisms at the population or community scale to monitor the biosystem's state. Hence, there is a need for a better diagnostic tool that provides a holistic view of a biosystem's genomic status. Here, we introduce an in vitro methodology for genomic pattern classification of biological samples that taps large amounts of genetic information from all genes present and uses that information to detect changes in genomic patterns and classify them. We developed a biosensing protocol, termed Biological Memory, that has in vitro computational capabilities to "learn" and "store" genomic sequence information directly from genomic samples without knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion, and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities and differences. For efficient read out, a microarray was used as an output method. When the microarray-based Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model bacterial strains, i.e., Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can "learn" input DNA, "recall" similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration differences in samples. This study demonstrated not only the in vitro information processing capabilities of DNA, but also its promise as a genomic pattern classifier that could access information from all organisms in a biological system without explicit genomic information. The Memory protocol has high potential for many applications, including in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food supplies, and non-biological information processing of memory devices, among many.

  15. Integrating Commercial Off-The-Shelf (COTS) graphics and extended memory packages with CLIPS

    NASA Technical Reports Server (NTRS)

    Callegari, Andres C.

    1990-01-01

    This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory limitations by using the extended memory available in the computer. By adding graphics and extended memory capabilities, CLIPS can be converted into a complete and powerful system development tool, on the other most economical and popular computer platform. New models of PCs have amazing processing capabilities and graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a powerful expert system development tool, but it cannot be complete without the support of a graphics package needed to create user interfaces and general purpose graphics, or without enough memory to handle large knowledge bases. Now, a well known limitation on the PC's is the usage of real memory which limits CLIPS to use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically, all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self-configuring graphics package that will automatically detect the graphics hardware and pointing device present in the computer, and we add the availability of the extended memory that exists in the computer (with no special hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the most popular, portable, and economic platform available such as the PC platform.

  16. EDITORIAL: Non-volatile memory based on nanostructures Non-volatile memory based on nanostructures

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei; Yang, J. Joshua; Demming, Anna

    2011-06-01

    Non-volatile memory refers to the crucial ability of computers to store information once the power source has been removed. Traditionally this has been achieved through flash, magnetic computer storage and optical discs, and in the case of very early computers paper tape and punched cards. While computers have advanced considerably from paper and punched card memory devices, there are still limits to current non-volatile memory devices that restrict them to use as secondary storage from which data must be loaded and carefully saved when power is shut off. Denser, faster, low-energy non-volatile memory is highly desired and nanostructures are the critical enabler. This special issue on non-volatile memory based on nanostructures describes some of the new physics and technology that may revolutionise future computers. Phase change random access memory, which exploits the reversible phase change between crystalline and amorphous states, also holds potential for future memory devices. The chalcogenide Ge2Sb2Te5 (GST) is a promising material in this field because it combines a high activation energy for crystallization and a relatively low crystallization temperature, as well as a low melting temperature and low conductivity, which accommodates localized heating. Doping is often used to lower the current required to activate the phase change or 'reset' GST but this often aggravates other problems. Now researchers in Korea report in-depth studies of SiO2-doped GST and identify ways of optimising the material's properties for phase-change random access memory [1]. Resistance switching is an area that has attracted a particularly high level of interest for non-volatile memory technology, and a great deal of research has focused on the potential of TiO2 as a model system in this respect. Researchers at HP labs in the US have made notable progress in this field, and among the work reported in this special issue they describe means to control the switch resistance and show that limiting the current during electroforming leads to the coexistence of two resistance switching modes in TiO2 memristive devices [2]. They also present spectromicroscopic observations and modelling results for the Joule heating during switching, providing insights into the ON/OFF switching process [3]. Researchers in Korea have examined in detail the mechanism of electronic bipolar resistance switching in the Pt/TiO2/Pt structure and show that degradation in switching performance of this system can be explained by the modified distribution of trap densities [4]. The issue also includes studies of TiO2 that demonstrate analog memory, synaptic plasticity, and spike-timing-dependent plasticity functions, work that contributes to the development of neuromorphic devices that have high efficiency and low power consumption [5]. In addition to enabling a wide range of data storage and logic applications, electroresistive non-volatile memories invite us to re-evaluate the long-held paradigms in the condensed matter physics of oxides. In the past three years, much attention has been attracted to polarization-mediated electronic transport [6, 7] and domain wall conduction [8] as the key to the next generation of electronic and spintronic devices based on ferroelectric tunnelling barriers. Typically local probe experiments are performed on an ambient scanning probe microscope platform under conditions of high voltage stresses, conditions highly conducive to electrochemical reactions. Recent experiments [9-13] suggest that ionic motion can heavily contribute to the measured responses and compete with purely physical mechanisms. Electrochemical effects can also be expected in non-ferroelectric materials such as manganites and cobaltites, as well as for thick ferroelectrics under high-field conditions, as in capacitors and tunnelling junctions where the ionic motion could be a major contributor to electric field-induced strain. Such strain, in turn, can affect the effective barrier width in tunnelling experiments, resulting in memristive ionic switching. These phenomena must be differentiated from intrinsic physical polarization switching effects. Similar analysis of solid-state electrochemistry versus physical mechanisms is also important for future research in all areas of oxide materials. In an age where miniaturised computer components can enable GPS tracking, internet access and even the remote operation of machinery from a mobile phone, there is an endearing quaintness associated with images of the large rooms rammed with wires and boxes that comprised early computers. Yet there was a time when these cumbersome devices were state of the art. When the electronic numerical integrator and computer (ENIAC) was developed it achieved speeds one thousand times faster than previous electromechanical machines, a leap in processing power that has not been achieved since. It is easy to imagine future generations looking back on the slow start up and shut down times and high energy consumption of today's computers with a similar wry smile. The articles in this special issue on non-volatile memory based on nanostructures present the very latest research into the next generation's device technology, which may eventually consign today's cutting edge electronics to the history books. References [1] Ryu S W et al 2011 Nanotechnology 22 254005 [2] Miao F, Yang J J, Borghetti J, Medeiros-Ribeiro G and Williams R S 2011 Nanotechnology 22 254007 [3] Strachan J P, Strukov D B, Borghetti J, Yang J J, Medeiros-Ribeiro G and Williams R S 2011 Nanotechnology 22 245015 [4] Kim K M, Choi B J, Lee M H, Kim G H, Song S J, Seok J Y, Yoon J H, Han S and Hwang C S 2011 Nanotechnology 22 254010 [5] Seo K et al 2011 Nanotechnology 22 254023 [6] Garcia V, Fusil S, Bouzehouane K, Enouz-Vedrenne S, Mathur N D, Barthelemy A and Bibes M 2009 Nature 460 81-4 [7] Maksymovych P, Jesse S, Yu P, Ramesh R, Baddorf A P and Kalinin S V 2009 Science 324 1421 [8] Seidel J et al 2009 Nature Mat. 8 229 [9] Tsuruoka T, Terabe K, Hasegawa T, and Aono M 2010 Nanotechnology 21 425205 [10] Waser R and Aono M 2007 Nature Mat. 6 833 [11] Sawa A 2008 Materials Today 11 28 [12] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80 Changes were made to this Editorial on 16 May 2011. An author was added to the Editorial.

  17. Performance Measurement of a Multi-Level/Analog Ferroelectric Memory Device Design

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2007-01-01

    Increasing the memory density and utilizing the unique characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes the characterization of a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used a reference to determinethe amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. This paper presents measurements of an actual prototype memory cell. This prototype is not a complete implementation of a device, but instead, a prototype of the storage and retrieval portion of an actual device. The performance of this prototype is presented with the projected performance of the overall device. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.

  18. Biomaterial-based Memory Device Development by Conducting Metallic DNA

    DTIC Science & Technology

    2013-05-28

    time. Therefore, we have created a multiple-states memory system . This is the first multi-states resistance memory device by using bio-nanowire of the...world. Based on this achievement, logic device and application will be developed in the near future, too. Moreover, by using Ni-DNA detection system ...ions in DNA can change the resistance of Ni-DNA by applying different polar bias and time. Therefore, we have created a multiple-states memory system

  19. 76 FR 2336 - Dynamic Random Access Memory Semiconductors From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-851] Dynamic Random Access Memory... administrative review of the countervailing duty order on dynamic random access memory semiconductors from the... following events have occurred since the publication of the preliminary results of this review. See Dynamic...

  20. 75 FR 20564 - Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-851] Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit for Preliminary Results of Countervailing Duty... access memory semiconductors from the Republic of Korea, covering the period January 1, 2008 through...

  1. Accessibility versus Accuracy in Retrieving Spatial Memory: Evidence for Suboptimal Assumed Headings

    ERIC Educational Resources Information Center

    Yerramsetti, Ashok; Marchette, Steven A.; Shelton, Amy L.

    2013-01-01

    Orientation dependence in spatial memory has often been interpreted in terms of accessibility: Object locations are encoded relative to a reference orientation that affords the most accurate access to spatial memory. An open question, however, is whether people naturally use this "preferred" orientation whenever recalling the space. We…

  2. Quantum acoustics with superconducting qubits

    NASA Astrophysics Data System (ADS)

    Chu, Yiwen; Kharel, Prashanta; Renninger, William H.; Burkhart, Luke D.; Frunzio, Luigi; Rakich, Peter T.; Schoelkopf, Robert J.

    2017-10-01

    Mechanical objects have important practical applications in the fields of quantum information and metrology as quantum memories or transducers for measuring and connecting different types of quantum systems. The field of electromechanics is in pursuit of a robust and highly coherent device that couples motion to nonlinear quantum objects such as superconducting qubits. Here, we experimentally demonstrate a high-frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction with a cooperativity of 260. We measure qubit and mechanical coherence times on the order of 10 microseconds. Our device requires only simple fabrication methods and provides controllable access to a multitude of phonon modes. We demonstrate quantum control and measurement on gigahertz phonons at the single-quantum level.

  3. Asymmetric underlap optimization of sub-10nm finfets for realizing energy-efficient logic and robust memories

    NASA Astrophysics Data System (ADS)

    Akkala, Arun Goud

    Leakage currents in CMOS transistors have risen dramatically with technology scaling leading to significant increase in standby power consumption. Among the various transistor candidates, the excellent short channel immunity of Silicon double gate FinFETs have made them the best contender for successful scaling to sub-10nm nodes. For sub-10nm FinFETs, new quantum mechanical leakage mechanisms such as direct source to drain tunneling (DSDT) of charge carriers through channel potential energy barrier arising due to proximity of source/drain regions coupled with the high transport direction electric field is expected to dominate overall leakage. To counter the effects of DSDT and worsening short channel effects and to maintain Ion/ Ioff, performance and power consumption at reasonable values, device optimization techniques are necessary for deeply scaled transistors. In this work, source/drain underlapping of FinFETs has been explored using quantum mechanical device simulations as a potentially promising method to lower DSDT while maintaining the Ion/ Ioff ratio at acceptable levels. By adopting a device/circuit/system level co-design approach, it is shown that asymmetric underlapping, where the drain side underlap is longer than the source side underlap, results in optimal energy efficiency for logic circuits in near-threshold as well as standard, super-threshold operating regimes. In addition, read/write conflict in 6T SRAMs and the degradation in cell noise margins due to the low supply voltage can be mitigated by using optimized asymmetric underlapped n-FinFETs for the access transistor, thereby leading to robust cache memories. When gate-workfunction tuning is possible, using asymmetric underlapped n-FinFETs for both access and pull-down devices in an SRAM bit cell can lead to high-speed and low-leakage caches. Further, it is shown that threshold voltage degradation in the presence of Hot Carrier Injection (HCI) is less severe in asymmetric underlap n-FinFETs. A lifetime projection is carried out assuming that HCI is the major degradation mechanism and it is shown that a 3.4x improvement in device lifetime is possible over symmetric underlapped n-FinFET.

  4. More than a feeling: Emotional cues impact the access and experience of autobiographical memories.

    PubMed

    Sheldon, Signy; Donahue, Julia

    2017-07-01

    Remembering is impacted by several factors of retrieval, including the emotional content of a memory cue. Here we tested how musical retrieval cues that differed on two dimensions of emotion-valence (positive and negative) and arousal (high and low)-impacted the following aspects of autobiographical memory recall: the response time to access a past personal event, the experience of remembering (ratings of memory vividness), the emotional content of a cued memory (ratings of event arousal and valence), and the type of event recalled (ratings of event energy, socialness, and uniqueness). We further explored how cue presentation affected autobiographical memory retrieval by administering cues of similar arousal and valence levels in a blocked fashion to one half of the tested participants, and randomly to the other half. We report three main findings. First, memories were accessed most quickly in response to musical cues that were highly arousing and positive in emotion. Second, we observed a relation between a cue and the elicited memory's emotional valence but not arousal; however, both the cue valence and arousal related to the nature of the recalled event. Specifically, high cue arousal led to lower memory vividness and uniqueness ratings, but cues with both high arousal and positive valence were associated with memories rated as more social and energetic. Finally, cue presentation impacted both how quickly and specifically memories were accessed and how cue valence affected the memory vividness ratings. The implications of these findings for views of how emotion directs the access to memories and the experience of remembering are discussed.

  5. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  6. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-03-30

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  7. Optical memories in digital computing

    NASA Technical Reports Server (NTRS)

    Alford, C. O.; Gaylord, T. K.

    1979-01-01

    High capacity optical memories with relatively-high data-transfer rate and multiport simultaneous access capability may serve as basis for new computer architectures. Several computer structures that might profitably use memories are: a) simultaneous record-access system, b) simultaneously-shared memory computer system, and c) parallel digital processing structure.

  8. FPGA-based prototype storage system with phase change memory

    NASA Astrophysics Data System (ADS)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  9. Resistive switching mechanism in the one diode-one resistor memory based on p+-Si/n-ZnO heterostructure revealed by in-situ TEM

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhu, Liang; Li, Xiaomei; Xu, Zhi; Wang, Wenlong; Bai, Xuedong

    2017-03-01

    One diode-one resistor (1D1R) memory is an effective architecture to suppress the crosstalk interference, realizing the crossbar network integration of resistive random access memory (RRAM). Herein, we designed a p+-Si/n-ZnO heterostructure with 1D1R function. Compared with the conventional multilayer 1D1R devices, the structure and fabrication technique can be largely simplified. The real-time imaging of formation/rupture process of conductive filament (CF) process demonstrated the RS mechanism by in-situ transmission electron microscopy (TEM). Meanwhile, we observed that the formed CF is only confined to the outside of depletion region of Si/ZnO pn junction, and the formation of CF does not degrade the diode performance, which allows the coexistence of RS and rectifying behaviors, revealing the 1D1R switching model. Furthermore, it has been confirmed that the CF is consisting of the oxygen vacancy by in-situ TEM characterization.

  10. Capacitorless 1T-DRAM on crystallized poly-Si TFT.

    PubMed

    Kim, Min Soo; Cho, Won Ju

    2011-07-01

    The single-transistor dynamic random-access memory (1T-DRAM) using a polycrystalline-silicon thin-film transistor (poly-Si TFT) was investigated. A 100-nm amorphous silicon thin film was deposited onto a 200-nm oxidized silicon wafer via low-pressure chemical vapor deposition (LPCVD), and the amorphous silicon layer was crystallized via eximer laser annealing (ELA) with a KrF source of 248 nm wavelength and 400 mJ/cm2 power. The fabricated capacitor less 1T-DRAM on the poly-Si TFT was evaluated via impact ionization and gate-induced drain leakage (GIDL) current programming. The device showed a clear memory margin between the "1" and "0" states, and as the channel length decreased, a floating body effect which induces a kink effect increases with high mobility. Furthermore, the GIDL current programming showed improved memory properties compared to the impact ionization method. Although the sensing margins and retention times in both program methods are commercially insufficient, it was confirmed the feasibility of the application of 1T-DRAM operation to TFTs.

  11. Set processing in a network environment. [data bases and magnetic disks and tapes

    NASA Technical Reports Server (NTRS)

    Hardgrave, W. T.

    1975-01-01

    A combination of a local network, a mass storage system, and an autonomous set processor serving as a data/storage management machine is described. Its characteristics include: content-accessible data bases usable from all connected devices; efficient storage/access of large data bases; simple and direct programming with data manipulation and storage management handled by the set processor; simple data base design and entry from source representation to set processor representation with no predefinition necessary; capability available for user sort/order specification; significant reduction in tape/disk pack storage and mounts; flexible environment that allows upgrading hardware/software configuration without causing major interruptions in service; minimal traffic on data communications network; and improved central memory usage on large processors.

  12. Enabling CD SEM metrology for 5nm technology node and beyond

    NASA Astrophysics Data System (ADS)

    Lorusso, Gian Francesco; Ohashi, Takeyoshi; Yamaguchi, Astuko; Inoue, Osamu; Sutani, Takumichi; Horiguchi, Naoto; Bömmels, Jürgen; Wilson, Christopher J.; Briggs, Basoene; Tan, Chi Lim; Raymaekers, Tom; Delhougne, Romain; Van den Bosch, Geert; Di Piazza, Luca; Kar, Gouri Sankar; Furnémont, Arnaud; Fantini, Andrea; Donadio, Gabriele Luca; Souriau, Laurent; Crotti, Davide; Yasin, Farrukh; Appeltans, Raf; Rao, Siddharth; De Simone, Danilo; Rincon Delgadillo, Paulina; Leray, Philippe; Charley, Anne-Laure; Zhou, Daisy; Veloso, Anabela; Collaert, Nadine; Hasumi, Kazuhisa; Koshihara, Shunsuke; Ikota, Masami; Okagawa, Yutaka; Ishimoto, Toru

    2017-03-01

    The CD SEM (Critical Dimension Scanning Electron Microscope) is one of the main tools used to estimate Critical Dimension (CD) in semiconductor manufacturing nowadays, but, as all metrology tools, it will face considerable challenges to keep up with the requirements of the future technology nodes. The root causes of these challenges are not uniquely related to the shrinking CD values, as one might expect, but to the increase in complexity of the devices in terms of morphology and chemical composition as well. In fact, complicated threedimensional device architectures, high aspect ratio features, and wide variety of materials are some of the unavoidable characteristics of the future metrology nodes. This means that, beside an improvement in resolution, it is critical to develop a CD SEM metrology capable of satisfying the specific needs of the devices of the nodes to come, needs that sometimes will have to be addressed through dramatic changes in approach with respect to traditional CD SEM metrology. In this paper, we report on the development of advanced CD SEM metrology at imec on a variety of device platform and processes, for both logic and memories. We discuss newly developed approaches for standard, IIIV, and germanium FinFETs (Fin Field Effect Transistors), for lateral and vertical nanowires (NW), 3D NAND (three-dimensional NAND), STT-MRAM (Spin Transfer Magnetic Torque Random-Access Memory), and ReRAM (Resistive Random Access Memory). Applications for both front-end of line (FEOL) and back-end of line (BEOL) are developed. In terms of process, S/D Epi (Source Drain Epitaxy), SAQP (Self-Aligned Quadruple Patterning), DSA (Dynamic Self-Assembly), and EUVL (Extreme Ultraviolet Lithography) have been used. The work reported here has been performed on Hitachi CG5000, CG6300, and CV5000. In terms of logic, we discuss here the S/D epi defect classification, the metrology optimization for STI (Shallow Trench Isolation) Ge FinFETs, the defectivity of III-V STI FinFETs,, metrology for vertical and horizontal NWs. With respect to memory, we discuss a STT-RAM statistical CD analysis and its comparison to electrical performance, ReRAM metrology for VMCO (Vacancy-modulated conductive oxide) with comparison with electrical performance, 3D NAND ONO (Oxide Nitride Oxide) thickness measurements. In addition, we report on 3D morphological reconstruction using CD SEM in conjunction with FIB (Focused Ion Beam), on optimized BKM (Best Known Methods) development methodologies, and on CD SEM overlay. The large variety of results reported here gives a clear overview of the creative effort put in place to ensure that the critical potential of CD SEM metrology tools is fully enabled for the 5nm node and beyond.

  13. Electrical studies of Ge4Sb1Te5 devices for memory applications

    NASA Astrophysics Data System (ADS)

    Sangeetha, B. G.; Shylashree, N.

    2018-05-01

    In this paper, the Ge4Sb1Te5 thin film device preparation and electrical studies for memory devices were carried out. The device was deposited using vapor-evaporation technique. RESET to SET state switching was shown using current-voltage characterization. The current-voltage characterization shows the switching between SET to RESET state and it was found that it requires a low energy for transition. Switching between amorphous to crystalline nature was studied using resistance-voltage characteristics. The endurance showed the effective use of this composition for memory device.

  14. Intermediate memory devices

    NASA Technical Reports Server (NTRS)

    Basalayev, G. V.; Kmet, A. B.; Rakov, M. A.; Tarasevich, V. A.

    1974-01-01

    Several methods of transfer and processing of data whose practical implementation requires operational memory devices are described. Devices incorporating multistable elements are proposed and their main parameters are given. The possibility of using the proposed devices for storing information for transmission in space radio communications channels is examined.

  15. Making working memory work: The effects of extended practice on focus capacity and the processes of updating, forward access, and random access

    PubMed Central

    Price, John M.; Colflesh, Gregory J. H.; Cerella, John; Verhaeghen, Paul

    2014-01-01

    We investigated the effects of 10 hours of practice on variations of the N-Back task to investigate the processes underlying possible expansion of the focus of attention within working memory. Using subtractive logic, we showed that random access (i.e., Sternberg-like search) yielded a modest effect (a 50% increase in speed) whereas the processes of forward access (i.e., retrieval in order, as in a standard N-Back task) and updating (i.e., changing the contents of working memory) were executed about 5 times faster after extended practice. We additionally found that extended practice increased working memory capacity as measured by the size of the focus of attention for the forward-access task, but not for variations where probing was in random order. This suggests that working memory capacity may depend on the type of search process engaged, and that certain working-memory-related cognitive processes are more amenable to practice than others. PMID:24486803

  16. How intention and monitoring your thoughts influence characteristics of autobiographical memories.

    PubMed

    Barzykowski, Krystian; Staugaard, Søren Risløv

    2018-05-01

    Involuntary autobiographical memories come to mind effortlessly and unintended, but the mechanisms of their retrieval are not fully understood. We hypothesize that involuntary retrieval depends on memories that are highly accessible (e.g., intense, unusual, recent, rehearsed), while the elaborate search that characterizes voluntary retrieval also produces memories that are mundane, repeated or distant - memories with low accessibility. Previous research provides some evidence for this 'threshold hypothesis'. However, in almost every prior study, participants have been instructed to report only memories while ignoring other thoughts. It is possible that such an instruction can modify the phenomenological characteristics of involuntary memories. This study aimed to investigate the effects of retrieval intentionality (i.e., wanting to retrieve a memory) and selective monitoring (i.e., instructions to report only memories) on the phenomenology of autobiographical memories. Participants were instructed to (1) intentionally retrieve autobiographical memories, (2) intentionally retrieve any type of thought (3) wait for an autobiographical memory to spontaneously appear, or (4) wait for any type of thought to spontaneously appear. They rated the mental content on a number of phenomenological characteristics both during retrieval and retrospectively following retrieval. The results support the prediction that highly accessible memories mostly enter awareness unintended and without selective monitoring, while memories with low accessibility rely on intention and selective monitoring. We discuss the implications of these effects. © 2017 The British Psychological Society.

  17. Charge Carrier Transport Mechanism Based on Stable Low Voltage Organic Bistable Memory Device.

    PubMed

    Ramana, V V; Moodley, M K; Kumar, A B V Kiran; Kannan, V

    2015-05-01

    A solution processed two terminal organic bistable memory device was fabricated utilizing films of polymethyl methacrylate PMMA/ZnO/PMMA on top of ITO coated glass. Electrical characterization of the device structure showed that the two terminal device exhibited favorable switching characteristics with an ON/OFF ratio greater than 1 x 10(4) when the voltage was swept between - 2 V and +3 V. The device maintained its state after removal of the bias voltage. The device did not show degradation after a 1-h retention test at 120 degrees C. The memory functionality was consistent even after fifty cycles of operation. The charge transport switching mechanism is discussed on the basis of carrier transport mechanism and our analysis of the data shows that the charge carrier trans- port mechanism of the device during the writing process can be explained by thermionic emission (TE) and space-charge-limited-current (SCLC) mechanism models while erasing process could be explained by the FN tunneling mechanism. This demonstration provides a class of memory devices with the potential for low-cost, low-power consumption applications, such as a digital memory cell.

  18. Impact of gate work-function on memory characteristics in Al2O3/HfOx/Al2O3/graphene charge-trap memory devices

    NASA Astrophysics Data System (ADS)

    Lee, Sejoon; Song, Emil B.; Kim, Sungmin; Seo, David H.; Seo, Sunae; Won Kang, Tae; Wang, Kang L.

    2012-01-01

    Graphene-based non-volatile memory devices composed of a single-layer graphene channel and an Al2O3/HfOx/Al2O3 charge-storage layer exhibit memory functionality. The impact of the gate material's work-function (Φ) on the memory characteristics is investigated using different types of metals [Ti (ΦTi = 4.3 eV) and Ni (ΦNi = 5.2 eV)]. The ambipolar carrier conduction of graphene results in an enlargement of memory window (ΔVM), which is ˜4.5 V for the Ti-gate device and ˜9.1 V for the Ni-gate device. The increase in ΔVM is attributed to the change in the flat-band condition and the suppression of electron back-injection within the gate stack.

  19. A fast and low-power microelectromechanical system-based non-volatile memory device

    PubMed Central

    Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E. B.; Park, Yung Woo

    2011-01-01

    Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices. PMID:21364559

  20. Ferroelectric Memory Devices and a Proposed Standardized Test System Design

    DTIC Science & Technology

    1992-06-01

    positive clock transition. This provides automatic data protection in case of power loss. The device is being evaluated for applications such as automobile ...systems requiring nonvolatile memory and as these systems become more complex, the demand for reprogrammable nonvolatile memory increases. The...complexity and cost in making conventional nonvolatile memory reprogrammable also increases, so the potential for using ferroelectric memory as a replacement

  1. Guide wire extension for shape memory polymer occlusion removal devices

    DOEpatents

    Maitland, Duncan J [Pleasant Hill, CA; Small, IV, Ward; Hartman, Jonathan [Sacramento, CA

    2009-11-03

    A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.

  2. Electronic device aspects of neural network memories

    NASA Technical Reports Server (NTRS)

    Lambe, J.; Moopenn, A.; Thakoor, A. P.

    1985-01-01

    The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.

  3. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min

    2018-03-01

    For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.

  4. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei

    2018-01-01

    In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electron holography on HfO2/HfO2-x bilayer structures with multilevel resistive switching properties

    NASA Astrophysics Data System (ADS)

    Niu, G.; Schubert, M. A.; Sharath, S. U.; Zaumseil, P.; Vogel, S.; Wenger, C.; Hildebrandt, E.; Bhupathi, S.; Perez, E.; Alff, L.; Lehmann, M.; Schroeder, T.; Niermann, T.

    2017-05-01

    Unveiling the physical nature of the oxygen-deficient conductive filaments (CFs) that are responsible for the resistive switching of the HfO2-based resistive random access memory (RRAM) devices represents a challenging task due to the oxygen vacancy related defect nature and nanometer size of the CFs. As a first important step to this goal, we demonstrate in this work direct visualization and a study of physico-chemical properties of oxygen-deficient amorphous HfO2-x by carrying out transmission electron microscopy electron holography as well as energy dispersive x-ray spectroscopy on HfO2/HfO2-x bilayer heterostructures, which are realized by reactive molecular beam epitaxy. Furthermore, compared to single layer devices, Pt/HfO2/HfO2-x /TiN bilayer devices show enhanced resistive switching characteristics with multilevel behavior, indicating their potential as electronic synapses in future neuromorphic computing applications.

  6. Effects of Piezoelectric Potential of ZnO on Resistive Switching Characteristics of Flexible ZnO/TiO2 Heterojunction Cells

    NASA Astrophysics Data System (ADS)

    Li, Hongxia; Zhou, You; Du, Gang; Huang, Yanwei; Ji, Zhenguo

    2018-03-01

    Flexible resistance random access memory (ReRAM) devices with a heterojunction structure of PET/ITO/ZnO/TiO2/Au were fabricated on polyethylene terephthalate/indium tin oxide (PET/ITO) substrates by different physical and chemical preparation methods. X-ray diffraction, scanning electron microscopy and atomic force microscopy were carried out to investigate the crystal structure, surface topography and cross-sectional structure of the prepared films. X-ray photoelectron spectroscopy was also used to identify the chemical state of Ti, O and Zn elements. Theoretical and experimental analyses were conducted to identify the effect of piezoelectric potential of ZnO on resistive switching characteristics of flexible ZnO/TiO2 heterojunction cells. The results showed a pathway to enhance the performance of ReRAM devices by engineering the interface barrier, which is also feasible for other electronics, optoelectronics and photovoltaic devices.

  7. An ECG ambulatory system with mobile embedded architecture for ST-segment analysis.

    PubMed

    Miranda-Cid, Alejandro; Alvarado-Serrano, Carlos

    2010-01-01

    A prototype of a ECG ambulatory system for long term monitoring of ST segment of 3 leads, low power, portability and data storage in solid state memory cards has been developed. The solution presented is based in a mobile embedded architecture of a portable entertainment device used as a tool for storage and processing of bioelectric signals, and a mid-range RISC microcontroller, PIC 16F877, which performs the digitalization and transmission of ECG. The ECG amplifier stage is a low power, unipolar voltage and presents minimal distortion of the phase response of high pass filter in the ST segment. We developed an algorithm that manages access to files through an implementation for FAT32, and the ECG display on the device screen. The records are stored in TXT format for further processing. After the acquisition, the system implemented works as a standard USB mass storage device.

  8. Influence of thermal agitation on the electric field induced precessional magnetization reversal with perpendicular easy axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hongguang, E-mail: chenghg7932@gmail.com; Deng, Ning

    2013-12-15

    We investigated the influence of thermal agitation on the electric field induced precessional magnetization switching probability with perpendicular easy axis by solving the Fokker-Planck equation numerically with finite difference method. The calculated results show that the thermal agitation during the reversal process crucially influences the switching probability. The switching probability can be achieved is only determined by the thermal stability factor Δ of the free layer, it is independent on the device dimension, which is important for the high density device application. Ultra-low error rate down to the order of 10{sup −9} can be achieved for the device of thermalmore » stability factor Δ of 40. Low damping factor α material should be used for the free layer for high reliability device applications. These results exhibit potential of electric field induced precessional magnetization switching with perpendicular easy axis for ultra-low power, high speed and high density magnetic random access memory (MRAM) applications.« less

  9. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.

    PubMed

    Park, Sangsu; Noh, Jinwoo; Choo, Myung-Lae; Sheri, Ahmad Muqeem; Chang, Man; Kim, Young-Bae; Kim, Chang Jung; Jeon, Moongu; Lee, Byung-Geun; Lee, Byoung Hun; Hwang, Hyunsang

    2013-09-27

    Efforts to develop scalable learning algorithms for implementation of networks of spiking neurons in silicon have been hindered by the considerable footprints of learning circuits, which grow as the number of synapses increases. Recent developments in nanotechnologies provide an extremely compact device with low-power consumption.In particular, nanoscale resistive switching devices (resistive random-access memory (RRAM)) are regarded as a promising solution for implementation of biological synapses due to their nanoscale dimensions, capacity to store multiple bits and the low energy required to operate distinct states. In this paper, we report the fabrication, modeling and implementation of nanoscale RRAM with multi-level storage capability for an electronic synapse device. In addition, we first experimentally demonstrate the learning capabilities and predictable performance by a neuromorphic circuit composed of a nanoscale 1 kbit RRAM cross-point array of synapses and complementary metal-oxide-semiconductor neuron circuits. These developments open up possibilities for the development of ubiquitous ultra-dense, ultra-low-power cognitive computers.

  10. Write once read many memory device from Tris-8 (-hydroxyquinoline) aluminum and Indium tin oxide nano particles

    NASA Astrophysics Data System (ADS)

    Aneesh, J.; Predeep, P.

    2011-10-01

    Consequent to the fast increase in data storage requirements new materials and device structures are explored in a war footing. Organic memory devices are attracting lot of interest among the researchers and are becoming a hot topic of investigations. This study is an attempt to develop a tri-layer organic memory device using indium tin oxide (ITO) nanoparticles as charge trapping middle layer between tris-8(-hydroxyquinoline)aluminum (Alq3) layers employing spin coating technique. Device switching is studied by applying a current-voltage (I-V) sweep. On increasing the applied bias the device switched from the initial high resistance (OFF) state to a low resistance (ON) state at a switch on voltage of around 4 V. ON/OFF ratio is of the order of 100 at a read voltage of 2 V. The device is found to remain in the low resistance state on further scans, showing the applicability of this device as a write once read many times (WORM) memory.

  11. Development and characterization of a ferroelectric non-volatile memory for flexible electronics

    NASA Astrophysics Data System (ADS)

    Mao, Duo

    Flexible electronics have received significant attention recently because of the potential applications in displays, sensors, radio frequency identification (RFID) tags and other integrated circuits. Electrically addressable non-volatile memory is a key component for these applications. The major challenges are to fabricate the memory at a low temperature compatible with plastic substrates while maintaining good device reliability, by being compatible with process as needed to integrate with other electronic components for system-on-chip applications. In this work, ferroelectric capacitors fabricated at low temperature were developed. Based on that, a ferroelectric random access memory (FRAM) for flexible electronics was developed and characterized. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer was used as a ferroelectric material and a photolithographic process was developed to fabricate ferroelectric capacitors. Different characterization methods including atomic force microscopy, x-ray diffraction and Fourier-transform infrared reflection-absorption spectroscopy were used to study the material properties of the P(VDF-TrFE) film. The material properties were correlated with the electrical characteristics of the ferroelectric capacitors. To understand the polarization switching behavior of the P(VDF-TrFE) ferroelectric capacitors, a Nucleation-Limited-Switching (NLS) model was used to study the switching kinetics. The switching kinetics were characterized over the temperature range from -60 °C to 100 °C. Fatigue characteristics were studied at different electrical stress voltages and frequencies to evaluate the reliability of the ferroelectric capacitor. The degradation mechanism is attributed to the increase of the activation field and the suppression of the switchable polarization. To develop a FRAM circuit for flexible electronics, an n-channel thin film transistor (TFT) based on CdS as the semiconductor was integrated with a P(VDF-TrFE) ferroelectric capacitor for a one-transistor-one-capacitor (1T1C) memory cell. The 1T1C devices were fabricated at low temperature and demonstrated a memory window (DeltaVBL) of 2.3 V and 3.5 V, depending on the device dimensions. Next, FRAM arrays (4-bit, 16-bit and 64-bit) based on the two-transistor-two-capacitor (2T2C) memory cell architecture were designed and fabricated using a photolithographic process with 9 masks. The fabricated FRAM arrays were packaged in 28-pin ceramic packages. The read/write schemes were developed and the FRAM arrays show successful program and erase with a memory window of approximately 1 V at the output of the sense amplifier.

  12. UPC++ Programmer’s Guide (v1.0 2017.9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachan, J.; Baden, S.; Bonachea, D.

    UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, allmore » operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less

  13. UPC++ Programmer’s Guide, v1.0-2018.3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachan, J.; Baden, S.; Bonachea, Dan

    UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operationsmore » that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less

  14. Resistance Switching Memory Characteristics of Si/CaF2/CdF2 Quantum-Well Structures Grown on Metal (CoSi2) Layer

    NASA Astrophysics Data System (ADS)

    Denda, Junya; Uryu, Kazuya; Watanabe, Masahiro

    2013-04-01

    A novel scheme of resistance switching random access memory (ReRAM) devices fabricated using Si/CaF2/CdF2/CaF2/Si quantum-well structures grown on metal CoSi2 layer formed on a Si substrate has been proposed, and embryonic write/erase memory operation has been demonstrated at room temperature. It has been found that the oxide-mediated epitaxy (OME) technique for forming the CoSi2 layer on Si dramatically improves the stability and reproducibility of the current-voltage (I-V) curve. This technology involves 10-nm-thick Co layer deposition on a protective oxide prepared by boiling in a peroxide-based solution followed by annealing at 550 °C for 30 min for silicidation in ultrahigh vacuum. A switching voltage of lower than 1 V, a peak current density of 32 kA/cm2, and an ON/OFF ratio of 10 have been observed for the sample with the thickness sequence of 0.9/0.9/2.5/0.9/5.0 nm for the respective layers in the Si/CaF2/CdF2/CaF2/Si structure. Results of surface morphology analysis suggest that the grain size of crystal islands with flat surfaces strongly affects the quality of device characteristics.

  15. Investigation of resistance switching in SiO x RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator

    NASA Astrophysics Data System (ADS)

    Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen

    2018-02-01

    We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.

  16. Two-dimensional molybdenum disulphide nanosheet-covered metal nanoparticle array as a floating gate in multi-functional flash memories

    NASA Astrophysics Data System (ADS)

    Han, Su-Ting; Zhou, Ye; Chen, Bo; Zhou, Li; Yan, Yan; Zhang, Hua; Roy, V. A. L.

    2015-10-01

    Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure.Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure. Electronic supplementary information (ESI) available: Energy-dispersive X-ray spectroscopy (EDS) spectra of the metal NPs, SEM image of MoS2 on Au NPs, erasing operations of the metal NPs-MoS2 memory device, transfer characteristics of the standard FET devices and Ag NP devices under programming operation, tapping-mode AFM height image of the fabricated MoS2 film for pristine MoS2 flash memory, gate signals used for programming the Au NPs-MoS2 and Pt NPs-MoS2 flash memories, and data levels recorded for 100 sequential cycles. See DOI: 10.1039/c5nr05054e

  17. A service protocol for post-processing of medical images on the mobile device

    NASA Astrophysics Data System (ADS)

    He, Longjun; Ming, Xing; Xu, Lang; Liu, Qian

    2014-03-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. It is uneasy and time-consuming for transferring medical images with large data size from picture archiving and communication system to mobile client, since the wireless network is unstable and limited by bandwidth. Besides, limited by computing capability, memory and power endurance, it is hard to provide a satisfactory quality of experience for radiologists to handle some complex post-processing of medical images on the mobile device, such as real-time direct interactive three-dimensional visualization. In this work, remote rendering technology is employed to implement the post-processing of medical images instead of local rendering, and a service protocol is developed to standardize the communication between the render server and mobile client. In order to make mobile devices with different platforms be able to access post-processing of medical images, the Extensible Markup Language is taken to describe this protocol, which contains four main parts: user authentication, medical image query/ retrieval, 2D post-processing (e.g. window leveling, pixel values obtained) and 3D post-processing (e.g. maximum intensity projection, multi-planar reconstruction, curved planar reformation and direct volume rendering). And then an instance is implemented to verify the protocol. This instance can support the mobile device access post-processing of medical image services on the render server via a client application or on the web page.

  18. Mapping virtual addresses to different physical addresses for value disambiguation for thread memory access requests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gala, Alan; Ohmacht, Martin

    A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memorymore » access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braiman, Yehuda; Neschke, Brendan; Nair, Niketh S.

    Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.

  20. Three-terminal resistive switching memory in a transparent vertical-configuration device

    NASA Astrophysics Data System (ADS)

    Ungureanu, Mariana; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    The resistive switching phenomenon has attracted much attention recently for memory applications. It describes the reversible change in the resistance of a dielectric between two non-volatile states by the application of electrical pulses. Typical resistive switching memories are two-terminal devices formed by an oxide layer placed between two metal electrodes. Here, we report on the fabrication and operation of a three-terminal resistive switching memory that works as a reconfigurable logic component and offers an increased logic density on chip. The three-terminal memory device we present is transparent and could be further incorporated in transparent computing electronic technologies.

  1. Organic memory device with self-assembly monolayered aptamer conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Oh, Sewook; Kim, Minkeun; Kim, Yejin; Jung, Hunsang; Yoon, Tae-Sik; Choi, Young-Jin; Jung Kang, Chi; Moon, Myeong-Ju; Jeong, Yong-Yeon; Park, In-Kyu; Ho Lee, Hyun

    2013-08-01

    An organic memory structure using monolayered aptamer conjugated gold nanoparticles (Au NPs) as charge storage nodes was demonstrated. Metal-pentacene-insulator-semiconductor device was adopted for the non-volatile memory effect through self assembly monolayer of A10-aptamer conjugated Au NPs, which was formed on functionalized insulator surface with prostate-specific membrane antigen protein. The capacitance versus voltage (C-V) curves obtained for the monolayered Au NPs capacitor exhibited substantial flat-band voltage shift (ΔVFB) or memory window of 3.76 V under (+/-)7 V voltage sweep. The memory device format can be potentially expanded to a highly specific capacitive sensor for the aptamer-specific biomolecule detection.

  2. Is random access memory random?

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Most software is contructed on the assumption that the programs and data are stored in random access memory (RAM). Physical limitations on the relative speeds of processor and memory elements lead to a variety of memory organizations that match processor addressing rate with memory service rate. These include interleaved and cached memory. A very high fraction of a processor's address requests can be satified from the cache without reference to the main memory. The cache requests information from main memory in blocks that can be transferred at the full memory speed. Programmers who organize algorithms for locality can realize the highest performance from these computers.

  3. A C-Te-based binary OTS device exhibiting excellent performance and high thermal stability for selector application.

    PubMed

    Chekol, Solomon Amsalu; Yoo, Jongmyung; Park, Jaehyuk; Song, Jeonghwan; Sung, Changhyuck; Hwang, Hyunsang

    2018-08-24

    In this letter, we demonstrate a new binary ovonic threshold switching (OTS) selector device scalable down to ø30 nm based on C-Te. Our proposed selector device exhibits outstanding performance such as a high switching ratio (I on /I off  > 10 5 ), an extremely low off-current (∼1 nA), an extremely fast operating speed of <10 ns (transition time of <2 ns and delay time of <8 ns), high endurance (10 9 ), and high thermal stability (>450 °C). The observed high thermal stability is caused by the relatively small atomic size of C, compared to Te, which can effectively suppress the segregation and crystallization of Te in the OTS film. Furthermore, to confirm the functionality of the selector in a crossbar array, we evaluated a 1S-1R device by integrating our OTS device with a ReRAM (resistive random access memory) device. The 1S-1R integrated device exhibits a successful suppression of leakage current at the half-selected cell and shows an excellent read-out margin (>2 12 word lines) in a fast read operation.

  4. Terahertz electrical writing speed in an antiferromagnetic memory

    PubMed Central

    Kašpar, Zdeněk; Campion, Richard P.; Baumgartner, Manuel; Sinova, Jairo; Kužel, Petr; Müller, Melanie; Kampfrath, Tobias

    2018-01-01

    The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band. PMID:29740601

  5. The Characteristics of Binary Spike-Time-Dependent Plasticity in HfO2-Based RRAM and Applications for Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Liu, Chen; Shen, Wensheng; Dong, Zhen; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2017-04-01

    A binary spike-time-dependent plasticity (STDP) protocol based on one resistive-switching random access memory (RRAM) device was proposed and experimentally demonstrated in the fabricated RRAM array. Based on the STDP protocol, a novel unsupervised online pattern recognition system including RRAM synapses and CMOS neurons is developed. Our simulations show that the system can efficiently compete the handwritten digits recognition task, which indicates the feasibility of using the RRAM-based binary STDP protocol in neuromorphic computing systems to obtain good performance.

  6. Electrical reliability, multilevel data storage and mechanical stability of MoS2-PMMA nanocomposite-based non-volatile memory device

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Snigdha; Sarkar, Pranab Kumar; Prajapat, Manoj; Roy, Asim

    2017-07-01

    Molybdenum disulfide (MoS2) is of great interest for its applicability in various optoelectronic devices. Here we report the resistive switching properties of polymethylmethacrylate embedding MoS2 nano-crystals. The devices are developed on an ITO-coated PET substrate with copper as the top electrode. Systematic evaluation of resistive switching parameters, on the basis of MoS2 content, suggests non-volatile memory characteristics. A decent ON/OFF ratio, high retention time and long endurance of 3  ×  103, 105 s and 105 cycles are respectively recorded in a device with 1 weight percent (wt%) of MoS2. The bending cyclic measurements confirm the flexibility of the memory devices with good electrical reliability as well as mechanical stability. In addition, multilevel storage has been demonstrated by controlling the current compliance and span of voltage sweeping in the memory device.

  7. Engineering the switching dynamics of TiOx-based RRAM with Al doping

    NASA Astrophysics Data System (ADS)

    Trapatseli, Maria; Khiat, Ali; Cortese, Simone; Serb, Alexantrou; Carta, Daniela; Prodromakis, Themistoklis

    2016-07-01

    Titanium oxide (TiOx) has attracted a lot of attention as an active material for resistive random access memory (RRAM), due to its versatility and variety of possible crystal phases. Although existing RRAM materials have demonstrated impressive characteristics, like ultra-fast switching and high cycling endurance, this technology still encounters challenges like low yields, large variability of switching characteristics, and ultimately device failure. Electroforming has been often considered responsible for introducing irreversible damage to devices, with high switching voltages contributing to device degradation. In this paper, we have employed Al doping for tuning the resistive switching characteristics of titanium oxide RRAM. The resistive switching threshold voltages of undoped and Al-doped TiOx thin films were first assessed by conductive atomic force microscopy. The thin films were then transferred in RRAM devices and tested with voltage pulse sweeping, demonstrating that the Al-doped devices could on average form at lower potentials compared to the undoped ones and could support both analog and binary switching at potentials as low as 0.9 V. This work demonstrates a potential pathway for implementing low-power RRAM systems.

  8. On the security of semi-device-independent QKD protocols

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Anubhav; Ray, Maharshi; Veynar, Ryszard; Pawłowski, Marcin

    2018-06-01

    While fully device-independent security in (BB84-like) prepare-and-measure quantum key distribution (QKD) is impossible, it can be guaranteed against individual attacks in a semi-device-independent (SDI) scenario, wherein no assumptions are made on the characteristics of the hardware used except for an upper bound on the dimension of the communicated system. Studying security under such minimal assumptions is especially relevant in the context of the recent quantum hacking attacks wherein the eavesdroppers can not only construct the devices used by the communicating parties but are also able to remotely alter their behavior. In this work, we study the security of a SDIQKD protocol based on the prepare-and-measure quantum implementation of a well-known cryptographic primitive, the random access code (RAC). We consider imperfect detectors and establish the critical values of the security parameters (the observed success probability of the RAC and the detection efficiency) required for guaranteeing security against eavesdroppers with and without quantum memory. Furthermore, we suggest a minimal characterization of the preparation device in order to lower the requirements for establishing a secure key.

  9. Multilevel characteristics and memory mechanisms for nonvolatile memory devices based on CuInS{sub 2} quantum dot-polymethylmethacrylate nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yang; Yun, Dong Yeol; Kim, Tae Whan, E-mail: twk@hanyang.ac.kr

    2014-12-08

    Nonvolatile memory devices based on CuInS{sub 2} (CIS) quantum dots (QDs) embedded in a polymethylmethacrylate (PMMA) layer were fabricated using spin-coating method. The memory window widths of the capacitance-voltage (C-V) curves for the Al/CIS QDs embedded in PMMA layer/p-Si devices were 0.3, 0.6, and 1.0 V for sweep voltages of ±3, ±5, and ±7 V, respectively. Capacitance-cycle data demonstrated that the charge-trapping capability of the devices with an ON/OFF ratio value of 2.81 × 10{sup −10} was maintained for 8 × 10{sup 3} cycles without significant degradation and that the extrapolation of the ON/OFF ratio value to 1 × 10{sup 6} cycles converged to 2.40 × 10{sup −10}, indicative ofmore » the good stability of the devices. The memory mechanisms for the devices are described on the basis of the C-V curves and the energy-band diagrams.« less

  10. Protein-Based Three-Dimensional Memories and Associative Processors

    NASA Astrophysics Data System (ADS)

    Birge, Robert

    2008-03-01

    The field of bioelectronics has benefited from the fact that nature has often solved problems of a similar nature to those which must be solved to create molecular electronic or photonic devices that operate with efficiency and reliability. Retinal proteins show great promise in bioelectronic devices because they operate with high efficiency (˜0.65%), high cyclicity (>10^7), operate over an extended wavelength range (360 -- 630 nm) and can convert light into changes in voltage, pH, absorption or refractive index. This talk will focus on a retinal protein called bacteriorhodopsin, the proton pump of the organism Halobacterium salinarum. Two memories based on this protein will be described. The first is an optical three-dimensional memory. This memory stores information using volume elements (voxels), and provides as much as a thousand-fold improvement in effective capacity over current technology. A unique branching reaction of a variant of bacteriorhodopsin is used to turn each protein into an optically addressed latched AND gate. Although three working prototypes have been developed, a number of cost/performance and architectural issues must be resolved prior to commercialization. The major issue is that the native protein provides a very inefficient branching reaction. Genetic engineering has improved performance by nearly 500-fold, but a further order of magnitude improvement is needed. Protein-based holographic associative memories will also be discussed. The human brain stores and retrieves information via association, and human intelligence is intimately connected to the nature and enormous capacity of this associative search and retrieval process. To a first order approximation, creativity can be viewed as the association of two seemingly disparate concepts to form a totally new construct. Thus, artificial intelligence requires large scale associative memories. Current computer hardware does not provide an optimal environment for creating artificial intelligence due to the serial nature of random access memories. Software cannot provide a satisfactory work-around that does not introduce unacceptable latency. Holographic associative memories provide a useful approach to large scale associative recall. Bacteriorhodopsin has long been recognized for its outstanding holographic properties, and when utilized in the Paek and Psaltis design, provides a high-speed real-time associative memory with variable thresholding and feedback. What remains is to make an associative memory capable of high-speed association and long-term data storage. The use of directed evolution to create a protein with the necessary unique properties will be discussed.

  11. Nanogap-Engineerable Electromechanical System for Ultralow Power Memory.

    PubMed

    Zhang, Jian; Deng, Ya; Hu, Xiao; Nshimiyimana, Jean Pierre; Liu, Siyu; Chi, Xiannian; Wu, Pei; Dong, Fengliang; Chen, Peipei; Chu, Weiguo; Zhou, Haiqing; Sun, Lianfeng

    2018-02-01

    Nanogap engineering of low-dimensional nanomaterials has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrication of the devices. Here, a rational design of nonvolatile memories based on sub-5 nm nanogaped single-walled carbon nanotubes (SWNTs) via the electromechanical motion is reported. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with nanoscale region. The SWNT memory devices are applicable for both metallic and semiconducting SWNTs, resolving the challenge of separation of semiconducting SWNTs from metallic ones. Meanwhile, the memory devices exhibit excellent performance: ultralow writing energy (4.1 × 10 -19 J bit -1 ), ON/OFF ratio of 10 5 , stable switching ON operations, and over 30 h retention time in ambient conditions.

  12. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    NASA Astrophysics Data System (ADS)

    Valentini, L.; Cardinali, M.; Fortunati, E.; Kenny, J. M.

    2014-10-01

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electric field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.

  13. Azurin/CdSe-ZnS-Based Bio-Nano Hybrid Structure for Nanoscale Resistive Memory Device.

    PubMed

    Yagati, Ajay Kumar; Lee, Taek; Choi, Jeong-Woo

    2017-07-15

    In the present study, we propose a method for bio-nano hybrid formation by coupling a redox metalloprotein, Azurin, with CdSe-ZnS quantum dot for the development of a nanoscale resistive memory device. The covalent interaction between the two nanomaterials enables a strong and effective binding to form an azurin/CdSe-ZnS hybrid, and also enabled better controllability to couple with electrodes to examine the memory function properties. Morphological and optical properties were performed to confirm both hybrid formations and also their individual components. Current-Voltage (I-V) measurements on the hybrid nanostructures exhibited bistable current levels towards the memory function device, that and those characteristics were unnoticeable on individual nanomaterials. The hybrids showed good retention characteristics with high stability and durability, which is a promising feature for future nanoscale memory devices.

  14. Nanogap‐Engineerable Electromechanical System for Ultralow Power Memory

    PubMed Central

    Zhang, Jian; Deng, Ya; Hu, Xiao; Nshimiyimana, Jean Pierre; Liu, Siyu; Chi, Xiannian; Wu, Pei; Dong, Fengliang; Chen, Peipei

    2017-01-01

    Abstract Nanogap engineering of low‐dimensional nanomaterials has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrication of the devices. Here, a rational design of nonvolatile memories based on sub‐5 nm nanogaped single‐walled carbon nanotubes (SWNTs) via the electromechanical motion is reported. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with nanoscale region. The SWNT memory devices are applicable for both metallic and semiconducting SWNTs, resolving the challenge of separation of semiconducting SWNTs from metallic ones. Meanwhile, the memory devices exhibit excellent performance: ultralow writing energy (4.1 × 10−19 J bit−1), ON/OFF ratio of 105, stable switching ON operations, and over 30 h retention time in ambient conditions. PMID:29619307

  15. Ordering of guarded and unguarded stores for no-sync I/O

    DOEpatents

    Gara, Alan; Ohmacht, Martin

    2013-06-25

    A parallel computing system processes at least one store instruction. A first processor core issues a store instruction. A first queue, associated with the first processor core, stores the store instruction. A second queue, associated with a first local cache memory device of the first processor core, stores the store instruction. The first processor core updates first data in the first local cache memory device according to the store instruction. The third queue, associated with at least one shared cache memory device, stores the store instruction. The first processor core invalidates second data, associated with the store instruction, in the at least one shared cache memory. The first processor core invalidates third data, associated with the store instruction, in other local cache memory devices of other processor cores. The first processor core flushing only the first queue.

  16. Electrically Variable Resistive Memory Devices

    NASA Technical Reports Server (NTRS)

    Liu, Shangqing; Wu, Nai-Juan; Ignatiev, Alex; Charlson, E. J.

    2010-01-01

    Nonvolatile electronic memory devices that store data in the form of electrical- resistance values, and memory circuits based on such devices, have been invented. These devices and circuits exploit an electrically-variable-resistance phenomenon that occurs in thin films of certain oxides that exhibit the colossal magnetoresistive (CMR) effect. It is worth emphasizing that, as stated in the immediately preceding article, these devices function at room temperature and do not depend on externally applied magnetic fields. A device of this type is basically a thin film resistor: it consists of a thin film of a CMR material located between, and in contact with, two electrical conductors. The application of a short-duration, low-voltage current pulse via the terminals changes the electrical resistance of the film. The amount of the change in resistance depends on the size of the pulse. The direction of change (increase or decrease of resistance) depends on the polarity of the pulse. Hence, a datum can be written (or a prior datum overwritten) in the memory device by applying a pulse of size and polarity tailored to set the resistance at a value that represents a specific numerical value. To read the datum, one applies a smaller pulse - one that is large enough to enable accurate measurement of resistance, but small enough so as not to change the resistance. In writing, the resistance can be set to any value within the dynamic range of the CMR film. Typically, the value would be one of several discrete resistance values that represent logic levels or digits. Because the number of levels can exceed 2, a memory device of this type is not limited to binary data. Like other memory devices, devices of this type can be incorporated into a memory integrated circuit by laying them out on a substrate in rows and columns, along with row and column conductors for electrically addressing them individually or collectively.

  17. Store operation with conditional push of a tag value to a queue

    DOEpatents

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-07-28

    According to one embodiment, a method for a store operation with a conditional push of a tag value to a queue is provided. The method includes configuring a queue that is accessible by an application, setting a value at an address in a memory device including a memory and a controller, receiving a request for an operation using the value at the address and performing the operation. The method also includes the controller writing a result of the operation to the address, thus changing the value at the address, the controller determining if the result of the operation meets a condition and the controller pushing a tag value to the queue based on the condition being met, where the tag value in the queue indicates to the application that the condition is met.

  18. Assessing Advanced Technology in CENATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallent, Nathan R.; Barker, Kevin J.; Gioiosa, Roberto

    PNNL's Center for Advanced Technology Evaluation (CENATE) is a new U.S. Department of Energy center whose mission is to assess and facilitate access to emerging computing technology. CENATE is assessing a range of advanced technologies, from evolutionary to disruptive. Technologies of interest include the processor socket (homogeneous and accelerated systems), memories (dynamic, static, memory cubes), motherboards, networks (network interface cards and switches), and input/output and storage devices. CENATE is developing a multi-perspective evaluation process based on integrating advanced system instrumentation, performance measurements, and modeling and simulation. We show evaluations of two emerging network technologies: silicon photonics interconnects and the Datamore » Vortex network. CENATE's evaluation also addresses the question of which machine is best for a given workload under certain constraints. We show a performance-power tradeoff analysis of a well-known machine learning application on two systems.« less

  19. Making working memory work: the effects of extended practice on focus capacity and the processes of updating, forward access, and random access.

    PubMed

    Price, John M; Colflesh, Gregory J H; Cerella, John; Verhaeghen, Paul

    2014-05-01

    We investigated the effects of 10h of practice on variations of the N-Back task to investigate the processes underlying possible expansion of the focus of attention within working memory. Using subtractive logic, we showed that random access (i.e., Sternberg-like search) yielded a modest effect (a 50% increase in speed) whereas the processes of forward access (i.e., retrieval in order, as in a standard N-Back task) and updating (i.e., changing the contents of working memory) were executed about 5 times faster after extended practice. We additionally found that extended practice increased working memory capacity as measured by the size of the focus of attention for the forward-access task, but not for variations where probing was in random order. This suggests that working memory capacity may depend on the type of search process engaged, and that certain working-memory-related cognitive processes are more amenable to practice than others. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Fast Initialization of Bubble-Memory Systems

    NASA Technical Reports Server (NTRS)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1986-01-01

    Improved scheme several orders of magnitude faster than normal initialization scheme. State-of-the-art commercial bubble-memory device used. Hardware interface designed connects controlling microprocessor to bubblememory circuitry. System software written to exercise various functions of bubble-memory system in comparison made between normal and fast techniques. Future implementations of approach utilize E2PROM (electrically-erasable programable read-only memory) to provide greater system flexibility. Fastinitialization technique applicable to all bubble-memory devices.

  1. Room-temperature antiferromagnetic memory resistor.

    PubMed

    Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R

    2014-04-01

    The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

  2. Novel synaptic memory device for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Mandal, Saptarshi; El-Amin, Ammaarah; Alexander, Kaitlyn; Rajendran, Bipin; Jha, Rashmi

    2014-06-01

    This report discusses the electrical characteristics of two-terminal synaptic memory devices capable of demonstrating an analog change in conductance in response to the varying amplitude and pulse-width of the applied signal. The devices are based on Mn doped HfO2 material. The mechanism behind reconfiguration was studied and a unified model is presented to explain the underlying device physics. The model was then utilized to show the application of these devices in speech recognition. A comparison between a 20 nm × 20 nm sized synaptic memory device with that of a state-of-the-art VLSI SRAM synapse showed ~10× reduction in area and >106 times reduction in the power consumption per learning cycle.

  3. Fabrication of InGaZnO Nonvolatile Memory Devices at Low Temperature of 150 degrees C for Applications in Flexible Memory Displays and Transparency Coating on Plastic Substrates.

    PubMed

    Hanh, Nguyen Hong; Jang, Kyungsoo; Yi, Junsin

    2016-05-01

    We directly deposited amorphous InGaZnO (a-IGZO) nonvolatile memory (NVM) devices with oxynitride-oxide-dioxide (OOO) stack structures on plastic substrate by a DC pulsed magnetron sputtering and inductively coupled plasma chemical vapor deposition (ICPCVD) system, using a low-temperature of 150 degrees C. The fabricated bottom gate a-IGZO NVM devices have a wide memory window with a low operating voltage during programming and erasing, due to an effective control of the gate dielectrics. In addition, after ten years, the memory device retains a memory window of over 73%, with a programming duration of only 1 ms. Moreover, the a-IGZO films show high optical transmittance of over 85%, and good uniformity with a root mean square (RMS) roughness of 0.26 nm. This film is a promising candidate to achieve flexible displays and transparency on plastic substrates because of the possibility of low-temperature deposition, and the high transparent properties of a-IGZO films. These results demonstrate that the a-IGZO NVM devices obtained at low-temperature have a suitable programming and erasing efficiency for data storage under low-voltage conditions, in combination with excellent charge retention characteristics, and thus show great potential application in flexible memory displays.

  4. Functionalized Graphitic Carbon Nitride for Metal-free, Flexible and Rewritable Nonvolatile Memory Device via Direct Laser-Writing

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Cheng, Huhu; Hu, Yue; Song, Long; Zhang, Zhipan; Jiang, Lan; Qu, Liangti

    2014-07-01

    Graphitic carbon nitride nanosheet (g-C3N4-NS) has layered structure similar with graphene nanosheet and presents unusual physicochemical properties due to the s-triazine fragments. But their electronic and electrochemical applications are limited by the relatively poor conductivity. The current work provides the first example that atomically thick g-C3N4-NSs are the ideal candidate as the active insulator layer with tunable conductivity for achieving the high performance memory devices with electrical bistability. Unlike in conventional memory diodes, the g-C3N4-NSs based devices combined with graphene layer electrodes are flexible, metal-free and low cost. The functionalized g-C3N4-NSs exhibit desirable dispersibility and dielectricity which support the all-solution fabrication and high performance of the memory diodes. Moreover, the flexible memory diodes are conveniently fabricated through the fast laser writing process on graphene oxide/g-C3N4-NSs/graphene oxide thin film. The obtained devices not only have the nonvolatile electrical bistability with great retention and endurance, but also show the rewritable memory effect with a reliable ON/OFF ratio of up to 105, which is the highest among all the metal-free flexible memory diodes reported so far, and even higher than those of metal-containing devices.

  5. Computer hardware for radiologists: Part 2.

    PubMed

    Indrajit, Ik; Alam, A

    2010-11-01

    Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. "Storage drive" is a term describing a "memory" hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. "Drive interfaces" connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular "input/output devices" used commonly with computers are the printer, monitor, mouse, and keyboard. The "bus" is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. "Ports" are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the 'ever increasing' digital future.

  6. Inserting Thienyl Linkers into Conjugated Molecules for Efficient Multilevel Electronic Memory: A New Understanding of Charge-Trapping in Organic Materials.

    PubMed

    Li, Yang; Li, Hua; He, Jinghui; Xu, Qingfeng; Li, Najun; Chen, Dongyun; Lu, Jianmei

    2016-03-18

    The practical application of organic memory devices requires low power consumption and reliable device quality. Herein, we report that inserting thienyl units into D-π-A molecules can improve these parameters by tuning the texture of the film. Theoretical calculations revealed that introducing thienyl π bridges increased the planarity of the molecular backbone and extended the D-A conjugation. Thus, molecules with more thienyl spacers showed improved stacking and orientation in the film state relative to the substrates. The corresponding sandwiched memory devices showed enhanced ternary memory behavior, with lower threshold voltages and better repeatability. The conductive switching and variation in the performance of the memory devices were interpreted by using an extended-charge-trapping mechanism. Our study suggests that judicious molecular engineering can facilitate control of the orientation of the crystallite in the solid state to achieve superior multilevel memory performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters

    NASA Astrophysics Data System (ADS)

    Busche, Christoph; Vilà-Nadal, Laia; Yan, Jun; Miras, Haralampos N.; Long, De-Liang; Georgiev, Vihar P.; Asenov, Asen; Pedersen, Rasmus H.; Gadegaard, Nikolaj; Mirza, Muhammad M.; Paul, Douglas J.; Poblet, Josep M.; Cronin, Leroy

    2014-11-01

    Flash memory devices--that is, non-volatile computer storage media that can be electrically erased and reprogrammed--are vital for portable electronics, but the scaling down of metal-oxide-semiconductor (MOS) flash memory to sizes of below ten nanometres per data cell presents challenges. Molecules have been proposed to replace MOS flash memory, but they suffer from low electrical conductivity, high resistance, low device yield, and finite thermal stability, limiting their integration into current MOS technologies. Although great advances have been made in the pursuit of molecule-based flash memory, there are a number of significant barriers to the realization of devices using conventional MOS technologies. Here we show that core-shell polyoxometalate (POM) molecules can act as candidate storage nodes for MOS flash memory. Realistic, industry-standard device simulations validate our approach at the nanometre scale, where the device performance is determined mainly by the number of molecules in the storage media and not by their position. To exploit the nature of the core-shell POM clusters, we show, at both the molecular and device level, that embedding [(Se(IV)O3)2]4- as an oxidizable dopant in the cluster core allows the oxidation of the molecule to a [Se(V)2O6]2- moiety containing a {Se(V)-Se(V)} bond (where curly brackets indicate a moiety, not a molecule) and reveals a new 5+ oxidation state for selenium. This new oxidation state can be observed at the device level, resulting in a new type of memory, which we call `write-once-erase'. Taken together, these results show that POMs have the potential to be used as a realistic nanoscale flash memory. Also, the configuration of the doped POM core may lead to new types of electrical behaviour. This work suggests a route to the practical integration of configurable molecules in MOS technologies as the lithographic scales approach the molecular limit.

  8. zorder-lib: Library API for Z-Order Memory Layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowell, Lucy; Edward W. Bethel

    2015-04-01

    This document describes the motivation for, elements of, and use of the zorder-lib, a library API that implements organization of and access to data in memory using either a-order (also known as "row-major" order) or z-order memory layouts. The primary motivation for this work is to improve the performance of many types of data- intensive codes by increasing both spatial and temporal locality of memory accesses. The basic idea is that the cost associated with accessing a datum is less when it is nearby in either space or time.

  9. Low latency counter event indication

    DOEpatents

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2008-09-16

    A hybrid counter array device for counting events with interrupt indication includes a first counter portion comprising N counter devices, each for counting signals representing event occurrences and providing a first count value representing lower order bits. An overflow bit device associated with each respective counter device is additionally set in response to an overflow condition. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits. An operatively coupled control device monitors each associated overflow bit device and initiates incrementing a second count value stored at a corresponding memory location in response to a respective overflow bit being set. The incremented second count value is compared to an interrupt threshold value stored in a threshold register, and, when the second counter value is equal to the interrupt threshold value, a corresponding "interrupt arm" bit is set to enable a fast interrupt indication. On a subsequent roll-over of the lower bits of that counter, the interrupt will be fired.

  10. Low latency counter event indication

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-08-24

    A hybrid counter array device for counting events with interrupt indication includes a first counter portion comprising N counter devices, each for counting signals representing event occurrences and providing a first count value representing lower order bits. An overflow bit device associated with each respective counter device is additionally set in response to an overflow condition. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits. An operatively coupled control device monitors each associated overflow bit device and initiates incrementing a second count value stored at a corresponding memory location in response to a respective overflow bit being set. The incremented second count value is compared to an interrupt threshold value stored in a threshold register, and, when the second counter value is equal to the interrupt threshold value, a corresponding "interrupt arm" bit is set to enable a fast interrupt indication. On a subsequent roll-over of the lower bits of that counter, the interrupt will be fired.

  11. A new approach for two-terminal electronic memory devices - Storing information on silicon nanowires

    NASA Astrophysics Data System (ADS)

    Saranti, Konstantina; Alotaibi, Sultan; Paul, Shashi

    2016-06-01

    The work described in this paper focuses on the utilisation of silicon nanowires as the information storage element in flash-type memory devices. Silicon nanostructures have attracted attention due to interesting electrical and optical properties, and their potential integration into electronic devices. A detailed investigation of the suitability of silicon nanowires as the charge storage medium in two-terminal non-volatile memory devices are presented in this report. The deposition of the silicon nanostructures was carried out at low temperatures (less than 400 °C) using a previously developed a novel method within our research group. Two-terminal non-volatile (2TNV) memory devices and metal-insulator-semiconductor (MIS) structures containing the silicon nanowires were fabricated and an in-depth study of their characteristics was carried out using current-voltage and capacitance techniques.

  12. Resistive switching behaviors of Au/pentacene/Si-nanowire arrays/heavily doped n-type Si devices for memory applications

    NASA Astrophysics Data System (ADS)

    Tsao, Hou-Yen; Lin, Yow-Jon

    2014-02-01

    The fabrication of memory devices based on the Au/pentacene/heavily doped n-type Si (n+-Si), Au/pentacene/Si nanowires (SiNWs)/n+-Si, and Au/pentacene/H2O2-treated SiNWs/n+-Si structures and their resistive switching characteristics were reported. A pentacene memory structure using SiNW arrays as charge storage nodes was demonstrated. The Au/pentacene/SiNWs/n+-Si devices show hysteresis behavior. H2O2 treatment may lead to the hysteresis degradation. However, no hysteresis-type current-voltage characteristics were observed for Au/pentacene/n+-Si devices, indicating that the resistive switching characteristic is sensitive to SiNWs and the charge trapping effect originates from SiNWs. The concept of nanowires within the organic layer opens a promising direction for organic memory devices.

  13. A portable eBook reader for the blind.

    PubMed

    Velazquez, Ramiro; Hernandez, Hermes; Preza, Enrique

    2010-01-01

    This paper presents the design and first prototype of the TactoBook system, a novel concept of reading assistive device that aims to make eBooks accessible to the blind. The TactoBook consists of a computer-based software translator that converts fast and automatically any eBook into Braille. The Braille version of the eBook is then encrypted as a file and stored in a USB memory drive which is later inserted and reproduced in a compact, lightweight, and highly-portable tactile terminal. Braille readers can store multiple eBooks in the same USB and access/reproduce them in the tactile terminal without this being plugged to a computer. The first Braille terminal developed is a 10-cell prototype based on a piezoelectric ultrasonic actuation approach. Its overall performance is quite similar to the one obtained with traditional Braille terminals. However, unlike them, the full device is only 1 kg mass and its compact dimensions (20 × 15 × 10 cm) make it easily carried by the user. A technical overview of all subsystems is presented and discussed.

  14. Efficient accesses of data structures using processing near memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasena, Nuwan S.; Zhang, Dong Ping; Diez, Paula Aguilera

    Systems, apparatuses, and methods for implementing efficient queues and other data structures. A queue may be shared among multiple processors and/or threads without using explicit software atomic instructions to coordinate access to the queue. System software may allocate an atomic queue and corresponding queue metadata in system memory and return, to the requesting thread, a handle referencing the queue metadata. Any number of threads may utilize the handle for accessing the atomic queue. The logic for ensuring the atomicity of accesses to the atomic queue may reside in a management unit in the memory controller coupled to the memory wheremore » the atomic queue is allocated.« less

  15. A new method for using Cf-252 in SEU testing

    NASA Astrophysics Data System (ADS)

    Costantine, A.; Howard, J. W.; Becker, M.; Block, R. C.; Smith, L. S.; Soli, G. A.; Stauber, M. C.

    1990-12-01

    A system using Cf-252 and associated nuclear instrumentation has determined the single-event upset (SEU) cross section versus linear energy transfer (LET) curve for several 2K x 8 static random access memories (SRAMs). The Cf-252 fission fragments pass through a thin-film organic scintillator detector (TFD) on the way to the device under test (DUT). The TFD provides energy information for each transiting fragment. Data analysis provides the energy of the individual ion responsible for each SEU; thus, separate upset cross sections can be developed for different energy and mass regions of the californium spectrum. This californium-based device is quite small and fits onto a bench top. It provides a convenient and inexpensive supplement or alternative to accelerator and high-altitude/space SEU testing.

  16. Optimization of Materials and Interfaces for Spintronic Devices

    NASA Astrophysics Data System (ADS)

    Clark, Billy

    In recent years' Spintronic devices have drawn a significant amount of research attention. This interest comes in large part from their ability to enable interesting and new technology such as Spin Torque Transfer Random Access Memory or improve existing technology such as High Signal Read Heads for Hard Disk Drives. For the former we worked on optimizing and improving magnetic tunnel junctions by optimizing their thermal stability by using Ta insertion layers in the free layer. We further tried to simplify the design of the MTJ stack by attempting to replace the Co/Pd multilayer with CoPd alloy. In this dissertation, we detail its development and examine the switching characteristics. Lastly we look at a highly spin polarized material, Fe2MnGe, for optimizing Hard Drive Disk read heads.

  17. A new method for using Cf-252 in SEU testing

    NASA Technical Reports Server (NTRS)

    Costantine, A.; Howard, J. W.; Becker, M.; Block, R. C.; Smith, L. S.; Soli, G. A.; Stauber, M. C.

    1990-01-01

    A system using Cf-252 and associated nuclear instrumentation has determined the single-event upset (SEU) cross section versus linear energy transfer (LET) curve for several 2K x 8 static random access memories (SRAMs). The Cf-252 fission fragments pass through a thin-film organic scintillator detector (TFD) on the way to the device under test (DUT). The TFD provides energy information for each transiting fragment. Data analysis provides the energy of the individual ion responsible for each SEU; thus, separate upset cross sections can be developed for different energy and mass regions of the californium spectrum. This californium-based device is quite small and fits onto a bench top. It provides a convenient and inexpensive supplement or alternative to accelerator and high-altitude/space SEU testing.

  18. Working memory capacity and controlled serial memory search.

    PubMed

    Mızrak, Eda; Öztekin, Ilke

    2016-08-01

    The speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between working memory capacity (WMC) and the dynamics of temporal order memory retrieval. High- and low-span participants (HSs, LSs) studied sequentially presented five-item lists, followed by two probes from the study list. Participants indicated the more recent probe. Overall, accuracy was higher for HSs compared to LSs. Crucially, in contrast to previous investigations that observed no impact of WMC on speed of access to item information in memory (e.g., Öztekin & McElree, 2010), recovery of temporal order memory was slower for LSs. While accessing an item's representation in memory can be direct, recovery of relational information such as temporal order information requires a more controlled serial memory search. Collectively, these data indicate that WMC effects are particularly prominent during high demands of cognitive control, such as serial search operations necessary to access temporal order information from memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The potential of multi-port optical memories in digital computing

    NASA Technical Reports Server (NTRS)

    Alford, C. O.; Gaylord, T. K.

    1975-01-01

    A high-capacity memory with a relatively high data transfer rate and multi-port simultaneous access capability may serve as the basis for new computer architectures. The implementation of a multi-port optical memory is discussed. Several computer structures are presented that might profitably use such a memory. These structures include (1) a simultaneous record access system, (2) a simultaneously shared memory computer system, and (3) a parallel digital processing structure.

  20. Saying what’s on your mind: Working memory effects on sentence production

    PubMed Central

    Slevc, L. Robert

    2011-01-01

    The role of working memory (WM) in sentence comprehension has received considerable interest, but little work has investigated how sentence production relies on memory mechanisms. These three experiments investigated speakers’ tendency to produce syntactic structures that allow for early production of material that is accessible in memory. In Experiment 1, speakers produced accessible information early less often when under a verbal WM load than when under no load. Experiment 2 found the same pattern for given-new ordering, i.e., when accessibility was manipulated by making information given. Experiment 3 addressed the possibility that these effects do not reflect WM mechanisms but rather increased task difficulty by relying on the distinction between verbal and spatial WM: Speakers’ tendency to produce sentences respecting given-new ordering was reduced more by a verbal than by a spatial WM load. These patterns show that accessibility effects do in fact reflect accessibility in verbal WM, and that representations in sentence production are vulnerable to interference from other information in memory. PMID:21767058

Top