Sample records for access memory dram

  1. 32-Bit-Wide Memory Tolerates Failures

    NASA Technical Reports Server (NTRS)

    Buskirk, Glenn A.

    1990-01-01

    Electronic memory system of 32-bit words corrects bit errors caused by some common type of failures - even failure of entire 4-bit-wide random-access-memory (RAM) chip. Detects failure of two such chips, so user warned that ouput of memory may contain errors. Includes eight 4-bit-wide DRAM's configured so each bit of each DRAM assigned to different one of four parallel 8-bit words. Each DRAM contributes only 1 bit to each 8-bit word.

  2. Rutger's CAM2000 chip architecture

    NASA Technical Reports Server (NTRS)

    Smith, Donald E.; Hall, J. Storrs; Miyake, Keith

    1993-01-01

    This report describes the architecture and instruction set of the Rutgers CAM2000 memory chip. The CAM2000 combines features of Associative Processing (AP), Content Addressable Memory (CAM), and Dynamic Random Access Memory (DRAM) in a single chip package that is not only DRAM compatible but capable of applying simple massively parallel operations to memory. This document reflects the current status of the CAM2000 architecture and is continually updated to reflect the current state of the architecture and instruction set.

  3. Unified random access memory (URAM) by integration of a nanocrystal floating gate for nonvolatile memory and a partially depleted floating body for capacitorless 1T-DRAM

    NASA Astrophysics Data System (ADS)

    Ryu, Seong-Wan; Han, Jin-Woo; Kim, Chung-Jin; Kim, Sungho; Choi, Yang-Kyu

    2009-03-01

    This paper describes a unified memory (URAM) that utilizes a nanocrystal SOI MOSFET for multi-functional applications of both nonvolatile memory (NVM) and capacitorless 1T-DRAM. By using a discrete storage node (Ag nanocrystal) as the floating gate of the NVM, high defect immunity and 2-bit/cell operation were achieved. The embedded nanocrystal NVM also showed 1T-DRAM operation (program/erase time = 100 ns) characteristics, which were realized by storing holes in the floating body of the SOI MOSFET, without requiring an external capacitor. Three-bit/cell operation was accomplished for different applications - 2-bits for nonvolatility and 1-bit for fast operation.

  4. Deviation from the law of energy equipartition in a small dynamic-random-access memory

    NASA Astrophysics Data System (ADS)

    Carles, Pierre-Alix; Nishiguchi, Katsuhiko; Fujiwara, Akira

    2015-06-01

    A small dynamic-random-access memory (DRAM) coupled with a high charge sensitivity electrometer based on a silicon field-effect transistor is used to study the law of equipartition of energy. By statistically analyzing the movement of single electrons in the DRAM at various temperature and voltage conditions in thermal equilibrium, we are able to observe a behavior that differs from what is predicted by the law of equipartition energy: when the charging energy of the capacitor of the DRAM is comparable to or smaller than the thermal energy kBT/2, random electron motion is ruled perfectly by thermal energy; on the other hand, when the charging energy becomes higher in relation to the thermal energy kBT/2, random electron motion is suppressed which indicates a deviation from the law of equipartition of energy. Since the law of equipartition is analyzed using the DRAM, one of the most familiar devices, we believe that our results are perfectly universal among all electronic devices.

  5. Cost aware cache replacement policy in shared last-level cache for hybrid memory based fog computing

    NASA Astrophysics Data System (ADS)

    Jia, Gangyong; Han, Guangjie; Wang, Hao; Wang, Feng

    2018-04-01

    Fog computing requires a large main memory capacity to decrease latency and increase the Quality of Service (QoS). However, dynamic random access memory (DRAM), the commonly used random access memory, cannot be included into a fog computing system due to its high consumption of power. In recent years, non-volatile memories (NVM) such as Phase-Change Memory (PCM) and Spin-transfer torque RAM (STT-RAM) with their low power consumption have emerged to replace DRAM. Moreover, the currently proposed hybrid main memory, consisting of both DRAM and NVM, have shown promising advantages in terms of scalability and power consumption. However, the drawbacks of NVM, such as long read/write latency give rise to potential problems leading to asymmetric cache misses in the hybrid main memory. Current last level cache (LLC) policies are based on the unified miss cost, and result in poor performance in LLC and add to the cost of using NVM. In order to minimize the cache miss cost in the hybrid main memory, we propose a cost aware cache replacement policy (CACRP) that reduces the number of cache misses from NVM and improves the cache performance for a hybrid memory system. Experimental results show that our CACRP behaves better in LLC performance, improving performance up to 43.6% (15.5% on average) compared to LRU.

  6. Capacitorless 1T-DRAM on crystallized poly-Si TFT.

    PubMed

    Kim, Min Soo; Cho, Won Ju

    2011-07-01

    The single-transistor dynamic random-access memory (1T-DRAM) using a polycrystalline-silicon thin-film transistor (poly-Si TFT) was investigated. A 100-nm amorphous silicon thin film was deposited onto a 200-nm oxidized silicon wafer via low-pressure chemical vapor deposition (LPCVD), and the amorphous silicon layer was crystallized via eximer laser annealing (ELA) with a KrF source of 248 nm wavelength and 400 mJ/cm2 power. The fabricated capacitor less 1T-DRAM on the poly-Si TFT was evaluated via impact ionization and gate-induced drain leakage (GIDL) current programming. The device showed a clear memory margin between the "1" and "0" states, and as the channel length decreased, a floating body effect which induces a kink effect increases with high mobility. Furthermore, the GIDL current programming showed improved memory properties compared to the impact ionization method. Although the sensing margins and retention times in both program methods are commercially insufficient, it was confirmed the feasibility of the application of 1T-DRAM operation to TFTs.

  7. Light sensitivity of a one transistor-one capacitor memory cell when used as a micromirror actuator in projector applications

    NASA Astrophysics Data System (ADS)

    Huffman, James Douglas

    2001-11-01

    The most important issue facing the future business success of the Digital Micromirror Device or DMD™ produced by Texas Instruments is the cost of the actual device. As the business and consumer markets call for higher resolution displays, the array size will have to be increased to incorporate more pixels. The manufacturing costs associated with building these higher resolution displays follow an exponential relation with the number of pixels due to yield loss and reduced number of chips per silicon wafer. Each pixel is actuated by electrostatics that are provided by a memory cell that is built in the underlying silicon substrate. One way to decrease cost of the wafer is to change the memory cell architecture from a static random access configuration or SRAM to a dynamic random access configuration or DRAM. This change has the benefits of having fewer components per area and a lower metal density. This reduction in the component count and metal density has a dramatic effect on the yield of the memory array by reducing the particle sensitivity of the underlying cell. The main drawback to using a DRAM configuration in a display application is the light sensitivity of a charge storage device built in the silicon substrate. As the photons pass through the mechanical micromirrors and illuminate the DRAM cell, the effective electrostatic potential of the memory element used for the mirror actuation is reduced. This dissertation outlines the issues associated with the light sensitivity of a DRAM memory cell as the actuation element for a micromirror. The concept of charge depletion on a silicon capacitor due to recombination of photogenerated carriers is explored and experimentally verified. The effects of the reduced potential on the capacitor on the micromirror are also explored. Optical modeling is used to determine the incoming photon flux to determine the benefits of adding a charge recombination region as part of the DRAM memory cell. Several options are explored to reduce the effect of the incoming photons on the potential of the memory cell. The results will show that a 1T1C memory cell with N-type recombination regions and maximum light shielding is sufficient for a projector application.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Michael A.; Berry, Jonathan W.; Hammond, Simon D.

    A challenge in computer architecture is that processors often cannot be fed data from DRAM as fast as CPUs can consume it. Therefore, many applications are memory-bandwidth bound. With this motivation and the realization that traditional architectures (with all DRAM reachable only via bus) are insufficient to feed groups of modern processing units, vendors have introduced a variety of non-DDR 3D memory technologies (Hybrid Memory Cube (HMC),Wide I/O 2, High Bandwidth Memory (HBM)). These offer higher bandwidth and lower power by stacking DRAM chips on the processor or nearby on a silicon interposer. We will call these solutions “near-memory,” andmore » if user-addressable, “scratchpad.” High-performance systems on the market now offer two levels of main memory: near-memory on package and traditional DRAM further away. In the near term we expect the latencies near-memory and DRAM to be similar. Here, it is natural to think of near-memory as another module on the DRAM level of the memory hierarchy. Vendors are expected to offer modes in which the near memory is used as cache, but we believe that this will be inefficient.« less

  9. New modeling method for the dielectric relaxation of a DRAM cell capacitor

    NASA Astrophysics Data System (ADS)

    Choi, Sujin; Sun, Wookyung; Shin, Hyungsoon

    2018-02-01

    This study proposes a new method for automatically synthesizing the equivalent circuit of the dielectric relaxation (DR) characteristic in dynamic random access memory (DRAM) without frequency dependent capacitance measurement. Charge loss due to DR can be observed by a voltage drop at the storage node and this phenomenon can be analyzed by an equivalent circuit. The Havariliak-Negami model is used to accurately determine the electrical characteristic parameters of an equivalent circuit. The DRAM sensing operation is performed in HSPICE simulations to verify this new method. The simulation demonstrates that the storage node voltage drop resulting from DR and the reduction in the sensing voltage margin, which has a critical impact on DRAM read operation, can be accurately estimated using this new method.

  10. Two-level main memory co-design: Multi-threaded algorithmic primitives, analysis, and simulation

    DOE PAGES

    Bender, Michael A.; Berry, Jonathan W.; Hammond, Simon D.; ...

    2017-01-03

    A challenge in computer architecture is that processors often cannot be fed data from DRAM as fast as CPUs can consume it. Therefore, many applications are memory-bandwidth bound. With this motivation and the realization that traditional architectures (with all DRAM reachable only via bus) are insufficient to feed groups of modern processing units, vendors have introduced a variety of non-DDR 3D memory technologies (Hybrid Memory Cube (HMC),Wide I/O 2, High Bandwidth Memory (HBM)). These offer higher bandwidth and lower power by stacking DRAM chips on the processor or nearby on a silicon interposer. We will call these solutions “near-memory,” andmore » if user-addressable, “scratchpad.” High-performance systems on the market now offer two levels of main memory: near-memory on package and traditional DRAM further away. In the near term we expect the latencies near-memory and DRAM to be similar. Here, it is natural to think of near-memory as another module on the DRAM level of the memory hierarchy. Vendors are expected to offer modes in which the near memory is used as cache, but we believe that this will be inefficient.« less

  11. Electronics Industry Study Report: Semiconductors and Defense Electronics

    DTIC Science & Technology

    2003-01-01

    Access Memory (DRAM) chips and microprocessors. Samsung , Micron, Hynix, and Infineon control almost three-fourths of the DRAM market,8 while Intel alone...Country 2001 Sales ($B) 2002 Sales ($B) % Change % 2002 Mkt 1 1 Intel U.S. 23.7 24.0 1% 16.9% 2 3 Samsung Semiconductor S. Korea 6.3...located in four major regions: the United States, Europe, Japan, and the Asia-Pacific region (includes South Korea, China, Singapore, Malaysia , Taiwan

  12. Data Movement Dominates: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, Bruce L.

    Over the past three years in this project, what we have observed is that the primary reason for data movement in large-scale systems is that the per-node capacity is not large enough—i.e., one of the solutions to the data-movement problem (certainly not the only solution that is required, but a significant one nonetheless) is to increase per-node capacity so that inter-node traffic is reduced. This unfortunately is not as simple as it sounds. Today’s main memory systems for datacenters, enterprise computing systems, and supercomputers, fail to provide high per-socket capacity [Dirik & Jacob 2009; Cooper-Balis et al. 2012], except atmore » extremely high price points (factors of 10–100x the cost/bit of consumer main-memory systems) [Stokes 2008]. The reason is that our choice of technology for today’s main memory systems—i.e., DRAM, which we have used as a main-memory technology since the 1970s [Jacob et al. 2007]—can no longer keep up with our needs for density and price per bit. Main memory systems have always been built from the cheapest, densest, lowest-power memory technology available, and DRAM is no longer the cheapest, the densest, nor the lowest-power storage technology out there. It is now time for DRAM to go the way that SRAM went: move out of the way for a cheaper, slower, denser storage technology, and become a cache instead. This inflection point has happened before, in the context of SRAM yielding to DRAM. There was once a time that SRAM was the storage technology of choice for all main memories [Tomasulo 1967; Thornton 1970; Kidder 1981]. However, once DRAM hit volume production in the 1970s and 80s, it supplanted SRAM as a main memory technology because it was cheaper, and it was denser. It also happened to be lower power, but that was not the primary consideration of the day. At the time, it was recognized that DRAM was much slower than SRAM, but it was only at the supercomputer level (For instance the Cray X-MP in the 1980s and its follow-on, the Cray Y-MP, in the 1990s) that could one afford to build ever- larger main memories out of SRAM—the reasoning for moving to DRAM was that an appropriately designed memory hierarchy, built of DRAM as main memory and SRAM as a cache, would approach the performance of SRAM, at the price-per-bit of DRAM [Mashey 1999]. Today it is quite clear that, were one to build an entire multi-gigabyte main memory out of SRAM instead of DRAM, one could improve the performance of almost any computer system by up to an order of magnitude—but this option is not even considered, because to build that system would be prohibitively expensive. It is now time to revisit the same design choice in the context of modern technologies and modern systems. For reasons both technical and economic, we can no longer afford to build ever-larger main memory systems out of DRAM. Flash memory, on the other hand, is significantly cheaper and denser than DRAM and therefore should take its place. While it is true that flash is significantly slower than DRAM, one can afford to build much larger main memories out of flash than out of DRAM, and we show that an appropriately designed memory hierarchy, built of flash as main memory and DRAM as a cache, will approach the performance of DRAM, at the price-per-bit of flash. In our studies as part of this project, we have investigated Non-Volatile Main Memory (NVMM), a new main-memory architecture for large-scale computing systems, one that is specifically designed to address the weaknesses described previously. In particular, it provides the following features: non-volatility: The bulk of the storage is comprised of NAND flash, and in this organization DRAM is used only as a cache, not as main memory. Furthermore, the flash is journaled, which means that operations such as checkpoint/restore are already built into the system. 1+ terabytes of storage per socket: SSDs and DRAM DIMMs have roughly the same form factor (several square inches of PCB surface area), and terabyte SSDs are now commonplace. performance approaching that of DRAM: DRAM is used as a cache to the flash system. price-per-bit approaching that of NAND: Flash is currently well under $0.50 per gigabyte; DDR3 SDRAM is currently just over $10 per gigabyte [Newegg 2014]. Even today, one can build an easily affordable main memory system with a terabyte or more of NAND storage per CPU socket (which would be extremely expensive were one to use DRAM), and our cycle- accurate, full-system experiments show that this can be done at a performance point that lies within a factor of two of DRAM.« less

  13. Messier: A Detailed NVM-Based DIMM Model for the SST Simulation Framework.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Amro; Voskuilen, Gwendolyn Renae; Rodrigues, Arun F.

    2017-02-01

    DRAM technology is the main building block of main memory, however, DRAM scaling is becoming very challenging. The main issues for DRAM scaling are the increasing error rates with each new generation, the geometric and physical constraints of scaling the capacitor part of the DRAM cells, and the high power consumption caused by the continuous need for refreshing cell values. At the same time, emerging Non- Volatile Memory (NVM) technologies, such as Phase-Change Memory (PCM), are emerging as promising replacements for DRAM. NVMs, when compared to current technologies e.g., NAND-based ash, have latencies comparable to DRAM. Additionally, NVMs are non-volatile,more » which eliminates the need for refresh power and enables persistent memory applications. Finally, NVMs have promising densities and the potential for multi-level cell (MLC) storage.« less

  14. Random Telegraph Signal-Like Fluctuation Created by Fowler-Nordheim Stress in Gate Induced Drain Leakage Current of the Saddle Type Dynamic Random Access Memory Cell Transistor

    NASA Astrophysics Data System (ADS)

    Kim, Heesang; Oh, Byoungchan; Kim, Kyungdo; Cha, Seon-Yong; Jeong, Jae-Goan; Hong, Sung-Joo; Lee, Jong-Ho; Park, Byung-Gook; Shin, Hyungcheol

    2010-09-01

    We generated traps inside gate oxide in gate-drain overlap region of recess channel type dynamic random access memory (DRAM) cell transistor through Fowler-Nordheim (FN) stress, and observed gate induced drain leakage (GIDL) current both in time domain and in frequency domain. It was found that the trap inside gate oxide could generate random telegraph signal (RTS)-like fluctuation in GIDL current. The characteristics of that fluctuation were similar to those of RTS-like fluctuation in GIDL current observed in the non-stressed device. This result shows the possibility that the trap causing variable retention time (VRT) in DRAM data retention time can be located inside gate oxide like channel RTS of metal-oxide-semiconductor field-effect transistors (MOSFETs).

  15. Space Radiation Effects in Advanced Flash Memories

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.

    2001-01-01

    Memory storage requirements in space systems have steadily increased, much like storage requirements in terrestrial systems. Large arrays of dynamic memories (DRAMs) have been used in solid-state recorders, relying on a combination of shielding and error-detection-and correction (EDAC) to overcome the extreme sensitivity of DRAMs to space radiation. For example, a 2-Gbit memory (with 4-Mb DRAMs) used on the Clementine mission functioned perfectly during its moon mapping mission, in spite of an average of 71 memory bit flips per day from heavy ions. Although EDAC worked well with older types of memory circuits, newer DRAMs use extremely complex internal architectures which has made it increasingly difficult to implement EDAC. Some newer DRAMs have also exhibited catastrophic latchup. Flash memories are an intriguing alternative to DRAMs because of their nonvolatile storage and extremely high storage density, particularly for applications where writing is done relatively infrequently. This paper discusses radiation effects in advanced flash memories, including general observations on scaling and architecture as well as the specific experience obtained at the Jet Propulsion Laboratory in evaluating high-density flash memories for use on the NASA mission to Europa, one of Jupiter's moons. This particular mission must pass through the Jovian radiation belts, which imposes a very demanding radiation requirement.

  16. Capacitorless one-transistor dynamic random-access memory based on asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor with n-doped boosting layer and drain-underlap structure

    NASA Astrophysics Data System (ADS)

    Yoon, Young Jun; Seo, Jae Hwa; Kang, In Man

    2018-04-01

    In this work, we present a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on an asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor (TFET) for DRAM applications. The n-doped boosting layer and gate2 drain-underlap structure is employed in the device to obtain an excellent 1T-DRAM performance. The n-doped layer inserted between the source and channel regions improves the sensing margin because of a high rate of increase in the band-to-band tunneling (BTBT) probability. Furthermore, because the gate2 drain-underlap structure reduces the recombination rate that occurs between the gate2 and drain regions, a device with a gate2 drain-underlap length (L G2_D-underlap) of 10 nm exhibited a longer retention performance. As a result, by applying the n-doped layer and gate2 drain-underlap structure, the proposed device exhibited not only a high sensing margin of 1.11 µA/µm but also a long retention time of greater than 100 ms at a temperature of 358 K (85 °C).

  17. The Programming Optimization of Capacitorless 1T DRAM Based on the Dual-Gate TFET

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Wang, Qianqiong

    2017-09-01

    The larger volume of capacitor and higher leakage current of transistor have become the inherent disadvantages for the traditional one transistor (1T)-one capacitor (1C) dynamic random access memory (DRAM). Recently, the tunneling FET (TFET) is applied in DRAM cell due to the low off-state current and high switching ratio. The dual-gate TFET (DG-TFET) DRAM cell with the capacitorless structure has the superior performance-higher retention time (RT) and weak temperature dependence. But the performance of TFET DRAM cell is sensitive to programming condition. In this paper, the guideline of programming optimization is discussed in detail by using simulation tool—Silvaco Atlas. Both the writing and reading operations of DG-TFET DRAM depend on the band-to-band tunneling (BTBT). During the writing operation, the holes coming from BTBT governed by Gate2 are stored in potential well under Gate2. A small negative voltage is applied at Gate2 to retain holes for a long time during holding "1". The BTBT governed by Gate1 mainly influences the reading current. Using the optimized programming condition, the DG-TFET DRAM obtains the higher current ratio of reading "1" to reading "0" (107) and RT of more than 2 s. The higher RT reduces the refresh rate and dynamic power consumption of DRAM.

  18. Combinatorial Investigation of ZrO2-Based Dielectric Materials for Dynamic Random-Access Memory Capacitors

    NASA Astrophysics Data System (ADS)

    Kiyota, Yuji; Itaka, Kenji; Iwashita, Yuta; Adachi, Tetsuya; Chikyow, Toyohiro; Ogura, Atsushi

    2011-06-01

    We investigated zirconia (ZrO2)-based material libraries in search of new dielectric materials for dynamic random-access memory (DRAM) by combinatorial-pulsed laser deposition (combi-PLD). We found that the substitution of yttrium (Y) to Zr sites in the ZrO2 system suppressed the leakage current effectively. The metal-insulator-metal (MIM) capacitor property of this system showed a leakage current density of less than 5×10-7 A/cm2 and the dielectric constant was 20. Moreover, the addition of titanium (Ti) or tantalum (Ta) to this system caused the dielectric constant to increase to ˜25 within the allowed leakage level of 5×10-7 A/cm2. Therefore, Zr-Y-Ti-O and Zr-Y-Ta-O systems have good potentials for use as new materials with high dielectric constants of DRAM capacitors instead of silicon dioxides (SiO2).

  19. Memory-Intensive Benchmarks: IRAM vs. Cache-Based Machines

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Gaeke, Brian R.; Husbands, Parry; Li, Xiaoye S.; Oliker, Leonid; Yelick, Katherine A.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The increasing gap between processor and memory performance has lead to new architectural models for memory-intensive applications. In this paper, we explore the performance of a set of memory-intensive benchmarks and use them to compare the performance of conventional cache-based microprocessors to a mixed logic and DRAM processor called VIRAM. The benchmarks are based on problem statements, rather than specific implementations, and in each case we explore the fundamental hardware requirements of the problem, as well as alternative algorithms and data structures that can help expose fine-grained parallelism or simplify memory access patterns. The benchmarks are characterized by their memory access patterns, their basic control structures, and the ratio of computation to memory operation.

  20. The Programming Optimization of Capacitorless 1T DRAM Based on the Dual-Gate TFET.

    PubMed

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Wang, Qianqiong

    2017-09-06

    The larger volume of capacitor and higher leakage current of transistor have become the inherent disadvantages for the traditional one transistor (1T)-one capacitor (1C) dynamic random access memory (DRAM). Recently, the tunneling FET (TFET) is applied in DRAM cell due to the low off-state current and high switching ratio. The dual-gate TFET (DG-TFET) DRAM cell with the capacitorless structure has the superior performance-higher retention time (RT) and weak temperature dependence. But the performance of TFET DRAM cell is sensitive to programming condition. In this paper, the guideline of programming optimization is discussed in detail by using simulation tool-Silvaco Atlas. Both the writing and reading operations of DG-TFET DRAM depend on the band-to-band tunneling (BTBT). During the writing operation, the holes coming from BTBT governed by Gate2 are stored in potential well under Gate2. A small negative voltage is applied at Gate2 to retain holes for a long time during holding "1". The BTBT governed by Gate1 mainly influences the reading current. Using the optimized programming condition, the DG-TFET DRAM obtains the higher current ratio of reading "1" to reading "0" (10 7 ) and RT of more than 2 s. The higher RT reduces the refresh rate and dynamic power consumption of DRAM.

  1. A review of the Z2-FET 1T-DRAM memory: Operation mechanisms and key parameters

    NASA Astrophysics Data System (ADS)

    Cristoloveanu, S.; Lee, K. H.; Parihar, M. S.; El Dirani, H.; Lacord, J.; Martinie, S.; Le Royer, C.; Barbe, J.-Ch.; Mescot, X.; Fonteneau, P.; Galy, Ph.; Gamiz, F.; Navarro, C.; Cheng, B.; Duan, M.; Adamu-Lema, F.; Asenov, A.; Taur, Y.; Xu, Y.; Kim, Y.-T.; Wan, J.; Bawedin, M.

    2018-05-01

    The band-modulation and sharp-switching mechanisms in Z2-FET device operated as a capacitorless 1T-DRAM memory are reviewed. The main parameters that govern the memory performance are discussed based on detailed experiments and simulations. This 1T-DRAM memory does not suffer from super-coupling effect and can be integrated in sub-10 nm thick SOI films. It offers low leakage current, high current margin, long retention, low operating voltage especially for programming, and high speed. The Z2-FET is suitable for embedded memory applications.

  2. MRAM Technology Status

    NASA Technical Reports Server (NTRS)

    Heidecker, Jason

    2013-01-01

    Magnetoresistive Random Access Memory (MRAM) is much different from conventional types of memory like SRAM, DRAM, and Flash, where electric charge is used to store information. Instead of exploiting the charge of an electron, MRAM uses its spin to store data. This new type of electronics is known as "spintronics." The primary focus of this report is the current generation of MRAM technology, and its reliability, vendors, and space-readiness.

  3. Towards Terabit Memories

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Memories have been the major yardstick for the continuing validity of Moore's law. In single-transistor-per-Bit dynamic random-access memories (DRAM), the number of bits per chip pretty much gives us the number of transistors. For decades, DRAM's have offered the largest storage capacity per chip. However, DRAM does not scale any longer, both in density and voltage, severely limiting its power efficiency to 10 fJ/b. A differential DRAM would gain four-times in density and eight-times in energy. Static CMOS RAM (SRAM) with its six transistors/cell is gaining in reputation because it scales well in cell size and operating voltage so that its fundamental advantage of speed, non-destructive read-out and low-power standby could lead to just 2.5 electrons/bit in standby and to a dynamic power efficiency of 2aJ/b. With a projected 2020 density of 16 Gb/cm², the SRAM would be as dense as normal DRAM and vastly better in power efficiency, which would mean a major change in the architecture and market scenario for DRAM versus SRAM. Non-volatile Flash memory have seen two quantum jumps in density well beyond the roadmap: Multi-Bit storage per transistor and high-density TSV (through-silicon via) technology. The number of electrons required per Bit on the storage gate has been reduced since their first realization in 1996 by more than an order of magnitude to 400 electrons/Bit in 2010 for a complexity of 32Gbit per chip at the 32 nm node. Chip stacking of eight chips with TSV has produced a 32GByte solid-state drive (SSD). A stack of 32 chips with 2 b/cell at the 16 nm node will reach a density of 2.5 Terabit/cm². Non-volatile memory with a density of 10 × 10 nm²/Bit is the target for widespread development. Phase-change memory (PCM) and resistive memory (RRAM) lead in cell density, and they will reach 20 Gb/cm² in 2D and higher with 3D chip stacking. This is still almost an order-of-magnitude less than Flash. However, their read-out speed is ~10-times faster, with as yet little data on their energy/b. As a read-out memory with unparalleled retention and lifetime, the ROM with electron-beam direct-write-lithography (Chap. 8) should be considered for its projected 2D density of 250 Gb/cm², a very small read energy of 0.1 μW/Gb/s. The lithography write-speed 10 ms/Terabit makes this ROM a serious contentender for the optimum in non-volatile, tamper-proof storage.

  4. PIMS: Memristor-Based Processing-in-Memory-and-Storage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Jeanine

    Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energymore » efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.« less

  5. MPEG-1 low-cost encoder solution

    NASA Astrophysics Data System (ADS)

    Grueger, Klaus; Schirrmeister, Frank; Filor, Lutz; von Reventlow, Christian; Schneider, Ulrich; Mueller, Gerriet; Sefzik, Nicolai; Fiedrich, Sven

    1995-02-01

    A solution for real-time compression of digital YCRCB video data to an MPEG-1 video data stream has been developed. As an additional option, motion JPEG and video telephone streams (H.261) can be generated. For MPEG-1, up to two bidirectional predicted images are supported. The required computational power for motion estimation and DCT/IDCT, memory size and memory bandwidth have been the main challenges. The design uses fast-page-mode memory accesses and requires only one single 80 ns EDO-DRAM with 256 X 16 organization for video encoding. This can be achieved only by using adequate access and coding strategies. The architecture consists of an input processing and filter unit, a memory interface, a motion estimation unit, a motion compensation unit, a DCT unit, a quantization control, a VLC unit and a bus interface. For using the available memory bandwidth by the processing tasks, a fixed schedule for memory accesses has been applied, that can be interrupted for asynchronous events. The motion estimation unit implements a highly sophisticated hierarchical search strategy based on block matching. The DCT unit uses a separated fast-DCT flowgraph realized by a switchable hardware unit for both DCT and IDCT operation. By appropriate multiplexing, only one multiplier is required for: DCT, quantization, inverse quantization, and IDCT. The VLC unit generates the video-stream up to the video sequence layer and is directly coupled with an intelligent bus-interface. Thus, the assembly of video, audio and system data can easily be performed by the host computer. Having a relatively low complexity and only small requirements for DRAM circuits, the developed solution can be applied to low-cost encoding products for consumer electronics.

  6. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide

    NASA Astrophysics Data System (ADS)

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 × 10-13-1.0 × 10-14 S cm-1. The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 1010. Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 1011. The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  7. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide.

    PubMed

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 x 10(-13)-1.0 x 10(-14) S cm(-1). The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 10(10). Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 10(11). The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  8. Single-electron thermal noise

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira

    2014-07-01

    We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.

  9. Single-electron thermal noise.

    PubMed

    Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira

    2014-07-11

    We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.

  10. Non-volatile main memory management methods based on a file system.

    PubMed

    Oikawa, Shuichi

    2014-01-01

    There are upcoming non-volatile (NV) memory technologies that provide byte addressability and high performance. PCM, MRAM, and STT-RAM are such examples. Such NV memory can be used as storage because of its data persistency without power supply while it can be used as main memory because of its high performance that matches up with DRAM. There are a number of researches that investigated its uses for main memory and storage. They were, however, conducted independently. This paper presents the methods that enables the integration of the main memory and file system management for NV memory. Such integration makes NV memory simultaneously utilized as both main memory and storage. The presented methods use a file system as their basis for the NV memory management. We implemented the proposed methods in the Linux kernel, and performed the evaluation on the QEMU system emulator. The evaluation results show that 1) the proposed methods can perform comparably to the existing DRAM memory allocator and significantly better than the page swapping, 2) their performance is affected by the internal data structures of a file system, and 3) the data structures appropriate for traditional hard disk drives do not always work effectively for byte addressable NV memory. We also performed the evaluation of the effects caused by the longer access latency of NV memory by cycle-accurate full-system simulation. The results show that the effect on page allocation cost is limited if the increase of latency is moderate.

  11. Template Based Low Data Rate Speech Encoder

    DTIC Science & Technology

    1993-09-30

    Nasality Distinguishes In/ from d/ 95.6 96.9 1m/ from /b/, etc. Sustention Distinguishes /f/ from /p/, $7.5 88.3 ibi from N/, Al from /0 8. etc. Sibilation...processor performs mainly Processor Workstation input/output (I/O) operations. The dynamic random access memory (DRAM) has 16 million bytes of...storage capacity. To execute the 800-b/s voice algorithm, the following amount of memory is needed: 5 MB for tables, 1.5 MB for it "program, and 30 KB for

  12. Opportunities for nonvolatile memory systems in extreme-scale high-performance computing

    DOE PAGES

    Vetter, Jeffrey S.; Mittal, Sparsh

    2015-01-12

    For extreme-scale high-performance computing systems, system-wide power consumption has been identified as one of the key constraints moving forward, where DRAM main memory systems account for about 30 to 50 percent of a node's overall power consumption. As the benefits of device scaling for DRAM memory slow, it will become increasingly difficult to keep memory capacities balanced with increasing computational rates offered by next-generation processors. However, several emerging memory technologies related to nonvolatile memory (NVM) devices are being investigated as an alternative for DRAM. Moving forward, NVM devices could offer solutions for HPC architectures. Researchers are investigating how to integratemore » these emerging technologies into future extreme-scale HPC systems and how to expose these capabilities in the software stack and applications. In addition, current results show several of these strategies could offer high-bandwidth I/O, larger main memory capacities, persistent data structures, and new approaches for application resilience and output postprocessing, such as transaction-based incremental checkpointing and in situ visualization, respectively.« less

  13. Attacking the One-Out-Of-m Multicore Problem by Combining Hardware Management with Mixed-Criticality Provisioning

    DTIC Science & Technology

    2015-05-01

    LLC and DRAM banks. For each µB task and isolation configuration, we ran experiments with all 256 possible LLC area sizes (given by 1 to 16 ways and 1...isolation on multicoore platforms. In RTAS ’14. [29] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha . Memory access control in multiprocessor

  14. Apparatus and Method for Compensating for Process, Voltage, and Temperature Variation of the Time Delay of a Digital Delay Line

    NASA Technical Reports Server (NTRS)

    Seefeldt, James (Inventor); Feng, Xiaoxin (Inventor); Roper, Weston (Inventor)

    2013-01-01

    A process, voltage, and temperature (PVT) compensation circuit and a method of continuously generating a delay measure are provided. The compensation circuit includes two delay lines, each delay line providing a delay output. The two delay lines may each include a number of delay elements, which in turn may include one or more current-starved inverters. The number of delay lines may differ between the two delay lines. The delay outputs are provided to a combining circuit that determines an offset pulse based on the two delay outputs and then averages the voltage of the offset pulse to determine a delay measure. The delay measure may be one or more currents or voltages indicating an amount of PVT compensation to apply to input or output signals of an application circuit, such as a memory-bus driver, dynamic random access memory (DRAM), a synchronous DRAM, a processor or other clocked circuit.

  15. SSD Market Overview

    NASA Astrophysics Data System (ADS)

    Wong, G.

    The unparalleled cost and form factor advantages of NAND flash memory has driven 35 mm photographic film, floppy disks and one-inch hard drives to extinction. Due to its compelling price/performance characteristics, NAND Flash memory is now expanding its reach into the once-exclusive domain of hard disk drives and DRAM in the form of Solid State Drives (SSDs). Driven by the proliferation of thin and light mobile devices and the need for near-instantaneous accessing and sharing of content through the cloud, SSDs are expected to become a permanent fixture in the computing infrastructure.

  16. A Design Methodology for Optoelectronic VLSI

    DTIC Science & Technology

    2007-01-01

    current gets converted to a CMOS voltage level through a transimpedance amplifier circuit called a receiver. The output of the receiver is then...change the current flowing from the diode to a voltage that the logic inputs can use. That circuit is called a receiver. It is a transimpedance amplifier ...incorpo- rate random access memory circuits, SRAM or dynamic RAM (DRAM). These circuits use weak internal analog signals that are amplified by sense

  17. An FPGA-Based Test-Bed for Reliability and Endurance Characterization of Non-Volatile Memory

    NASA Technical Reports Server (NTRS)

    Rao, Vikram; Patel, Jagdish; Patel, Janak; Namkung, Jeffrey

    2001-01-01

    Memory technologies are divided into two categories. The first category, nonvolatile memories, are traditionally used in read-only or read-mostly applications because of limited write endurance and slow write speed. These memories are derivatives of read only memory (ROM) technology, which includes erasable programmable ROM (EPROM), electrically-erasable programmable ROM (EEPROM), Flash, and more recent ferroelectric non-volatile memory technology. Nonvolatile memories are able to retain data in the absence of power. The second category, volatile memories, are random access memory (RAM) devices including SRAM and DRAM. Writing to these memories is fast and write endurance is unlimited, so they are most often used to store data that change frequently, but they cannot store data in the absence of power. Nonvolatile memory technologies with better future potential are FRAM, Chalcogenide, GMRAM, Tunneling MRAM, and Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) EEPROM.

  18. Improving energy efficiency of Embedded DRAM Caches for High-end Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh; Vetter, Jeffrey S; Li, Dong

    2014-01-01

    With increasing system core-count, the size of last level cache (LLC) has increased and since SRAM consumes high leakage power, power consumption of LLCs is becoming a significant fraction of processor power consumption. To address this, researchers have used embedded DRAM (eDRAM) LLCs which consume low-leakage power. However, eDRAM caches consume a significant amount of energy in the form of refresh energy. In this paper, we propose ESTEEM, an energy saving technique for embedded DRAM caches. ESTEEM uses dynamic cache reconfiguration to turn-off a portion of the cache to save both leakage and refresh energy. It logically divides the cachemore » sets into multiple modules and turns-off possibly different number of ways in each module. Microarchitectural simulations confirm that ESTEEM is effective in improving performance and energy efficiency and provides better results compared to a recently-proposed eDRAM cache energy saving technique, namely Refrint. For single and dual-core simulations, the average saving in memory subsystem (LLC+main memory) on using ESTEEM is 25.8% and 32.6%, respectively and average weighted speedup are 1.09X and 1.22X, respectively. Additional experiments confirm that ESTEEM works well for a wide-range of system parameters.« less

  19. Single-event effects in avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, E.

    1996-04-01

    The occurrence of single-event upset (SEU) in aircraft electronics has evolved from a series of interesting anecdotal incidents to accepted fact. A study completed in 1992 demonstrated that SEU`s are real, that the measured in-flight rates correlate with the atmospheric neutron flux, and that the rates can be calculated using laboratory SEU data. Once avionics DEU was shown to be an actual effect, it had to be dealt with in avionics designs. The major concern is in random access memories (RAM`s), both static (SRAM`s) and dynamic (DRAM`s), because these microelectronic devices contain the largest number of bits, but other parts,more » such as microprocessors, are also potentially susceptible to upset. In addition, other single-event effects (SEE`s), specifically latch-up and burnout, can also be induced by atmospheric neutrons.« less

  20. Emerging Applications for High K Materials in VLSI Technology

    PubMed Central

    Clark, Robert D.

    2014-01-01

    The current status of High K dielectrics in Very Large Scale Integrated circuit (VLSI) manufacturing for leading edge Dynamic Random Access Memory (DRAM) and Complementary Metal Oxide Semiconductor (CMOS) applications is summarized along with the deposition methods and general equipment types employed. Emerging applications for High K dielectrics in future CMOS are described as well for implementations in 10 nm and beyond nodes. Additional emerging applications for High K dielectrics include Resistive RAM memories, Metal-Insulator-Metal (MIM) diodes, Ferroelectric logic and memory devices, and as mask layers for patterning. Atomic Layer Deposition (ALD) is a common and proven deposition method for all of the applications discussed for use in future VLSI manufacturing. PMID:28788599

  1. Materials and other needs for advanced phase change memory (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Sosa, Norma E.

    2015-09-01

    Phase change memory (PCM), with its long history, may now hold its brightest promise to date. This bright future is being fueled by the "push" from big data. PCM is a non-volatile memory technology used to create solid-state random access memory devices that operate based the resistance properties of materials. Employing the electrical resistance differences-as opposed to differences in charge stored-between the amorphous and crystalline phases of the material, PCM can store bits, namely one's and zero's. Indeed, owing to the method of storage, PCM can in fact be designed to hold multiple bits thus leading to a high-density technology twice the storage density and less than half the cost of DRAM, the main kind found in typical personal computers. It has been long known that PCM can fill a need gap that spans 3 decades in performance from DRAM to solid state drive (NAND Flash). Furthermore, PCM devices can lead to performance and reliability improvements essential to enabling significant steps forward to supporting big data centric computing. This talk will focus on the science and challenges of aggressive scaling to realize the density needed, how this scaling challenge is intertwined with materials needs for endurance into the giga-cycles, and the associated forefront research aiming to realizing multi-level functionality into these nanoscale programmable resistor devices.

  2. Overview of emerging nonvolatile memory technologies

    PubMed Central

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices. PMID:25278820

  3. Overview of emerging nonvolatile memory technologies.

    PubMed

    Meena, Jagan Singh; Sze, Simon Min; Chand, Umesh; Tseng, Tseung-Yuen

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices.

  4. A method to monitor the quality of ultra-thin nitride for trench DRAM with a buried strap structure

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsien; Wang, Chun-Yao; Chang, Ian; Kao, Chien-Kang; Kuo, Chia-Ming; Ku, Alex

    2007-02-01

    A new approach to monitor the quality of an ultra-thin nitride film has been proposed. The nitride quality is monitored by observing the oxide thickness for the nitride film after wet oxidation since the resistance to oxidation strongly depends on its quality. To obtain a stable oxide thickness without interference from extrinsic factors for process monitoring, monitor wafers without dilute HF solution clean are suggested because the native-oxide containing surface is less sensitive to oxygen and therefore forms the nitride film with stable quality. In addition, the correlation between variable retention time (VRT) performance of a real dynamic random access memory (DRAM) product and oxide thickness from different nitride process temperatures can be successfully explained and this correlation can also be used to establish the appropriate oxide thickness range for process monitoring.

  5. Synchrotron radiation x-ray photoelectron spectroscopy study on the interface chemistry of high-k PrxAl2-xO3 (x=0-2) dielectrics on TiN for dynamic random access memory applications

    NASA Astrophysics Data System (ADS)

    Schroeder, T.; Lupina, G.; Sohal, R.; Lippert, G.; Wenger, Ch.; Seifarth, O.; Tallarida, M.; Schmeisser, D.

    2007-07-01

    Engineered dielectrics combined with compatible metal electrodes are important materials science approaches to scale three-dimensional trench dynamic random access memory (DRAM) cells. Highly insulating dielectrics with high dielectric constants were engineered in this study on TiN metal electrodes by partly substituting Al in the wide band gap insulator Al2O3 by Pr cations. High quality PrAlO3 metal-insulator-metal capacitors were processed with a dielectric constant of 19, three times higher than in the case of Al2O3 reference cells. As a parasitic low dielectric constant interface layer between PrAlO3 and TiN limits the total performance gain, a systematic nondestructive synchrotron x-ray photoelectron spectroscopy study on the interface chemistry of PrxAl2-xO3 (x =0-2) dielectrics on TiN layers was applied to unveil its chemical origin. The interface layer results from the decreasing chemical reactivity of PrxAl2-xO3 dielectrics with increasing Pr content x to reduce native Ti oxide compounds present on unprotected TiN films. Accordingly, PrAlO3 based DRAM capacitors require strict control of the surface chemistry of the TiN electrode, a parameter furthermore of importance to engineer the band offsets of PrxAl2-xO3/TiN heterojunctions.

  6. Diagnosis of NMOS DRAM functional performance as affected by a picosecond dye laser

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Schwartz, H. R.; Edmonds, L. D.; Zoutendyk, J. A.

    1992-01-01

    A picosec pulsed dye laser beam was at selected wavelengths successfully used to simulate heavy-ion single-event effects (SEEs) in negative channel NMOS DRAMs. A DRAM was used to develop the test technique because bit-mapping capability and previous heavy-ion upset data were available. The present analysis is the first to establish such a correlation between laser and heavy-ion data for devices, such as the NMOS DRAM, where charge collection is dominated by long-range diffusion, which is controlled by carrier density at remote distances from a depletion region. In the latter case, penetration depth is an important parameter and is included in the present analysis. A single-pulse picosecond dye laser beam (1.5 microns diameter) focused onto a single cell component can upset a single memory cell; clusters of memory cell upsets (multiple errors) were observed when the laser energy was increased above the threshold energy. The multiple errors were analyzed as a function of the bias voltage and total energy of a single pulse. A diffusion model to distinguish the multiple upsets from the laser-induced charge agreed well with previously reported heavy ion data.

  7. CMOS integration of high-k/metal gate transistors in diffusion and gate replacement (D&GR) scheme for dynamic random access memory peripheral circuits

    NASA Astrophysics Data System (ADS)

    Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto

    2018-04-01

    Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.

  8. The storage system of PCM based on random access file system

    NASA Astrophysics Data System (ADS)

    Han, Wenbing; Chen, Xiaogang; Zhou, Mi; Li, Shunfen; Li, Gezi; Song, Zhitang

    2016-10-01

    Emerging memory technologies such as Phase change memory (PCM) tend to offer fast, random access to persistent storage with better scalability. It's a hot topic of academic and industrial research to establish PCM in storage hierarchy to narrow the performance gap. However, the existing file systems do not perform well with the emerging PCM storage, which access storage medium via a slow, block-based interface. In this paper, we propose a novel file system, RAFS, to bring about good performance of PCM, which is built in the embedded platform. We attach PCM chips to the memory bus and build RAFS on the physical address space. In the proposed file system, we simplify traditional system architecture to eliminate block-related operations and layers. Furthermore, we adopt memory mapping and bypassed page cache to reduce copy overhead between the process address space and storage device. XIP mechanisms are also supported in RAFS. To the best of our knowledge, we are among the first to implement file system on real PCM chips. We have analyzed and evaluated its performance with IOZONE benchmark tools. Our experimental results show that the RAFS on PCM outperforms Ext4fs on SDRAM with small record lengths. Based on DRAM, RAFS is significantly faster than Ext4fs by 18% to 250%.

  9. Memory Benchmarks for SMP-Based High Performance Parallel Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, A B; de Supinski, B; Mueller, F

    2001-11-20

    As the speed gap between CPU and main memory continues to grow, memory accesses increasingly dominates the performance of many applications. The problem is particularly acute for symmetric multiprocessor (SMP) systems, where the shared memory may be accessed concurrently by a group of threads running on separate CPUs. Unfortunately, several key issues governing memory system performance in current systems are not well understood. Complex interactions between the levels of the memory hierarchy, buses or switches, DRAM back-ends, system software, and application access patterns can make it difficult to pinpoint bottlenecks and determine appropriate optimizations, and the situation is even moremore » complex for SMP systems. To partially address this problem, we formulated a set of multi-threaded microbenchmarks for characterizing and measuring the performance of the underlying memory system in SMP-based high-performance computers. We report our use of these microbenchmarks on two important SMP-based machines. This paper has four primary contributions. First, we introduce a microbenchmark suite to systematically assess and compare the performance of different levels in SMP memory hierarchies. Second, we present a new tool based on hardware performance monitors to determine a wide array of memory system characteristics, such as cache sizes, quickly and easily; by using this tool, memory performance studies can be targeted to the full spectrum of performance regimes with many fewer data points than is otherwise required. Third, we present experimental results indicating that the performance of applications with large memory footprints remains largely constrained by memory. Fourth, we demonstrate that thread-level parallelism further degrades memory performance, even for the latest SMPs with hardware prefetching and switch-based memory interconnects.« less

  10. DESTINY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-03-10

    DESTINY is a comprehensive tool for modeling 3D and 2D cache designs using SRAM,embedded DRAM (eDRAM), spin transfer torque RAM (STT-RAM), resistive RAM (ReRAM), and phase change RAM (PCN). In its purpose, it is similar to CACTI, CACTI-3DD or NVSim. DESTINY is very useful for performing design-space exploration across several dimensions, such as optimizing for a target (e.g. latency, area or energy-delay product) for agiven memory technology, choosing the suitable memory technology or fabrication method (i.e. 2D v/s 3D) for a given optimization target, etc. DESTINY has been validated against several cache prototypes. DESTINY is expected to boost studies ofmore » next-generation memory architectures used in systems ranging from mobile devices to extreme-scale supercomputers.« less

  11. 78 FR 53159 - Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same: Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... instituted this investigation on December 21, 2011, based on a complaint filed by Elpida Memory, Inc., of Tokyo, Japan, and Elpida Memory (USA) Inc. of Sunnyvale, California (collectively, ``Elpida''). 76 FR...

  12. A Survey Of Architectural Approaches for Managing Embedded DRAM and Non-volatile On-chip Caches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh; Vetter, Jeffrey S; Li, Dong

    Recent trends of CMOS scaling and increasing number of on-chip cores have led to a large increase in the size of on-chip caches. Since SRAM has low density and consumes large amount of leakage power, its use in designing on-chip caches has become more challenging. To address this issue, researchers are exploring the use of several emerging memory technologies, such as embedded DRAM, spin transfer torque RAM, resistive RAM, phase change RAM and domain wall memory. In this paper, we survey the architectural approaches proposed for designing memory systems and, specifically, caches with these emerging memory technologies. To highlight theirmore » similarities and differences, we present a classification of these technologies and architectural approaches based on their key characteristics. We also briefly summarize the challenges in using these technologies for architecting caches. We believe that this survey will help the readers gain insights into the emerging memory device technologies, and their potential use in designing future computing systems.« less

  13. 77 FR 33240 - Certain Semiconductor Chips With DRAM Circuitry, and Modules and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov . Hearing-impaired persons... December 21, 2011, based on a complaint filed by Elpida Memory, Inc. of Tokyo, Japan and Elpida Memory (USA...

  14. 76 FR 79215 - Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... 1930, as amended, 19 U.S.C. 1337, on behalf of Elpida Memory, Inc. of Tokyo, Japan and Elpida Memory... of investigation shall be served: (a) The complainants are: Elpida Memory, Inc., Sumitomo Seimei Yaesu Bldg. 3F, 2-1 Yaesu 2-chome, Chuo-ku, Tokyo 104-0028, Japan. Elpida Memory (USA) Inc., 1175 Sonora...

  15. Built-in self-repair of VLSI memories employing neural nets

    NASA Astrophysics Data System (ADS)

    Mazumder, Pinaki

    1998-10-01

    The decades of the Eighties and the Nineties have witnessed the spectacular growth of VLSI technology, when the chip size has increased from a few hundred devices to a staggering multi-millon transistors. This trend is expected to continue as the CMOS feature size progresses towards the nanometric dimension of 100 nm and less. SIA roadmap projects that, where as the DRAM chips will integrate over 20 billion devices in the next millennium, the future microprocessors may incorporate over 100 million transistors on a single chip. As the VLSI chip size increase, the limited accessibility of circuit components poses great difficulty for external diagnosis and replacement in the presence of faulty components. For this reason, extensive work has been done in built-in self-test techniques, but little research is known concerning built-in self-repair. Moreover, the extra hardware introduced by conventional fault-tolerance techniques is also likely to become faulty, therefore causing the circuit to be useless. This research demonstrates the feasibility of implementing electronic neural networks as intelligent hardware for memory array repair. Most importantly, we show that the neural network control possesses a robust and degradable computing capability under various fault conditions. Overall, a yield analysis performed on 64K DRAM's shows that the yield can be improved from as low as 20 percent to near 99 percent due to the self-repair design, with overhead no more than 7 percent.

  16. 76 FR 72214 - Certain Semiconductor Chips with DRAM Circuitry, and Modules and Products Containing Same Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ...://edis.usitc.gov . Hearing-impaired persons are advised that information on this matter can be obtained... Commission has received a complaint filed on behalf of Elpida Memory, Inc. and Elpida Memory (USA) Inc. on...

  17. Non-volatile, high density, high speed, Micromagnet-Hall effect Random Access Memory (MHRAM)

    NASA Technical Reports Server (NTRS)

    Wu, Jiin C.; Katti, Romney R.; Stadler, Henry L.

    1991-01-01

    The micromagnetic Hall effect random access memory (MHRAM) has the potential of replacing ROMs, EPROMs, EEPROMs, and SRAMs because of its ability to achieve non-volatility, radiation hardness, high density, and fast access times, simultaneously. Information is stored magnetically in small magnetic elements (micromagnets), allowing unlimited data retention time, unlimited numbers of rewrite cycles, and inherent radiation hardness and SEU immunity, making the MHRAM suitable for ground based as well as spaceflight applications. The MHRAM device design is not affected by areal property fluctuations in the micromagnet, so high operating margins and high yield can be achieved in large scale integrated circuit (IC) fabrication. The MHRAM has short access times (less than 100 nsec). Write access time is short because on-chip transistors are used to gate current quickly, and magnetization reversal in the micromagnet can occur in a matter of a few nanoseconds. Read access time is short because the high electron mobility sensor (InAs or InSb) produces a large signal voltage in response to the fringing magnetic field from the micromagnet. High storage density is achieved since a unit cell consists only of two transistors and one micromagnet Hall effect element. By comparison, a DRAM unit cell has one transistor and one capacitor, and a SRAM unit cell has six transistors.

  18. The future of memory

    NASA Astrophysics Data System (ADS)

    Marinella, M.

    In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.

  19. Processing and properties of Pb(Mg(1/3)Nb(2/3))O3--PbTiO3 thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tantigate, C.; Lee, J.; Safari, A.

    1995-03-01

    The objectives of this study were to prepare in situ Pb(Mg(1/3)Nb(2/3))O3 (PMN) and PMN-PT thin films by pulsed laser deposition and to investigate the electrical features of thin films for possible dynamic random access memory (DRAM) and microactuator applications. The impact of processing parameters such compositions, substrate temperature, and oxygen pressure on perovskite phase formation and dielectric characteristics were reported. It was found that the highest dielectric constant, measured at room temperature and 10 kHz, was attained from the PMN with 99% perovskite.

  20. Electrical memory characteristics of a nondoped pi-conjugated polymer bearing carbazole moieties.

    PubMed

    Park, Samdae; Lee, Taek Joon; Kim, Dong Min; Kim, Jin Chul; Kim, Kyungtae; Kwon, Wonsang; Ko, Yong-Gi; Choi, Heungyeal; Chang, Taihyun; Ree, Moonhor

    2010-08-19

    Poly[bis(9H-carbazole-9-ethyl)dipropargylmalonate] (PCzDPM) is a novel pi-conjugated polymer bearing carbazole moieties that has been synthesized by polymerization of bis(9H-carbazole-9-ethyl)dipropargylmalonate with the aid of molybdenum chloride solution as the catalyst. This polymer is thermally stable up to 255 degrees C under a nitrogen atmosphere and 230 degrees C in air ambient; its glass-transition temperature is 147 or 128 degrees C, depending on the polymer chain conformation (helical or planar structure). The charge-transport characteristics of PCzDPM in nanometer-scaled thin films were studied as a function of temperature and film thickness. PCzDPM films with a thickness of 15-30 nm were found to exhibit very stable dynamic random access memory (DRAM) characteristics without polarity. Furthermore, the polymer films retain DRAM characteristics up to 180 degrees C. The ON-state current is dominated by Ohmic conduction, and the OFF-state current appears to undergo a transition from Ohmic to space-charge-limited conduction with a shallow-trap distribution. The ON/OFF switching of the devices is mainly governed by filament formation. The filament formation mechanism for the switching process is supported by the metallic properties of the PCzDPM film, which result in the temperature dependence of the ON-state current. In addition, the structure of this pi-conjugated polymer was found to vary with its thermal history; this change in structure can affect filament formation in the polymer film.

  1. Static power reduction for midpoint-terminated busses

    DOEpatents

    Coteus, Paul W [Yorktown Heights, NY; Takken, Todd [Brewster, NY

    2011-01-18

    A memory system is disclosed which is comprised of a memory controller and addressable memory devices such as DRAMs. The invention provides a programmable register to control the high vs. low drive state of each bit of a memory system address and control bus during periods of bus inactivity. In this way, termination voltage supply current can be minimized, while permitting selected bus bits to be driven to a required state. This minimizes termination power dissipation while not affecting memory system performance. The technique can be extended to work for other high-speed busses as well.

  2. Patterning optimization for 55nm design rule DRAM/flash memory using production-ready customized illuminations

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Van Den Broeke, Doug; Hsu, Stephen; Hsu, Michael; Park, Sangbong; Berger, Gabriel; Coskun, Tamer; de Vocht, Joep; Chen, Fung; Socha, Robert; Park, JungChul; Gronlund, Keith

    2005-11-01

    Illumination optimization, often combined with optical proximity corrections (OPC) to the mask, is becoming one of the critical components for a production-worthy lithography process for 55nm-node DRAM/Flash memory devices and beyond. At low-k1, e.g. k1<0.31, both resolution and imaging contrast can be severely limited by the current imaging tools while using the standard illumination sources. Illumination optimization is a process where the source shape is varied, in both profile and intensity distribution, to achieve enhancement in the final image contrast as compared to using the non-optimized sources. The optimization can be done efficiently for repetitive patterns such as DRAM/Flash memory cores. However, illumination optimization often produces source shapes that are "free-form" like and they can be too complex to be directly applicable for production and lack the necessary radial and annular symmetries desirable for the diffractive optical element (DOE) based illumination systems in today's leading lithography tools. As a result, post-optimization rendering and verification of the optimized source shape are often necessary to meet the production-ready or manufacturability requirements and ensure optimal performance gains. In this work, we describe our approach to the illumination optimization for k1<0.31 DRAM/Flash memory patterns, using an ASML XT:1400i at NA 0.93, where the all necessary manufacturability requirements are fully accounted for during the optimization. The imaging contrast in the resist is optimized in a reduced solution space constrained by the manufacturability requirements, which include minimum distance between poles, minimum opening pole angles, minimum ring width and minimum source filling factor in the sigma space. For additional performance gains, the intensity within the optimized source can vary in a gray-tone fashion (eight shades used in this work). Although this new optimization approach can sometimes produce closely spaced solutions as gauged by the NILS based metrics, we show that the optimal and production-ready source shape solution can be easily determined by comparing the best solutions to the "free-form" solution and more importantly, by their respective imaging fidelity and process latitude ranking. Imaging fidelity and process latitude simulations are performed to analyze the impact and sensitivity of the manufacturability requirements on pattern specific illumination optimizations using ASML XT:1400i and other latest imaging systems. Mask model based OPC (MOPC) is applied and optimized sequentially to ensure that the CD uniformity requirements are met.

  3. Processing-in-Memory Enabled Graphics Processors for 3D Rendering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Chenhao; Song, Shuaiwen; Wang, Jing

    2017-02-06

    The performance of 3D rendering of Graphics Processing Unit that convents 3D vector stream into 2D frame with 3D image effects significantly impact users’ gaming experience on modern computer systems. Due to the high texture throughput in 3D rendering, main memory bandwidth becomes a critical obstacle for improving the overall rendering performance. 3D stacked memory systems such as Hybrid Memory Cube (HMC) provide opportunities to significantly overcome the memory wall by directly connecting logic controllers to DRAM dies. Based on the observation that texel fetches significantly impact off-chip memory traffic, we propose two architectural designs to enable Processing-In-Memory based GPUmore » for efficient 3D rendering.« less

  4. BLACKCOMB2: Hardware-software co-design for non-volatile memory in exascale systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudge, Trevor

    This work was part of a larger project, Blackcomb2, centered at Oak Ridge National Labs (Jeff Vetter PI) to investigate the opportunities for replacing or supplementing DRAM main memory with nonvolatile memory (NVmemory) in Exascale memory systems. The goal was to reduce the energy consumed by in future supercomputer memory systems and to improve their resiliency. Building on the accomplishments of the original Blackcomb Project, funded in 2010, the goal for Blackcomb2 was to identify, evaluate, and optimize the most promising emerging memory technologies, architecture hardware and software technologies, which are essential to provide the necessary memory capacity, performance, resilience,more » and energy efficiency in Exascale systems. Capacity and energy are the key drivers.« less

  5. Memory Circuit Fault Simulator

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.; McClure, Tucker

    2013-01-01

    Spacecraft are known to experience significant memory part-related failures and problems, both pre- and postlaunch. These memory parts include both static and dynamic memories (SRAM and DRAM). These failures manifest themselves in a variety of ways, such as pattern-sensitive failures, timingsensitive failures, etc. Because of the mission critical nature memory devices play in spacecraft architecture and operation, understanding their failure modes is vital to successful mission operation. To support this need, a generic simulation tool that can model different data patterns in conjunction with variable write and read conditions was developed. This tool is a mathematical and graphical way to embed pattern, electrical, and physical information to perform what-if analysis as part of a root cause failure analysis effort.

  6. A Case for Tamper-Resistant and Tamper-Evident Computer Systems

    DTIC Science & Technology

    2007-02-01

    such as Kerberos is hard to apply [2] B . Gassend, G. Sub, D. Clarke, M. Dijk, and S. Devadas . Caches and Hash Trees for Efficient Memory Integrity...the block’s data from DRAM. For authentication, Merkle [14] G. Suh, D. Clarke, B . Gassend, M. van Dijk, and S. Devadas . Efficient Memory Integrity...wwi4serverwatch.com/news/article.php/ tion where a data block is encrypted or decrypted through an XOR 1399451, 2000. [11] B . Rogers, Y. Solihin

  7. Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors

    NASA Astrophysics Data System (ADS)

    Hu, C. Y.

    2016-12-01

    The realization of quantum computers and quantum Internet requires not only quantum gates and quantum memories, but also transistors at single-photon levels to control the flow of information encoded on single photons. Single-photon transistor (SPT) is an optical transistor in the quantum limit, which uses a single photon to open or block a photonic channel. In sharp contrast to all previous SPT proposals which are based on single-photon nonlinearities, here I present a design for a high-gain and high-speed (up to THz) SPT based on a linear optical effect: giant circular birefringence induced by a single spin in a double-sided optical microcavity. A gate photon sets the spin state via projective measurement and controls the light propagation in the optical channel. This spin-cavity transistor can be directly configured as diodes, routers, DRAM units, switches, modulators, etc. Due to the duality as quantum gate and transistor, the spin-cavity unit provides a solid-state platform ideal for future Internet: a mixture of all-optical Internet with quantum Internet.

  8. Characterization of PZT Capacitor Structures with Various Electrode Materials Processed In-Situ Using AN Automated, Rotating Elemental Target, Ion Beam Deposition System

    NASA Astrophysics Data System (ADS)

    Gifford, Kenneth Douglas

    Ferroelectric thin film capacitor structures containing lead zirconate titanate (PZT) as the dielectric, with the chemical formula Pb(rm Zr_{x }Ti_{1-x})O_3, were synthesized in-situ with an automated ion beam sputter deposition system. Platinum (Pt), conductive ruthenium oxide (RuO_2), and two types of Pt-RuO_2 hybrid electrodes were used as the electrode materials. The capacitor structures are characterized in terms of microstructure and electrical characteristics. Reduction or elimination of non-ferroelectric phases, that nucleate during PZT processing on Pt/TiO _2/MgO and RuO_2/MgO substrates, is achieved by reducing the thickness of the individually deposited layers and by interposing a buffer layer (~100-200A) of PbTiO _3 (PT) between the bottom electrode and the PZT film. Capacitor structures containing a Pt electrode exhibit poor fatigue resistance, irregardless of the PZT microstructure or the use of a PT buffer layer. From these results, and results from similar capacitors synthesized with sol-gel and laser ablation, PZT-based capacitor structures containing Pt electrodes are considered to be unsuitable for use in memory devices. Using a PT buffer layer, in capacitor structures containing RuO_2 top and bottom electrodes and polycrystalline, highly (101) oriented PZT, reduces or eliminates the nucleation of zirconium-titanium oxide, non-ferroelectric species at the bottom electrode interface during processing. This results in good fatigue resistance up to ~2times10^ {10} switching cycles. DC leakage current density vs. time measurements follow the Curie-von Schweidler law, J(t) ~ t^ {rm -n}. Identification of the high electric field current conduction mechanism is inconclusive. The good fatigue resistance, low dc leakage current, and excellent retention, qualifies the use of these capacitor structures in non-volatile random access (NVRAM) and dynamic random access (DRAM) memory devices. Excellent fatigue resistance (10% loss in remanent polarization up to ~2times10^ {10} switching cycles), low dc leakage current, and excellent retention are observed in capacitor structures containing polycrystalline PZT (exhibiting dominant (001) and (100) XRD reflections), a Pt-RuO_2 hybrid bottom electrode (Type IA), and an RuO _2 top electrode. These results, and electrical characterization results on capacitors containing co-deposited Pt-RuO_2 hybrid electrodes (Type II), show potential for application of these capacitor structures in NVRAM and DRAM memory devices.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Choong Koo; Park, Hyo Jeong; Kim, In Chool

    Reserve margins of Korea Electric Power Corporation (KEPCO) was 12% in 1993, however it was reduced to less than 3% in the summer of 1994 due to increase of electric power consumption caused by life style change based on economic growth. Therefore stable supply of electric power to industrial plant was threatened during last summer`s peak. The process of semiconductor manufacturing is very precious and full processing time reaches several months. Furthermore interruption of power supply to the process causes abortion of every product in the process. Therefore, power failure of less than one (1) second, may result in enormousmore » loss of capital. In order to protect disaster caused by power shortage during summer peaks. Samsung Electronics Co., Ltd (SEC) planned to construct LNG combined cycle power plant for the Klheung semiconductor plant which is the world`s leading maker of dynamic random access memory (DRAM) chips.« less

  10. The BlueGene/L supercomputer

    NASA Astrophysics Data System (ADS)

    Bhanota, Gyan; Chen, Dong; Gara, Alan; Vranas, Pavlos

    2003-05-01

    The architecture of the BlueGene/L massively parallel supercomputer is described. Each computing node consists of a single compute ASIC plus 256 MB of external memory. The compute ASIC integrates two 700 MHz PowerPC 440 integer CPU cores, two 2.8 Gflops floating point units, 4 MB of embedded DRAM as cache, a memory controller for external memory, six 1.4 Gbit/s bi-directional ports for a 3-dimensional torus network connection, three 2.8 Gbit/s bi-directional ports for connecting to a global tree network and a Gigabit Ethernet for I/O. 65,536 of such nodes are connected into a 3-d torus with a geometry of 32×32×64. The total peak performance of the system is 360 Teraflops and the total amount of memory is 16 TeraBytes.

  11. Exploration of perpendicular magnetic anisotropy material system for application in spin transfer torque - Random access memory

    NASA Astrophysics Data System (ADS)

    Natarajarathinam, Anusha

    Perpendicular magnetic anisotropy (PMA) materials have unique advantages when used in magnetic tunnel junctions (MTJ) which are the most critical part of spin-torque transfer random access memory devices (STT-RAMs) that are being researched intensively as future non-volatile memory technology. They have high magnetoresistance which improves their sensitivity. The STT-RAM has several advantages over competing technologies, for instance, low power consumption, non-volatility, ultra-fast read and write speed and high endurance. In personal computers, it can replace SRAM for high-speed applications, Flash for non-volatility, and PSRAM and DRAM for high-speed program execution. The main aim of this research is to identify and optimize the best perpendicular magnetic anisotropy (PMA) material system for application to STT-RAM technology. Preliminary search for perpendicular magnetic anisotropy (PMA) materials for pinned layer for MTJs started with the exploration and optimization of crystalline alloys such as Co50Pd50 alloy, Mn50Al50 and amorphous alloys such as Tb21Fe72Co7 and are first presented in this work. Further optimization includes the study of Co/[Pd/Pt]x multilayers (ML), and the development of perpendicular synthetic antiferromagnets (SAF) utilizing these multilayers. Focused work on capping and seed layers to evaluate interfacial perpendicular anisotropy in free layers for pMTJs is then discussed. Optimization of the full perpendicular magnetic tunnel junction (pMTJ) includes the CoFeB/MgO/CoFeB trilayer coupled to a pinned/pinning layer with perpendicular Co/[Pd/Pt]x SAF and a thin Ta seeded CoFeB free layer. Magnetometry, simulations, annealing studies, transport measurements and TEM analysis on these samples will then be presented.

  12. 3D Stacked Memory Final Report CRADA No. TC-0494-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhardt, A.; Beene, G.

    TI and LLNL demonstrated: (1) a process for the fabrication of 3-D memory using stacked DRAM chips, and (2) a fast prototyping process for 3-D stacks and MCMs. The metallization to route the chip pads to the sides of the die was carried out in a single high-speed masking step. The mask was not the usual physical one in glass and chrome, but was simply a computer file used to control the laser patterning process. Changes in either chip or customer circuit-board pad layout were easily and inexpensively accommodated, so that prototyping was a natural consequence of the laser patterningmore » process. As in the current TI process, a dielectric layer was added to the wafer, and vias to the chip I/0 pads were formed. All of the steps in Texas Instruments earlier process that were required to gold bump the pads were eliminated, significantly reducing fabrication cost and complexity. Pads were created on the sides of ·the die, which became pads on the side of the stack. In order to extend the process to accommodate non-memory devices with substantially greater I/0 than is required for DRAMs, pads were patterned on two sides of the memory stacks as a proof of principle. Stacking and bonding were done using modifications of the current TI process. After stacking and bonding, the pads on the sides of the dice were connected by application of a polyimide insulator film with laser ablation of the polyimide to form contacts to the pads. Then metallization was accomplished in the same manner as on the individual die.« less

  13. Research on Optical Transmitter and Receiver Module Used for High-Speed Interconnection between CPU and Memory

    NASA Astrophysics Data System (ADS)

    He, Huimin; Liu, Fengman; Li, Baoxia; Xue, Haiyun; Wang, Haidong; Qiu, Delong; Zhou, Yunyan; Cao, Liqiang

    2016-11-01

    With the development of the multicore processor, the bandwidth and capacity of the memory, rather than the memory area, are the key factors in server performance. At present, however, the new architectures, such as fully buffered DIMM (FBDIMM), hybrid memory cube (HMC), and high bandwidth memory (HBM), cannot be commercially applied in the server. Therefore, a new architecture for the server is proposed. CPU and memory are separated onto different boards, and optical interconnection is used for the communication between them. Each optical module corresponds to each dual inline memory module (DIMM) with 64 channels. Compared to the previous technology, not only can the architecture realize high-capacity and wide-bandwidth memory, it also can reduce power consumption and cost, and be compatible with the existing dynamic random access memory (DRAM). In this article, the proposed module with system-in-package (SiP) integration is demonstrated. In the optical module, the silicon photonic chip is included, which is a promising technology to be applied in the next-generation data exchanging centers. And due to the bandwidth-distance performance of the optical interconnection, SerDes chips are introduced to convert the 64-bit data at 800 Mbps from/to 4-channel data at 12.8 Gbps after/before they are transmitted though optical fiber. All the devices are packaged on cheap organic substrates. To ensure the performance of the whole system, several optimization efforts have been performed on the two modules. High-speed interconnection traces have been designed and simulated with electromagnetic simulation software. Steady-state thermal characteristics of the transceiver module have been evaluated by ANSYS APLD based on finite-element methodology (FEM). Heat sinks are placed at the hotspot area to ensure the reliability of all working chips. Finally, this transceiver system based on silicon photonics is measured, and the eye diagrams of data and clock signals are verified.

  14. Attachment method for stacked integrated circuit (IC) chips

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    1999-01-01

    An attachment method for stacked integrated circuit (IC) chips. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM.

  15. Evaluating architecture impact on system energy efficiency

    PubMed Central

    Yu, Shijie; Wang, Rui; Luan, Zhongzhi; Qian, Depei

    2017-01-01

    As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget. PMID:29161317

  16. Evaluating architecture impact on system energy efficiency.

    PubMed

    Yu, Shijie; Yang, Hailong; Wang, Rui; Luan, Zhongzhi; Qian, Depei

    2017-01-01

    As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget.

  17. Fault-tolerant NAND-flash memory module for next-generation scientific instruments

    NASA Astrophysics Data System (ADS)

    Lange, Tobias; Michel, Holger; Fiethe, Björn; Michalik, Harald; Walter, Dietmar

    2015-10-01

    Remote sensing instruments on today's space missions deliver a high amount of data which is typically evaluated on ground. Especially for deep space missions the telemetry downlink is very limited which creates the need for the scientific evaluation and thereby a reduction of data volume already on-board the spacecraft. A demanding example is the Polarimetric and Helioseismic Imager (PHI) instrument on Solar Orbiter. To enable on-board offline processing for data reduction, the instrument has to be equipped with a high capacity memory module. The module is based on non-volatile NAND-Flash technology, which requires more advanced operation than volatile DRAM. Unlike classical mass memories, the module is integrated into the instrument and allows readback of data for processing. The architecture and safe operation of such kind of memory module is described in the following paper.

  18. 75 FR 9438 - Samsung Austin Semiconductor, LLC, DRAM Fab 1, a Subsidiary of Samsung Electronics Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Semiconductor, LLC, DRAM Fab 1, a Subsidiary of Samsung Electronics Corporation, Including On-Site Leased... Semiconductor, LLC, a subsidiary of Samsung Electronics Corporation, DRAM Fab 1, including on-site leased.... The workers are engaged in activities related to the production of DRAM chips for use in electronics...

  19. Layout optimization of DRAM cells using rigorous simulation model for NTD

    NASA Astrophysics Data System (ADS)

    Jeon, Jinhyuck; Kim, Shinyoung; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Kuechler, Bernd; Zimmermann, Rainer; Muelders, Thomas; Klostermann, Ulrich; Schmoeller, Thomas; Do, Mun-hoe; Choi, Jung-Hoe

    2014-03-01

    DRAM chip space is mainly determined by the size of the memory cell array patterns which consist of periodic memory cell features and edges of the periodic array. Resolution Enhancement Techniques (RET) are used to optimize the periodic pattern process performance. Computational Lithography such as source mask optimization (SMO) to find the optimal off axis illumination and optical proximity correction (OPC) combined with model based SRAF placement are applied to print patterns on target. For 20nm Memory Cell optimization we see challenges that demand additional tool competence for layout optimization. The first challenge is a memory core pattern of brick-wall type with a k1 of 0.28, so it allows only two spectral beams to interfere. We will show how to analytically derive the only valid geometrically limited source. Another consequence of two-beam interference limitation is a "super stable" core pattern, with the advantage of high depth of focus (DoF) but also low sensitivity to proximity corrections or changes of contact aspect ratio. This makes an array edge correction very difficult. The edge can be the most critical pattern since it forms the transition from the very stable regime of periodic patterns to non-periodic periphery, so it combines the most critical pitch and highest susceptibility to defocus. Above challenge makes the layout correction to a complex optimization task demanding a layout optimization that finds a solution with optimal process stability taking into account DoF, exposure dose latitude (EL), mask error enhancement factor (MEEF) and mask manufacturability constraints. This can only be achieved by simultaneously considering all criteria while placing and sizing SRAFs and main mask features. The second challenge is the use of a negative tone development (NTD) type resist, which has a strong resist effect and is difficult to characterize experimentally due to negative resist profile taper angles that perturb CD at bottom characterization by scanning electron microscope (SEM) measurements. High resist impact and difficult model data acquisition demand for a simulation model that hat is capable of extrapolating reliably beyond its calibration dataset. We use rigorous simulation models to provide that predictive performance. We have discussed the need of a rigorous mask optimization process for DRAM contact cell layout yielding mask layouts that are optimal in process performance, mask manufacturability and accuracy. In this paper, we have shown the step by step process from analytical illumination source derivation, a NTD and application tailored model calibration to layout optimization such as OPC and SRAF placement. Finally the work has been verified with simulation and experimental results on wafer.

  20. Intelligent holographic databases

    NASA Astrophysics Data System (ADS)

    Barbastathis, George

    Memory is a key component of intelligence. In the human brain, physical structure and functionality jointly provide diverse memory modalities at multiple time scales. How could we engineer artificial memories with similar faculties? In this thesis, we attack both hardware and algorithmic aspects of this problem. A good part is devoted to holographic memory architectures, because they meet high capacity and parallelism requirements. We develop and fully characterize shift multiplexing, a novel storage method that simplifies disk head design for holographic disks. We develop and optimize the design of compact refreshable holographic random access memories, showing several ways that 1 Tbit can be stored holographically in volume less than 1 m3, with surface density more than 20 times higher than conventional silicon DRAM integrated circuits. To address the issue of photorefractive volatility, we further develop the two-lambda (dual wavelength) method for shift multiplexing, and combine electrical fixing with angle multiplexing to demonstrate 1,000 multiplexed fixed holograms. Finally, we propose a noise model and an information theoretic metric to optimize the imaging system of a holographic memory, in terms of storage density and error rate. Motivated by the problem of interfacing sensors and memories to a complex system with limited computational resources, we construct a computer game of Desert Survival, built as a high-dimensional non-stationary virtual environment in a competitive setting. The efficacy of episodic learning, implemented as a reinforced Nearest Neighbor scheme, and the probability of winning against a control opponent improve significantly by concentrating the algorithmic effort to the virtual desert neighborhood that emerges as most significant at any time. The generalized computational model combines the autonomous neural network and von Neumann paradigms through a compact, dynamic central representation, which contains the most salient features of the sensory inputs, fused with relevant recollections, reminiscent of the hypothesized cognitive function of awareness. The Declarative Memory is searched both by content and address, suggesting a holographic implementation. The proposed computer architecture may lead to a novel paradigm that solves 'hard' cognitive problems at low cost.

  1. A novel barium strontium titanate/nickel/titanium nitride/silicon structure for gigabit-scale DRAM capacitors

    NASA Astrophysics Data System (ADS)

    Ritums, Dwight Lenards

    A materials system has been developed for advanced oxide high permittivity capacitors for use in Dynamic Random Access Memory (DRAM) applications. A capacitor test structure has been fabricated, demonstrating the integration of this materials system onto Si. It is a 3-D stacked electrode structure which uses the high-K dielectric material Ba1- xSrxTiO 3 (BST) and a novel Ni/TiN bottom electrode system. The structure was grown using pulsed laser deposition (PLD), photo-assisted metal-organic chemical vapor deposition (PhA-MOCVD), and electron beam deposition, and resulted in thin film capacitors with dielectric constants over 500. Other advanced oxides, principally SrVO3, were also investigated for use as electrode materials. The fabricated test structure is 3 μgm wide and 1 μm thick. RIE was used to generate the 3-D structure, and an etch gas recipe was developed to pattern the 3-D electrode structure onto the TiN. The Ni was deposited by electron beam deposition, and the BST was grown by PLD and PhA-MOCVD. Conformal coating of the electrode by the BST was achieved. The film structure was analyzed with XRD, SEM, EDS, XPS, AES, and AFM, and the electronic properties of the devices were characterized. Permittivites of up to 500 were seen in the PLD-grown films, and values up to 700 were seen in the MOCVD- deposited films. The proof of concept of a high permittivity material directly integrated onto Si has been demonstrated for this capacitor materials system. With further lithographic developments, this system can be applied toward gigabit device fabrication.

  2. Makalu: fast recoverable allocation of non-volatile memory

    DOE PAGES

    Bhandari, Kumud; Chakrabarti, Dhruva R.; Boehm, Hans-J.

    2016-10-19

    Byte addressable non-volatile memory (NVRAM) is likely to supplement, and perhaps eventually replace, DRAM. Applications can then persist data structures directly in memory instead of serializing them and storing them onto a durable block device. However, failures during execution can leave data structures in NVRAM unreachable or corrupt. In this paper, we present Makalu, a system that addresses non-volatile memory management. Makalu offers an integrated allocator and recovery-time garbage collector that maintains internal consistency, avoids NVRAM memory leaks, and is efficient, all in the face of failures. We show that a careful allocator design can support a less restrictive andmore » a much more familiar programming model than existing persistent memory allocators. Our allocator significantly reduces the per allocation persistence overhead by lazily persisting non-essential metadata and by employing a post-failure recovery-time garbage collector. Experimental results show that the resulting online speed and scalability of our allocator are comparable to well-known transient allocators, and significantly better than state-of-the-art persistent allocators.« less

  3. Makalu: fast recoverable allocation of non-volatile memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Kumud; Chakrabarti, Dhruva R.; Boehm, Hans-J.

    Byte addressable non-volatile memory (NVRAM) is likely to supplement, and perhaps eventually replace, DRAM. Applications can then persist data structures directly in memory instead of serializing them and storing them onto a durable block device. However, failures during execution can leave data structures in NVRAM unreachable or corrupt. In this paper, we present Makalu, a system that addresses non-volatile memory management. Makalu offers an integrated allocator and recovery-time garbage collector that maintains internal consistency, avoids NVRAM memory leaks, and is efficient, all in the face of failures. We show that a careful allocator design can support a less restrictive andmore » a much more familiar programming model than existing persistent memory allocators. Our allocator significantly reduces the per allocation persistence overhead by lazily persisting non-essential metadata and by employing a post-failure recovery-time garbage collector. Experimental results show that the resulting online speed and scalability of our allocator are comparable to well-known transient allocators, and significantly better than state-of-the-art persistent allocators.« less

  4. Reed Solomon codes for error control in byte organized computer memory systems

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.

    1984-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation are presented. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.

  5. Emerging memories

    NASA Astrophysics Data System (ADS)

    Baldi, Livio; Bez, Roberto; Sandhu, Gurtej

    2014-12-01

    Memory is a key component of any data processing system. Following the classical Turing machine approach, memories hold both the data to be processed and the rules for processing them. In the history of microelectronics, the distinction has been rather between working memory, which is exemplified by DRAM, and storage memory, exemplified by NAND. These two types of memory devices now represent 90% of all memory market and 25% of the total semiconductor market, and have been the technology drivers in the last decades. Even if radically different in characteristics, they are however based on the same storage mechanism: charge storage, and this mechanism seems to be near to reaching its physical limits. The search for new alternative memory approaches, based on more scalable mechanisms, has therefore gained new momentum. The status of incumbent memory technologies and their scaling limitations will be discussed. Emerging memory technologies will be analyzed, starting from the ones that are already present for niche applications, and which are getting new attention, thanks to recent technology breakthroughs. Maturity level, physical limitations and potential for scaling will be compared to existing memories. At the end the possible future composition of memory systems will be discussed.

  6. Single-crystal silicon trench etching for fabrication of highly integrated circuits

    NASA Astrophysics Data System (ADS)

    Engelhardt, Manfred

    1991-03-01

    The development of single crystal silicon trench etching for fabrication of memory cells in 4 16 and 64Mbit DRAMs is reviewed in this paper. A variety of both etch tools and process gases used for the process development is discussed since both equipment and etch chemistry had to be improved and changed respectively to meet the increasing requirements for high fidelity pattern transfer with increasing degree of integration. In additon to DRAM cell structures etch results for deep trench isolation in advanced bipolar ICs and ASICs are presented for these applications grooves were etched into silicon through a highly doped buried layer and at the borderline of adjacent p- and n-well areas respectively. Shallow trench etching of large and small exposed areas with identical etch rates is presented as an approach to replace standard LOCOS isolation by an advanced isolation technique. The etch profiles were investigated with SEM TEM and AES to get information on contathination and damage levels and on the mechanism leading to anisotropy in the dry etch process. Thermal wave measurements were performed on processed single crystal silicon substrates for a fast evaluation of the process with respect to plasma-induced substrate degradation. This useful technique allows an optimization ofthe etch process regarding high electrical performance of the fully processed memory chip. The benefits of the use of magnetic fields for the development of innovative single crystal silicon dry

  7. Electrical and dielectric properties of (barium, strontium) titanium trioxide thin film capacitors for ultra-high density dynamic random access memories

    NASA Astrophysics Data System (ADS)

    Basceri, Cem

    The electrical and dielectric properties of fiber-textured, MOCVD (Basb{0.7}Srsb{0.3})TiOsb3 (BST) thin film capacitors appropriate for ultra-large scale integration (ULSI) dynamic random access memory (DRAM) applications have been analyzed. Dielectric relaxation, leakage, resistance degradation, and dielectric response phenomena, within a comprehensive matrix of external and material parameters, have been investigated. The phenomenology of the dielectric response of our BST films has been shown to be well-described by Curie-von Schweidler behavior, although the microscopic origin of this behavior has not been presently agreed upon. The time-dependent polarization behavior has been linked to the dispersion in permittivity with respect to frequency. The leakage current through our BST films has been found to be primarily limited by interfacial Schottky barriers whose properties depend on the electrode material, interface microstructure, and deposition conditions. Its temperature and voltage dependence have been interpreted via a thermionic emission model. Analysis in terms of Schottky-barrier limited current flow gave acceptable values for the cathode barrier height. The results have indicated that our BST films, appropriate for DRAM applications, do not possess depletion layers at the film-electrode interfaces. Instead, they must be considered as depleted of charge carriers across their entire thickness. Resistance degradation has been found to be thermally activated and voltage/field dependent. The results have indicated that there is a film thickness effect, which manifests itself as a decrease in the activation energy with respect to temperature for thicker films. A significant stoichiometry effect on the measured resistance degradation lifetimes has been observed. The analyses of the leakage and capacitance-voltage behaviors for the degraded samples have indicated that a demixing of oxygen vacancies occurs during resistance degradation, which causes the Schottky barrier height to decrease, in agreement with the observed relative shift of the peak capacitance as a function of voltage. For all the film thicknesses and compositions studied, extrapolated resistance degradation lifetimes of our BST films, which were obtained by using an appropriate form, are well above the current benchmark of 10 years at the DRAM operating conditions of 1.6 V and 85sp°C. Above the bulk Curie point (˜300 K), the phenomenological approach, i.e., Landau-Ginzburg-Devonshire (LGD) theory, has been demonstrated to account very well for the observed C-V behavior in our BST films. Furthermore, temperature dependent measurements gave evidence that, as expected, the form of the dielectric behavior changes near the bulk Curie point, but that the phase transition appears for some reason to be frustrated. Film thickness has been established to impact primarily the zero-bias permittivity through a thickness dependence of the first order coefficient of the LGD power series. Our analysis does indicate that if it results from a series-connected interfacial layer, that layer must be a nonlinear dielectric, as must the bulk of the film. The dielectric constant has been found to be composition dependent, reaching its highest values for compositions near the stoichiometric values. Furthermore, film stoichiometry has been established to strongly effect both the first order and third order coefficients of the LGD power series.

  8. Attachment method for stacked integrated circuit (IC) chips

    DOEpatents

    Bernhardt, A.F.; Malba, V.

    1999-08-03

    An attachment method for stacked integrated circuit (IC) chips is disclosed. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM. 12 figs.

  9. DRAM Triggers Lysosomal Membrane Permeabilization and Cell Death in CD4+ T Cells Infected with HIV

    PubMed Central

    Laforge, Mireille; Limou, Sophie; Harper, Francis; Casartelli, Nicoletta; Rodrigues, Vasco; Silvestre, Ricardo; Haloui, Houda; Zagury, Jean-Francois; Senik, Anna; Estaquier, Jerome

    2013-01-01

    Productive HIV infection of CD4+ T cells leads to a caspase-independent cell death pathway associated with lysosomal membrane permeabilization (LMP) and cathepsin release, resulting in mitochondrial outer membrane permeabilization (MOMP). Herein, we demonstrate that HIV infection induces damage-regulated autophagy modulator (DRAM) expression in a p53-dependent manner. Knocking down the expression of DRAM and p53 genes with specific siRNAs inhibited autophagy and LMP. However, inhibition of Atg5 and Beclin genes that prevents autophagy had a minor effect on LMP and cell death. The knock down of DRAM gene inhibited cytochrome C release, MOMP and cell death. However, knocking down DRAM, we increased viral infection and production. Our study shows for the first time the involvement of DRAM in host-pathogen interactions, which may represent a mechanism of defense via the elimination of infected cells. PMID:23658518

  10. MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2.

    PubMed

    Kim, Jin Kyung; Lee, Hye-Mi; Park, Ki-Sun; Shin, Dong-Min; Kim, Tae Sung; Kim, Yi Sak; Suh, Hyun-Woo; Kim, Soo Yeon; Kim, In Soo; Kim, Jin-Man; Son, Ji-Woong; Sohn, Kyung Mok; Jung, Sung Soo; Chung, Chaeuk; Han, Sang-Bae; Yang, Chul-Su; Jo, Eun-Kyeong

    2017-02-01

    Autophagy is an important antimicrobial effector process that defends against Mycobacterium tuberculosis (Mtb), the human pathogen causing tuberculosis (TB). MicroRNAs (miRNAs), endogenous noncoding RNAs, are involved in various biological functions and act as post-transcriptional regulators to target mRNAs. The process by which miRNAs affect antibacterial autophagy and host defense mechanisms against Mtb infections in human monocytes and macrophages is largely uncharacterized. In this study, we show that Mtb significantly induces the expression of MIR144*/hsa-miR-144-5p, which targets the 3'-untranslated region of DRAM2 (DNA damage regulated autophagy modulator 2) in human monocytes and macrophages. Mtb infection downregulated, whereas the autophagy activators upregulated, DRAM2 expression in human monocytes and macrophages by activating AMP-activated protein kinase. In addition, overexpression of MIR144* decreased DRAM2 expression and formation of autophagosomes in human monocytes, whereas inhibition of MIR144* had the opposite effect. Moreover, the levels of MIR144* were elevated, whereas DRAM2 levels were reduced, in human peripheral blood cells and tissues in TB patients, indicating the clinical significance of MIR144* and DRAM2 in human TB. Notably, DRAM2 interacted with BECN1 and UVRAG, essential components of the autophagic machinery, leading to displacement of RUBCN from the BECN1 complex and enhancement of Ptdlns3K activity. Furthermore, MIR144* and DRAM2 were critically involved in phagosomal maturation and enhanced antimicrobial effects against Mtb. Our findings identify a previously unrecognized role of human MIR144* in the inhibition of antibacterial autophagy and the innate host immune response to Mtb. Additionally, these data reveal that DRAM2 is a key coordinator of autophagy activation that enhances antimicrobial activity against Mtb.

  11. Efficient hash tables for network applications.

    PubMed

    Zink, Thomas; Waldvogel, Marcel

    2015-01-01

    Hashing has yet to be widely accepted as a component of hard real-time systems and hardware implementations, due to still existing prejudices concerning the unpredictability of space and time requirements resulting from collisions. While in theory perfect hashing can provide optimal mapping, in practice, finding a perfect hash function is too expensive, especially in the context of high-speed applications. The introduction of hashing with multiple choices, d-left hashing and probabilistic table summaries, has caused a shift towards deterministic DRAM access. However, high amounts of rare and expensive high-speed SRAM need to be traded off for predictability, which is infeasible for many applications. In this paper we show that previous suggestions suffer from the false precondition of full generality. Our approach exploits four individual degrees of freedom available in many practical applications, especially hardware and high-speed lookups. This reduces the requirement of on-chip memory up to an order of magnitude and guarantees constant lookup and update time at the cost of only minute amounts of additional hardware. Our design makes efficient hash table implementations cheaper, more predictable, and more practical.

  12. Tungsten Contact and Line Resistance Reduction with Advanced Pulsed Nucleation Layer and Low Resistivity Tungsten Treatment

    NASA Astrophysics Data System (ADS)

    Chandrashekar, Anand; Chen, Feng; Lin, Jasmine; Humayun, Raashina; Wongsenakhum, Panya; Chang, Sean; Danek, Michal; Itou, Takamasa; Nakayama, Tomoo; Kariya, Atsushi; Kawaguchi, Masazumi; Hizume, Shunichi

    2010-09-01

    This paper describes electrical testing results of new tungsten chemical vapor deposition (CVD-W) process concepts that were developed to address the W contact and bitline scaling issues on 55 nm node devices. Contact resistance (Rc) measurements in complementary metal oxide semiconductor (CMOS) devices indicate that the new CVD-W process for sub-32 nm and beyond - consisting of an advanced pulsed nucleation layer (PNL) combined with low resistivity tungsten (LRW) initiation - produces a 20-30% drop in Rc for diffused NiSi contacts. From cross-sectional bright field and dark field transmission electron microscopy (TEM) analysis, such Rc improvement can be attributed to improved plugfill and larger in-feature W grain size with the advanced PNL+LRW process. More experiments that measured contact resistance for different feature sizes point to favorable Rc scaling with the advanced PNL+LRW process. Finally, 40% improvement in line resistance was observed with this process as tested on 55 nm embedded dynamic random access memory (DRAM) devices, confirming that the advanced PNL+LRW process can be an effective metallization solution for sub-32 nm devices.

  13. NRAM: a disruptive carbon-nanotube resistance-change memory.

    PubMed

    Gilmer, D C; Rueckes, T; Cleveland, L

    2018-04-03

    Advanced memory technology based on carbon nanotubes (CNTs) (NRAM) possesses desired properties for implementation in a host of integrated systems due to demonstrated advantages of its operation including high speed (nanotubes can switch state in picoseconds), high endurance (over a trillion), and low power (with essential zero standby power). The applicable integrated systems for NRAM have markets that will see compound annual growth rates (CAGR) of over 62% between 2018 and 2023, with an embedded systems CAGR of 115% in 2018-2023 (http://bccresearch.com/pressroom/smc/bcc-research-predicts:-nram-(finally)-to-revolutionize-computer-memory). These opportunities are helping drive the realization of a shift from silicon-based to carbon-based (NRAM) memories. NRAM is a memory cell made up of an interlocking matrix of CNTs, either touching or slightly separated, leading to low or higher resistance states respectively. The small movement of atoms, as opposed to moving electrons for traditional silicon-based memories, renders NRAM with a more robust endurance and high temperature retention/operation which, along with high speed/low power, is expected to blossom in this memory technology to be a disruptive replacement for the current status quo of DRAM (dynamic RAM), SRAM (static RAM), and NAND flash memories.

  14. NRAM: a disruptive carbon-nanotube resistance-change memory

    NASA Astrophysics Data System (ADS)

    Gilmer, D. C.; Rueckes, T.; Cleveland, L.

    2018-04-01

    Advanced memory technology based on carbon nanotubes (CNTs) (NRAM) possesses desired properties for implementation in a host of integrated systems due to demonstrated advantages of its operation including high speed (nanotubes can switch state in picoseconds), high endurance (over a trillion), and low power (with essential zero standby power). The applicable integrated systems for NRAM have markets that will see compound annual growth rates (CAGR) of over 62% between 2018 and 2023, with an embedded systems CAGR of 115% in 2018-2023 (http://bccresearch.com/pressroom/smc/bcc-research-predicts:-nram-(finally)-to-revolutionize-computer-memory). These opportunities are helping drive the realization of a shift from silicon-based to carbon-based (NRAM) memories. NRAM is a memory cell made up of an interlocking matrix of CNTs, either touching or slightly separated, leading to low or higher resistance states respectively. The small movement of atoms, as opposed to moving electrons for traditional silicon-based memories, renders NRAM with a more robust endurance and high temperature retention/operation which, along with high speed/low power, is expected to blossom in this memory technology to be a disruptive replacement for the current status quo of DRAM (dynamic RAM), SRAM (static RAM), and NAND flash memories.

  15. 78 FR 24234 - Certain Semiconductor Chips With DRAM Circuitry, and Modules and Products Containing Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-819] Certain Semiconductor Chips With DRAM Circuitry, and Modules and Products Containing Same; Notice of Request for Statements on the... order barring the entry of unlicensed DRAM semiconductor chips manufactured by Nanya Technology...

  16. Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting

    NASA Technical Reports Server (NTRS)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1987-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.

  17. Measurement methods to assess diastasis of the rectus abdominis muscle (DRAM): A systematic review of their measurement properties and meta-analytic reliability generalisation.

    PubMed

    van de Water, A T M; Benjamin, D R

    2016-02-01

    Systematic literature review. Diastasis of the rectus abdominis muscle (DRAM) has been linked with low back pain, abdominal and pelvic dysfunction. Measurement is used to either screen or to monitor DRAM width. Determining which methods are suitable for screening and monitoring DRAM is of clinical value. To identify the best methods to screen for DRAM presence and monitor DRAM width. AMED, Embase, Medline, PubMed and CINAHL databases were searched for measurement property studies of DRAM measurement methods. Population characteristics, measurement methods/procedures and measurement information were extracted from included studies. Quality of all studies was evaluated using 'quality rating criteria'. When possible, reliability generalisation was conducted to provide combined reliability estimations. Thirteen studies evaluated measurement properties of the 'finger width'-method, tape measure, calipers, ultrasound, CT and MRI. Ultrasound was most evaluated. Methodological quality of these studies varied widely. Pearson's correlations of r = 0.66-0.79 were found between calipers and ultrasound measurements. Calipers and ultrasound had Intraclass Correlation Coefficients (ICC) of 0.78-0.97 for test-retest, inter- and intra-rater reliability. The 'finger width'-method had weighted Kappa's of 0.73-0.77 for test-retest reliability, but moderate agreement (63%; weighted Kappa = 0.53) between raters. Comparing calipers and ultrasound, low measurement error was found (above the umbilicus), and the methods had good agreement (83%; weighted Kappa = 0.66) for discriminative purposes. The available information support ultrasound and calipers as adequate methods to assess DRAM. For other methods limited measurement information of low to moderate quality is available and further evaluation of their measurement properties is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Model-Based Infrared Metrology for Advanced Technology Nodes and 300 mm Wafer Processing

    NASA Astrophysics Data System (ADS)

    Rosenthal, Peter A.; Duran, Carlos; Tower, Josh; Mazurenko, Alex; Mantz, Ulrich; Weidner, Peter; Kasic, Alexander

    2005-09-01

    The use of infrared spectroscopy for production semiconductor process monitoring has evolved recently from primarily unpatterned, i.e. blanket test wafer measurements in a limited historical application space of blanket epitaxial, BPSG, and FSG layers to new applications involving patterned product wafer measurements, and new measurement capabilities. Over the last several years, the semiconductor industry has adopted a new set of materials associated with copper/low-k interconnects, and new structures incorporating exotic materials including silicon germanium, SOI substrates and high aspect ratio trenches. The new device architectures and more chemically sophisticated materials have raised new process control and metrology challenges that are not addressed by current measurement technology. To address the challenges we have developed a new infrared metrology tool designed for emerging semiconductor production processes, in a package compatible with modern production and R&D environments. The tool incorporates recent advances in reflectance instrumentation including highly accurate signal processing, optimized reflectometry optics, and model-based calibration and analysis algorithms. To meet the production requirements of the modern automated fab, the measurement hardware has been integrated with a fully automated 300 mm platform incorporating front opening unified pod (FOUP) interfaces, automated pattern recognition and high throughput ultra clean robotics. The tool employs a suite of automated dispersion-model analysis algorithms capable of extracting a variety of layer properties from measured spectra. The new tool provides excellent measurement precision, tool matching, and a platform for deploying many new production and development applications. In this paper we will explore the use of model based infrared analysis as a tool for characterizing novel bottle capacitor structures employed in high density dynamic random access memory (DRAM) chips. We will explore the capability of the tool for characterizing multiple geometric parameters associated with the manufacturing process that are important to the yield and performance of advanced bottle DRAM devices.

  19. Evaluation of a controlled drinking minimal intervention for problem drinkers in general practice (the DRAMS scheme)

    PubMed Central

    Heather, Nick; Campion, Peter D.; Neville, Ronald G.; Maccabe, David

    1987-01-01

    Sixteen general practitioners participated in a controlled trial of the Scottish Health Education Group's DRAMS (drinking reasonably and moderately with self-control) scheme. The scheme was evaluated by randomly assigning 104 heavy or problem drinkers to three groups – a group participating in the DRAMS scheme (n = 34), a group given simple advice only (n = 32) and a non-intervention control group (n = 38). Six month follow-up information was obtained for 91 subjects (87.5% of initial sample). There were no significant differences between the groups in reduction in alcohol consumption, but patients in the DRAMS group showed a significantly greater reduction in a logarithmic measure of serum gamma-glutamyl-transpeptidase than patients in the group receiving advice only. Only 14 patients in the DRAMS group completed the full DRAMS procedure. For the sample as a whole, there was a significant reduction in alcohol consumption, a significant improvement on a measure of physical health and well-being, and significant reductions in the logarithmic measure of serum gamma-glutamyl transpeptidase and in mean corpuscular volume. The implications of these findings for future research into controlled drinking minimal interventions in general practice are discussed. PMID:3448228

  20. The Impact on Space Radiation Requirements and Effects on ASIMS

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Johnston, A.; Swift, G.

    1995-01-01

    The evolution of highly miniaturized electronic and mechanical systems will be accompanied by new problems and issues regarding the radiation response of these systems in the space environment. In this paper we discuss some of the more prominent radiation problems brought about by miniaturization. For example, autonomous micro-spacecraft will require large amounts of high density memory, most likely in the form of stacked, multichip modules of DRAM's, that must tolerate the radiation environment. However, advanced DRAM's (16 to 256 Mbit) are quite susceptible to radiation, particularly single event effects, and even exhibit new radiation phenomena that were not a problem for older, less dense memory chips. Another important trend in micro-spacecraft electronics is toward the use of low-voltage microelectronic systems that consume less power. However, the reduction in operating voltage also caries with it an increased susceptibility to radiation. In the case of application specific integrated microcircuits (ASIM's), advanced devices of this type, such as high density field programmable gate arrays (FPGA's) exhibit new single event effects (SEE), such as single particle reprogramming of anti-fuse links. New advanced bipolar circuits have been shown recently to degrade more rapidly in the low dose rate space environment than in the typical laboratory total dose radiation test used to qualify such devices. Thus total dose testing of these parts is no longer an appropriately conservative measure to be used for hardness assurance. We also note that the functionality of micromechanical Si-based devices may be altered due to the radiation-induced deposition of charge in the oxide passivation layers.

  1. The Optimization of Spacer Engineering for Capacitor-Less DRAM Based on the Dual-Gate Tunneling Transistor.

    PubMed

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Wang, Qianqiong

    2018-03-05

    The DRAM based on the dual-gate tunneling FET (DGTFET) has the advantages of capacitor-less structure and high retention time. In this paper, the optimization of spacer engineering for DGTFET DRAM is systematically investigated by Silvaco-Atlas tool to further improve its performance, including the reduction of reading "0" current and extension of retention time. The simulation results show that spacers at the source and drain sides should apply the low-k and high-k dielectrics, respectively, which can enhance the reading "1" current and reduce reading "0" current. Applying this optimized spacer engineering, the DGTFET DRAM obtains the optimum performance-extremely low reading "0" current (10 -14 A/μm) and large retention time (10s), which decreases its static power consumption and dynamic refresh rate. And the low reading "0" current also enhances its current ratio (10 7 ) of reading "1" to reading "0". Furthermore, the analysis about scalability reveals its inherent shortcoming, which offers the further investigation direction for DGTFET DRAM.

  2. The Optimization of Spacer Engineering for Capacitor-Less DRAM Based on the Dual-Gate Tunneling Transistor

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Wang, Qianqiong

    2018-03-01

    The DRAM based on the dual-gate tunneling FET (DGTFET) has the advantages of capacitor-less structure and high retention time. In this paper, the optimization of spacer engineering for DGTFET DRAM is systematically investigated by Silvaco-Atlas tool to further improve its performance, including the reduction of reading "0" current and extension of retention time. The simulation results show that spacers at the source and drain sides should apply the low-k and high-k dielectrics, respectively, which can enhance the reading "1" current and reduce reading "0" current. Applying this optimized spacer engineering, the DGTFET DRAM obtains the optimum performance-extremely low reading "0" current (10-14A/μm) and large retention time (10s), which decreases its static power consumption and dynamic refresh rate. And the low reading "0" current also enhances its current ratio (107) of reading "1" to reading "0". Furthermore, the analysis about scalability reveals its inherent shortcoming, which offers the further investigation direction for DGTFET DRAM.

  3. DOMe: A deduplication optimization method for the NewSQL database backups

    PubMed Central

    Wang, Longxiang; Zhu, Zhengdong; Zhang, Xingjun; Wang, Yinfeng

    2017-01-01

    Reducing duplicated data of database backups is an important application scenario for data deduplication technology. NewSQL is an emerging database system and is now being used more and more widely. NewSQL systems need to improve data reliability by periodically backing up in-memory data, resulting in a lot of duplicated data. The traditional deduplication method is not optimized for the NewSQL server system and cannot take full advantage of hardware resources to optimize deduplication performance. A recent research pointed out that the future NewSQL server will have thousands of CPU cores, large DRAM and huge NVRAM. Therefore, how to utilize these hardware resources to optimize the performance of data deduplication is an important issue. To solve this problem, we propose a deduplication optimization method (DOMe) for NewSQL system backup. To take advantage of the large number of CPU cores in the NewSQL server to optimize deduplication performance, DOMe parallelizes the deduplication method based on the fork-join framework. The fingerprint index, which is the key data structure in the deduplication process, is implemented as pure in-memory hash table, which makes full use of the large DRAM in NewSQL system, eliminating the performance bottleneck problem of fingerprint index existing in traditional deduplication method. The H-store is used as a typical NewSQL database system to implement DOMe method. DOMe is experimentally analyzed by two representative backup data. The experimental results show that: 1) DOMe can reduce the duplicated NewSQL backup data. 2) DOMe significantly improves deduplication performance by parallelizing CDC algorithms. In the case of the theoretical speedup ratio of the server is 20.8, the speedup ratio of DOMe can achieve up to 18; 3) DOMe improved the deduplication throughput by 1.5 times through the pure in-memory index optimization method. PMID:29049307

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seyong; Vetter, Jeffrey S

    Computer architecture experts expect that non-volatile memory (NVM) hierarchies will play a more significant role in future systems including mobile, enterprise, and HPC architectures. With this expectation in mind, we present NVL-C: a novel programming system that facilitates the efficient and correct programming of NVM main memory systems. The NVL-C programming abstraction extends C with a small set of intuitive language features that target NVM main memory, and can be combined directly with traditional C memory model features for DRAM. We have designed these new features to enable compiler analyses and run-time checks that can improve performance and guard againstmore » a number of subtle programming errors, which, when left uncorrected, can corrupt NVM-stored data. Moreover, to enable recovery of data across application or system failures, these NVL-C features include a flexible directive for specifying NVM transactions. So that our implementation might be extended to other compiler front ends and languages, the majority of our compiler analyses are implemented in an extended version of LLVM's intermediate representation (LLVM IR). We evaluate NVL-C on a number of applications to show its flexibility, performance, and correctness.« less

  5. Block-Parallel Data Analysis with DIY2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Dmitriy; Peterka, Tom

    DIY2 is a programming model and runtime for block-parallel analytics on distributed-memory machines. Its main abstraction is block-structured data parallelism: data are decomposed into blocks; blocks are assigned to processing elements (processes or threads); computation is described as iterations over these blocks, and communication between blocks is defined by reusable patterns. By expressing computation in this general form, the DIY2 runtime is free to optimize the movement of blocks between slow and fast memories (disk and flash vs. DRAM) and to concurrently execute blocks residing in memory with multiple threads. This enables the same program to execute in-core, out-of-core, serial,more » parallel, single-threaded, multithreaded, or combinations thereof. This paper describes the implementation of the main features of the DIY2 programming model and optimizations to improve performance. DIY2 is evaluated on benchmark test cases to establish baseline performance for several common patterns and on larger complete analysis codes running on large-scale HPC machines.« less

  6. Effects of exercise on diastasis of the rectus abdominis muscle in the antenatal and postnatal periods: a systematic review.

    PubMed

    Benjamin, D R; van de Water, A T M; Peiris, C L

    2014-03-01

    Diastasis of the rectus abdominis muscle (DRAM) is common during and after pregnancy, and has been related to lumbopelvic instability and pelvic floor weakness. Women with DRAM are commonly referred to physiotherapists for conservative management, but little is known about the effectiveness of such strategies. To determine if non-surgical interventions (such as exercise) prevent or reduce DRAM. EMBASE, Medline, CINAHL, PUBMED, AMED and PEDro were searched. Studies of all designs that included any non-surgical interventions to manage DRAM during the ante- and postnatal periods were included. Methodological quality was assessed using a modified Downs and Black checklist. Meta-analysis was performed using a fixed effects model to calculate risk ratios (RR) and 95% confidence intervals (CI) where appropriate. Eight studies totalling 336 women during the ante- and/or postnatal period were included. The study design ranged from case study to randomised controlled trial. All interventions included some form of exercise, mainly targeted abdominal/core strengthening. The available evidence showed that exercise during the antenatal period reduced the presence of DRAM by 35% (RR 0.65, 95% CI 0.46 to 0.92), and suggested that DRAM width may be reduced by exercising during the ante- and postnatal periods. The papers reviewed were of poor quality as there is very little high-quality literature on the subject. Based on the available evidence and quality of this evidence, non-specific exercise may or may not help to prevent or reduce DRAM during the ante- and postnatal periods. Copyright © 2013 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  7. Chaining for Flexible and High-Performance Key-Value Systems

    DTIC Science & Technology

    2012-09-01

    store that is fault tolerant achieves high performance and availability, and offers strong data consistency? We present a new replication protocol...effective high performance data access and analytics, many sites use simpler data model “ NoSQL ” systems. ese systems store and retrieve data only by...DRAM, Flash, and disk-based storage; can act as an unreliable cache or a durable store ; and can offer strong or weak data consistency. e value of

  8. Angular dependence of DRAM upset susceptibility

    NASA Technical Reports Server (NTRS)

    Guertin, S. M.; Swift, G. M.; Edmonds, L. D.

    2000-01-01

    Heavy ion irradiations of two types of commercial DRAMs reveal unexpected angular responses. One device's cross section varied by two orders of magnitude with azimuthal angle. Accurate prediction of space rates requires accommodating this effect.

  9. Dielectric relaxation of barium strontium titanate and application to thin films for DRAM capacitors

    NASA Astrophysics Data System (ADS)

    Baniecki, John David

    This thesis examines the issues associated with incorporating the high dielectric constant material Barium Strontium Titanate (BSTO) in to the storage capacitor of a dynamic random access memory (DRAM). The research is focused on two areas: characterizing and understanding the factors that control charge retention in BSTO thin films and modifying the electrical properties using ion implantation. The dielectric relaxation of BSTO thin films deposited by metal-organic chemical vapor deposition (MOCVD) is investigated in the time and frequency domains. It is shown that the frequency dispersion of the complex capacitance of BSTO thin films can be understood in terms of a power-law frequency dependence from 1mHz to 20GHz. From the correspondence between the time and frequency domain measurements, it is concluded that the power-law relaxation currents extend back to the nano second regime of DRAM operation. The temperature, field, and annealing dependence of the dielectric relaxation currents are also investigated and mechanisms for the observed power law relaxation are explored. An equivalent circuit model of a high dielectric constant thin film capacitor is developed based on the electrical measurements and implemented in PSPICE. Excellent agreement is found between the experimental and simulated electrical characteristics showing the utility of the equivalent circuit model in simulating the electrical properties of high dielectric constant thin films. Using the equivalent circuit model, it is shown that the greatest charge loss due to dielectric relaxation occurs during the first read after a refresh time following a write to the opposite logic state for a capacitor that has been written to the same logic state for a long time (opposite state write charge loss). A theoretical closed form expression that is a function of three material parameters is developed which estimates the opposite state write charge loss due to dielectric relaxation. Using the closed form expression, and BSTO thin film electrical characteristics, the charge loss due to dielectric relaxation is estimated to be 6--12% of the initial charge stored on the capacitor plates for MOCVD BSTO thin films with Pt electrodes after a post top electrode anneal in oxygen. In contrast, it is shown that the charge loss due to steady state leakage is only 0.0125--0.125% of the initial charge stored on the capacitor plates. Charge retention is shown to depend strongly on the annealing conditions. Annealing MOCVD BSTO thin films with Pt electrodes in forming gas (95% Ar 5% H2) increases charge loss due to dielectric relaxation to as much as 60%. Ion implantation is used to dope BSTO thin films with Mn. X-ray diffraction and transmission electron microscopy (TEM) shows ion implantation significantly damages the film leaving only short-range order, but post-implant annealing heals the damage. Capacitance recovery after post-implant annealing is as high as 94% for 15 nm BSTO films. At low implant doses, the Mn doped films have substantially lower leakage (up to a factor of ten lower) and only slightly higher relaxation currents and dielectric loss indicating that ion implantation may be a potentially viable way of introducing dopants into high dielectric constant thin films for future DRAM applications.

  10. Gilgamesh: A Multithreaded Processor-In-Memory Architecture for Petaflops Computing

    NASA Technical Reports Server (NTRS)

    Sterling, T. L.; Zima, H. P.

    2002-01-01

    Processor-in-Memory (PIM) architectures avoid the von Neumann bottleneck in conventional machines by integrating high-density DRAM and CMOS logic on the same chip. Parallel systems based on this new technology are expected to provide higher scalability, adaptability, robustness, fault tolerance and lower power consumption than current MPPs or commodity clusters. In this paper we describe the design of Gilgamesh, a PIM-based massively parallel architecture, and elements of its execution model. Gilgamesh extends existing PIM capabilities by incorporating advanced mechanisms for virtualizing tasks and data and providing adaptive resource management for load balancing and latency tolerance. The Gilgamesh execution model is based on macroservers, a middleware layer which supports object-based runtime management of data and threads allowing explicit and dynamic control of locality and load balancing. The paper concludes with a discussion of related research activities and an outlook to future work.

  11. Processing/structure/property Relationships of Barium Strontium Titanate Thin Films for Dynamic Random Access Memory Application.

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Jien

    The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could significantly improve the time -dependent dielectric breakdown (TDDB) behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping.

  12. Radiation Hardened DDR2 SDRAM Solution

    NASA Astrophysics Data System (ADS)

    Wang, Pierre-Xiao; Sellier, Charles

    2016-08-01

    The Radiation Hardened (RH) DDR2 SDRAM Solution is a User's Friendly, Plug-and-Play and Radiation Hardened DDR2 solution, which includes the radiation tolerant stacking DDR2 modules and a radiation intelligent memory controller (RIMC) IP core. It provides a high speed radiation hardened by design DRAM solution suitable for all space applications such as commercial or scientific geo-stationary missions, earth observation, navigation, manned space vehicles and deep space scientific exploration. The DDR2 module has been guaranteed with SEL immune and TID > 100Krad(Si), on the other hand the RIMC IP core provides a full protection against the DDR2 radiation effects such as SEFI and SEU.

  13. Automatic alternative phase-shift mask CAD layout tool for gate shrinkage of embedded DRAM in logic below 0.18 μm

    NASA Astrophysics Data System (ADS)

    Ohnuma, Hidetoshi; Kawahira, Hiroichi

    1998-09-01

    An automatic alternative phase shift mask (PSM) pattern layout tool has been newly developed. This tool is dedicated for embedded DRAM in logic device to shrink gate line width with improving line width controllability in lithography process with a design rule below 0.18 micrometers by the KrF excimer laser exposure. The tool can crete Levenson type PSM used being coupled with a binary mask adopting a double exposure method for positive photo resist. By using graphs, this tool automatically creates alternative PSM patterns. Moreover, it does not give any phase conflicts. By adopting it to actual embedded DRAM in logic cells, we have provided 0.16 micrometers gate resist patterns at both random logic and DRAM areas. The patterns were fabricated using two masks with the double exposure method. Gate line width has been well controlled under a practical exposure-focus window.

  14. Effects of dram shop liability and enhanced overservice law enforcement initiatives on excessive alcohol consumption and related harms: Two community guide systematic reviews.

    PubMed

    Rammohan, Veda; Hahn, Robert A; Elder, Randy; Brewer, Robert; Fielding, Jonathan; Naimi, Timothy S; Toomey, Traci L; Chattopadhyay, Sajal K; Zometa, Carlos

    2011-09-01

    Dram shop liability holds the owner or server(s) at a bar, restaurant, or other location where a patron, adult or underage, consumed his or her last alcoholic beverage responsible for harms subsequently inflicted by the patron on others. Liability in a state can be established by case law or statute. Overservice laws prohibit the sale of alcoholic beverages to intoxicated patrons drinking in on-premises retail alcohol outlets (i.e., premises where the alcohol is consumed where purchased); enhanced enforcement of these laws is intended to ensure compliance by premises personnel. Both of these interventions are ultimately designed to promote responsible beverage service by reducing sales to intoxicated patrons, underage youth, or both. This review assesses the effectiveness of dram shop liability and the enhanced enforcement of overservice laws for preventing excessive alcohol consumption and related harms. Studies assessing alcohol-related harms in states adopting dram shop laws were evaluated, as were studies assessing alcohol-related harms in regions with enhanced overservice enforcement. Methods previously developed for systematic reviews for the Guide to Community Preventive Services were used. Eleven studies assessed the association of state dram shop liability with various outcomes, including all-cause motor vehicle crash deaths, alcohol-related motor vehicle crash deaths (the most common outcome assessed in the studies reviewed), alcohol consumption, and other alcohol-related harms. There was a median reduction of 6.4% (range of values 3.7% to 11.3% reduction) in alcohol-related motor vehicle fatalities associated with the presence of dram shop liability in jurisdictions where premises are licensed. Other alcohol-related outcomes also showed a reduction. Only two studies assessed the effects of enhanced enforcement initiatives on alcohol-related outcomes; findings were inconsistent, some indicating benefit and others none. According to Community Guide rules of evidence, the number and consistency of findings indicate strong evidence of the effectiveness of dram shop laws in reducing alcohol-related harms. It will be important to assess the possible effects of legal modifications to dram shop proceedings, such as the imposition of statutes of limitation, increased evidentiary requirements, and caps on recoverable amounts. According to Community Guide rules of evidence, evidence is insufficient to determine the effectiveness of enhanced enforcement of overservice laws for preventing excessive alcohol consumption and related harms. Published by Elsevier Inc.

  15. Error control for reliable digital data transmission and storage systems

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Deng, R. H.

    1985-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.

  16. Dynamics of drug resistance-associated mutations in HIV-1 DNA reverse transcriptase sequence during effective ART.

    PubMed

    Nouchi, A; Nguyen, T; Valantin, M A; Simon, A; Sayon, S; Agher, R; Calvez, V; Katlama, C; Marcelin, A G; Soulie, C

    2018-05-29

    To investigate the dynamics of HIV-1 variants archived in cells harbouring drug resistance-associated mutations (DRAMs) to lamivudine/emtricitabine, etravirine and rilpivirine in patients under effective ART free from selective pressure on these DRAMs, in order to assess the possibility of recycling molecules with resistance history. We studied 25 patients with at least one DRAM to lamivudine/emtricitabine, etravirine and/or rilpivirine identified on an RNA sequence in their history and with virological control for at least 5 years under a regimen excluding all drugs from the resistant class. Longitudinal ultra-deep sequencing (UDS) and Sanger sequencing of the reverse transcriptase region were performed on cell-associated HIV-1 DNA samples taken over the 5 years of follow-up. Viral variants harbouring the analysed DRAMs were no longer detected by UDS over the 5 years in 72% of patients, with viruses susceptible to the molecules of interest found after 5 years in 80% of patients with UDS and in 88% of patients with Sanger. Residual viraemia with <50 copies/mL was detected in 52% of patients. The median HIV DNA level remained stable (2.4 at baseline versus 2.1 log10 copies/106 cells 5 years later). These results show a clear trend towards clearance of archived DRAMs to reverse transcriptase inhibitors in cell-associated HIV-1 DNA after a long period of virological control, free from therapeutic selective pressure on these DRAMs, reflecting probable residual replication in some reservoirs of the fittest viruses and leading to persistent evolution of the archived HIV-1 DNA resistance profile.

  17. Downregulation of VRK1 by p53 in Response to DNA Damage Is Mediated by the Autophagic Pathway

    PubMed Central

    Valbuena, Alberto; Castro-Obregón, Susana; Lazo, Pedro A.

    2011-01-01

    Human VRK1 induces a stabilization and accumulation of p53 by specific phosphorylation in Thr18. This p53 accumulation is reversed by its downregulation mediated by Hdm2, requiring a dephosphorylated p53 and therefore also needs the removal of VRK1 as stabilizer. This process requires export of VRK1 to the cytosol and is inhibited by leptomycin B. We have identified that downregulation of VRK1 protein levels requires DRAM expression, a p53-induced gene. DRAM is located in the endosomal-lysosomal compartment. Induction of DNA damage by UV, IR, etoposide and doxorubicin stabilizes p53 and induces DRAM expression, followed by VRK1 downregulation and a reduction in p53 Thr18 phosphorylation. DRAM expression is induced by wild-type p53, but not by common human p53 mutants, R175H, R248W and R273H. Overexpression of DRAM induces VRK1 downregulation and the opposite effect was observed by its knockdown. LC3 and p62 were also downregulated, like VRK1, in response to UV-induced DNA damage. The implication of the autophagic pathway was confirmed by its requirement for Beclin1. We propose a model with a double regulatory loop in response to DNA damage, the accumulated p53 is removed by induction of Hdm2 and degradation in the proteasome, and the p53-stabilizer VRK1 is eliminated by the induction of DRAM that leads to its lysosomal degradation in the autophagic pathway, and thus permitting p53 degradation by Hdm2. This VRK1 downregulation is necessary to modulate the block in cell cycle progression induced by p53 as part of its DNA damage response. PMID:21386980

  18. Effects of Dram Shop, Responsible Beverage Service Training, and State Alcohol Control Laws on Underage Drinking Driver Fatal Crash Ratios.

    PubMed

    Scherer, Michael; Fell, James C; Thomas, Sue; Voas, Robert B

    2015-01-01

    In this study, we aimed to determine whether three minimum legal drinking age 21 (MLDA-21) laws-dram shop liability, responsible beverage service (RBS) training, and state control of alcohol sales-have had an impact on underage drinking and driving fatal crashes using annual state-level data, and compared states with strong laws to those with weak laws to examine their effect on beer consumption and fatal crash ratios. Using the Fatality Analysis Reporting System, we calculated the ratio of drinking to nondrinking drivers under age 21 involved in fatal crashes as our key outcome measure. We used structural equation modeling to evaluate the three MLDA-21 laws. We controlled for covariates known to impact fatal crashes including: 17 additional MLDA-21 laws; administrative license revocation; blood alcohol concentration limits of.08 and.10 for driving; seat belt laws; sobriety checkpoint frequency; unemployment rates; and vehicle miles traveled. Outcome variables, in addition to the fatal crash ratios of drinking to nondrinking drivers under age 21 included state per capita beer consumption. Dram shop liability laws were associated with a 2.4% total effect decrease (direct effects: β =.019, p =.018). Similarly, RBS training laws were associated with a 3.6% total effect decrease (direct effect: β =.048, p =.001) in the ratio of drinking to nondrinking drivers under age 21 involved in fatal crashes. There was a significant relationship between dram shop liability law strength and per capita beer consumption, F (4, 1528) = 24.32, p <.001, partial η(2) =.016, showing states with strong dram shop liability laws (Mean (M) = 1.276) averaging significantly lower per capita beer consumption than states with weak laws (M = 1.340). Dram shop liability laws and RBS laws were both associated with significantly reduced per capita beer consumption and fatal crash ratios. In practical terms, this means that dram shop liability laws are currently associated with saving an estimated 64 lives in the 45 jurisdictions that currently have the law. If the remaining 6 states adopted the dram shop law, an additional 9 lives could potentially be saved annually. Similarly, RBS training laws are associated with saving an estimated 83 lives in the 37 jurisdictions that currently have the laws. If the remaining 14 states adopted these RBS training laws, we estimate that an additional 28 lives could potentially be saved.

  19. Effects of Dram Shop, Responsible Beverage Service Training, and State Alcohol Control Laws on Underage Drinking Driver Fatal Crash Ratios

    PubMed Central

    Scherer, Michael; Fell, James C.; Thomas, Sue; Voas, Robert B.

    2015-01-01

    Objectives In this study, we aimed to determine whether three minimum legal drinking age 21 (MLDA-21) laws—dram shop liability, responsible beverage service (RBS) training, and state control of alcohol sales—have had an impact on underage drinking-and-driving fatal crashes using annual state-level data, and compared states with strong laws to those with weak laws to examine their effect on beer consumption and fatal crash ratios. Methods Using the Fatality Analysis Reporting System, we calculated the ratio of drinking to nondrinking drivers under age 21 involved in fatal crashes as our key outcome measure. We used structural equation modeling to evaluate the three MLDA-21 laws. We controlled for covariates known to impact fatal crashes including: 17 additional MLDA-21 laws; administrative license revocation; blood alcohol concentration limits of .08 and .10 for driving; seat belt laws; sobriety checkpoint frequency; unemployment rates; and vehicle miles traveled. Outcome variables, in addition to the fatal crash ratios of drinking to nondrinking drivers under age 21 included state per capita beer consumption. Results Dram shop liability laws were associated with a 2.4% total effect decrease (direct effects: β = .019, p = .018). Similarly, RBS training laws were associated with a 3.6% total effect decrease (direct effects: β = .048, p = .001) in the ratio of drinking to nondrinking drivers under age 21 involved in fatal crashes. There was a significant relationship between dram shop liability law strength and per capita beer consumption, F (4, 1528) = 24.32, p < .001, partial η2 = .016, showing states with strong dram shop liability laws (Mean (M) = 1.276) averaging significantly lower per capita beer consumption than states with weak laws (M = 1.340). Conclusions Dram shop liability laws and RBS laws were both associated with significantly reduced per capita beer consumption and fatal crash ratios. In practical terms, this means that dram shop liability laws are currently associated with saving an estimated 64 lives in the 45 jurisdictions that currently have the law. If the remaining 6 states adopted the dram shop law, an additional 9 lives could potentially be saved annually. Similarly, RBS training laws are associated with saving an estimated 83 lives in the 37 jurisdictions that currently have the law. If the remaining 14 states adopted these RBS training laws, we estimate that an additional 28 lives could potentially be saved. PMID:26436244

  20. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  1. Demonstration of the Potential of Magnetic Tunnel Junctions for a Universal RAM Technology

    NASA Astrophysics Data System (ADS)

    Gallagher, William J.

    2000-03-01

    Over the past four years, tunnel junctions with magnetic electrodes have emerged as promising devices for future magnetoresistive sensing and for information storage. This talk will review advances in these devices, focusing particularly on the use of magnetic tunnel junctions for magnetic random access memory (MRAM). Exchange-biased versions of magnetic tunnel junctions (MTJs) in particular will be shown to have useful properties for forming magnetic memory storage elements in a novel cross-point architecture. Exchange-biased MTJ elements have been made with areas as small as 0.1 square microns and have shown magnetoresistance values exceeding 40 The potential of exchange-biased MTJs for MRAM has been most seriously explored in a demonstration experiment involving the integration of 0.25 micron CMOS technology with a special magnetic tunnel junction "back end." The magnetic back end is based upon multi-layer magnetic tunnel junction growth technology which was developed using research-scale equipment and one-inch size substrates. For the demonstration, the CMOS wafers processed through two metal layers were cut into one-inch squares for depositions of bottom-pinned exchange-biased magnetic tunnel junctions. The samples were then processed through four additional lithographic levels to complete the circuits. The demonstration focused attention on a number of processing and device issues that were addressed successfully enough that key performance aspects of MTJ MRAM were demonstrated in 1 K bit arrays, including reads and writes in less than 10 ns and nonvolatility. While other key issues remain to be addressed, these results suggest that MTJ MRAM might simultaneously provide much of the functionality now provided separately by SRAM, DRAM, and NVRAM.

  2. Low-power DRAM-compatible Replacement Gate High-k/Metal Gate Stacks

    NASA Astrophysics Data System (ADS)

    Ritzenthaler, R.; Schram, T.; Bury, E.; Spessot, A.; Caillat, C.; Srividya, V.; Sebaai, F.; Mitard, J.; Ragnarsson, L.-Å.; Groeseneken, G.; Horiguchi, N.; Fazan, P.; Thean, A.

    2013-06-01

    In this work, the possibility of integration of High-k/Metal Gate (HKMG), Replacement Metal Gate (RMG) gate stacks for low power DRAM compatible transistors is studied. First, it is shown that RMG gate stacks used for Logic applications need to be seriously reconsidered, because of the additional anneal(s) needed in a DRAM process. New solutions are therefore developed. A PMOS stack HfO2/TiN with TiN deposited in three times combined with Work Function metal oxidations is demonstrated, featuring a very good Work Function of 4.95 eV. On the other hand, the NMOS side is shown to be a thornier problem to solve: a new solution based on the use of oxidized Ta as a diffusion barrier is proposed, and a HfO2/TiN/TaOX/TiAl/TiN/TiN gate stack featuring an aggressive Work Function of 4.35 eV (allowing a Work Function separation of 600 mV between NMOS and PMOS) is demonstrated. This work paves the way toward the integration of gate-last options for DRAM periphery transistors.

  3. NASA's 3D Flight Computer for Space Applications

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    2000-01-01

    The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).

  4. A Compute Capable SSD Architecture for Next-Generation Non-volatile Memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Arup

    2014-01-01

    Existing storage technologies (e.g., disks and ash) are failing to cope with the processor and main memory speed and are limiting the overall perfor- mance of many large scale I/O or data-intensive applications. Emerging fast byte-addressable non-volatile memory (NVM) technologies, such as phase-change memory (PCM), spin-transfer torque memory (STTM) and memristor are very promising and are approaching DRAM-like performance with lower power con- sumption and higher density as process technology scales. These new memories are narrowing down the performance gap between the storage and the main mem- ory and are putting forward challenging problems on existing SSD architecture, I/O interfacemore » (e.g, SATA, PCIe) and software. This dissertation addresses those challenges and presents a novel SSD architecture called XSSD. XSSD o oads com- putation in storage to exploit fast NVMs and reduce the redundant data tra c across the I/O bus. XSSD o ers a exible RPC-based programming framework that developers can use for application development on SSD without dealing with the complication of the underlying architecture and communication management. We have built a prototype of XSSD on the BEE3 FPGA prototyping system. We implement various data-intensive applications and achieve speedup and energy ef- ciency of 1.5-8.9 and 1.7-10.27 respectively. This dissertation also compares XSSD with previous work on intelligent storage and intelligent memory. The existing ecosystem and these new enabling technologies make this system more viable than earlier ones.« less

  5. Development of Next Generation Memory Test Experiment for Deployment on a Small Satellite

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd; Ho, Fat D.

    2012-01-01

    The original Memory Test Experiment successfully flew on the FASTSAT satellite launched in November 2010. It contained a single Ramtron 512K ferroelectric memory. The memory device went through many thousands of read/write cycles and recorded any errors that were encountered. The original mission length was schedule to last 6 months but was extended to 18 months. New opportunities exist to launch a similar satellite and considerations for a new memory test experiment should be examined. The original experiment had to be designed and integrated in less than two months, so the experiment was a simple design using readily available parts. The follow-on experiment needs to be more sophisticated and encompass more technologies. This paper lays out the considerations for the design and development of this follow-on flight memory experiment. It also details the results from the original Memory Test Experiment that flew on board FASTSAT. Some of the design considerations for the new experiment include the number and type of memory devices to be used, the kinds of tests that will be performed, other data needed to analyze the results, and best use of limited resources on a small satellite. The memory technologies that are considered are FRAM, FLASH, SONOS, Resistive Memory, Phase Change Memory, Nano-wire Memory, Magneto-resistive Memory, Standard DRAM, and Standard SRAM. The kinds of tests that could be performed are read/write operations, non-volatile memory retention, write cycle endurance, power measurements, and testing Error Detection and Correction schemes. Other data that may help analyze the results are GPS location of recorded errors, time stamp of all data recorded, radiation measurements, temperature, and other activities being perform by the satellite. The resources of power, volume, mass, temperature, processing power, and telemetry bandwidth are extremely limited on a small satellite. Design considerations must be made to allow the experiment to not interfere with the satellite s primary mission.

  6. Electronic structure of barium strontium titanate by soft-x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, Y.; Underwood, J.H.; Gullikson, E.M.

    1997-04-01

    Perovskite-type titanates, such as Strontium Titanate (STO), Barium Titanate (BTO), and Lead Titanate (PTO) have been widely studied because they show good electric and optical properties. In recent years, thin films of Barium Strontium Titanate (BST) have been paid much attention as dielectrics of dynamic random access memory (DRAM) capacitors. BST is a better insulator with a higher dielectric constant than STO and can be controlled in a paraelectric phase with an appropriate ratio of Ba/Sr composition, however, few studies have been done on the electronic structure of the material. Studies of the electronic structure of such materials can bemore » beneficial, both for fundamental physics research and for improving technological applications. BTO is a famous ferroelectric material with a tetragonal structure, in which Ti and Ba atoms are slightly displaced from the lattice points. On the other hand, BST keeps a paraelectric phase, which means that the atoms are still at the cubic lattice points. It should be of great interest to see how this difference of the local structure around Ti atoms between BTO and BST effects the electronic structure of these two materials. In this report, the authors present the Ti L{sub 2,3} absorption spectra of STO, BTO, and BST measured with very high accuracy in energy of the absorption features.« less

  7. Suppression of Leakage Current of Metal-Insulator-Semiconductor Ta2O5 Capacitors with Al2O3/SiON Buffer Layer

    NASA Astrophysics Data System (ADS)

    Tonomura, Osamu; Miki, Hiroshi; Takeda, Ken-ichi

    2011-10-01

    An Al2O3/SiO buffer layer was incorporated in a metal-insulator-semiconductor (MIS) Ta2O5 capacitor for dynamic random access memory (DRAM) application. Al2O3 was chosen for the buffer layer owing to its high band offset against silicon and oxidation resistance against increase in effective oxide thickness (EOT). It was clarified that post-deposition annealing in nitrogen at 800 °C for 600 s increased the band offset between Al2O3 and the lower electrode and decreased leakage current by two orders of magnitude at 1 V. Furthermore, we predicted and experimentally confirmed that there was an optimized value of y in (Si3N4)y(SiO2)(1-y), which is 0.58, for minimizing the leakage current and EOT of SiON. To clarify the oxidation resistance and appropriate thickness of Al2O3, a TiN/Ta2O5/Al2O3/SiON/polycrystalline-silicon capacitor was fabricated. It was confirmed that the lower electrode was not oxidized during the crystallization annealing of Ta2O5. By setting the Al2O3 thickness to 3.4 nm, the leakage current is lowered below the required value with an EOT of 3.6 nm.

  8. Unique method for controlling device level overlay with high-NA optical overlay technique using YieldStar in a DRAM HVM environment

    NASA Astrophysics Data System (ADS)

    Park, Dong-Kiu; Kim, Hyun-Sok; Seo, Moo-Young; Ju, Jae-Wuk; Kim, Young-Sik; Shahrjerdy, Mir; van Leest, Arno; Soco, Aileen; Miceli, Giacomo; Massier, Jennifer; McNamara, Elliott; Hinnen, Paul; Böcker, Paul; Oh, Nang-Lyeom; Jung, Sang-Hoon; Chai, Yvon; Lee, Jun-Hyung

    2018-03-01

    This paper demonstrates the improvement using the YieldStar S-1250D small spot, high-NA, after-etch overlay in-device measurements in a DRAM HVM environment. It will be demonstrated that In-device metrology (IDM) captures after-etch device fingerprints more accurately compared to the industry-standard CDSEM. Also, IDM measurements (acquiring both CD and overlay) can be executed significantly faster increasing the wafer sampling density that is possible within a realistic metrology budget. The improvements to both speed and accuracy open the possibility of extended modeling and correction capabilities for control. The proof-book data of this paper shows a 36% improvement of device overlay after switching to control in a DRAM HVM environment using indevice metrology.

  9. Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Richard C.

    2009-09-01

    This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential ofmore » PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.« less

  10. Atomic memory access hardware implementations

    DOEpatents

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  11. High-speed high-resolution epifluorescence imaging system using CCD sensor and digital storage for neurobiological research

    NASA Astrophysics Data System (ADS)

    Takashima, Ichiro; Kajiwara, Riichi; Murano, Kiyo; Iijima, Toshio; Morinaka, Yasuhiro; Komobuchi, Hiroyoshi

    2001-04-01

    We have designed and built a high-speed CCD imaging system for monitoring neural activity in an exposed animal cortex stained with a voltage-sensitive dye. Two types of custom-made CCD sensors were developed for this system. The type I chip has a resolution of 2664 (H) X 1200 (V) pixels and a wide imaging area of 28.1 X 13.8 mm, while the type II chip has 1776 X 1626 pixels and an active imaging area of 20.4 X 18.7 mm. The CCD arrays were constructed with multiple output amplifiers in order to accelerate the readout rate. The two chips were divided into either 24 (I) or 16 (II) distinct areas that were driven in parallel. The parallel CCD outputs were digitized by 12-bit A/D converters and then stored in the frame memory. The frame memory was constructed with synchronous DRAM modules, which provided a capacity of 128 MB per channel. On-chip and on-memory binning methods were incorporated into the system, e.g., this enabled us to capture 444 X 200 pixel-images for periods of 36 seconds at a rate of 500 frames/second. This system was successfully used to visualize neural activity in the cortices of rats, guinea pigs, and monkeys.

  12. The introduction of dram shop legislation in the United States and the advent of server training.

    PubMed

    Saltz, R F

    1993-01-01

    This paper discusses the relationship of research to policy in the matter of dram shop liability and server training in the USA. The discussion is made difficult by the apparent lack of any such relationship. While research in the area has only just been published, dram shop liability in the USA actually dates to the nineteenth century, with its current form shaped by the repeal of prohibition in 1933. Because liability law and liability insurance vary from state to state, current movements for reform and server training arise somewhat spontaneously in different localities and with different emphases. Research constitutes only a minor influence among several others more salient to the political process of policy formation. The advent of mandatory server training in the state of Oregon is used to illustrate the somewhat capricious nature of progress in responsible beverage service.

  13. Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order

    NASA Technical Reports Server (NTRS)

    Schwab, Andrew J. (Inventor); Aylor, James (Inventor); Hitchcock, Charles Young (Inventor); Wulf, William A. (Inventor); McKee, Sally A. (Inventor); Moyer, Stephen A. (Inventor); Klenke, Robert (Inventor)

    2000-01-01

    A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time.

  14. Nanoeletromechanical switch and logic circuits formed therefrom

    DOEpatents

    Nordquist, Christopher D [Albuquerque, NM; Czaplewski, David A [Albuquerque, NM

    2010-05-18

    A nanoelectromechanical (NEM) switch is formed on a substrate with a source electrode containing a suspended electrically-conductive beam which is anchored to the substrate at each end. This beam, which can be formed of ruthenium, bows laterally in response to a voltage applied between a pair of gate electrodes and the source electrode to form an electrical connection between the source electrode and a drain electrode located near a midpoint of the beam. Another pair of gate electrodes and another drain electrode can be located on an opposite side of the beam to allow for switching in an opposite direction. The NEM switch can be used to form digital logic circuits including NAND gates, NOR gates, programmable logic gates, and SRAM and DRAM memory cells which can be used in place of conventional CMOS circuits, or in combination therewith.

  15. Lithography hotspot discovery at 70nm DRAM 300mm fab: process window qualification using design base binning

    NASA Astrophysics Data System (ADS)

    Chen, Daniel; Chen, Damian; Yen, Ray; Cheng, Mingjen; Lan, Andy; Ghaskadvi, Rajesh

    2008-11-01

    Identifying hotspots--structures that limit the lithography process window--become increasingly important as the industry relies heavily on RET to print sub-wavelength designs. KLA-Tencor's patented Process Window Qualification (PWQ) methodology has been used for this purpose in various fabs. PWQ methodology has three key advantages (a) PWQ Layout--to obtain the best sensitivity (b) Design Based Binning--for pattern repeater analysis (c) Intelligent sampling--for the best DOI sampling rate. This paper evaluates two different analysis strategies for SEM review sampling successfully deployed at Inotera Memories, Inc. We propose a new approach combining the location repeater and pattern repeaters. Based on a recent case study the new sampling flow reduces the data analysis and sampling time from 6 hours to 1.5 hour maintaining maximum DOI sample rate.

  16. Recommendations on dram shop liability and overservice law enforcement initiatives to prevent excessive alcohol consumption and related harms.

    PubMed

    2011-09-01

    The Task Force on Community Preventive Services recommends the use of dram shop liability laws, on the basis of strong evidence of effectiveness in preventing and reducing alcohol-related harms. The Task Force found insufficient evidence to determine the effectiveness of overservice law enforcement initiatives as a means to reduce excessive alcohol consumption and related harms, because too few studies were identified and findings were inconsistent. Published by Elsevier Inc.

  17. Cost effective solution using inverse lithography OPC for DRAM random contact layer

    NASA Astrophysics Data System (ADS)

    Jun, Jinhyuck; Hwang, Jaehee; Choi, Jaeseung; Oh, Seyoung; Park, Chanha; Yang, Hyunjo; Dam, Thuc; Do, Munhoe; Lee, Dong Chan; Xiao, Guangming; Choi, Jung-Hoe; Lucas, Kevin

    2017-04-01

    Many different advanced devices and design layers currently employ double patterning technology (DPT) as a means to overcome lithographic and OPC limitations at low k1 values. Certainly device layers with k1 value below 0.25 require DPT or other pitch splitting methodologies. DPT has also been used to improve patterning of certain device layers with k1 values slightly above 0.25, due to the difficulty of achieving sufficient pattern fidelity with only a single exposure. Unfortunately, this broad adoption of DPT also came with a significant increase in patterning process cost. In this paper, we discuss the development of a single patterning technology process using an integrated Inverse Lithography Technology (ILT) flow for mask synthesis. A single pattering technology flow will reduce the manufacturing cost for a k1 > 0.25 full chip random contact layer in a memory device by replacing the more expensive DPT process with ILT flow, while also maintaining good lithographic production quality and manufacturable OPC/RET production metrics. This new integrated flow consists of applying ILT to the difficult core region and traditional rule-based assist features (RBAFs) with OPC to the peripheral region of a DRAM contact layer. Comparisons of wafer results between the ILT process and the non-ILT process showed the lithographic benefits of ILT and its ability to enable a robust single patterning process for this low-k1 device layer. Advanced modeling with a negative tone develop (NTD) process achieved the accuracy levels needed for ILT to control feature shapes through dose and focus. Details of these afore mentioned results will be described in the paper.

  18. Fully-Coupled Thermo-Electrical Modeling and Simulation of Transition Metal Oxide Memristors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamaluy, Denis; Gao, Xujiao; Tierney, Brian David

    2016-11-01

    Transition metal oxide (TMO) memristors have recently attracted special attention from the semiconductor industry and academia. Memristors are one of the strongest candidates to replace flash memory, and possibly DRAM and SRAM in the near future. Moreover, memristors have a high potential to enable beyond-CMOS technology advances in novel architectures for high performance computing (HPC). The utility of memristors has been demonstrated in reprogrammable logic (cross-bar switches), brain-inspired computing and in non-CMOS complementary logic. Indeed, the potential use of memristors as logic devices is especially important considering the inevitable end of CMOS technology scaling that is anticipated by 2025. Inmore » order to aid the on-going Sandia memristor fabrication effort with a memristor design tool and establish a clear physical picture of resistance switching in TMO memristors, we have created and validated with experimental data a simulation tool we name the Memristor Charge Transport (MCT) Simulator.« less

  19. The analysis method of the DRAM cell pattern hotspot

    NASA Astrophysics Data System (ADS)

    Lee, Kyusun; Lee, Kweonjae; Chang, Jinman; Kim, Taeheon; Han, Daehan; Hong, Aeran; Kim, Yonghyeon; Kang, Jinyoung; Choi, Bumjin; Lee, Joosung; Lee, Jooyoung; Hong, Hyeongsun; Lee, Kyupil; Jin, Gyoyoung

    2015-03-01

    It is increasingly difficult to determine degree of completion of the patterning and the distribution at the DRAM Cell Patterns. When we research DRAM Device Cell Pattern, there are three big problems currently, it is as follows. First, due to etch loading, it is difficult to predict the potential defect. Second, due to under layer topology, it is impossible to demonstrate the influence of the hotspot. Finally, it is extremely difficult to predict final ACI pattern by the photo simulation, because current patterning process is double patterning technology which means photo pattern is completely different from final etch pattern. Therefore, if the hotspot occurs in wafer, it is very difficult to find it. CD-SEM is the most common pattern measurement tool in semiconductor fabrication site. CD-SEM is used to accurately measure small region of wafer pattern primarily. Therefore, there is no possibility of finding places where unpredictable defect occurs. Even though, "Current Defect detector" can measure a wide area, every chip has same pattern issue, the detector cannot detect critical hotspots. Because defect detecting algorithm of bright field machine is based on image processing, if same problems occur on compared and comparing chip, the machine cannot identify it. Moreover this instrument is not distinguished the difference of distribution about 1nm~3nm. So, "Defect detector" is difficult to handle the data for potential weak point far lower than target CD. In order to solve those problems, another method is needed. In this paper, we introduce the analysis method of the DRAM Cell Pattern Hotspot.

  20. 76 FR 73676 - Certain Dynamic Random Access Memory Devices, and Products Containing Same; Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... INTERNATIONAL TRADE COMMISSION [DN 2859] Certain Dynamic Random Access Memory Devices, and.... International Trade Commission has received a complaint entitled In Re Certain Dynamic Random Access Memory... certain dynamic random access memory devices, and products containing same. The complaint names Elpida...

  1. 75 FR 16507 - In the Matter of Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... Semiconductor Chips Having Synchronous Dynamic Random Access Memory Controllers and Products Containing Same... synchronous dynamic random access memory controllers and products containing same by reason of infringement of... semiconductor chips having synchronous dynamic random access memory controllers and products containing same...

  2. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    DOEpatents

    Ohmacht, Martin

    2017-08-15

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  3. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    DOEpatents

    Ohmacht, Martin

    2014-09-09

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  4. 76 FR 55417 - In the Matter of Certain Dynamic Random Access Memory and Nand Flash Memory Devices and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Access Memory and Nand Flash Memory Devices and Products Containing Same; Notice of Institution of... importation, and the sale within the United States after importation of certain dynamic random access memory and NAND flash memory devices and products containing same by reason of infringement of certain claims...

  5. Improved Writing-Conductor Designs For Magnetic Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1994-01-01

    Writing currents reduced to practical levels. Improved conceptual designs for writing conductors in micromagnet/Hall-effect random-access integrated-circuit memory reduces electrical current needed to magnetize micromagnet in each memory cell. Basic concept of micromagnet/Hall-effect random-access memory presented in "Magnetic Analog Random-Access Memory" (NPO-17999).

  6. 75 FR 14467 - In the Matter of: Certain Dynamic Random Access Memory Semiconductors and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... Access Memory Semiconductors and Products Containing Same, Including Memory Modules; Notice of... the sale within the United States after importation of certain dynamic random access memory semiconductors and products containing same, including memory modules, by reason of infringement of certain...

  7. 76 FR 80964 - Certain Dynamic Random Access Memory Devices, and Products Containing Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-821] Certain Dynamic Random Access Memory... importation, and the sale within the United States after importation of certain dynamic random access memory... certain dynamic random access memory devices, and products containing same that infringe one or more of...

  8. Method and apparatus for managing access to a memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, Erik

    A method and apparatus for managing access to a memory of a computing system. A controller transforms a plurality of operations that represent a computing job into an operational memory layout that reduces a size of a selected portion of the memory that needs to be accessed to perform the computing job. The controller stores the operational memory layout in a plurality of memory cells within the selected portion of the memory. The controller controls a sequence by which a processor in the computing system accesses the memory to perform the computing job using the operational memory layout. The operationalmore » memory layout reduces an amount of energy consumed by the processor to perform the computing job.« less

  9. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells.

    PubMed

    Pu, Y-F; Jiang, N; Chang, W; Yang, H-X; Li, C; Duan, L-M

    2017-05-08

    To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology.

  10. Fault handling schemes in electronic systems with specific application to radiation tolerance and VLSI design

    NASA Technical Reports Server (NTRS)

    Attia, John Okyere

    1993-01-01

    Naturally occurring space radiation particles can produce transient and permanent changes in the electrical properties of electronic devices and systems. In this work, the transient radiation effects on DRAM and CMOS SRAM were considered. In addition, the effect of total ionizing dose radiation of the switching times of CMOS logic gates were investigated. Effects of transient radiation on the column and cell of MOS dynamic memory cell was simulated using SPICE. It was found that the critical charge of the bitline was higher than that of the cell. In addition, the critical charge of the combined cell-bitline was found to be dependent on the gate voltage of the access transistor. In addition, the effect of total ionizing dose radiation on the switching times of CMOS logic gate was obtained. The results of this work indicate that, the rise time of CMOS logic gates increases, while the fall time decreases with an increase in total ionizing dose radiation. Also, by increasing the size of the P-channel transistor with respect to that of the N-channel transistor, the propagation delay of CMOS logic gate can be made to decrease with, or be independent of an increase in total ionizing dose radiation. Furthermore, a method was developed for replacing polysilicon feedback resistance of SRAMs with a switched capacitor network. A switched capacitor SRAM was implemented using MOS Technology. The critical change of the switched capacitor SRAM has a very large critical charge. The results of this work indicate that switched capacitor SRAM is a viable alternative to SRAM with polysilicon feedback resistance.

  11. Dielectric Properties of BST/(Y 2O 3) x(ZrO 2) 1-x/BST Trilayer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Santosh K.; Misra, D.

    2011-01-31

    Thin films of Ba1-xSrxTiO3 (BST) are being actively investigated for applications in dynamic random access memories (DRAM) because of their properties such as high dielectric constant, low leakage current, and high dielectric breakdown strength. Various approaches have been used to improve the dielectric properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant as well as dielectric loss. In this work the effect of Y2O3 doped ZrO2 on the dielectric properties of BST/ZrO2/BST trilayer structure ismore » studied. The structure Ba0.8Sr0.2TiO3/(Y2O3)x(ZrO2)1-x/Ba0.8Sr0.2TiO3 is deposited by a sol-gel process on platinized Si substrate. The composition (x) of the middle layer is varied while keeping the total thickness of the trilayer film constant. The dielectric constant of the multilayer film decreases with the increase of Y2O3 amount in the film whereas there is a slight variation in dielectric loss. In Y2O3 doped multilayer thin films, the dielectric loss is lower in comparison to other films and also there is good frequency stability in the loss in the measured frequency range and hence very suitable for microwave device applications.« less

  12. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells

    PubMed Central

    Pu, Y-F; Jiang, N.; Chang, W.; Yang, H-X; Li, C.; Duan, L-M

    2017-01-01

    To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology. PMID:28480891

  13. Deflate decompressor

    DOEpatents

    Hamlet, Jason R [Albuquerque, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM; Olsberg, Ronald R [Albuquerque, NM

    2012-02-28

    A deflate decompressor includes at least one decompressor unit, a memory access controller, a feedback path, and an output buffer unit. The memory access controller is coupled to the decompressor unit via a data path and includes a data buffer to receive the data stream and temporarily buffer a first portion the data stream. The memory access controller transfers fixed length data units of the data stream from the data buffer to the decompressor unit with reference to a memory pointer pointing into the memory buffer. The feedback path couples the decompressor unit to the memory access controller to feed back decrement values to the memory access controller for updating the memory pointer. The decrement values each indicate a number of bits unused by the decompressor unit when decoding the fixed length data units. The output buffer unit buffers a second portion of the data stream after decompression.

  14. 75 FR 44283 - In the Matter of Certain Dynamic Random Access Memory Semiconductors and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Random Access Memory Semiconductors and Products Containing Same, Including Memory Modules; Notice of a... importation of certain dynamic random access memory semiconductors and products containing same, including memory modules, by reason of infringement of certain claims of U.S. Patent Nos. 5,480,051; 5,422,309; 5...

  15. Accessing memory

    DOEpatents

    Yoon, Doe Hyun; Muralimanohar, Naveen; Chang, Jichuan; Ranganthan, Parthasarathy

    2017-09-26

    A disclosed example method involves performing simultaneous data accesses on at least first and second independently selectable logical sub-ranks to access first data via a wide internal data bus in a memory device. The memory device includes a translation buffer chip, memory chips in independently selectable logical sub-ranks, a narrow external data bus to connect the translation buffer chip to a memory controller, and the wide internal data bus between the translation buffer chip and the memory chips. A data access is performed on only the first independently selectable logical sub-rank to access second data via the wide internal data bus. The example method also involves locating a first portion of the first data, a second portion of the first data, and the second data on the narrow external data bus during separate data transfers.

  16. Working memory capacity and retrieval limitations from long-term memory: an examination of differences in accessibility.

    PubMed

    Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A

    2012-01-01

    In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants.

  17. Memory availability and referential access

    PubMed Central

    Johns, Clinton L.; Gordon, Peter C.; Long, Debra L.; Swaab, Tamara Y.

    2013-01-01

    Most theories of coreference specify linguistic factors that modulate antecedent accessibility in memory; however, whether non-linguistic factors also affect coreferential access is unknown. Here we examined the impact of a non-linguistic generation task (letter transposition) on the repeated-name penalty, a processing difficulty observed when coreferential repeated names refer to syntactically prominent (and thus more accessible) antecedents. In Experiment 1, generation improved online (event-related potentials) and offline (recognition memory) accessibility of names in word lists. In Experiment 2, we manipulated generation and syntactic prominence of antecedent names in sentences; both improved online and offline accessibility, but only syntactic prominence elicited a repeated-name penalty. Our results have three important implications: first, the form of a referential expression interacts with an antecedent’s status in the discourse model during coreference; second, availability in memory and referential accessibility are separable; and finally, theories of coreference must better integrate known properties of the human memory system. PMID:24443621

  18. Circuit-Switched Memory Access in Photonic Interconnection Networks for High-Performance Embedded Computing

    DTIC Science & Technology

    2010-07-22

    dependent , providing a natural bandwidth match between compute cores and the memory subsystem. • High Bandwidth Dcnsity. Waveguides crossing the chip...simulate this memory access architecture on a 2S6-core chip with a concentrated 64-node network lIsing detailed traces of high-performance embedded...memory modulcs, wc placc memory access poi nts (MAPs) around the pcriphery of the chip connected to thc nctwork. These MAPs, shown in Figure 4, contain

  19. The dynamic interplay between acute psychosocial stress, emotion and autobiographical memory.

    PubMed

    Sheldon, Signy; Chu, Sonja; Nitschke, Jonas P; Pruessner, Jens C; Bartz, Jennifer A

    2018-06-06

    Although acute psychosocial stress can impact autobiographical memory retrieval, the nature of this effect is not entirely clear. One reason for this ambiguity is because stress can have opposing effects on the different stages of autobiographical memory retrieval. We addressed this issue by testing how acute stress affects three stages of the autobiographical memory retrieval - accessing, recollecting and reconsolidating a memory. We also investigate the influence of emotion valence on this effect. In a between-subjects design, participants were first exposed to an acute psychosocial stressor or a control task. Next, the participants were shown positive, negative or neutral retrieval cues and asked to access and describe autobiographical memories. After a three to four day delay, participants returned for a second session in which they described these autobiographical memories. During initial retrieval, stressed participants were slower to access memories than were control participants; moreover, cortisol levels were positively associated with response times to access positively-cued memories. There were no effects of stress on the amount of details used to describe memories during initial retrieval, but stress did influence memory detail during session two. During session two, stressed participants recovered significantly more details, particularly emotional ones, from the remembered events than control participants. Our results indicate that the presence of stress impairs the ability to access consolidated autobiographical memories; moreover, although stress has no effect on memory recollection, stress alters how recollected experiences are reconsolidated back into memory traces.

  20. Accessing Information in Working Memory: Can the Focus of Attention Grasp Two Elements at the Same Time?

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Bialkova, Svetlana

    2009-01-01

    Processing information in working memory requires selective access to a subset of working-memory contents by a focus of attention. Complex cognition often requires joint access to 2 items in working memory. How does the focus select 2 items? Two experiments with an arithmetic task and 1 with a spatial task investigate time demands for successive…

  1. Stimulation of autophagy by the p53 target gene Sestrin2.

    PubMed

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  2. SOR Lithography in West Germany

    NASA Astrophysics Data System (ADS)

    Heuberger, Anton

    1989-08-01

    The 64 Mbit DRAM will represent the first generation of integrated circuits which cannot be produced reasonably by means of optical lithography techniques. X-ray lithography using synchrotron radiation seems to be the most promising method in overcoming the problems in the sub-0.5 micron range. The first year of production of the 64 Mbit DRAM will be 1995 or 1996. This means that X-ray lithography has to show its applicability in an industrial environment by 1992 and has to prove that the specifications of a 64 Mbit DRAM technology can actually be achieved. Part of this task is a demonstration of production suitable equipment such as the X-ray stepper, including an appropriate X-ray source and measurement and inspection tools. The most important bottlenecks on the way toward reaching these goals are linked to the 1 x scale mask technology, especially the pattern definition accuracy and zero level of printing defects down to the order of magnitude of 50 nm. Specifically, fast defect detection methods on the basis of high resolution e-beam techniques and repair methods have to be developed. The other problems of X-ray lithography, such as high quality single layer X-ray resists, X-ray sources and stepper including alignment are either well on the way or are already solved.

  3. 78 FR 35645 - Certain Static Random Access Memories and Products Containing Same; Commission Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-792] Certain Static Random Access Memories and Products Containing Same; Commission Determination Affirming a Final Initial Determination..., and the sale within the United States after importation of certain static random access memories and...

  4. Quantum random access memory.

    PubMed

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2008-04-25

    A random access memory (RAM) uses n bits to randomly address N=2(n) distinct memory cells. A quantum random access memory (QRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(logN) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust QRAM algorithm, as it in general requires entanglement among exponentially less gates, and leads to an exponential decrease in the power needed for addressing. A quantum optical implementation is presented.

  5. 78 FR 25767 - Certain Static Random Access Memories and Products Containing Same; Commission Determination To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-792] Certain Static Random Access Memories and Products Containing Same; Commission Determination To Review in Part a Final Initial... States after importation of certain static random access memories and products containing the same by...

  6. Low latency and persistent data storage

    DOEpatents

    Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd E

    2014-02-18

    Persistent data storage is provided by a method that includes receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.

  7. System and method for programmable bank selection for banked memory subsystems

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Hoenicke, Dirk; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan

    2010-09-07

    A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.

  8. Carbon nanomaterials for non-volatile memories

    NASA Astrophysics Data System (ADS)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  9. Design of a memory-access controller with 3.71-times-enhanced energy efficiency for Internet-of-Things-oriented nonvolatile microcontroller unit

    NASA Astrophysics Data System (ADS)

    Natsui, Masanori; Hanyu, Takahiro

    2018-04-01

    In realizing a nonvolatile microcontroller unit (MCU) for sensor nodes in Internet-of-Things (IoT) applications, it is important to solve the data-transfer bottleneck between the central processing unit (CPU) and the nonvolatile memory constituting the MCU. As one circuit-oriented approach to solving this problem, we propose a memory access minimization technique for magnetoresistive-random-access-memory (MRAM)-embedded nonvolatile MCUs. In addition to multiplexing and prefetching of memory access, the proposed technique realizes efficient instruction fetch by eliminating redundant memory access while considering the code length of the instruction to be fetched and the transition of the memory address to be accessed. As a result, the performance of the MCU can be improved while relaxing the performance requirement for the embedded MRAM, and compact and low-power implementation can be performed as compared with the conventional cache-based one. Through the evaluation using a system consisting of a general purpose 32-bit CPU and embedded MRAM, it is demonstrated that the proposed technique increases the peak efficiency of the system up to 3.71 times, while a 2.29-fold area reduction is achieved compared with the cache-based one.

  10. 76 FR 2336 - Dynamic Random Access Memory Semiconductors From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-851] Dynamic Random Access Memory... administrative review of the countervailing duty order on dynamic random access memory semiconductors from the... following events have occurred since the publication of the preliminary results of this review. See Dynamic...

  11. 75 FR 20564 - Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-851] Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit for Preliminary Results of Countervailing Duty... access memory semiconductors from the Republic of Korea, covering the period January 1, 2008 through...

  12. Accessibility versus Accuracy in Retrieving Spatial Memory: Evidence for Suboptimal Assumed Headings

    ERIC Educational Resources Information Center

    Yerramsetti, Ashok; Marchette, Steven A.; Shelton, Amy L.

    2013-01-01

    Orientation dependence in spatial memory has often been interpreted in terms of accessibility: Object locations are encoded relative to a reference orientation that affords the most accurate access to spatial memory. An open question, however, is whether people naturally use this "preferred" orientation whenever recalling the space. We…

  13. Patterned wafer geometry grouping for improved overlay control

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Han, Sangjun; Woo, Jaeson; Park, Junbeom; Song, Changrock; Anis, Fatima; Vukkadala, Pradeep; Jeon, Sanghuck; Choi, DongSub; Huang, Kevin; Heo, Hoyoung; Smith, Mark D.; Robinson, John C.

    2017-03-01

    Process-induced overlay errors from outside the litho cell have become a significant contributor to the overlay error budget including non-uniform wafer stress. Previous studies have shown the correlation between process-induced stress and overlay and the opportunity for improvement in process control, including the use of patterned wafer geometry (PWG) metrology to reduce stress-induced overlay signatures. Key challenges of volume semiconductor manufacturing are how to improve not only the magnitude of these signatures, but also the wafer to wafer variability. This work involves a novel technique of using PWG metrology to provide improved litho-control by wafer-level grouping based on incoming process induced overlay, relevant for both 3D NAND and DRAM. Examples shown in this study are from 19 nm DRAM manufacturing.

  14. Low latency and persistent data storage

    DOEpatents

    Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd

    2014-11-04

    Persistent data storage is provided by a computer program product that includes computer program code configured for receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.

  15. More than a feeling: Emotional cues impact the access and experience of autobiographical memories.

    PubMed

    Sheldon, Signy; Donahue, Julia

    2017-07-01

    Remembering is impacted by several factors of retrieval, including the emotional content of a memory cue. Here we tested how musical retrieval cues that differed on two dimensions of emotion-valence (positive and negative) and arousal (high and low)-impacted the following aspects of autobiographical memory recall: the response time to access a past personal event, the experience of remembering (ratings of memory vividness), the emotional content of a cued memory (ratings of event arousal and valence), and the type of event recalled (ratings of event energy, socialness, and uniqueness). We further explored how cue presentation affected autobiographical memory retrieval by administering cues of similar arousal and valence levels in a blocked fashion to one half of the tested participants, and randomly to the other half. We report three main findings. First, memories were accessed most quickly in response to musical cues that were highly arousing and positive in emotion. Second, we observed a relation between a cue and the elicited memory's emotional valence but not arousal; however, both the cue valence and arousal related to the nature of the recalled event. Specifically, high cue arousal led to lower memory vividness and uniqueness ratings, but cues with both high arousal and positive valence were associated with memories rated as more social and energetic. Finally, cue presentation impacted both how quickly and specifically memories were accessed and how cue valence affected the memory vividness ratings. The implications of these findings for views of how emotion directs the access to memories and the experience of remembering are discussed.

  16. Optical memories in digital computing

    NASA Technical Reports Server (NTRS)

    Alford, C. O.; Gaylord, T. K.

    1979-01-01

    High capacity optical memories with relatively-high data-transfer rate and multiport simultaneous access capability may serve as basis for new computer architectures. Several computer structures that might profitably use memories are: a) simultaneous record-access system, b) simultaneously-shared memory computer system, and c) parallel digital processing structure.

  17. Making working memory work: The effects of extended practice on focus capacity and the processes of updating, forward access, and random access

    PubMed Central

    Price, John M.; Colflesh, Gregory J. H.; Cerella, John; Verhaeghen, Paul

    2014-01-01

    We investigated the effects of 10 hours of practice on variations of the N-Back task to investigate the processes underlying possible expansion of the focus of attention within working memory. Using subtractive logic, we showed that random access (i.e., Sternberg-like search) yielded a modest effect (a 50% increase in speed) whereas the processes of forward access (i.e., retrieval in order, as in a standard N-Back task) and updating (i.e., changing the contents of working memory) were executed about 5 times faster after extended practice. We additionally found that extended practice increased working memory capacity as measured by the size of the focus of attention for the forward-access task, but not for variations where probing was in random order. This suggests that working memory capacity may depend on the type of search process engaged, and that certain working-memory-related cognitive processes are more amenable to practice than others. PMID:24486803

  18. How intention and monitoring your thoughts influence characteristics of autobiographical memories.

    PubMed

    Barzykowski, Krystian; Staugaard, Søren Risløv

    2018-05-01

    Involuntary autobiographical memories come to mind effortlessly and unintended, but the mechanisms of their retrieval are not fully understood. We hypothesize that involuntary retrieval depends on memories that are highly accessible (e.g., intense, unusual, recent, rehearsed), while the elaborate search that characterizes voluntary retrieval also produces memories that are mundane, repeated or distant - memories with low accessibility. Previous research provides some evidence for this 'threshold hypothesis'. However, in almost every prior study, participants have been instructed to report only memories while ignoring other thoughts. It is possible that such an instruction can modify the phenomenological characteristics of involuntary memories. This study aimed to investigate the effects of retrieval intentionality (i.e., wanting to retrieve a memory) and selective monitoring (i.e., instructions to report only memories) on the phenomenology of autobiographical memories. Participants were instructed to (1) intentionally retrieve autobiographical memories, (2) intentionally retrieve any type of thought (3) wait for an autobiographical memory to spontaneously appear, or (4) wait for any type of thought to spontaneously appear. They rated the mental content on a number of phenomenological characteristics both during retrieval and retrospectively following retrieval. The results support the prediction that highly accessible memories mostly enter awareness unintended and without selective monitoring, while memories with low accessibility rely on intention and selective monitoring. We discuss the implications of these effects. © 2017 The British Psychological Society.

  19. UPC++ Programmer’s Guide (v1.0 2017.9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachan, J.; Baden, S.; Bonachea, D.

    UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, allmore » operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less

  20. UPC++ Programmer’s Guide, v1.0-2018.3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachan, J.; Baden, S.; Bonachea, Dan

    UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operationsmore » that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less

  1. Mapping virtual addresses to different physical addresses for value disambiguation for thread memory access requests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gala, Alan; Ohmacht, Martin

    A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memorymore » access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braiman, Yehuda; Neschke, Brendan; Nair, Niketh S.

    Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.

  3. Is random access memory random?

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Most software is contructed on the assumption that the programs and data are stored in random access memory (RAM). Physical limitations on the relative speeds of processor and memory elements lead to a variety of memory organizations that match processor addressing rate with memory service rate. These include interleaved and cached memory. A very high fraction of a processor's address requests can be satified from the cache without reference to the main memory. The cache requests information from main memory in blocks that can be transferred at the full memory speed. Programmers who organize algorithms for locality can realize the highest performance from these computers.

  4. Distributed multiport memory architecture

    NASA Technical Reports Server (NTRS)

    Kohl, W. H. (Inventor)

    1983-01-01

    A multiport memory architecture is diclosed for each of a plurality of task centers connected to a command and data bus. Each task center, includes a memory and a plurality of devices which request direct memory access as needed. The memory includes an internal data bus and an internal address bus to which the devices are connected, and direct timing and control logic comprised of a 10-state ring counter for allocating memory devices by enabling AND gates connected to the request signal lines of the devices. The outputs of AND gates connected to the same device are combined by OR gates to form an acknowledgement signal that enables the devices to address the memory during the next clock period. The length of the ring counter may be effectively lengthened to any multiple of ten to allow for more direct memory access intervals in one repetitive sequence. One device is a network bus adapter which serially shifts onto the command and data bus, a data word (8 bits plus control and parity bits) during the next ten direct memory access intervals after it has been granted access. The NBA is therefore allocated only one access in every ten intervals, which is a predetermined interval for all centers. The ring counters of all centers are periodically synchronized by DMA SYNC signal to assure that all NBAs be able to function in synchronism for data transfer from one center to another.

  5. Making working memory work: the effects of extended practice on focus capacity and the processes of updating, forward access, and random access.

    PubMed

    Price, John M; Colflesh, Gregory J H; Cerella, John; Verhaeghen, Paul

    2014-05-01

    We investigated the effects of 10h of practice on variations of the N-Back task to investigate the processes underlying possible expansion of the focus of attention within working memory. Using subtractive logic, we showed that random access (i.e., Sternberg-like search) yielded a modest effect (a 50% increase in speed) whereas the processes of forward access (i.e., retrieval in order, as in a standard N-Back task) and updating (i.e., changing the contents of working memory) were executed about 5 times faster after extended practice. We additionally found that extended practice increased working memory capacity as measured by the size of the focus of attention for the forward-access task, but not for variations where probing was in random order. This suggests that working memory capacity may depend on the type of search process engaged, and that certain working-memory-related cognitive processes are more amenable to practice than others. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Redundancy Technology With A Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Komano, Haruki; Hashimoto, Kazuhiko; Takigawa, Tadahiro

    1989-08-01

    Fuse cutting with a focused ion beam to activate redundancy circuits is proposed. In order to verify its potential usefulness, experiments have been performed. Fuse-cutting time was evaluated using aluminum fuses with a thin passivation layer, which are difficult to cut by conventional laser-beam technology due to the material's high reflectivity. The fuse width and thickness were 2 and 0.8 μm, respectively. The fuse was cut in 5 seconds with a 30 keV focused ion beam of 0.3 A/cm2 current density. Since the fuses used in DRAMs will be smaller, their cutting time will become shorter by scanning an ion beam on narrower areas. Moreover, it can be shortened by increasing current density. Fuses for redundancy technology in 256 k CMOS SRAMs were cut with a focused ion beam. The operation of the memories was checked with a memory tester. It was confirmed that memories which had failure cells operated normally after focused-ion-beam fuse-cutting. Focused ion beam irradiation effects upon a device have been studied. When a 30 keV gallium focused ion beam was irradiated near the gate of MOSFETs, a threshold voltage shift was not observed at an ion dose of 0.3 C/cm2 which corresponded to the ion dose in cutting a fuse. However, when irradiated on the gate, a threshold voltage shift was observed at ion doses of more than 8 x 10-4 C/cm2. The voltage shift was caused by the charge of ions within the passivation layer. It is necessary at least not to irradiate a focused ion beam on a device in cutting fuses. It is concluded that the focused-ion-beam method will be advantageous for future redundancy technology application.

  7. Programmable DMA controller

    NASA Technical Reports Server (NTRS)

    Hendry, David F. (Inventor)

    1993-01-01

    In a data system having a memory, plural input/output (I/O) devices and a bus connecting each of the I/O devices to the memory, a direct memory access (DMA) controller regulating access of each of the I/O devices to the bus, including a priority register storing priorities of bus access requests from the I/O devices, an interrupt register storing bus access requests of the I/O devices, a resolver for selecting one of the I/O devices to have access to the bus, a pointer register storing addresses of locations in the memory for communication with the one I/O device via the bus, a sequence register storing an address of a location in the memory containing a channel program instruction which is to be executed next, an ALU for incrementing and decrementing addresses stored in the pointer register, computing the next address to be stored in the sequence register, computing an initial contents of each of the register. The memory contains a sequence of channel program instructions defining a set up operation wherein the contents of each of the registers in the channel register is initialized in accordance with the initial contents computed by the ALU and an access operation wherein data is transferred on the bus between a location in the memory whose address is currently stored in the pointer register and the one I/O device enabled by the resolver.

  8. zorder-lib: Library API for Z-Order Memory Layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowell, Lucy; Edward W. Bethel

    2015-04-01

    This document describes the motivation for, elements of, and use of the zorder-lib, a library API that implements organization of and access to data in memory using either a-order (also known as "row-major" order) or z-order memory layouts. The primary motivation for this work is to improve the performance of many types of data- intensive codes by increasing both spatial and temporal locality of memory accesses. The basic idea is that the cost associated with accessing a datum is less when it is nearby in either space or time.

  9. Efficient accesses of data structures using processing near memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasena, Nuwan S.; Zhang, Dong Ping; Diez, Paula Aguilera

    Systems, apparatuses, and methods for implementing efficient queues and other data structures. A queue may be shared among multiple processors and/or threads without using explicit software atomic instructions to coordinate access to the queue. System software may allocate an atomic queue and corresponding queue metadata in system memory and return, to the requesting thread, a handle referencing the queue metadata. Any number of threads may utilize the handle for accessing the atomic queue. The logic for ensuring the atomicity of accesses to the atomic queue may reside in a management unit in the memory controller coupled to the memory wheremore » the atomic queue is allocated.« less

  10. Working memory capacity and controlled serial memory search.

    PubMed

    Mızrak, Eda; Öztekin, Ilke

    2016-08-01

    The speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between working memory capacity (WMC) and the dynamics of temporal order memory retrieval. High- and low-span participants (HSs, LSs) studied sequentially presented five-item lists, followed by two probes from the study list. Participants indicated the more recent probe. Overall, accuracy was higher for HSs compared to LSs. Crucially, in contrast to previous investigations that observed no impact of WMC on speed of access to item information in memory (e.g., Öztekin & McElree, 2010), recovery of temporal order memory was slower for LSs. While accessing an item's representation in memory can be direct, recovery of relational information such as temporal order information requires a more controlled serial memory search. Collectively, these data indicate that WMC effects are particularly prominent during high demands of cognitive control, such as serial search operations necessary to access temporal order information from memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The potential of multi-port optical memories in digital computing

    NASA Technical Reports Server (NTRS)

    Alford, C. O.; Gaylord, T. K.

    1975-01-01

    A high-capacity memory with a relatively high data transfer rate and multi-port simultaneous access capability may serve as the basis for new computer architectures. The implementation of a multi-port optical memory is discussed. Several computer structures are presented that might profitably use such a memory. These structures include (1) a simultaneous record access system, (2) a simultaneously shared memory computer system, and (3) a parallel digital processing structure.

  12. Saying what’s on your mind: Working memory effects on sentence production

    PubMed Central

    Slevc, L. Robert

    2011-01-01

    The role of working memory (WM) in sentence comprehension has received considerable interest, but little work has investigated how sentence production relies on memory mechanisms. These three experiments investigated speakers’ tendency to produce syntactic structures that allow for early production of material that is accessible in memory. In Experiment 1, speakers produced accessible information early less often when under a verbal WM load than when under no load. Experiment 2 found the same pattern for given-new ordering, i.e., when accessibility was manipulated by making information given. Experiment 3 addressed the possibility that these effects do not reflect WM mechanisms but rather increased task difficulty by relying on the distinction between verbal and spatial WM: Speakers’ tendency to produce sentences respecting given-new ordering was reduced more by a verbal than by a spatial WM load. These patterns show that accessibility effects do in fact reflect accessibility in verbal WM, and that representations in sentence production are vulnerable to interference from other information in memory. PMID:21767058

  13. Working memory at work: how the updating process alters the nature of working memory transfer.

    PubMed

    Zhang, Yanmin; Verhaeghen, Paul; Cerella, John

    2012-01-01

    In three N-Back experiments, we investigated components of the process of working memory (WM) updating, more specifically access to items stored outside the focus of attention and transfer from the focus to the region of WM outside the focus. We used stimulus complexity as a marker. We found that when WM transfer occurred under full attention, it was slow and highly sensitive to stimulus complexity, much more so than WM access. When transfer occurred in conjunction with access, however, it was fast and no longer sensitive to stimulus complexity. Thus the updating context altered the nature of WM processing: The dual-task situation (transfer in conjunction with access) drove memory transfer into a more efficient mode, indifferent to stimulus complexity. In contrast, access times consistently increased with complexity, unaffected by the processing context. This study reinforces recent reports that retrieval is a (perhaps the) key component of working memory functioning. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Working Memory at Work: How the Updating Process Alters the Nature of Working Memory Transfer

    PubMed Central

    Zhang, Yanmin; Verhaeghen, Paul; Cerella, John

    2011-01-01

    In three N-Back experiments, we investigated components of the process of working memory (WM) updating, more specifically access to items stored outside the focus of attention and transfer from the focus to the region of WM outside the focus. We used stimulus complexity as a marker. We found that when WM transfer occurred under full attention, it was slow and highly sensitive to stimulus complexity, much more so than WM access. When transfer occurred in conjunction with access, however, it was fast and no longer sensitive to stimulus complexity. Thus the updating context altered the nature of WM processing: The dual-task situation (transfer in conjunction with access) drove memory transfer into a more efficient mode, indifferent to stimulus complexity. In contrast, access times consistently increased with complexity, unaffected by the processing context. This study reinforces recent reports that retrieval is a (perhaps the) key component of working memory functioning. PMID:22105718

  15. Children's Access to Public Library Services: Prince George's County Memorial Public Library, Maryland, 1980.

    ERIC Educational Resources Information Center

    Gerhardt, Lillian N.

    1981-01-01

    Evaluates the Prince George's County Memorial Public Library's approach to providing access to its services for children, and examines policies, regulations, practices, and conditions that affect such access. Six references are cited. (FM)

  16. What versus where: Investigating how autobiographical memory retrieval differs when accessed with thematic versus spatial information.

    PubMed

    Sheldon, Signy; Chu, Sonja

    2017-09-01

    Autobiographical memory research has investigated how cueing distinct aspects of a past event can trigger different recollective experiences. This research has stimulated theories about how autobiographical knowledge is accessed and organized. Here, we test the idea that thematic information organizes multiple autobiographical events whereas spatial information organizes individual past episodes by investigating how retrieval guided by these two forms of information differs. We used a novel autobiographical fluency task in which participants accessed multiple memory exemplars to event theme and spatial (location) cues followed by a narrative description task in which they described the memories generated to these cues. Participants recalled significantly more memory exemplars to event theme than to spatial cues; however, spatial cues prompted faster access to past memories. Results from the narrative description task revealed that memories retrieved via event theme cues compared to spatial cues had a higher number of overall details, but those recalled to the spatial cues were recollected with a greater concentration on episodic details than those retrieved via event theme cues. These results provide evidence that thematic information organizes and integrates multiple memories whereas spatial information prompts the retrieval of specific episodic content from a past event.

  17. Memory-efficient table look-up optimized algorithm for context-based adaptive variable length decoding in H.264/advanced video coding

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong

    2016-03-01

    Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.

  18. Garnet Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Random-access memory (RAM) devices of proposed type exploit magneto-optical properties of magnetic garnets exhibiting perpendicular anisotropy. Magnetic writing and optical readout used. Provides nonvolatile storage and resists damage by ionizing radiation. Because of basic architecture and pinout requirements, most likely useful as small-capacity memory devices.

  19. Development of Curie point switching for thin film, random access, memory device

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Tchernev, D. I.

    1967-01-01

    Managanese bismuthide films are used in the development of a random access memory device of high packing density and nondestructive readout capability. Memory entry is by Curie point switching using a laser beam. Readout is accomplished by microoptical or micromagnetic scanning.

  20. Individual differences in memory span: the contribution of rehearsal, access to lexical memory, and output speed.

    PubMed

    Tehan, G; Lalor, D M

    2000-11-01

    Rehearsal speed has traditionally been seen to be the prime determinant of individual differences in memory span. Recent studies, in the main using young children as the subject population, have suggested other contributors to span performance, notably contributions from long-term memory and forgetting and retrieval processes occurring during recall. In the current research we explore individual differences in span with respect to measures of rehearsal, output time, and access to lexical memory. We replicate standard short-term phenomena; we show that the variables that influence children's span performance influence adult performance in the same way; and we show that lexical memory access appears to be a more potent source of individual differences in span than either rehearsal speed or output factors.

  1. Adult Age Differences in Accessing and Retrieving Information from Long-Term Memory.

    ERIC Educational Resources Information Center

    Petros, Thomas V.; And Others

    1983-01-01

    Investigated adult age differences in accessing and retrieving information from long-term memory. Results showed that older adults (N=26) were slower than younger adults (N=35) at feature extraction, lexical access, and accessing category information. The age deficit was proportionally greater when retrieval of category information was required.…

  2. Interactions of double patterning technology with wafer processing, OPC and design flows

    NASA Astrophysics Data System (ADS)

    Lucas, Kevin; Cork, Chris; Miloslavsky, Alex; Luk-Pat, Gerry; Barnes, Levi; Hapli, John; Lewellen, John; Rollins, Greg; Wiaux, Vincent; Verhaegen, Staf

    2008-03-01

    Double patterning technology (DPT) is one of the main options for printing logic devices with half-pitch less than 45nm; and flash and DRAM memory devices with half-pitch less than 40nm. DPT methods decompose the original design intent into two individual masking layers which are each patterned using single exposures and existing 193nm lithography tools. The results of the individual patterning layers combine to re-create the design intent pattern on the wafer. In this paper we study interactions of DPT with lithography, masks synthesis and physical design flows. Double exposure and etch patterning steps create complexity for both process and design flows. DPT decomposition is a critical software step which will be performed in physical design and also in mask synthesis. Decomposition includes cutting (splitting) of original design intent polygons into multiple polygons where required; and coloring of the resulting polygons. We evaluate the ability to meet key physical design goals such as: reduce circuit area; minimize rework; ensure DPT compliance; guarantee patterning robustness on individual layer targets; ensure symmetric wafer results; and create uniform wafer density for the individual patterning layers.

  3. Bubble memory module for spacecraft application

    NASA Technical Reports Server (NTRS)

    Hayes, P. J.; Looney, K. T.; Nichols, C. D.

    1985-01-01

    Bubble domain technology offers an all-solid-state alternative for data storage in onboard data systems. A versatile modular bubble memory concept was developed. The key module is the bubble memory module which contains all of the storage devices and circuitry for accessing these devices. This report documents the bubble memory module design and preliminary hardware designs aimed at memory module functional demonstration with available commercial bubble devices. The system architecture provides simultaneous operation of bubble devices to attain high data rates. Banks of bubble devices are accessed by a given bubble controller to minimize controller parts. A power strobing technique is discussed which could minimize the average system power dissipation. A fast initialization method using EEPROM (electrically erasable, programmable read-only memory) devices promotes fast access. Noise and crosstalk problems and implementations to minimize these are discussed. Flight memory systems which incorporate the concepts and techniques of this work could now be developed for applications.

  4. Wide-Range Motion Estimation Architecture with Dual Search Windows for High Resolution Video Coding

    NASA Astrophysics Data System (ADS)

    Dung, Lan-Rong; Lin, Meng-Chun

    This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2dB for 720p HDTV clips coded at 8Mbits/sec.

  5. Radiation Effects of Commercial Resistive Random Access Memories

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; LaBel, Kenneth A.; Berg, Melanie; Wilcox, Edward; Kim, Hak; Phan, Anthony; Figueiredo, Marco; Buchner, Stephen; Khachatrian, Ani; Roche, Nicolas

    2014-01-01

    We present results for the single-event effect response of commercial production-level resistive random access memories. We found that the resistive memory arrays are immune to heavy ion-induced upsets. However, the devices were susceptible to single-event functional interrupts, due to upsets from the control circuits. The intrinsic radiation tolerant nature of resistive memory makes the technology an attractive consideration for future space applications.

  6. Accessibility Limits Recall from Visual Working Memory

    ERIC Educational Resources Information Center

    Rajsic, Jason; Swan, Garrett; Wilson, Daryl E.; Pratt, Jay

    2017-01-01

    In this article, we demonstrate limitations of accessibility of information in visual working memory (VWM). Recently, cued-recall has been used to estimate the fidelity of information in VWM, where the feature of a cued object is reproduced from memory (Bays, Catalao, & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). Response…

  7. Very High-Speed Digital Video Capability for In-Flight Use

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Tseng, Ting; Reaves, Matthew; Mauldin, Kendall; Whiteman, Donald

    2006-01-01

    digital video camera system has been qualified for use in flight on the NASA supersonic F-15B Research Testbed aircraft. This system is capable of very-high-speed color digital imaging at flight speeds up to Mach 2. The components of this system have been ruggedized and shock-mounted in the aircraft to survive the severe pressure, temperature, and vibration of the flight environment. The system includes two synchronized camera subsystems installed in fuselage-mounted camera pods (see Figure 1). Each camera subsystem comprises a camera controller/recorder unit and a camera head. The two camera subsystems are synchronized by use of an MHub(TradeMark) synchronization unit. Each camera subsystem is capable of recording at a rate up to 10,000 pictures per second (pps). A state-of-the-art complementary metal oxide/semiconductor (CMOS) sensor in the camera head has a maximum resolution of 1,280 1,024 pixels at 1,000 pps. Exposure times of the electronic shutter of the camera range from 1/200,000 of a second to full open. The recorded images are captured in a dynamic random-access memory (DRAM) and can be downloaded directly to a personal computer or saved on a compact flash memory card. In addition to the high-rate recording of images, the system can display images in real time at 30 pps. Inter Range Instrumentation Group (IRIG) time code can be inserted into the individual camera controllers or into the M-Hub unit. The video data could also be used to obtain quantitative, three-dimensional trajectory information. The first use of this system was in support of the Space Shuttle Return to Flight effort. Data were needed to help in understanding how thermally insulating foam is shed from a space shuttle external fuel tank during launch. The cameras captured images of simulated external tank debris ejected from a fixture mounted under the centerline of the F-15B aircraft. Digital video was obtained at subsonic and supersonic flight conditions, including speeds up to Mach 2 and altitudes up to 50,000 ft (15.24 km). The digital video was used to determine the structural survivability of the debris in a real flight environment and quantify the aerodynamic trajectories of the debris.

  8. Physical principles and current status of emerging non-volatile solid state memories

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yang, C.-H.; Wen, J.

    2015-07-01

    Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for the next generation of data-storage devices based on a comparison of their performance. [Figure not available: see fulltext.

  9. Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks

    PubMed Central

    Mostafa, Hesham; Pedroni, Bruno; Sheik, Sadique; Cauwenberghs, Gert

    2017-01-01

    Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks. PMID:28932180

  10. Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks.

    PubMed

    Mostafa, Hesham; Pedroni, Bruno; Sheik, Sadique; Cauwenberghs, Gert

    2017-01-01

    Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks.

  11. Network-linked long-time recording high-speed video camera system

    NASA Astrophysics Data System (ADS)

    Kimura, Seiji; Tsuji, Masataka

    2001-04-01

    This paper describes a network-oriented, long-recording-time high-speed digital video camera system that utilizes an HDD (Hard Disk Drive) as a recording medium. Semiconductor memories (DRAM, etc.) are the most common image data recording media with existing high-speed digital video cameras. They are extensively used because of their advantage of high-speed writing and reading of picture data. The drawback is that their recording time is limited to only several seconds because the data amount is very large. A recording time of several seconds is sufficient for many applications. However, a much longer recording time is required in some applications where an exact prediction of trigger timing is hard to make. In the Late years, the recording density of the HDD has been dramatically improved, which has attracted more attention to its value as a long-recording-time medium. We conceived an idea that we would be able to build a compact system that makes possible a long time recording if the HDD can be used as a memory unit for high-speed digital image recording. However, the data rate of such a system, capable of recording 640 X 480 pixel resolution pictures at 500 frames per second (fps) with 8-bit grayscale is 153.6 Mbyte/sec., and is way beyond the writing speed of the commonly used HDD. So, we developed a dedicated image compression system and verified its capability to lower the data rate from the digital camera to match the HDD writing rate.

  12. Non-tables look-up search algorithm for efficient H.264/AVC context-based adaptive variable length coding decoding

    NASA Astrophysics Data System (ADS)

    Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong

    2014-09-01

    In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.

  13. The two faces of selective memory retrieval: recall specificity of the detrimental but not the beneficial effect.

    PubMed

    Bäuml, Karl-Heinz T; Dobler, Ina M

    2015-01-01

    Depending on the degree to which the original study context is accessible, selective memory retrieval can be detrimental or beneficial for the recall of other memories (Bäuml & Samenieh, 2012). Prior work has shown that the detrimental effect of memory retrieval is typically recall specific and does not arise after restudy trials, whereas recall specificity of the beneficial effect has not been examined to date. Addressing the issue, we compared in 2 experiments the effects of retrieval and restudy on recall of other items, when access to the study context was (largely) maintained and when access to the study context was impaired (in Experiment 1 by using the listwise directed-forgetting task, in Experiment 2 by using a prolonged retention interval). In both experiments, selective retrieval but not restudy induced forgetting of other items when context access was maintained, which replicates prior work. In contrast, when context access was impaired, both selective retrieval and restudy induced beneficial effects on other memories. These findings suggest that the detrimental but not the beneficial effect of selective memory retrieval is recall specific. The results are consistent with a recent 2-factor account of selective memory retrieval that attributes the detrimental effect to inhibition or blocking but the beneficial effect to context reactivation processes. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  14. Low latency memory access and synchronization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.

    A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processormore » only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.« less

  15. Low latency memory access and synchronization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.

    A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Bach processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processormore » only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.« less

  16. Plated wire random access memories

    NASA Technical Reports Server (NTRS)

    Gouldin, L. D.

    1975-01-01

    A program was conducted to construct 4096-work by 18-bit random access, NDRO-plated wire memory units. The memory units were subjected to comprehensive functional and environmental tests at the end-item level to verify comformance with the specified requirements. A technical description of the unit is given, along with acceptance test data sheets.

  17. The Dynamics of Access to Groups in Working Memory

    ERIC Educational Resources Information Center

    Farrell, Simon; Lelievre, Anna

    2012-01-01

    The finding that participants leave a pause between groups when attempting serial recall of temporally grouped lists has been taken to indicate access to a hierarchical representation of the list in working memory. An alternative explanation is that the dynamics of serial recall solely reflect output (rather than memorial) processes, with the…

  18. Performance of FORTRAN floating-point operations on the Flex/32 multicomputer

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1987-01-01

    A series of experiments has been run to examine the floating-point performance of FORTRAN programs on the Flex/32 (Trademark) computer. The experiments are described, and the timing results are presented. The time required to execute a floating-point operation is found to vary considerbaly depending on a number of factors. One factor of particular interest from an algorithm design standpoint is the difference in speed between common memory accesses and local memory accesses. Common memory accesses were found to be slower, and guidelines are given for determinig when it may be cost effective to copy data from common to local memory.

  19. Improving the effectiveness of an interruption lag by inducing a memory-based strategy.

    PubMed

    Morgan, Phillip L; Patrick, John; Tiley, Leyanne

    2013-01-01

    The memory for goals model (Altmann & Trafton, 2002) posits the importance of a short delay (the 'interruption lag') before an interrupting task to encode suspended goals for retrieval post-interruption. Two experiments used the theory of soft constraints (Gray, Simms, Fu & Schoelles, 2006) to investigate whether the efficacy of an interruption lag could be improved by increasing goal-state access cost to induce a more memory-based encoding strategy. Both experiments used a copying task with three access cost conditions (Low, Medium, and High) and a 5-s interruption lag with a no lag control condition. Experiment 1 found that the participants in the High access cost condition resumed more interrupted trials and executed more actions correctly from memory when coupled with an interruption lag. Experiment 2 used a prospective memory test post-interruption and an eyetracker recorded gaze activity during the interruption lag. The participants in the High access cost condition with an interruption lag were best at encoding target information during the interruption lag, evidenced by higher scores on the prospective memory measure and more gaze activity on the goal-state during the interruption lag. Theoretical and practical issues regarding the use of goal-state access cost and an interruption lag are discussed. Copyright © 2012. Published by Elsevier B.V.

  20. Programmable Direct-Memory-Access Controller

    NASA Technical Reports Server (NTRS)

    Hendry, David F.

    1990-01-01

    Proposed programmable direct-memory-access controller (DMAC) operates with computer systems of 32000 series, which have 32-bit data buses and use addresses of 24 (or potentially 32) bits. Controller functions with or without help of central processing unit (CPU) and starts itself. Includes such advanced features as ability to compare two blocks of memory for equality and to search block of memory for specific value. Made as single very-large-scale integrated-circuit chip.

  1. Maximization of DRAM yield by control of surface charge and particle addition during high dose implantation

    NASA Astrophysics Data System (ADS)

    Horvath, J.; Moffatt, S.

    1991-04-01

    Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.

  2. Modified polyhydroxystyrenes as matrix resins for dissolution inhibition type photoresists

    NASA Astrophysics Data System (ADS)

    Pawlowski, Georg; Sauer, Thomas P.; Dammel, Ralph R.; Gordon, Douglas J.; Hinsberg, William D.; McKean, Dennis R.; Lindley, Charlet R.; Merrem, Hans-Joachim; Roeschert, Heinz; Vicari, Richard; Willson, C. Grant

    1990-06-01

    It is generally accepted that the production of shrink versions of the 16 MB DRAM and the 64 MB DRAM generations will be patterned using deep UV radiation. This provides a new challenge to the photoresist suppliers, as the standard photoresist formulations are not suitable for this technology, mainly because the presently used novolak resins are highly opaque in the 200 - 300 nm region. This is especially true for the 248 nm wavelength of KrF eximer lasers. Poly 4- hydroxystyrene [PHS] has several advantages in transmission and thermal stability; however, its dissolution rate in commercial grade developers is unacceptably high. We report some recent results on modified, alkyl-substituted PHS derivatives. These polymers combine reduced alkaline solubiity with adequate optical and thermal properties, making them acceptable for future deep UV based production processes. Selected data of these new (co)polymers are discussed.

  3. Some pitfalls in measuring memory in animals.

    PubMed

    Thorpe, Christina M; Jacova, Claudia; Wilkie, Donald M

    2004-11-01

    Because the presence or absence of memories in the brain cannot be directly observed, scientists must rely on indirect measures and use inferential reasoning to make statements about the status of memories. In humans, memories are often accessed through spoken or written language. In animals, memory is accessed through overt behaviours such as running down an arm in a maze, pressing a lever, or visiting a food cache site. Because memory is measured by these indirect methods, errors in the veracity of statements about memory can occur. In this brief paper, we identify three areas that may serve as pitfalls in reasoning about memory in animals: (1) the presence of 'silent associations', (2) intrusions of species-typical behaviours on memory tasks, and (3) improper mapping between human and animals memory tasks. There are undoubtedly other areas in which scientists should act cautiously when reasoning about the status of memory.

  4. A Decision Model for Selection of Microcomputers and Operating Systems.

    DTIC Science & Technology

    1984-06-01

    is resilting in application software (for microccmputers) being developed almost exclu- sively tor the IBM PC and compatiole systems. NAVDAC ielt that...location can be indepen- dently accessed. RAN memory is also often called read/ write memory, hecause new information can be written into and read from...when power is lost; this is also read/ write memory. Bubble memory, however, has significantly slower access times than RAM or RON and also is not preva

  5. MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.

    PubMed

    Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd

    2018-07-01

    Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.

  6. Integrated semiconductor-magnetic random access memory system

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)

    2001-01-01

    The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.

  7. A novel ternary content addressable memory design based on resistive random access memory with high intensity and low search energy

    NASA Astrophysics Data System (ADS)

    Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2018-04-01

    A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.

  8. An Investigation of Unified Memory Access Performance in CUDA

    PubMed Central

    Landaverde, Raphael; Zhang, Tiansheng; Coskun, Ayse K.; Herbordt, Martin

    2015-01-01

    Managing memory between the CPU and GPU is a major challenge in GPU computing. A programming model, Unified Memory Access (UMA), has been recently introduced by Nvidia to simplify the complexities of memory management while claiming good overall performance. In this paper, we investigate this programming model and evaluate its performance and programming model simplifications based on our experimental results. We find that beyond on-demand data transfers to the CPU, the GPU is also able to request subsets of data it requires on demand. This feature allows UMA to outperform full data transfer methods for certain parallel applications and small data sizes. We also find, however, that for the majority of applications and memory access patterns, the performance overheads associated with UMA are significant, while the simplifications to the programming model restrict flexibility for adding future optimizations. PMID:26594668

  9. Daily Access to Sucrose Impairs Aspects of Spatial Memory Tasks Reliant on Pattern Separation and Neural Proliferation in Rats

    ERIC Educational Resources Information Center

    Reichelt, Amy C.; Morris, Margaret J.; Westbrook, Reginald Frederick

    2016-01-01

    High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects…

  10. Encoding and Retrieval Processes Involved in the Access of Source Information in the Absence of Item Memory

    ERIC Educational Resources Information Center

    Ball, B. Hunter; DeWitt, Michael R.; Knight, Justin B.; Hicks, Jason L.

    2014-01-01

    The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were "related" to the target item but never actually studied.…

  11. Boosting the FM-Index on the GPU: Effective Techniques to Mitigate Random Memory Access.

    PubMed

    Chacón, Alejandro; Marco-Sola, Santiago; Espinosa, Antonio; Ribeca, Paolo; Moure, Juan Carlos

    2015-01-01

    The recent advent of high-throughput sequencing machines producing big amounts of short reads has boosted the interest in efficient string searching techniques. As of today, many mainstream sequence alignment software tools rely on a special data structure, called the FM-index, which allows for fast exact searches in large genomic references. However, such searches translate into a pseudo-random memory access pattern, thus making memory access the limiting factor of all computation-efficient implementations, both on CPUs and GPUs. Here, we show that several strategies can be put in place to remove the memory bottleneck on the GPU: more compact indexes can be implemented by having more threads work cooperatively on larger memory blocks, and a k-step FM-index can be used to further reduce the number of memory accesses. The combination of those and other optimisations yields an implementation that is able to process about two Gbases of queries per second on our test platform, being about 8 × faster than a comparable multi-core CPU version, and about 3 × to 5 × faster than the FM-index implementation on the GPU provided by the recently announced Nvidia NVBIO bioinformatics library.

  12. Paging memory from random access memory to backing storage in a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Inglett, Todd A; Ratterman, Joseph D; Smith, Brian E

    2013-05-21

    Paging memory from random access memory (`RAM`) to backing storage in a parallel computer that includes a plurality of compute nodes, including: executing a data processing application on a virtual machine operating system in a virtual machine on a first compute node; providing, by a second compute node, backing storage for the contents of RAM on the first compute node; and swapping, by the virtual machine operating system in the virtual machine on the first compute node, a page of memory from RAM on the first compute node to the backing storage on the second compute node.

  13. Optical mass memories

    NASA Technical Reports Server (NTRS)

    Bailey, G. A.

    1976-01-01

    Optical and magnetic variants in the design of trillion-bit read/write memories are compared and tabulated. Components and materials suitable for a random access read/write nonmoving memory system are examined, with preference given to holography and photoplastic materials. Advantages and deficiencies of photoplastics are reviewed. Holographic page composer design, essential features of an optical memory with no moving parts, fiche-oriented random access memory design, and materials suitable for an efficient photoplastic fiche are considered. The optical variants offer advantages in lower volume and weight at data transfer rates near 1 Mbit/sec, but power drain is of the same order as for the magnetic variants (tape memory, disk memory). The mechanical properties of photoplastic film materials still leave much to be desired.

  14. BCH codes for large IC random-access memory systems

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.

    1983-01-01

    In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed.

  15. 76 FR 35238 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... Static Random Access Memories and Products Containing Same, DN 2816; the Commission is soliciting... importation of certain static random access memories and products containing same. The complaint names as...

  16. Providing the Public with Online Access to Large Bibliographic Data Bases.

    ERIC Educational Resources Information Center

    Firschein, Oscar; Summit, Roger K.

    DIALOG, an interactive, computer-based information retrieval language, consists of a series of computer programs designed to make use of direct access memory devices in order to provide the user with a rapid means of identifying records within a specific memory bank. Using the system, a library user can be provided access to sixteen distinct and…

  17. Social Desirability Bias in Smoking Cessation: Effects in the Laboratory and Field

    DTIC Science & Technology

    2012-03-16

    and Child Health Journal, 2(2), 77-83. Bradburn, N., Rips, L., & Shevell, S. (1987). Answering autobiographical questions: the impact of memory ...how accessible smoking outcomes are in an individual’s memory . Research has shown that smokers tend to exhibit greater accessibility for positive...body of research that suggests that acute tobacco abstinence hinders cognitive functioning, such as attention, memory , information processing

  18. Fast Magnetoresistive Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1991-01-01

    Magnetoresistive binary digital memories of proposed new type expected to feature high speed, nonvolatility, ability to withstand ionizing radiation, high density, and low power. In memory cell, magnetoresistive effect exploited more efficiently by use of ferromagnetic material to store datum and adjacent magnetoresistive material to sense datum for readout. Because relative change in sensed resistance between "zero" and "one" states greater, shorter sampling and readout access times achievable.

  19. Kokkos: Enabling manycore performance portability through polymorphic memory access patterns

    DOE PAGES

    Carter Edwards, H.; Trott, Christian R.; Sunderland, Daniel

    2014-07-22

    The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread, and diversity of continually evolving manycore architectures. High performance computing (HPC) applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability on these devices. We found that a major obstacle to performance portability is the diverse and conflicting set of constraints on memory access patterns across devices. Contemporary portable programming models address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance portability on diversemore » manycore architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API), present performance results for unit-test kernels and mini-applications, and outline an incremental strategy for migrating legacy C++ codes to Kokkos. Furthermore, the Kokkos library is under active research and development to incorporate capabilities from new generations of manycore architectures, and to address a growing list of applications and domain libraries.« less

  20. Accessing global data from accelerator devices

    DOEpatents

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.; Sura, Zehra N.

    2016-12-06

    An aspect includes a table of contents (TOC) that was generated by a compiler being received at an accelerator device. The TOC includes an address of global data in a host memory space. The global data is copied from the address in the host memory space to an address in the device memory space. The address in the host memory space is obtained from the received TOC. The received TOC is updated to indicate that global data is stored at the address in the device memory space. A kernel that accesses the global data from the address in the device memory space is executed. The address in the device memory space is obtained based on contents of the updated TOC. When the executing is completed, the global data from the address in the device memory space is copied to the address in the host memory space.

  1. Application of phase-change materials in memory taxonomy.

    PubMed

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.

  2. A Cerebellar-model Associative Memory as a Generalized Random-access Memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1989-01-01

    A versatile neural-net model is explained in terms familiar to computer scientists and engineers. It is called the sparse distributed memory, and it is a random-access memory for very long words (for patterns with thousands of bits). Its potential utility is the result of several factors: (1) a large pattern representing an object or a scene or a moment can encode a large amount of information about what it represents; (2) this information can serve as an address to the memory, and it can also serve as data; (3) the memory is noise tolerant--the information need not be exact; (4) the memory can be made arbitrarily large and hence an arbitrary amount of information can be stored in it; and (5) the architecture is inherently parallel, allowing large memories to be fast. Such memories can become important components of future computers.

  3. Accessing global data from accelerator devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.

    2016-12-06

    An aspect includes a table of contents (TOC) that was generated by a compiler being received at an accelerator device. The TOC includes an address of global data in a host memory space. The global data is copied from the address in the host memory space to an address in the device memory space. The address in the host memory space is obtained from the received TOC. The received TOC is updated to indicate that global data is stored at the address in the device memory space. A kernel that accesses the global data from the address in the devicemore » memory space is executed. The address in the device memory space is obtained based on contents of the updated TOC. When the executing is completed, the global data from the address in the device memory space is copied to the address in the host memory space.« less

  4. The contribution to immediate serial recall of rehearsal, search speed, access to lexical memory, and phonological coding: an investigation at the construct level.

    PubMed

    Tehan, Gerald; Fogarty, Gerard; Ryan, Katherine

    2004-07-01

    Rehearsal speed has traditionally been seen to be the prime determinant of individual differences in memory span. Recent studies, in the main using young children as the participant population, have suggested other contributors to span performance. In the present research, we used structural equation modeling to explore, at the construct level, individual differences in immediate serial recall with respect to rehearsal, search, phonological coding, and speed of access to lexical memory. We replicated standard short-term phenomena; we showed that the variables that influence children's span performance influence adult performance in the same way; and we showed that speed of access to lexical memory and facility with phonological codes appear to be more potent sources of individual differences in immediate memory than is either rehearsal speed or search factors.

  5. Chip architecture - A revolution brewing

    NASA Astrophysics Data System (ADS)

    Guterl, F.

    1983-07-01

    Techniques being explored by microchip designers and manufacturers to both speed up memory access and instruction execution while protecting memory are discussed. Attention is given to hardwiring control logic, pipelining for parallel processing, devising orthogonal instruction sets for interchangeable instruction fields, and the development of hardware for implementation of virtual memory and multiuser systems to provide memory management and protection. The inclusion of microcode in mainframes eliminated logic circuits that control timing and gating of the CPU. However, improvements in memory architecture have reduced access time to below that needed for instruction execution. Hardwiring the functions as a virtual memory enhances memory protection. Parallelism involves a redundant architecture, which allows identical operations to be performed simultaneously, and can be directed with microcode to avoid abortion of intermediate instructions once on set of instructions has been completed.

  6. AFSC Standardization Conference, 1553, 1589, 1750, 1760, Ada, November 18-20, 1980, Dayton Convention Center, Dayton, Ohio, Volume II. Proceedings Standards,

    DTIC Science & Technology

    1980-11-01

    4006 DMAE Direct Memory Access Enable: ’Ibis command enables direct memory access (DMA). 4007 I)MAi) Direct Memory Access Disable: This command...72 DLI 72 DLR 72 DM 111 DMAD 30 DMAE 30 DMR 111 ONEG 103 DR 117 DS 104 OSAR 53 141 373 ’., M1L-STD-1750A (USAF) 2 July 1980 OSBI 29 OSCR 54 OSIC 48...in 4.7.7, the connectors shall show no defects detrimental to the operation of the connectors and shall A-7 461 -meet the subsequent test requirements

  7. A short cut to the past: Cueing via concrete objects improves autobiographical memory retrieval in Alzheimer's disease patients.

    PubMed

    Kirk, Marie; Berntsen, Dorthe

    2018-02-01

    Older adults diagnosed with Alzheimer's disease (AD) have difficulties accessing autobiographical memories. However, this deficit tends to spare memories dated to earlier parts of their lives, and may partially reflect retrieval deficits rather than complete memory loss. Introducing a novel paradigm, the present study examines whether autobiographical memory recall can be improved in AD by manipulating the sensory richness, concreteness and cultural dating of the memory cues. Specifically, we examine whether concrete everyday objects historically dated to the participants' youth (e.g., a skipping rope), relative to verbal cues (i.e., the verbal signifiers for the objects) facilitate access to autobiographical memories. The study includes 49 AD patients, and 50 healthy, older matched control participants, all tested on word versus object-cued recall. Both groups recalled significantly more memories, when cued by objects relative to words, but the advantage was significantly larger in the AD group. In both groups, memory descriptions were longer and significantly more episodic in nature in response to object-cued recall. Together these findings suggest that the multimodal nature of the object cues (i.e. vision, olfaction, audition, somatic sensation) along with specific cue characteristics, such as time reference, texture, shape, may constrain the retrieval search, potentially minimizing executive function demands, and hence strategic processing requirements, thus easing access to autobiographical memories in AD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Aspects of GPU perfomance in algorithms with random memory access

    NASA Astrophysics Data System (ADS)

    Kashkovsky, Alexander V.; Shershnev, Anton A.; Vashchenkov, Pavel V.

    2017-10-01

    The numerical code for solving the Boltzmann equation on the hybrid computational cluster using the Direct Simulation Monte Carlo (DSMC) method showed that on Tesla K40 accelerators computational performance drops dramatically with increase of percentage of occupied GPU memory. Testing revealed that memory access time increases tens of times after certain critical percentage of memory is occupied. Moreover, it seems to be the common problem of all NVidia's GPUs arising from its architecture. Few modifications of the numerical algorithm were suggested to overcome this problem. One of them, based on the splitting the memory into "virtual" blocks, resulted in 2.5 times speed up.

  9. Effect of Atomic Layer Depositions (ALD)-Deposited Titanium Oxide (TiO2) Thickness on the Performance of Zr40Cu35Al15Ni10 (ZCAN)/TiO2/Indium (In)-Based Resistive Random Access Memory (RRAM) Structures

    DTIC Science & Technology

    2015-08-01

    metal structures, memristors, resistive random access memory, RRAM, titanium dioxide, Zr40Cu35Al15Ni10, ZCAN, resistive memory, tunnel junction 16...TiO2 thickness ........................6 1 1. Introduction Resistive-switching memory elements based on metal-insulator-metal (MIM) diodes ...have attracted great interest due to their potential as components for simple, inexpensive, and high-density non-volatile storage devices. MIM diodes

  10. Digital Equipment Corporation VAX/VMS Version 4.3

    DTIC Science & Technology

    1986-07-30

    operating system performs process-oriented paging that allows execution of programs that may be larger than the physical memory allocated to them... to higher privileged modes. (For an explanation of how the four access modes provide memory access protection see page 9, "Memory Management".) A... to optimize program performance for real-time applications or interactive environments. July 30, 1986 - 4 - Final Evaluation Report Digital VAX/VMS

  11. Proceedings of the 8th International Symposium on Applications of Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Liu, M.; Safari, A.; Kingon, A.; Haertling, G.

    1993-02-01

    The eighth International Symposium on the Applications of Ferroelectrics was held in Greenville, SC, on August 30 to Sept 2, 1992. It was attended by approximately 260 scientists and engineers who presented nearly 200 oral and poster papers. The three plenary presentations covered ferroelectric materials which are currently moving into commercial exploitation or have strong potential to do so. These were (1) pyroelectric imaging, (2) ferroelectric materials integrated with silicon for use as micromotors and microsensors and (3) research activity in Japan on high permittivity materials for DRAM's. Invited papers covered such subjects as pyroelectric and electrooptic properties of thin films, photorefractive effects, ferroelectric polymers, piezoelectric transducers, processing of ferroelectrics, domain switching in ferroelectrics, thin film memories, thin film vacuum deposition techniques and the fabrication of chemically prepared PZT and PLZT thin films. The papers continued to reflect the large interest in ferroelectric thin films. It was encouraging that there have been substantial strides made in both the processing and understanding of the films in the last two years. It was equally clear, however, that much still remains to be done before reliable thin film devices will be available in the marketplace.

  12. Comparison of Upright Gait with Supine Bungee-Cord Gait

    NASA Technical Reports Server (NTRS)

    Boda, Wanda L.; Hargens, Alan R.; Campbell, J. A.; Yang, C.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Running on a treadmill with bungee-cord resistance is currently used on the Russian space station MIR as a countermeasure for the loss of bone and muscular strength which occurs during spaceflight. However, it is unknown whether ground reaction force (GRF) at the feet using bungee-cord resistance is similar to that which occurs during upright walking and running on Earth. We hypothesized-that the DRAMs generated during upright walking and running are greater than the DRAMs generated during supine bungee-cord gait. Eleven healthy subjects walked (4.8 +/- 0.13 km/h, mean +/- SE) and ran (9.1 +/- 0.51 km/h) during upright and supine bungee-cord exercise on an active treadmill. Subjects exercised for 3 min in each condition using a resistance of 1 body weight calibrated during an initial, stationary standing position. Data were sampled at a frequency of 500Hz and the mean of 3 trials was analyzed for each condition. A repeated measures analysis of variance tested significance between the conditions. Peak DRAMs during upright walking were significantly greater (1084.9 +/- 111.4 N) than during supine bungee-cord walking (770.3 +/- 59.8 N; p less than 0.05). Peak GRFs were also significantly greater for upright running (1548.3 +/- 135.4 N) than for supine bungee-cord running (1099.5 +/- 158.46 N). Analysis of GRF curves indicated that forces decreased throughout the stance phase for bungee-cord gait but not during upright gait. These results indicate that bungee-cord exercise may not create sufficient loads at the feet to counteract the loss of bone and muscular strength that occurs during long-duration exposure to microgravity.

  13. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

    PubMed

    Xie, Xiaolei; Le, Li; Fan, Yanxin; Lv, Lin; Zhang, Junjie

    2012-07-01

    Mitoribosome in mammalian cells is responsible for synthesis of 13 mtDNA-encoded proteins, which are integral parts of four mitochondrial respiratory chain complexes (I, III, IV and V). ERAL1 is a nuclear-encoded GTPase important for the formation of the 28S small mitoribosomal subunit. Here, we demonstrate that knockdown of ERAL1 by RNA interference inhibits mitochondrial protein synthesis and promotes reactive oxygen species (ROS) generation, leading to autophagic vacuolization in HeLa cells. Cells that lack ERAL1 expression showed a significant conversion of LC3-I to LC3-II and an enhanced accumulation of autophagic vacuoles carrying the LC3 marker, all of which were blocked by the autophagy inhibitor 3-MA as well as by the ROS scavenger NAC. Inhibition of mitochondrial protein synthesis either by ERAL1 siRNA or chloramphenicol (CAP), a specific inhibitor of mitoribosomes, induced autophagy in HTC-116 TP53 (+/+) cells, but not in HTC-116 TP53 (-/-) cells, indicating that tumor protein 53 (TP53) is essential for the autophagy induction. The ROS elevation resulting from mitochondrial protein synthesis inhibition induced TP53 expression at transcriptional levels by enhancing TP53 promoter activity, and increased TP53 protein stability by suppressing TP53 ubiquitination through MAPK14/p38 MAPK-mediated TP53 phosphorylation. Upregulation of TP53 and its downstream target gene DRAM1, but not CDKN1A/p21, was required for the autophagy induction in ERAL1 siRNA or CAP-treated cells. Altogether, these data indicate that autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

  14. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications

    NASA Astrophysics Data System (ADS)

    Liu, Chunsen; Yan, Xiao; Song, Xiongfei; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-05-01

    As conventional circuits based on field-effect transistors are approaching their physical limits due to quantum phenomena, semi-floating gate transistors have emerged as an alternative ultrafast and silicon-compatible technology. Here, we show a quasi-non-volatile memory featuring a semi-floating gate architecture with band-engineered van der Waals heterostructures. This two-dimensional semi-floating gate memory demonstrates 156 times longer refresh time with respect to that of dynamic random access memory and ultrahigh-speed writing operations on nanosecond timescales. The semi-floating gate architecture greatly enhances the writing operation performance and is approximately 106 times faster than other memories based on two-dimensional materials. The demonstrated characteristics suggest that the quasi-non-volatile memory has the potential to bridge the gap between volatile and non-volatile memory technologies and decrease the power consumption required for frequent refresh operations, enabling a high-speed and low-power random access memory.

  15. Deployment Ready Airway Management System (DRAMS)

    DTIC Science & Technology

    2013-10-24

    have been developed along with rapid prototypes. The results have been excellent and DMLS Alpha one and two prototypes have been developed resulting...Contact Model Quarterly  Report               10/25/2013 DMLS FlexBlade Reusable Module B-1 Prototype

  16. GPU color space conversion

    NASA Astrophysics Data System (ADS)

    Chase, Patrick; Vondran, Gary

    2011-01-01

    Tetrahedral interpolation is commonly used to implement continuous color space conversions from sparse 3D and 4D lookup tables. We investigate the implementation and optimization of tetrahedral interpolation algorithms for GPUs, and compare to the best known CPU implementations as well as to a well known GPU-based trilinear implementation. We show that a 500 NVIDIA GTX-580 GPU is 3x faster than a 1000 Intel Core i7 980X CPU for 3D interpolation, and 9x faster for 4D interpolation. Performance-relevant GPU attributes are explored including thread scheduling, local memory characteristics, global memory hierarchy, and cache behaviors. We consider existing tetrahedral interpolation algorithms and tune based on the structure and branching capabilities of current GPUs. Global memory performance is improved by reordering and expanding the lookup table to ensure optimal access behaviors. Per multiprocessor local memory is exploited to implement optimally coalesced global memory accesses, and local memory addressing is optimized to minimize bank conflicts. We explore the impacts of lookup table density upon computation and memory access costs. Also presented are CPU-based 3D and 4D interpolators, using SSE vector operations that are faster than any previously published solution.

  17. Measuring autobiographical fluency in the self-memory system.

    PubMed

    Rathbone, Clare J; Moulin, Chris J A

    2014-01-01

    Autobiographical memory is widely considered to be fundamentally related to concepts of self and identity. However, few studies have sought to test models of self and memory directly using experimental designs. Using a novel autobiographical fluency paradigm, the present study investigated memory accessibility for different levels of self-related knowledge. Forty participants generated 20 "I am" statements about themselves, from which the 1st, 5th, 10th, 15th, and 20th were used as cues in a two-minute autobiographical fluency task. The most salient aspects of the self, measured by both serial position and ratings of personal significance, were associated with more accessible sets of autobiographical memories. This finding supports theories that view the self as a powerful organizational structure in memory. Results are discussed with reference to models of self and memory.

  18. Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Kamesh

    Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore,more » these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-ow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization.« less

  19. Heap/stack guard pages using a wakeup unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gooding, Thomas M; Satterfield, David L; Steinmacher-Burow, Burkhard

    A method and system for providing a memory access check on a processor including the steps of detecting accesses to a memory device including level-1 cache using a wakeup unit. The method includes invalidating level-1 cache ranges corresponding to a guard page, and configuring a plurality of wakeup address compare (WAC) registers to allow access to selected WAC registers. The method selects one of the plurality of WAC registers, and sets up a WAC register related to the guard page. The method configures the wakeup unit to interrupt on access of the selected WAC register. The method detects access ofmore » the memory device using the wakeup unit when a guard page is violated. The method generates an interrupt to the core using the wakeup unit, and determines the source of the interrupt. The method detects the activated WAC registers assigned to the violated guard page, and initiates a response.« less

  20. The differential effects of ecstasy/polydrug use on executive components: shifting, inhibition, updating and access to semantic memory.

    PubMed

    Montgomery, Catharine; Fisk, John E; Newcombe, Russell; Murphy, Phillip N

    2005-10-01

    Recent theoretical models suggest that the central executive may not be a unified structure. The present study explored the nature of central executive deficits in ecstasy users. In study 1, 27 ecstasy users and 34 non-users were assessed using tasks to tap memory updating (computation span; letter updating) and access to long-term memory (a semantic fluency test and the Chicago Word Fluency Test). In study 2, 51 ecstasy users and 42 non-users completed tasks that assess mental set switching (number/letter and plus/minus) and inhibition (random letter generation). MANOVA revealed that ecstasy users performed worse on both tasks used to assess memory updating and on tasks to assess access to long-term memory (C- and S-letter fluency). However, notwithstanding the significant ecstasy group-related effects, indices of cocaine and cannabis use were also significantly correlated with most of the executive measures. Unexpectedly, in study 2, ecstasy users performed significantly better on the inhibition task, producing more letters than non-users. No group differences were observed on the switching tasks. Correlations between indices of ecstasy use and number of letters produced were significant. The present study provides further support for ecstasy/polydrug-related deficits in memory updating and in access to long-term memory. The surplus evident on the inhibition task should be treated with some caution, as this was limited to a single measure and has not been supported by our previous work.

  1. Performance Evaluation of Remote Memory Access (RMA) Programming on Shared Memory Parallel Computers

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The purpose of this study is to evaluate the feasibility of remote memory access (RMA) programming on shared memory parallel computers. We discuss different RMA based implementations of selected CFD application benchmark kernels and compare them to corresponding message passing based codes. For the message-passing implementation we use MPI point-to-point and global communication routines. For the RMA based approach we consider two different libraries supporting this programming model. One is a shared memory parallelization library (SMPlib) developed at NASA Ames, the other is the MPI-2 extensions to the MPI Standard. We give timing comparisons for the different implementation strategies and discuss the performance.

  2. Enhancing Memory Access for Less Skilled Readers

    ERIC Educational Resources Information Center

    Smith, Emily R.; O'Brien, Edward J.

    2016-01-01

    Less skilled readers' comprehension often suffers because they have an impoverished representation of text in long-term memory; this, in turn, increases the difficulty of gaining access to backgrounded information necessary for maintaining coherence. The results of four experiments demonstrated that providing less skilled readers with additional…

  3. Application of phase-change materials in memory taxonomy

    PubMed Central

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects. PMID:28740557

  4. A review of emerging non-volatile memory (NVM) technologies and applications

    NASA Astrophysics Data System (ADS)

    Chen, An

    2016-11-01

    This paper will review emerging non-volatile memory (NVM) technologies, with the focus on phase change memory (PCM), spin-transfer-torque random-access-memory (STTRAM), resistive random-access-memory (RRAM), and ferroelectric field-effect-transistor (FeFET) memory. These promising NVM devices are evaluated in terms of their advantages, challenges, and applications. Their performance is compared based on reported parameters of major industrial test chips. Memory selector devices and cell structures are discussed. Changing market trends toward low power (e.g., mobile, IoT) and data-centric applications create opportunities for emerging NVMs. High-performance and low-cost emerging NVMs may simplify memory hierarchy, introduce non-volatility in logic gates and circuits, reduce system power, and enable novel architectures. Storage-class memory (SCM) based on high-density NVMs could fill the performance and density gap between memory and storage. Some unique characteristics of emerging NVMs can be utilized for novel applications beyond the memory space, e.g., neuromorphic computing, hardware security, etc. In the beyond-CMOS era, emerging NVMs have the potential to fulfill more important functions and enable more efficient, intelligent, and secure computing systems.

  5. Attention, working memory, and phenomenal experience of WM content: memory levels determined by different types of top-down modulation.

    PubMed

    Jacob, Jane; Jacobs, Christianne; Silvanto, Juha

    2015-01-01

    What is the role of top-down attentional modulation in consciously accessing working memory (WM) content? In influential WM models, information can exist in different states, determined by allocation of attention; placing the original memory representation in the center of focused attention gives rise to conscious access. Here we discuss various lines of evidence indicating that such attentional modulation is not sufficient for memory content to be phenomenally experienced. We propose that, in addition to attentional modulation of the memory representation, another type of top-down modulation is required: suppression of all incoming visual information, via inhibition of early visual cortex. In this view, there are three distinct memory levels, as a function of the top-down control associated with them: (1) Nonattended, nonconscious associated with no attentional modulation; (2) attended, phenomenally nonconscious memory, associated with attentional enhancement of the actual memory trace; (3) attended, phenomenally conscious memory content, associated with enhancement of the memory trace and top-down suppression of all incoming visual input.

  6. Selective memory retrieval can impair and improve retrieval of other memories.

    PubMed

    Bäuml, Karl-Heinz T; Samenieh, Anuscheh

    2012-03-01

    Research from the past decades has shown that retrieval of a specific memory (e.g., retrieving part of a previous vacation) typically attenuates retrieval of other memories (e.g., memories for other details of the event), causing retrieval-induced forgetting. More recently, however, it has been shown that retrieval can both attenuate and aid recall of other memories (K.-H. T. Bäuml & A. Samenieh, 2010). To identify the circumstances under which retrieval aids recall, the authors examined retrieval dynamics in listwise directed forgetting, context-dependent forgetting, proactive interference, and in the absence of any induced memory impairment. They found beneficial effects of selective retrieval in listwise directed forgetting and context-dependent forgetting but detrimental effects in all the other conditions. Because context-dependent forgetting and listwise directed forgetting arguably reflect impaired context access, the results suggest that memory retrieval aids recall of memories that are subject to impaired context access but attenuates recall in the absence of such circumstances. The findings are consistent with a 2-factor account of memory retrieval and suggest the existence of 2 faces of memory retrieval. 2012 APA, all rights reserved

  7. Multiple memory stores and operant conditioning: a rationale for memory's complexity.

    PubMed

    Meeter, Martijn; Veldkamp, Rob; Jin, Yaochu

    2009-02-01

    Why does the brain contain more than one memory system? Genetic algorithms can play a role in elucidating this question. Here, model animals were constructed containing a dorsal striatal layer that controlled actions, and a ventral striatal layer that controlled a dopaminergic learning signal. Both layers could gain access to three modeled memory stores, but such access was penalized as energy expenditure. Model animals were then selected on their fitness in simulated operant conditioning tasks. Results suggest that having access to multiple memory stores and their representations is important in learning to regulate dopamine release, as well as in contextual discrimination. For simple operant conditioning, as well as stimulus discrimination, hippocampal compound representations turned out to suffice, a counterintuitive result given findings that hippocampal lesions tend not to affect performance in such tasks. We argue that there is in fact evidence to support a role for compound representations and the hippocampus in even the simplest conditioning tasks.

  8. Alcoholic beverage server liability and the reduction of alcohol-related problems : evaluation of dram shop laws : final report

    DOT National Transportation Integrated Search

    1990-06-01

    The project was an evaluation of the potential for the legal liability of alcoholic beverage servers to stimulate preventative serving practices and thus reduce alcohol-involved traffic problems. Legal analyses of judicial and legislative actions wit...

  9. Alcoholic beverage server liability and the reduction of alcohol-related problems : evaluation of dram shop laws : summary report

    DOT National Transportation Integrated Search

    1990-06-01

    The project was an evaluation of the potential for the legal liability of alcoholic beverage servers to stimulate preventative serving practices and thus reduce alcohol-involved traffic problems. Legal analyses of judicial and legislative actions wit...

  10. Power reduction by power gating in differential pair type spin-transfer-torque magnetic random access memories for low-power nonvolatile cache memories

    NASA Astrophysics Data System (ADS)

    Ohsawa, Takashi; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo

    2014-01-01

    Array operation currents in spin-transfer-torque magnetic random access memories (STT-MRAMs) that use four differential pair type magnetic tunnel junction (MTJ)-based memory cells (4T2MTJ, two 6T2MTJs and 8T2MTJ) are simulated and compared with that in SRAM. With L3 cache applications in mind, it is assumed that the memories are composed of 32 Mbyte capacity to be accessed in 64 byte in parallel. All the STT-MRAMs except for the 8T2MTJ one are designed with 32 bit fine-grained power gating scheme applied to eliminate static currents in the memory cells that are not accessed. The 8T2MTJ STT-MRAM, the cell’s design concept being not suitable for the fine-grained power gating, loads and saves 32 Mbyte data in 64 Mbyte unit per 1 Mbit sub-array in 2 × 103 cycles. It is shown that the array operation current of the 4T2MTJ STT-MRAM is 70 mA averaged in 15 ns write cycles at Vdd = 0.9 V. This is the smallest among the STT-MRAMs, about the half of the low standby power (LSTP) SRAM whose array operation current is totally dominated by the cells’ subthreshold leakage.

  11. Object selection costs in visual working memory: A diffusion model analysis of the focus of attention.

    PubMed

    Sewell, David K; Lilburn, Simon D; Smith, Philip L

    2016-11-01

    A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Designing a VMEbus FDDI adapter card

    NASA Astrophysics Data System (ADS)

    Venkataraman, Raman

    1992-03-01

    This paper presents a system architecture for a VMEbus FDDI adapter card containing a node core, FDDI block, frame buffer memory and system interface unit. Most of the functions of the PHY and MAC layers of FDDI are implemented with National's FDDI chip set and the SMT implementation is simplified with a low cost microcontroller. The factors that influence the system bus bandwidth utilization and FDDI bandwidth utilization are the data path and frame buffer memory architecture. The VRAM based frame buffer memory has two sections - - LLC frame memory and SMT frame memory. Each section with an independent serial access memory (SAM) port provides an independent access after the initial data transfer cycle on the main port and hence, the throughput is maximized on each port of the memory. The SAM port simplifies the system bus master DMA design and the VMEbus interface can be designed with low-cost off-the-shelf interface chips.

  13. Scaling Irregular Applications through Data Aggregation and Software Multithreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morari, Alessandro; Tumeo, Antonino; Chavarría-Miranda, Daniel

    Bioinformatics, data analytics, semantic databases, knowledge discovery are emerging high performance application areas that exploit dynamic, linked data structures such as graphs, unbalanced trees or unstructured grids. These data structures usually are very large, requiring significantly more memory than available on single shared memory systems. Additionally, these data structures are difficult to partition on distributed memory systems. They also present poor spatial and temporal locality, thus generating unpredictable memory and network accesses. The Partitioned Global Address Space (PGAS) programming model seems suitable for these applications, because it allows using a shared memory abstraction across distributed-memory clusters. However, current PGAS languagesmore » and libraries are built to target regular remote data accesses and block transfers. Furthermore, they usually rely on the Single Program Multiple Data (SPMD) parallel control model, which is not well suited to the fine grained, dynamic and unbalanced parallelism of irregular applications. In this paper we present {\\bf GMT} (Global Memory and Threading library), a custom runtime library that enables efficient execution of irregular applications on commodity clusters. GMT integrates a PGAS data substrate with simple fork/join parallelism and provides automatic load balancing on a per node basis. It implements multi-level aggregation and lightweight multithreading to maximize memory and network bandwidth with fine-grained data accesses and tolerate long data access latencies. A key innovation in the GMT runtime is its thread specialization (workers, helpers and communication threads) that realize the overall functionality. We compare our approach with other PGAS models, such as UPC running using GASNet, and hand-optimized MPI code on a set of typical large-scale irregular applications, demonstrating speedups of an order of magnitude.« less

  14. The influence of training and experience on memory strategy.

    PubMed

    Patrick, John; Morgan, Phillip L; Smy, Victoria; Tiley, Leyanne; Seeby, Helen; Patrick, Tanya; Evans, Jonathan

    2015-07-01

    This paper investigates whether, and if so how much, prior training and experience overwrite the influence of the constraints of the task environment on strategy deployment. This evidence is relevant to the theory of soft constraints that focuses on the role of constraints in the task environment (Gray, Simms, Fu, & Schoelles, Psychological Review, 113: 461-482, 2006). The theory explains how an increase in the cost of accessing information induces a more memory-based strategy involving more encoding and planning. Experiments 1 and 3 adopt a traditional training and transfer design using the Blocks World Task in which participants were exposed to training trials involving a 2.5-s delay in accessing goal-state information before encountering transfer trials in which there was no access delay. The effect of prior training was assessed by the degree of memory-based strategy adopted in the transfer trials. Training with an access delay had a substantial carry-over effect and increased the subsequent degree of memory-based strategy adopted in the transfer environment. However, such effects do not necessarily occur if goal-state access cost in training is less costly than in transfer trials (Experiment 2). Experiment 4 used a fine-grained intra-trial design to examine the effect of experiencing access cost on one, two, or three occasions within the same trial and found that such experience on two consecutive occasions was sufficient to induce a more memory-based strategy. This paper establishes some effects of training that are relevant to the soft constraints theory and also discusses practical implications.

  15. Characterization and metrology implications of the 1997 NTRS

    NASA Astrophysics Data System (ADS)

    Class, W.; Wortman, J. J.

    1998-11-01

    In the Front-end (transistor forming) area of silicon CMOS device processing, several NTRS difficult challenges have been identified including; scaled and alternate gate dielectric materials, new DRAM dielectric materials, alternate gate materials, elevated contact structures, engineered channels, and large-area cost-effective silicon substrates. This paper deals with some of the characterization and metrology challenges facing the industry if it is to meet the projected needs identified in the NTRS. In the areas of gate and DRAM dielectric, scaling requires that existing material layers be thinned to maximize capacitance. For the current gate dielectric, SiO2 and its nitrided derivatives, direct tunneling will limit scaling to approximately 1.5nm for logic applications before power losses become unacceptable. Low power logic and memory applications may limit scaling to the 2.0-2.2nm range. Beyond these limits, dielectric materials having higher dielectric constant, will permit continued capacitance increases while allowing for the use of thicker dielectric layers, where tunneling may be minimized. In the near term silicon nitride is a promising SiO2 substitute material while in the longer term "high-k" materials such as tantalum pentoxide and barium strontium titanate (BST) will be required. For these latter materials, it is likely that a multilayer dielectric stack will be needed, consisting of an ultra-thin (1-2 atom layer) interfacial SiO2 layer and a high-k overlayer. Silicon wafer surface preparation control, as well as the control of composition, crystal structure, and thickness for such stacks pose significant characterization and metrology challenges. In addition to the need for new gate dielectric materials, new gate materials will be required to overcome the limitations of the current doped polysilicon gate materials. Such a change has broad ramifications on device electrical performance and manufacturing process robustness which again implies a broad range of new characterization and metrology requirements. Finally, the doped structure of the MOS transistor must scale to very small lateral and depth dimensions, and thermal budgets must be reduced to permit the retention of very abrupt highly doped drain and channel engineered structures. Eventually, the NTRS forecasts the need for an elevated contact structure. Here, there are significant challenges associated with three-dimensional dopant profiling, measurement of dopant activity in ultra-shallow device regions, as well as point defect metrology and characterization.

  16. Optoelectronic-cache memory system architecture.

    PubMed

    Chiarulli, D M; Levitan, S P

    1996-05-10

    We present an investigation of the architecture of an optoelectronic cache that can integrate terabit optical memories with the electronic caches associated with high-performance uniprocessors and multiprocessors. The use of optoelectronic-cache memories enables these terabit technologies to provide transparently low-latency secondary memory with frame sizes comparable with disk pages but with latencies that approach those of electronic secondary-cache memories. This enables the implementation of terabit memories with effective access times comparable with the cycle times of current microprocessors. The cache design is based on the use of a smart-pixel array and combines parallel free-space optical input-output to-and-from optical memory with conventional electronic communication to the processor caches. This cache and the optical memory system to which it will interface provide a large random-access memory space that has a lower overall latency than that of magnetic disks and disk arrays. In addition, as a consequence of the high-bandwidth parallel input-output capabilities of optical memories, fault service times for the optoelectronic cache are substantially less than those currently achievable with any rotational media.

  17. Investigation of multi-state charge-storage properties of redox-active organic molecules in silicon-molecular hybrid devices for DRAM and Flash applications

    NASA Astrophysics Data System (ADS)

    Gowda, Srivardhan Shivappa

    Molecular electronics has recently spawned a considerable amount of interest with several molecules possessing charge-conduction and charge-storage properties proposed for use in electronic devices. Hybrid silicon-molecular technology has the promise of augmenting the current silicon technology and provide for a transitional path to future molecule-only technology. The focus of this dissertation work has been on developing a class of hybrid silicon-molecular electronic devices for DRAM and Flash memory applications utilizing redox-active molecules. This work exploits the ability of molecules to store charges with single-electron precision at room temperature. The hybrid devices are fabricated by forming self-assembled monolayers of redox-active molecules on Si and oxide (SiO2 and HfO2) surfaces via formation of covalent linkages. The molecules possess discrete quantum states from which electrons can tunnel to the Si substrate at discrete applied voltages (oxidation process, cell write), leaving behind a positively charged layer of molecules. The reduction (erase) process, which is the process of electrons tunneling back from Si to the molecules, neutralizes the positively charged molecular monolayer. Hybrid silicon-molecular capacitor test structures were electrically characterized with an electrolyte gate using cyclic voltammetry (CyV) and impedance spectroscopy (CV) techniques. The redox voltages, kinetics (write/erase speeds) and charge-retention characteristics were found to be strongly dependent on the Si doping type and densities, and ambient light. It was also determined that the redox energy states in the molecules communicate with the valence band of the Si substrate. This allows tuning of write and read states by modulating minority carriers in n- and p-Si substrates. Ultra-thin dielectric tunnel barriers (SiO2, HfO2) were placed between the molecules and the Si substrate to augment charge-retention for Flash memory applications. The redox response was studied as a function of tunnel oxide thickness, dielectric permittivity and energy barrier, and modified Butler-Volmer expressions were postulated to describe the redox kinetics. The speed vs. retention performance of the devices was improved via asymmetric layered tunnel barriers. The properties of molecules can be tailored by molecular design and synthetic chemistry. In this work, it was demonstrated that an alternate route to tune/enhance the properties of the hybrid device is to engineer the substrate (silicon) component. The molecules were attached to diode surfaces to tune redox voltages and improve charge-retention characteristics. N+ pockets embedded in P-Si well were utilized to obtain multiple states from a two-state molecule. The structure was also employed as a characterization tool in investigating the intrinsic properties of the molecules such as lateral conductivity within the monolayer. Redox molecules were also incorporated on an ultra thin gate-oxide of Si MOSFETs with the intent of studying the interaction of redox states with Si MOSFETs. The discrete molecular states were manifested in the drain current and threshold voltage characteristics of the device. This work demonstrates the multi-state modulation of Si-MOSFETs' drain current via redox-active molecular monolayers. Polymeric films of redox-active molecules were incorporated to improve the charge-density (ON/OFF ratio) and these structures may be employed for multi-state, low-voltage Flash memory applications. The most critical aspect of this research effort is to build a reliable and high density solid state memory technology. To this end, efforts were directed towards replacement of the electrolytic gate, which forms an extremely thin insulating double layer (˜10 nm) at the electrolyte-molecule interface, with a combination of an ultra-thin high-K dielectric layer and a metal gate. Several interesting observations were made in the research approaches towards integration and provided valuable insights into the electrolyte-redox systems. In summary, this work provides fundamental insights into the interaction of redox-energy states with silicon substrate and realistic approaches for exploiting the unique properties of the molecules that may enable solutions for nanoscale high density, low-voltage, long retention and multiple bit memory applications.

  18. A land-potential knowledge system (LandPKS) based on local and scientific knowledge of land productivity and resilience

    USDA-ARS?s Scientific Manuscript database

    Economic assessment of land use change in drylands depends on understanding potential productivity, degradation resistance and resilience, all of which vary widely and are often ignored. Rapidly increasing demand, together with new technologies, migration and global capital mobility are driving dram...

  19. Use of intermediaries in DWI deterrence. Volume 3, Dram shop acts, common law liability and state alcoholic beverage control (ABC) enforcement as potential DWI countermeasures

    DOT National Transportation Integrated Search

    1983-04-01

    Many trips undertaken by alcohol-impaired drivers originate at public drinking establishments: bars, taverns, nightclubs, restaurants, etc. The managers and service personnel (bartenders, waiters, waitresses) in these establishments could play a role...

  20. Cerebellar models of associative memory: Three papers from IEEE COMPCON spring 1989

    NASA Technical Reports Server (NTRS)

    Raugh, Michael R. (Editor)

    1989-01-01

    Three papers are presented on the following topics: (1) a cerebellar-model associative memory as a generalized random-access memory; (2) theories of the cerebellum - two early models of associative memory; and (3) intelligent network management and functional cerebellum synthesis.

  1. The dynamics of sensory buffers: geometric, spatial, and experience-dependent shaping of iconic memory.

    PubMed

    Graziano, Martin; Sigman, Mariano

    2008-05-23

    When a stimulus is presented, its sensory trace decays rapidly, lasting for approximately 1000 ms. This brief and labile memory, referred as iconic memory, serves as a buffer before information is transferred to working memory and executive control. Here we explored the effect of different factors--geometric, spatial, and experience--with respect to the access and the maintenance of information in iconic memory and the progressive distortion of this memory. We studied performance in a partial report paradigm, a design wherein recall of only part of a stimulus array is required. Subjects had to report the identity of a letter in a location that was cued in a variable delay after the stimulus onset. Performance decayed exponentially with time, and we studied the different parameters (time constant, zero-delay value, and decay amplitude) as a function of the different factors. We observed that experience (determined by letter frequency) affected the access to iconic memory but not the temporal decay constant. On the contrary, spatial position affected the temporal course of delay. The entropy of the error distribution increased with time reflecting a progressive morphological distortion of the iconic buffer. We discuss our results on the context of a model of information access to executive control and how it is affected by learning and attention.

  2. Oscillatory mechanisms of process binding in memory.

    PubMed

    Klimesch, Wolfgang; Freunberger, Roman; Sauseng, Paul

    2010-06-01

    A central topic in cognitive neuroscience is the question, which processes underlie large scale communication within and between different neural networks. The basic assumption is that oscillatory phase synchronization plays an important role for process binding--the transient linking of different cognitive processes--which may be considered a special type of large scale communication. We investigate this question for memory processes on the basis of different types of oscillatory synchronization mechanisms. The reviewed findings suggest that theta and alpha phase coupling (and phase reorganization) reflect control processes in two large memory systems, a working memory and a complex knowledge system that comprises semantic long-term memory. It is suggested that alpha phase synchronization may be interpreted in terms of processes that coordinate top-down control (a process guided by expectancy to focus on relevant search areas) and access to memory traces (a process leading to the activation of a memory trace). An analogous interpretation is suggested for theta oscillations and the controlled access to episodic memories. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  3. Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.

    2014-04-01

    In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.

  4. Magnet/Hall-Effect Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1991-01-01

    In proposed magnet/Hall-effect random-access memory (MHRAM), bits of data stored magnetically in Perm-alloy (or equivalent)-film memory elements and read out by using Hall-effect sensors to detect magnetization. Value of each bit represented by polarity of magnetization. Retains data for indefinite time or until data rewritten. Speed of Hall-effect sensors in MHRAM results in readout times of about 100 nanoseconds. Other characteristics include high immunity to ionizing radiation and storage densities of order 10(Sup6)bits/cm(Sup 2) or more.

  5. Investigation of multilayer magnetic domain lattice file

    NASA Technical Reports Server (NTRS)

    Torok, E. J.; Kamin, M.; Tolman, C. H.

    1980-01-01

    The feasibility of the self structured multilayered bubble domain memory as a mass memory medium for satellite applications is examined. Theoretical considerations of multilayer bubble supporting materials are presented, in addition to the experimental evaluation of current accessed circuitry for various memory functions. The design, fabrication, and test of four device designs is described, and a recommended memory storage area configuration is presented. Memory functions which were demonstrated include the current accessed propagation of bubble domains and stripe domains, pinning of stripe domain ends, generation of single and double bubbles, generation of arrays of coexisting strip and bubble domains in a single garnet layer, and demonstration of different values of the strip out field for single and double bubbles indicating adequate margins for data detection. All functions necessary to develop a multilayer self structured bubble memory device were demonstrated in individual experiments.

  6. Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited)

    NASA Astrophysics Data System (ADS)

    Ando, K.; Fujita, S.; Ito, J.; Yuasa, S.; Suzuki, Y.; Nakatani, Y.; Miyazaki, T.; Yoda, H.

    2014-05-01

    Most parts of present computer systems are made of volatile devices, and the power to supply them to avoid information loss causes huge energy losses. We can eliminate this meaningless energy loss by utilizing the non-volatile function of advanced spin-transfer torque magnetoresistive random-access memory (STT-MRAM) technology and create a new type of computer, i.e., normally off computers. Critical tasks to achieve normally off computers are implementations of STT-MRAM technologies in the main memory and low-level cache memories. STT-MRAM technology for applications to the main memory has been successfully developed by using perpendicular STT-MRAMs, and faster STT-MRAM technologies for applications to the cache memory are now being developed. The present status of STT-MRAMs and challenges that remain for normally off computers are discussed.

  7. Non-volatile magnetic random access memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    Improvements are made in a non-volatile magnetic random access memory. Such a memory is comprised of an array of unit cells, each having a Hall-effect sensor and a thin-film magnetic element made of material having an in-plane, uniaxial anisotropy and in-plane, bipolar remanent magnetization states. The Hall-effect sensor is made more sensitive by using a 1 m thick molecular beam epitaxy grown InAs layer on a silicon substrate by employing a GaAs/AlGaAs/InAlAs superlattice buffering layer. One improvement avoids current shunting problems of matrix architecture. Another improvement reduces the required magnetizing current for the micromagnets. Another improvement relates to the use of GaAs technology wherein high electron-mobility GaAs MESFETs provide faster switching times. Still another improvement relates to a method for configuring the invention as a three-dimensional random access memory.

  8. Fencing direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Mamidala, Amith R.

    2013-09-03

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  9. Fencing direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A; Mamidala, Amith R

    2014-02-11

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  10. Staging memory for massively parallel processor

    NASA Technical Reports Server (NTRS)

    Batcher, Kenneth E. (Inventor)

    1988-01-01

    The invention herein relates to a computer organization capable of rapidly processing extremely large volumes of data. A staging memory is provided having a main stager portion consisting of a large number of memory banks which are accessed in parallel to receive, store, and transfer data words simultaneous with each other. Substager portions interconnect with the main stager portion to match input and output data formats with the data format of the main stager portion. An address generator is coded for accessing the data banks for receiving or transferring the appropriate words. Input and output permutation networks arrange the lineal order of data into and out of the memory banks.

  11. Development of highly reliable static random access memory for 40-nm embedded split gate-MONOS flash memory

    NASA Astrophysics Data System (ADS)

    Okamoto, Shin-ichi; Maekawa, Kei-ichi; Kawashima, Yoshiyuki; Shiba, Kazutoshi; Sugiyama, Hideki; Inoue, Masao; Nishida, Akio

    2015-04-01

    High quality static random access memory (SRAM) for 40-nm embedded MONOS flash memory with split gate (SG-MONOS) was developed. Marginal failure, which results in threshold voltage/drain current tailing and outliers of SRAM transistors, occurs when using a conventional SRAM structure. These phenomena can be explained by not only gate depletion but also partial depletion and percolation path formation in the MOS channel. A stacked poly-Si gate structure can suppress these phenomena and achieve high quality SRAM without any defects in the 6σ level and with high affinity to the 40-nm SG-MONOS process was developed.

  12. Method for prefetching non-contiguous data structures

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Brewster, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-05-05

    A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processor only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple perfecting for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefect rather than some other predictive algorithm. This enables hardware to effectively prefect memory access patterns that are non-contiguous, but repetitive.

  13. Making Physical Activity Accessible to Older Adults with Memory Loss: A Feasibility Study

    ERIC Educational Resources Information Center

    Logsdon, Rebecca G.; McCurry, Susan M.; Pike, Kenneth C.; Teri, Linda

    2009-01-01

    Purpose: For individuals with mild cognitive impairment (MCI), memory loss may prevent successful engagement in exercise, a key factor in preventing additional disability. The Resources and Activities for Life Long Independence (RALLI) program uses behavioral principles to make exercise more accessible for these individuals. Exercises are broken…

  14. Improving the performance of heterogeneous multi-core processors by modifying the cache coherence protocol

    NASA Astrophysics Data System (ADS)

    Fang, Juan; Hao, Xiaoting; Fan, Qingwen; Chang, Zeqing; Song, Shuying

    2017-05-01

    In the Heterogeneous multi-core architecture, CPU and GPU processor are integrated on the same chip, which poses a new challenge to the last-level cache management. In this architecture, the CPU application and the GPU application execute concurrently, accessing the last-level cache. CPU and GPU have different memory access characteristics, so that they have differences in the sensitivity of last-level cache (LLC) capacity. For many CPU applications, a reduced share of the LLC could lead to significant performance degradation. On the contrary, GPU applications can tolerate increase in memory access latency when there is sufficient thread-level parallelism. Taking into account the GPU program memory latency tolerance characteristics, this paper presents a method that let GPU applications can access to memory directly, leaving lots of LLC space for CPU applications, in improving the performance of CPU applications and does not affect the performance of GPU applications. When the CPU application is cache sensitive, and the GPU application is insensitive to the cache, the overall performance of the system is improved significantly.

  15. A diary after dinner: How the time of event recording influences later accessibility of diary events.

    PubMed

    Szőllősi, Ágnes; Keresztes, Attila; Conway, Martin A; Racsmány, Mihály

    2015-01-01

    Recording the events of a day in a diary may help improve their later accessibility. An interesting question is whether improvements in long-term accessibility will be greater if the diary is completed at the end of the day, or after a period of sleep, the following morning. We investigated this question using an internet-based diary method. On each of five days, participants (n = 109) recorded autobiographical memories for that day or for the previous day. Recording took place either in the morning or in the evening. Following a 30-day retention interval, the diary events were free recalled. We found that participants who recorded their memories in the evening before sleep had best memory performance. These results suggest that the time of reactivation and recording of recent autobiographical events has a significant effect on the later accessibility of those diary events. We discuss our results in the light of related findings that show a beneficial effect of reduced interference during sleep on memory consolidation and reconsolidation.

  16. Facial Expression Influences Face Identity Recognition During the Attentional Blink

    PubMed Central

    2014-01-01

    Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry—suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another. PMID:25286076

  17. Facial expression influences face identity recognition during the attentional blink.

    PubMed

    Bach, Dominik R; Schmidt-Daffy, Martin; Dolan, Raymond J

    2014-12-01

    Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry-suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another.

  18. Event memory and moving in a well-known environment.

    PubMed

    Tamplin, Andrea K; Krawietz, Sabine A; Radvansky, Gabriel A; Copeland, David E

    2013-11-01

    Research in narrative comprehension has repeatedly shown that when people read about characters moving in well-known environments, the accessibility of object information follows a spatial gradient. That is, the accessibility of objects is best when they are in the same room as the protagonist, and it becomes worse the farther away they are see, e.g., Morrow, Greenspan, & Bower, (Journal of Memory and Language, 26, 165-187, 1987). In the present study, we assessed this finding using an interactive environment in which we had people memorize a map and navigate a virtual simulation of the area. During navigation, people were probed with pairs of object names and indicated whether both objects were in the same room. In contrast to the narrative studies described above, several experiments showed no evidence of a clear spatial gradient. Instead, memory for objects in currently occupied locations (e.g., the location room) was more accessible, especially after a small delay, but no clear decline was evident in the accessibility of information in memory with increased distance. Also, memory for objects along the pathway of movement (i.e., rooms that a person only passed through) showed a transitory suppression effect that was present immediately after movement, but attenuated over time. These results were interpreted in light of the event horizon model of event cognition.

  19. The special role of item-context associations in the direct-access region of working memory.

    PubMed

    Campoy, Guillermo

    2017-09-01

    The three-embedded-component model of working memory (WM) distinguishes three representational states corresponding to three WM regions: activated long-term memory, direct-access region (DAR), and focus of attention. Recent neuroimaging research has revealed that access to the DAR is associated with enhanced hippocampal activity. Because the hippocampus mediates the encoding and retrieval of item-context associations, it has been suggested that this hippocampal activation is a consequence of the fact that item-context associations are particularly strong and accessible in the DAR. This study provides behavioral evidence for this view using an item-recognition task to assess the effect of non-intentional encoding and maintenance of item-location associations across WM regions. Five pictures of human faces were sequentially presented in different screen locations followed by a recognition probe. Visual cues immediately preceding the probe indicated the location thereof. When probe stimuli appeared in the same location that they had been presented within the memory set, the presentation of the cue was expected to elicit the activation of the corresponding WM representation through the just-established item-location association, resulting in faster recognition. Results showed this same-location effect, but only for items that, according to their serial position within the memory set, were held in the DAR.

  20. Multi-port, optically addressed RAM

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)

    1989-01-01

    A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.

  1. A Calendar Savant with Episodic Memory Impairments

    PubMed Central

    Olson, Ingrid R.; Berryhill, Marian E.; Drowos, David B.; Brown, Lawrence; Chatterjee, Anjan

    2010-01-01

    Patients with memory disorders have severely restricted learning and memory. For instance, patients with anterograde amnesia can learn motor procedures as well as retaining some restricted ability to learn new words and factual information. However, such learning is inflexible and frequently inaccessible to conscious awareness. Here we present a case of patient AC596, a 25-year old male with severe episodic memory impairments, presumably due to anoxia during a preterm birth. In contrast to his poor episodic memory, he exhibits savant-like memory for calendar information that can be flexibly accessed by day, month, and year cues. He also has the ability to recollect the exact date of a wide range of personal experiences over the past 20 years. The patient appears to supplement his generally poor episodic memory by using memorized calendar information as a retrieval cue for autobiographical events. These findings indicate that islands of preserved memory functioning, such as a highly developed semantic memory system, can exist in individuals with severely impaired episodic memory systems. In this particular case, our patient’s memory for dates far outstripped that of normal individuals and served as a keen retrieval cue, allowing him to access information that was otherwise unavailable. PMID:20104390

  2. Neural Correlates of Conceptual Implicit Memory and Their Contamination of Putative Neural Correlates of Explicit Memory

    ERIC Educational Resources Information Center

    Voss, Joel L.; Paller, Ken A.

    2007-01-01

    During episodic recognition tests, meaningful stimuli such as words can engender both conscious retrieval (explicit memory) and facilitated access to meaning that is distinct from the awareness of remembering (conceptual implicit memory). Neuroimaging investigations of one type of memory are frequently subject to the confounding influence of the…

  3. Improving memory after interruption: exploiting soft constraints and manipulating information access cost.

    PubMed

    Morgan, Phillip L; Patrick, John; Waldron, Samuel M; King, Sophia L; Patrick, Tanya

    2009-12-01

    Forgetting what one was doing prior to interruption is an everyday problem. The recent soft constraints hypothesis (Gray, Sims, Fu, & Schoelles, 2006) emphasizes the strategic adaptation of information processing strategy to the task environment. It predicts that increasing information access cost (IAC: the time, and physical and mental effort involved in accessing information) encourages a more memory-intensive strategy. Like interruptions, access costs are also intrinsic to most work environments, such as when opening documents and e-mails. Three experiments investigated whether increasing IAC during a simple copying task can be an effective method for reducing forgetting following interruption. IAC was designated Low (all information permanently visible), Medium (a mouse movement to uncover target information), or High (an additional few seconds to uncover such information). Experiment 1 found that recall improved across all three levels of IAC. Subsequent experiments found that High IAC facilitated resumption after interruption, particularly when interruption occurred on half of all trials (Experiment 2), and improved prospective memory following two different interrupting tasks, even when one involved the disruptive effect of using the same type of resource as the primary task (Experiment 3). The improvement of memory after interruption with increased IAC supports the prediction of the soft constraints hypothesis. The main disadvantage of a high access cost was a reduction in speed of task completion. The practicality of manipulating IAC as a design method for inducing a memory-intensive strategy to protect against forgetting is discussed. Copyright 2009 APA

  4. Electrical Evaluation of RCA MWS5501D Random Access Memory, Volume 2, Appendix a

    NASA Technical Reports Server (NTRS)

    Klute, A.

    1979-01-01

    The electrical characterization and qualification test results are presented for the RCA MWS5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. The address access time, address readout time, the data hold time, and the data setup time are some of the results surveyed.

  5. An Account of Performance in Accessing Information Stored in Long-Term Memory. A Fixed-Links Model Approach

    ERIC Educational Resources Information Center

    Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael

    2013-01-01

    Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…

  6. Tracing the time course of picture--word processing.

    PubMed

    Smith, M C; Magee, L E

    1980-12-01

    A number of independent lines of research have suggested that semantic and articulatory information become available differentially from pictures and words. The first of the experiments reported here sought to clarify the time course by which information about pictures and words becomes available by considering the pattern of interference generated when incongruent pictures and words are presented simultaneously in a Stroop-like situation. Previous investigators report that picture naming is easily disrupted by the presence of a distracting word but that word naming is relatively immune to interference from an incongruent picture. Under the assumption that information available from a completed process may disrupt an ongoing process, these results suggest that words access articulatory information more rapidly than do pictures. Experiment 1 extended this paradigm by requiring subjects to verify the category of the target stimulus. In accordance with the hypothesis that picture access the semantic code more rapidly than words, there was a reversal in the interference pattern: Word categorization suffered considerable disruption, whereas picture categorization was minimally affected by the presence of an incongruent word. Experiment 2 sought to further test the hypothesis that access to semantic and articulatory codes is different for pictures and words by examining memory for those items following naming or categorization. Categorized words were better recognized than named words, whereas the reverse was true for pictures, a result which suggests that picture naming involves more extensive processing than picture categorization. Experiment 3 replicated this result under conditions in which viewing time was held constant. The last experiment extended the investigation of memory differences to a situation in which subjects were required to generate the superordinate category name. Here, memory for categorized pictures was as good as memory for named pictures. Category generation also influenced memory for words, memory performance being superior to that following a yes--no verification of category membership. These experiments suggest a model of information access whereby pictures access semantic information were readily than name information, with the reverse being true for words. Memory for both pictures and words was a function of the amount of processing required to access a particular type of information as well as the extent of response differentiation necessitated by the task.

  7. Review of optical memory technologies

    NASA Technical Reports Server (NTRS)

    Chen, D.

    1972-01-01

    Optical technologies for meeting the demands of large capacity fast access time memory are discussed in terms of optical phenomena and laser applications. The magneto-optic and electro-optic approaches are considered to be the most promising memory approaches.

  8. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    PubMed

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  9. Three-dimensional magnetic bubble memory system

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

  10. Perpetual Model Validation

    DTIC Science & Technology

    2017-03-01

    models of software execution, for example memory access patterns, to check for security intrusions. Additional research was performed to tackle the...considered using indirect models of software execution, for example memory access patterns, to check for security intrusions. Additional research ...deterioration for example , no longer corresponds to the model used during verification time. Finally, the research looked at ways to combine hybrid systems

  11. Design of Unstructured Adaptive (UA) NAS Parallel Benchmark Featuring Irregular, Dynamic Memory Accesses

    NASA Technical Reports Server (NTRS)

    Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.

  12. A Pilot Memory Café for People with Learning Disabilities and Memory Difficulties

    ERIC Educational Resources Information Center

    Kiddle, Hannah; Drew, Neil; Crabbe, Paul; Wigmore, Jonathan

    2016-01-01

    Memory cafés have been found to normalise experiences of dementia and provide access to an accepting social network. People with learning disabilities are at increased risk of developing dementia, but the possible benefits of attending a memory café are not known. This study evaluates a 12-week pilot memory café for people with learning…

  13. Large Capacity of Conscious Access for Incidental Memories in Natural Scenes.

    PubMed

    Kaunitz, Lisandro N; Rowe, Elise G; Tsuchiya, Naotsugu

    2016-09-01

    When searching a crowd, people can detect a target face only by direct fixation and attention. Once the target is found, it is consciously experienced and remembered, but what is the perceptual fate of the fixated nontarget faces? Whereas introspection suggests that one may remember nontargets, previous studies have proposed that almost no memory should be retained. Using a gaze-contingent paradigm, we asked subjects to visually search for a target face within a crowded natural scene and then tested their memory for nontarget faces, as well as their confidence in those memories. Subjects remembered up to seven fixated, nontarget faces with more than 70% accuracy. Memory accuracy was correlated with trial-by-trial confidence ratings, which implies that the memory was consciously maintained and accessed. When the search scene was inverted, no more than three nontarget faces were remembered. These findings imply that incidental memory for faces, such as those recalled by eyewitnesses, is more reliable than is usually assumed. © The Author(s) 2016.

  14. 78 FR 41079 - Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... determined to review-in-part the final initial determination issued by the presiding administrative law judge... investigation. On March 26, 2013, the presiding administrative law judge (``ALJ'') issued a final ID finding a... importation, sale for importation, and sale after importation of Nanya semiconductors. What is Elpida's theory...

  15. Analysis and Design of Manycore Processor-to-DRAM Opto-Electrical Networks with Integrated Silicon Photonics

    DTIC Science & Technology

    2009-12-24

    Networks Silicon-Photonic Clos Networks for Global On-Chip Communication Ajay Joshi* Christopher Batten? Yong-Jin Kwon! Scott Beamer! Imran Shamim ...4th edition, 2007. •A\\ [13] A Joshi, C Batten, Y Kwon, S Beamer, Imran Shamim , Krste Asanovic, and Vladimir Sto- janovic. Silicon-photonic clos

  16. The Effect of NUMA Tunings on CPU Performance

    NASA Astrophysics Data System (ADS)

    Hollowell, Christopher; Caramarcu, Costin; Strecker-Kellogg, William; Wong, Antonio; Zaytsev, Alexandr

    2015-12-01

    Non-Uniform Memory Access (NUMA) is a memory architecture for symmetric multiprocessing (SMP) systems where each processor is directly connected to separate memory. Indirect access to other CPU's (remote) RAM is still possible, but such requests are slower as they must also pass through that memory's controlling CPU. In concert with a NUMA-aware operating system, the NUMA hardware architecture can help eliminate the memory performance reductions generally seen in SMP systems when multiple processors simultaneously attempt to access memory. The x86 CPU architecture has supported NUMA for a number of years. Modern operating systems such as Linux support NUMA-aware scheduling, where the OS attempts to schedule a process to the CPU directly attached to the majority of its RAM. In Linux, it is possible to further manually tune the NUMA subsystem using the numactl utility. With the release of Red Hat Enterprise Linux (RHEL) 6.3, the numad daemon became available in this distribution. This daemon monitors a system's NUMA topology and utilization, and automatically makes adjustments to optimize locality. As the number of cores in x86 servers continues to grow, efficient NUMA mappings of processes to CPUs/memory will become increasingly important. This paper gives a brief overview of NUMA, and discusses the effects of manual tunings and numad on the performance of the HEPSPEC06 benchmark, and ATLAS software.

  17. Enhancing Memory in Your Students: COMPOSE Yourself!

    ERIC Educational Resources Information Center

    Rotter, Kathleen M.

    2009-01-01

    The essence of teaching is, in fact, creating new memories for your students. The teacher's role is to help students store the correct information (memories) in ways that make recall and future access and use likely. Therefore, choosing techniques to enhance memory is possibly the most critical aspect of instructional design. COMPOSE is an acronym…

  18. Frequent Statement and Dereference Elimination for Imperative and Object-Oriented Distributed Programs

    PubMed Central

    El-Zawawy, Mohamed A.

    2014-01-01

    This paper introduces new approaches for the analysis of frequent statement and dereference elimination for imperative and object-oriented distributed programs running on parallel machines equipped with hierarchical memories. The paper uses languages whose address spaces are globally partitioned. Distributed programs allow defining data layout and threads writing to and reading from other thread memories. Three type systems (for imperative distributed programs) are the tools of the proposed techniques. The first type system defines for every program point a set of calculated (ready) statements and memory accesses. The second type system uses an enriched version of types of the first type system and determines which of the ready statements and memory accesses are used later in the program. The third type system uses the information gather so far to eliminate unnecessary statement computations and memory accesses (the analysis of frequent statement and dereference elimination). Extensions to these type systems are also presented to cover object-oriented distributed programs. Two advantages of our work over related work are the following. The hierarchical style of concurrent parallel computers is similar to the memory model used in this paper. In our approach, each analysis result is assigned a type derivation (serves as a correctness proof). PMID:24892098

  19. Size effects and realiability of barium strontium titanate thin films

    NASA Astrophysics Data System (ADS)

    Parker, Charles Bernard

    Thin films of (Ba,Sr)TiO3 (BST) deposited by Liquid Source MOCVD were investigated. BST is a candidate dielectric for future-generation DRAM and as a tunable dielectric. Two areas of both scientific and commercial interest were investigated. The first area is the effect of decreasing dimension on ferroelectric properties. Several theories of size effects in ferroelectrics were evaluated. The dielectric response of a set of BST films of thicknesses from 15 to 580 nm was measured from 85 to 580 K. These films were extensively characterized and the boundary conditions that often influence size effects measurements were considered, including strain, finite screening length in the electrode, depolarization fields in the ferroelectric, atmospheric effects, control of stochiometry, and others. The data set was compared to the theoretical predictions and it was determined that Finite Size Scaling provided the best fit to the data. Using this theory, the predicted dielectric response was compared to the requirements of future generations of DRAM and was found to be sufficient, if film strain can be controlled. The second area is reliability. The types of lifetime-limiting electrical failure observed in BST are resistance degradation, time dependant dielectric breakdown (tddb), and noisy breakdown. Previous work on BST reliability has largely focused on resistance degradation at high temperature. This condition is only a small subset of experimental space. This work extends the understanding of BST failure into the low temperature regime and evaluates the effects of both DC and AC stress. It was found that tddb is the dominant failure mode at low temperature and resistance degradation is the dominant failure modes at high temperature. Synthesizing this work with previous work on resistance degradation allowed a failure framework to be developed. Rigorous extrapolation of resistance degradation and tddb lifetimes was compared to the requirements of future generations of DRAM and was found that while resistance degradation will not limit device lifetimes, tddb will. Refinement of BST processing will be necessary to reduce the defect causing tddb failure.

  20. New super-computing facility in RIKEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, Shigemi

    1994-12-31

    A new superconductor, Fujitsu VPP500/28, was installed in the Institute of Physical and Chemical Research (RIKEN) at the end of March, 1994. It consists of 28 processing elements (PE`s) connected by a high-speed crossbar switch. The switch is a combination of GaAs and ECL circuitry with peak band width of 800 Mbyte per second. Each PE consists of a GaAs/ECL vector processor with 1.6 Gflops peak speed and 256 Mbyte SRAM local memory. In addition, there are 8 GByte DRAM space, two 100 Gbyte RAID disks and a 10 TByte archive based on SONY File Bank system. The author ranmore » three major benchmarks on this machine: modified LINPACK, lattice QCD and FFT. In the modified LINPACK benchmark, a sustained speed of about 28 Gflops is achieved, by removing the restriction on the size of the matrices. In the lattice QCD benchmark, a sustained speed of about 30 Gflops is achieved for inverting staggered fermion propagation matrix on a 32{sup 4} lattice. In the FFT benchmark, real data of 32, 128, 512, and 2048 MByte are Fourier-transformed. The sustained speed for each is respectively 21, 21, 20, and 19 Gflops. The numbers are obtained after only a few weeks of coding efforts and can be improved further.« less

  1. Implementation and Optimization of miniGMG - a Compact Geometric Multigrid Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Kalamkar, Dhiraj; Singh, Amik

    2012-12-01

    Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems used in a number of different application areas. In this report, we describe miniGMG, our compact geometric multigrid benchmark designed to proxy the multigrid solves found in AMR applications. We explore optimization techniques for geometric multigrid on existing and emerging multicore systems including the Opteron-based Cray XE6, Intel Sandy Bridge and Nehalem-based Infiniband clusters, as well as manycore-based architectures including NVIDIA's Fermi and Kepler GPUs and Intel's Knights Corner (KNC) co-processor. This report examines a variety of novel techniques including communication-aggregation, threaded wavefront-based DRAM communication-avoiding,more » dynamic threading decisions, SIMDization, and fusion of operators. We quantify performance through each phase of the V-cycle for both single-node and distributed-memory experiments and provide detailed analysis for each class of optimization. Results show our optimizations yield significant speedups across a variety of subdomain sizes while simultaneously demonstrating the potential of multi- and manycore processors to dramatically accelerate single-node performance. However, our analysis also indicates that improvements in networks and communication will be essential to reap the potential of manycore processors in large-scale multigrid calculations.« less

  2. Blackcomb: Hardware-Software Co-design for Non-Volatile Memory in Exascale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, Robert

    Summary of technical results of Blackcomb Memory Devices We explored various different memory technologies (STTRAM, PCRAM, FeRAM, and ReRAM). The progress can be classified into three categories, below. Modeling and Tool Releases Various modeling tools have been developed over the last decade to help in the design of SRAM or DRAM-based memory hierarchies. To explore new design opportunities that NVM technologies can bring to the designers, we have developed similar high-level models for NVM, including PCRAMsim [Dong 2009], NVSim [Dong 2012], and NVMain [Poremba 2012]. NVSim is a circuit-level model for NVM performance, energy, and area estimation, which supports variousmore » NVM technologies, including STT-RAM, PCRAM, ReRAM, and legacy NAND Flash. NVSim is successfully validated against industrial NVM prototypes, and it is expected to help boost architecture-level NVM-related studies. On the other side, NVMain is a cycle accurate main memory simulator designed to simulate emerging nonvolatile memories at the architectural level. We have released these models as open source tools and provided contiguous support to them. We also proposed PS3-RAM, which is a fast, portable and scalable statistical STT-RAM reliability analysis model [Wen 2012]. Design Space Exploration and Optimization With the support of these models, we explore different device/circuit optimization techniques. For example, in [Niu 2012a] we studied the power reduction technique for the application of ECC scheme in ReRAM designs and proposed to use ECC code to relax the BER (Bit Error Rate) requirement of a single memory to improve the write energy consumption and latency for both 1T1R and cross-point ReRAM designs. In [Xu 2011], we proposed a methodology to design STT-RAM for different optimization goals such as read performance, write performance and write energy by leveraging the trade-off between write current and write time of MTJ. We also studied the tradeoffs in building a reliable crosspoint ReRAM array [Niu 2012b]. We have conducted an in depth analysis of the circuit and system level design implications of multi-layer cross-point Resistive RAM (MLCReRAM) from performance, power and reliability perspectives [Xu 2013]. The objective of this study is to understand the design trade-offs of this technology with respect to the MLC Phase Change Memory (MLCPCM).Our MLC ReRAM design at the circuit and system levels indicates that different resistance allocation schemes, programming strategies, peripheral designs, and material selections profoundly affect the area, latency, power, and reliability of MLC ReRAM. Based on this analysis, we conduct two case studies: first we compare MLC ReRAM design against MLC phase-change memory (PCM) and multi-layer cross-point ReRAM design, and point out why multi-level ReRAM is appealing; second we further explore the design space for MLC ReRAM. Architecture and Application We explored hybrid checkpointing using phase-change memory for future exascale systems [Dong 2011] and showed that the use of nonvolatile memory for local checkpointing significantly increases the number of faults covered by local checkpoints and reduces the probability of a global failure in the middle of a global checkpoint to less than 1%. We also proposed a technique called i2WAP to mitigate the write variations in NVM-based last-level cache for the improvement of the NVM lifetime [Wang 2013]. Our wear leveling technique attempts to work around the limitations of write endurance by arranging data access so that write operations can be distributed evenly across all the storage cells. During our intensive research on fault-tolerant NVM design, we found that ECC cannot effectively tolerate hard errors from limited write endurance and process imperfection. Therefore, we devised a novel Point and Discard (PAD) architecture in in [ 2012] as a hard-error-tolerant architecture for ReRAM-based Last Level Caches. PAD improves the lifetime of ReRAM caches by 1.6X-440X under different process variations without performance overhead in the system's early life. We have investigated the applicability of NVM for persistent memory design [Zhao 2013]. New byte addressable NVM enables fast persistent memory that allows in-memory persistent data objects to be updated with much higher throughput. Despite the significant improvement, the performance of these designs is only 50% of the native system with no persistence support, due to the logging or copy-on-write mechanisms used to update the persistent memory. A challenge in this approach is therefore how to efficiently enable atomic, consistent, and durable updates to ensure data persistence that survives application and/or system failures. We have designed a persistent memory system, called Klin, that can provide performance as close as that of the native system. The Klin design adopts a non-volatile cache and a non-volatile main memory for constructing a multi-versioned durable memory system, enabling atomic updates without logging or copy-on-write. Our evaluation shows that the proposed Kiln mechanism can achieve up to 2X of performance improvement to NVRAM-based persistent memory employing write-ahead logging. In addition, our design has numerous practical advantages: a simple and intuitive abstract interface, microarchitecture-level optimizations, fast recovery from failures, and no redundant writes to slow non-volatile storage media. The work was published in MICRO 2013 and received Best Paper Honorable Mentioned Award.« less

  3. Retention and Fading of Military Skills: Literature Review

    DTIC Science & Technology

    2000-04-01

    distinction between availability and accessibility of human memory ( Tulving & Pearlstone , 1966; Tulving , 1983). Observation of some decrement in performance...Army War College. TULVING , E. (1983). Elements of Episodic Memory. London: Oxford University Press. TULVING , E., & PEARLSTONE , Z. (1966). Availability...store ( Tulving , 1983). To access this knowledge, the individual consciously recalls facts about the task and attempts to use them to guide performance

  4. Access to Attitude-Relevant Information in Memory as a Determinant of Persuasion: The Role of Message and Communicator Attributes.

    ERIC Educational Resources Information Center

    Wood, Wendy; And Others

    Research literature shows that people with access to attitude-relevant information in memory are able to draw on relevant beliefs and prior experiences when analyzing a persuasive message. This suggests that people who can retrieve little attitude-relevant information should be less able to engage in systematic processing. Two experiments were…

  5. 76 FR 45295 - In the Matter of Certain Static Random Access Memories and Products Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... supplementing the amended complaint was filed on June 28, 2011. A second amended complaint was filed on July 13... of certain static random access memories and products containing same by reason of infringement of... 13 of the `937 patent, and whether an industry in the United States exists as required by subsection...

  6. Implementing a bubble memory hierarchy system

    NASA Technical Reports Server (NTRS)

    Segura, R.; Nichols, C. D.

    1979-01-01

    This paper reports on implementation of a magnetic bubble memory in a two-level hierarchial system. The hierarchy used a major-minor loop device and RAM under microprocessor control. Dynamic memory addressing, dual bus primary memory, and hardware data modification detection are incorporated in the system to minimize access time. It is the objective of the system to incorporate the advantages of bipolar memory with that of bubble domain memory to provide a smart, optimal memory system which is easy to interface and independent of user's system.

  7. Integrated Vertical Bloch Line (VBL) memory

    NASA Technical Reports Server (NTRS)

    Katti, R. R.; Wu, J. C.; Stadler, H. L.

    1991-01-01

    Vertical Bloch Line (VBL) Memory is a recently conceived, integrated, solid state, block access, VLSI memory which offers the potential of 1 Gbit/sq cm areal storage density, data rates of hundreds of megabits/sec, and submillisecond average access time simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBLs are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of BVL pairs are used to store binary information. At present, efforts are being directed at developing a single chip memory using 25 Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. The current design architecture, functional elements, and supercomputer simulation results are described which are used to assist the design process.

  8. Fencing direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blocksome, Michael A.; Mamidala, Amith R.

    2013-09-03

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segmentmore » of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.« less

  9. Guilt as a Motivator for Moral Judgment: An Autobiographical Memory Study

    PubMed Central

    Knez, Igor; Nordhall, Ola

    2017-01-01

    The aim was to investigate the phenomenology of self-defining moral memory and its relations to self-conscious feelings of guilt and willingness to do wrong (moral intention) in social and economic moral situations. We found that people use guilt as a moral motivator for their moral intention. The reparative function of guilt varied, however, with type of situation; that is, participants felt guiltier and were less willing to do wrong in economic compared to social moral situations. The self-defining moral memory was shown to be relatively more easy to access (accessibility), logically structured (coherence), vivid, seen from the first-person perspective (visual perspective), real (sensory detail); but was relatively less positive (valence), emotionally intense, chronologically clear (time perspective), in agreement with the present self (distancing), and shared. Finally, it was indicated that the more guilt people felt the more hidden/denied (less accessible), but more real (more sensory details), the self-defining moral memory. PMID:28539906

  10. Deciding with the eye: how the visually manipulated accessibility of information in memory influences decision behavior.

    PubMed

    Platzer, Christine; Bröder, Arndt; Heck, Daniel W

    2014-05-01

    Decision situations are typically characterized by uncertainty: Individuals do not know the values of different options on a criterion dimension. For example, consumers do not know which is the healthiest of several products. To make a decision, individuals can use information about cues that are probabilistically related to the criterion dimension, such as sugar content or the concentration of natural vitamins. In two experiments, we investigated how the accessibility of cue information in memory affects which decision strategy individuals rely on. The accessibility of cue information was manipulated by means of a newly developed paradigm, the spatial-memory-cueing paradigm, which is based on a combination of the looking-at-nothing phenomenon and the spatial-cueing paradigm. The results indicated that people use different decision strategies, depending on the validity of easily accessible information. If the easily accessible information is valid, people stop information search and decide according to a simple take-the-best heuristic. If, however, information that comes to mind easily has a low predictive validity, people are more likely to integrate all available cue information in a compensatory manner.

  11. The Effect of Retrieval Cues on Visual Preferences and Memory in Infancy: Evidence for a Four-Phase Attention Function.

    ERIC Educational Resources Information Center

    Bahrick, Lorraine E.; Hernandez-Reif, Maria; Pickens, Jeffrey N.

    1997-01-01

    Tested hypothesis from Bahrick and Pickens' infant attention model that retrieval cues increase memory accessibility and shift visual preferences toward greater novelty to resemble recent memories. Found that after retention intervals associated with remote or intermediate memory, previous familiarity preferences shifted to null or novelty…

  12. Activation and Binding in Verbal Working Memory: A Dual-Process Model for the Recognition of Nonwords

    ERIC Educational Resources Information Center

    Oberauer, Klauss; Lange, Elke B.

    2009-01-01

    The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. "Journal of Experimental Psychology: Learning, Memory, and Cognition, 28", 411-421]. Familiarity arises…

  13. Recognition-induced forgetting is not due to category-based set size.

    PubMed

    Maxcey, Ashleigh M

    2016-01-01

    What are the consequences of accessing a visual long-term memory representation? Previous work has shown that accessing a long-term memory representation via retrieval improves memory for the targeted item and hurts memory for related items, a phenomenon called retrieval-induced forgetting. Recently we found a similar forgetting phenomenon with recognition of visual objects. Recognition-induced forgetting occurs when practice recognizing an object during a two-alternative forced-choice task, from a group of objects learned at the same time, leads to worse memory for objects from that group that were not practiced. An alternative explanation of this effect is that category-based set size is inducing forgetting, not recognition practice as claimed by some researchers. This alternative explanation is possible because during recognition practice subjects make old-new judgments in a two-alternative forced-choice task, and are thus exposed to more objects from practiced categories, potentially inducing forgetting due to set-size. Herein I pitted the category-based set size hypothesis against the recognition-induced forgetting hypothesis. To this end, I parametrically manipulated the amount of practice objects received in the recognition-induced forgetting paradigm. If forgetting is due to category-based set size, then the magnitude of forgetting of related objects will increase as the number of practice trials increases. If forgetting is recognition induced, the set size of exemplars from any given category should not be predictive of memory for practiced objects. Consistent with this latter hypothesis, additional practice systematically improved memory for practiced objects, but did not systematically affect forgetting of related objects. These results firmly establish that recognition practice induces forgetting of related memories. Future directions and important real-world applications of using recognition to access our visual memories of previously encountered objects are discussed.

  14. A Memory-Based Programmable Logic Device Using Look-Up Table Cascade with Synchronous Static Random Access Memories

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazuyuki; Sasao, Tsutomu; Matsuura, Munehiro; Tanaka, Katsumasa; Yoshizumi, Kenichi; Nakahara, Hiroki; Iguchi, Yukihiro

    2006-04-01

    A large-scale memory-technology-based programmable logic device (PLD) using a look-up table (LUT) cascade is developed in the 0.35-μm standard complementary metal oxide semiconductor (CMOS) logic process. Eight 64 K-bit synchronous SRAMs are connected to form an LUT cascade with a few additional circuits. The features of the LUT cascade include: 1) a flexible cascade connection structure, 2) multi phase pseudo asynchronous operations with synchronous static random access memory (SRAM) cores, and 3) LUT-bypass redundancy. This chip operates at 33 MHz in 8-LUT cascades at 122 mW. Benchmark results show that it achieves a comparable performance to field programmable gate array (FPGAs).

  15. The Dram As An X-Ray Sensor

    NASA Astrophysics Data System (ADS)

    Jacobs, Alan M.; Cox, John D.; Juang, Yi-Shung

    1987-01-01

    A solid-state digital x-ray detector is described which can replace high resolution film in industrial radiography and has potential for application in some medical imaging. Because of the 10 micron pixel pitch on the sensor, contact magnification radiology is possible and is demonstrated. Methods for frame speed increase and integration of sensor to a large format are discussed.

  16. | CTIO

    Science.gov Websites

    , y numerosas enanas tenues - son los bloques básicos visibles de la construcción del universo. Las aislados (y sí, llamados Grupos Compactos de Galaxias o CGs ). Las galaxias en estos grupos compactos muestran diferencias dramáticas en la forma en que evolucionan y cambian con el paso del tiempo en

  17. DARPA/ISTO Rapid VLSI Implementation

    DTIC Science & Technology

    1991-12-01

    temperature tigation. Motorola MCI00E111, very fast 1:9 clock buffers. were procured to drive high - speed waveforrms onto the substrate clock distribution...The hot image is normalized to a rootn- temperature image, which removes all optical anomalies and leaves a high -resolution thermal image. 69 j APT...9 High -density DRAM ..................... 9 Aquarius MI Packaging Study ........................ ....... 10 NUT Alewife

  18. Eight microprocessor-based instrument data systems in the Galileo Orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Barry, R. C.

    1980-01-01

    Instrument data systems consist of a microprocessor, 3K bytes of Read Only Memory and 3K bytes of Random Access Memory. It interfaces with the spacecraft data bus through an isolated user interface with a direct memory access bus adaptor, and/or parallel data from instrument devices such as registers, buffers, analog to digital converters, multiplexers, and solid state sensors. These data systems support the spacecraft hardware and software communication protocol, decode and process instrument commands, generate continuous instrument operating modes, control the instrument mechanisms, acquire, process, format, and output instrument science data.

  19. Vertical Launch System Loadout Planner

    DTIC Science & Technology

    2015-03-01

    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...with 32 gigabytes of random access memory and eight processors, General Algebraic Modeling System (GAMS) CPLEX version 24 (GAMS, 2015) solves this...problem in ten minutes to an integer tolerance of 10%. The GAMS interpreter and CPLEX solver require 75 Megabytes of random access memory for this

  20. Nonvolatile GaAs Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Stadler, Henry L.; Wu, Jiin-Chuan

    1994-01-01

    Proposed random-access integrated-circuit electronic memory offers nonvolatile magnetic storage. Bits stored magnetically and read out with Hall-effect sensors. Advantages include short reading and writing times and high degree of immunity to both single-event upsets and permanent damage by ionizing radiation. Use of same basic material for both transistors and sensors simplifies fabrication process, with consequent benefits in increased yield and reduced cost.

  1. MemAxes Visualization Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.

  2. Recollection Rejection: How Children Edit Their False Memories.

    ERIC Educational Resources Information Center

    Brainerd, C. J.; Reyna, V. F.

    2002-01-01

    Presents new measure of children's use of an editing operation that suppresses false memories by accessing verbatim traces of true events. Application of the methodology showed that false-memory editing increased dramatically between early and middle childhood. Measure reacted appropriately to experimental manipulations. Developmental reductions…

  3. Another look at retroactive and proactive interference: a quantitative analysis of conversion processes.

    PubMed

    Blank, Hartmut

    2005-02-01

    Traditionally, the causes of interference phenomena were sought in "real" or "hard" memory processes such as unlearning, response competition, or inhibition, which serve to reduce the accessibility of target items. I propose an alternative approach which does not deny the influence of such processes but highlights a second, equally important, source of interference-the conversion (Tulving, 1983) of accessible memory information into memory performance. Conversion is conceived as a problem-solving-like activity in which the rememberer tries to find solutions to a memory task. Conversion-based interference effects are traced to different conversion processes in the experimental and control conditions of interference designs. I present a simple theoretical model that quantitatively predicts the resulting amount of interference. In two paired-associate learning experiments using two different types of memory tests, these predictions were corroborated. Relations of the present approach to traditional accounts of interference phenomena and implications for eyewitness testimony are discussed.

  4. Nanoscale CuO solid-electrolyte-based conductive-bridging, random-access memory cell with a TiN liner

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sun; Kim, Dong-Won; Kim, Hea-Jee; Jin, Soo-Min; Song, Myung-Jin; Kwon, Ki-Hyun; Park, Jea-Gun; Jalalah, Mohammed; Al-Hajry, Ali

    2018-01-01

    The Conductive-bridge random-access memory (CBRAM) cell is a promising candidate for a terabit-level non-volatile memory due to its remarkable advantages. We present for the first time TiN as a diffusion barrier in CBRAM cells for enhancing their reliability. CuO solid-electrolyte-based CBRAM cells implemented with a 0.1-nm TiN liner demonstrated better non-volatile memory characteristics such as 106 AC write/erase endurance cycles with 100-μs AC pulse width and a long retention time of 7.4-years at 85 °C. In addition, the analysis of Ag diffusion in the CBRAM cell suggests that the morphology of the Ag filaments in the electrolyte can be effectively controlled by tuning the thickness of the TiN liner. These promising results pave the way for faster commercialization of terabit-level non-volatile memories.

  5. On Using the Volatile Mem-Capacitive Effect of TiO2 Resistive Random Access Memory to Mimic the Synaptic Forgetting Process

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplab; Mills, Steven; Lee, Bongmook; Pitts, W. Shepherd; Misra, Veena; Franzon, Paul D.

    2018-02-01

    In this work, we report on mimicking the synaptic forgetting process using the volatile mem-capacitive effect of a resistive random access memory (RRAM). TiO2 dielectric, which is known to show volatile memory operations due to migration of inherent oxygen vacancies, was used to achieve the volatile mem-capacitive effect. By placing the volatile RRAM candidate along with SiO2 at the gate of a MOS capacitor, a volatile capacitance change resembling the forgetting nature of a human brain is demonstrated. Furthermore, the memory operation in the MOS capacitor does not require a current flow through the gate dielectric indicating the feasibility of obtaining low power memory operations. Thus, the mem-capacitive effect of volatile RRAM candidates can be attractive to the future neuromorphic systems for implementing the forgetting process of a human brain.

  6. Marijuana effects on long-term memory assessment and retrieval.

    PubMed

    Darley, C F; Tinklenberg, J R; Roth, W T; Vernon, S; Kopell, B S

    1977-05-09

    The ability of 16 college-educated male subjects to recall from long-term memory a series of common facts was tested during intoxication with marijuana extract calibrated to 0.3 mg/kg delta-9-tetrahydrocannabinol and during placebo conditions. The subjects' ability to assess their memory capabilities was then determined by measuring how certain they were about the accuracy of their recall performance and by having them predict their performance on a subsequent recognition test involving the same recall items. Marijuana had no effect on recall or recognition performance. These results do not support the view that marijuana provides access to facts in long-term storage which are inaccessible during non-intoxication. During both marijuana and placebo conditions, subjects could accurately predict their recognition memory performance. Hence, marijuana did not alter the subjects' ability to accurately assess what information resides in long-term memory even though they did not have complete access to that information.

  7. Parameter optimization for transitions between memory states in small arrays of Josephson junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezac, Jacob D.; Imam, Neena; Braiman, Yehuda

    Coupled arrays of Josephson junctions possess multiple stable zero voltage states. Such states can store information and consequently can be utilized for cryogenic memory applications. Basic memory operations can be implemented by sending a pulse to one of the junctions and studying transitions between the states. In order to be suitable for memory operations, such transitions between the states have to be fast and energy efficient. Here in this article we employed simulated annealing, a stochastic optimization algorithm, to study parameter optimization of array parameters which minimizes times and energies of transitions between specifically chosen states that can be utilizedmore » for memory operations (Read, Write, and Reset). Simulation results show that such transitions occur with access times on the order of 10–100 ps and access energies on the order of 10 -19–5×10 -18 J. Numerical simulations are validated with approximate analytical results.« less

  8. Dementia - daily care

    MedlinePlus

    ... pdf . Accessed on June 27, 2016. Budson AE, Solomon PR. Life adjustments for memory loss, Alzheimer's disease, and dementia. In: Budson AE, Solomon PR, eds. Memory Loss, Alzheimer's Disease, and Dementia: ...

  9. Rapid recovery from transient faults in the fault-tolerant processor with fault-tolerant shared memory

    NASA Technical Reports Server (NTRS)

    Harper, Richard E.; Butler, Bryan P.

    1990-01-01

    The Draper fault-tolerant processor with fault-tolerant shared memory (FTP/FTSM), which is designed to allow application tasks to continue execution during the memory alignment process, is described. Processor performance is not affected by memory alignment. In addition, the FTP/FTSM incorporates a hardware scrubber device to perform the memory alignment quickly during unused memory access cycles. The FTP/FTSM architecture is described, followed by an estimate of the time required for channel reintegration.

  10. The Two Faces of Selective Memory Retrieval: Recall Specificity of the Detrimental but Not the Beneficial Effect

    ERIC Educational Resources Information Center

    Bäuml, Karl-Heinz T.; Dobler, Ina M.

    2015-01-01

    Depending on the degree to which the original study context is accessible, selective memory retrieval can be detrimental or beneficial for the recall of other memories (Bäuml & Samenieh, 2012). Prior work has shown that the detrimental effect of memory retrieval is typically recall specific and does not arise after restudy trials, whereas…

  11. Precision process calibration and CD predictions for low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Park, Sangbong; Berger, Gabriel; Coskun, Tamer H.; de Vocht, Joep; Chen, Fung; Yu, Linda; Hsu, Stephen; van den Broeke, Doug; Socha, Robert; Park, Jungchul; Gronlund, Keith; Davis, Todd; Plachecki, Vince; Harris, Tom; Hansen, Steve; Lambson, Chuck

    2005-06-01

    Leading resist calibration for sub-0.3 k1 lithography demands accuracy <2nm for CD through pitch. An accurately calibrated resist process is the prerequisite for establishing production-worthy manufacturing under extreme low k1. From an integrated imaging point of view, the following key components must be simultaneously considered during the calibration - high numerical aperture (NA>0.8) imaging characteristics, customized illuminations (measured vs. modeled pupil profiles), resolution enhancement technology (RET) mask with OPC, reticle metrology, and resist thin film substrate. For imaging at NA approaching unity, polarized illumination can impact significantly the contrast formation in the resist film stack, and therefore it is an important factor to consider in the CD-based resist calibration. For aggressive DRAM memory core designs at k1<0.3, pattern-specific illumination optimization has proven to be critical for achieving the required imaging performance. Various optimization techniques from source profile optimization with fixed mask design to the combined source and mask optimization have been considered for customer designs and available imaging capabilities. For successful low-k1 process development, verification of the optimization results can only be made with a sufficiently tunable resist model that can predicate the wafer printing accurately under various optimized process settings. We have developed, for resist patterning under aggressive low-k1 conditions, a novel 3D diffusion model equipped with double-Gaussian convolution in each dimension. Resist calibration with the new diffusion model has demonstrated a fitness and CD predication accuracy that rival or outperform the traditional 3D physical resist models. In this work, we describe our empirical approach to achieving the nm-scale precision for advanced lithography process calibrations, using either measured 1D CD through-pitch or 2D memory core patterns. We show that for ArF imaging, the current resist development and diffusion modeling can readily achieve ~1-2nm max CD errors for common 1D through-pitch and aggressive 2D memory core resist patterns. Sensitivities of the calibrated models to various process parameters are analyzed, including the comparison between the measured and modeled (Gaussian or GRAIL) pupil profiles. We also report our preliminary calibration results under selected polarized illumination conditions.

  12. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  13. Blanket Gate Would Address Blocks Of Memory

    NASA Technical Reports Server (NTRS)

    Lambe, John; Moopenn, Alexander; Thakoor, Anilkumar P.

    1988-01-01

    Circuit-chip area used more efficiently. Proposed gate structure selectively allows and restricts access to blocks of memory in electronic neural-type network. By breaking memory into independent blocks, gate greatly simplifies problem of reading from and writing to memory. Since blocks not used simultaneously, share operational amplifiers that prompt and read information stored in memory cells. Fewer operational amplifiers needed, and chip area occupied reduced correspondingly. Cost per bit drops as result.

  14. Memory hierarchy using row-based compression

    DOEpatents

    Loh, Gabriel H.; O'Connor, James M.

    2016-10-25

    A system includes a first memory and a device coupleable to the first memory. The device includes a second memory to cache data from the first memory. The second memory includes a plurality of rows, each row including a corresponding set of compressed data blocks of non-uniform sizes and a corresponding set of tag blocks. Each tag block represents a corresponding compressed data block of the row. The device further includes decompression logic to decompress data blocks accessed from the second memory. The device further includes compression logic to compress data blocks to be stored in the second memory.

  15. Schedulers with load-store queue awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tong; Eichenberger, Alexandre E.; Jacob, Arpith C.

    2017-02-07

    In one embodiment, a computer-implemented method includes tracking a size of a load-store queue (LSQ) during compile time of a program. The size of the LSQ is time-varying and indicates how many memory access instructions of the program are on the LSQ. The method further includes scheduling, by a computer processor, a plurality of memory access instructions of the program based on the size of the LSQ.

  16. Schedulers with load-store queue awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tong; Eichenberger, Alexandre E.; Jacob, Arpith C.

    2017-01-24

    In one embodiment, a computer-implemented method includes tracking a size of a load-store queue (LSQ) during compile time of a program. The size of the LSQ is time-varying and indicates how many memory access instructions of the program are on the LSQ. The method further includes scheduling, by a computer processor, a plurality of memory access instructions of the program based on the size of the LSQ.

  17. Temperature dependent characteristics of the random telegraph noise on contact resistive random access memory

    NASA Astrophysics Data System (ADS)

    Chang, Liang-Shun; Lin, Chrong Jung; King, Ya-Chin

    2014-01-01

    The temperature dependent characteristics of the random telegraphic noise (RTN) on contact resistive random access memory (CRRAM) are studied in this work. In addition to the bi-level switching, the occurrences of the middle states in the RTN signal are investigated. Based on the unique its temperature dependent characteristics, a new temperature sensing scheme is proposed for applications in ultra-low power sensor modules.

  18. A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Bard, Christopher M.; Dorelli, John C.

    2014-02-01

    We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of ≈126 for a 10242 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.

  19. Overgeneral Autobiographical Memory and Traumatic Events: An Evaluative Review

    ERIC Educational Resources Information Center

    Moore, Sally A.; Zoellner, Lori A.

    2007-01-01

    Does trauma exposure impair retrieval of autobiographical memories? Many theorists have suggested that the reduced ability to access specific memories of life events, termed overgenerality, is a protective mechanism helping attenuate painful emotions associated with trauma. The authors addressed this question by reviewing 24 studies that assessed…

  20. Working Memory Underpins Cognitive Development, Learning, and Education

    ERIC Educational Resources Information Center

    Cowan, Nelson

    2014-01-01

    Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then, I…

  1. Library API for Z-Order Memory Layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E. Wes

    This library provides a simple-to-use API for implementing an altnerative to traditional row-major order in-memory layout, one based on a Morton- order space filling curve (SFC) , specifically, a Z-order variant of the Morton order curve. The library enables programmers to, after a simple initialization step, to convert a multidimensional array from row-major to Z- order layouts, then use a single, generic API call to access data from any arbitrary (i,j,k) location from within the array, whether it it be stored in row- major or z-order format. The motivation for using a SFC in-memory layout is for improved spatial locality,more » which results in increased use of local high speed cache memory. The basic idea is that with row-major order layouts, a data access to some location that is nearby in index space is likely far away in physical memory, resulting in poor spatial locality and slow runtime. On the other hand, with a SFC-based layout, accesses that are nearby in index space are much more likely to also be nearby in physical memory, resulting in much better spatial locality, and better runtime performance. Numerous studies over the years have shown significant runtime performance gains are realized by using a SFC-based memory layout compared to a row-major layout, sometimes by as much as 50%, which result from the better use of the memory and cache hierarchy that are attendant with a SFC-based layout (see, for example, [Beth2012]). This library implementation is intended for use with codes that work with structured, array-based data in 2 or 3 dimensions. It is not appropriate for use with unstructured or point-based data.« less

  2. Dementia - what to ask your doctor

    MedlinePlus

    ... recs.pdf . Accessed December 8, 2016. Budson AE, Solomon PR. Life adjustments for memory loss, Alzheimer's disease, and dementia. In: Budson AE, Solomon PR, eds. Memory Loss, Alzheimer's Disease, and Dementia: ...

  3. Dementia - keeping safe in the home

    MedlinePlus

    ... recs.pdf . Accessed June 27, 2016. Budson AE, Solomon PR. Life adjustments for memory loss, Alzheimer's disease, and dementia. In: Budson AE, Solomon PR, eds. Memory Loss, Alzheimer's Disease, and Dementia: ...

  4. Insights from child development on the relationship between episodic and semantic memory.

    PubMed

    Robertson, Erin K; Köhler, Stefan

    2007-11-05

    The present study was motivated by a recent controversy in the neuropsychological literature on semantic dementia as to whether episodic encoding requires semantic processing or whether it can proceed solely based on perceptual processing. We addressed this issue by examining the effect of age-related limitations in semantic competency on episodic memory in 4-6-year-old children (n=67). We administered three different forced-choice recognition memory tests for pictures previously encountered in a single study episode. The tests varied in the degree to which access to semantically encoded information was required at retrieval. Semantic competency predicted recognition performance regardless of whether access to semantic information was required. A direct relation between picture naming at encoding and subsequent recognition was also found for all tests. Our findings emphasize the importance of semantic encoding processes even in retrieval situations that purportedly do not require access to semantic information. They also highlight the importance of testing neuropsychological models of memory in different populations, healthy and brain damaged, at both ends of the developmental continuum.

  5. How Distinctive Processing Enhances Hits and Reduces False Alarms

    PubMed Central

    Hunt, R. Reed; Smith, Rebekah E.

    2015-01-01

    Distinctive processing is a concept designed to account for precision in memory, both correct responses and avoidance of errors. The principal question addressed in two experiments is how distinctive processing of studied material reduces false alarms to familiar distractors. Jacoby (Jacoby, Kelley, & McElree, 1999) has used the metaphors early selection and late correction to describe two different types of control processes. Early selection refers to limitations on access whereas late correction describes controlled monitoring of accessed information. The two types of processes are not mutually exclusive, and previous research has provided evidence for the operation of both. The data reported here extend previous work to a criterial recollection paradigm and to a recognition memory test. The results of both experiments show that variables that reduce false memory for highly familiar distracters continue to exert their effect under conditions of minimal post-access monitoring. Level of monitoring was reduced in the first experiment through test instructions and in the second experiment through speeded test responding. The results were consistent with the conclusion that both early selection and late correction operate to control accuracy in memory. PMID:26034343

  6. Memory inhibition as a critical factor preventing creative problem solving.

    PubMed

    Gómez-Ariza, Carlos J; Del Prete, Francesco; Prieto Del Val, Laura; Valle, Tania; Bajo, M Teresa; Fernandez, Angel

    2017-06-01

    The hypothesis that reduced accessibility to relevant information can negatively affect problem solving in a remote associate test (RAT) was tested by using, immediately before the RAT, a retrieval practice procedure to hinder access to target solutions. The results of 2 experiments clearly showed that, relative to baseline, target words that had been competitors during selective retrieval were much less likely to be provided as solutions in the RAT, demonstrating that performance in the problem-solving task was strongly influenced by the predetermined accessibility status of the solutions in memory. Importantly, this was so even when participants were unaware of the relationship between the memory and the problem-solving procedures in the experiments. This finding is consistent with an inhibitory account of retrieval-induced forgetting effects and, more generally, constitutes support for the idea that the activation status of mental representations originating in a given task (e.g., episodic memory) can unwittingly have significant consequences for a different, unrelated task (e.g., problem solving). (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. If It Is Stored in My Memory I Will Surely Retrieve It: Anatomy of a Metacognitive Belief

    ERIC Educational Resources Information Center

    Kornell, Nate

    2015-01-01

    Retrieval failures--moments when a memory will not come to mind--are a universal human experience. Yet many laypeople believe human memory is a reliable storage system in which a stored memory should be accessible. I predicted that people would see retrieval failures as aberrations and predict that fewer retrieval failures would happen in the…

  8. Synesthetic experiences enhance unconscious learning.

    PubMed

    Rothen, Nicolas; Scott, Ryan B; Mealor, Andy D; Coolbear, Daniel J; Burckhardt, Vera; Ward, Jamie

    2013-01-01

    Synesthesia  is characterized  by consistent extra perceptual experiences in response to normal sensory input. Recent studies provide evidence for a specific profile of enhanced memory performance in synesthesia, but focus exclusively on explicit memory paradigms for which the learned content is consciously accessible. In this study, for the first time, we demonstrate with an implicit memory paradigm that synesthetic experiences also enhance memory performance relating to unconscious knowledge.

  9. Unstructured Adaptive Meshes: Bad for Your Memory?

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob

    2003-01-01

    This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.

  10. Integrated, nonvolatile, high-speed analog random access memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor)

    1994-01-01

    This invention provides an integrated, non-volatile, high-speed random access memory. A magnetically switchable ferromagnetic or ferrimagnetic layer is sandwiched between an electrical conductor which provides the ability to magnetize the magnetically switchable layer and a magneto resistive or Hall effect material which allows sensing the magnetic field which emanates from the magnetization of the magnetically switchable layer. By using this integrated three-layer form, the writing process, which is controlled by the conductor, is separated from the storage medium in the magnetic layer and from the readback process which is controlled by the magnetoresistive layer. A circuit for implementing the memory in CMOS or the like is disclosed.

  11. Optical memory development. Volume 2: Gain-assisted holographic storage media

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Mezrich, R. S.

    1972-01-01

    Thin deformable films were investigated for use as the storage medium in a holographic optical memory. The research was directed toward solving the problems of material fatigue, selective heat addressing, electrical charging of the film surface and charge patterning by light. A number of solutions to these problems were found but the main conclusion to be drawn from the work is that deformable media which employ heat in the recording process are not satisfactory for use in a high-speed random-access read/write holographic memory. They are, however, a viable approach in applications where either high speed or random-access is not required.

  12. Ferroelectric tunneling element and memory applications which utilize the tunneling element

    DOEpatents

    Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN

    2010-07-20

    A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.

  13. Alcohol levels do not accurately predict physical or mental impairment in ethanol-tolerant subjects: relevance to emergency medicine and dram shop laws.

    PubMed

    Roberts, James R; Dollard, Denis

    2010-12-01

    The human body and the central nervous system can develop tremendous tolerance to ethanol. Mental and physical dysfunctions from ethanol, in an alcohol-tolerant individual, do not consistently correlate with ethanol levels traditionally used to define intoxication, or even lethality, in a nontolerant subject. Attempting to relate observed signs of alcohol intoxication or impairment, or to evaluate sobriety, by quantifying blood alcohol levels can be misleading, if not impossible. We report a case demonstrating the disconnect between alcohol levels and generally assigned parameters of intoxication and impairment. In this case, an alcohol-tolerant man, with a serum ethanol level of 515 mg/dl, appeared neurologically intact and cognitively normal. This individual was without objective signs of impairment or intoxication by repeated evaluations by experienced emergency physicians. In alcohol-tolerant individuals, blood alcohol levels cannot always be predicted by and do not necessarily correlate with outward appearance, overt signs of intoxication, or physical examination. This phenomenon must be acknowledged when analyzing medical decision making in the emergency department or when evaluating the ability of bartenders and party hosts to identify intoxication in dram shop cases.

  14. Performance testing and results of the first Etec CORE-2564

    NASA Astrophysics Data System (ADS)

    Franks, C. Edward; Shikata, Asao; Baker, Catherine A.

    1993-03-01

    In order to be able to write 64 megabit DRAM reticles, to prepare to write 256 megabit DRAM reticles and in general to meet the current and next generation mask and reticle quality requirements, Hoya Micro Mask (HMM) installed in 1991 the first CORE-2564 Laser Reticle Writer from Etec Systems, Inc. The system was delivered as a CORE-2500XP and was subsequently upgraded to a 2564. The CORE (Custom Optical Reticle Engraver) system produces photomasks with an exposure strategy similar to that employed by an electron beam system, but it uses a laser beam to deliver the photoresist exposure energy. Since then the 2564 has been tested by Etec's standard Acceptance Test Procedure and by several supplementary HMM techniques to insure performance to all the Etec advertised specifications and certain additional HMM requirements that were more demanding and/or more thorough than the advertised specifications. The primary purpose of the HMM tests was to more closely duplicate mask usage. The performance aspects covered by the tests include registration accuracy and repeatability; linewidth accuracy, uniformity and linearity; stripe butting; stripe and scan linearity; edge quality; system cleanliness; minimum geometry resolution; minimum address size and plate loading accuracy and repeatability.

  15. Infrared spectroscopic ellipsometry in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Guittet, Pierre-Yves; Mantz, Ulrich; Weidner, Peter; Stehle, Jean-Louis; Bucchia, Marc; Bourtault, Sophie; Zahorski, Dorian

    2004-05-01

    Infrared spectroscopic ellipsometry (IRSE) metrology is an emerging technology in semiconductor production environment. Infineon Technologies SC300 implemented the first worldwide automated IRSE in a class 1 clean room in 2002. Combining properties of IR light -- large wavelength, low absorption in silicon -- with a short focus optics -- no backside reflection -- which allow model-based analysis, a large number of production applications were developed. Part of Infineon IRSE development roadmap is now focused on depth monitoring for arrays of 3D dry-etched structures. In trench DRAM manufacturing, the areal density is high, and critical dimensions are much lower than mid-IR wavelength. Therefore, extensive use of effective medium theory is made to model 3D structures. IR-SE metrology is not limited by shrinking critical dimensions, as long as the areal density is above a specific cut-off value determined by trenches dimensions, trench-filling and surrounding materials. Two applications for depth monitoring are presented. 1D models were developed and successfully applied to the DRAM trench capacitor structures. Modeling and correlation to reference methods are shown as well as dynamic repeatability and gauge capability results. Limitations of the current tool configuration are reviewed for shallow structures.

  16. Kanerva's sparse distributed memory: An associative memory algorithm well-suited to the Connection Machine

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1988-01-01

    The advent of the Connection Machine profoundly changes the world of supercomputers. The highly nontraditional architecture makes possible the exploration of algorithms that were impractical for standard Von Neumann architectures. Sparse distributed memory (SDM) is an example of such an algorithm. Sparse distributed memory is a particularly simple and elegant formulation for an associative memory. The foundations for sparse distributed memory are described, and some simple examples of using the memory are presented. The relationship of sparse distributed memory to three important computational systems is shown: random-access memory, neural networks, and the cerebellum of the brain. Finally, the implementation of the algorithm for sparse distributed memory on the Connection Machine is discussed.

  17. Effects of Information Access Cost and Accountability on Medical Residents' Information Retrieval Strategy and Performance During Prehandover Preparation: Evidence From Interview and Simulation Study.

    PubMed

    Yang, X Jessie; Wickens, Christopher D; Park, Taezoon; Fong, Liesel; Siah, Kewin T H

    2015-12-01

    We aimed to examine the effects of information access cost and accountability on medical residents' information retrieval strategy and performance during prehandover preparation. Prior studies observing doctors' prehandover practices witnessed the use of memory-intensive strategies when retrieving patient information. These strategies impose potential threats to patient safety as human memory is prone to errors. Of interest in this work are the underlying determinants of information retrieval strategy and the potential impacts on medical residents' information preparation performance. A two-step research approach was adopted, consisting of semistructured interviews with 21 medical residents and a simulation-based experiment with 32 medical residents. The semistructured interviews revealed that a substantial portion of medical residents (38%) relied largely on memory for preparing handover information. The simulation-based experiment showed that higher information access cost reduced information access attempts and access duration on patient documents and harmed information preparation performance. Higher accountability led to marginally longer access to patient documents. It is important to understand the underlying determinants of medical residents' information retrieval strategy and performance during prehandover preparation. We noted the criticality of easy access to patient documents in prehandover preparation. In addition, accountability marginally influenced medical residents' information retrieval strategy. Findings from this research suggested that the cost of accessing information sources should be minimized in developing handover preparation tools. © 2015, Human Factors and Ergonomics Society.

  18. Fast maximum intensity projections of large medical data sets by exploiting hierarchical memory architectures.

    PubMed

    Kiefer, Gundolf; Lehmann, Helko; Weese, Jürgen

    2006-04-01

    Maximum intensity projections (MIPs) are an important visualization technique for angiographic data sets. Efficient data inspection requires frame rates of at least five frames per second at preserved image quality. Despite the advances in computer technology, this task remains a challenge. On the one hand, the sizes of computed tomography and magnetic resonance images are increasing rapidly. On the other hand, rendering algorithms do not automatically benefit from the advances in processor technology, especially for large data sets. This is due to the faster evolving processing power and the slower evolving memory access speed, which is bridged by hierarchical cache memory architectures. In this paper, we investigate memory access optimization methods and use them for generating MIPs on general-purpose central processing units (CPUs) and graphics processing units (GPUs), respectively. These methods can work on any level of the memory hierarchy, and we show that properly combined methods can optimize memory access on multiple levels of the hierarchy at the same time. We present performance measurements to compare different algorithm variants and illustrate the influence of the respective techniques. On current hardware, the efficient handling of the memory hierarchy for CPUs improves the rendering performance by a factor of 3 to 4. On GPUs, we observed that the effect is even larger, especially for large data sets. The methods can easily be adjusted to different hardware specifics, although their impact can vary considerably. They can also be used for other rendering techniques than MIPs, and their use for more general image processing task could be investigated in the future.

  19. Encoding and retrieval processes involved in the access of source information in the absence of item memory.

    PubMed

    Ball, B Hunter; DeWitt, Michael R; Knight, Justin B; Hicks, Jason L

    2014-09-01

    The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were related to the target item but never actually studied. In Experiments 1 and 2, participants studied 1 category member (e.g., onion) from a variety of different categories and at test were presented with an unstudied category label (e.g., vegetable) to probe memory for item and source information. In Experiments 3 and 4, 1 member of unidirectional (e.g., credit or card) or bidirectional (e.g., salt or pepper) associates was studied, whereas the other unstudied member served as a test probe. When recall failed, source information was accessible only when items were processed deeply during encoding (Experiments 1 and 2) and when there was strong forward associative strength between the retrieval cue and target (Experiments 3 and 4). These findings suggest that a retrieval probe diagnostic of semantically related item information reinstantiates information bound in memory during encoding that results in reactivation of associated contextual information, contingent upon sufficient learning of the item itself and the association between the item and its context information.

  20. ACCESS: A Communicating and Cooperating Expert Systems System.

    DTIC Science & Technology

    1988-01-31

    therefore more quickly accepted by programmers. This is in part due to the already familiar concepts of multi-processing environments (e.g. semaphores ...Di68] and monitors [Br75]) which can be viewed as a special case of synchronized shared memory models [Di6S]. Heterogeneous systems however, are by...locality of nodes is not possible and frequent access of memory is required. Synchronization of processes also suffers from a loss of efficiency in

  1. Constraints on Access: Costs and Benefits (Spontaneous Memory for Relevant Experiences)

    DTIC Science & Technology

    1989-05-01

    F. I. M. Craik (Eds.), Levels of processing and human memory. Hillsdale, NJ: Erlbaum. Dewey, J. (1963). How we think. Portions published in R. M...transfer. Pictures (vs. words) and levels of processing and elaborative encoding manipulations are shown to affect directed access but are found to have...includes most 5 6 list-learning experiments, research on schema/script abstraction, and studies of remembering which might manipulate levels of processing

  2. Transfers and Enhancements of the Teleconferencing System and Support of the Special Operations Planning Aids

    DTIC Science & Technology

    1984-10-31

    five colors , page forward, page back, erase, clear the page, store previously annotated material, and later retrieve it. From this developed a four...system to secure sites. These * enchancements are discussed below. -2- .7- -. . . --. J -. . . . .. . . . . . . . ..- . _77 . -.- 2.1 Enhancements to the...and large cache memory of the Winchester drive allows the SGWS software to run much faster when doing file access or direct memory access (DMA) than

  3. Activating representations in permanent memory: different benefits for pictures and words.

    PubMed

    Seifert, L S

    1997-09-01

    Previous research has suggested that pictures have privileged access to semantic memory (W. R. Glaser, 1992), but J. Theios and P. C. Amrhein (1989b) argued that prior studies inappropriately used large pictures and small words. In Experiment 1, participants categorized pictures reliably faster than words, even when both types of items were of optimal perceptual size. In Experiment 2, a poststimulus flashmask and judgments about internal features did not eliminate picture superiority, indicating that it was not due to differences in early visual processing or analysis of visible features. In Experiment 3, when participants made judgments about whether items were related, latencies were reliably faster for categorically related pictures than for words, but there was no picture advantage for noncategorically associated items. Results indicate that pictures have privileged access to semantic memory for categories, but that neither pictures nor words seem to have privileged access to noncategorical associations.

  4. Implementation of Ferroelectric Memories for Space Applications

    NASA Technical Reports Server (NTRS)

    Philpy, Stephen C.; Derbenwick, Gary F.; Kamp, David A.; Isaacson, Alan F.

    2000-01-01

    Ferroelectric random access semiconductor memories (FeRAMs) are an ideal nonvolatile solution for space applications. These memories have low power performance, high endurance and fast write times. By combining commercial ferroelectric memory technology with radiation hardened CMOS technology, nonvolatile semiconductor memories for space applications can be attained. Of the few radiation hardened semiconductor manufacturers, none have embraced the development of radiation hardened FeRAMs, due a limited commercial space market and funding limitations. Government funding may be necessary to assure the development of radiation hardened ferroelectric memories for space applications.

  5. Taxing Working Memory during Retrieval of Emotional Memories Does Not Reduce Memory Accessibility When Cued with Reminders

    PubMed Central

    van Schie, Kevin; Engelhard, Iris M.; van den Hout, Marcel A.

    2015-01-01

    Earlier studies have shown that when individuals recall an emotional memory while simultaneously doing a demanding dual-task [e.g., playing Tetris, mental arithmetic, making eye movements (EM)], this reduces self-reported vividness and emotionality of the memory. These effects have been found up to 1 week later, but have largely been confined to self-report ratings. This study examined whether this dual-tasking intervention reduces memory performance (i.e., accessibility of emotional memories). Undergraduates (N = 60) studied word-image pairs and rated the retrieved image on vividness and emotionality when cued with the word. Then they viewed the cues and recalled the images with or without making EM. Finally, they re-rated the images on vividness and emotionality. Additionally, fragments from images from all conditions were presented and participants identified which fragment was paired earlier with which cue. Findings showed no effect of the dual-task manipulation on self-reported ratings and latency responses. Several possible explanations for the lack of effects are discussed, but the cued recall procedure in our experiment seems to explain the absence of effects best. The study demonstrates boundaries to the effects of the “dual-tasking” procedure. PMID:25729370

  6. Left Ventrolateral Prefrontal Cortex and the Cognitive Control of Memory

    ERIC Educational Resources Information Center

    Badre, David; Wagner, Anthony D.

    2007-01-01

    Cognitive control mechanisms permit memory to be accessed strategically, and so aid in bringing knowledge to mind that is relevant to current goals and actions. In this review, we consider the contribution of left ventrolateral prefrontal cortex (VLPFC) to the cognitive control of memory. Reviewed evidence supports a two-process model of mnemonic…

  7. Patterns of Autobiographical Memory in Adults with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Crane, Laura; Pring, Linda; Jukes, Kaylee; Goddard, Lorna

    2012-01-01

    Two studies are presented that explored the effects of experimental manipulations on the quality and accessibility of autobiographical memories in adults with autism spectrum disorder (ASD), relative to a typical comparison group matched for age, gender and IQ. Both studies found that the adults with ASD generated fewer specific memories than the…

  8. Ames Lab 101: Ultrafast Magnetic Switching

    ScienceCinema

    Wang; Jigang

    2018-01-01

    Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.

  9. Memory for Recently Accessed Visual Attributes

    ERIC Educational Resources Information Center

    Jiang, Yuhong V.; Shupe, Joshua M.; Swallow, Khena M.; Tan, Deborah H.

    2016-01-01

    Recent reports have suggested that the attended features of an item may be rapidly forgotten once they are no longer relevant for an ongoing task (attribute amnesia). This finding relies on a surprise memory procedure that places high demands on declarative memory. We used intertrial priming to examine whether the representation of an item's…

  10. Episodic and Semantic Memory Influences on Picture Naming in Alzheimer's Disease

    ERIC Educational Resources Information Center

    Small, Jeff A.; Sandhu, Nirmaljeet

    2008-01-01

    This study investigated the relationship between semantic and episodic memory as they support lexical access by healthy younger and older adults and individuals with Alzheimer's disease (AD). In particular, we were interested in examining the pattern of semantic and episodic memory declines in AD (i.e., word-finding difficulty and impaired recent…

  11. Hemispheric Differences in the Organization of Memory for Text Ideas

    ERIC Educational Resources Information Center

    Long, Debra L.; Johns, Clinton L.; Jonathan, Eunike

    2012-01-01

    The goal of this study was to examine hemispheric asymmetries in episodic memory for discourse. Access to previously comprehended information is essential for mapping incoming information to representations of "who did what to whom" in memory. An item-priming-in-recognition paradigm was used to examine differences in how the hemispheres represent…

  12. Individual Differences in the Effects of Retrieval from Long-Term Memory

    ERIC Educational Resources Information Center

    Brewer, Gene A.; Unsworth, Nash

    2012-01-01

    The current study examined individual differences in the effects of retrieval from long-term memory (i.e., the testing effect). The effects of retrieving from memory make tested information more accessible for future retrieval attempts. Despite the broad applied ramifications of such a potent memorization technique there is a paucity of research…

  13. Semantic Memory and Verbal Working Memory Correlates of N400 to Subordinate Homographs

    ERIC Educational Resources Information Center

    Salisbury, Dean F.

    2004-01-01

    N400 is an event-related brain potential that indexes operations in semantic memory conceptual space, whether elicited by language or some other representation (e.g., drawings). Language models typically propose three stages: lexical access or orthographic- and phonological-level analysis; lexical selection or word-level meaning and associate…

  14. A Neuroanatomical Model of Prefrontal Inhibitory Modulation of Memory Retrieval

    PubMed Central

    Depue, Brendan E.

    2012-01-01

    Memory of past experience is essential for guiding goal-related behavior. Being able to control accessibility of memory through modulation of retrieval enables humans to flexibly adapt to their environment. Understanding the specific neural pathways of how this control is achieved has largely eluded cognitive neuroscience. Accordingly, in the current paper I review literature that examines the overt control over retrieval in order to reduce accessibility. I first introduce three hypotheses of inhibition of retrieval. These hypotheses involve: i) attending to other stimuli as a form of diversionary attention, ii) inhibiting the specific individual neural representation of the memory, and iii) inhibiting the hippocampus and retrieval process more generally to prevent reactivation of the representation. I then analyze literature taken from the White Bear Suppression, Directed Forgetting and Think/No-Think tasks to provide evidence for these hypotheses. Finally, a neuroanatomical model is developed to indicate three pathways from PFC to the hippocampal complex that support inhibition of memory retrieval. Describing these neural pathways increases our understanding of control over memory in general. PMID:22374224

  15. Activation and binding in verbal working memory: a dual-process model for the recognition of nonwords.

    PubMed

    Oberauer, Klaus; Lange, Elke B

    2009-02-01

    The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411-421]. Familiarity arises from activated representations in long-term memory, ignoring their relations; recollection retrieves bindings in the capacity-limited component of working memory. In three experiments participants encoded two short lists of nonwords for immediate recognition, one of which was then cued as irrelevant. Probes from the irrelevant list were rejected more slowly than new probes; this was also found with probes recombining letters of irrelevant nonwords, suggesting that familiarity arises from individual letters independent of their relations. When asked to accept probes whose letters were all in the relevant list, regardless of their conjunction, participants accepted probes preserving the original conjunctions faster than recombinations, showing that recollection accessed feature bindings automatically. The model fit the data best when familiarity depended only on matching letters, whereas recollection used binding information.

  16. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    NASA Astrophysics Data System (ADS)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  17. Early-life sugar consumption has long-term negative effects on memory function in male rats.

    PubMed

    Noble, Emily E; Hsu, Ted M; Liang, Joanna; Kanoski, Scott E

    2017-09-25

    Added dietary sugars contribute substantially to the diet of children and adolescents in the USA, and recent evidence suggests that consuming sugar-sweetened beverages (SSBs) during early life has deleterious effects on hippocampal-dependent memory function. Here, we test whether the effects of early-life sugar consumption on hippocampal function persist into adulthood when access to sugar is restricted to the juvenile/adolescent phase of development. Male rats were given ad libitum access to an 11% weight-by-volume sugar solution (made with high fructose corn syrup-55) throughout the adolescent phase of development (post-natal day (PN) 26-56). The control group received a second bottle of water instead, and both groups received ad libitum standard laboratory chow and water access throughout the study. At PN 56 sugar solutions were removed and at PN 175 rats were subjected to behavioral testing for hippocampal-dependent episodic contextual memory in the novel object in context (NOIC) task, for anxiety-like behavior in the Zero maze, and were given an intraperitoneal glucose tolerance test. Early-life exposure to SSBs conferred long-lasting impairments in hippocampal-dependent memory function later in life- yet had no effect on body weight, anxiety-like behavior, or glucose tolerance. A second experiment demonstrated that NOIC performance was impaired at PN 175 even when SSB access was limited to 2 hours daily from PN 26-56. Our data suggest that even modest SSB consumption throughout early life may have long-term negative consequences on memory function during adulthood.

  18. Memory access in shared virtual memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berrendorf, R.

    1992-01-01

    Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.

  19. Memory access in shared virtual memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berrendorf, R.

    1992-09-01

    Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.

  20. Non-Volatile Memory Technology Symposium 2001: Proceedings

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh; Daud, Taher; Strauss, Karl

    2001-01-01

    This publication contains the proceedings for the Non-Volatile Memory Technology Symposium 2001 that was held on November 7-8, 2001 in San Diego, CA. The proceedings contains a a wide range of papers that cover current and new memory technologies including Flash memories, Magnetic Random Access Memories (MRAM and GMRAM), Ferro-electric RAM (FeRAM), and Chalcogenide RAM (CRAM). The papers presented in the proceedings address the use of these technologies for space applications as well as radiation effects and packaging issues.

  1. A Concept of Corporate Memory

    DTIC Science & Technology

    1979-05-17

    34 social memory", in the broader context of society. This paper explores some of the possibilities of creating a computer based corporate memory...NUMBER 79-04-03 2. COVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER «. TITLE f«n<* SubfU/.; A CONCEPT OF- CORPORATE MEMORY S. TYPE OF...It. SUPPLEMENTARY NOTES • IJ. KEY WORDS fCon<Jnu» on r»r»r»» mid* It nmcammmrj and Idmntltr bf block numbmr) corporate memory, office

  2. Artificial intelligence applications of fast optical memory access

    NASA Astrophysics Data System (ADS)

    Henshaw, P. D.; Todtenkopf, A. B.

    The operating principles and performance of rapid laser beam-steering (LBS) techniques are reviewed and illustrated with diagrams; their applicability to fast optical-memory (disk) access is evaluated; and the implications of fast access for the design of expert systems are discussed. LBS methods examined include analog deflection (source motion, wavefront tilt, and phased arrays), digital deflection (polarization modulation, reflectivity modulation, interferometric switching, and waveguide deflection), and photorefractive LBS. The disk-access problem is considered, and typical LBS requirements are listed as 38,000 beam positions, rotational latency 25 ms, one-sector rotation time 1.5 ms, and intersector space 87 microsec. The value of rapid access for increasing the power of expert systems (by permitting better organization of blocks of information) is illustrated by summarizing the learning process of the MVP-FORTH system (Park, 1983).

  3. Performance of Compiler-Assisted Memory Safety Checking

    DTIC Science & Technology

    2014-08-01

    software developer has in mind a particular object to which the pointer should point, the intended referent. A memory access error occurs when an ac...Performance of Compiler-Assisted Memory Safety Checking David Keaton Robert C. Seacord August 2014 TECHNICAL NOTE CMU/SEI-2014-TN...based memory safety checking tool and the performance that can be achieved with two such tools whose source code is freely available. The note then

  4. Active non-volatile memory post-processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannan, Sudarsun; Milojicic, Dejan S.; Talwar, Vanish

    A computing node includes an active Non-Volatile Random Access Memory (NVRAM) component which includes memory and a sub-processor component. The memory is to store data chunks received from a processor core, the data chunks comprising metadata indicating a type of post-processing to be performed on data within the data chunks. The sub-processor component is to perform post-processing of said data chunks based on said metadata.

  5. Optically Addressable, Ferroelectric Memory With NDRO

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1994-01-01

    For readout, memory cells addressed via on-chip semiconductor lasers. Proposed thin-film ferroelectric memory device features nonvolatile storage, optically addressable, nondestructive readout (NDRO) with fast access, and low vulnerability to damage by ionizing radiation. Polarization switched during recording and erasure, but not during readout. As result, readout would not destroy contents of memory, and operating life in specific "read-intensive" applications increased up to estimated 10 to the 16th power cycles.

  6. The Cognitive Bases of Intelligence Analysis.

    DTIC Science & Technology

    1984-01-01

    the truth of a single proposition or to discriminate among several propositions. Indicators represent the potentially observable events that form the ...serves as a checklist against which to evaluate an actual Intelligance product. * If the Ideal product Is specified In sufficient detail for a particular...34 Interf’arence In accessing memory occurs for both recognition and recall. Memory retrieval is most efficient when the memories are discriminable . Memories for

  7. Memory Loss: When to Seek Help

    MedlinePlus

    ... a set of symptoms, including impairment in memory, reasoning, judgment, language and other thinking skills. Dementia usually ... et al. Mild cognitive impairment: Epidemiology, pathology and clinical assessment. http://www.uptodate.com/home. Accessed March ...

  8. Context controls access to working and reference memory in the pigeon (Columba livia).

    PubMed

    Roberts, William A; Macpherson, Krista; Strang, Caroline

    2016-01-01

    The interaction between working and reference memory systems was examined under conditions in which salient contextual cues were presented during memory retrieval. Ambient colored lights (red or green) bathed the operant chamber during the presentation of comparison stimuli in delayed matching-to-sample training (working memory) and during the presentation of the comparison stimuli as S+ and S- cues in discrimination training (reference memory). Strong competition between memory systems appeared when the same contextual cue appeared during working and reference memory training. When different contextual cues were used, however, working memory was completely protected from reference memory interference. © 2016 Society for the Experimental Analysis of Behavior.

  9. A Simple GPU-Accelerated Two-Dimensional MUSCL-Hancock Solver for Ideal Magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Bard, Christopher; Dorelli, John C.

    2013-01-01

    We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of approx. = 126 for a sq 1024 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.

  10. Musical Expertise Increases Top–Down Modulation Over Hippocampal Activation during Familiarity Decisions

    PubMed Central

    Gagnepain, Pierre; Fauvel, Baptiste; Desgranges, Béatrice; Gaubert, Malo; Viader, Fausto; Eustache, Francis; Groussard, Mathilde; Platel, Hervé

    2017-01-01

    The hippocampus has classically been associated with episodic memory, but is sometimes also recruited during semantic memory tasks, especially for the skilled exploration of familiar information. Cognitive control mechanisms guiding semantic memory search may benefit from the set of cognitive processes at stake during musical training. Here, we examined using functional magnetic resonance imaging, whether musical expertise would promote the top–down control of the left inferior frontal gyrus (LIFG) over the generation of hippocampally based goal-directed thoughts mediating the familiarity judgment of proverbs and musical items. Analyses of behavioral data confirmed that musical experts more efficiently access familiar melodies than non-musicians although such increased ability did not transfer to verbal semantic memory. At the brain level, musical expertise specifically enhanced the recruitment of the hippocampus during semantic access to melodies, but not proverbs. Additionally, hippocampal activation contributed to speed of access to familiar melodies, but only in musicians. Critically, causal modeling of neural dynamics between LIFG and the hippocampus further showed that top–down excitatory regulation over the hippocampus during familiarity decision specifically increases with musical expertise – an effect that generalized across melodies and proverbs. At the local level, our data show that musical expertise modulates the online recruitment of hippocampal response to serve semantic memory retrieval of familiar melodies. The reconfiguration of memory network dynamics following musical training could constitute a promising framework to understand its ability to preserve brain functions. PMID:29033805

  11. Amorphous Semiconductors: From Photocatalyst to Computer Memory

    NASA Astrophysics Data System (ADS)

    Sundararajan, Mayur

    Amorphous semiconductors are useful in many applications like solar cells, thin film displays, sensors, electrophotography, etc. The dissertation contains four projects. In the first three projects, semiconductor glasses which are a subset of amorphous semiconductors were studied. The last project is about exploring the strengths and constraints of two analysis programs which calculate the particle size information from experimental Small Angle X-ray Scattering data. By definition, glasses have a random atomic arrangement with no order beyond the nearest neighbor, but strangely there exists an Intermediate Range Order (IRO). The origin of IRO is still not clearly understood, but various models have been proposed. The signature of IRO is the First Sharp Diffraction Peak(FSDP) observed in x-ray and neutron scattering data. The FSDP of TiO 2 SiO2 glass photocatalyst with different Ti:Si ratio from SAXS data was measured to test the theoretical models. The experimental results along with its computer simulation results strongly supported one of two leading models. It was also found that the effect of doping IRO on TiO2 SiO2 is severe in mesoporous form than the bulk form. Glass semiconductors in mesoporous form are very useful photocatalysts due to their large specific surface area. Solar energy conversion of photocatalysts greatly depends on their bandgap, but very few photocatalysts have the optical bandgap covering the whole visible region of solar spectrum leading to poor efficiency. A physical method was developed to manipulate the bandgap of mesoporous photocatalysts, by using the anisotropic thermal expansion and stressed glass network properties of mesoporous glasses. The anisotropic thermal expansion was established by S/WAXS characterization of mesoporous silica (MCM-41). The residual stress in the glass network of mesoporous glasses was already known for an earlier work. The new method was initially applied on mesoporous TiPO4, and the results were encouraging but inconclusive. Then the method was successfully demonstrated on mesoporous TiO2SiO 2 by showing a shift in its optical bandgap. One of the special class of amorphous semiconductors is chalcogenide glasses, which exhibit high ionic conductivity even at room temperature. When metal doped chalcogenide glasses are under an electric field, they become electronically conductive. These properties are exploited in the computer memory storage application of Conductive Bridging Random Access Memory (CBRAM). CBRAM is a non-volatile memory that is a strong contender to replace conventional volatile RAMs such as DRAM, SRAM, etc. This technology has already been commercialized, but the working mechanism is still not clearly understood especially the nature of the conductive bridge filament. In this project, the CBRAM memory cells are fabricated by thermal evaporation method with Agx(GeSe 2)1-x as the solid electrolyte layer, Ag as the active electrode and Au as the inert electrode. By careful use of cyclic voltammetry, the conductive filaments were grown on the surface and the bulk of the solid electrolyte. The comparison between the two filaments revealed major differences leading to contradiction with the existing working mechanism. After compiling all the results, a modified working mechanism is proposed. SAXS is a powerful tool to characterize nanostructure of glasses. The analysis of the SAXS data to get useful information are usually performed by different programs. In this project, Irena and GIFT programs were compared by performing the analysis of the SAXS data of glass and glass ceramics samples. Irena was shown to be not suitable for the analysis of SAXS data that has a significant contribution from interparticle interactions. GIFT was demonstrated to be better suited for such analysis. Additionally, the results obtained by programs for samples with low interparticle interactions were shown to be consistent.

  12. Response of the Ubiquitin-Proteasome System to Memory Retrieval After Extended-Access Cocaine or Saline Self-Administration.

    PubMed

    Werner, Craig T; Milovanovic, Mike; Christian, Daniel T; Loweth, Jessica A; Wolf, Marina E

    2015-12-01

    The ubiquitin-proteasome system (UPS) has been implicated in the retrieval-induced destabilization of cocaine- and fear-related memories in Pavlovian paradigms. However, nothing is known about its role in memory retrieval after self-administration of cocaine, an operant paradigm, or how the length of withdrawal from cocaine may influence retrieval mechanisms. Here, we examined UPS activity after an extended-access cocaine self-administration regimen that leads to withdrawal-dependent incubation of cue-induced cocaine craving. Controls self-administered saline. In initial experiments, memory retrieval was elicited via a cue-induced seeking/retrieval test on withdrawal day (WD) 50-60, when craving has incubated. We found that retrieval of cocaine- and saline-associated memories produced similar increases in polyubiquitinated proteins in the nucleus accumbens (NAc), compared with rats that did not undergo a seeking/retrieval test. Measures of proteasome catalytic activity confirmed similar activation of the UPS after retrieval of saline and cocaine memories. However, in a subsequent experiment in which testing was conducted on WD1, proteasome activity in the NAc was greater after retrieval of cocaine memory than saline memory. Analysis of other brain regions confirmed that effects of cocaine memory retrieval on proteasome activity, relative to saline memory retrieval, depend on withdrawal time. These results, combined with prior studies, suggest that the relationship between UPS activity and memory retrieval depends on training paradigm, brain region, and time elapsed between training and retrieval. The observation that mechanisms underlying cocaine memory retrieval change depending on the age of the memory has implications for development of memory destabilization therapies for cue-induced relapse in cocaine addicts.

  13. Information and processes underlying semantic and episodic memory across tasks, items, and individuals.

    PubMed

    Cox, Gregory E; Hemmer, Pernille; Aue, William R; Criss, Amy H

    2018-04-01

    The development of memory theory has been constrained by a focus on isolated tasks rather than the processes and information that are common to situations in which memory is engaged. We present results from a study in which 453 participants took part in five different memory tasks: single-item recognition, associative recognition, cued recall, free recall, and lexical decision. Using hierarchical Bayesian techniques, we jointly analyzed the correlations between tasks within individuals-reflecting the degree to which tasks rely on shared cognitive processes-and within items-reflecting the degree to which tasks rely on the same information conveyed by the item. Among other things, we find that (a) the processes involved in lexical access and episodic memory are largely separate and rely on different kinds of information, (b) access to lexical memory is driven primarily by perceptual aspects of a word, (c) all episodic memory tasks rely to an extent on a set of shared processes which make use of semantic features to encode both single words and associations between words, and (d) recall involves additional processes likely related to contextual cuing and response production. These results provide a large-scale picture of memory across different tasks which can serve to drive the development of comprehensive theories of memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Retrieval of memories with the help of music in Alzheimer's disease.

    PubMed

    Chevreau, Priscilia; Nizard, Ingrid; Allain, Philippe

    2017-09-01

    This study focuses on music as a mediator facilitating access to autobiographical memory in Alzheimer's disease (AD). Studies on this topic are rare, but available data have shown a beneficial effect of music on autobiographical performance in AD patients. Based on the "index word" method, we developed the "index music" method for the evaluation of autobiographical memory. The subjects had to tell a memory of their choice from the words or music presented to them. The task was proposed to 54 patients with diagnosis of AD according to DSM IV and NINCDS-ADRDA criteria. All of them had a significant cognitive decline on the MMSE (mean score: 14.5). Patients were matched by age, sex and level of education with 48 control subjects without cognitive impairment (mean score on the MMSE: 28). Results showed that autobiographical memory quantity scores of AD patients were significantly lower than those of healthy control in both methods. However, autobiographical memory quality scores of AD patients increased with "index music" whereas autobiographical memory quality scores of healthy control decreased. Also, the autobiographical performance of patients with AD in condition index music was not correlated with cognitive performance in contrast to the autobiographical performances in index word. These results confirm that music improves access to personal memories in patients with AD. Personal memories could be preserved in patients with AD and music could constitute an interesting way to stimulate recollection.

  15. Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 5, Appendix D

    NASA Technical Reports Server (NTRS)

    Klute, A.

    1979-01-01

    The electrical characterization and qualification test results are presented for the RCA MWS 5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. Average input high current, worst case input high current, output low current, and data setup time are some of the results presented.

  16. The Effect of a Previously-Generated Hypothesis on Hypothesis Generation Performance.

    DTIC Science & Technology

    1980-08-05

    distinction 17I -’ai S between availability and accessibility has been made by Tulving and Pearlstone (1966). A datum may be present in memory, but may...1977. Thorndyke, P.W. The role of inference in discourse comprehension. Journal of Verbal Learning and Verbal Behavior, 1976, 15, 437-446. Tulving ...E. and Pearlstone , Z. Availability versus accessibility of infor- mation in memory for words. Journal of Verbal Learning and Verbal Behavior, 1966, 5

  17. Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 4, Appendix C

    NASA Technical Reports Server (NTRS)

    Klute, A.

    1979-01-01

    The electrical characterization and qualification test results are presented for the RCA MWS5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. Statistical analysis data is supplied along with write pulse width, read cycle time, write cycle time, and chip enable time data.

  18. ViSA: a neurodynamic model for visuo-spatial working memory, attentional blink, and conscious access.

    PubMed

    Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees

    2012-10-01

    Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). ViSA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  19. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    PubMed

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  20. Application of holographic optical techniques to bulk memory.

    NASA Technical Reports Server (NTRS)

    Anderson, L. K.

    1971-01-01

    Current efforts to exploit the spatial redundancy and built-in imaging of holographic optical techniques to provide high information densities without critical alignment and tight mechanical tolerances are reviewed. Read-write-erase in situ operation is possible but is presently impractical because of limitations in available recording media. As these are overcome, it should prove feasible to build holographic bulk memories with mechanically replaceable hologram plates featuring very fast (less than 2 microsec) random access to large (greater than 100 million bit) data blocks and very high throughput (greater than 500 Mbit/sec). Using volume holographic storage it may eventually be possible to realize random-access mass memories which require no mechanical motion and yet provide very high capacity.

  1. Acoustic Neuroma: Questions to Discuss with Your Doctor

    MedlinePlus

    ... products will be searched. Shopping Cart Description Qty Price The Harvard Medical School 6-Week Plan for ... Memory: Understanding Age-Related Memory Loss (PDF - Lowest Price!) $18.00 Harvard Health Letter (Print & Online Access ( ...

  2. Colonic Polyps: Questions to Discuss with Your Doctor

    MedlinePlus

    ... products will be searched. Shopping Cart Description Qty Price The Harvard Medical School 6-Week Plan for ... Memory: Understanding Age-Related Memory Loss (PDF - Lowest Price!) $18.00 Harvard Health Letter (Print & Online Access ( ...

  3. When You Visit Your Doctor After a Heart Attack

    MedlinePlus

    ... products will be searched. Shopping Cart Description Qty Price The Harvard Medical School 6-Week Plan for ... Memory: Understanding Age-Related Memory Loss (PDF - Lowest Price!) $18.00 Harvard Health Letter (Print & Online Access ( ...

  4. When You Visit Your Doctor: Irregular Menstrual Periods

    MedlinePlus

    ... products will be searched. Shopping Cart Description Qty Price The Harvard Medical School 6-Week Plan for ... Memory: Understanding Age-Related Memory Loss (PDF - Lowest Price!) $18.00 Harvard Health Letter (Print & Online Access ( ...

  5. An Assessment of a Beowulf System for a Wide Class of Analysis and Design Software

    NASA Technical Reports Server (NTRS)

    Katz, D. S.; Cwik, T.; Kwan, B. H.; Lou, J. Z.; Springer, P. L.; Sterling, T. L.; Wang, P.

    1997-01-01

    A typical Beowulf system, such as the machine at the Jet Propulsion Laboratory (JPL), may comprise 16 nodes interconnected by 100 base T Fast Ethernet. Each node may include a single Inter Pentium Pro 200 MHz microprocessor, 128 MBytes of DRAM, 2.5 GBytes of IDE disk, and PCI bus backplane, and an assortment of other devices.

  6. Integrating across Episodes: Investigating the Long-term Accessibility of Self-derived Knowledge in 4-Year-Old Children

    PubMed Central

    Varga, Nicole L.; Stewart, Rebekah A.; Bauer, Patricia J.

    2016-01-01

    Semantic memory, defined as our store of knowledge about the world, provides representational support for all of our higher order cognitive functions. As such, it is crucial that the contents of semantic memory remain accessible over time. Although memory for knowledge learned through direct observation has been previously investigated, we know very little about the retention of knowledge derived through integration of information acquired across separate learning episodes. The present research investigated cross-episode integration in 4-year-old children. Participants were presented with novel facts via distinct story episodes and tested for knowledge extension through cross-episode integration, as well as for retention of the information over a 1-week delay. In Experiment 1, children retained the self-derived knowledge over the delay, though performance was primarily evidenced in a forced-choice format. In Experiment 2, we sought to facilitate the accessibility and robustness of self-derived knowledge by providing a verbal reminder after the delay. The accessibility of self-derived knowledge increased, irrespective of whether participants successfully demonstrated knowledge of the integration facts during the first visit. The results suggest knowledge extended through integration remains accessible after delays, even in a population in which this learning process is less robust. The findings also demonstrate the facilitative effect of reminders on the accessibility and further extension of knowledge over extended time periods. PMID:26774259

  7. Belief Inhibition in Children's Reasoning: Memory-Based Evidence

    ERIC Educational Resources Information Center

    Steegen, Sara; Neys, Wim De

    2012-01-01

    Adult reasoning has been shown as mediated by the inhibition of intuitive beliefs that are in conflict with logic. The current study introduces a classic procedure from the memory field to investigate belief inhibition in 12- to 17-year-old reasoners. A lexical decision task was used to probe the memory accessibility of beliefs that were cued…

  8. Checkpoint-Restart in User Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CRUISE implements a user-space file system that stores data in main memory and transparently spills over to other storage, like local flash memory or the parallel file system, as needed. CRUISE also exposes file contents fo remote direct memory access, allowing external tools to copy files to the parallel file system in the background with reduced CPU interruption.

  9. Memory Dynamics and Decision Making in Younger and Older Adults

    ERIC Educational Resources Information Center

    Lechuga, M. Teresa; Gomez-Ariza, Carlos J.; Iglesias-Parro, Sergio; Pelegrina, Santiago

    2012-01-01

    The main aim of this research was to study whether memory dynamics influence older people's choices to the same extent as younger's ones. To do so, we adapted the retrieval-practice paradigm to produce variations in memory accessibility of information on which decisions were made later. Based on previous results, we expected to observe…

  10. Speed and Accuracy of Accessing Information in Working Memory: An Individual Differences Investigation of Focus Switching

    ERIC Educational Resources Information Center

    Unsworth, Nash; Engle, Randall W.

    2008-01-01

    Three experiments examined the nature of individual differences in switching the focus of attention in working memory. Participants performed 3 versions of a continuous counting task that required successive updating and switching between counts. Across all 3 experiments, individual differences in working memory span and fluid intelligence were…

  11. Contexts and Control Operations Used in Accessing List-Specific, Generalized, and Semantic Memories

    ERIC Educational Resources Information Center

    Humphreys, Michael S.; Murray, Krista L.; Maguire, Angela M.

    2009-01-01

    The human ability to focus memory retrieval operations on a particular list, episode or memory structure has not been fully appreciated or documented. In Experiment 1-3, we make it increasingly difficult for participants to switch between a less recent list (multiple study opportunities), and a more recent list (single study opportunity). Task…

  12. Loss of Visual Working Memory within Seconds: The Combined Use of Refreshable and Non-Refreshable Features

    ERIC Educational Resources Information Center

    Ricker, Timothy J.; Cowan, Nelson

    2010-01-01

    We reexamine the role of time in the loss of information from working memory, the limited information accessible for cognitive tasks. The controversial issue of whether working memory deteriorates over time was investigated using arrays of unconventional visual characters. Each array was followed by a postperceptual mask, a variable retention…

  13. Production, Comprehension, and Theories of the Mental Lexicon. CUNYForum, Numbers 5-6.

    ERIC Educational Resources Information Center

    Cowart, Wayne

    Problems related to the structure of the mental lexicon are considered. The single access assumption, the passive memory assumption, and the heterogeneous memory assumption are rejected in favor of the theory which assumes several active memories, each able to store expression based on only one homogenous set of abstract primitives. One lexicon…

  14. Multiple Memory Stores and Operant Conditioning: A Rationale for Memory's Complexity

    ERIC Educational Resources Information Center

    Meeter, Martijn; Veldkamp, Rob; Jin, Yaochu

    2009-01-01

    Why does the brain contain more than one memory system? Genetic algorithms can play a role in elucidating this question. Here, model animals were constructed containing a dorsal striatal layer that controlled actions, and a ventral striatal layer that controlled a dopaminergic learning signal. Both layers could gain access to three modeled memory…

  15. Columbia Crew added to Astronaut Memorial Mirror

    NASA Image and Video Library

    2003-07-15

    Workers add to the Astronaut Memorial Mirror the names of the Columbia crew who died in the STS-107 accident. Dedicated May 9, 1991, the Astronaut Memorial honors U.S. astronauts who gave their lives for space exploration. The "Space Mirror," 42 1/2 feet high by 50 feet wide, illuminates the names of the fallen astronauts cut through the monument's black granite surface. The Memorial Mirror is accessible through the KSC Visitor Complex.

  16. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    PubMed

    Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank

    2011-01-01

    Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension. This could contribute to symptomatic cognitive deficits and strategic inefficiency in schizophrenia.

  17. Logical Access Control Mechanisms in Computer Systems.

    ERIC Educational Resources Information Center

    Hsiao, David K.

    The subject of access control mechanisms in computer systems is concerned with effective means to protect the anonymity of private information on the one hand, and to regulate the access to shareable information on the other hand. Effective means for access control may be considered on three levels: memory, process and logical. This report is a…

  18. Selective memory retrieval in social groups: When silence is golden and when it is not.

    PubMed

    Abel, Magdalena; Bäuml, Karl-Heinz T

    2015-07-01

    Previous research has shown that the selective remembering of a speaker and the resulting silences can cause forgetting of related, but unmentioned information by a listener (Cuc, Koppel, & Hirst, 2007). Guided by more recent work that demonstrated both detrimental and beneficial effects of selective memory retrieval in individuals, the present research explored the effects of selective remembering in social groups when access to the encoding context at retrieval was maintained or impaired. In each of three experiments, selective retrieval by the speaker impaired recall of the listener when access to the encoding context was maintained, but it improved recall of the listener when context access was impaired. The results suggest the existence of two faces of selective memory retrieval in social groups, with a detrimental face when the encoding context is still active at retrieval and a beneficial face when it is not. The role of silence in social recall thus seems to be more complex than was indicated in prior work, and mnemonic silences on the part of a speaker can be "golden" for the memories of a listener under some circumstances, but not be "golden" under others. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Routes to the past: neural substrates of direct and generative autobiographical memory retrieval.

    PubMed

    Addis, Donna Rose; Knapp, Katie; Roberts, Reece P; Schacter, Daniel L

    2012-02-01

    Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Routes to the past: Neural substrates of direct and generative autobiographical memory retrieval

    PubMed Central

    Addis, Donna Rose; Knapp, Katie; Roberts, Reece P.; Schacter, Daniel L.

    2011-01-01

    Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. PMID:22001264

  1. Implementation of nitrogen-doped titanium-tungsten tunable heater in phase change random access memory and its effects on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Chun Chia; Zhao, Rong, E-mail: zhao-rong@sutd.edu.sg; Chong, Tow Chong

    2014-10-13

    Nitrogen-doped titanium-tungsten (N-TiW) was proposed as a tunable heater in Phase Change Random Access Memory (PCRAM). By tuning N-TiW's material properties through doping, the heater can be tailored to optimize the access speed and programming current of PCRAM. Experiments reveal that N-TiW's resistivity increases and thermal conductivity decreases with increasing nitrogen-doping ratio, and N-TiW devices displayed (∼33% to ∼55%) reduced programming currents. However, there is a tradeoff between the current and speed for heater-based PCRAM. Analysis of devices with different N-TiW heaters shows that N-TiW doping levels could be optimized to enable low RESET currents and fast access speeds.

  2. Design and measurement of fully digital ternary content addressable memory using ratioless static random access memory cells and hierarchical-AND matching comparator

    NASA Astrophysics Data System (ADS)

    Nishikata, Daisuke; Ali, Mohammad Alimudin Bin Mohd; Hosoda, Kento; Matsumoto, Hiroshi; Nakamura, Kazuyuki

    2018-04-01

    A 36-bit × 32-entry fully digital ternary content addressable memory (TCAM) using the ratioless static random access memory (RL-SRAM) technology and fully complementary hierarchical-AND matching comparators (HAMCs) was developed. Since its fully complementary and digital operation enables the effect of device variabilities to be avoided, it can operate with a quite low supply voltage. A test chip incorporating a conventional TCAM and a proposed 24-transistor ratioless TCAM (RL-TCAM) cells and HAMCs was developed using a 0.18 µm CMOS process. The minimum operating voltage of 0.25 V of the developed RL-TCAM, which is less than half of that of the conventional TCAM, was measured via the conventional CMOS push–pull output buffers with the level-shifting and flipping technique using optimized pull-up voltage and resistors.

  3. Are There Multiple Visual Short-Term Memory Stores?

    PubMed Central

    Sligte, Ilja G.; Scholte, H. Steven; Lamme, Victor A. F.

    2008-01-01

    Background Classic work on visual short-term memory (VSTM) suggests that people store a limited amount of items for subsequent report. However, when human observers are cued to shift attention to one item in VSTM during retention, it seems as if there is a much larger representation, which keeps additional items in a more fragile VSTM store. Thus far, it is not clear whether the capacity of this fragile VSTM store indeed exceeds the traditional capacity limits of VSTM. The current experiments address this issue and explore the capacity, stability, and duration of fragile VSTM representations. Methodology/Principal Findings We presented cues in a change-detection task either just after off-set of the memory array (iconic-cue), 1,000 ms after off-set of the memory array (retro-cue) or after on-set of the probe array (post-cue). We observed three stages in visual information processing 1) iconic memory with unlimited capacity, 2) a four seconds lasting fragile VSTM store with a capacity that is at least a factor of two higher than 3) the robust and capacity-limited form of VSTM. Iconic memory seemed to depend on the strength of the positive after-image resulting from the memory display and was virtually absent under conditions of isoluminance or when intervening light masks were presented. This suggests that iconic memory is driven by prolonged retinal activation beyond stimulus duration. Fragile VSTM representations were not affected by light masks, but were completely overwritten by irrelevant pattern masks that spatially overlapped the memory array. Conclusions/Significance We find that immediately after a stimulus has disappeared from view, subjects can still access information from iconic memory because they can see an after-image of the display. After that period, human observers can still access a substantial, but somewhat more limited amount of information from a high-capacity, but fragile VSTM that is overwritten when new items are presented to the eyes. What is left after that is the traditional VSTM store, with a limit of about four objects. We conclude that human observers store more sustained representations than is evident from standard change detection tasks and that these representations can be accessed at will. PMID:18301775

  4. Are there multiple visual short-term memory stores?

    PubMed

    Sligte, Ilja G; Scholte, H Steven; Lamme, Victor A F

    2008-02-27

    Classic work on visual short-term memory (VSTM) suggests that people store a limited amount of items for subsequent report. However, when human observers are cued to shift attention to one item in VSTM during retention, it seems as if there is a much larger representation, which keeps additional items in a more fragile VSTM store. Thus far, it is not clear whether the capacity of this fragile VSTM store indeed exceeds the traditional capacity limits of VSTM. The current experiments address this issue and explore the capacity, stability, and duration of fragile VSTM representations. We presented cues in a change-detection task either just after off-set of the memory array (iconic-cue), 1,000 ms after off-set of the memory array (retro-cue) or after on-set of the probe array (post-cue). We observed three stages in visual information processing 1) iconic memory with unlimited capacity, 2) a four seconds lasting fragile VSTM store with a capacity that is at least a factor of two higher than 3) the robust and capacity-limited form of VSTM. Iconic memory seemed to depend on the strength of the positive after-image resulting from the memory display and was virtually absent under conditions of isoluminance or when intervening light masks were presented. This suggests that iconic memory is driven by prolonged retinal activation beyond stimulus duration. Fragile VSTM representations were not affected by light masks, but were completely overwritten by irrelevant pattern masks that spatially overlapped the memory array. We find that immediately after a stimulus has disappeared from view, subjects can still access information from iconic memory because they can see an after-image of the display. After that period, human observers can still access a substantial, but somewhat more limited amount of information from a high-capacity, but fragile VSTM that is overwritten when new items are presented to the eyes. What is left after that is the traditional VSTM store, with a limit of about four objects. We conclude that human observers store more sustained representations than is evident from standard change detection tasks and that these representations can be accessed at will.

  5. Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations.

    PubMed

    van Ede, Freek; Niklaus, Marcel; Nobre, Anna C

    2017-01-11

    Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional, and demonstrate that expectations about when mnemonic items are most relevant can dynamically and reversibly prioritize these items in time. Moreover, we uncover a neural substrate of such dynamic prioritization in contralateral visual brain areas and show that this substrate predicts working memory retrieval times on a trial-by-trial basis. This places the experimental study of working memory, and its neuronal underpinnings, in a more dynamic and ecologically valid context, and provides new insights into the neural implementation of attentional prioritization within working memory. Copyright © 2017 van Ede et al.

  6. 45 CFR 2490.150 - Program accessibility: Existing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Program accessibility: Existing facilities. 2490.150 Section 2490.150 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON... ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.150 Program accessibility...

  7. 45 CFR 2490.150 - Program accessibility: Existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Program accessibility: Existing facilities. 2490.150 Section 2490.150 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON... ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.150 Program accessibility...

  8. 45 CFR 2490.150 - Program accessibility: Existing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Program accessibility: Existing facilities. 2490.150 Section 2490.150 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON... ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.150 Program accessibility...

  9. 45 CFR 2490.150 - Program accessibility: Existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Program accessibility: Existing facilities. 2490.150 Section 2490.150 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON... ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.150 Program accessibility...

  10. Data storage technology comparisons

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1990-01-01

    The role of data storage and data storage technology is an integral, though conceptually often underestimated, portion of data processing technology. Data storage is important in the mass storage mode in which generated data is buffered for later use. But data storage technology is also important in the data flow mode when data are manipulated and hence required to flow between databases, datasets and processors. This latter mode is commonly associated with memory hierarchies which support computation. VLSI devices can reasonably be defined as electronic circuit devices such as channel and control electronics as well as highly integrated, solid-state devices that are fabricated using thin film deposition technology. VLSI devices in both capacities play an important role in data storage technology. In addition to random access memories (RAM), read-only memories (ROM), and other silicon-based variations such as PROM's, EPROM's, and EEPROM's, integrated devices find their way into a variety of memory technologies which offer significant performance advantages. These memory technologies include magnetic tape, magnetic disk, magneto-optic disk, and vertical Bloch line memory. In this paper, some comparison between selected technologies will be made to demonstrate why more than one memory technology exists today, based for example on access time and storage density at the active bit and system levels.

  11. Time Frame Affects Vantage Point in Episodic and Semantic Autobiographical Memory: Evidence from Response Latencies

    PubMed Central

    Karylowski, Jerzy J.; Mrozinski, Blazej

    2017-01-01

    Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait’s self-descriptiveness (yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed. PMID:28473793

  12. Time Frame Affects Vantage Point in Episodic and Semantic Autobiographical Memory: Evidence from Response Latencies.

    PubMed

    Karylowski, Jerzy J; Mrozinski, Blazej

    2017-01-01

    Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait's self-descriptiveness ( yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed.

  13. Figuring fact from fiction: unbiased polling of memory T cells.

    PubMed

    Gerlach, Carmen; Loughhead, Scott M; von Andrian, Ulrich H

    2015-05-07

    Immunization generates several memory T cell subsets that differ in their migratory properties, anatomic distribution, and, hence, accessibility to investigation. In this issue, Steinert et al. demonstrate that what was believed to be a minor memory cell subset in peripheral tissues has been dramatically underestimated. Thus, current models of protective immunity require revision. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Object Selection Costs in Visual Working Memory: A Diffusion Model Analysis of the Focus of Attention

    ERIC Educational Resources Information Center

    Sewell, David K.; Lilburn, Simon D.; Smith, Philip L.

    2016-01-01

    A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can…

  15. Reasoning and Memory: People Make Varied Use of the Information Available in Working Memory

    ERIC Educational Resources Information Center

    Hardman, Kyle O.; Cowan, Nelson

    2016-01-01

    Working memory (WM) is used for storing information in a highly accessible state so that other mental processes, such as reasoning, can use that information. Some WM tasks require that participants not only store information, but also reason about that information to perform optimally on the task. In this study, we used visual WM tasks that had…

  16. Two Spatial Memories Are Not Better than One: Evidence of Exclusivity in Memory for Object Location

    ERIC Educational Resources Information Center

    Baguley, Thom; Lansdale, Mark W.; Lines, Lorna K.; Parkin, Jennifer K.

    2006-01-01

    This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue.…

  17. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  18. Particle sensor array

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)

    1994-01-01

    A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.

  19. Parity of access to memory services in London for the BAME population: a cross-sectional study.

    PubMed

    Cook, Laura; Mukherjee, Sujoy; McLachlan, Tim; Shah, Rajendra; Livingston, Gill; Mukadam, Naaheed

    2018-03-12

    To investigate whether referrals to memory services in London reflect the ethnic diversity of the population. Memory service data including referral rates of BAME was collected from London Clinical Commissioning Groups (CCGs). The expected percentage of BAME referrals using census data was compared against White British population percentages using the chi squared test. We found that within 13,166 referrals to memory services across London, the percentage of people from BAME groups was higher than would be expected (20.3 versus 19.4%; χ 2 = 39.203, d.f. = 1, p < 0.0001) indicating that generally people from BAME groups are accessing memory services. Seventy-nine percent of memory services had more referrals than expected or no significant difference for all BAME groups. When there were fewer referrals then expected, the largest difference in percentage for an individual ethnic group was 3.3%. Results are encouraging and may indicate a significant improvement in awareness of dementia and help seeking behaviour among BAME populations. Prevalence of dementia in some ethnic groups may be higher so these numbers could still indicate under-referral. Due to the data available we were unable to compare disease severity or diagnosis type.

  20. Virtual memory support for distributed computing environments using a shared data object model

    NASA Astrophysics Data System (ADS)

    Huang, F.; Bacon, J.; Mapp, G.

    1995-12-01

    Conventional storage management systems provide one interface for accessing memory segments and another for accessing secondary storage objects. This hinders application programming and affects overall system performance due to mandatory data copying and user/kernel boundary crossings, which in the microkernel case may involve context switches. Memory-mapping techniques may be used to provide programmers with a unified view of the storage system. This paper extends such techniques to support a shared data object model for distributed computing environments in which good support for coherence and synchronization is essential. The approach is based on a microkernel, typed memory objects, and integrated coherence control. A microkernel architecture is used to support multiple coherence protocols and the addition of new protocols. Memory objects are typed and applications can choose the most suitable protocols for different types of object to avoid protocol mismatch. Low-level coherence control is integrated with high-level concurrency control so that the number of messages required to maintain memory coherence is reduced and system-wide synchronization is realized without severely impacting the system performance. These features together contribute a novel approach to the support for flexible coherence under application control.

  1. CoNNeCT Baseband Processor Module

    NASA Technical Reports Server (NTRS)

    Yamamoto, Clifford K; Jedrey, Thomas C.; Gutrich, Daniel G.; Goodpasture, Richard L.

    2011-01-01

    A document describes the CoNNeCT Baseband Processor Module (BPM) based on an updated processor, memory technology, and field-programmable gate arrays (FPGAs). The BPM was developed from a requirement to provide sufficient computing power and memory storage to conduct experiments for a Software Defined Radio (SDR) to be implemented. The flight SDR uses the AT697 SPARC processor with on-chip data and instruction cache. The non-volatile memory has been increased from a 20-Mbit EEPROM (electrically erasable programmable read only memory) to a 4-Gbit Flash, managed by the RTAX2000 Housekeeper, allowing more programs and FPGA bit-files to be stored. The volatile memory has been increased from a 20-Mbit SRAM (static random access memory) to a 1.25-Gbit SDRAM (synchronous dynamic random access memory), providing additional memory space for more complex operating systems and programs to be executed on the SPARC. All memory is EDAC (error detection and correction) protected, while the SPARC processor implements fault protection via TMR (triple modular redundancy) architecture. Further capability over prior BPM designs includes the addition of a second FPGA to implement features beyond the resources of a single FPGA. Both FPGAs are implemented with Xilinx Virtex-II and are interconnected by a 96-bit bus to facilitate data exchange. Dedicated 1.25- Gbit SDRAMs are wired to each Xilinx FPGA to accommodate high rate data buffering for SDR applications as well as independent SpaceWire interfaces. The RTAX2000 manages scrub and configuration of each Xilinx.

  2. An amorphous titanium dioxide metal insulator metal selector device for resistive random access memory crossbar arrays with tunable voltage margin

    NASA Astrophysics Data System (ADS)

    Cortese, Simone; Khiat, Ali; Carta, Daniela; Light, Mark E.; Prodromakis, Themistoklis

    2016-01-01

    Resistive random access memory (ReRAM) crossbar arrays have become one of the most promising candidates for next-generation non volatile memories. To become a mature technology, the sneak path current issue must be solved without compromising all the advantages that crossbars offer in terms of electrical performances and fabrication complexity. Here, we present a highly integrable access device based on nickel and sub-stoichiometric amorphous titanium dioxide (TiO2-x), in a metal insulator metal crossbar structure. The high voltage margin of 3 V, amongst the highest reported for monolayer selector devices, and the good current density of 104 A/cm2 make it suitable to sustain ReRAM read and write operations, effectively tackling sneak currents in crossbars without compromising fabrication complexity in a 1 Selector 1 Resistor (1S1R) architecture. Furthermore, the voltage margin is found to be tunable by an annealing step without affecting the device's characteristics.

  3. A performance comparison of the IBM RS/6000 and the Astronautics ZS-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.M.; Abraham, S.G.; Davidson, E.S.

    1991-01-01

    Concurrent uniprocessor architectures, of which vector and superscalar are two examples, are designed to capitalize on fine-grain parallelism. The authors have developed a performance evaluation method for comparing and improving these architectures, and in this article they present the methodology and a detailed case study of two machines. The runtime of many programs is dominated by time spent in loop constructs - for example, Fortran Do-loops. Loops generally comprise two logical processes: The access process generates addresses for memory operations while the execute process operates on floating-point data. Memory access patterns typically can be generated independently of the data inmore » the execute process. This independence allows the access process to slip ahead, thereby hiding memory latency. The IBM 360/91 was designed in 1967 to achieve slip dynamically, at runtime. One CPU unit executes integer operations while another handles floating-point operations. Other machines, including the VAX 9000 and the IBM RS/6000, use a similar approach.« less

  4. Tuning resistance states by thickness control in an electroforming-free nanometallic complementary resistance random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiang; Lu, Yang; Lee, Jongho

    2016-01-04

    Tuning low resistance state is crucial for resistance random access memory (RRAM) that aims to achieve optimal read margin and design flexibility. By back-to-back stacking two nanometallic bipolar RRAMs with different thickness into a complementary structure, we have found that its low resistance can be reliably tuned over several orders of magnitude. Such high tunability originates from the exponential thickness dependence of the high resistance state of nanometallic RRAM, in which electron wave localization in a random network gives rise to the unique scaling behavior. The complementary nanometallic RRAM provides electroforming-free, multi-resistance-state, sub-100 ns switching capability with advantageous characteristics formore » memory arrays.« less

  5. Twin-bit via resistive random access memory in 16 nm FinFET logic technologies

    NASA Astrophysics Data System (ADS)

    Shih, Yi-Hong; Hsu, Meng-Yin; King, Ya-Chin; Lin, Chrong Jung

    2018-04-01

    A via resistive random access memory (RRAM) cell fully compatible with the standard CMOS logic process has been successfully demonstrated for high-density logic nonvolatile memory (NVM) modules in advanced FinFET circuits. In this new cell, the transition metal layers are formed on both sides of a via, given two storage bits per via. In addition to its compact cell area (1T + 14 nm × 32 nm), the twin-bit via RRAM cell features a low operation voltage, a large read window, good data retention, and excellent cycling capability. As fine alignments between mask layers become possible, the twin-bit via RRAM cell is expected to be highly scalable in advanced FinFET technology.

  6. Soft errors in commercial off-the-shelf static random access memories

    NASA Astrophysics Data System (ADS)

    Dilillo, L.; Tsiligiannis, G.; Gupta, V.; Bosser, A.; Saigne, F.; Wrobel, F.

    2017-01-01

    This article reviews state-of-the-art techniques for the evaluation of the effect of radiation on static random access memory (SRAM). We detailed irradiation test techniques and results from irradiation experiments with several types of particles. Two commercial SRAMs, in 90 and 65 nm technology nodes, were considered as case studies. Besides the basic static and dynamic test modes, advanced stimuli for the irradiation tests were introduced, as well as statistical post-processing techniques allowing for deeper analysis of the correlations between bit-flip cross-sections and design/architectural characteristics of the memory device. Further insight is provided on the response of irradiated stacked layer devices and on the use of characterized SRAM devices as particle detectors.

  7. A 300MHz Embedded Flash Memory with Pipeline Architecture and Offset-Free Sense Amplifiers for Dual-Core Automotive Microcontrollers

    NASA Astrophysics Data System (ADS)

    Kajiyama, Shinya; Fujito, Masamichi; Kasai, Hideo; Mizuno, Makoto; Yamaguchi, Takanori; Shinagawa, Yutaka

    A novel 300MHz embedded flash memory for dual-core microcontrollers with a shared ROM architecture is proposed. One of its features is a three-stage pipeline read operation, which enables reduced access pitch and therefore reduces performance penalty due to conflict of shared ROM accesses. Another feature is a highly sensitive sense amplifier that achieves efficient pipeline operation with two-cycle latency one-cycle pitch as a result of a shortened sense time of 0.63ns. The combination of the pipeline architecture and proposed sense amplifiers significantly reduces access-conflict penalties with shared ROM and enhances performance of 32-bit RISC dual-core microcontrollers by 30%.

  8. 45 CFR 2490.150 - Program accessibility: Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.150 Program accessibility: Existing facilities. (a) General. The agency shall operate each program or activity so that the program or activity, when viewed in its entirety, is readily accessible to and usable by individuals with handicaps...

  9. A novel double patterning approach for 30nm dense holes

    NASA Astrophysics Data System (ADS)

    Hsu, Dennis Shu-Hao; Wang, Walter; Hsieh, Wei-Hsien; Huang, Chun-Yen; Wu, Wen-Bin; Shih, Chiang-Lin; Shih, Steven

    2011-04-01

    Double Patterning Technology (DPT) was commonly accepted as the major workhorse beyond water immersion lithography for sub-38nm half-pitch line patterning before the EUV production. For dense hole patterning, classical DPT employs self-aligned spacer deposition and uses the intersection of horizontal and vertical lines to define the desired hole patterns. However, the increase in manufacturing cost and process complexity is tremendous. Several innovative approaches have been proposed and experimented to address the manufacturing and technical challenges. A novel process of double patterned pillars combined image reverse will be proposed for the realization of low cost dense holes in 30nm node DRAM. The nature of pillar formation lithography provides much better optical contrast compared to the counterpart hole patterning with similar CD requirements. By the utilization of a reliable freezing process, double patterned pillars can be readily implemented. A novel image reverse process at the last stage defines the hole patterns with high fidelity. In this paper, several freezing processes for the construction of the double patterned pillars were tested and compared, and 30nm double patterning pillars were demonstrated successfully. A variety of different image reverse processes will be investigated and discussed for their pros and cons. An economic approach with the optimized lithography performance will be proposed for the application of 30nm DRAM node.

  10. Commercial host (dram shop) liability: current status and trends.

    PubMed

    Mosher, James F; Cohen, Elena N; Jernigan, David H

    2013-09-01

    Commercial host liability (CHL, also called dram shop liability) holds alcohol retailers liable for alcohol-attributable harm caused by serving alcohol, illegally, to a patron who is already intoxicated (adult liability) or underage (underage liability). The Community Preventive Services Task Force, based on a systematic research literature review, concluded that CHL is an effective strategy for reducing excessive alcohol consumption. The current article describes the key components of CHL, its grounding in American jurisprudence, its adoption in the 50 states, and changes since 1989, when a similar assessment of these policies was conducted. The current paper focuses on three legislatively enacted restrictions: (1) increased evidentiary requirements; (2) limitations on damage awards; and (3) limitations on who may be sued. Data were collected in 2011 and analyzed in 2012 and 2013. There has been substantial erosion of CHL during the past 2 decades. Fewer states recognized CHL in 2011 than in 1989, and more statutory restrictions were imposed during the study period among states that did recognize CHL; states are more likely to recognize underage than adult liability; and six states recognized a Responsible Beverage Services Practices affirmative defense in both 1989 and 2011. Implications of these findings for public health practitioners are discussed. Copyright © 2013 American Journal of Preventive Medicine. All rights reserved.

  11. Working Memory Underpins Cognitive Development, Learning, and Education

    PubMed Central

    Cowan, Nelson

    2014-01-01

    Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem-solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then I explore the nature of cognitive developmental improvements in working memory, the role of working memory in learning, and some potential implications of working memory and its development for the education of children and adults. The use of working memory is quite ubiquitous in human thought, but the best way to improve education using what we know about working memory is still controversial. I hope to provide some directions for research and educational practice. PMID:25346585

  12. Complex dynamics of semantic memory access in reading.

    PubMed

    Baggio, Giosué; Fonseca, André

    2012-02-07

    Understanding a word in context relies on a cascade of perceptual and conceptual processes, starting with modality-specific input decoding, and leading to the unification of the word's meaning into a discourse model. One critical cognitive event, turning a sensory stimulus into a meaningful linguistic sign, is the access of a semantic representation from memory. Little is known about the changes that activating a word's meaning brings about in cortical dynamics. We recorded the electroencephalogram (EEG) while participants read sentences that could contain a contextually unexpected word, such as 'cold' in 'In July it is very cold outside'. We reconstructed trajectories in phase space from single-trial EEG time series, and we applied three nonlinear measures of predictability and complexity to each side of the semantic access boundary, estimated as the onset time of the N400 effect evoked by critical words. Relative to controls, unexpected words were associated with larger prediction errors preceding the onset of the N400. Accessing the meaning of such words produced a phase transition to lower entropy states, in which cortical processing becomes more predictable and more regular. Our study sheds new light on the dynamics of information flow through interfaces between sensory and memory systems during language processing.

  13. Episodic memories.

    PubMed

    Conway, Martin A

    2009-09-01

    An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of episodic elements, summary records of experience often in the form of visual images, associated to a conceptual frame that provides a conceptual context. Episodic memories are embedded in a more complex conceptual system in which they can become the basis of autobiographical memories. However, the function of episodic memories is to keep a record of progress with short-term goals and access to most episodic memories is lost soon after their formation. Finally, it is suggested that developmentally episodic memories form the basis of the conceptual system and it is from sets of episodic memories that early non-verbal conceptual knowledge is abstracted.

  14. Functional retrograde amnesia: a quantitative case study.

    PubMed

    Schacter, D L; Wang, P L; Tulving, E; Freedman, M

    1982-01-01

    The memory impairment of a patient suffering from functional retrograde amnesia was assessed both during the amnesic episode and after its termination. The patient's performance on a task tapping semantic memory was nearly identical on the two test occasions, but his performance on a task tapping episodic memory substantially changed across test sessions. Cueing procedures revealed that in spite of the patient's restricted access to episodic memory during the amnesic period, a relatively intact "island" of episodic memories could be uncovered. The distinction between episodic and semantic memory, as well as the relation between organic and functional retrograde amnesia, are discussed in light of the case study.

  15. The removal of information from working memory.

    PubMed

    Lewis-Peacock, Jarrod A; Kessler, Yoav; Oberauer, Klaus

    2018-05-09

    What happens to goal-relevant information in working memory after it is no longer needed? Here, we review evidence for a selective removal process that operates on outdated information to limit working memory load and hence facilitates the maintenance of goal-relevant information. Removal alters the representations of irrelevant content so as to reduce access to it, thereby improving access to the remaining relevant content and also facilitating the encoding of new information. Both behavioral and neural evidence support the existence of a removal process that is separate from forgetting due to decay or interference. We discuss the potential mechanisms involved in removal and characterize the time course and duration of the process. In doing so, we propose the existence of two forms of removal: one is temporary, and reversible, which modifies working memory content without impacting content-to-context bindings, and another is permanent, which unbinds the content from its context in working memory (without necessarily impacting long-term forgetting). Finally, we discuss limitations on removal and prescribe conditions for evaluating evidence for or against this process. © 2018 New York Academy of Sciences.

  16. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems.

    PubMed

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  17. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems

    PubMed Central

    Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models. PMID:27413363

  18. Accessing sparse arrays in parallel memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, U.; Gajski, D.; Kuck, D.

    The concept of dense and sparse execution of arrays is introduced. Arrays themselves can be stored in a dense or sparse manner in a parallel memory with m memory modules. The paper proposes hardware for speeding up the execution of array operations of the form c(c/sub 0/+ci)=a(a/sub 0/+ai) op b(b/sub 0/+bi), where a/sub 0/, a, b/sub 0/, b, c/sub 0/, c are integer constants and i is an index variable. The hardware handles 'sparse execution', in which the operation op is not executed for every value of i. The hardware also makes provision for 'sparse storage', in which memory spacemore » is not provided for every array element. It is shown how to access array elements of the above form without conflict in an efficient way. The efficiency is obtained by using some specialised units which are basically smart memories with priority detection, one's counting or associative searching. Generalisation to multidimensional arrays is shown possible under restrictions defined in the paper. 12 references.« less

  19. Microcontroller for automation application

    NASA Technical Reports Server (NTRS)

    Cooper, H. W.

    1975-01-01

    The description of a microcontroller currently being developed for automation application was given. It is basically an 8-bit microcomputer with a 40K byte random access memory/read only memory, and can control a maximum of 12 devices through standard 15-line interface ports.

  20. Gateway Arch Circulator Conceptual Feasibility Study : Jefferson National Expansion Memorial

    DOT National Transportation Integrated Search

    2015-03-01

    The Jefferson National Expansion Memorial (JEFF) is undergoing major design changes as part of the City Arch River 2015 project (CAR) that will impact access for park visitors. The park and stakeholders are considering a circulator system to facilita...

  1. No Evidence for an Item Limit in Change Detection (Open Access)

    DTIC Science & Technology

    2013-02-28

    memory : a reconsideration of mental storage capacity. Behav Brain Sci 24: 87–114. 17. Eng HY, Chen D, Jiang Y (2005) Visual working memory for simple...working memory can hold no more than a fixed number of items (‘‘item-limit models’’). Recent findings force us to consider the alternative view that working... memory is limited by the precision in stimulus encoding, with mean precision decreasing with increasing set size (‘‘continuous-resource models

  2. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Carpenter, K. H.

    1974-01-01

    The design, construction, and test history of a 4096 word by 18 bit random access NDRO Plated Wire Memory for use in conjunction with a spacecraft input/output and central processing unit is reported. A technical and functional description is given along with diagrams illustrating layout and systems operation. Test data is shown on the procedures and results of system level and memory stack testing, and hybrid circuit screening. A comparison of the most significant physical and performance characteristics of the memory unit versus the specified requirements is also included.

  3. Design of a magnetic-tunnel-junction-oriented nonvolatile lookup table circuit with write-operation-minimized data shifting

    NASA Astrophysics Data System (ADS)

    Suzuki, Daisuke; Hanyu, Takahiro

    2018-04-01

    A magnetic-tunnel-junction (MTJ)-oriented nonvolatile lookup table (LUT) circuit, in which a low-power data-shift function is performed by minimizing the number of write operations in MTJ devices is proposed. The permutation of the configuration memory cell for read/write access is performed as opposed to conventional direct data shifting to minimize the number of write operations, which results in significant write energy savings in the data-shift function. Moreover, the hardware cost of the proposed LUT circuit is small since the selector is shared between read access and write access. In fact, the power consumption in the data-shift function and the transistor count are reduced by 82 and 52%, respectively, compared with those in a conventional static random-access memory-based implementation using a 90 nm CMOS technology.

  4. Psychological Processes Underlying Cultivation Effects: Further Tests of Construct Accessibility.

    ERIC Educational Resources Information Center

    Shrum, L. J.

    1996-01-01

    Describes a study that tested whether the accessibility of information in memory mediates the cultivation effect (the effect of television viewing on social perceptions), consistent with the availability heuristic. Shows that heavy viewers gave higher frequency estimates (cultivation effect) and responded faster (accessibility effect) than did…

  5. Making the Stranger's Path Familiar: Environmental Communication that Turns Access into Participation

    ERIC Educational Resources Information Center

    Adelman, Clifford

    2005-01-01

    Visitors to the FDR Memorial in Washington, D.C., enter the area through ceremonial openings: from the pathway around the reflecting pond of the Jefferson Memorial, or across a small shaded plaza reached from a roadway parallel to the Potomac River. The FDR Memorial itself cannot be seen at the start of either of these paths. It is out there…

  6. FPGA Vision Data Architecture

    NASA Technical Reports Server (NTRS)

    Morfopoulos, Arin C.; Pham, Thang D.

    2013-01-01

    JPL has produced a series of FPGA (field programmable gate array) vision algorithms that were written with custom interfaces to get data in and out of each vision module. Each module has unique requirements on the data interface, and further vision modules are continually being developed, each with their own custom interfaces. Each memory module had also been designed for direct access to memory or to another memory module.

  7. Trinary Associative Memory Would Recognize Machine Parts

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Awwal, Abdul Ahad S.; Karim, Mohammad A.

    1991-01-01

    Trinary associative memory combines merits and overcomes major deficiencies of unipolar and bipolar logics by combining them in three-valued logic that reverts to unipolar or bipolar binary selectively, as needed to perform specific tasks. Advantage of associative memory: one obtains access to all parts of it simultaneously on basis of content, rather than address, of data. Consequently, used to exploit fully parallelism and speed of optical computing.

  8. Cache directory look-up re-use as conflict check mechanism for speculative memory requests

    DOEpatents

    Ohmacht, Martin

    2013-09-10

    In a cache memory, energy and other efficiencies can be realized by saving a result of a cache directory lookup for sequential accesses to a same memory address. Where the cache is a point of coherence for speculative execution in a multiprocessor system, with directory lookups serving as the point of conflict detection, such saving becomes particularly advantageous.

  9. 45 CFR 2490.149 - Program accessibility: Discrimination prohibited.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...

  10. 45 CFR 2490.149 - Program accessibility: Discrimination prohibited.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...

  11. 45 CFR 2490.149 - Program accessibility: Discrimination prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...

  12. 45 CFR 2490.149 - Program accessibility: Discrimination prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...

  13. 45 CFR 2490.149 - Program accessibility: Discrimination prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...

  14. Accessibility limits recall from visual working memory.

    PubMed

    Rajsic, Jason; Swan, Garrett; Wilson, Daryl E; Pratt, Jay

    2017-09-01

    In this article, we demonstrate limitations of accessibility of information in visual working memory (VWM). Recently, cued-recall has been used to estimate the fidelity of information in VWM, where the feature of a cued object is reproduced from memory (Bays, Catalao, & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). Response error in these tasks has been largely studied with respect to failures of encoding and maintenance; however, the retrieval operations used in these tasks remain poorly understood. By varying the number and type of object features provided as a cue in a visual delayed-estimation paradigm, we directly assess the nature of retrieval errors in delayed estimation from VWM. Our results demonstrate that providing additional object features in a single cue reliably improves recall, largely by reducing swap, or misbinding, responses. In addition, performance simulations using the binding pool model (Swan & Wyble, 2014) were able to mimic this pattern of performance across a large span of parameter combinations, demonstrating that the binding pool provides a possible mechanism underlying this pattern of results that is not merely a symptom of one particular parametrization. We conclude that accessing visual working memory is a noisy process, and can lead to errors over and above those of encoding and maintenance limitations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Distributed shared memory for roaming large volumes.

    PubMed

    Castanié, Laurent; Mion, Christophe; Cavin, Xavier; Lévy, Bruno

    2006-01-01

    We present a cluster-based volume rendering system for roaming very large volumes. This system allows to move a gigabyte-sized probe inside a total volume of several tens or hundreds of gigabytes in real-time. While the size of the probe is limited by the total amount of texture memory on the cluster, the size of the total data set has no theoretical limit. The cluster is used as a distributed graphics processing unit that both aggregates graphics power and graphics memory. A hardware-accelerated volume renderer runs in parallel on the cluster nodes and the final image compositing is implemented using a pipelined sort-last rendering algorithm. Meanwhile, volume bricking and volume paging allow efficient data caching. On each rendering node, a distributed hierarchical cache system implements a global software-based distributed shared memory on the cluster. In case of a cache miss, this system first checks page residency on the other cluster nodes instead of directly accessing local disks. Using two Gigabit Ethernet network interfaces per node, we accelerate data fetching by a factor of 4 compared to directly accessing local disks. The system also implements asynchronous disk access and texture loading, which makes it possible to overlap data loading, volume slicing and rendering for optimal volume roaming.

  16. Low power consumption resistance random access memory with Pt/InOx/TiN structure

    NASA Astrophysics Data System (ADS)

    Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.; Tsai, Ming-Jinn

    2013-09-01

    In this study, the resistance switching characteristics of a resistive random access memory device with Pt/InOx/TiN structure is investigated. Unstable bipolar switching behavior is observed during the initial switching cycle, which then stabilizes after several switching cycles. Analyses indicate that the current conduction mechanism in the resistance state is dominated by Ohmic conduction. The decrease in electrical conductance can be attributed to the reduction of the cross-sectional area of the conduction path. Furthermore, the device exhibits low operation voltage and power consumption.

  17. Lowering data retention voltage in static random access memory array by post fabrication self-improvement of cell stability by multiple stress application

    NASA Astrophysics Data System (ADS)

    Mizutani, Tomoko; Takeuchi, Kiyoshi; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro

    2018-04-01

    We propose a new version of the post fabrication static random access memory (SRAM) self-improvement technique, which utilizes multiple stress application. It is demonstrated that, using a device matrix array (DMA) test element group (TEG) with intrinsic channel fully depleted (FD) silicon-on-thin-buried-oxide (SOTB) six-transistor (6T) SRAM cells fabricated by the 65 nm technology, the lowering of data retention voltage (DRV) is more effectively achieved than using the previously proposed single stress technique.

  18. Relational Memory Is Evident in Eye Movement Behavior despite the Use of Subliminal Testing Methods.

    PubMed

    Nickel, Allison E; Henke, Katharina; Hannula, Deborah E

    2015-01-01

    While it is generally agreed that perception can occur without awareness, there continues to be debate about the type of representational content that is accessible when awareness is minimized or eliminated. Most investigations that have addressed this issue evaluate access to well-learned representations. Far fewer studies have evaluated whether or not associations encountered just once prior to testing might also be accessed and influence behavior. Here, eye movements were used to examine whether or not memory for studied relationships is evident following the presentation of subliminal cues. Participants assigned to experimental or control groups studied scene-face pairs and test trials evaluated implicit and explicit memory for these pairs. Each test trial began with a subliminal scene cue, followed by three visible studied faces. For experimental group participants, one face was the studied associate of the scene (implicit test); for controls none were a match. Subsequently, the display containing a match was presented to both groups, but now it was preceded by a visible scene cue (explicit test). Eye movements were recorded and recognition memory responses were made. Participants in the experimental group looked disproportionately at matching faces on implicit test trials and participants from both groups looked disproportionately at matching faces on explicit test trials, even when that face had not been successfully identified as the associate. Critically, implicit memory-based viewing effects seemed not to depend on residual awareness of subliminal scene cues, as subjective and objective measures indicated that scenes were successfully masked from view. The reported outcomes indicate that memory for studied relationships can be expressed in eye movement behavior without awareness.

  19. Relational Memory Is Evident in Eye Movement Behavior despite the Use of Subliminal Testing Methods

    PubMed Central

    Nickel, Allison E.; Henke, Katharina; Hannula, Deborah E.

    2015-01-01

    While it is generally agreed that perception can occur without awareness, there continues to be debate about the type of representational content that is accessible when awareness is minimized or eliminated. Most investigations that have addressed this issue evaluate access to well-learned representations. Far fewer studies have evaluated whether or not associations encountered just once prior to testing might also be accessed and influence behavior. Here, eye movements were used to examine whether or not memory for studied relationships is evident following the presentation of subliminal cues. Participants assigned to experimental or control groups studied scene-face pairs and test trials evaluated implicit and explicit memory for these pairs. Each test trial began with a subliminal scene cue, followed by three visible studied faces. For experimental group participants, one face was the studied associate of the scene (implicit test); for controls none were a match. Subsequently, the display containing a match was presented to both groups, but now it was preceded by a visible scene cue (explicit test). Eye movements were recorded and recognition memory responses were made. Participants in the experimental group looked disproportionately at matching faces on implicit test trials and participants from both groups looked disproportionately at matching faces on explicit test trials, even when that face had not been successfully identified as the associate. Critically, implicit memory-based viewing effects seemed not to depend on residual awareness of subliminal scene cues, as subjective and objective measures indicated that scenes were successfully masked from view. The reported outcomes indicate that memory for studied relationships can be expressed in eye movement behavior without awareness. PMID:26512726

  20. New uses of hypnosis in the treatment of posttraumatic stress disorder.

    PubMed

    Spiegel, D; Cardena, E

    1990-10-01

    Hypnosis is associated with the treatment of posttraumatic stress disorder (PTSD) for two reasons: (1) the similarity between hypnotic phenomena and the symptoms of PTSD, and (2) the utility of hypnosis as a tool in treatment. Physical trauma produces a sudden discontinuity in cognitive and emotional experience that often persists after the trauma is over. This results in symptoms such as psychogenic amnesia, intrusive reliving of the event as if it were recurring, numbing of responsiveness, and hypersensitivity to stimuli. Two studies have shown that Vietnam veterans with PTSD have higher than normal hypnotizability scores on standardized tests. Likewise, a history of physical abuse in childhood has been shown to be strongly associated with dissociative symptoms later in life. Furthermore, dissociative symptoms during and soon after traumatic experience predict later PTSD. Formal hypnotic procedures are especially helpful because this population is highly hypnotizable. Hypnosis provides controlled access to memories that may otherwise be kept out of consciousness. New uses of hypnosis in the psychotherapy of PTSD victims involve coupling access to the dissociated traumatic memories with positive restructuring of those memories. Hypnosis can be used to help patients face and bear a traumatic experience by embedding it in a new context, acknowledging helplessness during the event, and yet linking that experience with remoralizing memories such as efforts at self-protection, shared affection with friends who were killed, or the ability to control the environment at other times. In this way, hypnosis can be used to provide controlled access to memories that are then placed into a broader perspective. Patients can be taught self-hypnosis techniques that allow them to work through traumatic memories and thereby reduce spontaneous unbidden intrusive recollections.

Top